

Universiteit
Leiden
The Netherlands

Doctor, why does my hand hurt? The nature, course and treatment of pain in hand osteoarthritis

Meulen, C. van der

Citation

Meulen, C. van der. (2026, January 23). *Doctor, why does my hand hurt?: The nature, course and treatment of pain in hand osteoarthritis*. Retrieved from <https://hdl.handle.net/1887/4287424>

Version: Publisher's Version

[Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden](#)

License: <https://hdl.handle.net/1887/4287424>

Note: To cite this publication please use the final published version (if applicable).

CHAPTER 1

GENERAL INTRODUCTION

C. van der Meulen

GENERAL INTRODUCTION

Hand osteoarthritis

Societal burden

Osteoarthritis is “a disorder involving movable joints characterized by cell stress and extracellular matrix degradation initiated by micro- and macro-injury that activates maladaptive repair responses including pro-inflammatory pathways of innate immunity”, according to the Osteoarthritis Research Society International. (1) This complex disorder can affect any synovial joint. Of the various types of OA, hand OA is one of the most prevalent. In the population-based Rotterdam study, 67% of women and 55% of men aged 55 and older had radiographic signs of hand OA in at least one joint. (2) Radiographic signs of hand OA are not invariably accompanied by hand OA symptoms: symptomatic hand OA occurs less frequently. However, in women over the age of 70 the prevalence still has been estimated at 26%. (3) Due to, amongst others, the ageing population the prevalence of hand OA is expected to increase even further, up to an increase of 48% by 2050. (4) In the Netherlands, loss of work-related income due to hand OA has been estimated at almost 2500 euros per patient per year. (5)

Risk factors

Numerous risk factors for hand OA have been reported. The most important amongst these are age (particularly age >40) and sex. Particularly women over 50 who are in the climacteric transition are prone to hand OA development. (6) Other risk factors are genetic predisposition, obesity, bone mineral density, and various biomechanical factors, consisting of forearm muscle strength, laxity of the joints in the hands, previous traumatic damage to the hand through injury and biomechanical load on the joint, incurred through e.g. sports and physical work. (6-9) It should be noted that these risk factors need not be risk factors for progression of hand OA as well. Less is known about risk factors for progression, in part due to methodological difficulties in studying these. (10, 11) This knowledge gap contributes to the difficulty in treating hand OA.

Pathophysiology

Osteoarthritis has a complex pathogenesis, much of which remains unclear. It is currently known to be a disease of the joint, involving tissues therein and surrounding it. In the joint it affects the cartilage, subchondral bone, synovium, and periarticular tissues affected include muscle and tendon. (12) Cartilage degradation is considered an important feature of osteoarthritis. (13) Cartilage is continually modified by chondrocytes synthesizing molecules to replace degraded extracellular matrix molecules. This gives cartilage a high capacity for withstanding repeated mechanical stress. However,

cartilage has a limited capacity for healing of even minor injuries, making it susceptible to degeneration. (14) OA is currently thought to arise from biomechanical forces putting joints under inordinate levels of stress, leading to joint destabilization, working in tandem with genetic, environmental and systemic factors (including metabolic factors and inflammatory mediators). All these factors together disrupt the balance between synthesis and degradation of cartilage. This results in synovial inflammation, remodeling of bone (including formation of osteophytes and sclerosis of subchondral bone) and neurovascular changes. The damage to the joint and the decreased functionality of the cartilage turns into a vicious cycle, exacerbating the condition. Clinical OA symptoms such as pain and reduced motion and bony swelling are the result. (12)

Clinical presentation

Patients with hand OA often present with pain, stiffness, and functional impairment. Secondary consequences of hand OA include aesthetic complaints, loss of quality of life and impairment in work and social activities. Clinically, the condition is characterized by bony swellings, deformation of joints, pain upon palpation and occasionally soft swelling of the joints. On X-rays osteophyte formation, joint space narrowing and subchondral sclerosis are common. Bone marrow lesion may be found on MRI scans and synovial inflammation can be seen either on MRI or ultrasound. Typically, the distal interphalangeal (DIP), proximal interphalangeal (PIP) or first carpometacarpal (CMC-I) joints are affected. (6)

Subtypes

Several subtypes of hand OA are recognized, either divided by anatomical location or by pathologic features. Based on location we discern thumb base OA and interphalangeal OA. Based on pathology seen on imaging, erosive hand OA is recognized as a subtype. (6) Furthermore, a distinction can also be made between symptomatic and radiographic OA.

