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Given η =
(
a b
c d

)
∈ GL2(Q), we consider the number of 

rational points on the genus one curve

Hη : y2 = (a(1 − x2) + b(2x))2 + (c(1 − x2) + d(2x))2.

We prove that the set of η for which Hη(Q) �= ∅ has density 
zero, and that if a rational point (x0, y0) ∈ Hη(Q) exists, 
then Hη(Q) is infinite unless a certain explicit polynomial in 
a, b, c, d, x0, y0 vanishes.
Curves of the form Hη naturally occur in the study of 
configurations of points in Rn with rational distances between 
them. As one example demonstrating this framework, we 
prove that if a line through the origin in R2 passes through 
a rational point on the unit circle, then it contains a dense 
set of points P such that the distances from P to each of the 
three points (0, 0), (0, 1), and (1, 1) are all rational. We also 
prove some results regarding whether a rational number can 
be expressed as a sum or product of slopes of rational right 
triangles.
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1. Introduction

1.1. A family of curves

Fix η :=
(
a b
c d

)
∈ GL2(Q), and let Hη be the curve defined by

Hη : y2 = (a(z2 − x2) + b(2xz))2 + (c(z2 − x2) + d(2xz))2 (1)

in the weighted projective plane where x, y, z have degree 1, 2, 1, respectively. Rational 
points on this curve correspond to vectors ( u

v ) ∈ Q2 \ {0} such that both ( u
v ) and η( u

v )
have rational length, and as a result, curves of this form can be used to describe solutions 
to a collection of rational configuration problems; see Section 1.2 for more details. In this 
paper we study the loci of points η for which Hη has zero, finitely many, or infinitely 
many rational points.

First, we show that for most values of η, the curve Hη has no rational points.

Theorem 1.1. Let L(X) be the set of η ∈ GL2(Q) with a, b, c, d ∈ Z ∩ [−X, X] such that 
Hη(Qv) is nonempty for all v ∈ {∞, 2, 3, 5, 7, . . .}. Then for some constant C > 0,

|L(X)|
(2X)4 < C(logX)−1/4.

The proof is given in Section 4. Note that Hη � Hmη for any positive integer m, 
so by clearing denominators, every Hη is isomorphic to one of the curves counted in 
Theorem 1.1. For the sake of comparison, consider the following result by Bhargava, 
Cremona, and Fisher.

Theorem 1.2 ([4, Theorem 3]). Let L′(X) denote the set of (a, b, c, d, e) ∈ (Z ∩ [−X, X])5
such that

y2 = ax4 + bx3 + cx2 + dx + e

has a Qv point for all v ∈ {∞, 2, 3, 5, 7, . . .}. Then

lim
X→∞

|L′(X)|
(2X)5 ≈ 0.7596.

We see that the subfamily Hη differs from the larger family, in that far fewer special-
izations are everywhere locally soluble.

Now suppose we restrict our attention to the collection of points η for which Hη does 
contain a rational point. In this case we have a stronger classification. Let ηt denote the 
transpose of η.
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Proposition 1.3. Suppose Hη (Eq. (1)) has a rational point. If ηηt is a scalar matrix, 
then det η = λ2 for some λ ∈ Q× and Hη is a union of two rational conics,

y = ±λ(x2 + 1).

Otherwise Hη is isomorphic to

Er,s : y2 = x3 + (1 + r2 + s2)x2 + s2x

for some r, s ∈ Q with s �= 0 and (r, s) �= (0, ±1).

A proof is given in Section 3.4 using the fact that the isomorphism type of Hη is 
invariant under acting on the left and right of η by elements of the orthogonal group 
O2(Q). An explicit change of variables expressing r, s in terms of a, b, c, d and the rational 
point (x0 : y0 : z0) ∈ Hη(Q) is given by Lemma 3.2.

Theorem 1.4. Let r, s ∈ Q with s �= 0 and (r, s) �= (0, ±1). The point (−1, r) ∈ Er,s(Q)
is non-torsion if and only if r �= 0, s �= ±1, and 4r2s �= ±(1 − s2)2.

In particular, for most of the values η such that Hη(Q) is nonempty, Hη(Q) is actually 
infinite. The proof of this result is given in Section 3.5. We discuss several applications 
of this result to rational distance problems in Section 1.2, but mention one here as a 
representative example.

Corollary 1.5. On any line of the form x = 0 or y = 2t
1−t2x for t ∈ Q \ {−1, 0, 1}, there 

exists a dense set of points with rational distance from each of (0, 0), (0, 1), and (1, 1).

In fact we prove a stronger result: there is an infinite collection of curves Cn in the 
plane such that the intersection points of the curves Cn with any fixed line y = 2t

1−t2x

(for t ∈ Q \{−1, 0, 1}) gives a dense set of solutions to the three-distance problem within 
the given line (Corollary 5.4).

Even in the cases where (−1, r) ∈ Er,s(Q) is torsion, there are still several cases 
in which we can prove Er,s(Q) has positive rank. We discuss these in more depth in 
Section 5.4, but note one special case here. Let

S ′ = {α ∈ Q :
√

α2 + 1 ∈ Q}

denote the set of slopes of rational right triangles (including negatives and zero).

Proposition 1.6. For all t ∈ Q, the equations x1 + x2 + x3 = t and x1x2x3 = t each have 
an infinite set of solutions with x1, x2, x3 ∈ S ′.

See Section 5.4 for a proof.
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1.2. Rational configuration problems

Given a finite simple graph G = (V, E), an embedding φ : V ↪→ Rn is a rational 
configuration if the distance d(φ(v), φ(w)) is rational for all (v, w) ∈ E. We may add some 
additional constraints to the set of allowable embeddings (for instance, we may require 
some pairs of edges to be the same length, or to meet at right angles), and in doing so 
we obtain a corresponding rational configuration problem: to determine whether there 
exists a rational configuration satisfying the desired constraints, and if so, to classify 
or count the number of rational configurations. We describe a list of sample rational 
configurations below; the corresponding graphs can be found in Table 1.

• “Adjacent rectangles:” Find two rectangles sharing an edge such that the distance 
between any two vertices is rational.

• “Detour:” Fix parameters r, s, t ∈ Q×. Find a point x such that (x, 0) has rational 
distance to (0, 0), (r, 0), (0, s), and (r, t). (A traveller is going from (0, s) to (r, t), 
but has to take a detour to stop at the x-axis along the way; can they do so using 
only two straight paths of rational length?)

• “Perfect cuboid:” Find a rectangular prism such that the distance between any two 
vertices is rational.

• “Body cuboid:” Find a rectangular prism such that the distance between any two 
vertices that share a face is rational.

• “Square four-distance:” Find a point (x, y) ∈ R2 such that the distance to each of 
(0, 0), (1, 0), (0, 1), and (1, 1) is rational.

• “Square three-distance:” Find a point (x, y) ∈ R2 such that the distance to each of 
(0, 0), (0, 1), and (1, 1) is rational.

• “Rectangle four-distance:” Find r ∈ Q× and a point (x, y) ∈ R2 such that the 
distance to each of (0, 0), (0, 1), (r, 0), and (r, 1) is rational.

• “Rational distances under Möbius transformation:” Fix a, b, c, d ∈ Q with ad −bc �= 0. 
Find z ∈ C such that z and az+b

cz+d both have rational distance from 0.

