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of closed orientable surfaces in the Grothendieck ring of varieties to the setting of the
character stacks. To this aim, we define a suitable Grothendieck ring of representable
stacks, over which this Topological Quantum Field Theory is defined. In this way, we
compute the virtual class of the character stack over BG, that is, a motivic decomposition

fg%ﬁi’al quantum field theory of the representation variety with respect to the natural adjoint action.

Character stacks We apply this framework in two cases providing explicit expressions for the virtual classes
Representation theory of the character stacks of closed orientable surfaces of arbitrary genus. First, in the case of
Grothendieck motives the affine linear group of rank 1, the virtual class of the character stack fully remembers

the natural adjoint action, in particular, the virtual class of the character variety can be
straightforwardly derived. Second, we consider the non-connected group G, x Z/2Z, and
we show how our theory allows us to compute motivic information of the character stacks

where the classical naive point-counting method fails.
© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let G be an algebraic group over a field k, and M a smooth manifold with finitely generated fundamental group (e.g. M
is compact). The collection of representations of the fundamental group 771 (M) into G forms an algebraic variety,

Rc (M) =Hom(rr1(M), G),

called the G-representation variety of M. The geometry of this representation variety has been widely studied in the last
years. For instance, when M = S3 — K is the complement of a knot, then R (M) provides precious knot theoretic information
that can be used to generate knot invariants [9,35]. More generally, when M is a 3-fold, then the discrete and faithful
representations of the PGL,(C)-representation variety are precisely the ways of endowing M with a hyperbolic structure, a
fact that has been exploited to prove deep results in hyperbolic geometry [11].

Nonetheless, the representation variety Rg(M) only parametrizes raw representations, so isomorphic representations
appear in R¢ (M) as different points. To remove this redundancy, we must consider the adjoint action of G on R¢ (M), given
by conjugation, whose orbits are precisely the representations up to isomorphism. However, in general, the quotient of an
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algebraic variety under the action of an algebraic group is not an algebraic variety, so the orbit space Rg(M)/G is no longer
a variety. To overcome this difficulty, two different approaches can be followed: through Geometric Invariant Theory (GIT)
or using quotient stacks.

In the former approach, one takes the quotient as the spectrum of the ring of G-invariant functions on Rg(M). If G is
a reductive group, this spectrum defines an algebraic variety acting as a sort of weak quotient, the so-called GIT quotient
[31,34], usually denoted by

Xc(M) =Rc(M) // G,

and known as the character variety or the Betti moduli space. The case in which G = GL-(C) and M = X; is the genus g
closed orientable surface plays a central role in the non-abelian Hodge correspondence: the character variety xg(Xg) turns
out to be isomorphic to the moduli space of flat connections on Xg [37,38] and homeomorphic to the moduli space of
Higgs bundles on X (for a given complex structure) [10]. For these reasons, the algebraic structure of the character variety
XG(Xg) is objective of intense research.

On the other hand, the latter approach does not seek a variety that behaves as a quotient, but rather it enlarges the
category of varieties to the category of stacks [33], in which orbit spaces lie naturally. The solution is then to look at
Rc(M)/G as the moduli problem of parametrizing principal G-bundles P with an equivariant map P — R¢(M) onto our
‘model space’. This gives rise to an algebraic stack, the quotient stack

Xc(M) =[Rc(M)/G],

also known as the character stack, whose geometry can be understood through the ‘algebraic chart’ Rg (M) — X¢(M).

Despite the importance of these character stacks, very little is known about their geometry. To the best of our knowledge,
the only known information is that, for surfaces, their point count over finite fields is so-called Polynomial On Residue
Classes (PORC), namely, there exists a finite family of polynomials counting the IFg-points X¢(M)(IFy). Inspired by the Weil
conjectures, this allows to compute the E-polynomials of the character stacks over the complex numbers [7]. However,
virtually nothing is known about more complicated invariants of X (M). In particular, no explicit calculation has been done
so far, even in the simplest cases, and importantly the adjoint G-action cannot be tracked with the existing methods.

Motivic theory of quotient stacks

The most general motivic invariants that one would like to compute for character stacks are their virtual classes. Roughly
speaking, one can form the so-called Grothendieck ring of stacks, denoted by K(Stcky). This ring is generated by isomor-
phism classes [X] of stacks X up to cut-and-paste relations. The image [X] € K(Stcky) of a stack is usually referred to as the
virtual class or the motive of X. It encodes all the possible motivic invariants of X, in the sense that if y : Stcky — R is any
isomorphism invariant of stacks taking values in a ring R and satisfying x (¥) = x (3)+ x(X\3) and x (X xQ) = x(X)-x )
for all stacks X and 2) and closed substacks 3 C X, then there exists a unique ring homomorphism  : K(Stcky) — R such
that the following diagram commutes

Stck;, L> R

[ A

K(Stcky)

However, even in this framework, we completely lose the information of the G-action on X in the case of a quotient
stack X = [X/G]. In order to keep track of the action of G on X, notice that this action is classified by the natural morphism
X — BG into the classifying stack BG = [x/G]. Indeed, roughly speaking, a morphism X — BG is the same as an algebraic
space X equipped with a G-action, in such a way that X = [X/G] (for a precise statement, see Lemma 3.1). Hence, if we
want to remember the action, we should pass to the relative setting and study X not as an absolute stack, but as a BG-
stack and, thus, the natural virtual class to study is [X — BG] € K(Stck/BG) in the Grothendieck ring of BG-stacks. In some
sense, K(Stck/BG) must be seen as the G-equivariant version of the absolute ring K(Stcky), where now only G-invariant
decompositions are allowed.

Coming back to our representation theoretic setting, in order to understand the motivic theory of character stacks,
in Section 2, we define the Grothendieck ring of representable stacks over the classifying stack BG, denoted K(RStck/BG),
generated by separated algebraic G-spaces and we consider the virtual classes

[X(M)] € K(RStck/BG).

A precise understanding of this virtual class provides a lot of important equivariant information, such as how to decompose
the representation variety Rg(M) into G-equivariant pieces, how to stratify it according to the stabilizers of the action and
how G acts on each of these pieces. From these data, one can try to understand subtle properties such as the locus of
irreducible representations or to envisage the GIT quotient.
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The aim of this work is precisely to provide a general method able to perform these virtual class calculations in an
effective way. To be precise, in this paper we construct a Topological Quantum Field Theory (TQFT) computing such virtual
classes, as proven in Theorem 4.13.

Theorem. Let n > 1 and G an algebraic group. There exists a lax monoidal Topological Quantum Field Theory

Z: Bdp, — K(RStck/BG)-Mod,

computing the virtual classes of G-character stacks of closed orientable n-dimensional manifolds.

Here, Bdp, is the category of n-dimensional pointed orientable bordisms and K(RStck/BG)-Mod denotes the category of
modules over the ring K(RStck/BG). The way in which Z computes virtual classes is the following. Suppose that M is a
closed n-dimensional manifold, which can be seen as a bordism, that is, morphism of Bdp,, M : @ — @. Under the TQFT,
this gives rise to a K(RStck/BG)-linear map Z(M) : K(RStck/BG) — K(RStck/BG), so it is given by multiplication by some
fixed element of K(RStck/BG): such a factor is precisely the desired virtual class [X¢(W)] € K(RStck/BG).

This TQFT generalizes previous constructions known in the literature to the stacky framework. In [19], a TQFT computing
E-polynomials of complex representation varieties was built, in [15] and [16] such TQFT was adapted to work also in the
parabolic setting, in [18] to surfaces with conic singularities, in [41] for non-orientable surfaces and in [21] for G the group
of upper triangular matrices of rank < 4. Notice that no TQFT can be constructed to compute virtual classes of character
varieties, since the GIT quotient identification of orbits prevents them from preserving pullbacks.

The main difficulty we face in this paper is that neither the virtual class of representation varieties nor of character
varieties is a natural output of the quantum method. In fact, in the recent paper [17], the authors of this article showed
that this TQFT-based method naturally extends to compute virtual classes of character stacks in the absolute Grothendieck
ring K(Stcky). However, this extension loses the information of how G acts via the adjoint action on the representation
variety. Thus, for instance, the character variety (the GIT quotient) cannot be studied or understood using this framework. To
resolve this problem, an ad-hoc method needs to be introduced, namely, adding basepoints to bordisms and new “cone-like”
bordisms to the framework. However, since the goal of the paper is precisely to understand the G-equivariant theory on the
representation variety, we decided to use a different framework than [17]. The framework presented in this paper allows
us to perform explicit computations of virtual classes of character stacks as BG-stacks or, in other words, representation
varieties equipped with the G-action. As a drawback, the framework is somehow artificial, since all the 2-categorical data
naturally presented in the character stack are ignored.

Be that as it may, the virtual class of the character stack X¢ (M) in K(RStck/BG), computed through the TQFT developed
in this work, possesses a lot of information that cannot be obtained from the class of the representation variety Rg (M) in
the Grothendieck ring K(Vary) of algebraic varieties. For instance, for any subgroup H C G, there is the K(RStck)-module
morphism

(—": K(RStck/BG) — K(RStcky),

which sends a quotient stack [X/G] to the invariant locus X" X under the subgroup H. In the case of H = G, one recovers
the fixed points of the representation variety under the group action of G, and in the case of H = {1}, the invariant locus of
[X/G] is [X] itself, which allows us to recover the class of the representation variety [R¢(M)] from [Xs(M)]. More generally,
in this way one can recover the classes of the loci having certain stabilizer, and in fact, the virtual class of the character
stacks over BG remembers the natural adjoint action of G on the representation variety providing a motivic decomposition
with respect to this action.

Another piece of information that can be obtained from the class of the character stack is its image under the evaluation
map defined in Section 3,

ev: K(RStck/BG) — K(Vary),

where R(Vark) denotes the localization of the Grothendieck ring of varieties, K(Vary), by inverting the class of the affine
line g = [A,l] and the classes of the form q" — 1. When G is a special group, the evaluation map sends the class of [X/G]

to the class [X]/[G] in R(Vark), so we have a commutative diagram

K(RStck/BG) e K(vary)

<—><N %*1

K(RStcky)

However, when G is not a special group, the above diagram is not a commutative diagram. In fact, in Section 6 we show
the character stacks corresponding to the semi-direct product G, x Z/27Z provide examples of the failure of the diagram
above.
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AGL; (k)-character stacks

Notice that the effective method of computation of virtual classes derived from the TQFT Z: Bdp, — K(RStck/BG)-Mod
works for any algebraic group G and any dimension n. Hence, to examplify our method, we consider in Section 5 the
algebraic group G = AGL;(k) of affine transformations of the affine line over a field k. Explicitly computing the TQFT for
surfaces, we find that:

Theorem. The class of the character stack [X¢(Xg)] € K(RStck/BG) for G = AGL; (k) is given by
2

&1 2672 _1)((q—1)*¢ -1
16+ )@= -1)
q—1 q—1

where q = [A,l] denotes the class of the affine line, with trivial G-action.

