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be expressed as a sum or product of slopes of rational right
triangles.
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1. Introduction
1.1. A family of curves
Fix n:= (%) € GL2(Q), and let H, be the curve defined by
Hy 2 y? = (a(2” — 2%) +b(222))” + (c(2* — o) + d(222))? (1)

in the weighted projective plane where x,y, z have degree 1,2, 1, respectively. Rational
points on this curve correspond to vectors (%) € Q2 \ {0} such that both (%) and n(%)
have rational length, and as a result, curves of this form can be used to describe solutions
to a collection of rational configuration problems; see Section 1.2 for more details. In this
paper we study the loci of points 1 for which H, has zero, finitely many, or infinitely
many rational points.

First, we show that for most values of 7, the curve H,, has no rational points.

Theorem 1.1. Let L(X) be the set of n € GL2(Q) with a,b,¢,d € Z N [-X, X]| such that
H,(Qy) is nonempty for all v € {c0,2,3,5,7,...}. Then for some constant C > 0,

1£(X))]

231 < C(log X)~1/4,

The proof is given in Section 4. Note that H, ~ H,,, for any positive integer m,
so by clearing denominators, every H, is isomorphic to one of the curves counted in
Theorem 1.1. For the sake of comparison, consider the following result by Bhargava,
Cremona, and Fisher.

Theorem 1.2 ([, Theorem 3]). Let L'(X) denote the set of (a,b,c,d,e) € (ZN[-X, X])?
such that

v =azt+ b +ca’ +dr+e

has a Q, point for allv € {c0,2,3,5,7,...}. Then

o L1
dm T 07596,

We see that the subfamily H,, differs from the larger family, in that far fewer special-
izations are everywhere locally soluble.

Now suppose we restrict our attention to the collection of points 1 for which H,, does
contain a rational point. In this case we have a stronger classification. Let n denote the
transpose of 7.
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Proposition 1.3. Suppose H, (Egq. (1)) has a rational point. If nmm" is a scalar matriz,
then detn = A\? for some A € Q* and H,, is a union of two rational conics,

y=+\z? +1).
Otherwise H, is isomorphic to
Eo:y? =2+ (1 +r*+sH)2? + 5%
for some r,s € Q with s # 0 and (r,s) # (0,£1).

A proof is given in Section 3.4 using the fact that the isomorphism type of H, is
invariant under acting on the left and right of n by elements of the orthogonal group
02(Q). An explicit change of variables expressing r, s in terms of a, b, ¢, d and the rational
point (zg : Yo : 20) € Hy(Q) is given by Lemma 3.2.

Theorem 1.4. Let r,s € Q with s # 0 and (r,s) # (0,£1). The point (—1,7) € E, (Q)
is non-torsion if and only if r # 0, s # £1, and 4r%s # £(1 — s%)2.

In particular, for most of the values 7 such that H,(Q) is nonempty, H,(Q) is actually
infinite. The proof of this result is given in Section 3.5. We discuss several applications
of this result to rational distance problems in Section 1.2, but mention one here as a
representative example.

Corollary 1.5. On any line of the form x =0 or y = t25a fort € Q \ {—1,0,1}, there

exists a dense set of points with rational distance from each of (0,0), (0,1), and (1,1).

In fact we prove a stronger result: there is an infinite collection of curves C, in the
plane such that the intersection points of the curves C,, with any fixed line y = %x
(for t € Q\{—1,0,1}) gives a dense set of solutions to the three-distance problem within
the given line (Corollary 5.4).

Even in the cases where (—1,r) € E, (Q) is torsion, there are still several cases
in which we can prove E, (Q) has positive rank. We discuss these in more depth in

Section 5.4, but note one special case here. Let
S={aeQ:Va2+1€Q}
denote the set of slopes of rational right triangles (including negatives and zero).

Proposition 1.6. For allt € Q, the equations r1 + x2 4+ x3 =t and rizox3 =t each have
an infinite set of solutions with x1,xo,x3 € S'.

See Section 5.4 for a proof.
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1.2. Rational configuration problems

Given a finite simple graph G = (V, E), an embedding ¢ : V < R"™ is a rational
configuration if the distance d(¢(v), ¢(w)) is rational for all (v, w) € E. We may add some
additional constraints to the set of allowable embeddings (for instance, we may require
some pairs of edges to be the same length, or to meet at right angles), and in doing so
we obtain a corresponding rational configuration problem: to determine whether there
exists a rational configuration satisfying the desired constraints, and if so, to classify
or count the number of rational configurations. We describe a list of sample rational
configurations below; the corresponding graphs can be found in Table 1.

o “Adjacent rectangles:” Find two rectangles sharing an edge such that the distance
between any two vertices is rational.

o “Detour:” Fix parameters r, s,t € Q*. Find a point x such that (z,0) has rational
distance to (0,0), (r,0), (0,s), and (r,t). (A traveller is going from (0,s) to (r,t),
but has to take a detour to stop at the x-axis along the way; can they do so using
only two straight paths of rational length?)

e “Perfect cuboid:” Find a rectangular prism such that the distance between any two
vertices is rational.

e “Body cuboid:” Find a rectangular prism such that the distance between any two
vertices that share a face is rational.

e “Square four-distance:” Find a point (x,y) € R? such that the distance to each of
(0,0), (1,0), (0,1), and (1,1) is rational.

¢ “Square three-distance:” Find a point (z,y) € R? such that the distance to each of
(0,0), (0,1), and (1,1) is rational.

o “Rectangle four-distance:” Find » € Q* and a point (z,y) € R? such that the
distance to each of (0,0), (0,1), (r,0), and (r,1) is rational.

e “Rational distances under Mobius transformation:” Fix a, b, ¢, d € Q with ad—bc # 0.

Find z € C such that z and gjis both have rational distance from 0.

The perfect cuboid problem and square four-distance problem are classic unsolved
problems (see Section 2); this paper does not present a solution to either of them. How-
ever, we can put all the remaining problems in this list into a common framework. Define

S ={(u:v) e PHQ) | Vu2+v2 € Q},

so that whenever u, v, not both zero, are the legs of a (possibly degenerate) rational right
triangle, the slope of the triangle is in S. Then for distinct Py, P, € Q2, the distance
between P; and P, is rational if and only if the line between P; and P, has slope in S.
Using this observation, we can parametrize solutions to many rational configuration
problems by finding elements of S satisfying simple polynomial relations. We let S’ =
SNQ (that is, the set of (u: v) € S with v # 0; note that this agrees with the previous
definition of §’), and S* = SN Q> (the set of (u:v) € S with uv # 0).
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Table 1

Diagrams of rational distance problems. Rational configurations are given by solutions to the given equation
with a; € S’ for all 4. By Proposition 1.9, some of these configurations are parametrized by rational points
on a curve H,. If a distinguished rational point on H,, is known, then the isomorphic elliptic curve E,. ; is
given (Proposition 1.3), and labeled with oo in the cases that E, ;(Q) is known to be infinite.