The perfect cuboid problem and square four-distance problem are classic unsolved 
problems (see Section 2); this paper does not present a solution to either of them. How-
ever, we can put all the remaining problems in this list into a common framework. Define

S = {(u : v) ∈ P 1(Q) |
√
u2 + v2 ∈ Q},

so that whenever u, v, not both zero, are the legs of a (possibly degenerate) rational right 
triangle, the slope of the triangle is in S. Then for distinct P1, P2 ∈ Q2, the distance 
between P1 and P2 is rational if and only if the line between P1 and P2 has slope in S. 
Using this observation, we can parametrize solutions to many rational configuration 
problems by finding elements of S satisfying simple polynomial relations. We let S ′ =
S ∩Q (that is, the set of (u : v) ∈ S with v �= 0; note that this agrees with the previous 
definition of S ′), and S× = S ∩Q× (the set of (u : v) ∈ S with uv �= 0).
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Table 1
Diagrams of rational distance problems. Rational configurations are given by solutions to the given equation 
with αi ∈ S′ for all i. By Proposition 1.9, some of these configurations are parametrized by rational points 
on a curve Hη. If a distinguished rational point on Hη is known, then the isomorphic elliptic curve Er,s is 
given (Proposition 1.3), and labeled with ∞ in the cases that Er,s(Q) is known to be infinite.

Configuration Graph Equation Solutions given by

Adjacent rectangles

α1 α2

1 α1 + α2 = α3 Eα3,1(Q)
(∞ for all α3 ∈ S′:
Proposition 5.5)

Detour (r, s ∈ Q×)
sα1 α2

s 1

r

sα1 + α2 = r Er,s(Q)
(∞ if |s| �= 1 and 
4r2s �= ±(1 − s2)2:
Theorem 1.4)

Perfect cuboid

α1

α2

1 α2
1 + α2

2 = α2
3 Unknown

Body cuboid

α1

α2

1 α1α3 = α2 E0,α3 (Q)

(Square) Four-distance

1 α1α2

α3

α1

α1α2 = α3α4 =
α1 + α3 − 1

Unknown

(Square) three-distance

1 α1α2

α3

α1

α1α2 = α1 + α3 − 1 E−1,1−α3 (Q)
(∞ for all α3 ∈ S′:
Corollary 1.5)

(Rectangle) four-distance

1 α1α2

α3

α1
α1α2 = α3α4 E0,α3α4 (Q)

Rational distances under 
Möbius transformation, 
η =

(
a b
c d

)
∈ GL2(Q) c

α
1

+
d

aα1 + b

α1

1
(aα1 + b)α2 = (cα1 + d) Hη(Q)

Example 1.7. Given a hypothetical solution to the perfect cuboid problem, we can scale 
the solution so that one edge length has length 1; this implies there exist α1, α2 ∈ Q \{0}
such that
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1 + α2
1, 1 + α2

2, α2
1 + α2

2, and 1 + α2
1 + α2

2

are all perfect squares. If we set α3 =
√

α2
1 + α2

2, then the polynomial constraints above 
are equivalent to requiring

α2
1 + α2

2 = α2
3 for some α1, α2, α3 ∈ S ′.

Allowing any αi = 0 gives a degenerate solution, so we really require α1, α2, α3 ∈ S×.

Example 1.8. Given a hypothetical solution x to the “detour” problem, we can scale the 
solution so that t = 1. If we set α1 := x

s and α2 = r − sα1, then each pair (s, sα1) and 
(α2, 1) forms the legs of a rational right triangle, so α1, α2 ∈ S× satisfy sα1 + α2 = r. 
Conversely, given α1, α2 ∈ S× with sα1 + α2 = r, we obtain a detour solution with 
x = sα1.

Similar polynomial constraints for each of the problems above are listed in Table 1. For 
every problem in Table 1 besides the perfect cuboid problem and the square four-distance 
problem, rational configurations correspond to solutions in S to a single polynomial in 
multiple variables that is linear in each variable.

Proposition 1.9. Let η =
(
a b
c d

)
∈ GL2(Q), and let Fη be the curve in P 1 ×P 1 defined by

Fη : ax1x2 + bx1z2 + cz1x2 + dz1z2 = 0.

There is a degree 4 morphism Φ : Hη → Fη inducing a surjection

Hη(Q) → Fη(Q) ∩ (S × S).

This follows from Proposition 5.1. Proposition 1.9 shows that for a wide collection of 
problems, rational configurations can be classified using rational points on curves of the 
form Hη. We can use this observation to show that some rational configuration problems 
have infinitely many rational configurations. In some cases, such as the detour problem 
and the square three-distance problem, the infinitude of solutions will be a consequence 
of Theorem 1.4. For others, including the adjacent rectangles, body cuboid, and rectangle 
four-distance problems, the corresponding curve Er,s lands in one of the exceptional cases 
of Theorem 1.4, and so we cannot immediately conclude that there are infinitely many 
solutions.

1.3. Outline

We begin with a discussion of some related problems and their histories in Section 2. 
In Section 3 we analyze the algebraic structure of the family Hη, in particular showing 
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that the isomorphism type of Hη is invariant under a left- and right-action of the or-
thogonal group (Section 3.3). We then analyze the singular fibers (Section 3.4), followed 
by the non-singular fibers that contain a rational point (Section 3.5), proving that most 
fibers of this type have infinitely many rational points (Theorem 1.4). Completing our 
study of rational points on the fibers, Section 4 contains a proof the set of fibers con-
taining a rational point has low density (Theorem 1.1). Note that Section 4 only requires 
Section 3.1 and Section 3.2 from Section 3.

We conclude with some applications of these results in Section 5, focusing primarily 
on the square three-distance problem.

2. Prior work on related problems

There are a number of open problems regarding rational configurations; in this section 
we will focus on two of them, namely the perfect cuboid problem in Section 2.1 and 
the square four-distance problem in Section 2.2 (both of these are discussed at greater 
length in [9]). In each case, we show that the problem is equivalent to the existence of 
a Pythagorean solution of a certain polynomial or system of polynomials. Finally, in 
Section 2.3, we compare to the congruent number problem.

2.1. Perfect cuboid problem

While the perfect cuboid problem is open, significant progress has been made towards 
studying the “body cuboid” problem, which is to give a cuboid in which all edges and all 
face diagonals (but not necessarily the body diagonal) have rational lengths. If 1, α1, α2
are the edge lengths of a body cuboid, then α2

1 + 1, α2
2 + 1, and α2

1 + α2
2 are all perfect 

squares; the first two conditions say that α1, α2 ∈ S× and the third is equivalent to 
requiring α2

α1
∈ S×.

For each fixed α3 ∈ S×, the values α1, α2 ∈ S× satisfying α1α3 = α2 are parametrized 
by an elliptic curve (Proposition 1.9 and Proposition 1.3). This association between 
body cuboids and a family of elliptic curves is well-studied; van Luijk has an in-depth 
survey [14] that mentions this association as well as many other known results about 
perfect cuboids. Halbeisen and Hungerbühler [10] investigate this problem as well. Given 
a fixed α3 = b

a , they associate solutions α1, α2 ∈ S ′ satisfying α1α3 = α2 to rational 
points on the elliptic curve

E : y2 = x3 + (a2 + b2)x2 + a2b2x. (2)

Proposition 1.9 and Proposition 1.3 recovers this classification. They show that there 
is a subgroup of E(Q) isomorphic to Z/2Z × Z/4Z which give degenerate solutions to 
the corresponding rational distance problem. Ruling out other possible torsion points, 
they conclude [10, Theorem 8] that nondegenerate solutions exist if and only if E(Q)
has positive rank. In this case they call (a, b) a double-pythapotent pair.
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2.2. Four-distance problem

As with the perfect cuboid problem, the four-distance problem is currently out of 
reach, but a slightly weaker variant has many known solutions. The three-distance prob-
lem is to find points P = (x, y) ∈ R2 with rational distance to (0, 0), (0, 1), and (1, 1). The 
coordinates x, y are not a priori assumed to be rational, but since x2 + y2, x2 + (1 − y)2, 
and (1 − x)2 + (1 − y)2 must all be rational, the differences 2y − 1 and 2x − 1 must 
also be rational, so in fact P ∈ Q2. We can then scale by an element of Q× so that 
x = 1, and a solution to the square three-distance problem is equivalent to the existence 
of α1, α2, α3 ∈ S× satisfying 1 + α1α2 = α1 + α3.