[X¢(Zg)] =BGl + (@ — 1)*® — 1)[Ga/G] + [AGL1/G],

As immediate applications, we recover the virtual classes of the representation variety for G = AGL; (k), and by identifying
the GIT quotient as the invariant part of the diagonal subgroup D C AGL;(k), we compute the class of the character variety,
i.e. the GIT quotient [R¢(Zg) / G, as

[Ro(Zg) / C1=[Xc(Z)]” = (g — D,
agreeing with the results of [19] and [21].

Arithmetic of character stacks of non-connected groups

An interesting feature appears when one studies character varieties and stacks from an arithmetic lens. A celebrated
result of Katz [22], presented in an appendix of a paper by Hausel and Rodriguez-Villegas, shows that if the number of
points of the character variety on the finite field Iy of q elements is a polynomial in g, then this polynomial is the E-
polynomial of the complex character variety in the variable ¢ = uv. For this reason, multiple works have focused on counting
these solutions over finite field with arithmetic arguments, such as [22] for G = GL.(C), [29] for G = SL,(C) or [27] for
non-orientable surfaces, among others.

This observation has a counterpart for character stacks of connected linear algebraic groups G. Lang’s theorem implies
that any principal G-bundle over IFy is trivial. Therefore, if G acts on a separated scheme X of finite type over a finite field
IFg, the number of IFy-points of the quotient stack [X/G] is simply the quotient of the number of IF;-points of the schemes
X and G [4],

#X(Fy)
#G(Fy)

In this way, using the arithmetic method of Hausel and Rodriguez-Villegas, the above formula can be used to compute the
E-polynomial of character stacks of connected linear algebraic groups (e.g. [7]). Hence, on the level of E-polynomials, the
character stack does not carry more information than the representation variety.

However, for non-connected linear algebraic groups, the above point-counting formula fails, already for the simple case
of G=7Z/2Z. Namely, in this case there are exactly two non-isomorphic principal G-bundles over [y, the trivial bundle
and the bundle corresponding to the field extension Fq — Fg2, so the number of Fg-points of BG is

#(X/Gl(Fg) =

(1)

1 11
#BG(F) = Y ———=-+-=1,
xelBCEy)] [Autg(x)] 2 2

while the ‘naive’ point-counting yields
#Spec(Fg) (IFg) 1

#G(Fg) 2
This shows that one needs to be careful in using the arithmetic method for quotient stacks of non-connected groups. In
fact, the class [B(Z/2Z)] in the Grothendieck ring of stacks is 1 ([12]), as pointed out by the stacky counting, rather than
% as predicted by the ‘naive’ counting.
In Section 6, we illustrate the above phenomenon explicitly using the linear algebraic group G = Gy, x Z/2Z, where
Z./27Z acts on Gy, by x+— x~!. In particular, after applying the evaluation map, we find that the class of the character stack
is given by

(q—1)262 (22841 1 g3 (q+1)%872 (2281 L g —1
[Xc(Zg)] = (2 )y (2 )

which is different from the quotient [R¢(Zg)1/[G], as [R¢(X)] = (g — 1)2871(228+1 4 q - 3).

€ R(Vark),

4
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2. Grothendieck ring of representable stacks

In this paper, we shall work on categories of relative stacks with separated and representable morphisms that will be
key for our purposes. For further information about stacks, including the definitions in the absolute setting, please refer to
[33] or [39], among others.

Let & be an algebraic (Artin) stack of finite type over a field k. The category of stacks over &, denoted by Stck/S, is the
following 2-category.

e The objects are pairs (X, ), where X is an algebraic stack of finite type over k, and 7 : X — & is a 1-morphism of
stacks. If the 1-morphism 7 is understood from the context, we denote the object simply by X.

e A 1-morphism (f,a): (X,7) — (X', ') consists of a 1-morphism of stacks f: X — X’ and a 2-morphism of stacks
a:m=m'of.

e A 2-morphism u: (f,®) = (g, B) in Stck/& is a natural isomorphism such that 7'(u) o = 8.

6

bd '
S
g

S

f
» 20

S

Throughout the paper, we work with a special subcategory of Stck/G consisting of representable and separated morphisms
of stacks m: X — &.

Definition 2.1. A morphism of stacks X — & is representable if, for any scheme T over &, the fiber product T xg X is an
algebraic space. A morphism of stacks X — & is separated if the diagonal map X — X xg X is a closed immersion.

We shall denote by RStck/& the subcategory of Stck/S whose objects are algebraic stacks of finite type over k, repre-
sentable and separated over S, and morphisms are representable and separated morphisms of algebraic stacks, and we call
RStck/& the category of representable stacks. In the case of G = Speck, the subcategory RStck/Speck is just the category of
separated algebraic spaces of finite type over k. Thus, in general, RStck/S is a significantly smaller category than Stck/&.

In this section, we use the following properties of representable and separated morphisms.

Lemma 2.2. The following properties hold.

(i) Representable (resp. separated) morphisms are closed under composition.

(ii) Representable (resp. separated) morphisms are closed under base-change: if f : X — & is a representable (resp. separated) mor-
phism of algebraic stacks and g: ) — & is any morphism of algebraic stacks, then the induced morphism X xg Y — 2 is
representable (resp. separated).

(iii) Let G be an algebraic group over k, let X and Y be schemes over k with an action of G, and let f: X — Y be an G-equivariant
morphism. Then, the induced morphism [X/G] — [Y /G] of quotient stacks is representable. Moreover, if f is separated, then the
induced map is separated as well.

Proof. The proofs of the first two statements follow easily from the definition. The third statement can be proven using [39,
Tag 04ZP] and that [X/G] x[y,c) Y ~ X, with the morphism [X/G] — [Y/G] induced by f. Using this chart, separatedness
follows from separatedness of f. O

We are ready to define the Grothendieck ring of representable stacks.

5
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Definition 2.3. Let S be an algebraic stack of finite type over a field k. The Grothendieck ring of representable stacks over &,
denoted by K(RStck/®S), is the abelian group generated by the isomorphism classes [X] of objects X of RStck/S, modulo
the scissor relations

[X]=[3]+[X\ 3],

for every closed substack 3 C X with open complement X \ 3. Note that 3 and X\ 3 are considered as stacks over & via X.
Multiplication is given by the fiber product

[X]- (D] =[X x& D]
for any algebraic stacks X and 9). It is straightforward to check that this indeed gives K(RStck/S) a ring structure with unit
[(6,idg)] and zero element [&].

Remark 2.4. Notice that 2-morphisms in RStck/& play no role in the aforementioned construction of the Grothendieck ring:
two objects (X, ) and (X', ') are isomorphic if there exists an invertible 1-morphism f : (X, ) — (X', 7’) of RStck/&.

Remark 2.5. Since open and closed immersions are representable and separated morphisms, the compositions

3-X—>6 and X\3—-X—>6

are indeed representable and separated by Lemma 2.2, as well as the induced morphism from the fiber product

XxgYY— 6.
Remark 2.6. Whenever & = Speck, we shall simply denote RStck/S by RStck; and similarly K(RStck/&) by K(RStcky).

Remark 2.7. In the usual Grothendieck ring of algebraic varieties, the relation [E] = [A" x X] holds for vector bundles E — X
of rank n. However, this is not automatic for stacks. Therefore, relations of the form

[€] = [A] x X]

for vector bundles € — X of rank n are usually added in the definition of the Grothendieck ring of stacks [24,6,12,3]. We
omit this assumption in our definition and we work only with the scissor relations. This is crucial for us since, in this paper,
we will work with K(RStck/BG), the Grothendieck ring of representable stacks over the classifying space BG = [Speck/G],
and we want to remember the group action on the fibers.

Remark 2.8. Any morphism X — & of algebraic stacks induces a K(RStck/S)-module structure on K(RStck/X), where the
module structure is given on the generators by

[2]1- D] =[F x& D,

for representable and separated morphisms ¥ — & and ) — X of algebraic stacks. Observe that the composite map ¥ xg
) — ) — X is representable and separated by Lemma 2.2 as both morphisms T xg 2) — ) and ) — X are representable
and separated.

A representable and separated morphism of algebraic stacks f: X — 2) over & induces a functor

fi: RStck/X — RStck/9)

given by composing with f. Indeed, if g: ¥ — X is representable and separated, then f o g:T — 9) is representable and
separated by Lemma 2.2. It is straightforward that this functor induces a K(Stck/&)-module morphism

K(RStck/X) — K(RStck/9))

which we will denote by f, as well. Similarly, any morphism of algebraic stacks f: X — Q) over G induces a functor

f* :RStck/9) — RStck/X

given by pulling back along f. Indeed, Lemma 2.2 shows that if g: % — 2) is representable and separated, then the map
T xg) xX — X given by the fiber product is also representable and separated. It is easy to see that this functor induces a
K(Stck/S)-module morphism

f*: K(RStck/2)) — K(RStck/X).

The morphism f* is a ring homomorphism, making K(RStck/X) into a K(RStck/Q))-algebra. However, note that f, is not a
ring morphism, since generally it does not send units to units (indeed, the behavior of f, with respect to the ring structure
is given by the pull-push formula).
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3. Representable stacks over BG

Fix an algebraic group G over a field k, and consider its classifying stack BG = [Speck/G]. In this case, the category
RStck/BG is equivalent to the category of separated G-algebraic spaces of finite type over k, as shown in the following
result.

Lemma 3.1. The functor

[—/G]: G-Spc — RStck/BG, X m— [X/G]

is an equivalence of categories, where G-Spc is the category whose objects are separated algebraic spaces of finite type over k equipped
with a G-action, and whose morphisms are G-equivariant morphisms of algebraic spaces.

Proof. We describe the inverse of the functor above. Write x = Speck and consider the quotient map c: x — BG given by
the trivial G-torsor G — . Let X — BG be a representable and separated morphism of algebraic stacks. Then, the functor
c*: RStck/BG — RStck;, sends X to X xpg » which is a separated algebraic space by definition. We denote this algebraic
space by X, and notice that the map X — X induced by the fiber product shows that X is a G-torsor over X.

To prove that ¢* o [—/G] >~ id, consider the following commutative diagram with the obvious maps

X —

l l

[X/G] — BG,

which induces a morphism of G-torsors X — [X/G] x ¢ *. Since any morphism of G-torsors is an isomorphism, we have
X >~ [X/G] xp¢ * as desired.
To prove that [—/G] o c* >~ id, observe that for any scheme U, the objects of [X/G](U) are given by diagrams

where P 5 U is a principal G-bundle and f is a G-equivariant map. Since X is a G-torsor over X, the morphism f descends
to a morphism f: U — X such that fom = o f. Conversely, for any morphism U — X, the pullback U x x X is a principal
bundle equipped with an equivariant map to X. Hence [X/G](U) >~ Hom(U, X) = X(U) naturally for all schemes U and thus
X~[X/G]l. O

A direct consequence of the above proof is the following useful characterization of RStck/BG.
Corollary 3.2. Every object in RStck/BG is isomorphic to a G-quotient stack of a separated algebraic space of finite type over k.

