
Engineering bacterial cell morphology for the design of robust cell
factories
Lubbers, M.; Jaspers, N.; Claessen, D.

Citation
Lubbers, M., Jaspers, N., & Claessen, D. (2025). Engineering bacterial cell morphology for
the design of robust cell factories. Biochemistry And Biophysics Reports, 43.
doi:10.1016/j.bbrep.2025.102076
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/4287684
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/4287684


Engineering bacterial cell morphology for the design of robust cell factories

Maarten Lubbers , Nova Jaspers , Dennis Claessen *

Microbial Sciences, Institute of Biology, Leiden University, PO Box 9505, 2300 RA, Leiden, the Netherlands

A R T I C L E  I N F O

Keywords:
Synthetic biology
Morphology engineering
L-forms
Wall-deficient bacteria

A B S T R A C T

Bacteria come in a wide variety of shapes, ranging from spherical or rod-shaped unicellular cells to complex 
multicellular structures. These shapes have evolved to benefit the organism in its natural environment. However, 
industry often takes such organisms from their natural environment to produce useful molecules that favor 
mankind. Their natural morphology is often far from optimal for use in an industrial setting. Filamentous bac
teria, for instance, have a morphology that presents unique challenges for industrial settings. Therefore, various 
engineering approaches have been developed to optimize their morphology. This review explores a spectrum of 
successful engineering strategies, offering insights and providing inspiration for future advancements. It holds 
the potential to lead the way in optimizing morphology in challenging microorganisms and thus improve their 
exploitability in biotechnology.

1. Introduction

Microbes are used extensively to produce high-value biochemical 
products, such as antibiotics, anticancer agents, and enzymes [1–4]. 
Choosing a microbial production host is often dependent on its tracta
bility, as species are favored that are easily culturable and grown on a 
large scale, with well-studied genome sequences and metabolic path
ways, and are feasible for genetic manipulation [5,6]. Well-known, ca
nonical examples include the bacteria Bacillus subtilis [7], Escherichia coli 
[8], and the fungi Aspergillus niger [9], Pichia pastoris [10] and Saccha
romyces cerevisiae [11].

In bacteria, recent strategies for improving industrial production 
have mostly focused on engineering metabolism by, for instance, 
designing synthetic pathways, enabling researchers to plug in and plug 
out genetic circuits and regulatory devices [5,12–14]. At the same time, 
non-canonical species – species which have not been well-established 
yet as production platforms - are being investigated, such as Rose
obacter denitrificans [15], Deinococcus radiodurans [16] and Methyl
obacterium extorquens [17]. Cyanobacteria are also of large interest due 
to improved engineering strategies and their ability to grow on carbon 
dioxide, aided by light [18]. Despite various advancements, such as 
applying codon optimization tools, novel genetic engineering methods, 
and multi-omics approaches [19], integrating non-canonical species for 
industrial applications remains challenging, resulting in only a limited 
number of microbial cell factories being exploited to date [5]. One other 
area that remains largely unexplored is the potential advantage of 

modified and optimized bacterial shapes for improving production 
processes [20], presumably, because many genes involved in cell shape 
determination are essential [21]. Bacteria display a plethora of mor
phologies, such as rods, cocci, or multicellular hyphae. These shapes are 
the result of selective pressure affecting, amongst others, nutrient 
acquisition, motility, and interactions with other organisms [22]. 
However, their natural morphology is often far from optimal for use in 
an industrial setting [23]. In this review, we will primarily delve into 
exploring how engineering morphology is a promising field of research 
for improving cell factories. Moreover, we will present a groundbreaking 
approach aimed at addressing constraints associated with engineering 
morphology through the substitution of “essential” shape-defining 
genes, thereby possibly paving the way to broaden the range of host 
organisms.