Natural course

Despite its high prevalence, studies on the natural course of hand OA are still scarce. This concerns studies on pain in hand OA, and to a lesser extent studies on structural progression in hand OA. Information on the natural course of hand OA is vital for informing patients about their prospects, but can also help in the development of new treatments. Subgroups with faster than average progression may be exposed to modifiable risk factors, and intervening on such risk factors may help prevent worsening of OA. Furthermore, patients with rapid progression are an ideal group to include in studies, as larger effects can be expected from interventions in that group, making studies more efficient. This would reduce the burden for patients as well as the research costs. (15)

Studies that have been done on the course of pain in hand OA indicate that, on average, pain remains stable over the entire patient group. However, subgroups of patients experiencing stable, increasing or decreasing pain may underly this larger pattern. (16-18) Knowledge of which patients constitute such subgroups is valuable for both patients, clinicians and researchers.

Several studies have investigated radiographic progression of hand OA, showing that progression strongly increases with time, with up to 94% of patients experiencing some form of structural progression after twelve years. (16-20) As with pain, the rate of progression may vary between patients. It remains unclear which patients are most likely to experience rapid progression, and we have no current set of criteria to identify these patients.

Pain in hand OA

Pain is, as can be glanced from the classification criteria, a key symptom in hand OA. Generally speaking, pain is defined as “an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage”. (21) Pain can be divided into mechanistic pain descriptors: nociceptive, neuropathic and nociplastic pain, with the last of these defined only in 2017. These mechanistic descriptors are based on the mechanisms thought to underly the various types of pain, irrespective of the disease that invokes these mechanisms. An overview of the mechanisms with examples of conditions which may cause each type of pain is given in table 1. (21-23) These mechanistic descriptors can then be divided further, as demonstrated in the International Association for the study of Pain (IASP) classification of chronic pain. (24) Within this framework, OA pain has been classified by the WHO as a chronic secondary musculoskeletal pain. The types of pain also present differently, with symptoms such as allodynia (pain in reaction to non-painful stimuli) and hyperalgesia (increased response to painful stimuli) being associated with neuropathic and nociplastic pain, as opposed to nociceptive pain. (25) These and other symptoms associated with the mechanistic pain descriptors can be used to perform quantitative sensory testing (QST). This is a class of tests consisting of amongst other testing of the pressure pain threshold (PPT, the level of pressure which first becomes painful) and temporal summation (repeat administration of stimuli with a pinprick to see if the intensity of the pain invoked increases). An often use, extensive validated protocol for QST has been described by the German Research Network on Neuropathic Pain. (26)

Table 1. Mechanistic pain descriptors as defined by the IASP (21)

	Nociceptive pain	Neuropathic pain	Nociplastic pain
Description	Pain that arises from actual or threatened damage to non-neuronal tissue and is due to the activation of nociceptors.	Pain caused by a lesion or disease of the somatosensory nervous system.	Pain that arises from altered nociception despite no clear evidence of actual or threatened tissue damage causing the activation of peripheral nociceptors or evidence for disease or lesion of the somatosensory system causing the pain.
Examples	Bruises, burns, cuts, inflammation	Carpal tunnel syndrome, phantom pain, diabetic neuropathy	Fibromyalgia, complex regional pain syndrome, chronic low back pain

Hand OA, and OA in general, was long thought to cause only nociceptive pain, originating from the affected joint. There are various tissues in the joint that contain sensory receptors. Two types of these sensory receptors (I and II, forming the corpuscular organs), are found in the capsule and ligaments (and in the knee, the meniscus). They are mechanoreceptors that respond to pressure and traction. Type III sensory receptors are present on the surface of ligaments. These respond to strong mechanical stimuli, having a higher threshold than types I and II, and also respond to thermal stimuli. Finally, type IV receptors are found in all tissues in and surrounding the joint, except the cartilage itself. Type IV receptors are activated by mechanical, thermal and chemical stimuli, but only in pathological conditions such as in inflammation caused by OA. Types III and IV have been described to be involved in pain sensations. The cartilage itself is not innervated, and thus cannot contribute to the pain signal directly. (27) All other tissues can contribute to pain signaling, for example in response to inflammatory signaling, deformation of the joint and increased synovial fluid, exerting pressure on the capsule.

