

Universiteit
Leiden
The Netherlands

Capturing venous thromboembolism: imaging and outcomes of venous thromboembolism

Jong, C.M.M. de

Citation

Jong, C. M. M. de. (2026, January 22). *Capturing venous thromboembolism: imaging and outcomes of venous thromboembolism*. Retrieved from <https://hdl.handle.net/1887/4287402>

Version: Publisher's Version

[Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden](#)

License: <https://hdl.handle.net/1887/4287402>

Note: To cite this publication please use the final published version (if applicable).

PART 1

Imaging of venous thromboembolism

CHAPTER 2

Modern imaging of acute pulmonary embolism

Cindy M.M. de Jong, Lucia J.M. Kroft, Thijs E. van Mens, Menno V. Huisman, J.L. (Lauran) Stöger, Frederikus A. Klok

Thromb Res. 2024 Jun; 238:105-116

Abstract

The first-choice imaging test for visualization of thromboemboli in the pulmonary vasculature in patients with suspected acute pulmonary embolism (PE) is multidetector computed tomography pulmonary angiography (CTPA) – a readily available and widely used imaging technique. Through technological advancements over the past years, alternative imaging techniques for the diagnosis of PE have become available, whilst others are still under investigation. In particular, the evolution of artificial intelligence (AI) is expected to enable further innovation in diagnostic management of PE. In this narrative review, current CTPA techniques and the emerging technology photon-counting computed tomography (PCCT), as well as other modern imaging techniques of acute PE are discussed, including CTPA with iodine maps based on subtraction or dual-energy acquisition, single-photon emission CT (SPECT), magnetic resonance angiography (MRA), and magnetic resonance direct thrombus imaging (MRDTI). Furthermore, potential applications of AI are discussed.

Introduction

In patients with suspected acute pulmonary embolism (PE), multidetector computed tomography pulmonary angiography (CTPA) is the imaging test of choice. CTPA allows for adequate visualization of thromboemboli in the pulmonary vasculature down to the subsegmental pulmonary arteries, is widely available and has been validated in prospective management outcome studies.¹⁻³ A sensitivity of 96-100% and specificity of 97-98% have been reported for multidetector CTPA techniques.⁴ With the aim of achieving high quality CTPA at the lowest radiation dose, the Canadian Society of Thoracic Radiology and the Canadian Association of Radiologists provide current and practical recommendations in their 2022 guidance, mentioning that optimal CTPA acquisition can be achieved using multidetector computed tomography (CT) with at least 16-detector rows, preferably 64-detector or greater.⁵ Due to advances in hardware and post-processing techniques, radiation dose reduction has been achieved while maintaining image quality.^{5,6}

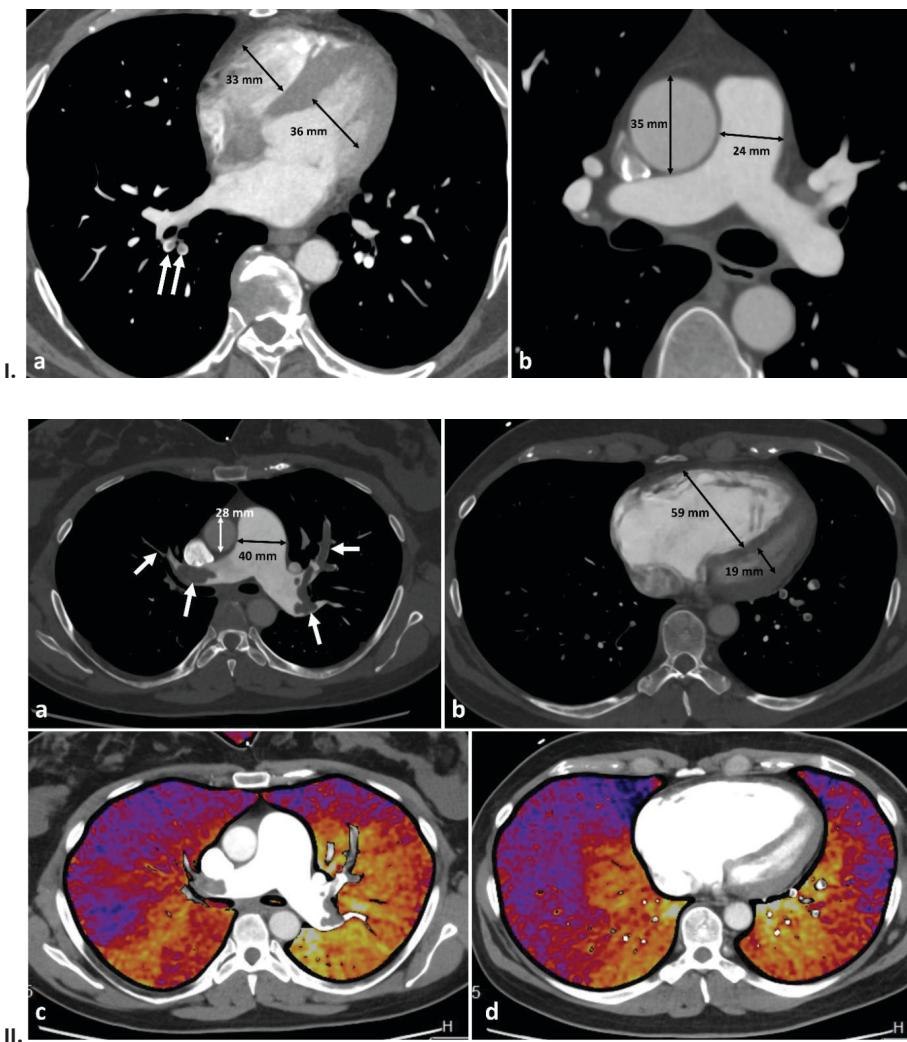
In addition to the progress in radiation dose reduction, several technological advancements have been made over the past years. Multiple imaging techniques for the diagnosis of PE have become available or are currently emerging. Furthermore, artificial intelligence (AI) holds promise in various roles to improve the diagnostic management of PE. In this narrative review, we discuss current CTPA techniques and address the emerging technology photon-counting CT (PCCT), and we discuss different imaging techniques of acute PE, including CTPA with iodine maps by means of subtraction or dual-energy acquisition, single-photon emission CT (SPECT), and magnetic resonance imaging (MRI) techniques. Additionally, we describe potential roles for AI in the imaging of acute PE.