For many years it was believed that there were no solutions to the three-distance 
problem aside from points on the coordinate axes. The first one-parameter family of 
nontrivial solutions was found in 1967 by J.H. Hunter, and then many more infinite 
families were found in rapid succession; a historical overview is given by Berry, who 
also presents an “extraordinary abundance” of solutions lying in infinitely many one-
parameter families [3]. We observe that the families of solutions obtained in Corollary 1.5
are distinct from those that appear in [3, Table 4], though it is unclear whether any (or 
all) of the one-parameter families we consider are eventually accounted for by Berry’s 
construction.

2.3. Congruent number problem

A rational number n ∈ Q is a congruent number if it is the area of a right triangle 
with rational edge lengths; that is, if there is a solution to

a2 + b2 = c2 and 1
2ab = n, a, b, c ∈ Q×. (3)

The “congruent number problem” is to determine whether a given n ∈ Q is a congru-
ent number. This problem is not a rational configuration problem, but the underlying 
methods used to study these two problems are similar enough that a comparison is 
worthwhile.

There is a well-known approach to studying the congruent number problem; see for 
example the expositions [6] and [5]. For fixed n, any solution to Eq. (3) corresponds to 
a rational point on an elliptic curve over Q defined by

E(n) : y2 = x3 − n2x. (4)

There are “degenerate points” in E(n)(Q) that do not correspond to solutions; it can be 
shown that the set of degenerate points equals the torsion subgroup of E(n)(Q). Thus n is 
a congruent number if and only if E(n)(Q) has positive rank. A formula due to Tunnell 
can be used to determine whether the analytic rank of E(n) is zero or positive [17], 
so by assuming the Birch and Swinnerton-Dyer conjecture, this gives a criterion that 
determines whether a given number is congruent.
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Many aspects of this paper are modeled off of the approach described for studying the 
congruent number problem. To put the two problems on a common footing, note that n
is a congruent number if and only if x1 = a2 and x2 = b

a give a solution to

x1x2 − 2n = 0, x1 ∈ (Q×)2, x2 ∈ S×. (5)

Both S ′ and (Q×)2 can be represented as the image of A1(Q) under the image of a degree 
2 rational map A1 → A1. The curve E(n) comes equipped with a degree 4 rational map 
to the variety defined by x1x2 − 2n = 0, and non-degenerate points in E(n)(Q) map 
to solutions to Eq. (5). This is directly analogous to the relation between Hη(Q) and 
solutions to rational distance problems (Proposition 1.9).

However, it is worth highlighting a few key differences between the congruent number 
problem and the family of rational distance problems we consider.

• Size of parameter space. The isomorphism class of E(n) is determined by the class 
of n in Q×/(Q×)2, while the isomorphism class of Hη is determined by the class of 
a corresponding matrix in a double quotient of GL2(Q).

• Existence of rational points. Every n determines an elliptic curve E(n), which has 
a rational point. By contrast, the genus one curves Hη typically have no rational 
points (Theorem 1.1).

• Closure under addition of degenerate points. In both problems, the corresponding 
genus one curve has a set of “degenerate” rational points, which do not yield valid 
solutions to the original problem. For the congruent number problem, the set of de-
generate points equals the torsion subgroup of E(n)(Q). For rational configuration 
problems, however, even if Hη is isomorphic to an elliptic curve (Proposition 1.3), 
the degenerate points in Hη(Q) may not form a subgroup. This is to our advan-
tage: we can often add together degenerate points to produce non-degenerate points, 
something that is not possible in the congruent number problem. This is the key idea 
behind Theorem 1.4.

• Geometric variation in the family. The curves E(n) are quadratic twists of the curve 
y2 = x3 − x, and are therefore all isomorphic over Q. This fact is used in a key way 
in the proof of Tunnell’s theorem, as he applies a result due to Waldspurger [18]
relating the central value of the L-function of an elliptic curve with that of each of 
its quadratic twists. By contrast, the curves Hη do not have constant j-invariant. 
This means that Tunnell’s approach to computing the analytic rank does not apply 
to this family.

3. The structure of the family

3.1. Assumptions and notation

Let K be a field of characteristic not equal to 2, in which −1 is not a square; later 
we will restrict to K = Q, but many of our results hold in more generality. Throughout 
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this paper, all schemes will be defined over K unless otherwise indicated, and if X and 
Y are schemes then X × Y := X ×K Y .

Throughout, P 1 will denote the projective line over K, while P 2 will denote a weighted
projective space over K, where the variables x, y, z have weights 1, 2, 1, respectively. We 
use the notation (x : z) and (x : y : z) to denote elements of P 1(K) and P 2(K), 
respectively. That is, for (x, z) ∈ K2 \ {(0, 0)} we have

(x : z) = {(λx : λz) | λ ∈ K×},

and for (x, y, z) ∈ K3 \ {(0, 0, 0)} we have

(x : y : z) = {(λx, λ2y : λz) | λ ∈ K×}.

Let GL2 = SpecK[a, b, c, d, (ad − bc)−1] denote the algebraic group of 2 × 2 invertible 
matrices, with identity element I. Given a matrix η ∈ GL2(K), its transpose will be 
denoted ηt. Let O2 denote the orthogonal group of 2 × 2 matrices, that is, the algebraic 
subgroup of GL2 defined by the condition that M ∈ GL2(K) is in O2(K) if and only if 
MM t = M tM = I.

3.2. Definition of H and basic properties

We first define a variety H0 in P 1×P 1×GL2. Using the coordinates 
(
(x1 : z1), (x2 : z2),(

a b
c d

))
, this variety is given by

H0 :
(
z2
1 − x2

1 2x1z1
)(a b

c d

)(
z2
2 − x2

2
2x2z2

)
= 0. (6)

This variety comes equipped with a morphism π0 : H0 → GL2, which equips H0 with 
the structure of a flat family of curves. As a biquadratic form in P 1 × P 1 over GL2, the 
projection onto either component gives H0 the structure of a hyperelliptic curve. For 
now we consider the projection onto the second component, and provide an isomorphic 
model written in the standard form for a hyperelliptic curve as a double cover of P1. 
This can be given as a variety in P 2 × GL2. Using the coordinates 

(
(x : y : z),

(
a b
c d

))
, 

and letting N : K2 → K be defined by N(u, v) = u2 + v2, set

H : y2 = N

((
a b
c d

)(
z2 − x2

2xz

))
(7)

= (a(z2 − x2) + b(2xz))2 + (c(z2 − x2) + d(2xz))2.

The variety H also comes equipped with a natural map π : H → GL2. Observe that given 
η ∈ GL2(K), Hη as defined in Eq. (1) is the fiber of π over η. The fact that H0 � H is a 
consequence of the fact that both equations express the property that the components of 
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the vector 
(
a b
c d

)(
z2−x2

2xz

)
are the sides of a (possibly degenerate) rational right triangle. 

An explicit isomorphism H → H0 as varieties over GL2 is given by

(x : y : z) 	→
(
(a(z2 − x2) + b(2xz) : y − c(z2 − x2) − d(2xz)), (x : z))

)
.