Configuration

Equation

Solutions given by

Adjacent rectangles

Detour (r,s € Q%)

Perfect cuboid

Body cuboid

(Square) Four-distance

(Square) three-distance

(Rectangle) four-distance

Rational distances under
Moébius transformation,
n=(%3) € GL2(Q)

ap + a2 = a3

sa1 +as =71

2 2 _ 2
aj] +aj; = a3

103 = 2

Q1 = 3g =
a; +az —1

a1y = a1 +ag — 1

Q12 = 304

(a1 + b)as = (car + d)

Ea,,1(Q)
(oo for all a3 € S':
Proposition 5.5)

E.s(Q)

(oo if |s| # 1 and
4r?s £ +(1 — )%
Theorem 1.4)

Unknown

onﬂs (Q)

Unknown

E_1,1-0,(Q)
(oo for all a3z € S”:
Corollary 1.5)

EO,agOu (Q)

H, (Q)

Example 1.7. Given a hypothetical solution to the perfect cuboid problem, we can scale
the solution so that one edge length has length 1; this implies there exist aq, as € Q\ {0}

such that
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1+a?, 1402, o?+a2, and 1+a?+a3

are all perfect squares. If we set a3 = \/a? + a2, then the polynomial constraints above
are equivalent to requiring

o+ as=a3 for some ay, as, a3 € §'.
Allowing any a; = 0 gives a degenerate solution, so we really require oy, as, ag € §*.

Example 1.8. Given a hypothetical solution z to the “detour” problem, we can scale the
solution so that ¢ = 1. If we set o1 := % and az = r — sag, then each pair (s,saq) and
(a2,1) forms the legs of a rational right triangle, so ay,as € 8> satisfy sa; + ag = 7.
Conversely, given a1,y € S* with sa; + as = r, we obtain a detour solution with
T = sqq.

Similar polynomial constraints for each of the problems above are listed in Table 1. For
every problem in Table 1 besides the perfect cuboid problem and the square four-distance
problem, rational configurations correspond to solutions in S to a single polynomial in
multiple variables that is linear in each variable.

Proposition 1.9. Let n = (‘CL 2) € GL2(Q), and let F, be the curve in P! x P! defined by
Fy, :aximo + bx120 + c2122 +dz122 = 0.

There is a degree 4 morphism ® : H, — F, inducing a surjection

H,(Q) = F,(Q)n(S xS).

This follows from Proposition 5.1. Proposition 1.9 shows that for a wide collection of
problems, rational configurations can be classified using rational points on curves of the
form H,,. We can use this observation to show that some rational configuration problems
have infinitely many rational configurations. In some cases, such as the detour problem
and the square three-distance problem, the infinitude of solutions will be a consequence
of Theorem 1.4. For others, including the adjacent rectangles, body cuboid, and rectangle
four-distance problems, the corresponding curve E, ; lands in one of the exceptional cases
of Theorem 1.4, and so we cannot immediately conclude that there are infinitely many
solutions.

1.8. Outline

We begin with a discussion of some related problems and their histories in Section 2.
In Section 3 we analyze the algebraic structure of the family H,, in particular showing
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that the isomorphism type of H, is invariant under a left- and right-action of the or-
thogonal group (Section 3.3). We then analyze the singular fibers (Section 3.4), followed
by the non-singular fibers that contain a rational point (Section 3.5), proving that most
fibers of this type have infinitely many rational points (Theorem 1.4). Completing our
study of rational points on the fibers, Section 4 contains a proof the set of fibers con-
taining a rational point has low density (Theorem 1.1). Note that Section 4 only requires
Section 3.1 and Section 3.2 from Section 3.

We conclude with some applications of these results in Section 5, focusing primarily
on the square three-distance problem.

2. Prior work on related problems

There are a number of open problems regarding rational configurations; in this section
we will focus on two of them, namely the perfect cuboid problem in Section 2.1 and
the square four-distance problem in Section 2.2 (both of these are discussed at greater
length in [9]). In each case, we show that the problem is equivalent to the existence of
a Pythagorean solution of a certain polynomial or system of polynomials. Finally, in
Section 2.3, we compare to the congruent number problem.

2.1. Perfect cuboid problem

While the perfect cuboid problem is open, significant progress has been made towards
studying the “body cuboid” problem, which is to give a cuboid in which all edges and all
face diagonals (but not necessarily the body diagonal) have rational lengths. If 1, ay, an
are the edge lengths of a body cuboid, then a2 + 1, a3 + 1, and a? + a3 are all perfect
squares; the first two conditions say that a1,y € S* and the third is equivalent to
requiring ¢* € 8.

For each fixed a3 € §*, the values a1, ag € §* satisfying a1 a3 = ap are parametrized
by an elliptic curve (Proposition 1.9 and Proposition 1.3). This association between
body cuboids and a family of elliptic curves is well-studied; van Luijk has an in-depth
survey [14] that mentions this association as well as many other known results about
perfect cuboids. Halbeisen and Hungerbiihler [10] investigate this problem as well. Given
a fixed ag = 37 they associate solutions a1,y € S’ satisfying aya3 = as to rational
points on the elliptic curve

E:y? =2° + (a® +b*)2? + a*b3x. (2)

Proposition 1.9 and Proposition 1.3 recovers this classification. They show that there
is a subgroup of E(Q) isomorphic to Z/2Z x Z/4Z which give degenerate solutions to
the corresponding rational distance problem. Ruling out other possible torsion points,
they conclude [10, Theorem 8] that nondegenerate solutions exist if and only if F(Q)
has positive rank. In this case they call (a,b) a double-pythapotent pair.



J. Love / Journal of Number Theory 269 (2025) 370-396 377

2.2. Four-distance problem

As with the perfect cuboid problem, the four-distance problem is currently out of
reach, but a slightly weaker variant has many known solutions. The three-distance prob-
lem is to find points P = (x,y) € R? with rational distance to (0, 0), (0, 1), and (1,1). The
coordinates , %y are not a priori assumed to be rational, but since 2% + 32, 22 4 (1 — y)?,
and (1 — 2)% + (1 — y)? must all be rational, the differences 2y — 1 and 2z — 1 must
also be rational, so in fact P € Q2. We can then scale by an element of Q> so that
z = 1, and a solution to the square three-distance problem is equivalent to the existence
of ay,an, a3 € §* satisfying 1 + ajas = a3 + as.