CTPA

Multidetector CTPA is routinely performed in patients with suspected PE when diagnostic imaging is indicated (see criteria regarding the appropriateness of diagnostic imaging procedures for suspected PE).⁷ High quality CTPA imaging can be achieved with optimization of acquisition parameters, while considering strategies for radiation dose reduction and reduction in intravenous contrast administration. Parameters of imaging acquisition using multidetector CT include use of the smallest detector width, thin sections of 1.25 mm or less, with single inspiratory breath-suspension during the image acquisition.⁵ High pitch protocols for CTPA acquisition at low kilovoltage peak (kVp), below 100 kVp, with low contrast medium volume and reduced acquisition time have

been investigated and some studies suggest that diagnostic examinations of sufficient quality for evaluation of PE can be achieved with such protocols in selected (non-obese) patients.⁸⁻¹¹ Schönfeld et al. compared a high-pitch dual-source CTPA protocol using a contrast volume of 20 mL (pitch 3.2, scan time <1 second, no breathing commands) to "standard" CTPA with administration of 50 mL of contrast medium (single-source, pitch 1.2, scan time approximately 2 seconds, breath-hold during the scan).¹² Although the image quality of high-pitch CTPA was less than that of "standard" CTPA, the image quality was sufficient, with an effective dose of high-pitch CTPA of median 1.04 versus 1.49 for the normal-pitch CTPA calculated using a chest-specific conversion factor of 0.014 mSv·mGy⁻¹cm⁻¹.¹² In the literature, effective radiation doses for multidetector CTPA (64- to 2x192-slice scanners) of 1.2 to 6.4 mSv are reported; notably, it is not explicitly mentioned whether the reported effective doses apply solely to the CTPA or to the entire examination.¹³⁻¹⁶ There is also variation in published chest conversion factors, ranging from 0.014 to 0.019 mSv·Gy⁻¹cm⁻¹.^{17,18} Details regarding the effective dose of CTPA acquisition (with subtraction) performed in our current practice at Leiden University Medical Center, the Netherlands, are shown in **supplementary Table S1**; **Figure 1** shows examples of CTPA images. Foetal radiation exposure from CTPA is low.^{1,5,19} With evolving CT technology resulting in reduced radiation exposure while maintaining image quality, modern CTPA imaging techniques have been found to involve low maternal radiation exposure as well.¹ CTPA is commonly performed in pregnant women.⁷

Multidetector CTPA enables the detection of contrast-filling defects in the subsegmental pulmonary arteries, however, the clinical significance of isolated subsegmental PE, and therefore the need for anticoagulant treatment, remains controversial.^{1, 20} The ongoing multicentre randomized placebo-controlled SAFE-SSPE trial (Surveillance versus Anticoagulation For low-risk patiEnts with isolated SubSegmental Pulmonary Embolism; NCT04263038) aims to answer the question how to manage low-risk patients with isolated subsegmental PE.²¹ Furthermore, parameters can be detected on CTPA which can be used for risk stratification of patients with acute PE, such as right ventricle (RV) to left ventricle (LV) ratio as an indicator of RV dysfunction.¹ CTPA can also reveal signs suggestive of pre-existing chronic thromboembolic disease or chronic thromboembolic pulmonary hypertension (CTEPH). Dedicated reading of CTPA scans performed at diagnosis of acute PE may help to early detect CTEPH after acute PE.²²⁻²⁵

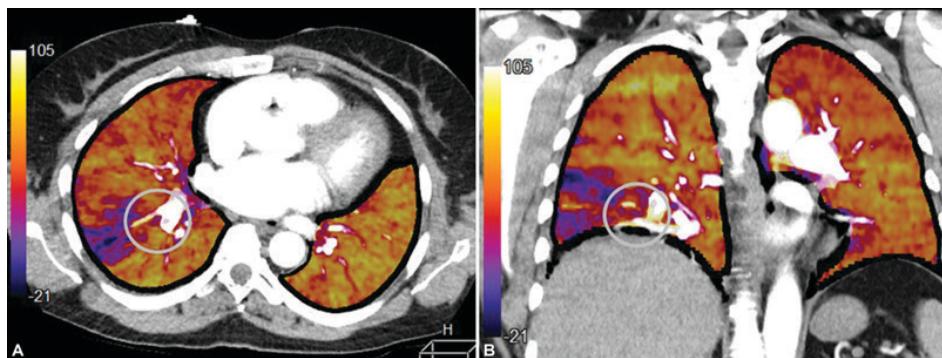

An emerging CT technology is photon-counting computed tomography (PCCT). With this technique, energy-resolving photon-counting detectors (PCDs) are used