The generic fiber of π : H → GL2 is a genus one hyperelliptic curve over the function 
field K(a, b, c, d), with discriminant

Δ(H) = 216(ad− bc)4((a + d)2 + (b− c)2)((a− d)2 + (b + c)2). (8)

The Jacobian variety of this curve is an elliptic curve over K(a, b, c, d), which by classical 
invariant theory (see for example [19,2]) has a model

E : y2 = x3 + (a2 + b2 + c2 + d2)x2 + (ad− bc)2x. (9)

The two commuting involutions on H0 as a scheme over GL2 induce commuting 
involutions on H, given by

σ1 : (x : y : z) 	→ (x : −y : z) and σ2 : (x : y : z) 	→ (−z : y : x). (10)

These generate a Klein four-group

Γ := 〈σ1, σ2〉 (11)

acting on H.

3.3. Double cosets and reduction

We show that the isomorphism class of Hη for η ∈ GL2(K) is invariant on double 
cosets in

O2(K)\GL2(K)/(K× · O2(K)),

and use this to show that Hη has a K-point if and only if η is in the same double coset 
as ( 1 r

0 s ) for some r, s ∈ K.
Invariance under K× is clear. The fact that the isomorphism class is preserved under 

left multiplication by elements of O2(K) is evident from Eq. (7), and the corresponding 
fact for right multiplication follows from the fact that we have an isomorphism with the 
model

y2 = N

((
z2 − x2 2xz

)(a b
c d

))

We summarize these observations in the following lemma, though we also include an 
explicit formula for the isomorphism in the proof.
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Lemma 3.1. Let η, η′ ∈ GL2(K). If η′ ∈ K× O2(K)ηO2(K), then there is an isomor-
phism τ : Hη → Hη′ over K that commutes with the action of Γ.

Proof. Let η′ = λr1ηr
−1
2 , where λ ∈ K× and r1, r2 ∈ O2(K). Write r2 = ( u −v

εv εu ), where 
u, v ∈ K, ε = ±1, and u2+v2 = 1. There exists s, t ∈ K so that u = t2−s2

t2+s2 and v = 2st
t2+s2 . 

Then for any (x : y : z) ∈ Hη(K),

(λ(s2 + t2)y)2 = N

(
λ(s2 + t2)

(
a b
c d

)(
z2 − x2

2xz

))

= N

(
r1λ

(
a b
c d

)
r−1
2

(
t2 − s2 −2st
2εst ε(t2 − s2)

)(
z2 − x2

2xz

))

= N

(
λr1

(
a b
c d

)
r−1
2

(
(tz − sx)2 − (tx + sz)2
2ε(tz − sx)(tx + sz)

))
.

Thus the map

τ : (x : y : z) 	→ (ε(tx + sz) : λ(s2 + t2)y : tz − sx)

defines an isomorphism Hη → Hη′ , and the involutions y 	→ −y and (x : z) 	→ (−z : x)
are preserved. �

Given η ∈ GL2(K), suppose η is in the same double coset as an element of the form 
η′ = ( 1 r

0 s ) ∈ GL2(K). We have (0 : 1 : 1) ∈ Hη′(K), so by Lemma 3.1, we can conclude 
that Hη(K) is nonempty. The following lemma gives us the converse result: if Hη(K) is 
nonempty then η is in the same double-coset as a matrix of the form η′ = ( 1 r

0 s ).

Lemma 3.2. Let η =
(
a b
c d

)
∈ GL2(K). Suppose there is a point P = (x0 : y0 : z0) ∈

Hη(K). Define

r := (ab + cd)((z2
0 − x2

0)2 − (2x0z0)2) − (a2 − b2 + c2 − d2)(z2
0 − x2

0)(2x0z0)
y2
0

,

s := (ad− bc)(z2
0 + x2

0)2

y2
0

.

(12)

Then η ∈ K× O2(K)( 1 r
0 s )O2(K).

Proof. Suppose x2
0 + z2

0 = 0. If z0 �= 0, then 
(

x0
z0

)2
= −1, contradicting the assumption 

that −1 is not a square in K. Hence z0 = 0, and likewise x0 = 0. But this implies y0 = 0, 
which contradicts the fact that (x0 : y0 : z0) ∈ P 2(K).

If y0 = 0, then a similar argument shows that we must have

a(z2
0 − x2

0) + b(2x0z0) = c(z2
0 − x2

0) + d(2x0z0) = 0.
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But this implies that the nonzero vector (z2
0 − x2

0, 2x0z0) is in the kernel of 
(
a b
c d

)
, con-

tradicting the assumption that η ∈ GL2(K). Hence y0 �= 0.
Since x2

0 + z2
0 �= 0 and y0 �= 0, the matrices

r1 = 1
y0

(
a(z2

0 − x2
0) + b(2x0z0) c(z2

0 − x2
0) + d(2x0z0)

−c(z2
0 − x2

0) − d(2x0z0) a(z2
0 − x2

0) + b(2x0z0)

)

r2 = 1
z2
0 + x2

0

(
z2
0 − x2

0 −2x0z0
2x0z0 z2

0 − x2
0

)

are both well-defined elements of SO2(K). We can check by direct computation that 
z2
0+x2

0
y0

r1ηr2 = ( 1 r
0 s ). �

3.4. Isomorphism classes of fibers

The curve Hη is singular when the discriminant (Eq. (8)) vanishes. Since ad − bc �= 0
for all η ∈ GL2(K) and K does not contain a square root of −1, this can only occur if 
a = −d and b = c, or if a = d and b = −c. One of these two conditions holds if and only 
if a2 + b2 = c2 + d2 and ac + bd = 0; thus the singular fibers Hη are exactly those with

ηηt = (a2 + b2)I.

In this case Hη reduces to the form

y2 = (a2 + b2)(z2 + x2)2.

If a2 + b2 = λ2 then Hη splits into two conics, y = ±λ(z2 +x2). If a2 + b2 is not a square 
in K, then there are no solutions in P 2(K).

If Hη has a rational point and the discriminant (Eq. (8)) does not vanish at η, then 
Hη is isomorphic to its Jacobian. Using Lemma 3.2 and Eq. (9), we can conclude that 
Hη is isomorphic to

Er,s : y2 = x3 + (1 + r2 + s2)x2 + s2x

for some r, s ∈ K; the non-vanishing of the discriminant says that s �= 0 and (r, s) �=
(0, ±1). This completes the proof of Proposition 1.3.

3.5. Nonsingular fibers with a rational point

We now restrict our attention to K = Q in order to prove Theorem 1.4, which we 
recall for convenience.

Theorem 1.4. Let r, s ∈ Q with s �= 0 and (r, s) �= (0, ±1). The point (−1, r) ∈ Er,s(Q)
is non-torsion if and only if r �= 0, s �= ±1, and 4r2s �= ±(1 − s2)2.
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Proof. Assume R := (−1, r) is torsion in Er,s(Q). Since x2 + (1 + r2 + s2)x + s2 is 
positive on an open interval around x = 0, there exists −1 < x < 0 for which Er,s(R)
does not contain any point of the form (x, y). Thus Er,s(R) has two components, with 
R := (−1, r) on the non-identity component and T := (0, 0) on the identity component. 
This shows R is not a multiple of 2 in Er,s(R), and hence R cannot have odd order. By 
Mazur’s classification of torsion subgroups, we can conclude that if R is torsion then its 
order must be an even number at most 12. If R has order 10 then the only possibility 
for the torsion subgroup of Er,s(Q) is Z/10Z, so that T is the unique element of order 
2. This implies T = 5R, which again leads to a contradiction when we consider the 
component group of Er,s(R).

We can conclude that if R is torsion, it must have order � ∈ {2, 4, 6, 8, 12}. For each 
such �, let ψ�(r, s, x) ∈ Z[r, s, x] denote the �-th division polynomial on Er,s; this is 
a polynomial with the property that ψ�(r, s, x) = 0 for x ∈ Q if and only if (x, y) ∈
Er,s(Q)[�] for some y ∈ Q (see for instance [16, Exercise 3.7]). We compute the division 
polynomial ψ�(r, s, x), and determine all possible (r, s) ∈ Q2 such that ψ�(r, s, −1) = 0.