There is an increasing understanding that more pain mechanisms than just the nociceptive mechanism are likely to be involved in hand OA pain. (27-29) Part of this is the increased recognition that neuropathic or nociplastic pain may also be present in hand OA, through findings of lowered PPTs and the presence of temporal summation. (30-32) Given that no evident neurological lesions are thought to arise from hand OA, nociplastic pain may be more likely. Sensitization, the process in which synaptic plasticity results in changes in the nervous system (either centrally or peripherally), leading to increased responsiveness of neurons, has been proposed as a possible cause of neuropathic or nociplastic pain in hand OA. (33) The exact nature of the pain in hand OA, which patient subgroups experience which kind of pain and what causes this is still unknown.

Table 2. ACR 1990 criteria for hand OA (42)

Mandatory	3/4 of the following
Hand pain, aching or stiffness	Hard tissue enlargement of 2 or more of 10 selected joints Hard tissue enlargement of 2 or more DIP joints Fewer than 3 swollen MCP joints Deformity of at least 1 of 10 selected joints

The ten selected joints are: Second and third DIP, second and third PIP and CMC-I joints of both hands.

DIP = Distal interphalangeal. PIP = Proximal interphalangeal. MCP = Metacarpophalangeal. CMC-I = first carpometacarpal.

Pain in OA is considered a multifactorial problem. In hand OA, there is increasing attention to pain as seen through a biopsychosocial model. (34-36) In such models, biological factors such as joint pathology and inflammation are regarded as part of a complex system, in which psychological (coping, tendency for catastrophizing, illness perceptions), and sociological (social support, occupation, education level) factors are also included. (36, 37)

Based on the multifactorial nature of pain in hand OA, it is likely there are patient sub-groups with different pain phenotypes, which may require different treatment regimens. Currently, the search for the correct division of OA pain phenotypes is receiving a lot of attention, with various groups investigating this question in different types of OA. (35, 38, 39)

Treatment

There are currently no curative or disease-modifying treatments (Disease Modifying Osteoarthritis Drugs, DMOADS) available for hand OA. This leaves clinicians with symptom relief as the aim of treatment, with pain relief as primary aim. Current guidelines by the ACR and EULAR recommend non-pharmaceutical interventions as the first step. This can consist of exercise, education and assistive devices including braces. Should these fail, pharmaceutical interventions can be considered. Pharmaceuticals of choice are non-steroidal anti-inflammatory drugs (NSAIDs), preferably applied topically to prevent systemic side effects. If these also fail, surgical interventions can be considered, consisting of trapeziectomy for thumb base OA and arthrodesis or arthroplasty for interphalangeal OA. (40, 41)

Despite these options, many patients will not be fully relieved of their symptoms. Given the new insights into osteoarthritic pain outlined above, treatments aimed at the nervous system instead of the joint may constitute an avenue to improve treatment outcomes. Some initial work has been done in this regard, but there are no clear evidence-based interventions aimed at nerves available as of yet. (31) This is a field which requires further investigation.

Table 3. EULAR 2023 criteria for hand OA (43), scores are summed to derive a classification as shown in the legend

Interphalangeal hand OA ¹		Thumb base OA ²		Overall hand OA ³	
Age		Age		Age	
Below 45 years	0	Below 45 years	0	Below 45 years	0
45-54 years	1	45-54 years	1	45-54 years	1
55-64 years	2	55-64 years	2	55-64 years	2
65 years and above	3	65 years and above	3	65 years and above	3
Duration of morning stiffness in DIP, PIP and IP joints		Duration of morning stiffness in CMC-I joints		Duration of morning stiffness in DIP, PIP, IP and thumb base joints	
Long (>30 minutes)	0	Long (>30 minutes)	0	Long (>30 minutes)	0
None	1	None	1	None	1
Short (30 minutes or less)	2	Short (30 minutes or less)	2	Short (30 minutes or less)	2
Numbers of DIP, PIP and IP joints with osteophytes		Number of CMC-I joints with osteophytes		Numbers of DIP, PIP, IP and thumb base joints with osteophytes	
None	0	None	0	None	0
1-2 joint(s)	2	1 joint	2	1-2 joint(s)	2
3-5 joints	3	2 joints	4	3-5 joints	3
6 or more joints	4			6 or more joints	4
Numbers of DIP, PIP and IP joints with JSON		Number of CMC-I joints with JSON		Numbers of DIP, PIP, IP and thumb base joints with JSON	
None	0	None	0	None	0
1-2 joint(s)	1	1 joint	2	1-2 joint(s)	1
3-5 joints	2	2 joints	3	3-5 joints	2
6 or more joints	3			6 or more joints	3
Symptom-structure concordance*		Symptom-structure concordance*		Symptom-structure concordance**	
No	0	No	0	No	0
Yes	3	Yes	3	Yes	3

1: Target population: Person with pain, aching and/or stiffness in at least one target joint (DIP, PIP and IP joints) on most days of the previous 6 weeks, and no other disease or acute injury that can explain the symptoms. Diagnosis on a score of at least 8/15.