instead of energy-integrating detectors (EIDs), which enables counting individual incoming photons and differentiating photons according to their energy.^{26, 27} PCCT has the potential to increase spatial resolution, reduce noise and improve contrast, and reduce radiation exposure, and also allows for the use of alternative contrast agents.^{26, 28} A clinical PCD CT scanner was evaluated between October 2021 and March 2022, and showed good image quality as well as reduced radiation dose and amount of contrast agent compared with dual-energy CTPA on conventional EID CT (192-slice) scanner; 1.4 mSv versus 3.3 mSv, and 25 ml versus 50 ml of contrast medium, respectively.²⁹ EID scans had higher contrast-to-noise ratio than PCD scans (27.7 ± 8.6 versus 14.2 ± 4.8 for pulmonary trunk). The potential of PCCT should be confirmed in future prospective management outcome studies.

Dual-energy CT or CTPA with perfusion images

Dual-energy computed tomography (DECT) employs two distinct X-ray photon energy spectra to outline a tissue's attenuation characteristics at different photoelectric energies, thereby providing information on material composition beyond the capabilities of conventional single-energy CT.^{28, 30, 31} Virtual monoenergetic images at low kilo-electronvolt (keV) levels obtained with DECT can be used for the improvement of the contrast-to-noise ratio, to reduce the amount of contrast material needed for the evaluation of PE.^{30, 32, 33}

With mapping of attenuation characteristics, material decomposition images, including iodine distribution maps, can be generated.³⁰ Iodine maps can be used for the evaluation of perfusion defects. Iodine maps in DECT were shown to detect additional segmental and subsegmental PEs on CTPA.³⁴ Of 1144 CTPA examinations, a new PE diagnosis was made on 11 examinations based on review of the iodine maps. Perfusion defects assessed on iodine perfusion images obtained with DECT correlated with CTPA obstruction (Qanadli) score and ratio between RV and LV diameter.³⁵ Alternatively, subtraction CT can be used to evaluate pulmonary perfusion in CTPA. A pre-contrast unenhanced image set is subtracted from a contrast-enhanced image to generate a motion-corrected map representing the iodine distribution in the pulmonary parenchyma.^{36, 37} The color-coded subtraction images are then superimposed on the CT images (**Figure 1 [II c, d]; Figure 2**).


Figure 1: Computed tomography pulmonary angiography (CTPA) images.

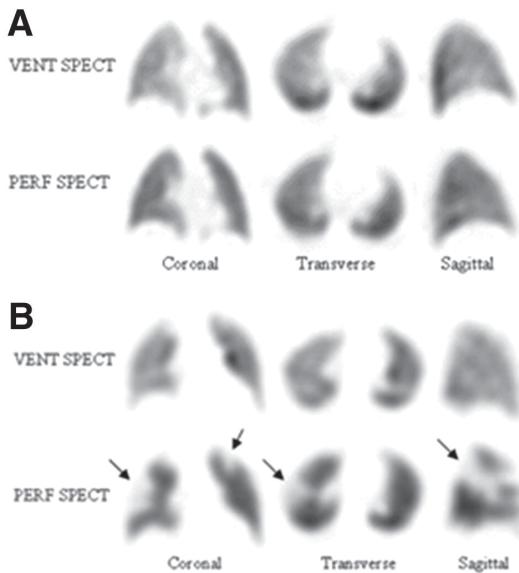
I a. 49-year-old male patient with recent ankle fracture, presenting with pain on breathing for 1 day and increased D-dimer, who was suspected of having pulmonary embolism (PE). CTPA in axial view showing segmental PEs in the posterior and lateral basal segmental arteries of the right lower lobe (white arrows). Patient had some segmental and subsegmental PEs in the right lower lobe, and some subsegmental PEs in the lingula and middle lobe. No signs of right ventricular (RV) strain, the right ventricle (RV) to left ventricle (LV) ratio is smaller than 1 (black arrows, a). **b.** Same patient, showing the diameter of the pulmonary artery that was normal (24 mm), also in relationship with the diameter of the aorta (35 mm).

II a. 39-year-old female patient presenting with acute dyspnea and D-dimer >4000 , suspected of having PE. CTPA in axial view showing large central PEs, in the left and right pulmonary arteries (white arrows). Patient had extensive PEs from central extending into the subsegmental areas of all lung fields. The pulmonary artery was strongly dilated up to 40 mm, which is readily observed by comparing with the normally sized aorta of 28 mm at this age. **b.** Signs of severe RV strain with strongly dilated right ventricle, RV/LV ratio was (much) larger than 1. The interventricular septum was inverted with increased RV pressure exceeding that of the LV. **c,d.** Same patient with subtraction iodine maps at the same levels showing inhomogeneous perfusion.

