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Accurate compound-specific 14C dating of 
archaeological pottery vessels

Emmanuelle Casanova1, Timothy D. J. Knowles1,2, Alex Bayliss3,4, Julie Dunne1,  
Marek Z. Barański5, Anthony Denaire6, Philippe Lefranc7, Savino di Lernia8,9,  
Mélanie Roffet-Salque1, Jessica Smyth1,10, Alistair Barclay11, Toby Gillard1, Erich Claßen12, 
Bryony Coles13, Michael Ilett14, Christian Jeunesse15, Marta Krueger16, Arkadiusz Marciniak16, 
Steve Minnitt17, Rocco Rotunno8, Pieter van de Velde18, Ivo van Wijk19, Jonathan Cotton20, 
Andy Daykin20 & Richard P. Evershed1,2 ✉

Pottery is one of the most commonly recovered artefacts from archaeological sites. 
Despite more than a century of relative dating based on typology and seriation1, 
accurate dating of pottery using the radiocarbon dating method has proven 
extremely challenging owing to the limited survival of organic temper and 
unreliability of visible residues2–4. Here we report a method to directly date 
archaeological pottery based on accelerator mass spectrometry analysis of 14C in 
absorbed food residues using palmitic (C16:0) and stearic (C18:0) fatty acids purified by 
preparative gas chromatography5–8. We present accurate compound-specific 
radiocarbon determinations of lipids extracted from pottery vessels, which were 
rigorously evaluated by comparison with dendrochronological dates9,10 and inclusion 
in site and regional chronologies that contained previously determined radiocarbon 
dates on other materials11–15. Notably, the compound-specific dates from each of the 
C16:0 and C18:0 fatty acids in pottery vessels provide an internal quality control of the 
results6 and are entirely compatible with dates for other commonly dated materials. 
Accurate radiocarbon dating of pottery vessels can reveal: (1) the period of use of 
pottery; (2) the antiquity of organic residues, including when specific foodstuffs were 
exploited; (3) the chronology of sites in the absence of traditionally datable materials; 
and (4) direct verification of pottery typochronologies. Here we used the method to 
date the exploitation of dairy and carcass products in Neolithic vessels from Britain, 
Anatolia, central and western Europe, and Saharan Africa.

Chronology lies at the heart of archaeology16. Radiocarbon dating by 
accelerator mass spectrometry (AMS) is the most widely used method 
for providing calendrical chronologies for human activities over the 
past 50,000 years17, and is most commonly performed on samples 
of charred plant remains and bone17. Radiocarbon dates can be used 
alongside relative sequences, such as those derived from stratigra-
phy or the typological analysis or seriation of artefact types, to build 
chronological models. Applying Bayes’ theorem enables radiocarbon 
dating to provide calendar age estimates with uncertainties as low as 
a few decades18.

The invention of pottery in the late Pleistocene epoch was probably 
a critical driver for developments in food processing19,20. Pottery ves-
sels can often be placed in robust relative chronological sequences 
using typology and seriation, although obtaining precise and accurate 

radiocarbon dates from pottery is challenging2,3,21. All sources of carbon 
associated with pottery vessels have been considered for dating2–4, 
including organic temper, which occasionally survives firing, and surfi-
cial food crusts, although these are rare and prone to contamination 
owing to their exposed nature22. By contrast, the lipidic components of 
food residues absorbed into—and protected by—the clay matrix during 
cooking occur very commonly8, often in high concentrations (milli-
grams per gram of clay fabric). These offer an untapped resource for 
radiocarbon dating. The most common absorbed residues correspond 
to degraded animal fats characterized by their high abundances of C16:0 
and C18:0 fatty acids7,8. The possibility of using preparative capillary gas 
chromatography (pcGC) to isolate chemically pure fatty acids from 
such residues for compound-specific radiocarbon analysis (CSRA) was 
recognized more than 20 years ago21,23,24. Although initial attempts 
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to date pottery vessels were promising, the accuracy and precision 
demanded by archaeology could not be achieved owing to unidentified 
technical difficulties, leading to highly variable results21,23.