Remark 3.3. Let X =[X/G] and Q) =[Y/G] be quotient stacks over BG = [x/G] with X and Y algebraic spaces of finite type
over k. Then, the fiber product is also a global quotient stack given as

X xpc Y =[(X x¢ Y)/G].
This provides a simple description of the multiplication structure of the ring K(RStck/BG).

Let X =[X/G] — BG be a representable and separated morphism, and let H C G be any algebraic subgroup. We consider
the fixed point stack X" with its natural morphism X" — X. The fixed point stack X" is an algebraic space, since X" — X
is a representable morphism of algebraic stacks [36, Theorem 3.3]. The following lemma, which is the generalization of a
result of Fogarty’s [13], was communicated to us by Matthieu Romagny.

Lemma 3.4. Under the above assumptions, the natural map of algebraic spaces X" — X is a closed immersion.

Proof. Consider the fiber product of the diagonal map A : X — X x X and the action map H x X — X x X (given by
(h, %) > (hx, X))

Y — X

7| |a

HxX — XxX
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Since, the diagonal map X — X x X is a closed immersion, the map Y — H x X is also a closed immersion.

We regard H x X as an algebraic space over X using the second projection. The fixed point locus, X", is the largest
subfunctor of X so that f becomes an isomorphism under the base change X" — X. As a result, it is the Weil restriction of
Y under the map H x X — X. This is representable by a closed subspace of X by a version of Proposition B.3 for algebraic
spaces in [1]. O

This yields a K(RStcky)-module morphism

(=) : K(RStck/BG) — K(RStcky),

sending the class of a representable morphism ¥ — BG to the class of X" in K(RStcky).
Several considerations are in order. Again, denote by c: x — BG the quotient map given by the trivial G-bundle on .

e The map XH — x as an element of Stck;, is induced by the composition X" — X Sx (cf. Lemma 3.1). In particular, it
is a representable and separated morphism.

e We view K(RStck/BG) as a K(RStcky)-module via the map K(RStcky) — K(RStck/BG) induced by c,. In other words, we
equip every space with the trivial G-action.

Example 3.5. Let G = GL; (k) act on itself by conjugation, and & =[G/G] the corresponding quotient stack. Then the points
of G fixed under the action of G is the center Z(G) ={A-1: A € k*}, so
6 =[Z(G)]=q— 1 € K(RStcky),

where g denotes the class of the affine line A}{.

Example 3.6. Let G be a finite group acting on a variety X over a field k of characteristic coprime to the order of the group
G. Then, the orbifold Euler characteristic [2,23] is defined as

1
Xorb(X,G): c 2: X(x(glﬁgz))’
] 81,8266
[g1.82]=1

where X(81:82) denotes the locus fixed by both g; and g;. The orbifold Euler characteristic can be lifted to a K(Stcky)-
module map [20]

f= Y [ Kstek/BG) > K(Steke)

£1,82€G
[£1.82]1=1

making the following diagram commute:

K(RStck/BG) —— K(RStely)

1
Xorb lm X

Z[|G|7] = Z[IGI"1].

Remark 3.7. Ekedahl [12] defines a Grothendieck ring of stacks R(Stckk) as the abelian group generated by stacks of finite
type over k with affine stabilizers module the scissor relations and the additional relation that for rank n vector bundles
¢ — X we impose

[€] =[A" x X].

Ekedahl shows that iZ(Stckk) is isomorphic to R(Vark) which is the localization of the Grothendieck ring of varieties, K(Vary),
by inverting the class of the affine line q = [A,l(] and the classes of the form q" — 1.

In the case of an affine algebraic group G, and a representable morphism of stacks, X — BG, the stack X has affine
stabilizers. Thus, we obtain a natural map

K(RStck/BG) — K(Stcky)
by forgetting the map to BG. Composing this map with the isomorphism R(Stckk) — K(Vark), we obtain a map

ev: K(RStck/BG) — K(Vary) (2)
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which we call the evaluation map.
Alternatively, we can define the evaluation map in another, equivalent way using stratifications. First, the quotient stack
X =[X/G] can be stratified by locally closed substacks of the form [X;/GLy, (k)] where the X; are quasi-projective schemes

[26]. Then, it can be shown that the class ) ;[X;]/[GLy; (k)] € K(Vark) does not depend on the stratification [3].

Remark 3.8. This evaluation map has a simple form if the group G is special. Recall that an algebraic group G is called special
if any G-torsor is Zariski-locally trivial, in other words, if € — X is a G-torsor, then the relation [€] = [G][X] holds in the
Grothendieck-ring of stacks K(Stcky). Applying this to the torsor + — BG, we have the relation [BG] = [G]~!. Similarly, the
map described in (2) sends the class of a global quotient stack [X/G] to [X]/[G] for any special algebraic group G. Special
algebraic groups include GL;(k), SL,(k) and AGL, (k).

Example 3.9. Consider two stacks, X = [G/G] with G = GL,(k) acting on itself by left translation, and Q) = [G/G] with
G = GL, (k) acting on itself by conjugation as in Example 3.5. Since G is special, these stacks have the same classes under
the evaluation map K(RStck/BG) — K(Vark), namely the unit. However, the classes of X and ) are different in K(RStck/BG)
as their images under the map (—)¢: K(RStck/BG) — K(RStck;) are different (0 and q — 1 respectively).

4. Constructing the stacky TQFT

In this section, we follow [14,16,19,21,40] to construct a Topological Quantum Field Theory (TQFT) which computes the
classes of character stacks in the Grothendieck ring of stacks K(RStck/BG).

4.1. The category of bordisms

In this section, we follow closely [30] and [25] in defining the category of bordisms. Throughout the paper, a manifold is
always assumed to be smooth.

Definition 4.1. A bordism between two (n — 1)-dimensional closed manifolds My and My, is an n-dimensional manifold W
(with boundary) with maps

My, 25w < My

where W = i1 (M;) Uiz (Ms). Two such bordisms W, W’ are equivalent if there exists a diffeomorphism F : W = W’ such
that the following diagram

w

MZ/JF(\M
v T

W/

1

commutes.

Given two bordisms W : M1 — M3 and W’ : My — M3, one obtains a new bordism W’ o W : M1 — M3 by gluing W and
W’ along the images of M7 [30]. Note that the gluing of bordisms is well-defined up to diffeomorphism. For this reason,
we only consider equivalence classes of bordisms.

Definition 4.2. The category of n-bordisms, denoted Bd,, is defined as the category whose objects are (n — 1)-dimensional
closed manifolds, and its morphisms M{ — M, are equivalence classes of bordisms from M; to M,. Composition is given
by the above gluing.

The definition of representation varieties and character varieties involve the fundamental group of manifolds. We alter
the definition above by considering points on the manifolds.

Definition 4.3. The category of n-bordisms with basepoints, denoted Bdp,,, is the category consisting of:

e Objects: pairs (M, A) with M being an (n—1)-dimensional closed manifold, and A C M a finite set of points intersecting
each connected component of M.

e Morphisms: a map (M1, A1) — (M>, Ay) is given by a class of pairs (W, A) with W : M; — M> a bordism, and A Cc W
a finite set intersecting each connected component of W such that AN My = A1 and AN M; = A,. Two such pairs

9
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(W, A) and (W’, A’) are equivalent if there is a diffeomorphism F : W — W' such that F(A) = A’ and such that the
diagram

w

Mz/lF(\M
I

W/
commutes.
The composition is again obtained by gluing the bordisms and the marked points.

1 (3)

In order to have identity morphism for the objects (M, A), we allow (M, A) itself to be considered as a bordism (M, A) —
(M, A).

4.2. Stacky TQFT

In this section, we define G-representation varieties and the G-character stacks associated to pairs (X, A) where X is a
compact connected manifold and A C X is a finite set of basepoints. The main result of this section is Theorem 4.13 that
generalizes the construction of [14,16,19] to compute the virtual class of G-character stacks.

Definition 4.4. Let (X, A) be a pair of topological spaces. The fundamental groupoid of X with respect to A, denoted IT(X, A),
is the groupoid category whose objects are elements of A, and an arrow a — b for each homotopy class of paths from a to
b. Composition of morphisms is given by concatenation of paths. In particular, if A = {xg} is a single point, we obtain the
fundamental group 71 (X, xo) as the group of endomorphisms IT(X, {xo})x, of the object xo.

Suppose that A C X is a finite set and, for each connected component of X, let us pick exactly one element of A
contained in it, obtaining a subset S ={ay,...,as} C A. For any other element a of A, we pick a morphism f;:a; — a for
the point a; € A which is in the same connected component as a. It is easy to see that any morphism of groupoids p :
I1(X, A) — G from the fundamental groupoid to the groupoid G associated to the group G (i.e., the groupoid with a single
object whose morphism group is the group G) is uniquely determined by the group homomorphisms p; : 71 (X, a;) - G and
the choices of p(fy) € G. Thus, we have

Homgrpa (TI(X, A), G) ~ Hom( (X, a1), G) x --- x Hom(mr1 (X, as), G) x GMAI=S. (4)

If G is an algebraic group, each of these factors naturally carries the structure of an algebraic variety, and this structure is
independent on the choices.

Definition 4.5. Let X be a compact connected manifold (possibly with boundary), A C X a finite set of basepoints and G an
algebraic group. Then the G-representation variety of the pair (X, A) is defined as the set of functors

Rc(X, A) = Homgpa (T1(X, A), G).

The set above has a structure of a variety, in fact, it can be identified with a closed subvariety of G" for some n. Note that
G acts on Rg(X, A) by conjugation, and the corresponding global quotient stack

Xc(X,A)=[Rc(X, A)/G]

is called the G-character stack.

The conjugation action of G on the representation variety Rg(X, A) acts component-wise on the factors described in (4).
As a result, the character stack X¢ (X, A) has a similar decomposition

Xc(X, A) = [R¢(X, S) x G5 /G1 = X (X, S) xpc [G/G]AI75. (5)

Remark 4.6. There is a different approach to the quotient of the representation variety under the adjoint action of G.
Suppose that G is affine and let S be the ring of regular functions on R¢ (X, A), so that Rg(X, A) =SpecS. The action of G
on R¢ (X, A) induces an action on S. If, in addition, G is a reductive group, then by Nagata’s theorem [32] we have that the
G-invariant elements of S, S, is a finitely generated k-algebra. In this way, we define the GIT quotient of R¢ (X, A) under
G as

RG(X,A) J/ G =SpecSC.

10
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This is an affine algebraic variety called the G-character variety. Notice that this variety contains, in general, less information
than the G-character stack: while the latter keeps all the orbits of the G action, in the former some orbits are collapsed in
the GIT quotient. In Section 5 we will compute the virtual class of the character variety from the one of the character stack
in the case of AGL; (k).