2. Morphology regulation in uni- and multicellular bacteria

In bacteria, the cell shape is dictated by the cell wall, which serves as 
a protective barrier surrounding the cells [24,25]. The cell wall archi
tecture can vary between different bacteria. Where monoderm bacteria 
generally have a thick peptidoglycan (PG) layer, diderm bacteria have 
one PG layer placed between the cytoplasmic and the outer membrane 
[26]. PG consists of strands of alternating N-acetylglucosamine and 
N-acetylmuramic acid residues. These chains are intricately cross-linked 
through peptide bridges between neighboring N-acetylmuramic acid 
units. Synthesis of PG is mediated by two distinct polymerase systems 
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[27]. Shape, elongation, division, and sporulation (SEDS) trans
glycosylases synthesize the PG strands [28], whereas class B penicillin 
binding proteins (bPBP) transpeptidases catalyze the cross-linking re
actions [29]. These complexes are intracellularly positioned by cyto
skeletal proteins. In unicellular bacteria, the so-called MreB system is 
involved in cell elongation [30], while the FtsZ system is required for PG 
synthesis during cell division [31]. Mutations in genes related to the 
MreB system typically lead to cells with a change in the cell diameter 
[32,33], while mutations in cell division genes typically yield cells with 
a changed length [34]. One important aspect is that the proteins oper
ating in the elongation or division machinery are oftentimes essential 
and can therefore not be deleted [35,36]. Therefore, CRISPRi ap
proaches have been developed to tune the expression of these essential 
genes [37,38].

Tight cooperation between the elongation and division machineries 
ensures that most unicellular bacteria grow in a largely predictable 
manner. Following a period of elongation, cells divide and separate to 
form two identical daughter cells. This is in stark contrast to multicel
lular bacteria, such as streptomycetes, which are filamentous bacteria 
widely used in industry to produce antibiotics, enzymes, and anticancer 
agents [39–41]. Streptomycetes form long interconnected filaments, 
called hyphae, that do not separate after cell division (Fig. 1A). They 
grow by tip extension, a process that is coordinated by the DivIVA 
protein (Fig. 1B) [42]. DivIVA interacts, amongst others, with the 
cytoskeletal proteins Scy and FilP, to form a dynamic and crucial com
plex at the tip regulating the insertion of new cell wall material [43–45]. 
While the PG-synthesizing enzymes in Streptomyces have not been 

identified yet, DivIVA also interacts with CslA, a cellulose synthase-like 
protein that is involved in the biosynthesis of β-glucan at mycelial tips 
[46–48]. Cell division, on the other hand, is orchestrated by FtsZ, 
leading to the formation of cross-walls within the hyphae (Fig. 1B). The 
filaments occasionally branch, leading to the establishment of new 
growth sites [49]. By combining division, elongation, and branching, an 
entangled network of filaments is established, called a mycelium, com
parable to that formed by filamentous fungi. Some hyphae are degraded 
after programmed cell death and the remaining viable hyphae undergo 
compartmentalization [50,51], which leads to the formation of 
specialized hyphae that protrude into the air and their subsequent 
development into chains of unigenomic spores.

3. Correlation between cell morphologies and downstream 
processing

Multicellular bacteria are widely used in industry to produce a 
diverse range of complex compounds [52]. For example, streptomycetes 
are well-known for the production of various antibiotics, such as 
streptomycin [53], antifungal compounds such as natamycin [54] and 
nystatin [55], and numerous anti-cancer compounds like doxorubicin 
[56] and landomycin [57]. In addition, streptomycetes are used for 
producing industrial-relevant enzymes such as tyrosinases [58], inuli
nase [59], and glucose isomerase [60]. These bacteria have potent 
secretion systems via which products are directly released into the me
dium. This is an important advantage for industrial production because 
it simplifies downstream processing and may help solve toxicity and 