We have brought together the latest technologies for radiocarbon 
measurements, including automated graphitization and MICADAS com-
pact AMS, in conjunction with high-field 700-MHz NMR, to undertake 
systematic investigations of the pcGC protocol5,6. Rigorous assessment 
of contamination in compounds purified by pcGC was undertaken, 
leading to our invention of a solventless pcGC trap and implementa-
tion of cleaning procedures to avoid between-run carryover5,6. These 
advances reduce the exogenous contamination of fatty acids that has 
previously been associated with pcGC to below concentrations that 
would significantly affect measured radiocarbon ages. For archaeologi-
cal animal fats, it has previously been demonstrated that two fatty acids 
isolated from the same matrix generate the same radiocarbon age (that 
is, statistically consistent at the 95% significance level), providing an 
internal quality control for archaeological dating6. In this study, we aim 
to extend this method to archaeological pot lipids. We selected pottery 
vessels that were rich in animal fats from our database of lipid residues 
that we accumulated over the last three decades. Pottery vessels from 
chronologically well-characterized settings and different burial envi-
ronments were analysed and the compatibility of pot lipid dates with 

these existing chronologies was evaluated by statistical comparison 
of posterior density estimates for the key parameters and the use of 
indices of agreement with inclusion in these known frameworks (Fig. 1, 
Extended Data Table 1 and Supplementary Information 1).

We initially focused on Neolithic Carinated Bowl pottery from the Sweet 
Track (Fig. 2a), an elevated wooden trackway discovered in a wetland area 
of the Somerset Levels9,10,25 in the United Kingdom (Supplementary Infor-
mation 2). This site is critical because its construction has been precisely 
dated by dendrochronology to the winter–early spring of 3807–3806 bc 
and the trackway was used and maintained for approximately 10 years10. 
Lipids from pots that were found alongside the trackway, and were prob-
ably contemporaneous to its construction and use, have previously been 
dated, but the measured dates were a century later than the construction 
of the trackway23. Re-analysis of the two vessels (Fig. 2b) using our new 
approach produced uncalibrated radiocarbon ages of 5,110 ± 25 years 
before present (bp; taken as ad 1950) (SW1) and 5,092 ± 26 bp (SW2), which 
are statistically indistinguishable (T′ = 9.0, T′(5%) = 9.5, ν = 4) from the meas-
urements of the tree rings included in the IntCal13 calibration curve for the 
relevant decade26 (Fig. 2c). The calibrated dates of these ages are clearly 
compatible with the tree-ring dates for the construction of the trackway.

Extending our approach to Anatolia, the Neolithic tell of Çatal-
höyük East was a locus for the emergence and development of pottery 
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Fig. 1 | Site location map, partial gas chromatograms and stable isotope 
determination of compound-specific radiocarbon-dated lipid residues 
preserved in Neolithic pottery vessels. a, Map of the location of the 
archaeological sites for which CSRA was used in this study. Scale bar, 1,000 km. 
CUI, Cuiry-lès-Chaudardes; ENS, Ensisheim; GEL, Geleen–Janskamperveld; 
KAR, Karwowo 1; KON, Königshoven 14; LDW, Ludwinowo 7; PPL, Principal 