• We have ψ2(r, s, −1) = −r2, so R has order 2 if and only if r = 0.
• We have

ψ4(r, s,−1)
ψ2(r, s,−1) = −2(s− 1)(s + 1)(2r2s2 + 2r2 + (s2 − 1)2).

The last factor is a sum of non-negative terms, including at least one positive term 
because (r, s) �= (0, ±1). Hence R has order 4 if and only if s = ±1.

• The quotient of ψ6(r, s, −1) by ψ2(r, s, −1)ψ3(r, s, −1) factors into two irreducible 
polynomials in Q[r, s]. The first factor is 4r2s2 + (s2 − 1)2, which is positive for all 
(r, s) �= (0, ±1). The second factor is

16s2r4 − 4(s2 − 1)2(s2 + 1)r2 − 3(s2 − 1)4.

Considering this as a quadratic polynomial in r2, the discriminant is equal to

16(s2 − 1)4(s4 + 14s2 + 1).

In order for r2 to be rational (let alone r), this discriminant must equal a rational 
square. Thus we consider rational points on the curve C defined by y2 = s4+14s2+1. 
There are eight rational points (s, y) ∈ C(Q): two at infinity, as well as (−1, ±4), 
(0, ±1), and (1, ±4). Using the Weierstrass form y2 = x3 − 7x2 + 12x for C we can 
confirm that C has no other rational points, so the only possibilities for s are −1, 0, 1. 
If s = 0 then we have r2 = −3

4 , yielding no rational solutions. If s = ±1 then we 
have r = 0, contradicting (r, s) �= (0, ±1).

• The quotient of ψ8(r, s, −1) by ψ4(r, s, −1) factors into three irreducible polynomials 
in Q[r, s]. The first two factors are 4r2s −(s2−1)2 and 4r2s +(s2−1)2; these each have 
infinitely many rational solutions. The third factor is positive for all (r, s) �= (0, ±1).
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• If we eliminate common factors with ψ6(r, s, −1) and ψ4(r, s, −1) from ψ12(r, s, x), 
we are left with three irreducible polynomials in Q[r, s]. The first factor is

16s(s2 − s + 1)r4 + 8s(s2 − 1)2r2 + (s2 − 1)4.

Considered as a quadratic in r2, the discriminant is −64s(s − 1)6(s + 1)4, which is 
a square if and only if s = −k2 for some k ∈ Q. Plugging this in and solving for r2, 
we find that either

r2 = (k4 − 1)2

4k(k2 + k + 1) or r2 = − (k4 − 1)2

4k(k2 − k + 1) .

For the first option, we obtain r ∈ Q if and only if k3 + k2 + k is a nonzero square. 
The only rational points on the elliptic curve y2 = k3+k2+k are the point at infinity 
and (k, y) = (0, 0), so there is no k ∈ Q for which r is rational. For the second option, 
we obtain r ∈ Q if and only if (−k)3 + (−k)2 + (−k) is a nonzero square, and by the 
same reasoning there is no such k. Hence this factor is nonzero for all (r, s) ∈ Q2.
The second factor is obtained from the first by s 	→ −s, so it has no rational solutions 
either. The third factor is positive for all (r, s) �= (0, ±1).

To summarize, we obtain the following possibilities:

• (−1, r) has order 2 if and only if r = 0;
• (−1, r) has order 4 if and only if s = ±1;
• (−1, r) has order 8 if and only if 4r2s = ±(1 − s2)2.
• There are no values of (r, s) ∈ Q2 for which (−1, r) has any other finite order. �

4. Upper bound on locally soluble curves

In this section we prove Theorem 1.1. The main idea is to prove a local obstruction 
to the existence of Qp-points (Lemma 4.2). This obstruction is “large,” in the sense that 
the proportion of curves satisfying the obstruction is approximately a constant multiple 
of 1

p . By contrast, each local obstruction in Theorem 1.2 only affects O( 1
p2 ) of all curves. 

At a high level, the difference in behavior between the two families stems from the fact 
that 

∑ 1
p diverges but 

∑ 1
p2 converges.

Remark 4.1. While we have chosen to present a direct analytic argument for Theorem 1.1, 
one can also show that it follows from a result of Loughran and Smeets [12, Theorem 1.2], 
which computes an upper bound on the number of locally soluble fibers of a fibration 
X → Pk in a very general setting. The key idea behind both results is that local solubility 
constraints arise from the existence of codimension 1 loci in the base over which the 
scheme splits into multiple geometric components. In the present case, this codimension 
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1 locus is given by the determinant locus ad −bc. Many thanks to the referee for informing 
the author of Loughran and Smeets’ theorem.

4.1. Local obstructions

Given a ring A we use M2(A) to denote the ring of 2 × 2 matrices over A. For primes 
p we define

Rp := {η ∈ M2(Zp) ∩ GL2(Qp) : Hη(Qp) = ∅} ;

Thus L(X) counts the set of η ∈ M2(Z) ∩ GL2(Q) with entries of absolute value at 
most X such that η /∈ Rp for all primes p (note that there is never a real obstruction: 
Hη(R) �= ∅ for all η ∈ GL2(Q)).

The main contribution to Rp will come from the following constraint.

Lemma 4.2. Let p be an odd prime and η =
(
a b
c d

)
∈ M2(Zp) ∩ GL2(Qp). Suppose p |

ad − bc, and a, a2 + b2, and a2 + c2 are all nonzero mod p. Then Hη(Qp) is nonempty 
if and only if at least one of a2 + b2 or a2 + c2 is a square modulo p.

Proof. Assume Hη(Qp) has a point (x : y : z); without loss of generality we can assume 
that x, y, z are in Zp and at least one of x, z is in Z×

p . Reducing modulo p we have

a2y2 = (a2 + c2)(a(z2 − x2) + b(2xz))2. (13)

If a(z2 − x2) + b(2xz) �= 0, then a2 + c2 is a square. On the other hand, suppose a(z2 −
x2) + b(2xz) = 0. Since a �= 0 and at least one of x, z is nonzero we must have xz �= 0, so

a2 + b2 = a2 +
(
−a(z2 − x2)

2xz

)2

=
(
a(z2 + x2)

2xz

)2

is a square.
Conversely, if a2 + c2 is a nonzero square mod p then Eq. (13) clearly has solutions 

with y �= 0; these are smooth points on Hη(Fp) so they lift to points on Hη(Qp). If 
a2 + b2 is a nonzero square mod p, then it is a square in Qp, so there exist x, z ∈ Q×

p

with ba = x2−z2

2xz . This implies a(z2 − x2) + b(2xz) = 0, so (x : c(z2 − x2) + d(2xz) : z) is 
a point in Hη(Qp). �

In light of the above, for all odd primes p set

Ωp :=
{
μ =

(
a b
c d

)
∈ M2(Fp) : ad− bc = 0,

(
a2 + b2

p

)
= −1,

(
a2 + c2

p

)
= −1

}
,

where 
(

·
p

)
denotes the Legendre symbol. We also set Ω2 = ∅. If by abuse of notation we 

associate Ωp with its preimage in M2(Zp) under reduction mod p, we have
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(Ωp ∩ GL2(Qp)) ⊆ Rp. (14)

This follows from Lemma 4.2: note that the Legendre symbol conditions in the definition 
of Ωp force a to be nonzero mod p.

Lemma 4.3. We have |Ωp| = 1
4p

3 + O(p2).