Fig. 1. an overview of morphogenesis in multicellular bacteria. A) Streptomycetes are bacteria that form large multicellular networks of hyphae, called mycelia. 
Such hyphae are compartmentalized by the formation of cross-walls, which is orchestrated by the FtsZ protein. Elongation and branching of hyphae are coordinated 
by DivIVA which resides at growing tips. B) In bioreactors, mycelia can grow and aggregate to form large, dense pellets. During the stationary phase of growth, pellets 
disintegrate and release smaller fragments, which can then grow into new pellets.
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production issues, with higher yield as an attractive perspective [61].
The mycelial mode of growth can negatively impact industrial pro

cessing, as it causes slow growth, high viscosity of the culture broth, and 
morphological heterogeneity in cultures, making them less favorable 
from a fermentation perspective [62–64]. For instance, mycelia can 
aggregate to form dense structures called pellets [65] (Fig. 1A). These 
pellets can exceed 200 μm in size, thereby limiting efficient nutrient and 
oxygen transfer, restricting growth [66,67]. This aggregation is caused 
by extracellular glycans that act as glue-like substances [68]. 
Well-known glycans are poly-β-1,6-N-acetylglucosamine (PNAG) pro
duced by the matAB locus and the cellulose-like glycan produced at 
hyphal tips [65,68,69].

Moreover, the effective production of metabolites often correlates 
with a specific morphology. For instance, pellet formation is necessary 
for nikkomycin production in Streptomyces tendae [70], erythromycin in 
Saccharopolyspora erythraea [66], and tylosin production in Streptomyces 
fradiae [71], all stimulated by oxygen and nutrient shortage, while in 
other cases, pellet formation impairs nystatin production in Streptomyces 
noursei [72]. For enzyme production, the formation of pellets is gener
ally unfavorable, and instead, a preference is given to more dispersed 
and open-growing mycelia. As nutrients are more easily accessible to all 
hyphae, this leads to faster growth and increased enzyme production 
[65,73]. For instance, fragmentation of mycelial clumps resulted in an 
increase in tyrosinase production in Streptomyces lividans [73]. These 
examples correlate specific morphologies with their impact on industrial 
productivity. Furthermore, processes during industrial fermentation, 
such as agitation, aeration, and pH levels, can cause hydromechanical 
stress, and influence oxygen and nutrient transfer [74]. For an in-depth 
analysis of the physiological responses of streptomycetes to these con
ditions, we would like to refer to a review by Olmos et al. [74].

One way to overcome these challenges is to produce specialized 
metabolites or enzymes heterologously using a unicellular host. Ad
vances in synthetic biology have made it possible to clone biosynthetic 
gene clusters directly into preferred production hosts. For example, 
B. subtilis has been used to express 6-deoxyerythronolide B (6dEB) from 
Saccharopolyspora erythraea [75]. This included cloning the deoxyery
thronolide B synthase (DEBS) gene cluster, consisting of three different 
proteins. Additionally, 6dEB production was increased when the pro
duction of surfactin, bacillaene, and plipastatin was inhibited. In other 

research, enniatin from Fusarium oxysporum was produced in B. subtilis 
using an inducible promoter system [76]. When the cultivation condi
tions were optimized, this resulted in secretory production of enniatin B 
[76]. Corynebacterium glutamicum was used for the heterologous pro
duction of the antibiotic roseoflavin from Streptomyces davaonensis [77]. 
This included the expression of three roseoflavin biosynthetic genes, 
namely rosB, rosA and RFK [77].

Although these hosts hold significant promise for generating rela
tively simple molecules, the heterologous production of complex anti
biotics, which are typically synthesized through the concerted action of 
numerous proteins, seems to pose a considerable challenge [78,79]. 
Furthermore, proteins from streptomycetes often have post-translational 
modifications or folding requirements that differ from those in the 
heterologous host, further complicating their expression and production 
[61,80,81]. To conclude, the production of these molecules is currently 
restricted to closely related species. Therefore, we need to have a better 
understanding of how to control their morphology.