Place, London; ROS, Rosheim; SW, Sweet Track; TAK, Takarkori; TP, Çatalhöyük 
East. b, Partial gas chromatograms of a selection of potsherds showing C16:0 and 
C18:0 fatty acid abundances. c, Scatter plots of Δ13C ( = δ13C18:0 − δ13C16:0) values 
plotted against δ13C16:0 values (mean of 2 measurements) for all of the sherds 
dated (n = 31), ranges on the left denote the mean ± 1 s.d. of modern reference 
fats, as reported in ref. 28.
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production. A 21-m-deep stratigraphic sequence provides strong archae-
ological prior information for a Bayesian chronological model that covers 
the upper parts of the mound (TP area)11. The sequence of houses, mid-
dens and burial structures has been combined with 50 radiocarbon dates, 
revealing a Neolithic sequence of occupation from the mid-sixty-fourth 
to the mid-sixtieth centuries calibrated (cal.) bc11. Our compound-specific 
radiocarbon ages on adipose lipids27 from four pottery vessels from four 
different contexts (TP.M17, 7,382 ± 31 bp; TP.N10, 7,348 ± 25 bp; TP.O23, 
7,340 ± 27 bp; and TP.P13, 7,364 ± 25 bp) were incorporated into the Bayes-
ian chronological model for this part of the site (Extended Data Figs. 1, 2 
and Supplementary Information 3). The revised model for the Neolithic 
deposits in the TP area shows posterior distributions for the key param-
eters that are almost identical to those from the original model11. Their 
median values vary by an average of 4 years and a maximum of 10 years, 
confirming the compatibility of the radiocarbon ages determined using 
fatty acids with the site stratigraphy. On the basis of sensitivity analyses 
(Supplementary Information 3), this well-constrained model is at least 
as sensitive as measurements on paired materials to detect inaccura-
cies. In this case, the CSRA dates not only provide direct dating for the 
importance of ruminant carcass products (Fig. 1c) to the inhabitants of 
Çatalhöyük at this time (derived from δ13C values of preserved fats), but 
also provide direct dating evidence for the climatic changes associated 
with the global event of 8.2 thousand years ago (derived from compound-
specific deuterium isotope analyses using the same fats)27.

The next analysis tests the accuracy of our dating approach using 
a classic pottery seriation study related to Neolithic ceramics from 
Lower Alsace (France) that spans the second quarter of the fifth mil-
lennium cal. bc12 (Supplementary Information 4). The regional corre-
spondence analysis clearly separates the Hinkelstein, Grossgartach, 
Planig-Friedberg and Rössen Middle Neolithic ceramic groups. We 
focused on vessels from three pits, all of which can be assigned to the 
Grossgartach phase (Fig. 3a, b). The sequence of ceramic phases was 
combined with the existing assemblage of 95 radiocarbon dates, which 
were largely measured on articulated bones, along with four CSRA dates 
on fatty acids (ROS-C-4596, 5,804 ± 25 bp; ROS-C-4600, 5,904 ± 28 bp; 
ROS-C-4644, 5,931 ± 26 bp; and ROS-C-4657, 5,912 ± 28 bp) from the 
Grossgartach sherds in a model using Bayesian statistics. The phase 
boundaries in this revised model are very similar to those produced by 
the original analysis12, as median values differ by an average of 6 years 
and a maximum of 15 years (Fig. 3c). The sensitivity analyses (Supple-
mentary Information 4) demonstrate that the model is particularly 
sensitive to small biases, and probably more sensitive than measure-
ments on paired materials. The CSRA dates are clearly compatible with 
the attribution of these pottery vessels to the Grossgartach ceramic 
phase based on their decorative motifs, and with the other radiocarbon 
dates for this group.

We then explored the introduction of a new food product—that is, 
milk—into Neolithic Europe by undertaking radiocarbon dating of 
animal fat residues, including dairy fats, that were recovered from early 
farming settlements with Linearbandkeramik (LBK) pottery (Fig. 1). 
These communities settled in central Europe from the early fifty-fourth 
century bc13. Animal fats in 12 potsherds from the earliest LBK contexts 
at 6 sites, in Poland, France, Germany and the Netherlands, produced 
radiocarbon dates that were modelled and shown to be compatible 
with the currency of LBK ceramics in northern and western Europe12,13 
(Extended Data Figs. 3, 4 and Supplementary Information 5). Sensitiv-
ity analyses (Extended Data Fig. 4 and Supplementary Information 5) 
demonstrate that this model is more sensitive to older biases as we 
focused on early settlements, illustrating the direct dating of a new food 
commodity. The radiocarbon dates on the earliest dairying residues 
suggest that the practice began in 5385–5225 cal. bc (95% probability; 
start LBK lipid; Extended Data Fig. 3) and probably arrived with the 
earliest farmers in these areas. Thus, the linking of fatty acid struc-
tures with compound-specific carbon isotope values and CSRA dates 
provides a powerful means of directly dating prehistoric foodways 
and their introduction.