Given an algebraic group G, we can consider the category Span(RStck/BG) of spans of BG-stacks. At the level of objects,
this category has the same objects as RStck/BG, namely, representable stacks over BG. H The morphisms in Span(RStck/BG)
between two BG-stacks X — ) is an equivalence class of triples (3, f, g) where 3 is a BG-stack and f and g are morphisms

xel 32559

The equivalence relation is given as follows: two triples (3, f, g) and (3/, f’, g’) are declared as equivalent if there exists an
isomorphism « : 3 — 3’ such that the following diagram 2-commutes

L0,
x l 9 (6)
T~y
Composition in this category is given by fibered product. Explicitly, if (31, f1,£1) : X = ) and (32, f2, &) : Y — 3 are two
morphisms, then its composition is

31 X9 32

fi 31/& fz\az 22

Notice that such fibered product is well-defined up to equivalence of triples. Finally, Span(RStck/BG) inherits the monoidal
structure from RStck/BG in a natural way: ¥ ® 9 = X xpc 9 on objects and (31, f1, £1) ® (32, f2, 82) = (31 xB¢ 32, f1 X
f2, g1 x g2) on morphisms.

Remark 4.7. The span category Span(RStck/BG) has indeed a natural bicategory structure by taking 1-morphisms as triples
on the nose and as 2-morphisms morphisms of triples as in (6). From this point of view, the (standard) category structure we
have defined here is nothing but the truncation of this bicategory structure. In this vein, most of the constructions described
in this paper can be straightforwardly extended to the bicategory setting. However, we will not follow this approach here
since the usual category structures will be enough for the purposes of this work. For a more detailed account of the TQFTs
in the bicategory setting, we refer the reader to [17].

Using this auxiliary category, let us construct a monoidal functor

F :Bdp,, — Span(RStck/BG),

from the category of bordisms to the category of spans over RStck/BG by sending an object (M, A) to Xc(M, A) and a
bordism (W, A) : (M1, A1) = (M3, Ay) to the span

Xc(M1, A1) < X (W, A) = Xc(M3, Ap),

whose maps are induced from the inclusions (M;, A;j) — (W, A). Notice that the maps Rg(W, A) — R¢(M;j, A;) descend
to the quotient stack since the restriction maps are G-equivariant for the conjugacy action. Moreover, by Lemma 2.2 (iii),
the morphisms Xg(W, A) = [Rg(W, A)/G] — Xc(M;, A;) = [Rg(M;j, A;)/G] are representable. The assignment F will be
referred to as the field theory.

Proposition 4.8. The assignment F : Bdp,, — Span(RStck/BG) is a monoidal functor.

Proof. Suppose that we have two bordisms (W, A) : (M1, A1) — (M3, Az) and (W', A) : (M2, A2) — (M3, A3). Consider
small collarings U = X, x [0,1) c W and U’ = X3 x [0,1) Cc W’ around the boundary X> in W and W', respectively, such
that UN A =A; and U' N A" = A,. Then U Uy, U’ is an open set of W Uy, W’ with the pair (U Ux, U’, A2) homotopically
equivalent to (X3, A), UUyx, W’ is an open set of W Uy, W’ with (U Ux, W/, A’) homotopically equivalent to (W', A’), and
W Uy, U’ is an open set of W Uy, W' with (W Uy, U’, A) homotopically equivalent to (W, A).

11
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Therefore, by the Seifert-van Kampen theorem for fundamental groupoids [8], we get a co-cartesian square

(W Uy, W,AUA)<~——TI(W, A)

!

NW', Ay <—TI(X3, A2)

Since the functor Homgrpg(—,G) is continuous, this implies that Rq(W Uy, W', A U A’) coincides with the pullback
Re(W, A) XRc(x,.4,) Rc(W’, A"). Moreover, the projection maps are G-equivariant morphisms for the adjoint action of G,
so taking the stacky quotient gives rise to a pullback diagram

Xo(W Uy, W, AUA) —=Xc(W, A)

T

Xc(W', A) ——— X5 (X2, A2)
This means that the composition of the two spans induced by the field theory functor
Xc(M1, A1) < Xc(W, A) — X6 (M2, Ay),  Xc(M2, Ap) < Xc(W', A') — X (M3, A3)

is the composed span, as shown by the following diagram whose middle diamond is the cartesian square (7).

Xo(W Uy, W, AUA)

/ \
Xc(W, A) Xc(W', A)
Xc(M1, A1) Xc (M2, A2) Xc(Ms, A3)
The monoidality of the field theory functor F is obvious, since Xc(MUM', AuA") =Xc(M, A) xpc Xc(M', A)). O

Next, we construct the quantization functor
Q : Span(RStck/BG) — K(RStck/BG)-Mod

by assigning to a stack X the K(RStck/BG)-module K(RStck/X), and to a span (3, f,g) = (x <i3 £ 19) the morphism

g1 o f*: K(RStck/X) — K(RStck/2)). Recall again that, by Lemma 2.2, the maps g, and f* send representable morphisms to
representable morphisms.

Furthermore, notice that this homomorphism g; o f* : K(RStck/X) — K(RStck/%)) does not depend on the representative
chosen for the equivalence class of the triple (3, f, g). Indeed, if (3/, f/,g’) is an equivalent triple related through an
isomorphism « : 3 — 3/, since f = f'ox and g=go«, then gio f*=(g')oayoa* o (f')* = (g) o (f')*. Here, we have
used that oy o @* = id since the following diagram is a cartesian square

3—=3

"

3/?3/

To prove that the quantization Q is actually a functor we need the following auxiliary result of cartesian categories.

Lemma 4.9. Let C be a category with pullbacks. For any objects A, X, Y, Z € C equipped with morphisms A — X, X — ZandY — Z,
we have an isomorphism

Axx(XxzY)=EAxzY.
As an immediate consequence, we have the following.
Corollary 4.10. Consider a cartesian square of representable and separable &-stacks
Xx39-5 =%

d L

V—7g >3

12
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Then, in K(RStck/&)-Mod, we have that g* o f, = f, 0 g*.

Proof. Consider an element & — X in RStck/X. Using the lemma above, we have an isomorphism between (]‘! 0 g*)(6)
and & x 3 9). The latter is (g* o fi)(&) implying the statement. O

Remark 4.11. In the context of sheaves over schemes, the property of Corollary 4.10 is usually called the Beck-Chevalley
property or the base change property.

Proposition 4.12. The assignment Q : Span(RStck/BG) — K(RStck/BG)-Mod is a lax monoidal functor.

Proof. Let us check that Q preserves the composition of spans. Consider two spans of BG-stacks Sq : X <£ a & ) and
$2:9 )| AN 3, whose composition is given by the diagram

N

This means that, after applying the functor Q, the resulting map is Q(S3 0 S1) = (t o )1 o (f 0 5)* = t,2,5* f*. But, by
Corollary 4.10, since the middle diamond of (8) is cartesian, we have that g,5* = s*g, and, thus

(8)

Q(S2051) =185* f* =058 f* = Q(S2) 0 Q(51).
For the lax monoidality, notice that the external product defines a morphism
X : K(RStck/X) QK(RStck/BG) K(RStck/9)) — K(RStck/X xpc ) .
Explicitly, it is induced, for 2 € RStck/X and B € RStck/9), by the map

AR B A xpg B.

This external product provides the lax monoidality of the functor Q. O

To finish the construction, we define the symmetric lax monoidal TQFT as the composition of the field theory and the
quantization functor

Z = Qo F : Bdp, — K(RStck/BG)-Mod.

We can regard a closed connected manifold X of dimension n with a chosen base-point * on X as a bordism (X, %) :
@ — @. In this way, F(X, ) is the span

BG = [+/G] <— X (X, %) = Xc(X) — [+/G] = BG.

Hence Z(X,*)(1) = tit*([BG — BG]) = t; ([Xc(X) = Xc(X)]) = [Xc(X) — BG]. Working similarly with any number of
points, we have proven the following result.

Theorem 4.13. Let G be an algebraic group. There exists a symmetric lax monoidal functor (i.e. a lax monoidal TQFT)

Z : Bdp, — K(RStck/BG)-Mod

computing the virtual classes in K(RStck/BG) of G-character stacks over closed manifolds.
4.3. Field theory in dimension 2

In this paper, we are concerned with character stacks of closed oriented surfaces X, of genus g. Choosing a suitable
finite set A C X of order g + 1, we can decompose X as

g
(Zg,A)=@0< N : ) o® (9)

13
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where the bordisms are given by

@ = > "

DV (S, %) > o L:(SY, %) — (S1,%) D: @ — (S1,%).

Let us compute the field theory for the above bordisms. The fundamental groups 1 (})) and 71 ((J}) are trivial,
implying X¢ () = X¢ (((}) = [*/G1 = BG. Since 71(S', ») = Z, we have X¢(S',») = [Hom(Z, G)/G] = [G/G] with the
conjugation action. Therefore, the field theories on (D and @ are given by

F(®)= (BG £ BG— [G/GJ) and F () = <[c/c] <BGY BG) ,

where the map e : BG — [G/G] is induced from the map x — G sending the point to the identity element of G. In particular,
Z ((D) : K(RStck/BG) — K(RStck/[G/G]) is the map that sends an element X — BG € RStck/BG to the element X — BG —
[G/G] € RStck/[G/G] using the map e : BG — [G/G] as above. Similarly, Z ((3}) : K(RStck/[G/G]) — K(RStck/BG) is the

map that sends an element X L [G/G] € RStck/[G/G] to the element X, — BG € RStck/BG where the map X, — BG is the
map that is the map of the left-handside of the Cartesian product

Xe—X

|

BG —<~[G/G].

Now, we turn our attention to the bordism : (S, %) — (S1, ») with two basepoints, let us call them a and b. The
surface of this bordism is homotopic to a torus with two punctures, so its fundamental group (based on a) is the free group

on three generators F3. We pick the generators y, y1, 2 as depicted in the following image, and a path o connecting a and
b.

Using the generators, we identify the representation variety corresponding to as

Rc (J=1)) ~Hom(F3, G) x G ~ G*

o= (W), p(r1), p(y2), p(a))

and thus the corresponding character stack is given by X¢ () =[G*/G], where G acts by simultaneous conjugation
on G*. A generator for 771(S', b) is given by ay[y1, y2]a~", and so the field theory for is found to be

F(=9) = ([G/G] 26461 S [G/G])

induced by the morphisms

G P G4 a G

(11)
g < (g, 81,8, h) — hglg1, g2 .

After discussing the field theories corresponding to simple bordisms, we are ready to express the class of the character
stack Xg(Xg, ) in terms of the TQFT. First of all, using (5), we have that

X6 (Zg, %) x 6[G7 /Gl = X6 (T, A).
Therefore, applying (9) with |A| =g + 1, we have

14
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[X6(Zg, 0] [G/CIE=Z() o Z(F=D)*Z(D) (D, (12)

where the multiplication on the left-hand side is given by the multiplication on the ring K(Stck/BG).

Remark 4.14. Note that the class [G/G] might be a zero-divisor. In this paper, we focus on the affine linear group G =
AGL; (C) that contains the class of the affine line as a factor in their class in K(Vary), which is a zero divisor ([5,28]) in
K(Vary).