2: Target population: Person with pain, aching and/or stiffness in at least one target joint (DIP, PIP, IP and CMC-I joints) on most days of the previous 6 weeks, and no other disease or acute injury that can explain the symptoms. Diagnosis on a score of at least 9/15.

3: Target population: Person with pain, aching and/or stiffness in at least one target joint (CMC-I joints) on most days of the previous 6 weeks, and no other disease or acute injury that can explain the symptoms. Diagnosis on a score of at least 8/15.

* Radiographic OA (osteophytes or JSON) in at least 50% of the target joints in which the person has experienced pain, aching and/or stiffness on most days of the previous 6 weeks.

** Radiographic OA (osteophytes or JSON) in at least 1 CMC-I joint with pain, aching and/or stiffness on most days of the previous week.

EULAR = European Alliance of Associations for Rheumatology. DIP = Distal interphalangeal. PIP = Proximal interphalangeal. IP = Interphalangeal. CMC-I = first carpometacarpal. JSON = Joint space narrowing.

Based on Haugen et al (43)

Methodological considerations

Classification criteria

In research, hand OA is usually defined according to the 1990 ACR criteria for hand OA (table 2). (42) These criteria were primarily developed to differentiate hand OA from rheumatoid arthritis (RA). Recently, a new set of criteria has been published, with the aim of setting a new standard for hand OA research and to allow for the stratification of subtypes of hand OA (table 3). (43)

Pain measurement

A related issue to the nature of pain is the measurement of pain. Pain is highly individual, and is ultimately determined by the patient experiencing the pain. Measuring nerve conduction is not sufficient, which can also be inferred from the biopsychosocial model. (21) This leaves researchers with questionnaires which allow patients to express the severity (visual analog scale (VAS), numeric rating scale (NRS)) and nature of their pain (e.g. PainDETECT). (44) Specific validated hand OA questionnaires are also available, with the Australian Canadian Hand Osteoarthritis Index (AUSCAN) used most frequently. (45, 46) However, each of the available questionnaires may capture a slightly different domain, and it remains unclear how well we can currently assess the full pain experience. This further complicates investigating pain, and directly affects our ability to investigate and develop new treatments.

Imaging

Another essential tool in hand OA research is imaging. The most commonly used modality is radiography, which can be scored using the Kellgren-Lawrence, OARSI or Verbruggen-Veys scoring systems. (47-49) The first two describe the severity of OA in the joint based on joint space narrowing (loss of cartilage as seen on radiographs) and osteophytes. The latter system offers a standardized method to score the presence of central erosions in the joint, thereby allowing the classification of erosive disease. They all allow staging of the disease, and tracking of progression when applied longitudinally.

It should be noted that the association between pain and structural damage measured on radiographs in hand OA appears to be positive, but variable and of limited magnitude. (50) Stronger associations have been found with ultrasonography, which allows the investigation of inflammation separately for each joint. On the joint level, presence of synovitis has been associated with pain in that same joint. (51, 52) In ultrasonography joints are scored semi-quantitatively for the presence of osteophytes, effusion, synovial thickening and Doppler signal, the latter three of which may be seen in inflamed joints. (53) Recently the Global OMERACT/EULAR ultrasound synovitis score (GLOESS) has been

introduced in RA, which combines synovial thickening and Doppler signal scores to enhance the scoring system. (54) It remains unclear which ultrasound feature or which combination of features serves best as an indicator of synovial inflammation in hand OA.

AIMS OF THIS THESIS

This thesis aims to:

1. Investigate the natural course of hand OA, particularly the natural course of pain symptoms in hand OA, and to describe subgroups of patients with different trajectories
2. To investigate the nature of pain in hand OA and potential treatments aimed at neuropathic or nociceptive pain mechanisms
3. To investigate the validity and reliability of outcome measures for pain and synovial inflammation in hand OA

Study populations

The research described in this thesis was performed with data from a double-blind, randomized, placebo-controlled clinical trial and a primary observational hand OA cohort study. This combination allowed the study of hand OA and study methodology both in a natural setting and in a trial setting.