We next investigated pottery from the Sahara Desert to provide a test 
of the methodology for a region in which depositional conditions are 
very different from the temperate climes of northern Europe. The Takar-
kori rock shelter, located in the now hyper-arid area of the Acacus Moun-
tains, southwest Libya, demonstrates evidence of animal exploitation 
based on rock art and archaeological finds14 (Extended Data Figs. 5, 6).  
Previous work revealed abundant adipose and dairy fat residues in frag-
ments of the pottery vessels28. Stratigraphy and radiocarbon dating of 
a range of materials (bone collagen, charred plant remains, dung, skin 
and enamel bioapatite) placed deposits associated with Middle Pastoral 
pottery in the sixth–fifth millennia cal. bc14,28,29. The fatty acids from 
5 potsherds, containing dairy fat (Extended Data Fig. 6b), produced 
uncalibrated radiocarbon ages of 5,993 ± 28 bp (TAK443), 5,979 ± 28 bp 
(TAK120), 5,493 ± 28 bp (TAK420), 5,348 ± 24 bp (TAK21) and 5,085 ± 24 bp 
(TAK1572). The CSRA dates were proven to be entirely compatible with 
the currency of Middle Pastoral Neolithic ceramics (Extended Data 
Fig. 6d and Supplementary Information 6), and the direct radiocarbon 
dating of dairy residues confirms that dairying in North Africa began as 
early as the end of the sixth millennium cal. bc14,28,29. Although the model 
sensitivity is weak based on the small number of reference dates that it 
includes (Extended Data Fig. 7 and Supplementary Information 6), it 
demonstrates the possibility of dating potsherds from extremely arid 
burial conditions. In addition, direct dating of pottery lipids represents 
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Fig. 2 | Sweet Track timbers, a pottery vessel and calibrated radiocarbon 
dates. a, Photograph of Sweet Track timbers. b, Photograph of a Carinated 
Bowl (SW2) that was recovered alongside the Sweet Track. Scale bar, 5 cm. c, 
Probability distributions of dates from pots deposited next to the Sweet Track 
(green) and from oak trees (black) included in IntCal1326 that include the date of 
the Sweet Track construction in 3807–3806 bc. Each distribution represents 
the relative probability that an event occurs at a particular time. For each of the 
dates, two distributions have been plotted: one in outline, which is the simple 
radiocarbon calibration, and a solid distribution, based on the model used. The 
square bracket down the left side along with the OxCal keywords define the 
overall model exactly (provided in Supplementary Information 2). A, Acomb and 
An are the individual agreement indices, the combination agreement indices 
and the acceptable threshold to combine n radiocarbon dates, respectively. 
The photographs were provided by S.M. and are reproduced with permission 
from the Somerset Levels Project.



Nature  |  Vol 580  |  23 April 2020  |  509

a major contribution to ascertain the correct cultural attribution of 
materials found in loose sediments (organic sands), which are typi-
cal of desert environments and frequently found in highly disturbed 
sequences14.