We have two choices in computing the class [Xg(Zg, »)]. Either, we consider the localization of K(Stck/BG) with the
class of [G/G], in which the computation

1

(X6(Zg 0] = o7z 2 (@) o Z(E=D)* e 2 (D) D (13)
holds. Or, we consider the evaluation map (2)

K(Stck/BG) — K(Vary)
in which

(B 1 = o 2 (@) o 2 (E=D) o 2 (D) D (14)

holds for any special algebraic group G. The latter approach has a crucial short-coming, it forgets the group action of G
on the representation variety. On the other hand, we will use (14) to compare the virtual class of the character stack in
K(Stck/BG) with the virtual class of the representation variety in K(Vary) in the case of AGL;(C) ([19,21]).

4.4. Simplification of the TQFT
Recall that the morphism Z () is given by qi o p*, where p and q are given by the span

[G/G] +—— [G*/G] —— [G/G]
g +— (8,81, 82.h) — hglg1, g21h L.

The aim of this section is to show that, instead of these maps that involve an awkward conjugation, we can consider instead
the ‘more practical maps’ p, G :[G3/G] — [G/G] as given by the span

p q
[G/G] +—— [G?/G] —— [G/G] (15)
g <— (g, 81,82) — glg1, &1
Let us denote by © the quantization of the span (15), that is ® = §p*. The following results show that ® can be used
instead of Z () to compute the TQFT.

Proposition 4.15. For all g > 0 we have

Z(@D) oz (=D 2 (D) =16/ 2(D) o &* o 2 (D).

Proof. We prove the more general statement that Z (((}) o Z ()g =[G/G1# - Z((}) o 8, by induction on g,

where the case g =0 is trivial. Suppose the statement holds for some g > 0, and consider any element [X/G] i> [G/G] e
RStck/[G/G]. Then, a direct computation shows the following equivalences.

Z(@) o 2 (T=D)*" (X/G) = [6/GIF - 2 (D) 0 6% o 2 (F=T)) (X/G)

B g
=[G/GI¥- | {(x. A, B.h, Ay, B1..... Ag. Bg) € X x G*T%8 | hf(x)[A, BIh ' [JAi. Bil=1 /G:|

L i=1

8
=[G/GI¥- | {(x. A, B.h, A}, B}..... Ay, By) € X x G>*2%8 | hf(x)[A, BI[ [IA]. Bj]h ™" =1 /G:|

L i=1

. -
=[G/GI¥- | { (x. A, B.h, A}, By.... A} By) € X x G128 f(x)[A,B]]_[[A;,B;]:1]/G

L i=1

15
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=[G/GI¥t! - Z () 0 O (1X/GY),

where in the second equality we used the induction hypothesis and the third one is obtained by using the substitutions
A;=h"TA;h and B =h""B;h. Hence the statement also holds for g+1. O

In fact, by computing the map @8 explicitly, we get an even stronger result.
Corollary 4.16. For any g > 0, the class of the character stack is given by
[X6(Zg, M1=Z (D)) 00%0Z (D) (D). (16)
Proof. A similar computation as in the proof of Proposition 4.15 shows the following
Z(@D) o020z (D) (1) =2 () o O4(BG — [G/G]) =

= |:[(A1,B1,A2,Bz,...,Ag,Bg) c G28

g
[ Jrai Bil=1 }/G} =[Xc(Zg,»]. D

i=1
Remark 4.17. This is an improvement with respect to (12), since there are no extra factors [G/G]® to remove.

Hence, in order to compute the virtual class of the character stack, it suffices to do the computations with the practical
map O. For this reason, in the upcoming sections, we will write

Z'(3=0)=6.
to keep the connection with the bordisms, even though Z’ is not a functor, nor a TQFT on Bdp,.
Remark 4.18. There is a slightly more abstract way of understanding the previous computation. Given a span S : X <f— 3 £
X, of G-stacks and a morphism h: X; x ) — X3, let us denote by h xS the span

o h id
X1 <f—77 Ixs & Xs.

With this notion, Proposition 4.15 actually shows that if we consider the map c; : [G/G] xgg [G8/G] — [G/G] given by
(w,hy,...,hg) > hgu-h]wh]_1 ~~-h§1, then for any g > 1 we have

F(E=0)=ce+F (=D

g
where again F’ () is an abuse of notation to denote the span (15). In this setting, capping with the bordism @
removes the effect of cgx and turns it into a simple factor [G/G]®.

Remark 4.19. Note that this technique of removing conjugations only works for one hole at a time. Although tempting, it is
not possible to define a TQFT without such conjugations. If we were to define a field theory F’ with

/ | [G?/G] +— [G*/G] — [G/G]
;(@_ / / /

(81,82) < (g1, 82) —— g182

, [G/G] +— [G2/G] —— [G?/G]
F (@) _ / / /
£182 < (81,82) —— (&1, 82).

then, a direct computation would show that

() or (E) = | 1O/ T I T G0 o =),

8182 +— (g1,82) —— £182

implying that 7’ cannot be a functor.
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This calculation evinces that the path appearing in the fundamental groupoid of (G joining the two components of

the out-boundary is crucial here: it is half of one of the loop generators of the fundamental group of . This point is
related to the fact that the classical Seifert-van Kampen theorem for fundamental groups only works if the intersection of
the open sets considered is path connected. Otherwise said, it is mandatory to use fundamental groupoids with at least one
basepoint at each component.

In relation to the previous remark, the reason why the TQFT can be simplified in the 2-dimensional case is the following.
In the 2-dimensional case, there exists a natural embedding of categories

Thy, — dez

where, Tb, is the so-called category of 2-dimensional tubes without basepoints, which is the wide subcategory of Bdp, with
basepoints with morphisms whose connected components have only connected (maybe empty) in and out boundaries. The
embedding is given by assigning each compact 1-dimensional manifold X to the tuple (X, A), where A is a collection of
basepoints with a single point per connected component. For a tube ¥, we assign the tuple (X, A) where A is a set of
—(x (%) +b9%(d%) — 4)/2 basepoints, with one on each connected component of the boundary ¥ and the remaining in the
interior of X (see also [15]).

Thanks to this embedding, the lax monoidal TQFT Z : Bdp, — K(RStck/BG)-Mod descends to a lax monoidal functor

Z' : Tby — K(RStck/BG)-Mod.

Notice that subcategory Thb, excludes for instance the pair of pants G and thus the obstruction of Remark 4.19 does not
arise in Th;.

The existence of such embedding Th, < Bdp, of basepoint-free tubes is a feature occurring only in dimension 2. In this
direction, the shortcut developed in this section does not generalize to Bdp,, for n > 3. Keeping track of the basepoints in the
bordism is thus compulsory in general and an essential feature of the TQFT provided that we want to compute virtual classes
of character stacks as BG-stacks, or equivalently, understanding the G-equivariant theory of the representation variety. There
actually exists a parallel TQFT without basepoints for character stacks, as developed in [17], but it can only compute their
virtual class as regular stacks and thus the equivariant information is lost.

5. AGL, (k)-character stacks

In this section, we compute the virtual classes of character stacks of surface groups corresponding to the affine algebraic
group

G:AGL1(I<):{<S l;):a;éo},

where k is any field. Notice that the class of AGL; (k) in K(Vary) is q(q — 1) where q = [A}{] is the class of the affine line.
We shall use the following stratification of G:

(S R e

which induces the decomposition

K(RStck/[G/G]) = K(RStck/[1/G]) & K(RStck/[]/G]) & K(RStek/[M/G]). (17)
We denote the unit elements of the rings K(RStck/[I/G]) and K(RStck/[J/G]) respectively by

1,= ([I/G] = [I/G]) e K(RStek/[1/G]),

1, = (1J/G1— 1J/G1) € K(RStek/LJ /G)).

Recall that the natural map [G/G] — BG induces a K(RStck/BG)-module structure on K(RStck/[G/G]) (see Remark 2.8).
As the computations in Propositions 5.3 and 5.4 will show, the K(RStck/BG)-submodule of K(RStck/[G/G]) generated

by {1;,1;} is invariant under Z <> and 7’ () As a result, in order to compute the character stack
XacL, (k) (Zg, *) of surface groups, it is enough to compute Z’ () on the submodule generated by the basis {1;,1;}.

Indeed, Z () (1) is simply 1;, furthermore Z (({}) sends 1; to 1 and 1; to 0.
Let us begin with some algebraic relations in K(RStck/BG). There are two special elements to consider. First, the group
G acts naturally on the affine line by scaling and translation
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a b
<0 1)-x=ax—|—bforxeGa,

and we denote the corresponding the quotient stack by [G,/G]. Also G acts naturally on the punctured affine line by scaling

a b
<0 1)-x:axforxe([}m,

and we denote the corresponding quotient stack by [G,/G].

Lemma 5.1. In K(RStck/BG) we have the following relations:

[Gm /G = (@ — DIGm/C],
[Ga/GY =[Ga/Gl+[Ga/GlIGm/G],
[AGL1 (k)/G] = [Ga/Gl[Gm/G].
Here, [AGL; (k) /G] denotes the transitive action of G on itself by multiplication on the left.

Proof. For the first relation, consider the isomorphism

Gm x Gm = Gm x G, &, y)— (X/y,y).
The scaling action on x and y yields a trivial action on x/y, so the statement follows. For the second relation, consider the
piece-wise isomorphism

Ga X Gg = ({0} x Go) U(Gm X Ga), X, ¥) > (x—Yy, ).

Indeed, cutting G, x G4 in two pieces, the diagonal subvariety {(x,x)} is isomorphic to Gg, and the open complement
{(x,y) : x# y} is mapped to G, x Gg. This isomorphism is equivariant implying the statement. Finally, the third relation

follows from the fact that for (” b

o 1) € G, the coordinate a transforms like Gy, and the coordinate b like G,. O

Lemma 5.2. Under the natural map [G/G] — BG, we have

[I/G] =BG, [J/G]=[Gm/G], [M/G] = (q — 2)[Ga/G].
in K(RStck/BG). In particular, [G/G] =BG + [Gn /Gl + (@ — 2)[Gq4/G] in K(RStck/BG).

Proof. Consider two matrices A = (8 117) and B = <X y)' Then,

0 1
-1_(x b —=x) +ay
ABA _<0 1 )

1 ay

This shows that if B € J, then ABA™! = <O 1

), so A acts by conjugation on ] as scaling on Gp,. Similarly, if x # 1, that

is B € M, then we have an isomorphism

M — (A{\ (0.1)) x Ga, (g {) = (6 y/(1 =),

which is AGL; (k)-equivariant (here (A}< \ {0, 1}) is endowed with the trivial action). The rest of the statement is immedi-
ate. O

Now, we are ready to compute the TQFT. We will compute Z’ () on the submodule generated by the basis
{1;,1;}, starting with the image of 1;.