4. Advancements in morphology engineering in multicellular 
bacteria

Various physical approaches have been investigated to optimize the 
morphology of multicellular bacteria in industrial settings (Fig. 2A). For 
instance, the addition of charged polymers, such as junlon, prevented 
initial aggregation of mycelia of streptomycetes [82]. Charged polymers 
likely interfere with the electrostatic characteristics of the cell wall, 
thereby inhibiting the initial aggregation process [83]. Microparticles 
have also been applied in streptomycetes. For example, the addition of 
talc powder microparticles decreased the average pellet size of Strepto
myces albus sixfold, while enhancing the production of pamamycin [84]. 
Likewise, the addition of glass particles to S. coelicolor cultures improved 
actinorhodin production by more than 85 % [85]. The presence of glass 
particles facilitated the transformation of pellet morphologies into 
dispersed mycelia, enhancing oxygen transfer and boosting the pro
duction of specialized metabolites [86]. In other research, the addition 
of microparticles to Streptomyces rimosus cultures caused, amongst 
others, the deformation of pellets and an increase in size variation. Be
sides, an increase was seen in specialized metabolite production, such as 
oxytetracycline [87]. The addition of microparticles has also been used 

Fig. 2. Overview of the three central approaches to engineer the morphology of multicellular bacteria. Physical approaches include the use of nanofibers and 
micro- and macroparticles (A). Chemical approaches include changing nutrients and medium osmolality (B). Genetic approaches include deleting and introducing 
genes and controlling gene expression (C).
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in filamentous fungi. In A. niger, the introduction of macroparticles 
hindered the formation of pellets, resulting in the formation of dispersed 
mycelial structures and loose clumps [88]. In Caldariomyces fumago, 
microparticles led to the mycelium dispersion up to the level of single 
hyphae, increasing the production of chloroperoxidase [89].

In addition to beads, organic nanofibers have been used to alter the 
morphology of streptomycetes. In liquid cultures, these fibers could 
function as an extra filamentous scaffold, expanding surface availability 
for mycelial growth [90]. In S. lividans, the addition of nanofibers caused 
an increased production of actinorhodin and other antibiotics [90]. 
Besides, the type of impellers, as well as the stirring speed, can have a 
strong influence on the morphology of multicellular microbes in bio
reactors [91]. Hereby, a higher agitation speed produces smaller pellets, 
which are metabolically different than larger pellets [92,93]. At low 
stirrer speeds, gas is inadequately dispersed, limiting the sufficient 
transfer of oxygen. In some cases, this can increase antibiotic production 
[67]. Furthermore, alternative cultivation systems are also being 
explored further to circumvent aggregation, such as the use of microtiter 
plates [86,94]. Collectively, these examples show how physical forces 
imposed by altering stirring speeds or the addition of nanoparticles can 
alter productivity in filamentous microbes.

Chemical approaches have also been used for morphology engi
neering in streptomyces (Fig. 2B). For instance, changing medium 
composition has been shown as a valuable method for morphology en
gineering. For instance, the addition of galactose, ammonium sulfate, 
and copper caused a significant reduction in pellet size in Streptomyces 
toxytricini. However, this also reduced the formation of biomass [95]. 
Furthermore, the addition of sodium nitrate inhibited growth in 
S. noursei, reducing biomass and increasing oxygen uptake [72]. Lastly, 
extracellular substances like proteins, sugars, and DNA could also act as 
adhesive extracellular polymers, possibly stimulating the formation of 
pellets [96]. In multicellular fungi, chemical approaches have been 
applied as well. For instance, in A. niger, an increase in osmolality led to 
a more homogenous culture with more elongated filaments. Further 
increasing the osmolyte concentration resulted in the complete cessation 
of pellet formation [97].

In addition to physical and chemical methods, genetic approaches 
have been pursued to alter the morphology of streptomycetes 
(Fig. 2C–Table 1). Activating the cell division-stimulating protein SsgA 
increased mycelial fragmentation, thereby reducing fermentation times 
and enhancing productivity [73]. Likewise, deletion of either matA or 
matB led to a phenotype with very small, open mycelia [68,69], coin
ciding with an increased growth rate of these mutants by 60 % compared 
to the wild-type strain [68]. Two-component systems have also been 

investigated as a target for morphology engineering. A single amino acid 
substitution in the Sco5282 kinase, which has a cognate response 
regulator called Sco5283, indirectly resulted in slow-sedimenting pellets 
in S. coelicolor [98]. This change in pellet morphology was more likely to 
be caused by one of the 24 transcriptional regulators differently 
expressed by the two-component system [98]. In addition to the 
methods mentioned above, directed evolution and high-throughput 
mutant screening offer valuable complementary strategies. For 
example, prolonged selection in a chemostat for over 100 generations 
led to the discovery of a non-pelleting phenotype in S. lividans [99]. In 
fact, this phenotype was later discovered to be caused by mutations in 
the matA and matB genes [69].