The HOSTAS cohort

The observational Hand OSTeoArthritis in Secondary care (HOSTAS) cohort contains 538 patients with primary hand OA diagnosed by their treating rheumatologist. Consecutively referred patients were included. Exclusion criteria comprised secondary OA and other pathologies which could explain the symptoms of the hand. Patients were followed for up to 8 years. Data collection started in 2009 and finished in 2023. Patients filled in questionnaires yearly and underwent physical examinations every other year, at which time radiographs of the hands were also made. The questionnaires included demographic and clinical information, amongst which were the AUSCAN questionnaire, the Hospital Anxiety and Depression Scale (HADS), the Coping with Rheumatic stressors (CORS) and the Illness Perceptions Questionnaire (IPQ). (55)

The HOPE trial

The double-blind, randomized Hand Osteoarthritis Prednisolone Efficacy (HOPE) trial investigated the efficacy of 10mg prednisolone daily versus placebo over 6 weeks. Patients were eligible for inclusion if they had symptomatic hand OA fulfilling the ACR criteria, with signs of inflammation on ultrasound (defined as at least one DIP or PIP joint with soft swelling or erythema, at least one DIP or PIP joint with synovial thickening of grade at least 2) and finger pain of at least 30mm on a 0-100mm VAS. A flare-up after washout of NSAIDs was further required. Patients were excluded when their pain was present primarily in the thumb base, when there were conditions that compromised safety of the study medication, or when there were comorbidities that would interfere with out-

come measurements. Finally, patients were excluded when they used systemic or local immunomodulating drugs or hyaluronic acid injections in the thumb base in the past 90 days. Study medication was used for 6 weeks, and then tapered to cessation in 2 weeks. Patients were followed for 14 weeks, with clinical assessments made baseline and weeks 2, 6 and 14. At baseline and weeks 2, 4, 6, 8 and 14 patients filled in questionnaires, and ultrasonography of the hands was performed at baseline, week 6 and week 14. The primary outcome was change in pain measured on VAS. Questionnaires further included amongst others the painDETECT, Hospital Anxiety and Depression Scale, Coping with Rheumatic Stressors questionnaire, Illness Perceptions Questionnaire and AUSCAN. (56)

THESIS OUTLINE

Part 1: The course of hand OA

Part one of this thesis investigates the natural course of hand osteoarthritis, capitalizing on longitudinal data from the HOSTAS cohort. In **chapter 2**, a latent class growth analysis of data on pain in hand OA is described. This allows for the classification of the cohort into subgroups with different pain trajectories, and the subsequent characterization of those subgroups. Subgroups derived from such a data-driven approach may differ strongly from subgroups based on clinically determined cutoffs for progression. To compare this, we investigated subgroups of patients determined by the minimal clinical important improvement (MCII) in **chapter 3**. (57)

As described earlier, structural damage and pain need not coincide. The same also holds for the progression of radiographic progression and symptomatic progression. Thus, we separately investigated progression of radiographic damage and its determinants in **chapter 4**.

Part 2: Pain and treatment in hand OA

In part two we focus on the nature and treatment of pain in hand OA. We begin with an analysis of data from the HOPE trial, where we investigate the presence of neuropathic or nociceptive pain and its determinants. This is described in **chapter 5**. To add to the knowledge of treatment options and potential treatment targets, we have reviewed the evidence for surgical denervation to treat pain in hand OA in **chapter 6**.

Part 3: OA research methodology

In order to do reliable research, correct outcome measures that accurately reflect what the researcher aims to investigate are crucial. In the third part of this thesis we investigate the performance of such outcome measures. In **chapter 7** we compare changes in pain scored on the AUSCAN questionnaire with changes in pain as reported by the patient with a recall question, and we investigate the influence of illness perceptions and mental wellbeing on these methods yielding the same answer. **Chapter 8** compares the performance of the new GLOESS score with separate ultrasound features, to investigate whether this composite is suitable for use in hand OA research. We also investigate the association of the various ultrasound features and the GLOESS with pain on the joint level.

Part 4: Future research

In the final part of this thesis, we present two protocols describing ongoing studies. The first, the Sensitization and pain phenotypes in hand OsteoArthritis (SensOA) study

in **chapter 9**, describes a cross-sectional study aimed at phenotyping pain in hand OA, with quantitative sensory testing as the main method of investigation. **Chapter 10** describes the follow-up for the SensOA, the Pulsed Radiofrequency therapy for hand OsteoArthritis Pain (PROAP) trial. This trial investigates the efficacy of transcutaneous pulsed radiofrequency therapy for relieving pain in hand OA in patients that underwent QST during the SensOA study.