The addition of perfusion images to routine CTPA was demonstrated to improve the detection of acute PE.³⁸ Therefore, iodine maps on top of CTPA images provide an attractive method for visualizing pulmonary perfusion. In a prospective study, the use of subtraction CT versus DECT iodine maps was compared to CTPA for the detection of PE.³⁸ Adding subtraction CT iodine maps to CTPA resulted in higher specificity than that of CTPA alone. Both techniques for iodine mapping showed small improvement on top of CTPA, but sensitivity did not significantly improve. Notably, whilst this study found comparable diagnostic performance and radiation dose for subtraction and dual-energy CT iodine maps, subtraction CT, unlike DECT, does not require dedicated hardware. Yet, the value of subtraction CT iodine maps for guiding management of the patient beyond the diagnosis may be limited.^{37,39} To date, large prospective diagnostic or therapeutic management outcome studies investigating CT perfusion images combined with DECT or CTPA are unavailable.

Figure 2: Perfusion map fused with computed tomography pulmonary angiography.

Fused perfusion map with computed tomography pulmonary angiography: (A) axial and (B) coronal image in a patient with an acute thrombus in the right lower lobe pulmonary artery (encircled), with subsegmental reduced lung perfusion in the laterodorsal segment of the right lower lobe.


Reprinted from van Dam LF et al. Computed Tomography Pulmonary Perfusion for Prediction of Short-Term Clinical Outcome in Acute Pulmonary Embolism. *TH Open*. 2021 Feb 10;5(1):e66-e72. doi: 10.1055/s-0041-1723782. PMID: 33585787; PMCID: PMC7875679³⁹, under the terms of the Creative Commons CC BY license (Open Access).

SPECT

Single-photon emission computed tomography (SPECT) is a three-dimensional technique, which provides visualization of all segments of the lung with transverse, coronal, and sagittal images, including segments previously not visible on two-dimensional planar ventilation/perfusion (V/Q) scans (Figure 3).⁴⁰ From planar V/Q to SPECT, and from SPECT to SPECT/CT, spatial and contrast resolution increases.⁴¹ V/Q SPECT imaging, with or without low-dose CT, has been shown to lower the proportion of non-diagnostic scans reported to occur when performing conventional V/Q scans, to a rate of up to

5%. A sensitivity of 80-100% and specificity of 71-100% have been reported, although prospective outcome data are not available to confirm these beyond doubt.^{1,42-47}

Figure 3: Single-photon emission computed tomography (SPECT) images providing visualization of all segments of the lung in coronal, transverse, and sagittal planes.

(A) Normal ventilation and perfusion lung scan; uniform uptake in all lobes and segments.
 (B) Multiple mismatched ventilation and perfusion defects in a patient with multiple PE.

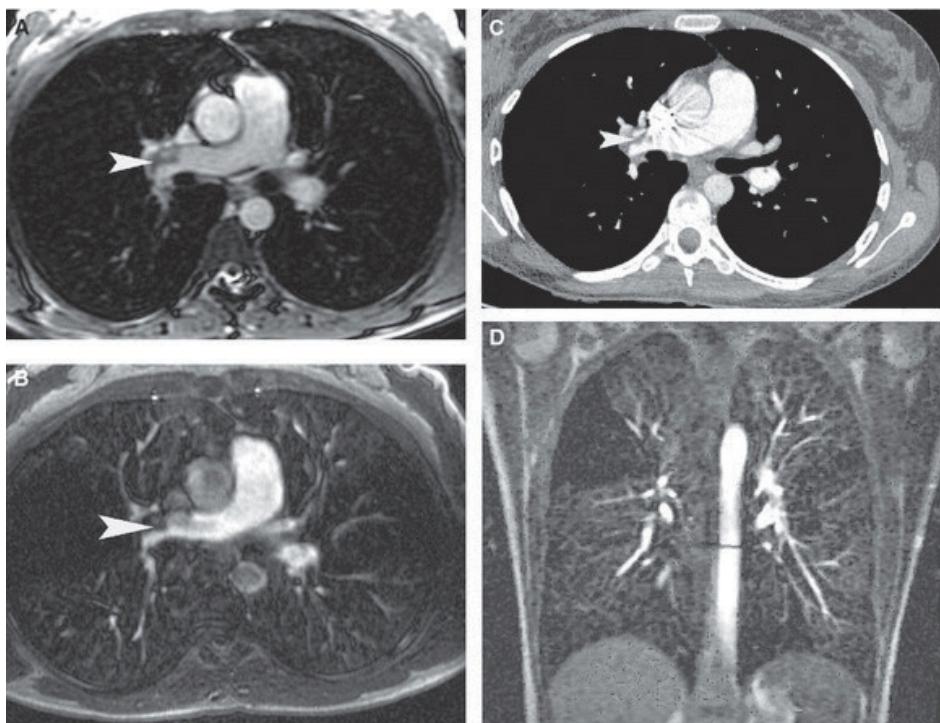
Reprinted from Seminars in Nuclear Medicine, Volume 40, Issue 6, E.A. Bailey et al., V/Q imaging in 2010: a quick start guide, Pages 408-414, November 2010, with permission from Elsevier.⁴⁰ RightsLink license number 5654781084903.