It is important to highlight that changing mycelial morphologies can 
impact growth or yield if overdone. For instance, a smaller pellet size 
can be beneficial for downstream processing, however, this directly re
sults in a lower biomass [100]. Besides, this could also cause excessive 
fragmentation of mycelia, reducing specialized metabolite production 
[66,70]. Therefore, when applying the above-mentioned morphology 
engineering techniques, it is important to balance the benefits of opti
mized cell shape for downstream processing with the overall impact on 
process performance.

5. Advancements in morphology engineering in unicellular 
bacteria

Unicellular bacteria, such as E. coli and C. glutamicum, are often 
preferred hosts for industrial production. These organisms are indus
trially exploited to produce, amongst others, therapeutic proteins, vac
cines, and amino acids [101–103]. Compared with multicellular 
bacteria, unicellular bacteria are often more predictable to cultivate in 
large-scale industrial settings [62,63]. Besides, unicellular bacteria are 
also often amenable to genetic engineering techniques, enabling the 
modification of their metabolic pathways for enhanced product yields or 
the production of novel compounds [104,105]. Despite these benefits, 
production processes can sometimes be optimized by using cells with an 
increased size. For instance, small cell sizes can be a limiting factor in 
producing intracellular products. The best-known example where 
cellular sizes were increased to improve production is related to the 
production of polyhydroxyalkanoates (PHA) by bacteria, which accu
mulate inside intracellular inclusion bodies [106–108]. These bio
polyesters have a large potential to substitute petroleum-based plastics, 
as they are both biodegradable and biocompatible [109]. Different ap
proaches have been undertaken to increase PHA production in bacteria 
(Table 1). For instance, overexpression of the cell division inhibitor SulA 

Table 1 
Genes utilized in bacterial morphology engineering strategies.

Gene Function Host Uni-/ 
Multicellular

Type of manipulation Target process Effect on phenotype

mreB Cell shape regulation S. elongatus [114] Unicellular Partial deletion; 
overexpression

Downstream 
processing

Spherical cells; spindle-shaped cells

​ ​ S. elongatus [114] Unicellular Partial deletion; 
overexpression

Downstream 
processing

Spherical cells; spindle-shaped cells

sulA Cell division inhibitor E. coli [110] Unicellular Overexpression PHA production Filamentous cells
ftsZ Septum localization H. campaniensis [112] Unicellular Decreasing expression PHB production Cell size expansion; cell shape 

elongation; cell gravity precipitation
​ ​ S. elongatus [114] Unicellular Inhibiting expression; 

overexpression
Downstream 
processing

Filamentous growth; shorter cells

min system Septum localization S. elongatus [113] Unicellular Overexpression Downstream 
processing

Increased cell length

rodA Cell shape and length 
regulation

S. elongatus [114] Unicellular Partial deletion Downstream 
processing

Spherical cells

ssgA Cell division- 
stimulating protein

S. coelicolor [73]; 
S. lividans [73]

Multicellular Activation Mycelial 
fragmentation

increased mycelial fragmentation

matA and 
matB

Synthesis of 
extracellular glycans

S. coelicolor [68]; 
S. lividans [68,69]

Multicellular Deletion Mycelial 
fragmentation

Small and open mycelia

sco5282 Kinase (indirect 
effector)

S. coelicolor [98], S. 
lividans [98]

Multicellular single amino acid 
substitution

Pellet formation Slow-sedimenting pellets
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caused the formation of filamentous E. coli cells and strongly increased 
the accumulation of inclusion bodies [110].