Proof. We may assume p is odd. Let 
(
a b
c d

)
∈ Ωp. Since a2 + b2 is not a square, we have 

a �= 0. Note that a2 + r2 is a square in Fp if and only if r is in the image of the map 
φ : F×

p → Fp given by φ(t) = a1−t2

2t . We have φ(t) = φ(s) if and only if s = −1
t , and so 

there are 1
2 (p ± 1) values in the range of φ (with the ± sign depending on whether or 

not −1 is a square mod p). Hence b and c must each be one of the 1
2 (p ∓ 1) values not 

in the range of φ. Since there are p − 1 choices for a, there are 1
2 (p ∓ 1) choices for each 

of b and c, and the value of d = bc
a is fixed, we obtain the desired count. �

The following result is not used in the sequel, but justifies the claim that Ωp is the 
main contribution to Rp.

Lemma 4.4. Let Rp denote the image of Rp under reduction mod p. We have

|Rp \ Ωp| = O(p2).

Proof. We may assume p is odd. We produce a collection of pairs of linear equations 
over Fp with the property that every element of Rp \ Ωp satisfies one of these pairs of 
equations. Let η̄ =

(
a b
c d

)
∈ M2(Fp). If

(ad− bc)((a− d)2 + (b + c)2)((a + d)2 + (b− c)2) �= 0,

then for any lift η ∈ M2(Zp) ∩GL2(Qp), the discriminant of Hη (Eq. (8)) is not divisible 
by p, and so Hη(Fp) is nonempty by the Hasse-Weil bound. As these are all smooth 
points, they lift to points in Hη(Qp). Thus η̄ is not in Rp.

We can therefore assume that exactly one of the following constraints holds:

(a) ad − bc = 0 and a = 0,
(b) ad − bc = 0 and a �= 0,
(c) ad − bc �= 0, (a ∓ d)2 + (b ± c)2 = 0, and a ∓ d = 0,
(d) ad − bc �= 0, (a ∓ d)2 + (b ± c)2 = 0 and a ∓ d �= 0.

In case (a) or (c), η̄ must satisfy one of the following pairs of linear equations over Fp:

a = b = 0, a = c = 0, or a∓ d = b± c = 0.

Now consider case (b). If a2 + b2 = 0 or a2 + c2 = 0, then using a �= 0 and ad = bc we 
can conclude that
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a + ib = c + id = 0 or a + ic = b + id = 0

for some i ∈ Fp satisfying i2 = −1. If on the other hand a2 + b2 and a2 + c2 are both 
nonzero, then η̄ is not in Rp by Lemma 4.2.

Finally we consider case (d). We assume (a − d)2 + (b + c)2 = 0 and a − d �= 0 as the 
other case is similar. Then b + c = i(a − d) for some i ∈ Fp with i2 = −1. The reduction 
of Hη modulo p is given by

y2 = (z + ix)2h(x, z)

where

h(x, z) := (a2 + c2)(z2 − x2) + (2a(b + c) + i(c2 − a2 + 2bc))(2xz).

If the discriminant of h(x, z) is nonzero, then the equation r2 = h(x, z) defines a smooth 
projective conic over Fp, and there must exist at least one point (x, z, r) on this conic 
with z + ix �= 0. Then (x : (z + ix)r : z) defines a smooth point in Hη(Fp), which lifts 
to a point in Hη(Qp). Hence η̄ is not in Rp. Computing the discriminant of h(x, z), we 
find that elements in Rp \ Ωp in this case must satisfy

b + c− i(a− d) = (b− ia)(a + ic)(b + c) = 0. �
4.2. Proof of Theorem 1.1

The author would like to thank Sun-Kai Leung for suggesting the following proof.
Recall that L(X) is the set of all η ∈ M2(Z) with nonzero determinant, entries having 

absolute value at most X, and with η /∈ Rp for all p. Set

M(X) := {η ∈ M2(Z) ∩ GL2(Q) : η /∈ Ωp for all primes p} .

By Eq. (14) we can see that L(X) ⊆ M(X), and so it suffices to find an upper bound 
for M(X).

Set

S (Y ) :=
∑
m≤Y

μ2(m)
∏

prime p|m

|Ωp|
p4 − |Ωp|

,

where μ(m) is the Möbius function (so μ2(m) = 1 if m is squarefree and μ2(m) = 0
otherwise). Applying the n-dimensional large sieve [8, Lemma B], we obtain

|L(X)| ≤ |M(X)| � X4

S (
√
X)

,
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where f(X) � g(X) means that for some positive constant C we have f(X) < Cg(X)
for sufficiently large X. Theorem 1.1 follows immediately from this bound after applying 
the following lemma.

Lemma 4.5. We have

S (Y ) � (log Y )1/4.

Proof. We have |Ωp| ≥ 0, and by Lemma 4.3 we have |Ωp| ≥ 1
4 (p3 − Cp2) for some 

positive constant C, so

S (Y ) ≥
∑
m≤Y

μ2(m)
∏
p|m

p3 − Cp2

4p4

=
∑
m≤Y

μ2(m)
m

∏
p|m

1
4

(
1 − C

p

)
.

Set

f(m) := μ2(m)
∏
p|m

1
4

(
1 − C

p

)
.

Note that f is a multiplicative function, it is positive at sufficiently large primes p, and

∑
p≤Y

f(p) log p
p

= 1
4
∑
p≤Y

log p
p

− C
∑
p≤Y

log p
p2

= 1
4 log(Y ) + O(1)

(see for instance [7, p. 57]). Hence, by Wirsing’s Theorem ([11, Theorem 14.3] with κ = 1
4 , 

c = 0, k = 1) we have

S (Y ) ≥
∑
m≤Y

f(m)
m

� (log Y )1/4. �

5. Applications to rational distance problems

5.1. From Hη(K) to rational configurations

We return temporarily to the more general setting of a field K in which −1 is not a 
square. Let η =

(
a b
c d

)
∈ GL2(K). In Eq. (7), we defined the variety

H : y2 = N

((
a b
c d

)(
z2 − x2

2xz

))
,
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where N(u, v) := u2 + v2. We also define the subvariety F of P 1 × P 1 × GL2 (with 
coordinates ((u1 : v1), (u2 : v2), 

(
a b
c d

)
)) by

F : au1u2 + bu1v2 + cv1u2 + dv1v2 = 0.

As with H, there is a projection map to GL2 giving F the structure of a flat family of 
curves, with Fη denoting the fiber over η ∈ GL2(K). We define

SK := {(u : v) ∈ P 1(K) | u2 + v2 is a square in K}
= {(z2 − x2 : 2xz) | (x : z) ∈ P 1(K)}.

Proposition 5.1. There is a morphism Φ : H → F over GL2 defined by sending (x : y : z)
to

(
(−c(z2 − x2) − d(2xz) : a(z2 − x2) + b(2xz)), (z2 − x2 : 2xz)

)
. (15)

Further, Φ induces a bijection between the set of Γ-orbits in Hη(K) and the set Fη(K) ∩
(SK × SK).

Proof. Notice that the equation defining F can be written

0 = (u1 v1 )
(
a b
c d

)(
u2
v2

)
, (16)

so that the model H0 from Eq. (6) is evidently the pullback of F under the map (x :
z) 	→ (z2 − x2 : 2xz) on each component. The map Φ is obtained by composing the 
isomorphism H → H0 with this map. Given (x : y : z) ∈ Hη(K), we have

(z2 − x2)2 + (2xz)2 = (z2 + x2)2

and

(−c(z2 − x2) − d(2xz))2 + (a(z2 − x2) + b(2xz))2 = y2,

so that Φ(x : y : z) ∈ SK × SK . Conversely, given any (α1, α2) ∈ Fη(K) ∩ (SK × SK), 
we can write α2 = (z2 − x2 : 2xz) and α1 = (z′ 2 − x′ 2 : 2x′z′) for some x, z, x′, z′ ∈ K. 
The fact that (α1, α2) ∈ Fη(K) is then equivalent to

(
z′ 2 − x′ 2 2x′z′

)(a b
c d

)(
z2 − x2

2xz

)
= 0.