Compared with planar V/Q scintigraphy, SPECT imaging increased the number of detectable defects both at the segmental and subsegmental level, and resulted in higher sensitivity and specificity (97% and 91%, respectively, compared with 76% and 85% for planar V/Q imaging found in a retrospective study).⁴⁸ However, SPECT itself was included in the reference standard in this study, and most studies that evaluated the diagnostic accuracy of SPECT have limitations in their study design. Therefore, the accuracy of V/Q SPECT compared with planar V/Q scintigraphy or CTPA has not been definitively established and should be prospectively determined using an independent reference standard.⁴⁹ Of note, a higher detection of PE compared to conventional V/Q scans may also lead to overtreatment.

According to the European Association of Nuclear Medicine (EANM) 2019 guideline on V/Q SPECT for PE diagnosis, the effective radiation dose of V/Q SPECT is approximately 2 mSv.⁵⁰ The addition of low-dose CT without contrast involves an additional radiation dose of approximately 1-2 mSv, resulting in an effective dose of around 3-4 mSv for the

acquisition of V/Q SPECT/CT.⁵⁰ Two meta-analyses published in 2023 showed that the sensitivity and specificity of V/Q SPECT/CT were higher than for Q SPECT/CT, and that adding CT to the techniques improved accuracy of both V/Q SPECT and Q SPECT.^{51,52} The optimal scanning technique – V/Q SPECT with or without non-enhanced CT, or Q SPECT with or without non-enhanced CT – is not yet defined. SPECT imaging techniques remain in need of validation in large prospective management outcome studies, in which patients with suspected PE and normal diagnostic test results are not treated with anticoagulants, before they can be recommended for use in guidelines.¹ The use of V/Q scanning has significantly decreased due to the widespread use of CTPA.⁷ V/Q SPECT has previously been proposed for consideration in select patient groups where radiation burden is a concern, for example in pregnant women or young persons in general.^{53,54} However, dose reduction strategies have resulted in continuous reduction in radiation dose of CTPA. While clinical studies are being conducted and published, technology continues to advance with improvements in image quality as well as radiation exposure. This lag in research results presents a challenge when assessing the landscape of technological possibilities for imaging of VTE.

MRI


In magnetic resonance imaging (MRI) images are obtained by using a strong magnetic field and radiofrequency pulses, without involving ionizing radiation.⁵⁵ In this section, magnetic resonance angiography (MRA) and magnetic resonance direct thrombus imaging (MRDTI) are discussed.

MRA

Magnetic resonance angiography (MRA) is not yet ready for use in clinical practice where it pertains to PE detection due to insufficient sensitivity and a high proportion of inconclusive scans.^{1,56,57} In addition, MR techniques are associated with low availability in urgent settings, longer study duration compared with CTPA, and high costs.⁷ In the multicentre PIOPED III study that recruited patients between 2006 and 2008, diagnostic accuracy of MRA was evaluated using a reference standard based on various tests, including CTPA, V/Q scan, CT venography, venous ultrasonography, D-dimer test and clinical assessment.⁵⁸ A quarter of the patients had technically inadequate MRA scans. Sensitivity of gadolinium-enhanced MRA was 78% among participants with adequate scans, dropping to 57% when those with technically inadequate scans were included. Reasons for inadequate quality resulting in uninterpretable examinations were mostly poor vascular opacification and motion artifacts.⁵⁹ The prospective IRM-EP study evaluated MRI imaging consisting of unenhanced, perfusion and angiography sequences with gadolinium-based contrast for diagnosis of PE, with

64-detector CTPA serving as the reference method (**Figure 4**).⁶⁰ Inconclusive MRI results were found in 28-30% of the 300 included patients, mainly due to technically inadequate examinations. Overall sensitivity was 69% when considering inconclusive MRI examinations to be negative, and 79-85% for patients with conclusive MRI scans, with specificity of 99-100%. Sensitivity decreased for more distal PE location, from 97-100% for proximal PE and 68-92% for segmental PE to 21-33% for subsegmental PE. With separate evaluation of the sequences, contrast-enhanced angiography sequences showed the highest sensitivity (83-90%) and specificity (98.5-100%), but reading the sequences separately resulted in a higher proportion of inconclusive results ranging from 34-52%.⁶¹ Given the limited sensitivity, MRA cannot be used as a stand-alone test to exclude PE.¹

Figure 4: Magnetic resonance imaging including unenhanced, perfusion, and angiography sequences with gadolinium-based contrast.