Concluding this thesis, **chapter 11** provides a summary and discussion of the findings presented in this thesis, including future perspectives. A Dutch summary is given in **chapter 12**. The **Appendices** contain I) a list of publications, II) a Curriculum Vitae, and III) acknowledgements in Dutch.

REFERENCES

1. Kraus VB, Blanco FJ, Englund M, Karsdal MA, Lohmander LS. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. *Osteoarthritis Cartilage*. 2015;23(8):1233-41.
2. Dahaghin S, Bierma-Zeinstra SMA, Ginai AZ, Pols HAP, Hazes JMW, Koes BW. Prevalence and pattern of radiographic hand osteoarthritis and association with pain and disability (the Rotterdam study). *Annals of the Rheumatic Diseases*. 2005;64(5):682-7.
3. Zhang Y, Niu J, Kelly-Hayes M, Chaisson CE, Aliabadi P, Felson DT. Prevalence of symptomatic hand osteoarthritis and its impact on functional status among the elderly: The Framingham Study. *American journal of epidemiology*. 2002;156(11):1021-7.
4. Collaborators GO. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. *Lancet Rheumatol*. 2023;5(9):e508-e22.
5. Terpstra SES, van de Stadt L, Boonen A, Damman W, Rosendaal F, Kloppenburg M. Hand osteoarthritis is associated with limitations in paid and unpaid work participation and related societal costs: the HOSTAS cohort. *RMD Open*. 2022;8(2).
6. Kloppenburg M, Kwok W-Y. Hand osteoarthritis--a heterogeneous disorder. *Nature reviews Rheumatology*. 2011;8(1):22-31.
7. Jensen V, Bøggild H, Johansen JP. Occupational use of precision grip and forceful gripping, and arthrosis of finger joints: a literature review. *Occup Med (Lond)*. 1999;49(6):383-8.
8. Zhang W, Doherty M, Leeb BF, Alekseeva L, Arden NK, Bijlsma JW, et al. EULAR evidence-based recommendations for the diagnosis of hand osteoarthritis: report of a task force of ESCISIT. *Ann Rheum Dis*. 2009;68(1):8-17.
9. Valdes AM, Spector TD. The contribution of genes to osteoarthritis. *Rheum Dis Clin North Am*. 2008;34(3):581-603.
10. Zhang Y, Neogi T, Hunter D, Roemer F, Niu J. What effect is really being measured? An alternative explanation of paradoxical phenomena in studies of osteoarthritis progression. *Arthritis care & research*. 2014;66(5):658-61.
11. Zhang Y, Niu J, Felson DT, Choi HK, Nevitt M, Neogi T. Methodologic challenges in studying risk factors for progression of knee osteoarthritis. *Arthritis Care Res (Hoboken)*. 2010;62(11):1527-32.
12. Mobasher A, Batt M. An update on the pathophysiology of osteoarthritis. *Annals of Physical and Rehabilitation Medicine*. 2016;59(5):333-9.
13. He Y, Li Z, Alexander PG, Ocasio-Nieves BD, Yocum L, Lin H, et al. Pathogenesis of Osteoarthritis: Risk Factors, Regulatory Pathways in Chondrocytes, and Experimental Models. *Biology (Basel)*. 2020;9(8).
14. Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. *Instr Course Lect*. 1998;47:487-504.
15. Lohmander LS, Felson D. Can we identify a 'high risk' patient profile to determine who will experience rapid progression of osteoarthritis? *Osteoarthritis Cartilage*. 2004;12 Suppl A:S49-52.
16. Bijsterbosch J, Watt I, Meulenbelt I, Rosendaal FR, Huijzinga TW, Kloppenburg M. Clinical and radiographic disease course of hand osteoarthritis and determinants of outcome after 6 years. *Ann Rheum Dis*. 2011;70(1):68-73.
17. Botha-Scheepers S, Riyazi N, Watt I, Rosendaal FR, Slagboom E, Bellamy N, et al. Progression of hand osteoarthritis over 2 years: a clinical and radiological follow-up study. *Ann Rheum Dis*. 2009;68(8):1260-4.