This implies that 
(
a b
c d

)(
z2−x2

2xz

)
must equal λ

(
−2x′z′

z′ 2−x′ 2

)
for some λ ∈ K×. In particular,

N

((
a b
c d

)(
z2 − x2

2xz

))
= λ2(z′ 2 + x′ 2)2,
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so that (x : y : z) ∈ Hη(K) for y = λ(z′ 2 + x′ 2). One can then confirm that Φ maps 
(x : y : z) to (α1, α2), using the computation

(
−c −d
a b

)(
z2 − x2

2xz

)
=

(
0 −1
1 0

)(
a b
c d

)(
z2 − x2

2xz

)

= λ

(
0 −1
1 0

)(
−2x′z′

z′ 2 − x′ 2

)

= −λ

(
z′ 2 − x′ 2

2x′z′

)
.

Hence Φ maps Hη(K) surjectively onto Fη(K) ∩ (SK × SK).
Finally, observe that for each α2 ∈ SK , there are two choices for (x : z) ∈ P 1(K) with 

(z2 − x2 : 2xz) = α2, interchanged by the involution (x : z) 	→ (−z : x). Once x and z
are fixed, there are two choices for y, interchanged by y 	→ −y. Hence Γ acts transitively 
on the fibers of Φ. �
Remark 5.2. For many rational distance problems, solutions ((u1 : v1), (u2 : v2)) ∈
Fη(K) ∩ (SK ×SK) with u1v1u2v2 = 0 will be considered degenerate (as they correspond 
to rational right triangles with no width). The degenerate locus u1v1u2v2 = 0 pulls back 
to the subvariety D ⊆ H defined by

D : xyz(z4 − x4)(a(z2 − x2) + b(2xz))(c(z2 − x2) + d(2xz)) = 0. (17)

5.2. Density of rational configuration solutions

For any embedding K ↪→ R, if Hη(K) is infinite, we can show that Fη(K) ∩(SK×SK)
is dense in Fη(R). This is a special case of the following result. Let E denote the Jacobian 
of Hη.

Lemma 5.3. Let η ∈ GL2(R) and suppose Δ(Hη) �= 0. Let A ⊆ Hη(R) be the image of 
an infinite subgroup of E(R) under some isomorphism E(R) ∼= Hη(R). Then the image 
of A under Φ : Hη → Fη (Proposition 5.1) is dense in Fη(R).

Proof. The (topological) curve Hη(R) has two connected components, given by points 
(x : y : z) with y > 0 and those with y < 0 respectively: there is no equivalence between 
any points with y > 0 and points with y < 0 because of the weighting on P 2 (Section 3.2), 
and there are no points with y = 0 because Δ(Hη) �= 0 and −1 is not a square in K. 
Thus E(R) has the structure of a Lie group S1(R) × Z/2Z. Any infinite subgroup of 
E(R) has dense intersection with the identity component, so A has dense intersection 
with one of the components of Hη(R).
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We can express the map Φ : Hη → Fη as a composition

Hη → P 1 → Fη

(x : y : z) 	→ (x : z) 	→
(

(−c(z2 − x2) − d(2xz) : a(z2 − x2) + b(2xz)),

(z2 − x2 : 2xz)

)
.

The first map induces a continuous surjection from each component of Hη(R) onto P 1(R), 
so the image of A is dense in P 1(R). The second map induces a continuous surjection 
P 1(R) → Fη(R), so the image of A is dense in Fη(R). �
5.3. Application to three-distance problem

We will use Theorem 1.4 to prove the following statement.

Corollary 5.4. There exists an infinite collection of rational functions, ρn : A1
Q ��� A2

Q

for n ∈ Z, with the following properties. For all t ∈ Q − {0, ±1} and all n ∈ Z, if ρn
is defined at t, then ρn(t) has rational distance from each of (0, 0), (0, 1), and (1, 1). 
Further, for each t ∈ Q − {0, ±1}, there are only finitely many n ∈ Z for which ρn is 
not defined at t, and the set

{ρn(t) : n ∈ Z, ρn defined at t}

is a dense subset of the line y = 2t
1−t2x in R2.

Proof. For the sake of clarity, we begin by proving the weaker result mentioned in the 
introduction: for each t ∈ Q − {0, ±1}, the line y = 2t

1−t2x has a dense set of points that 
have rational distance from each of (0, 0), (0, 1), and (1, 1). Once this is done, we will 
explain how the proof can be modified to allow for families of solutions parametrized 
by t.

Let t ∈ Q −{0, ±1}, and set s(t) := 1 − 2t
1−t2 . There is no rational solution to 1 = 2t

1−t2 , 
so η(t) :=

(
1 −1
0 s(t)

)
is an element of GL2(Q). We have |s(t)| �= 1 because we excluded the 

case t = 0 and there is no rational solution to 2 = 2t
1−t2 . The polynomials 4s ± (1 − s2)2

are both irreducible over Q, so taking r = −1 we also have 4r2s(t) �= ±(1 − s(t)2)2 for 
all t ∈ Q. Hence, by Theorem 1.4, Hη(t)(Q) is infinite. By Lemma 5.3, this implies that 
the set of ((u1 : v1), (u2 : v2)) ∈ S × S satisfying u1u2 + v1v2 = u1v2 + 2t

1−t2 v1v2 (the 
defining equation of Fη(t)) is dense in Fη(t)(R).

Now define the rational function z : Fη(t) ⇢ A2 by

z((u1 : v1), (u2 : v2)) :=
(

(1 − t2)v1

(1 − t2)u1 + 2tv1
,

2tv1

(1 − t2)u1 + 2tv1

)
. (18)

The map z restricts to a homeomorphism
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Fη(t)(R) \
{(

(−2t : 1 − t2), (1 − t2 : 2t)
)}

→
{

(x, y) ∈ R2 : y = 2t
1−t2x

}
.

So after removing a single point from Fη(t)(K) ∩ (S × S), the remainder maps to a 
dense subset of the line y = 2t

1−t2x. For each (α1, α2) ∈ Fη(t)(Q) ∩ (S × S) other than (
(−2t : 1 − t2), (1 − t2 : 2t)

)
, the point (x, y) := z(α1, α2) satisfies

x2 + y2 =
(

(1 + t2)v1

u1(1 − t2) + 2tv1

)2

,

x2 + (1 − y)2 =
(

(1 − t2)
u1(1 − t2) + 2tv1

)2

(u2
1 + v2

1),

(1 − x)2 + (1 − y)2 =
(

(1 − t2)
u1 + 2t

1−t2 v1 − v1

(1 − t2)u1 + 2tv1

)2

+
(

(1 − t2)u1

(1 − t2)u1 + 2tv1

)2

=
(

(1 − t2)u1u2

((1 − t2)u1 + 2tv1)v2

)2

+
(

(1 − t2)u1

(1 − t2)u1 + 2tv1

)2

=
(

(1 − t2)u1

((1 − t2)u1 + 2tv1)v2

)2

(u2
2 + v2

2).

Since α1, α2 ∈ S, these are all squares in Q, so this gives a solution to the three-distance 
problem.

We now return to the problem of producing explicit parametrizations of solutions in 
terms of t. For this, note that t 	→ η(t) defines a morphism V := A1 − {0, ±1} → GL2. 
We will define a rational map ρn : V ⇢ A2 by a composition

ρn : V τn−→ E′ ε−→ H′ Φ′
−→ P 1 × P 1 × V

z′
−→ A2,

where each variety besides A2 is a scheme over V and each map besides z′ is a morphism 
over V . We consider each of these maps in turn.