Proposition 5.3. Under the decomposition (17) we have that
Z(3=7) D=1+ @+ DIGm/Cl+q(q — 2)[Ga/GD 1 +q(q — 2)[Ga/G11; .
€K(Rstek/[1/G) eK(RStek/[ ] /G])

(Here the multiplication is given by the K(RStck/BG)-module structures on K(RStck/[1/G]) and K(RStck/[J/G]) induced by the
natural maps [I/G] — BG and [J/G] — BG.)
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Proof. First we compute Z’ <> (1y) restricted to [I/G]. This gives the class of the substack [{(g1,£2) : [g1,&2] =
1}/G] of [G?/G] in K(RStck/[I/G]). We stratify the substack into three pieces:

e Case g1 =id. In this case g, can be anything, so we obtain the class [G/G]1] = (1 + [G/G] + (@ — 2)[G4/GD1;.
e Case g1 € J. In this case g has to be either id or an element of J. We have a G-equivariant isomorphism

Apx J—{(g1,8):[g1.821=1,81€ ]}, <t((1) {))H((é {)(é tf’))

so we obtain the class q[J/G]1; = q[Gp/G]1;.
e Case g1 € M. In this case, either g, =id or g, € M. We have a G-equivariant isomorphism

y(1—tx)
(AP\{0}) x M — {(g1.82): [g1, 821 = 1,81 € M}, (t<g {))H((S {)(tg 1{)‘ ))

so we obtain the class (g — 1)[M/G]1; = (q — 1)(q — 2)[G4/G]1;.
Summarizing the above discussion, we obtain the class
1+ (@ + DIGm/G]l +q(q — 2)[Ga/GD 11 € K(RStek/[1/G]).

Now, we restrict the element Z’ () (1;) to the stratum [J/G]. In this case, we obtain the class of the substack
[{g1,82:[81, 821 € J}/G] of [G%, G] in K(RStck/[ ] /G]). As before, we stratify the substack into three pieces.

e Case g1 =id. There are no solutions.
e Case g1 € J. In this case g has to be in M. Explicitly, we have a G-equivariant isomorphism

(AIN{0,1}) x Gq x | — {(g1,82) : [g1,821€ J, g1 € J)
given by

(oo 1) (6 7)-(6 7))

Composing this isomorphism with the commutator map

{(g1,82) :[g1,821€ ], 81€ ]}~ ], (g1, 82) = g1, 821,

we obtain the trivial fibration

(AIN{0,1}) x Gg x | — |

given as projection onto the third component. This provides the class (q —2)[G4/G]1; in K(RStck/[]/G]).
e Case g1 € M. We have a G-equivariant isomorphism

(AIN10,1}) x (AI\{0}) x Gq x | — {(g1,82) : [81, 821 € J, g1 € M}
given by

1 b a t1-a)) (x bd-00=v
e (o 1)~ (6 ") 5 )):

Again, under this isomorphism the map onto J becomes the projection onto the third component, so we get the class
(@ —2)(q = DIG4/GI1; in K(RStek/[]/GD).

In total, we obtain the class q(q — 2)[Gq/G]1; in K(RStck/[]/G]). This concludes the proof. O
Next, we compute the image of 1; under Z’ ()

Proposition 5.4. Under the decomposition (17) we have that

2 (F=0) 1)) = @@ - 2IACL (0)/GD 1, + ((a* +a(@ = (@ — D[Ga/CD) 1;.
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Proof. First, we compute Z’ () (1)) restricted to [I/G]. Since g[g1, g21=1 is equivalent to [g1, g82] = g_l, the class

7z () (1) over [I/G] is the same as the class of Z’ () (1)) over [J/G] regarded as a class in the ring

K(RStck/[I/G]) ~ K(RStck/BG). Thus, we obtain the class

q(q — 2)[Gq/GI] /G111 = q(q — 2)[AGL1 (k) /G]1,
in K(RStck/[I/G)).
Now, we compute Z’ () (1) restricted to [J/G]. We stratify the stack

[{(g,81.82):8€ ],8lg1, 8] € J}/G]

as follows.

e Case trgy =trgy = 2. In this case, [g1, g2] = id. Thus, g[g1, g2]1 = g € ], providing the class q21] in K(RStck/[]/G]).
e Case trgi ## 2. We have a G-equivariant isomorphism

(AR\{0}) x (AN {0}) x (A \{0,1}) x Gg x | — {(g.81.82) : g € J. glg1. 821 € J. g1 € M}
given by

1 b 1 ub\ (a td-a) (x -0 000
(rec o )= (o 9) 676 T)

Composing with the map

{(g.81.82):2€ ].8lg1.&1€ ], g1eM} = ]
sending (g, g1, 2) — g[g1, &2], we obtain a trivial fibration
(AIN{0}) x (AN {0}) x (A \{0.1}) x Gg x | — |

providing the class (g — 1)2(q — 2)[G4/G]1; in K(RStek/[]/G]).
e Case trgq =2 and tr g, # 2. We have a G-equivariant isomorphism

(AIN{0}) x (AIN{0,1}) x Ga x | — {(g,81,82): 8 € ], glg1,821€ ], 81 ¢ M, g € M}
given by

1 b 1 ub 1 h=w x t(1—x)
1—
(o 1) (G 7)o )G 7))
As before, we obtain a fibration

(AR\{0}) x (AJ\{0,1}) x Gg x | — ]
providing the class (g — 1)(q — 2)[G4/G]1; in K(RStck/[]/G]).

In total, we obtain that

7 (F=D0) ) = @@ - 2ICa/ClGm/CN 1 + (¢ + @ — D@~ 2)[Ca/G1) 1. D

Putting together Propositions 5.3 and 5.4, we obtain the following description of the TQFT.

Theorem 5.5. The K(RStck/BG)-submodule generated by {11, 1,} is invariant under Z () and 7' () Explicitly, with

respect to the basis {11, 1}, we have
/ _[1+a@—2)[Ga/Gl+ @+ 1) [Gm/GC] q(q —2)[AGL1(k)/G]
z ()‘[ 9(—2)[Ga/G] q2+q(q—1)(q—2>[Ga/G]]'

This description enables us to compute the virtual classes of character stacks [XacL, k) (Zg,*)] € K(RStck/BG) using
equation (16),

[XacLy o (Bg, W1=Z (D) o Z (F=D)* o Z (D) (D
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Specifically, the class [XacL, k) (Zg. %)] is the top left entry of the g-th power of the matrix of Z’ () While taking
powers of the matrix, by Lemma 5.1, new virtual classes appear. Thus, in order to compute the powers of the matrix, we

expand the matrix of Z’ () to a larger matrix using the classes
{11, [Gq/GI1y, [Gm/GI1y, [AGL1 (k) / G114}

in K(RStck/[I/G]), and the classes
{1;,[Gqa/G11, [Gm, G11, [AGL1(k)/G]1}

in K(RStck/[J/G]). In terms of this new generating set, the matrix of Z’ () is expressed as

roo1 0 0 0 0 0 0 0 .
q@@-2) (g—1)7>2 0 0 0 0 0 0
q+1 0 q? 0 0 0 0 0
0  ¢—-q+1 q@-2) ¢*@-1  q@-2 ’@-2  q@-2@-1 ¢¢@-2)@-1
0 0 0 0 q? 0 0 0
q@—-2) q@-2) 0 0 a@-2@—-1 q(¢*—2q+2) 0 0
0 0 0 0 0 0 q? 0
0 9@-2) q@-2) ¢*@-2) 0 a@-2@-1 q@-2)@-1) ¢*(q*—3q+3) |
Diagonalizing Z’ () as PDP~1, we obtain
D =diag(1.4% ¢%.4°.¢°. (4 = 1*.q(@* — 20 +2),¢4*(@ — 1)?)
and
[qg—1 0 0 0 0 0 0 O]
1-qg 0 O 0 0 (q—1)(g*—-3¢*+49-1 0 0
-1 —q 1-q 1—-q —q@—-1) 0 0 o0
p_| 1 1 0 0 0 —(@® -3¢ +49-1) 0 1
0 0 -1 0 0 0 0 o0
0 0 1 0 0 —q(q—1(@q—-2) 1—-q O
0 0 0 1 0 0 0 0
.0 0 0 0 1 q(q—2) 11

Now, the class [XacL, () (Zg,*)] is given by the first four entries of the first column of the matrix PDEP! (that is the
virtual class in K(RStck/[1/G])), which are

1

@-1*-1
g1
q—1
(@52 -1)(@=1D*~1)
.

1

From this result, we obtain the virtual class of the character stack.

Theorem 5.6. The virtual class of the character stack [XagL, ) (2¢)] € K(RStck/BG) equals

2g_ 2g72_1 _12g_1
BG + ((q — 1% — )[Ga/G + %[Gm/c] L )q(fq] "D incmser o

Remark 5.7. The expression above makes sense even without localizing by q — 1. Indeed, in the quotients (q*¢ —1)/(q — 1)
and (¢°672—1) ((q—1)*¢ —1) /(g — 1), for any g > 0 the denominator divides the numerator, so they must be understood
formally as the corresponding quotient.

The theorem above allows us to describe properties of the AGL;(k)-representation varieties and their character vari-
eties. In the following remarks, we list a few of these results. These results are simple and can be obtained from different
approaches as well, however, the results follow naturally from our machinery.
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Remark 5.8. Using Theorem 5.6, we see that under the evaluation map (2)

ev : K(RStck/BG) — K(Vary),

the class of the AGL; (k)-character variety becomes

, 1 ¢#-11 (¢*2-1)(qg-1*-1)
X > = — + -1 2g_1 + -
ev([XacLy (k) (Zg)]) PTCEEY ((@-1 )q—l -1 g q—1
_ U og  ae1( 1y28 _
- (€ +q7" (@-1%-1)).

Furthermore, since the affine group AGL (k) is a special algebraic group (see Remark 4.14), we also have that

[RacL; (k) (g, %)]

ev([XacL (k) (Eg)D) = [AGL; ()]

In this way, we obtain the class of the representation variety in l?(\lar,g

[RacL,to (Zg)] = ¢°8 + q*¢ ! ((q —1)%8 — 1) .

agreeing with the results of [19] and [21].
Notice that we can compute the same class with a different approach. Consider the morphism c : x — BG given by the
trivial torsor. Then, by Lemma 3.1,

C*[XacL (k) (Zg» )] = [RacL, (k) (Zg)] € K(RSteky).
Since
c*[BG1=1, c*[Gq/Gl=q, c*[Gn/Gl=q—1, Cc*[AGL1(k)/G]l=q(q—1)

we have that
[RacLiy(Zg)l=1+¢q ((q —1)% - 1) +q*¥ —-1+q (ng_z — l) ((q —1)%8 - 1) =

=%+ ¢ (q-1% 1),

Remark 5.9. Theorem 5.6 allows us to give a description of the Luna stratification of the AGL;(k)-representation variety
Racr, (k) (Xg) with respect to the conjugation action by AGL1(k):

e The subvariety on which AGL; (k) acts freely is an open, 4g — 1-dimensional subvariety. In particular, the representation
variety Ragr, (k) (Zg) has dimension 4g — 1.

o There is a subvariety on which AGL; (k) acts by scaling, which is a 2g-dimensional subvariety,

e There is a subvariety on which AGL; (k) acts by scaling and translation, which is a (2g + 1)-dimensional subvariety,

e Finally, AGL; (k) acts trivially only on a single point.