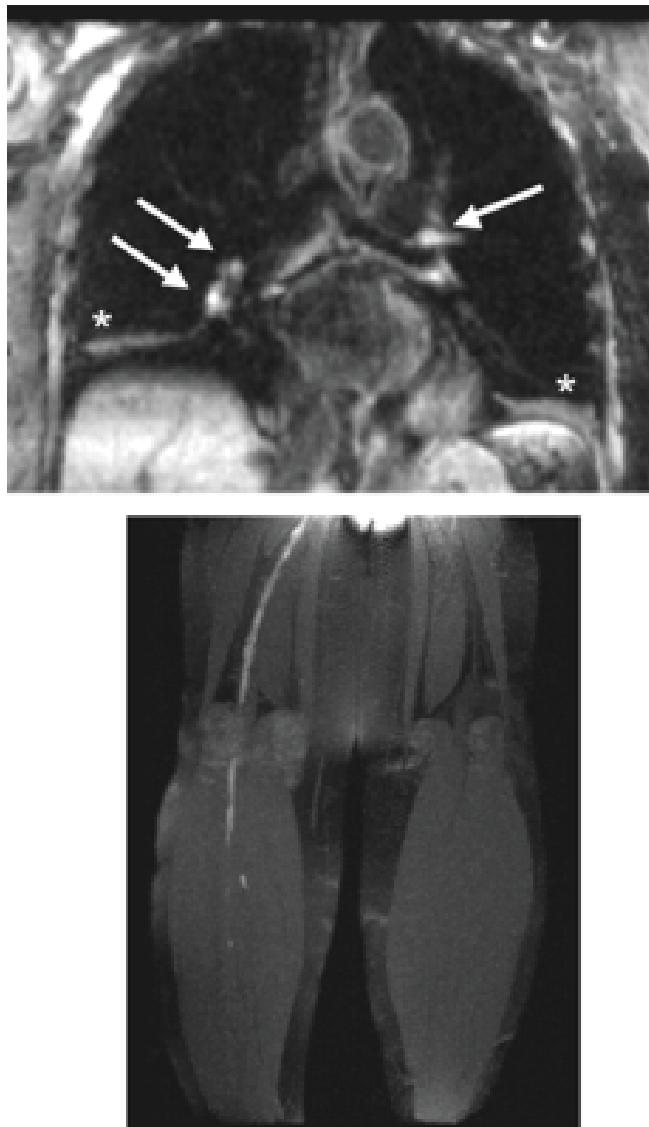
(A) Unenhanced magnetic resonance imaging (MRI) sequence, demonstrating marginal clots within the right interlobar pulmonary artery (arrow), and (B) angiography MRI sequence, with (C) corresponding image on computed tomography angiography. (D) Perfusion MRI sequence demonstrating right-sided perfusion defect. Reprinted from Journal of Thrombosis and Haemostasis, Volume 10, Issue 5, M.P. Revel et al., Diagnostic accuracy of magnetic resonance imaging for an acute pulmonary embolism: results of the 'IRM-EP' study, Pages 743-750, May 2012, with permission from Elsevier.⁶⁰ RightsLink license number 5654790081569.

Still, provided sensitivity improves, MRA may provide an alternative to CTPA that is independent of ionizing radiation or iodinated contrast media.⁶²⁻⁶⁸ Of note, the safety of gadolinium-based contrast during pregnancy remains uncertain as the long-term effects on foetal and neonatal outcomes are unknown,⁶⁹ and the American College of Radiology (ACR) Manual on Contrast media recommends avoiding routine administration of gadolinium-based contrast agents during pregnancy.⁷⁰ To date, use of this technique is therefore not recommended in pregnant women suspected of PE.^{1,7} As a gadolinium-free contrast agent, ferumoxytol is considered an alternative for MRA for assessment of PE during pregnancy or in case of contrast allergies.⁷¹ Ferumoxytol is an intravenous iron supplement which is used for anaemia treatment including treatment of iron-deficiency anaemia during pregnancy and has been shown to result in good image quality when used as a contrast agent for MRA for the evaluation of PE in pregnant women.⁷² However, the use of ferumoxytol is not included in the current ACR manual or clinical guidelines for diagnosis of PE.

The anticipated results of a large multicentre outcome study (IRM-EP2) evaluating the diagnostic performance of MRA in combination with venous ultrasound of the legs in patients with suspected PE may provide more ground for the use of MRA in current practice (ClinicalTrials.gov identifier NCT02059551; recruitment completed).⁷³

MRDTI

Magnetic resonance direct thrombus imaging (MRDTI) is a non-invasive technique that does not require the administration of intravenous contrast.⁷⁴⁻⁷⁶ Thrombus detection with the MRDTI technique is based on the formation of methaemoglobin in fresh thrombus. T1 shortening caused by methaemoglobin will generate high signal intensity from the intravenous thrombus on T1-weighted sequences against the suppressed background tissues.⁷⁴⁻⁷⁷ The high signal appears to be visible in the early stages of clot formation (described in cases within 8-12 hours and the first days after symptom onset) and changes in signal intensity over time may enable the estimation of thrombus age and the monitoring of clots in response to treatment.^{75,77} The high signal intensity has been observed to plateau after approximately 3 weeks and was found to normalize during a period of 6 months.⁷⁶⁻⁷⁹ Direct visualization of the thrombus provides information about thrombus characteristics and enables approximation of clot volume.


MRDTI imaging could overcome several difficulties experienced with techniques such as ultrasonography and CT. With MR imaging, inaccessible deep veins may be better visualized, for instance deep veins within the pelvis or in limbs that are not

accessible due to plaster casts.⁷⁵ Also, MRDTI can be used as a diagnostic test in specific situations, such as suspected recurrent ipsilateral deep vein thrombosis (DVT), suspected thrombosis during pregnancy, or in case of hypersensitivity or contra-indications for contrast administration.⁸⁰⁻⁸⁷