For many years it was believed that there were no solutions to the three-distance
problem aside from points on the coordinate axes. The first one-parameter family of
nontrivial solutions was found in 1967 by J.H. Hunter, and then many more infinite
families were found in rapid succession; a historical overview is given by Berry, who
also presents an “extraordinary abundance” of solutions lying in infinitely many one-
parameter families [3]. We observe that the families of solutions obtained in Corollary 1.5
are distinct from those that appear in [3, Table 4], though it is unclear whether any (or
all) of the one-parameter families we consider are eventually accounted for by Berry’s
construction.

2.8. Congruent number problem

A rational number n € Q is a congruent number if it is the area of a right triangle
with rational edge lengths; that is, if there is a solution to

1
a2 +v?=¢2 and iab:n, a,b,ce Q*. (3)

The “congruent number problem” is to determine whether a given n € Q is a congru-
ent number. This problem is not a rational configuration problem, but the underlying
methods used to study these two problems are similar enough that a comparison is
worthwhile.

There is a well-known approach to studying the congruent number problem; see for
example the expositions [6] and [5]. For fixed n, any solution to Eq. (3) corresponds to
a rational point on an elliptic curve over Q defined by

EM .y = 2% —n2z. (4)

There are “degenerate points” in (™ (Q) that do not correspond to solutions; it can be
shown that the set of degenerate points equals the torsion subgroup of E(™ (Q). Thus n is
a congruent number if and only if E(™)(Q) has positive rank. A formula due to Tunnell
can be used to determine whether the analytic rank of E(™) is zero or positive [17],
so by assuming the Birch and Swinnerton-Dyer conjecture, this gives a criterion that
determines whether a given number is congruent.
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Many aspects of this paper are modeled off of the approach described for studying the
congruent number problem. To put the two problems on a common footing, note that n
is a congruent number if and only if z; = a® and x5 = g give a solution to

129 — 2n = 0, x € (QX)3, xo € S*. (5)

Both &’ and (Q*)? can be represented as the image of A'(Q) under the image of a degree
2 rational map A! — A'. The curve E() comes equipped with a degree 4 rational map
to the variety defined by xi29 — 2n = 0, and non-degenerate points in E(”)(Q) map
to solutions to Eq. (5). This is directly analogous to the relation between H,(Q) and
solutions to rational distance problems (Proposition 1.9).

However, it is worth highlighting a few key differences between the congruent number
problem and the family of rational distance problems we consider.

o Size of parameter space. The isomorphism class of E(™) is determined by the class
of n in Q*/(Q*)?, while the isomorphism class of H,, is determined by the class of
a corresponding matrix in a double quotient of GL2(Q).

« Existence of rational points. Every n determines an elliptic curve E(™, which has
a rational point. By contrast, the genus one curves H, typically have no rational
points (Theorem 1.1).

¢ Closure under addition of degenerate points. In both problems, the corresponding
genus one curve has a set of “degenerate” rational points, which do not yield valid
solutions to the original problem. For the congruent number problem, the set of de-
generate points equals the torsion subgroup of E(”)(Q). For rational configuration
problems, however, even if H, is isomorphic to an elliptic curve (Proposition 1.3),
the degenerate points in H,(Q) may not form a subgroup. This is to our advan-
tage: we can often add together degenerate points to produce non-degenerate points,
something that is not possible in the congruent number problem. This is the key idea
behind Theorem 1.4.

« Geometric variation in the family. The curves E(™ are quadratic twists of the curve
y? = 2® — z, and are therefore all isomorphic over Q. This fact is used in a key way
in the proof of Tunnell’s theorem, as he applies a result due to Waldspurger [18]
relating the central value of the L-function of an elliptic curve with that of each of
its quadratic twists. By contrast, the curves H, do not have constant j-invariant.
This means that Tunnell’s approach to computing the analytic rank does not apply
to this family.

3. The structure of the family
3.1. Assumptions and notation

Let K be a field of characteristic not equal to 2, in which —1 is not a square; later
we will restrict to K = Q, but many of our results hold in more generality. Throughout
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this paper, all schemes will be defined over K unless otherwise indicated, and if X and
Y are schemes then X xY (= X xg Y.

Throughout, P! will denote the projective line over K, while P2 will denote a weighted
projective space over K, where the variables z,y, z have weights 1,2, 1, respectively. We
use the notation (z : z) and (x : y : 2) to denote elements of P!(K) and P?(K),
respectively. That is, for (z,z) € K2\ {(0,0)} we have

(:2)={(A\x:A2) | A e KX},
and for (z,y,2) € K3\ {(0,0,0)} we have
(w:y:2)={(z, 2y :\2) | A e K*}).

Let GLy = Spec K|[a, b, ¢, d, (ad — be) ~!] denote the algebraic group of 2 x 2 invertible
matrices, with identity element I. Given a matrix n € GLy(K), its transpose will be
denoted nt. Let Oy denote the orthogonal group of 2 x 2 matrices, that is, the algebraic
subgroup of GLy defined by the condition that M € GLy(K) is in O2(K) if and only if
MMt = MM = 1.

3.2. Definition of H and basic properties

We first define a variety Ho in P! x P! x GL;. Using the coordinates ((z1 : 21), (z2 : 22),
(‘; 2)), this variety is given by

a b 2 _ .2
Ho: (2] —a1 22121) (c d) (Z§$2Z$22> = 0. (6)

This variety comes equipped with a morphism my : Hg — GL2, which equips Hy with
the structure of a flat family of curves. As a biquadratic form in P! x P! over GLo, the
projection onto either component gives H, the structure of a hyperelliptic curve. For
now we consider the projection onto the second component, and provide an isomorphic
model written in the standard form for a hyperelliptic curve as a double cover of P!,
This can be given as a variety in P2 x GLj. Using the coordinates ((x Sy z), (‘C‘ g)),
and letting N : K? — K be defined by N(u,v) = u? 4 v, set

9 a b 22 — 22
wet=n((0) (%)) @
= (a(2* — 2°%) + b(232))? + (c(2* — 2?) + d(222))>.
The variety H also comes equipped with a natural map 7 : H — GLs2. Observe that given

n € GLy(K), H), as defined in Eq. (1) is the fiber of m over n. The fact that Ho ~ H is a
consequence of the fact that both equations express the property that the components of
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the vector (‘é Z)(z;;f) are the sides of a (possibly degenerate) rational right triangle.

An explicit isomorphism H — Hg as varieties over GLy is given by
(z:y:2) e ((a(z? —2%) +b(222) 1 y — (2 — 2?) — d(222)), (2 : 2))).