Finally, archaeological excavations of several pits by the Museum of 
London Archaeology in advance of building works at Principal Place, 
London (PPL11) revealed one of the largest assemblages of Neolithic 
pottery recovered so far from the City of London or its immediate envi-
rons. Notably, the only finds other than pottery recovered from this 
deposit (lithics, bones and charred plant remains) were compromised 
by later disturbance and truncation. The assemblage comprised Neo-
lithic plain and decorated bowls, consisting of thin-walled medium-
sized open/neutral bowls, together with several smaller open bowls/
cups ( J.C. et al., manuscript in preparation). Similar material has been 
found elsewhere in the Thames Valley and beyond. Lipid-residue analy-
ses revealed high concentrations of degraded animal fats in several 
sherds, which were shown by compound-specific δ13C values to derive 
from dairy and adipose fats (Fig. 1c). Radiocarbon measurements 
of fatty acids from four plain sherds yielded uncalibrated ages of 
4,911 ± 27 bp (PPL012), 4,742 ± 22 bp (PPL015), 4,652 ± 26 bp (PPL020) 
and 4,733 ± 22 bp (PPL021). A statistical model confirms that the pottery 
dates fit well within the currency of Plain Bowls in southern Britain15 
(Extended Data Fig. 8 and Supplementary Information 7). The sensitiv-
ity analyses (Extended Data Fig. 9 and Supplementary Information 7) 

are weaker in this case, but demonstrates the value of dating absorbed 
lipid residues in situations in which no other datable material exists. 
Our ability to undertake accurate radiocarbon dating of compound-
specific fatty acids from pottery was invaluable in affording a temporal 
insight into some of the earliest traces of human activity in what is 
now the City of London.

In summary, the radiocarbon determinations of lipid residues from 
Neolithic pottery vessels presented above, modelled against site chro-
nologies, establish the CSRA of fatty acids as a robust tool for archaeologi-
cal dating. Importantly, our method and findings bring pottery vessels 
within the range of other archaeological materials that are routinely 
dated by radiocarbon. The importance of this advance to the archaeo-
logical community cannot be overstated. Pottery typology is the most 
widely used dating technique in the discipline, and thus the opportunity 
to anchor different kinds of pottery securely to the calendrical timescale 
will be of utmost practical importance. Notably, pottery often survives in 
circumstances in which other organic materials often do not and, there-
fore, archaeological questions relating to chronology that are currently 
intractable will come within the scope of our technologies.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
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a, Drawings of decorated pottery vessels from the Grossgartach group from 
pits 122 (1, 2), 50 (4, 5) and 63 (3, 6, 7) from which the undecorated potsherds 
dated in the model were recovered. Scale bar, 5 cm. b, Revised correspondence 

analysis on the cultural assemblages (axis 1) and horizontal decorative motifs 
(axis 2), including features that contained the dated sherds from the Alsatian 
Neolithic groups. c, Revised statistical model of the Middle Neolithic with 
radiocarbon dates on pot lipids included in grey. The data are shown as 
described in Fig. 2c. Amodel is the model agreement index.
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Methods

Lipid extraction and isolation
Potsherds were selected on the basis of the presence of terrestrial 
animal fats (dairy and ruminant carcass fats) in the lipid residue to 
avoid any possible reservoir effect caused by the processing of aquatic 
products in pots. A piece of 1–10 g of the potsherd was sampled, accord-
ing to the lipid concentration. The sherds were extracted in a glass 
culture tube using H2SO4/MeOH (4% v/v, 3× 8 ml, 70 °C, 1 h). The super-
natants were centrifuged (2,500 rpm, 10 min) and combined into new 
culture tubes containing double-distilled water (5 ml). The lipids were 
extracted with n-hexane (4× 5 ml), transferred into 3.5-ml vials and 
blown to dryness at room temperature under a gentle nitrogen stream. 
Subsequently, around 180 μl of n-hexane was added to obtain a con-
centration of fatty acid methyl esters (FAMEs) at 5 μg of C μl−1 before 
transfer to an autosampler vial for isolation by pcGC.