Halomonas campaniensis has been of interest for PHB production as 
well [111]. To enhance the capacity for inclusion body formation, the 
morphology of H. campaniensis was engineered by modulating the 
expression of mreB and ftsZ, as larger cell sizes are more suitable for 
accommodating these structures [112]. This was done via a 
temperature-responsive plasmid expression plasmid. By first growing 
temperature-sensitive mreB or ftsZ mutants at 30 ◦C till a certain cell 
density, expression levels were induced at 37 ◦C causing cell size ex
pansions or cell shape elongations [112]. Furthermore, the changed 
morphologies also caused cell gravity precipitation, helping with cell 
separation and thus downstream processing.

Morphological manipulation has been a focus for unicellular cya
nobacteria as well. Cyanobacteria hold great promise for producing 
fuels, chemicals, and biomass, but challenges remain in their harvesting 
and processing [113]. Increasing cell length is a key strategy, as larger 
cells are easier to collect [113]. Therefore, in Synechococcus elongatus, 
the cell length was extended from several micrometers to 
near-millimeter lengths by expressing different components of the Min 
system, which orchestrates the localization of the septum prior to cell 
division [113]. Interestingly, the elongated cells exhibited an increased 
sedimentation rate and were more susceptible to lysis, possibly 
decreasing harvesting and processing costs [113]. In other research, FtsZ 
defective mutants of S. elongatus grew filamentous, while overexpression 
of FtsZ resulted in shorter cells [114]. When MreB and RodA, a trans
glycosylase involved in cell shape and length regulation, were partially 
deleted, cells transformed from rod-shaped to spherical [114]. 
Conversely, overexpression of MreB elicited spindle-shaped cellular 
morphologies. Experimental evolution and high-throughput screens are 
also relevant strategies for screening morphology-enhanced mutants. 
For instance, changes in cell size and shape were found in a long-term 
evolution experiment with E. coli for 50.000 generations [115]. 
Amongst others, most populations first evolved wider cells but later 
reverted to the length-to-width ratio of the ancestor. To optimize 
high-throughput screening methods, a nanowell platform has been 
developed to improve the resolution and throughput of microtiter plates 
[116]. As a single bacterium is inoculated per well, the genetic changes 
can be tracked easily [116]. Collectively, these findings demonstrate the 
feasibility of morphology engineering regulating key cell shape 
determinants.

Changing bacterial morphologies above a cellular level has also been 
investigated, namely the transition between a planktonic and biofilm 
lifestyle. In Pseudomonas putida, this process is regulated by controlling 
levels of cyclic di-GMP. Most interestingly, an artificial genetic system 
was designed to form biofilms at the user’s will based on the heterolo
gous expression of a diguanylate cyclase or a c-di-GMP phosphodies
terase under the control of a cyclohexanone-responsive expression 
system [117].

Despite the significant potential of morphology engineering, it is 
surprising that bacterial morphologies have only rarely been used for 
engineering purposes. Perhaps one of the primary reasons is that such 
strategies have so far only resulted in step-by-step improvements. In 
addition, many cell shape determinants are essential and thus difficult to 
engineer. Therefore, novel radical approaches are needed to dramati
cally redesign cell morphology, particularly in multicellular bacteria.

6. L-forms as an innovative platform for morphology 
engineering

Changing the morphology of a cell using canonical approaches is 
only possible to a certain extent: when genes required for cell division 
are removed beyond a minimal subset, this results in a combination of 
residual genes that does not allow the cell to survive. This contrasts with 
so-called L-forms, which are bacteria that proliferate in the complete 
absence of a cell division machinery [118–121]. Instead, L-form division 

occurs due to an imbalance in the cell’s surface-to-volume ratio caused 
by increased membrane synthesis, resulting in membrane blebbing and 
vesiculation [115,116]. To convert a walled bacterium into a success
fully proliferating wall-deficient cell, the cell must escape from the 
sacculus, which can be achieved by adding hydrolases that degrade PG 
[122]. This process can also be stimulated by mutations that damage the 
cell wall structure [123]. Cells lacking a cell wall must also manage 
increased oxidative stress, often alleviated by mutations that lower 
metabolic flux through the TCA cycle, thereby reducing the production 
of reactive oxygen species [124]. Although L-forms have been chal
lenging to isolate and cultivate, research on them has been gaining 
attention and showing promising results. L-forms can be obtained in a 
wide range of bacteria [125–128], including streptomycetes (Fig. 3).