The generic fiber of 7w : H — GLy is a genus one hyperelliptic curve over the function
field K(a,b,c,d), with discriminant

A(H) = 2'%(ad — be)*((a+d)* + (b — ¢)*)((a — d)* + (b + ¢)*). (8)

The Jacobian variety of this curve is an elliptic curve over K (a, b, ¢, d), which by classical
invariant theory (see for example [19,2]) has a model

E:y? =2°+ (a® +0° + & + d*)2” + (ad — be)*w. (9)

The two commuting involutions on Hy as a scheme over GLs induce commuting
involutions on H, given by

or:(x:y:2)—= (x:—y:2) and oe:(x:y:2)— (—z:1y:x). (10)
These generate a Klein four-group
I':= (o1, 02) (11)
acting on H.

3.8. Double cosets and reduction

We show that the isomorphism class of H, for n € GLy(K) is invariant on double
cosets in

O2(K)\ GLy(K)/(K™ - O3(K)),

and use this to show that H, has a K-point if and only if 7 is in the same double coset
as () for some r,s € K.

Invariance under K* is clear. The fact that the isomorphism class is preserved under
left multiplication by elements of O2(K) is evident from Eq. (7), and the corresponding
fact for right multiplication follows from the fact that we have an isomorphism with the

model
> =N ((z2 — 22 2xz) <a b))
c d

We summarize these observations in the following lemma, though we also include an
explicit formula for the isomorphism in the proof.
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Lemma 3.1. Let 0,1’ € GLo(K). If ' € K* Oo(K)nO2(K), then there is an isomor-
phism 7 : Hy — H, over K that commutes with the action of I.

Proof. Let r/ = )\7“1777“2_1, where A € K* and 71,72 € O(K). Write ro = (% V), where

€V €u
2 2
u,v € K, e = +1, and u2+v? = 1. There exists s,t € K so that u = ﬁ and v = tfj’;z.

Then for any (z :y: z) € H,(K),
b 2 _ .2
A(s* +t)y)* = N (A(SQ +1%) (2 d) (Z 20r ))
a b\ _q[t%—s2 —2st 22 — g2
N (7’1)\ (C d) "2 ( 2est  e(t? — 52)> ( 2wz

v (o (0 B (Gl ).

Thus the map
Ti(xiy:2) e (e(te 4+ 52)  A(s* + %)y stz — sx)

defines an isomorphism H, — H,/, and the involutions y — —y and (z : z) — (—z : )
are preserved. O

Given n € GLy(K), suppose 7 is in the same double coset as an element of the form
n' = (") € GLyo(K). We have (0:1:1) € H,/(K), so by Lemma 3.1, we can conclude
that H, (K) is nonempty. The following lemma gives us the converse result: if H,(K) is
nonempty then 7 is in the same double-coset as a matrix of the form ' = (3 7).

Lemma 3.2. Let n = (24) € GLo(K). Suppose there is a point P = (zg : yo : 20) €
H,(K). Define

(ab+ cd)((28 — 22)? — (22020)?) — (a? — b? + ? — d?)(28 — 22)(2w020)

ri= 2 s

Yo (12)
_ (ad — bc)(zg + 13)2
Y% '
Thenn € K* O2(K)(37) O2(K).
2
Proof. Suppose 73 + 22 = 0. If 29 # 0, then (£2) = —1, contradicting the assumption

20
that —1 is not a square in K. Hence zg = 0, and likewise x¢g = 0. But this implies yo = 0,

which contradicts the fact that (zq : yo : 20) € P2(K).
If yo = 0, then a similar argument shows that we must have

a(z8 — x3) + b(2w020) = (28 — 23) + d(27020) = 0.
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But this implies that the nonzero vector (2§ — x3,2x0z0) is in the kernel of (24), con-

tradicting the assumption that n € GLo(K). Hence yo # 0.
Since 23 + 23 # 0 and yo # 0, the matrices

T =

1 a(zf —af) +b(2z020) (2§ — x§) + d(2x020)
yo \ —c(zd — 23) — d(2z020)  a(z§ — x3) + b(2z020)

., 1 28 —x3 —2x020
2= 55— 2,2
284+ a2 \ 2zoz0 25 — g

are both well-defined elements of SO2(K). We can check by direct computation that

2 2
20 +%q — (1l
woorire = (p%). O

3.4. Isomorphism classes of fibers

The curve H,, is singular when the discriminant (Eq. (8)) vanishes. Since ad — bc # 0
for all n € GLy(K) and K does not contain a square root of —1, this can only occur if
a=—dand b=c, or if a =d and b = —c. One of these two conditions holds if and only
if a® 4+ b? = ¢? + d? and ac + bd = 0; thus the singular fibers H,, are exactly those with

' = (a® + V*)I.
In this case H,, reduces to the form
y? = (a® + b?) (2% + 2?)%
If a® +b? = A\? then H,, splits into two conics, y = £A(2% +22). If a® +b? is not a square
in K, then there are no solutions in P?(K).
If H,, has a rational point and the discriminant (Eq. (8)) does not vanish at 7, then

H,, is isomorphic to its Jacobian. Using Lemma 3.2 and Eq. (9), we can conclude that
H, is isomorphic to

Eg:y? =2+ (1 +r*+ %2 + 5%

for some 7, s € K; the non-vanishing of the discriminant says that s # 0 and (r,s) #
(0,£1). This completes the proof of Proposition 1.3.

3.5. Nonsingular fibers with a rational point

We now restrict our attention to K = Q in order to prove Theorem 1.4, which we
recall for convenience.

Theorem 1.4. Let r,s € Q with s # 0 and (r,s) # (0,£1). The point (—1,7) € E, (Q)
is non-torsion if and only if r # 0, s # £1, and 4r%s # £(1 — s%)%.
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Proof. Assume R := (—1,r) is torsion in E, ¢(Q). Since 2% + (1 + 72 + s%)z + 5% is
positive on an open interval around = = 0, there exists —1 < x < 0 for which E, ;(R)
does not contain any point of the form (x,y). Thus E, s(R) has two components, with
R :=(—1,r) on the non-identity component and 7" := (0,0) on the identity component.
This shows R is not a multiple of 2 in E, (R), and hence R cannot have odd order. By
Mazur’s classification of torsion subgroups, we can conclude that if R is torsion then its
order must be an even number at most 12. If R has order 10 then the only possibility
for the torsion subgroup of E, s(Q) is Z/10Z, so that T is the unique element of order
2. This implies T' = 5R, which again leads to a contradiction when we consider the
component group of E, ¢(R).