MRDTI has been evaluated in clinical studies, mainly for diagnosis of DVT. In patients with acute DVT diagnosed by conventional venography, MRDTI scanning confirmed DVT in 17 out of 18 patients.⁷⁵ Furthermore, in a prospective study, MRDTI scanning of 101 patients with suspected DVT who had been subjected to venography, demonstrated overall sensitivity of two reviewers of 94-96%, specificity of 90-92%, and good interobserver reliability (k statistic 0.89-0.98).⁸⁸ In both studies, MRDTI scanning was well tolerated. As DVT and PE are manifestations of the same disease, the technique was believed to be applicable for diagnosis of PE as well (**Figure 5**).⁷⁸ MRDTI of the chest in 13 patients with suspected PE showed positive signal (i.e. area of high signal intensity on direct embolus imaging MR) in all patients with PE diagnosed using conventional pulmonary angiography or a combination of diagnostic tests including ventilation perfusion scan, lower limb ultrasound, laboratory tests, and clinical follow-up.⁸⁹ A two-dimensional gradient-echo (turbo-FLASH) breath-hold MR technique was used, that combined direct visualization of emboli by a direct imaging of embolus (DIE) sequence with an angiographic sequence for depiction of the pulmonary vasculature and clot localization. The MR technique demonstrated three additional emboli that were not detected with pulmonary angiography, which may be due to failure of the DIE technique, an obscured filling defect on pulmonary angiography by contrast in a partially occluded vessel, or dissolution of thrombus in the interval between MR and pulmonary angiography. The breath-hold MR technique was tolerated by all patients, except for one patient who had severe dyspnea. Even so, as for MRA, MRDTI is a long way from becoming a relevant diagnostic test in the routine diagnostic work-up of suspected acute PE. Limited availability of MRI, associated costs, and also lack of proper evaluation in prospective studies are the main barriers.

Moreover, the accuracy of MRDTI for smaller, (sub)segmental clots is unknown and may be insufficient; it will be challenging to equal the accuracy for the detection of PE that is achieved with current multidetector CT techniques. Given that the appearance of high signal intensity relies on methaemoglobin formation, the role of MRDTI in the acute setting (i.e. within hours after formation of methaemoglobin in acute thrombosis) could be further explored.

Figure 5: Magnetic resonance direct thrombus imaging of the chest and legs.

Upper image: Magnetic resonance direct thrombus imaging (MRDTI) demonstrating multiple bilateral pulmonary emboli (arrows) with associated lung atelectasis (*).

Lower image: MRDTI demonstrating deep vein thrombosis in the right leg.

Reprinted from Journal of Thrombosis and Haemostasis, Volume 1, Issue 7, A.R. Moody, Magnetic resonance direct thrombus imaging, Pages 1403-1409, July 2003, with permission from Elsevier.⁷⁸ RightsLink license number 5654790546262.

MRDTI may play a role in the follow-up of acute PE^{90,91}: estimating thrombus age holds the potential for the differentiation between acute and chronic PE, which can be clinically relevant given the therapeutic implications. MRDTI was shown to successfully differentiate between acute and chronic PE, as illustrated by two patient cases.⁹² MRDTI showed high intensity signals that corresponded to thrombi in the pulmonary arteries, demonstrated on computed tomography pulmonary angiography (CTPA). Follow-up CTPA and MRDTI after 5 months demonstrated dissolution of the PE and absence of high intensity signals, respectively. In another patient who was diagnosed with CTEPH, thrombus observed on CTPA did not have high signal on MRDTI. Moreover, the role of MRDTI in pre-operative assessment of the presence of acute thrombosis in CTEPH was described in a case report.⁹³ During pulmonary endarterectomy (PEA), which is the definitive treatment for CTEPH, removal of obstructive material from the pulmonary arteries can be more challenging in the presence of subacute thrombosis of days to weeks old, since this material is strongly attached to the intima of the vessel walls and no fibrotic organization has yet occurred. In the patient case, MRDTI scan was performed one day before PEA, demonstrating a positive signal in one of the pulmonary arteries. The high signal corresponded to fresh thrombus that was removed during the surgery. No positive signal was observed in the arteries where only fibrotic chronic material was removed. Based on these findings, MRDTI could play a role in the diagnostic work-up and operability assessment of patients with CTEPH.

Artificial intelligence

Artificial intelligence (AI) may provide innovative approaches to diagnosing acute PE.^{94,95} The number of performed CTPA examinations for suspected PE has continued to increase, as well as the number of images per exam due to advancing techniques, leading to higher workload and a larger number of incidental findings.^{94,96} Based on data of a teaching hospital in the Netherlands, the number of chest CT scans for suspected PE performed during on-call hours has grown by 1360% in the period between 2006 and 2020, which may be explained by easier access to CT and overuse of (more defensive) imaging.⁹⁷ Higher examination volumes, in turn, have been found to be associated with an absolute higher number of interpretive discrepancies.⁹⁸ AI tools have the potential to improve performance, accelerate workflows for the evaluation of PE and enhance efficiency and productivity, and thus relieve the workload of radiologists.⁹⁴ Of note, advancements in medical imaging applications, including elaboration of existing applications or new imaging applications, were not shown to lead to a decrease but an increase of workload

of radiologists, mostly due to increase in interpretation and post-processing time or due to the introduction of new applications in practice.⁹⁹ This underlines the importance of careful evaluation of the value of AI strategies. Before these AI tools can be widely implemented in clinical practice, the balance must tip towards the benefits.

AI may contribute to current daily practice in four ways: help ascertaining a proper indication for CTPA, classification of scans, detection of clots, and prognostication.