18. Vanhaverbeke T, Pardaens L, Wittoek R. Natural disease progression in finger osteoarthritis: results from a 10 year follow-up cohort. *Scand J Rheumatol*. 2020;1-7.
19. Eaton CB, Schaefer LF, Duryea J, Driban JB, Lo GH, Roberts MB, et al. Prevalence, Incidence, and Progression of Radiographic and Symptomatic Hand Osteoarthritis: The Osteoarthritis Initiative. *Arthritis Rheumatol*. 2022;74(6):992-1000.
20. Snyder EA, Alvarez C, Golightly YM, Renner JB, Jordan JM, Nelson AE. Incidence and progression of hand osteoarthritis in a large community-based cohort: the Johnston County Osteoarthritis Project. *Osteoarthritis Cartilage*. 2020;28(4):446-52.
21. IASP. Terminology 2011 [Available from: <https://www.iasp-pain.org/resources/terminology/?ItemNumber=1698>.
22. Kosek E, Clauw D, Nijs J, Baron R, Gilron I, Harris RE, et al. Chronic nociceptive pain affecting the musculoskeletal system: clinical criteria and grading system. *Pain*. 2021.
23. Kosek E, Cohen M, Baron R, Gebhart GF, Mico JA, Rice ASC, et al. Do we need a third mechanistic descriptor for chronic pain states? *Pain*. 2016;157(7):1382-6.
24. Nicholas M, Vlaeyen JWS, Rief W, Barke A, Aziz Q, Benoliel R, et al. The IASP classification of chronic pain for ICD-11: chronic primary pain. *Pain*. 2019;160(1):28-37.
25. Cohen SP, Mao J. Neuropathic pain: mechanisms and their clinical implications. *Bmj*. 2014;348:f7656.
26. Rolke R, Baron R, Maier C, Tölle TR, Treede DR, Beyer A, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. *Pain*. 2006;123(3):231-43.
27. Serge P, Anne-Priscille T. Pain in osteoarthritis from a symptom to a disease. *Best Pract Res Clin Rheumatol*. 2023;101825.
28. Trouvin A-P, Perrot S. Pain in osteoarthritis. Implications for optimal management. *Joint bone spine*. 2018;85(4):429-34.
29. Trouvin AP, Perrot S. New concepts of pain. *Best Pract Res Clin Rheumatol*. 2019;33(3):101415.
30. Steen Pettersen P, Neogi T, Magnusson K, Berner Hammer H, Uhlig T, Kvien TK, et al. Peripheral and Central Sensitization of Pain in Individuals With Hand Osteoarthritis and Associations With Self-Reported Pain Severity. *Arthritis & rheumatology (Hoboken, NJ)*. 2019;71(7):1070-7.
31. Sofat N, Harrison A, Russell MD, Ayis S, Kiely PD, Baker EH, et al. The effect of pregabalin or duloxetine on arthritis pain: a clinical and mechanistic study in people with hand osteoarthritis. *J Pain Res*. 2017;10:2437-49.
32. Wajed J, Ejindu V, Heron C, Hermansson M, Kiely P, Sofat N. Quantitative sensory testing in painful hand osteoarthritis demonstrates features of peripheral sensitisation. *Int J Rheumatol*. 2012;2012:703138.
33. Fu K, Robbins SR, McDougall JJ. Osteoarthritis: the genesis of pain. *Rheumatology (Oxford)*. 2018;57(suppl_4):iv43-iv50.
34. Mulrooney E, Neogi T, Dagfinrud H, Hammer HB, Pettersen PS, Gaarden TL, et al. The associations of psychological symptoms and cognitive patterns with pain and pain sensitization in people with hand osteoarthritis. *Osteoarthritis Cartil Open*. 2022;4(2):100267.
35. Mulrooney E, Neogi T, Dagfinrud H, Hammer HB, Pettersen PS, Kvien TK, et al. Hand osteoarthritis phenotypes based on a biopsychosocial approach, and their associations with cross-sectional and longitudinal pain. *Osteoarthritis Cartilage*. 2024;32(8):963-71.
36. Bartley EJ, Palit S, Staud R. Predictors of Osteoarthritis Pain: the Importance of Resilience. *Curr Rheumatol Rep*. 2017;19(9):57.