We can conclude that if R is torsion, it must have order ¢ € {2,4,6,8,12}. For each
such ¢, let ¢(r,s,x) € Z[r,s,z] denote the ¢-th division polynomial on E, g; this is
a polynomial with the property that 1,(r,s,2) = 0 for z € Q if and only if (x,7) €
E, s(Q)[4] for some y € Q (see for instance [16, Exercise 3.7]). We compute the division
polynomial v(r, s,x), and determine all possible (r,s) € Q? such that 1,(r,s, —1) = 0.

o We have ¥(r,s,—1) = —r2, so R has order 2 if and only if r = 0.
o We have

77b4(747 S, _1)
7/’2(7’7 S, _1)

The last factor is a sum of non-negative terms, including at least one positive term
because (7, s) # (0, £1). Hence R has order 4 if and only if s = 1.

o The quotient of v¥g(r,s,—1) by ¥a(r, s, —1)13(r,s,—1) factors into two irreducible
polynomials in Q[r, s]. The first factor is 4r2s% + (s* — 1)2, which is positive for all
(r,s) # (0,£1). The second factor is

=—2(s —1)(s +1)(2r?s* + 2r? + (s* — 1)?).

16s%r% — 4(s* — 1)%(s® + 1)r? — 3(s? — 1)
Considering this as a quadratic polynomial in 72, the discriminant is equal to
16(s* — 1)*(s* + 14s® + 1).

In order for 7% to be rational (let alone r), this discriminant must equal a rational
square. Thus we consider rational points on the curve C defined by y? = s*+14s%41.
There are eight rational points (s,y) € C(Q): two at infinity, as well as (—1,+4),
(0,%1), and (1,44). Using the Weierstrass form y? = 23 — 722 + 12z for C' we can
confirm that C' has no other rational points, so the only possibilities for s are —1,0, 1.
If s = 0 then we have r? = —%, yielding no rational solutions. If s = +1 then we
have r = 0, contradicting (r,s) # (0,£1).

o The quotient of ¥g(r, s, —1) by ¥4(r, s, —1) factors into three irreducible polynomials
in Q[r, s]. The first two factors are 4r2s—(s?—1)% and 4r2s+(s2—1)?; these each have

infinitely many rational solutions. The third factor is positive for all (r,s) # (0, £1).
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o If we eliminate common factors with ¢g(r, s, —1) and ¥4(r, s, —1) from ¥12(r, s, ),
we are left with three irreducible polynomials in Q[r, s]. The first factor is

165(s? — s+ 1)r? +8s(s* — 1)%r? 4 (s — 1)L

Considered as a quadratic in 72, the discriminant is —64s(s — 1)(s 4+ 1)*, which is
a square if and only if s = —k? for some k € Q. Plugging this in and solving for 72,
we find that either

P L ) P (L )
dk(k2+k+1) dk(k2 —k+1)

For the first option, we obtain » € Q if and only if £ + k? + k is a nonzero square.
The only rational points on the elliptic curve y? = k34 k2?4 k are the point at infinity
and (k,y) = (0,0), so there is no k € Q for which r is rational. For the second option,
we obtain r € Q if and only if (k)3 + (—k)? + (—k) is a nonzero square, and by the
same reasoning there is no such k. Hence this factor is nonzero for all (r,s) € Q2.
The second factor is obtained from the first by s — —s, so it has no rational solutions
either. The third factor is positive for all (r,s) # (0, £1).

To summarize, we obtain the following possibilities:

(—1,r) has order 2 if and only if = 0;
(—1,r) has order 4 if and only if s = +1;
e (=1,7) has order 8 if and only if 4r%s = £(1 — s?)2.
There are no values of (r,s) € Q? for which (—1,r) has any other finite order. O

4. Upper bound on locally soluble curves

In this section we prove Theorem 1.1. The main idea is to prove a local obstruction
to the existence of Q,-points (Lemma 4.2). This obstruction is “large,” in the sense that
the proportion of curves satisfying the obstruction is approximately a constant multiple
of %. By contrast, each local obstruction in Theorem 1.2 only affects O(I%) of all curves.
At a high level, the difference in behavior between the two families stems from the fact
that Z% diverges but > ]% converges.

Remark 4.1. While we have chosen to present a direct analytic argument for Theorem 1.1,
one can also show that it follows from a result of Loughran and Smeets [12, Theorem 1.2],
which computes an upper bound on the number of locally soluble fibers of a fibration
X — P in a very general setting. The key idea behind both results is that local solubility
constraints arise from the existence of codimension 1 loci in the base over which the
scheme splits into multiple geometric components. In the present case, this codimension
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1 locus is given by the determinant locus ad—bc. Many thanks to the referee for informing
the author of Loughran and Smeets’ theorem.

4.1. Local obstructions

Given a ring A we use M2(A) to denote the ring of 2 x 2 matrices over A. For primes
p we define

R, :={n e Mx(Z,) N GL2(Q,) : H,(Q,) =0};

Thus £(X) counts the set of n € M3(Z) N GL2(Q) with entries of absolute value at
most X such that n ¢ R, for all primes p (note that there is never a real obstruction:
H,(R) # 0 for all n € GL2(Q)).

The main contribution to R, will come from the following constraint.

Lemma 4.2. Let p be an odd prime and n = (2Y) € Ma(Z,) N GL2(Qp). Suppose p |
ad — be, and a, a®> + b2, and a® + ¢ are all nonzero mod p. Then H,(Qp) is nonempty
if and only if at least one of a® + b% or a? + c? is a square modulo p.

Proof. Assume H,(Q,) has a point (z : y : z); without loss of generality we can assume
that x,y, z are in Z, and at least one of x, z is in Z . Reducing modulo p we have

a®y? = (a® + ) (a(2? — 2%) + b(222)). (13)

If a(2? — 22) + b(2x2) # 0, then a? + ¢? is a square. On the other hand, suppose a(z% —
22) 4+ b(222) = 0. Since a # 0 and at least one of z, z is nonzero we must have zz # 0, so

ARty (—a(22 —a:2)>2 _ (a(z2+ac2)>2

2z 2xz

is a square.

Conversely, if a® + ¢? is a nonzero square mod p then Eq. (13) clearly has solutions
with y # 0; these are smooth points on H,(F,) so they lift to points on H,(Qp). If
a® + b? is a nonzero square mod p, then it is a square in Qp, so there exist x,z € Q;f
with & = % This implies a(2? — 2?) + b(2z2) = 0, so (z : ¢(2? — 2%) + d(2z2) : 2) is
a point in H,(Q,). O

In light of the above, for all odd primes p set

a b a2+b2 a2+c2
Qp:—{p—<c d)EMg(]Fp):ad—bc—O,( ) )——1,( » =—-1;,

where (5) denotes the Legendre symbol. We also set 5 = (. If by abuse of notation we

associate ), with its preimage in M>(Z,) under reduction mod p, we have
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(Qp n GLQ(QP)) - Rp' (14)

This follows from Lemma 4.2: note that the Legendre symbol conditions in the definition
of €2, force a to be nonzero mod p.