The pcGC consisted of a Hewlett Packard 5890 series II gas chro-
matograph coupled to a Gerstel Preparative Fraction Collector by a 
heated transfer line. The pcGC was equipped with a column with a 100% 
poly(dimethylsiloxane) stationary phase (Rxi-1ms, 30 m × 0.53 mm 
inner diameter, 1.5 μm film thickness, Restek). Helium was used as 
the carrier gas at a constant pressure of 10 psi. The GC temperature 
programme started with an isothermal hold at 50 °C for 2 min, the tem-
perature was increased to 200 °C at 40 °C min−1, to 270 °C at 10 °C min−1 
and finally increased to 300 °C at 20 °C min−1 and held for 8.75 min. 
The C16:0 and C18:0 FAMEs were injected (1 μl per run), separated and 
trapped 40 times per trapping sequence. Of the GC column effluent, 1% 
flows to the flame ionization detector, while the remaining 99% passes 
through a transfer line into the fraction collector, both of which were 
heated to 300 °C. Compounds were isolated based on their retention 
times6. The stationary phase degradation of the pcGC column and other 
sources of exogenous carbonaceous contamination were monitored 
on a Brucker Avance III HD 700 MHz NMR instrument following a previ-
ously published procedure5,6.

Radiocarbon determinations and statistical analysis
The pcGC isolated compounds were transferred into Al capsules, after 
which they were combusted and graphitized in a Vario Microcube Ele-
mental Analyser linked to an Automated Graphitisation System (AGE 3, 
IonPlus). All of the radiocarbon measurements were performed by the 
Bristol Accelerator Mass Spectrometer (BRAMS) facility at the Univer-
sity of Bristol. Data reduction was performed using the software BATS30 
(v.4.07). Radiocarbon dates obtained for FAMEs were corrected for the 
presence of added methyl carbon using a mass balance approach5,6,21 
and reported as the conventional radiocarbon ages31 (Supplementary 
Information 1).

Two contemporaneous compounds (C16:0 and C18:0 fatty acids) were 
dated and every pair of statistically indistinguishable measurements 
(at the 95% significance level)32 was combined as a weighted average 
before Bayesian chronological modelling using OxCal v.4.2 and v.4.318,33 
and the currently internationally agreed radiocarbon calibration curve 
for the Northern Hemisphere, IntCal1326. The compatibility of the 
radiocarbon dates on absorbed fatty residues with existing sites and 
regional chronologies was assessed by including the lipid radiocar-
bon dates into existing statistical frameworks in a position defined by 
archaeological information (for example, stratigraphy or seriation). 
Their compatibility with the existing chronologies were achieved by: (1) 
comparison of posterior density estimates for key modelled parameters 
with equivalent date estimates or known age by dendrochronology; 
(2) using the individual and model agreement indices18,33 in models 
containing fatty acid dates; and (3) comparing posterior density esti-
mates for key parameters from models that include the fatty acid dates 
to a model that does not include the fatty acid dates (Supplementary 

Information 1). The sensitivity of existing chronological models to 
the addition of the new radiocarbon measurements was evaluated as 
above, after deliberately biasing the radiocarbon dates on pottery ves-
sels to varying degrees while assessing the effect on posterior density 
estimates for the key parameters and indices of agreements (Supple-
mentary Information 1–7).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All data generated during this study are included in the Article, Extended 
Data Figs. 1–9, Extended Data Table 1 and Supplementary Information.

Code availability
The codes used in OxCal for statistical modelling are provided in 
the Supplementary Information.
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Extended Data Fig. 1 | Schematic showing the stratigraphic information of the Neolithic occupation of the TP area at Çatalhöyük (Turkey). This information 
was included in the chronological model defined in Extended Data Fig. 2. Contexts containing potsherds dated in this study are highlighted in green.



Extended Data Fig. 2 | Probability distributions of dates from Neolithic 
deposits in the TP area at Çatalhöyük, Turkey. Data include the results on 
absorbed fatty acids in pottery sherds listed in Extended Data Table 1. Each 
distribution represents the relative probability that an event occurs at a 
particular time. For each date, two distributions are plotted: one in outline, 
which is the result of a simple radiocarbon calibration, and a solid one, based on 
the chronological model used. The distributions in green correspond to the 
potsherds, distributions in black show the pre-existing chronology. 