37. Neogi T. The epidemiology and impact of pain in osteoarthritis. *Osteoarthritis and cartilage*. 2013;21(9):1145-53.
38. Smith SL, Walsh DA. Osteoarthritis pain phenotypes: How best to cut the cake? *Osteoarthritis and Cartilage*. 2024;32(2):124-7.
39. Neelapala YVR, Neogi T, Kumar D, Jarraya M, Macedo L, Kobsar D, et al. Exploring different models of pain phenotypes and their association with pain worsening in people with early knee osteoarthritis: The MOST cohort study. *Osteoarthritis Cartilage*. 2024;32(2):210-9.
40. Kloppenburg M, Kroon FP, Blanco FJ, Doherty M, Dziedzic KS, Greibrokk E, et al. 2018 update of the EULAR recommendations for the management of hand osteoarthritis. *Ann Rheum Dis*. 2019;78(1):16-24.
41. Kolasinski SL, Neogi T, Hochberg MC, Oatis C, Guyatt G, Block J, et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. *Arthritis Care Res (Hoboken)*. 2020;72(2):149-62.
42. Altman R, Alarcón G, Appelrouth D, Bloch D, Borenstein D, Brandt K, et al. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hand. *Arthritis Rheum*. 1990;33(11):1601-10.
43. Haugen IK, Felson DT, Abhishek A, Berenbaum F, Bierma-Zeinstra S, Dziedzic KS, et al. 2023 EULAR classification criteria for hand osteoarthritis. *Annals of the Rheumatic Diseases*. 2024;ard-2023-225073.
44. Freynhagen R, Baron R, Gockel U, Tölle TR. painDETECT: a new screening questionnaire to identify neuropathic components in patients with back pain. *Current medical research and opinion*. 2006;22(10):1911-20.
45. Bellamy N, Campbell J, Haraoui B, Buchbinder R, Hobby K, Roth JH, et al. Dimensionality and clinical importance of pain and disability in hand osteoarthritis: Development of the Australian/Canadian (AUSCAN) Osteoarthritis Hand Index. *Osteoarthritis Cartilage*. 2002;10(11):855-62.
46. Visser AW, Bøyesen P, Haugen IK, Schoones JW, van der Heijde DM, Rosendaal FR, et al. Instruments Measuring Pain, Physical Function, or Patient's Global Assessment in Hand Osteoarthritis: A Systematic Literature Search. *J Rheumatol*. 2015;42(11):2118-34.
47. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. *Ann Rheum Dis*. 1957;16(4):494-502.
48. Verbruggen G, Veys EM. Numerical scoring systems for the anatomic evolution of osteoarthritis of the finger joints. *Arthritis Rheum*. 1996;39(2):308-20.
49. Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised. *Osteoarthritis Cartilage*. 2007;15 Suppl A:A1-56.
50. Dahaghin S, Bierma-Zeinstra SM, Hazes JM, Koes BW. Clinical burden of radiographic hand osteoarthritis: a systematic appraisal. *Arthritis Rheum*. 2006;55(4):636-47.
51. Kortekaas MC, Kwok WY, Reijnierse M, Huizinga TW, Kloppenburg M. Osteophytes and joint space narrowing are independently associated with pain in finger joints in hand osteoarthritis. *Ann Rheum Dis*. 2011;70(10):1835-7.
52. Kortekaas MC, Kwok WY, Reijnierse M, Watt I, Huizinga TW, Kloppenburg M. Pain in hand osteoarthritis is associated with inflammation: the value of ultrasound. *Ann Rheum Dis*. 2010;69(7):1367-9.
53. Keen HI, Lavie F, Wakefield RJ, D'Agostino MA, Hammer HB, Hensor E, et al. The development of a preliminary ultrasonographic scoring system for features of hand osteoarthritis. *Ann Rheum Dis*. 2008;67(5):651-5.

54. D'Agostino MA, Terslev L, Aegerter P, Backhaus M, Balint P, Bruyn GA, et al. Scoring ultrasound synovitis in rheumatoid arthritis: a EULAR-OMERACT ultrasound taskforce-Part 1: definition and development of a standardised, consensus-based scoring system. *RMD Open*. 2017;3(1):e000428.
55. Damman W, Liu R, Kroon FPB, Reijnierse M, Huizinga TWJ, Rosendaal FR, et al. Do Comorbidities Play a Role in Hand Osteoarthritis Disease Burden? Data from the Hand Osteoarthritis in Secondary Care Cohort. *J Rheumatol*. 2017;44(11):1659-66.
56. Kroon FPB, Kortekaas MC, Boonen A, Böhringer S, Reijnierse M, Rosendaal FR, et al. Results of a 6-week treatment with 10 mg prednisolone in patients with hand osteoarthritis (HOPE): a double-blind, randomised, placebo-controlled trial. *The Lancet*. 2019;394(10213):1993-2001.
57. Bellamy N, Hochberg M, Tubach F, Martin-Mola E, Awada H, Bombardier C, et al. Development of multinational definitions of minimal clinically important improvement and patient acceptable symptomatic state in osteoarthritis. *Arthritis Care Res (Hoboken)*. 2015;67(7):972-80.