Lemma 4.3. We have || = 1p3 + O(p?).

Proof. We may assume p is odd. Let (‘Z 3) € Q. Since a® + b? is not a square, we have
a # 0. Note that a® + r? is a square in F, if and only if 7 is in the image of the map
¢ : F — F, given by ¢(t) = a%. We have ¢(t) = ¢(s) if and only if s = —1, and so
there are £ (p & 1) values in the range of ¢ (with the + sign depending on whether or
not —1 is a square mod p). Hence b and ¢ must each be one of the 1(p F 1) values not
in the range of ¢. Since there are p — 1 choices for a, there are %(p F 1) choices for each

of b and ¢, and the value of d = % is fixed, we obtain the desired count. O

The following result is not used in the sequel, but justifies the claim that €1, is the
main contribution to Iz,.

Lemma 4.4. Let R_p denote the image of Ry, under reduction mod p. We have
Ry \ Q] = O(p).

Proof. We may assume p is odd. We produce a collection of pairs of linear equations
over IF, with the property that every element of R, \ {, satisfies one of these pairs of
equations. Let 77 = (‘g g) € My(F)). If

(ad — be)((a — d)* + (b+¢)*)((a+d)? + (b —¢)?) #0,

then for any lift n € M3(Z,) N GL2(Q,), the discriminant of H,, (Eq. (8)) is not divisible
by p, and so H,(F,) is nonempty by the Hasse-Weil bound. As these are all smooth
points, they lift to points in H,(Q,). Thus 7 is not in R,,.

We can therefore assume that exactly one of the following constraints holds:

) ad —bc=0and a =0,

b) ad —bc =0 and a # 0,
) ad —bc#0, (aFd)?+ (btec)?=0,and aFd =0,
) ad—bc#0, (aFd)?+ (bte)>=0and aFd#0.

In case (a) or (c), 7 must satisfy one of the following pairs of linear equations over [F,:
a=b=0, a=c=0, or aFd=b+tc=0.

Now consider case (b). If a? + b*> = 0 or a® + ¢* = 0, then using a # 0 and ad = bc we

can conclude that
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a+ib=c+id=0 or a+ic=b+id=0

for some i € F, satisfying i? = —1. If on the other hand a® + b and a? + ¢? are both
nonzero, then 7 is not in Fp by Lemma 4.2.

Finally we consider case (d). We assume (a — d)? + (b+c¢)? =0 and a — d # 0 as the
other case is similar. Then b+ ¢ = i(a — d) for some i € F, with i*> = —1. The reduction
of H,, modulo p is given by

y? = (2 +ix)*h(z, 2)
where
h(z,2) := (a* + ) (2% — 2?) + (2a(b + ¢) +i(c* — a® + 2bc)) (222).

If the discriminant of h(z, z) is nonzero, then the equation r? = h(z, z) defines a smooth
projective conic over F,, and there must exist at least one point (x,z,r) on this conic
with z 4+ iz # 0. Then (z : (2 +ix)r : z) defines a smooth point in H,(F,), which lifts
to a point in H,(Q,). Hence 7 is not in R,. Computing the discriminant of h(x, z), we
find that elements in R, \ , in this case must satisfy

b+c—ila—d)=(b—ia)(a+ic)(b+c¢)=0. O
4.2. Proof of Theorem 1.1

The author would like to thank Sun-Kai Leung for suggesting the following proof.
Recall that £(X) is the set of all n € M5(Z) with nonzero determinant, entries having
absolute value at most X, and with n ¢ R, for all p. Set

M(X) :={n e Mx(Z) N GL2(Q) : n ¢ Q,, for all primes p}.

By Eq. (14) we can see that £(X) C M(X), and so it suffices to find an upper bound
for M(X).
Set

)= w2 [ p'Q—K'H

m<Y prime p|m

where p(m) is the Mobius function (so p?(m) = 1 if m is squarefree and p?(m) = 0
otherwise). Applying the n-dimensional large sieve [8, Lemma B|, we obtain

X4

IL(X)] < MX)]| < IR
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where f(X) <« ¢g(X) means that for some positive constant C' we have f(X) < Cg(X)
for sufficiently large X. Theorem 1.1 follows immediately from this bound after applying
the following lemma.

Lemma 4.5. We have
F(Y) > (log V)4,

Proof. We have [Q,| > 0, and by Lemma 4.3 we have [Q,| > 1(p® — Cp?) for some
positive constant C', so

m<Y plm 4p
= Mz(ﬁb)Hl(l_g)

Set

1 C
2
= —(1-——=.
o) =2 TT 3 (1- )
plm
Note that f is a multiplicative function, it is positive at sufficiently large primes p, and

3 f(p)plogpzizloﬂ_czlogp

2
p<Y p<y P p<y P

. ilog(Y) +0(1)

(see for instance [7, p. 57]). Hence, by Wirsing’s Theorem ([11, Theorem 14.3] with x = 1,
¢=0,k=1) we have

S EDY % > (log V)4 O

m<Y

5. Applications to rational distance problems
5.1. From H,(K) to rational configurations

We return temporarily to the more general setting of a field K in which —1 is not a
square. Let n = (2Y) € GLy(K). In Eq. (7), we defined the variety

v (00 (50)),
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where N(u,v) := u? + v2. We also define the subvariety F of P! x P! x GLy (with
coordinates ((u1 : v1), (ug : v2), (25))) by

F :aujus + buive + cvius + dvive = 0.

As with H, there is a projection map to GLo giving F the structure of a flat family of
curves, with F,, denoting the fiber over n € GLy(K'). We define

Sk = {(u:v) € PY(K) | u® +v? is a square in K}

= {(2 =22 :222) | (z:2) € PHK)}.

Proposition 5.1. There is a morphism ® : H — F over GLq defined by sending (x : y : z)
to

((—c(z® = 2%) — d(2x2) : a(z® — 2%) + b(222)), (2 — 2% : 222)) . (15)

Further, ® induces a bijection between the set of I'-orbits in H,(K) and the set Fy,(K)N
(SK X SK)

Proof. Notice that the equation defining F can be written

0=(u vl)(ﬁ Z) (fj;) (16)

so that the model Hg from Eq. (6) is evidently the pullback of F under the map (z :

2) + (22 — 22 : 222) on each component. The map ® is obtained by composing the

isomorphism H — Ho with this map. Given (z : y : 2) € H,(K), we have
(22 — 22)? + (222)% = (22 + 22)?
and
(—el? = 2%) — d(222))? + (a(=? — 22) + b(222))? = 3,

so that ®(x : y : z) € Sk x Sk. Conversely, given any (a1, a2) € F,(K) N (Sk % Sk),

we can write ag = (2% — 2% : 222) and oy = (22 — 2’2 : 22%) for some z, 2,2, 2 € K.