L-forms have already been shown to be a promising platform for 
producing biotechnological products, as a wall-less state can address 
issues related to incorrect folding, inclusion body formation, and 
cellular toxicity [129]. For instance, Proteus mirabilis L-forms have been 
utilized to increase the production of activable bovine prochymosin 
[130]. One reason for increased production could be the increased 
surface area for protein secretion in L-forms [131]. Besides, the cell wall 
can strongly affect the folding and stability of secreted proteins, espe
cially when these are produced heterologously [132]. L-forms have also 
been proposed for the production of hydrophobic molecules because of 
their excess membrane, as membrane surface area can be a limiting 
factor for the accumulation of hydrophobic small molecules [131]. One 
other potential application of L-forms in the production of therapeutic 
proteins or peptides, as PG can trigger various innate immune responses, 
current downstream processes are costly and time-consuming [131]. 
L-forms have also been used to produce custom-made, synthetic phages 
[133]. In this case, its main advantage is the absence of the cell wall 
which otherwise would hamper the transfer of viral DNA into the cells. 
While production of metabolites in L-forms is possible, such cells are in 
most circumstances often not robust enough for large-scale industrial 
fermentations and would simply lyse due to high shear. Besides, L-forms 
often show a much lower growth rate. This problem could supposedly be 
solved by first accumulating some biomass of cells, before turning the 
appropriate genes on or off to switch to a wall-less state [131].

Like in other L-form systems, cell division genes could be removed in 
streptomycetes L-forms without noticeable effects on the proliferation of 
such cells [121]. For Kitasatospora viridifaciens, it has already been 
shown that the divIVA gene, as well as a larger part of the dcw cluster, 
can be deleted in L-forms [121], which is in line with other L-form 
systems [119]. As such, L-forms thus provide an unprecedented oppor
tunity to redesign morphology radically (Fig. 3). To overcome the 
morphological constraints associated with filamentous growth, Strepto
myces L-forms (Fig. 3B) could be modified by replacing the original cell 
division apparatus (Fig. 3A) with one sourced from a bacterium dis
playing a distinct, unicellular morphology, such as C. glutamicum 
(Fig. 3C). The rationale behind this choice is based on three reasons. 
First, C. glutamicum is also an actinobacterium with an apical growth 
machinery [134]. This is important as polar growth contributes to other 
crucial cellular processes, such as chromosome segregation [135,136]. 
Secondly, the cell division machinery of C. glutamicum is relatively 
simple in terms of structural composition compared to those of E. coli 
and B. subtilis. For instance, C. glutamicum lacks many regulatory systems 
(e.g. the well-studied Min system) that control the placement of the cell 
division site in unicellular bacteria such as E. coli and B. subtilis [137]. 
Third, we know that streptomycetes can grow with a cell wall even if a 
working, intact cell division machinery is not available: it is one of the 
rare examples where even FtsZ is not essential for survival [138]. 
However, this engineering process is complex and challenging due to 
differences in, amongst others, genetics, regulation, and slow growth. It 
would require a deep understanding of both donor and recipient sys
tems, precise genetic manipulation techniques, and thorough testing to 
ensure the proper function and viability of the engineered cells.
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7. Conclusion

As the potential of morphology engineering is enormous, bacterial 
morphologies could be manipulated further to enhance various meta
bolic engineering efficiencies. L-forms could become a valuable addition 
to current synthetic biology approaches to redesigning cell morphology 
radically. The expression of non-native cell division machineries would 
not only significantly improve our knowledge of the factors controlling 
cell morphology but it could also strongly optimize industrial produc
tion processes in recalcitrant bacteria. Besides these applied potentials, 
converting a multicellular, syncytial organism into a unicellular organ
ism and vice-versa would allow us to tackle research questions that will 
broadly impact research fields beyond that of morphogenesis. For 
instance, ecological and evolutionary questions related to the func
tioning of such synthetic, non-filamentous cells within a colony or in 
association with other organisms are fascinating to address.
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