• Let E be the subvariety of P 2 × GL2 parametrizing the Jacobian varieties of H
(defined by Eq. (9)). Let E′ be the fiber product of V with E, so that E′

t = Eη(t)
for all t ∈ V (Q). We have a section V → E′ given by t 	→ (−1, −1). Using the group 
law on the generic fiber of E′, define the rational map τn : V ⇢ E′ by the property 
that τn(t) = n(−1, −1) ∈ E′

t(Q) for all t ∈ V (Q). The proof of Theorem 1.4 shows 
that (−1, −1) is non-torsion in E′

t(Q) for all t ∈ V (Q), so for each such t, the set 
{τn(t) : n ∈ Z} is an infinite subgroup of E′

t(Q).
• The fiber product of V with H is a one-parameter family H′ of curves over V , with 

the property that the fiber of H′ over t is Hη(t). We have a section V → H′ given by 
t 	→ (0 : 1 : 1), allowing us to define a birational map ε : E′

⇢ H′ over Q sending the 
zero section of E′ to the given section of H′. This map restricts to an isomorphism 
on all fibers over points in V (Q).
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• The rational map Φ′ : H′
⇢ P 1 × P 1 × V is defined by

((x : y : z), t) 	→
(
(−s(t)(2xz) : (z2 − x2) − (2xz)), (z2 − x2 : 2xz), t

)
.

Note that after restricting to a fiber H′
t, the first two components of Φ′ agree with 

the map Φ : Hη(t) → Fη(t) (Proposition 5.1). So for any t ∈ V (Q), the set

St := {(Φ′ ◦ ε ◦ τn)(t) : n ∈ Z}

is contained in Fη(t)(Q) ∩ (S × S) × {t}, and is a dense subset of Fη(t)(R) × {t} by 
Lemma 5.3.

• The rational map z′ : P 1 × P 1 × V ⇢ A2 is defined on an appropriate dense open 
subset by

z′((u1 : v1), (u2 : v2), t) =
(

(1 − t2)v1

(1 − t2)u1 + 2tv1
,

2tv1

(1 − t2)u1 + 2tv1

)
.

Note that when restricted to Fη(t)×{t}, the map agrees with z : Fη(t) ⇢ A2 defined in 
Eq. (18). So the same proof as above shows that for each t, z′ maps St minus a point 
to a dense subset of the line y = 2t

1−t2x consisting of solutions to the three-distance 
problem. �

5.4. Special cases

Some rational configuration problems fall under the exceptional cases of Theorem 1.4. 
We consider a few of these here. Recall that

S ′ :=
{u

v
∈ Q | (u : v) ∈ S

}
denotes the affine elements of S.

Proposition 5.5. Let α3 ∈ S ′. There exist infinitely many pairs α1, α2 ∈ S ′ such that 
α1 + α2 = α3.

That is, for any rectangle with rational distances between every two vertices, there 
are infinitely many ways to split it into two rectangles with rational distances between 
every two vertices.

Proof. Let α3 = 1−t2

2t for some t ∈ Q − {0, ±1}. The equation x1 + x2 − α3 = 0 defines 
Fη for η =

( 0 1
1 −α3

)
, and Hη (which contains the rational point (0 : 1 : 1)) is isomorphic 

to its Jacobian (as in Eq. (9)),

E : y2 = x3 +
((

1 − t2

2t

)2

+ 2
)
x2 + x.
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We consider Eη as an elliptic curve over the function field Q(t), and note that E(Q(t))
has a rational point P =

(
t, 1

2 (t + 1)2
)
. By computing nP for n = 1, . . . , 12 and checking 

that the denominators of the coordinates have no rational roots, we can confirm that P
is non-torsion for all t ∈ Q − {0, ±1}. Hence Hη has infinitely many rational points, so 
Fη(Q) ∩ (S × S) is infinite by Proposition 5.1. �

This allows us to prove that every rational number can be written as a sum of three 
elements of S ′ in infinitely many ways; in other words, for any rational t > 0, there 
are infinitely many ways to cut a 1 × t rectangle into three rectangles, each of which 
has rational distances between every pair of vertices. We also prove that every rational 
number can be written as a product of three elements of S ′ in infinitely many ways.

Proof of Proposition 1.6. The equation x1 + 2x2 − t = 0 defines Fη for η =
( 0 1

2 −t

)
. Now 

Hη is isomorphic to Hη′ for η′ =
(

1 −t/2
0 −1/2

)
, and by Theorem 1.4, Hη(Q) is infinite for 

all t �= 0. Hence every nonzero t ∈ Q can be written as α1 + α2 + α2 for infinitely many 
pairs (α1, α2) ∈ S ′ ×S ′. The case t = 0 follows from Proposition 5.5 because S is closed 
under negation.

Next we will show that for any t ∈ Q×, there exists u ∈ Q − {0, ±1} such that when 

s = −t 
(

2u
1−u2

)
, the polynomial x1x2 + s has infinitely many solutions with x1, x2 ∈ S ′. 

Each of these solutions can then be multiplied by 1−u2

2u ∈ S ′ to exhibit t as a product of 
three elements of S ′.

Let η = ( 1 0
0 s ). We consider the elliptic curve

Eη : y2 = x(x + 1)(x + s2) = x(x + 1)
(
x + t2

(
2u

1 − u2

)2
)
.

If we set u = t2 + 2, then the elliptic curve

y2 = x(x + 1)
(
x + t2

(
2(t2 + 2)

1 − (t2 + 2)2

)2)

over Q has a point

(
t2(t2 + 1)2(t2 + 2)

(t2 + 3)2 ,
t2(t2 + 2)(t8 + 4t6 + 6t4 + 8t2 + 9)

(t2 + 3)3

)
,

which has infinite order when t �= 0, ±1. So for all t ∈ Q − {0, ±1}, x1x2 − t 
(

2u
1−u2

)
= 0

has infinitely many solutions x1, x2 ∈ S ′, so t can be written as a product of three 
elements of S ′ in infinitely many different ways.

We finally must handle t = ±1. In this case, we can set u = 5
6 . For η =

(
1 0
0 ± 60

11

)
we 

have the elliptic curve
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Eη : y2 = x3 +
(

1 +
(

60
11

)2
)
x2 +

(
60
11

)2

x,

which has a non-torsion point (−12
11 , 

204
121 ) (in fact Eη(Q) has rank 2). Thus there are 

infinitely many Pythagorean solutions of x1x2 ∓ 60
11 = 0, allowing us to write ±1 as a 

product α1α2
11
60 of three elements of S ′ in infinitely many ways. �

Remark 5.6. The substitution s = t2 + 2 was found essentially by trial and error, 
guided by inspiration from a MathOverflow answer by Siksek [1] describing how to 
find a positive rank subfamily of the family y2 = x(x + 1)(x + (1−s

s )2), and from 
Naskręcki [15] who used a similar method to find a positive rank subfamily of the curve 

y2 = x(x − 1) 
(
x−

(
2s

1−s2

)2
)

.

For the t = 1 case, the existence of a solution to α1α2α3 = 1 is equivalent to the 
existence of a body cuboid (Section 2.1). The existence of a body cuboid with edge 
lengths (240, 117, 44) leads to the choice of u.

By Proposition 5.5, every element of S ′ can be written as a sum of two elements of 
S ′ in infinitely many ways, but we have no comparable result for products. A natural 
question then is to determine which rational numbers t can be written as a product of 
two elements of S ′ in infinitely many ways. This line of inquiry is explored in more depth 
in [13].
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