The fact that (o, as) € F,)(K) is then equivalent to

a b 22— g2
(z’Q—Jc’2 Zx’z’)(c d>( 90 >:0.

This implies that (2 4)( Z;;fg ) must equal )\( 2722 f;://z) for some A € K*. In particular,

(D) e
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so that (z : y : 2) € H,y(K) for y = A(2’? + 2’?). One can then confirm that ® maps
(z:y:2) to (a1,as), using the computation

—c —d\ (22—22\ _ (0 =1\ [a b\ [2*—-2?
a b 2xz —\1 0 c d 2xz
0 -1 -2z’
() ()
Z/Q_x/2
- ( 22! )

Hence ® maps H, (K) surjectively onto F;(K) N (Sk X Sk).

Finally, observe that for each as € Sk, there are two choices for (z : z) € P1(K) with
(22 — 2% : 222) = ao, interchanged by the involution (x : 2) + (—z : x). Once z and 2z
are fixed, there are two choices for y, interchanged by y — —y. Hence I" acts transitively
on the fibers of . O

Remark 5.2. For many rational distance problems, solutions ((u; : v1),(u2 @ v2)) €
F(K)N(Sk x Sk) with ujviu2v2 = 0 will be considered degenerate (as they correspond
to rational right triangles with no width). The degenerate locus ujviusve = 0 pulls back
to the subvariety D C H defined by

D:ayz(2t — a)(a(2® — 2%) + b(222)) (c(2* — %) + d(222)) = 0. (17)
5.2. Density of rational configuration solutions

For any embedding K — R, if H, (K) is infinite, we can show that F,(K)N(Skx x Sk)
is dense in F;)(R). This is a special case of the following result. Let E denote the Jacobian
of H,.

Lemma 5.3. Let n € GL2(R) and suppose A(H,) # 0. Let A C H,(R) be the image of

an infinite subgroup of E(R) under some isomorphism E(R) = H,(R). Then the image
of A under ® : H, — F, (Proposition 5.1) is dense in F,(R).

Proof. The (topological) curve H,(R) has two connected components, given by points
(x:y:2) with y > 0 and those with y < 0 respectively: there is no equivalence between
any points with y > 0 and points with y < 0 because of the weighting on P2 (Section 3.2),
and there are no points with y = 0 because A(H,) # 0 and —1 is not a square in K.
Thus E(R) has the structure of a Lie group S*(R) x Z/2Z. Any infinite subgroup of
E(R) has dense intersection with the identity component, so A has dense intersection
with one of the components of H, (R).
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We can express the map ® : H, — F,, as a composition

H, - P = F,
o . (—c(2? — 2?) — d(2x2) : a(2* — 2?) + b(222)),
(x:y:2) = (x:2) — .

(2% — 2% : 2x2)

The first map induces a continuous surjection from each component of H,(R) onto P*(R),
so the image of A is dense in P*(R). The second map induces a continuous surjection
P!(R) — F,(R), so the image of A is dense in F,,(R). O

5.3. Application to three-distance problem

We will use Theorem 1.4 to prove the following statement.
Corollary 5.4. There exists an infinite collection of rational functions, p, : Ab -— Aé
for n € Z, with the following properties. For allt € Q — {0,%1} and alln € Z, if p,
is defined at t, then p,(t) has rational distance from each of (0,0), (0,1), and (1,1).
Further, for each t € Q — {0,%1}, there are only finitely many n € Z for which p,, is
not defined at t, and the set

{pn(t) :n € Z, p,, defined at t}

is a dense subset of the line y = ﬁttzx in R2.
Proof. For the sake of clarity, we begin by proving the weaker result mentioned in the
introduction: for each t € Q — {0, £1}, the line y = ﬁttzx has a dense set of points that
have rational distance from each of (0,0), (0,1), and (1,1). Once this is done, we will
explain how the proof can be modified to allow for families of solutions parametrized
by t.

Let t € Q—{0,£1}, and set s(t) := 1— ;245 There is no rational solution to 1 = 245,

T—¢2
so n(t) :== (é Sztl)> is an element of GLy(Q). We have |s(t)| # 1 because we excluded the
case t = 0 and there is no rational solution to 2 = 13—22 The polynomials 4s + (1 — s2)?2

are both irreducible over Q, so taking r = —1 we also have 4r%s(t) # 4(1 — s(t)?)? for
all t € Q. Hence, by Theorem 1.4, H,;)(Q) is infinite. By Lemma 5.3, this implies that
the set of ((u1 : v1), (u2 : v2)) € & x S satisfying ujus + vivy = ujve + %vlvg (the
defining equation of ;) is dense in I (R).

Now define the rational function z : Fy ) -> A% by

(1 — t2)1)1 Qt'Ul > . (18)

2((u1 2 1), (u2 1 v2)) = <(1 —t2)ug + 2tvy” (1 — 12)uy + 2ty

The map z restricts to a homeomorphism
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Fyy®)\ {((=2t:1—2),(1—12:26))} > {(m,y) ER2:y= 13—;x}

So after removing a single point from F, ;) (K) N (S x §), the remainder maps to a

dense subset of the line y = 2z . For each (a1, a2) € Fy1)(Q) N (S x S) other than

((—2t:1—12), (1 —#*:2t)), the point (z,y) := z(aq, a2) satisfies

(1+ ), 2
U1(1 — t2) + 2t1}1

2
(1 - t2) 2 2
u1(1 —t2) + 2t (ul +/Ul)7

(
(

1-a)?+(1-y?= ((l—tQ)ul+ﬁ22vl_vl>2+ (( (1—tHuy )2
(

(1 — t2)u1 + 2t’l)1 1-— t2)u1 + Qt’l)l
(1= 2)uyuy 2 N 1=—tDHu,  \°
((1 — t2)u1 + 2t’l)1)’l)2 (1 — t2)ul + 2t”U1

= (1—t*)u : W2 42
N <<(1 —1%)uy +2tv1)v2> (ug + v3).

Since a1, as € S, these are all squares in Q, so this gives a solution to the three-distance
problem.