Distributions other than those relating to particular samples correspond to 
aspects of the model. For example, the distribution ‘end East Mound 
occupation’ is the estimated date at which the Neolithic occupation of the East 
Mound ended at Çatalhöyük. Measurements followed by a question mark and 
shown in outline have been excluded from the model for reasons described in 
table 1 of a previous study11 and are simple calibrated dates34. The large square 
brackets down the left side, along with the OxCal keywords, define the overall 
model exactly.
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Extended Data Fig. 3 | Probability distributions of radiocarbon dates from absorbed fatty acids in LBK ceramics. Data on absorbed fatty acids are listed in 
Extended Data Table 1. Black, dairy; blue, ruminant adipose; red, non-ruminant adipose. Data are shown as described for Extended Data Fig. 2.



Extended Data Fig. 4 | Sensitivity analyses of radiocarbon dates on LBK 
ceramics. Key parameters for the start of the use of LBK ceramics (blue 
distribution)—derived from the models defined in Extended Data Fig. 3, figure 
8 of a previous study12, and figures 18, 19 (model 1), 20, 21 (model 2) and 22, 23 
(model 3) of a previous publication13—were compared with the start of LBK 

lipids presented in Extended Data Fig. 3 (red distributions), and subsequently 
deliberately biased by 1σ, 2σ, 3σ, 4σ and 8σ to younger (orange distributions) 
and older (pink distributions) values. Some distributions may have been 
truncated.
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Extended Data Fig. 5 | The Tadrart Acacus Mountains in southwest Libya. a, b, The Wadi Takarkori area (dashed rectangle). c, Schematic plan of the excavated 
areas. All sampled sherds come from the main sector.



Extended Data Fig. 6 | Site stratigraphy, photographs of potsherds and 
radiocarbon dates of Middle Pastoral pottery vessels from Takarkori 
(Libya) modelled using Bayesian statistics. a, Stratigraphic context of 
sampled potsherds from Takarkori east–west profile of the southern wall of the 
Takarkori north–south (Extended Data Fig. 5). (a) aeolian sand; (b) sand rich in 
organic matter; (c) lenses of undecomposed plant remains; (d) ash; (e) charcoal; 
(f) slurry deposit; (g) eroded sand from the wall; (h) bedrock. b, Photographs of 

the five potsherds analysed showing typical Middle Pastoral decorative 
patterns. c, Example of temporally and spatially wide deposit of organic sands 
(detail of layer 25, Takarkori main sector). d, Statistical model of the Middle 
Pastoral period showing the comparison of pot lipid dates (in green) with 
previous radiocarbon measurements. Data are shown as described for 
Extended Data Fig. 2.
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Extended Data Fig. 7 | Sensitivity analyses of radiocarbon dates on vessels 
from Takarkori rock shelter, Libya. Probability distributions for the 
beginning and end Middle Pastoral period ceramics from Takarkori rock 
shelter, Libya (no pot lipid dates) compared with those of the model shown in 

the Extended Data Fig. 6d and models including fatty acid dates that were 
deliberately biased by 1σ, 2σ, 4σ, 8σ, 20σ and 40σ. Data are shown as described 
for Extended Data Fig. 4.



Extended Data Fig. 8 | Probability distributions of dates associated with the use of early Neolithic Plain Bowl pottery in southern Britain. Prior 
distributions have been taken from the models described in the text and in the Supplementary Information. Data are shown as described for Extended Data Fig. 2.



Article

Extended Data Fig. 9 | Sensitivity analyses of radiocarbon dates on vessels 
from Principal Place, London. Probability distributions of the start and end of 
early Neolithic Plain Bowl pottery in southern Britain compared with those of 

the model shown in Extended Data Fig. 8 and models including fatty acid dates 
that were deliberately biased by 2σ, 4σ, 8σ and 16σ. Data are shown as described 
for Extended Data Fig. 4.



Extended Data Table 1 | Summary of radiocarbon dates of lipids preserved in pottery vessels

Vessel descriptions, lipid concentrations and conventional radiocarbon ages (as defined previously31 and calculated according to previously published methods30) of C16:0 and C18:0 fatty acids 
(which passed the internal quality control) extracted from pottery vessels.
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