Remark 5.10. Using Theorem 5.6, we can also describe the AGL; (k)-character variety, i.e. the GIT-quotient Rac, k) (Zg, %) /
AGLq (k) (see Remark 4.6). In this case, the GIT-quotient can be identified with those points of the representation variety
for which the corresponding matrices commute with the subgroup H of diagonal matrices of AGL; (k). Therefore, the GIT-
quotient can be computed via the functor

(—)H . K(RStck/BG) — K(RStcky).
It is easy to see that

BG1" =1, [Gq/G1" =1, [Gm/GI" =[AGLi(k)/G1" =0,
and thus

[RacLy (o (Zg, %) / AGL1 ()1 =1+ (¢ — 1)*& — 1= (q— 1)*.
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6. (G x Z /2Z)-character stacks

In this section, we analyze the geometry of the character stack of the group G = Gy, x Z/2Z, where the action of Z /27
on Gy, is given by x> x~1, over a field k of characteristic char(k) # 2. This is a non-connected algebraic group, which leads
to some interesting new features of the character stack.

Throughout this section, we will denote the generator of Z/27Z by o. In particular, we have oxo =x"! for all x € Gy,.
Note that G acts on itself by conjugation, and moreover, the normal subgroup G, C G and its coset G0 C G are both
stable under this action. We denote by [G,/G] and [G,0/G] the corresponding quotient stacks, respectively, as well as
their classes in K(RStck/BG).

Regarding the relative setting, we shall denote by T € K(RStck/[G/G]) the class of the inclusion [{1}/G] C [G/G]. Ad-

ditionally, we shall denote by S € K(RStck/[G/G]) the class of the morphism [Gy,/G] — [G/G] induced by the morphism

Gm — G given by x — x2.

Observe that T= Z ((}D) (1). Furthermore, it turns out that the submodule of K(RStck/[G/G]) generated by T and S over
K(RStck/BG) is invariant under the map Z’ () and their image can be explicitly described.

Proposition 6.1. The K(RStck/BG)-submodule (T, S) C K(RStck/[G/G]) is invariant under the TQFT and the image of the generators
is given by

7 (3=17) M =[Gn/G* - T+3[Gno /Gl -S,

Z(3=7) () = (Gm/Gl +[Gmo /G)? -S.

Proof. Let us start with the generator T. The image Z'(T) = §,p*T is the class of the morphism [G2/G] — [G/G] induced by
the commutator map [—, —]: G2 — G. To understand this commutator map, we use the following stratification of the stack
[G?/G],

[G%/G) = (Gm x Gm) U (G X Gpo) U (Gmo X Gp) U (Gro X Gpo) .
In particular, we compute

X yl=1, [xyol=x* [xo,yl=y72, |[xo,yo]l=x*y"2

for all x, y € Gy,. Hence, the first stratum gives a contribution of [G,;,/G]? - T, and the second and third stratum both give a

contribution of [G,,0 /G]-S. After a change of variables X = x>y 2, we see that the fourth stratum also gives a contribution

of [Gmo /G] - S. So, adding up all the contributions, we find

Z'(F=1) M =[Gn/GP -T+3[Gmo /G] -S.

Next, we focus on the generator S. The image Z’(T) = g;p*S is the class of the morphism [G, x G2/G] — [G/G] induced by
the map

Gm xGxG—G, (z,a,b)r> Z?[a,b].
Using the same stratification of [G/G] as above, we compute

Zx,yl=2°, Z’x,yol=x*22, Z’[xo,yl=y *Z?, Z’[xo,yol=xy 7%,

for all x, y, z € Gp,. Hence, the first stratum gives a contribution of [G,/G]? - S. The second and third both give a contribu-
tion of [G;,/G][Gmo /G]-S. The fourth stratum gives a contribution of [G,;0 /G]* - S. Together, we obtain

7 (3=17) 9 =[Gm/GC1* - S+ 2[Cm/GCl[Cm0 /G] - S+ [Gmo /GT* - S,
= ([Gm/Gl +[Gmo /GD)?-S. O

The above proposition shows that, with respect to the basis {T, S}, we have

7/(F=Dn) = [Cn/CF 0 (18)
" [ 3IGmo /Gl (IGm/G1+ [Gmo /G])?

as a K(RStck/BG)-module homomorphism.
In order to apply (13), we must compute powers of the matrix Z’ () and hence we need to describe the product

of the classes [Gr;/G] and [Gpo/G] in K(RStck/BG). For the following lemma, we introduce the class [(Z/27Z)/G] €
K(RStck/BG), where Gy, acts trivially on Z /27, and o acts transitively.
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Lemma 6.2. In K(RStck/BG), the following relations hold:

(i) [Gm/G1? = (@ +2)[Gn/Gl — (q —2)[(Z/2Z)/G] — (g + 1)
(ii) [Gmo /GI? =[Gmo /Gl[Gm/G]

Proof. For (i), the action of G on Gy, can be extended to IP’,}, so that [G;,/G] = [I["k1 /Gl —[(Z/27Z)/G]. After a change of
variables on IP,}, the action of G can be described by (x: y) > (—x:y). Note that this change of variables uses the assump-

tion that char(k) # 2. Hence, [P}/G] =[A}/G] + 1, with x+> —x on A}, and thus [Gn/G] =[A}/G] + 1 — [(Z/2Z)/G).
By simple changes of variables, it is easy to see that [A]/G]?> =q[A}/G] and [A}/GI[(Z/2Z)/G] = q[(Z/2Z)/G] and
[(Z/2Z)/G]? = 2[(Z/2Z)/G]. In total, we find

(Gm/G1? = ([A}/G1+1~[(Z/2Z)/G)* =1+ [AL/Gl(q +2) — 29[(Z/2Z)/G]
=(q+2)[Gm/Gl— (@+1) — (q - 2)[(Z/2Z)/G].

Now, (ii) follows from the G-equivariant isomorphism

Gmo X Gpo — Gpo X G, (xo,yo)—~ (xo,%0). O

Using the above lemma, we can express the matrix of (18) as

[Gm/GJ? 0 )
zZ -ﬂ = .
(@ ) (3[Gmo/G] [Gm/G? +3[Gmo /GG /G]
More importantly, the above lemma allows us to work in the Z[q]-submodule of K(RStck/BG) generated by [(Z/27Z)/G],
[Gm/G] and [Gy0 /G]. In particular, we can choose generators of K(RStck/[G/G]) for which we can express Z’ <>
as a matrix with coefficients in Z[q]. Choosing generators
(T,[(Z/2Z)/G] - T, [Gm/G] - T, [Gmo /G] - S, [Gmo x Z/2Z/G] - S, [Gmo /G]lGm/G] - S},

the elaborated matrix is given by

—q-1 0 —@+1)(@+2) 0 0 0
2-q¢ @-1* —@-2q+1 0 0 0
= .| at2 0 q*>+3q+3 0 0 0
Z(=9=| "5 0 0 —4(q+1) 0 —4@+1)(@+2)
0 3 0 -4(@-2) 4@-1* -4@-2)Q2q+1)
0 0 3 4(q+2) 0 4(¢* +3q+3)

We diagonalize the matrix above. The eigenvalues are given by

1, 4, (@-1D% @+D?% 4@-1% 4@+1)?

with respective eigenvectors

q+1 0 0 2(q+1)? 0 0

-1 0 @-1)? @—2)@+1)7? 0 0

-1 0 0 -2(q+1)? 0 0

—q-1|0" |qg+1|° 0 ’ -2 o 2
1 -1 -1 2—q 1 q—2
1 -1 0 2 0 -2

This allows us to compute the virtual class of the character stack.

Theorem 6.3. For G = G, x Z /27, the class of the character stack X () in K(Stck/BG) is given by

a+1-(@q+1*

[Xc(Zg)]= 7[BG]
—1)28 —(q -2 1)26 -2
+q(q ) (qzq Yg+1) [(Z/22)/G]
1)28 -1
PRl VNP
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L26)(a-@rnE )

; [Gmo /G]
4 -1)(q@-D*2-@-2)@+1D*2-2
N ( )(@@—1) q(q )@+ 1) )[Gma x (Z]27)/G]
g _ 2g-2
+2(4 1) ((Q+1) l)[(GmO x Gm/Gl. O

q

Remark 6.4. As in Section 5, we can compute the class of the representation variety corresponding to G = Gy, x Z/27Z
obtaining

C*[Xc(Z)] = [R(Zg)] = (g — 1)?671(q — 3+ 2781,

We conclude the paper by showing that the naive point counting formula (1) would fail for the group Gy, x Z/2Z, by
computing the image of [X¢(Xg)] under the evaluation map
ev: K(RStck/BG) — K(Vary).

Since this morphism is K(RStcky)-linear, it suffices to compute the images of the generators.

Lemma 6.5. The following identities hold:

(i) ev([BG]) =q/(¢* - 1),
(i) ev(Gm/G]) =1,
(iii) ev([Gmo /G1) = ev([B{£1}1[B(o)]) =1,
(iv) ev((Z/2Z/G]) =ev([BGpn]) =1/(q — 1),
(v) ev([Gmo x Z/2Z/G]) =ev([B{£1}]) =1,
(vi) ev([Gmo x Gm/G]) = ev([B{£1}[Gm/(0)]) =q.

Proof. (i) We can view G as a subgroup of GL; by identifying o with (? é) and x € G, with (gxﬂ ) Then, * x¢ GLy =

GL, / G — BG is a GL,-torsor, so that [BG] = [GL; / G]/[GL,]. Now,

GL, // G = Speckla, b, ¢, d, (ad — bc)~11°
= Speck[ac, bd, ad + bc, (ad — bc)’z]
=~ Speck[x, y, z, (22 - 4xy)_1],

whose class in K(Vary) is q2(q — 1). Hence, ev([BG]) = q%(q — 1)/[GLy] = q/(q% — 1).
(ii) Similarly, note that G,; x¢ GLy — [G, /G] is a GL,-torsor. We compute the quotient by G in step-wise, first by G, and
then by Z/27Z:
Gm x¢ GLy = Speckla. b, c.d, (ad — bo)~", x*']°
= Specklac, ad, bc, bd, (ad — bc) ', x=112/2Z
=Speckla =ac,B=ad,y =bc,8 =bd, (B — y)717xj:]]Z/ZZ
=Speck[a, 8, B+, BY. (B—y) 2 (B—y)x—x"D,x+x1]
= Speck[a, 8, w, z, 5, t]/(z(W? — 4a8) — 1,252 —t? + 4),

whose class is q(q — 1)?(q + 1) = [GL,], and hence ev([G,/G]) =1.

(iii) Similar computation can be done for [Gp,0/G], we leave the details to the reader.

(iv) Since [(Z/2Z)/G] = [BGp] and Gy, is a special group, we obtain that ev([(Z/2Z)/G]) =1/(q@ — 1).

(v) Since [Gno x Z/27./G] = [B{=£1}], we obtain that ev([G,0 x Z/2Z/G]) = 1.