We now return to the problem of producing explicit parametrizations of solutions in
terms of . For this, note that ¢ — 7(¢) defines a morphism V := Al — {0, +1} — GLo.
We will define a rational map p, : V -» A% by a composition

on VIS E S 2 PLxPLxV 2 A2
where each variety besides A? is a scheme over V and each map besides 2’ is a morphism
over V. We consider each of these maps in turn.

e Let E be the subvariety of P? x GLo parametrizing the Jacobian varieties of H
(defined by Eq. (9)). Let E’ be the fiber product of V' with E, so that E} = E,
for all t € V(Q). We have a section V' — E’ given by t + (—1, —1). Using the group
law on the generic fiber of E’, define the rational map 7, : V -> E’ by the property
that 7,,(t) = n(—1,-1) € E}(Q) for all t € V(Q). The proof of Theorem 1.4 shows
that (—1,—1) is non-torsion in F}(Q) for all t € V(Q), so for each such ¢, the set
{7 (t) : n € Z} is an infinite subgroup of E;(Q).

o The fiber product of V with H is a one-parameter family H’ of curves over V', with
the property that the fiber of H' over t is H, ;). We have a section V' — H’ given by
t+— (0:1:1), allowing us to define a birational map ¢ : E’ -> H’ over Q sending the
zero section of E’ to the given section of H’. This map restricts to an isomorphism
on all fibers over points in V(Q).
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o The rational map ® : H' -» P! x P! x V is defined by
(z:y:2),t) = ((—s(t)(2z2) : (2° — %) — (222)), (2% —2* : 222), 1) .

Note that after restricting to a fiber Hj, the first two components of ® agree with
the map ® : H, ) — F, ;) (Proposition 5.1). So for any t € V(Q), the set

Sy :={(® ocom,)(t):neZ}

is contained in F,;(Q) N (S x §) x {t}, and is a dense subset of F,,;)(R) x {t} by
Lemma 5.3.

o The rational map 2’ : P! x P! x V -» A? is defined on an appropriate dense open
subset by

(1 — t2)’U1 2t’l)1 )

! : : t) =
(5o (a0 t) = (e I

Note that when restricted to F, ;) x {t}, the map agrees with z : F},;) -» A2 defined in

Eq. (18). So the same proof as above shows that for each ¢, 2/ maps Sy minus a point

2t
1—t2

to a dense subset of the line y = x consisting of solutions to the three-distance

problem. O
5.4. Special cases

Some rational configuration problems fall under the exceptional cases of Theorem 1.4.
We consider a few of these here. Recall that

r_Ju .
S .—{U €Q|(u.v)68}
denotes the affine elements of S.

Proposition 5.5. Let a3 € S’'. There ewist infinitely many pairs ay,as € S’ such that
a1 + oo = Q3.

That is, for any rectangle with rational distances between every two vertices, there
are infinitely many ways to split it into two rectangles with rational distances between
every two vertices.

Proof. Let a3 = % for some ¢t € Q — {0, £1}. The equation z1 + 22 — a3 = 0 defines

F, forn= (Y _.,), and H, (which contains the rational point (0 : 1 : 1)) is isomorphic
to its Jacobian (as in Eq. (9)),

1-12\°
E:y*=2%+ ( o ) +2 ) 2% + 2.
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We consider E, as an elliptic curve over the function field Q(¢), and note that E(Q(t))
has a rational point P = (t, %(t + 1)2). By computing nP for n = 1,...,12 and checking
that the denominators of the coordinates have no rational roots, we can confirm that P
is non-torsion for all t € Q — {0,+1}. Hence H, has infinitely many rational points, so
F,(Q)N (S x 8) is infinite by Proposition 5.1. O

This allows us to prove that every rational number can be written as a sum of three
elements of &’ in infinitely many ways; in other words, for any rational ¢ > 0, there
are infinitely many ways to cut a 1 X t rectangle into three rectangles, each of which
has rational distances between every pair of vertices. We also prove that every rational
number can be written as a product of three elements of S’ in infinitely many ways.

Proof of Proposition 1.6. The equation x1 + 2z5 —t = 0 defines F,, for n = (g 4 ) Now

H, is isomorphic to H,y for ' = gé :i/é), and by Theorem 1.4, H,(Q) is infinite for

all t # 0. Hence every nonzero t € Q can be written as a1 + as + ao for infinitely many
pairs (a1, a3) € 8’ x §'. The case t = 0 follows from Proposition 5.5 because S is closed
under negation.

Next we will show that for any ¢ € Q*, there exists u € Q — {0,+1} such that when

s = —t (131;2 ), the polynomial z;x9 + s has infinitely many solutions with z;, 22 € S'.

Each of these solutions can then be multiplied by % € 8’ to exhibit ¢ as a product of
three elements of S’.
Let n = ({Y). We consider the elliptic curve

E, ¥’ =x(x+1)(z+s*) =2(x+1) <x+t2 (1 iuu2>2> :

If we set u = t? + 2, then the elliptic curve

B 202 4+2) \°
Y =a(z+1) <x+t2 (1—(7527+2)2> >

over Q has a point

22+ 1)2(12 +2) 2(1% 4 2) (18 + 4t° 4 6t + 8t 4 9)
(12 +3)2 ' (124 3)3 ’

1—u2

has infinitely many solutions x1,x2 € &’, so ¢ can be written as a product of three

which has infinite order when ¢ # 0, 1. So for all t € Q — {0, £1}, z125 — ( 2u ) -0

elements of &’ in infinitely many different ways.
We finally must handle ¢ = £1. In this case, we can set u = %. For n = ((1) ioﬁ_(x) we

11
have the elliptic curve
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60 2 60 2
En:y2:x3+<1+(ﬁ>>m2+(ﬁ> x,

which has a non-torsion point (—12,2%) (in fact E,(Q) has rank 2). Thus there are
infinitely many Pythagorean solutions of zixo F % = 0, allowing us to write +1 as a

product a; ag% of three elements of &’ in infinitely many ways. O

Remark 5.6. The substitution s = t?> + 2 was found essentially by trial and error,
guided by inspiration from a MathOverflow answer by Siksek [1] describing how to
find a positive rank subfamily of the family y*> = z(z + 1)(z + (5£)?), and from
Naskrecki [15] who used a similar method to find a positive rank subfamily of the curve

2
y?=az(x—1) (x— (%) )
For the t = 1 case, the existence of a solution to ajasasz = 1 is equivalent to the

existence of a body cuboid (Section 2.1). The existence of a body cuboid with edge
lengths (240,117,44) leads to the choice of u.

By Proposition 5.5, every element of S’ can be written as a sum of two elements of
S’ in infinitely many ways, but we have no comparable result for products. A natural
question then is to determine which rational numbers ¢ can be written as a product of
two elements of S’ in infinitely many ways. This line of inquiry is explored in more depth
in [13].
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