(vi) We have that [G0 x Gp/G] = [B{£1}]-[Gn/(0)]. The action t > t~! on G, can be extended to an action on P! by
adding the points 0 and co. Thus,

ev([Gm/(0)) =ev([P' /(o)) —1=q+1—1=geK(Vary). O
Combining this lemma with Theorem 6.3, we obtain the following corollary.
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Corollary 6.6. For G = Gy, x Z /27 and any g > 0, the class of the character stack X¢(Xg) in R(Vary) is given by

(q—1)%672 (22611 1 g —3) N (q+1)%672 (226t g —1)

ev([Xc(Xg)D) = 5 5

Remark 6.7. For small values of g, we find

q
Xc(Z =
V(X (o) = 5

ev([Xc(X1)]) =q +6,

ev([Xc(E2))) =g’ +30g” +3q + 30,

ev((Xc(%3)]) = q° + 126¢* + 10¢° + 756¢> + 59 + 126,

ev([Xc(Z4)]) =q’ +510q° + 21q° + 7650q* + 35¢° + 7650q° + 7q + 510,

ev([Xc(s)]) = q° + 20464 + 36q7 + 57288q° + 126q° + 143220q* + 84q> + 572884 + 9q + 2046.
It is not hard to see that ev([X¢(Xg)]) is always a polynomial in q for g > 1. In particular, the E-polynomial of the character
stack Xg(X) is an integer polynomial in g =uv.
Remark 6.8. Furthermore, we can compare the class of the representation variety computed in Remark 6.4 and the class of

the character stack in R(Vark) computed in Corollary 6.6, and we observe that

[R¢(Xg)]
[G]

for any g, reflecting the fact that G is not connected. This illustrates that one needs to be careful in using naive point
counting formula (1) in the case of non-connected groups.

ev([Xc(Xg)D) #

Declaration of competing interest
The authors declare that there is no conflict of interest in regards with this paper.
Data availability
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

[1] D. Abramovich, M. Romagny, Moduli of Galois p-covers in mixed characteristics, Algebra Number Theory 6 (4) (2012) 757-780.
[2] M. Atiyah, G. Segal, On equivariant Euler characteristics, J. Geom. Phys. 6 (4) (1989) 671-677.
[3] K. Behrend, A. Dhillon, On the motivic class of the stack of bundles, Adv. Math. 212 (2) (2007) 617-644.
[4] K.A. Behrend, The Lefschetz trace formula for algebraic stacks, Invent. Math. 112 (1) (1993) 127-149.
[5] L. Borisov, Class of the affine line is a zero divisor in the Grothendieck ring, J. Algebraic Geom. 27 (2014) 12.
[6] T. Bridgeland, An introduction to motivic Hall algebras, Adv. Math. 229 (1) (2012) 102-138.
[7] N. Bridger, M. Kamgarpour, Character stacks are PORC count, J. Aust. Math. Soc. 115 (3) (2023) 289-310.
[8] R. Brown, Groupoids and van Kampen’s theorem, Proc. Lond. Math. Soc. 3 (3) (1967) 385-401.
[9] D. Cooper, D.D. Long, Representation theory and the A-polynomial of a knot, Chaos Solitons Fractals 9 (4-5) (1998) 749-763.
[10] K. Corlette, Flat G-bundles with canonical metrics, J. Differ. Geom. 28 (3) (1988) 361-382.
[11] M. Culler, PB. Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. Math. (1983) 109-146.
[12] T. Ekedahl, The Grothendieck group of algebraic stacks, arXiv e-prints, 2009, arXiv-0903.
[13] J. Fogarty, Fixed point schemes, Am. J. Math. 95 (1) (1973) 35-51.
[14] A. Gonzalez-Prieto, Topological Quantum Field Theories for Character Varieties, PhD thesis, Universidad Complutense de Madrid, 2018.
[15] A. Gonzalez-Prieto, Motivic theory of representation varieties via topological quantum field theories, arXiv:1810.09714v2 [math.AG], 2019.
[16] A. Gonzélez-Prieto, Virtual classes of parabolic SL,(C)-character varieties, Adv. Math. 368 (2020) 107-148.
[17] A. Gonzalez-Prieto, M. Hablicsek, J. Vogel, Arithmetic-geometric correspondence of character stacks via topological quantum field theory, arXiv preprint,
arXiv:2309.15331, 2023.
[18] A. Gonzélez-Prieto, M. Logares, On character varieties of singular manifolds, Res. Math. Sci. 10 (3) (2023) 32.
[19] A. Gonzilez-Prieto, M. Logares, V. Mufioz, A lax monoidal topological quantum field theory for representation varieties, Bull. Sci. Math. 161 (2020)
102871.
[20] S.M. Gusein-Zade, I. Luengo, A. Melle-Hernandez, Grothendieck ring of varieties with actions of finite groups, Proc. Edinb. Math. Soc. 62 (4) (2019)
925-948.
[21] M. Hablicsek, J. Vogel, et al., Virtual classes of representation varieties of upper triangular matrices via topological quantum field theories, SIGMA 18
(2022) 095.
[22] T. Hausel, F. Rodriguez-Villegas, Mixed Hodge polynomials of character varieties, Invent. Math. 174 (3) (2008) 555-624.
[23] E. Hirzebruch, T. Hofer, On the Euler number of an orbifold, Math. Ann. 286 (1990) 255-260.
[24] D. Joyce, Motivic invariants of Artin stacks and ‘stack functions’, Q. ]J. Math. 58 (3) (2007) 345-392.

26


http://refhub.elsevier.com/S0393-0440(25)00034-8/bibE89842CFC43B6548AF8CF026BEC132FCs1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib86A9AC0C39F705ED8B6F04A2B182AAC1s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib115CDBB0E327614E00842B8C35ECE349s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib209C4643A8753B1396C1B184879ED80Cs1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bibA5982374BCBD5C514018AF4E4D6C552Ds1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bibB84E285F4D30F4E14F902397AFC1D7B6s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bibED4B59785058747F10F3177AE1F888ACs1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib79131DBAA089A94DDAAB4B560D27768Fs1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib449DA112EFDEB6528B7BECD824FF000Ds1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib55F51715490C5E477371472E90BB0ED8s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib5A002819EF8BAA4E82C03852363B406Fs1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib2C9BE7839B8A958E727A26FCEFD837B1s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib5314553D63CAF61AB9213F5C4D455E09s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib55B38836F82578EE5209A97EDA344054s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib560E687D5C5D68E37658C09C6DC06963s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bibABB138B2C746BB8B5C432556C87637BAs1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bibABB138B2C746BB8B5C432556C87637BAs1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib6D0533ADE3D30DB07DF50C199F489E2Ds1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bibA5E40E2D9AFFED8391A7B24011E9921As1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bibA5E40E2D9AFFED8391A7B24011E9921As1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib0A099E416E0E145A2A46DF33E77E2C81s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib0A099E416E0E145A2A46DF33E77E2C81s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib43EF392A790C396422DFA5CB87569DB7s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib43EF392A790C396422DFA5CB87569DB7s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib0B14A172F2C53AC130B3A47F7C3C8B04s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib17A4638E45CF38332A2124AD1D8BC58Ds1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib651E03787134A86F3F50C0504E28A78As1

A. Gonzdlez-Prieto, M. Hablicsek and J. Vogel Journal of Geometry and Physics 211 (2025) 105450

[25] J. Kock, Frobenius Algebras and 2D Topological Quantum Field Theories, Cambridge University Press, Cambridge, 2003.

[26] A. Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (3) (1999) 495-536.

[27] E. Letellier, F. Rodriguez-Villegas, E-series of character varieties of non-orientable surfaces, 2023, pp. 1-36.

[28] N. Martin, The class of the affine line is a zero divisor in the Grothendieck ring: an improvement, C. R. Math. 354 (9) (2016) 936-939.

[29] M. Mereb, On the E-polynomials of a family of Sl,-character varieties, Math. Ann. 363 (3) (2015) 857-892.

[30] J. Milnor, Lectures on the h-cobordism theorem, 1965.

[31] D. Mumford, ]. Fogarty, F. Kirwan, Geometric Invariant Theory, vol. 34, Springer Science & Business Media, 1994.

[32] M. Nagata, Invariants of group in an affine ring, J. Math. Kyoto Univ. 3 (3) (1963) 369-378.

[33] E. Neumann, Algebraic stacks and moduli of vector bundles, IMPA, 2009.

[34] P. Newstead, Introduction to Moduli Problems and Orbit Spaces, TIFR Lect. Notes, vol. 51, 1978.

[35] J.H. Przytycki, A.S. Sikora, On skein algebras and Sk, (C)-character varieties, arXiv preprint, arXiv:q-alg/9705011, 1997.

[36] M. Romagny, Group actions on stacks and applications, Mich. Math. J. 53 (1) (2005) 209-236.

[37] C.T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math. Inst. Hautes Etudes Sci. 79 (1) (1994)
47-129.

[38] C.T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety II, Publ. Math. Inst. Hautes Etudes Sci. 80 (1) (1995)
5-79.

[39] The Stacks Project Authors, https://stacks.math.columbia.edu, 2018.

[40] ].T. Vogel, Computing virtual classes of representation varieties using TQFTs, Master’s thesis, Leiden University, 2020.

[41] J.T. Vogel, Representation varieties of non-orientable surfaces via topological quantum field theories, arXiv preprint, arXiv:2009.12310, 2020.

27


http://refhub.elsevier.com/S0393-0440(25)00034-8/bib10539A62DD0623E8C21DD9B4E50C00B6s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib7D09675F6FC2B99A4A09085F8FF151B0s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bibE487BB91D2255860455160A8669FBCAFs1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib1B3AE49FF9F33CD037FF1A0686F3EBD3s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib80902AE58FAF02D943069B133CC2ADBBs1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib1F56A67774161876F4873977A02498D5s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib25C1C05D7BA4AA570F5D951DD4900949s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib12B24A78E47CF3B4F110FEE4DA4A1E71s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bibD9ACE779D7A120A8492FBBD6266E4975s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib43C4950C4C35B29B9B14EF8EDC06D14As1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib3ED639D3703B82D8EB52916030697A5As1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib69B1CE3A363CCB98C30B5B50BEC2E156s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib1A035710487E64864B00086A03F12177s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib1A035710487E64864B00086A03F12177s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bibD29DE000173EBE8AAE83B93C0C57A87Bs1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bibD29DE000173EBE8AAE83B93C0C57A87Bs1
https://stacks.math.columbia.edu
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib3A012D101F18ED8B6C85661CC9CD7D58s1
http://refhub.elsevier.com/S0393-0440(25)00034-8/bib2BB828B774C0B26F913FC9EAF614C4A3s1

	Virtual classes of character stacks
	1 Introduction
	Motivic theory of quotient stacks
	AGL1(k)-character stacks
	Arithmetic of character stacks of non-connected groups
	Acknowledgments

	2 Grothendieck ring of representable stacks
	3 Representable stacks over BG
	4 Constructing the stacky TQFT
	4.1 The category of bordisms
	4.2 Stacky TQFT
	4.3 Field theory in dimension 2
	4.4 Simplification of the TQFT

	5 AGL1(k)-character stacks
	6 (Gm⋊Z/2Z)-character stacks
	Declaration of competing interest
	Data availability
	References