Indication for CTPA

AI may support the decision to order examinations for evaluation of PE, which is currently based on clinical decision rules and D-dimer tests.^{100, 101} The Development and Performance of the Pulmonary Embolism Result Forecast machine learning model (PERFORM) was developed as a decision support tool for ordering CTPA.¹⁰² Raw data from electronic medical records (EMR; including demographics, vital signs, laboratory test results, diagnoses and medication use) were transformed into feature vectors that were used to train a machine learning model for predicting PE imaging outcomes, to provide the patient-specific PE risk for patients referred for CT imaging for PE. The model was tested on EMR data obtained from two academic hospitals in the United States: training and validation of the model was performed on a dataset of 3397 CT examinations conducted for PE, followed by external validation on 240 patients. Comparisons to clinical scoring systems (Wells score, Pulmonary Embolism Rule-out Criteria [PERC], and revised Geneva score) were performed on random samples of 100 and 101 consecutive outpatients from the two hospitals. The model achieved an area under the receiver operating characteristic curve (AUROC) for predicting a subsequent PE-positive CT of 0.90 in the validation cohort and 0.71 in the external cohort.¹⁰² In the outpatient cohorts, the model had better AUROC performance than the clinical scoring systems that are currently used in practice.

Adequate AI-based decision support for performing CTPA may help prevent unnecessary testing and overdiagnosis, and reduce costs and radiation exposure.

Classification

Another potential role for computer algorithms is categorizing and labelling images based on specific rules, which allows the classification of images as with or without PE.⁹⁵ Worklist prioritization of examinations using AI may lead to faster diagnosis of PE. This could be useful in the outpatient setting where the time to review and report outpatient CT examinations may vary and incidental PEs can be found, particularly in certain patient

populations such as oncology patients.⁹⁴ AI-based prioritization of the radiologist' reading worklist of routine contrast-enhanced chest CT scans in adult patients with cancer was shown to reduce the time to diagnosis of incidental PE (from a median detection and notification time of several days to 87 minutes) as well as the rate of missed incidental PEs, from 44.8% to 2.6% when radiologists received AI assistance.¹⁰⁵

Detection

Several AI models and algorithms have been developed for the detection of PE on CTPA, and studies evaluating AI algorithms have shown variability in diagnostic performance.¹⁰⁴⁻¹²⁰ A meta-analysis that was published in 2021, included data from five retrospective studies and demonstrated a pooled sensitivity of 0.88 and specificity of 0.86 for AI algorithms for detection of PE on CTPA.^{95,104,107-109,121} In these studies, CT scans were reviewed or annotated by radiologists to confirm PE diagnosis. However, three of the five studies were classified as having high risk of bias in at least one category of the used quality assessment tool for diagnostic accuracy studies, and none of the studies examined AI in a clinical setting. Weikert et al. evaluated a FDA-approved and CE-marked AI algorithm which was trained and validated on 28,000 CTPAs, and found high diagnostic accuracy with a sensitivity of 92.7% and a specificity of 95.5%.¹⁰⁴ The same AI algorithm was compared to the performance of radiologists, with the reference standard based on retrospective review of radiological reports and AI outputs by one radiologist and one information technology (IT) engineer with access to the medical records, showing that AI resulted in higher sensitivity and negative predictive value (NPV), whereas radiologists had higher specificity and positive predictive value (PPV).¹²² Notably, 19 PE cases that were missed by radiologists were captured by AI (most proximal clot location: 3 lobar, 14 segmental, and 2 subsegmental), which corresponds to a correction of one missed diagnosis out of every 63 CTPA scans based on this cohort of 1202 patients. The other way around, 14 PEs were detected by radiologists but missed by AI: 3 proximal, 2 lobar, 7 segmental, and 2 subsegmental PE. Based on a survey distributed to radiologists 9 months after introduction of the AI algorithm, 72% of radiologists were positive or strongly positive that AI improved their diagnostic confidence.¹²² The mean interpretation duration for a single CTPA in a cohort of patients from 2020 after AI implementation was 15.6 (SD 9.8) minutes, compared with 14.6 (SD 9.1) minutes in a pre-AI cohort from 2018.¹²² Another retrospective study showed that diagnostic accuracy of this AI algorithm was higher compared to the initial radiologist report, with both higher sensitivity and specificity.¹²³ These findings demonstrate how AI assistance could support radiologists.

Several retrospective studies specifically evaluated computer-aided detection or AI algorithms for the detection of missed PEs.¹²⁴⁻¹²⁶ Computer-aided detection could identify 77% of PEs that had been missed in clinical practice, according to retrospective review of CTPA scans by three radiologists who judged PE to be present while the presence of PE was not described in the report.¹²⁴ In two studies, initially missed and unreported incidental PE could be detected by AI algorithms on CT examinations that were not performed with a dedicated PE protocol (such as routine contrast-enhanced chest CTs, or abdominal and pelvic CTs that include the lung bases).^{125, 126} Another algorithm could detect additional incidental PEs on conventional contrast-enhanced chest CT examinations (no CTPAs) that were not detected by radiologists, however, the algorithm also missed incidental PEs that radiologists did detect.¹²⁷ Furthermore, Ebrahimian et al. evaluated the performance of an FDA-approved, commercially available AI algorithm in CTPAs that were suboptimal due to artifacts or inadequate contrast enhancement.¹²⁸ The reference standard for presence of PE and adequacy of CTPAs was based on consensus of two radiologists who were unaware of the AI output. Among 133 suboptimal scans and 197 optimal scans, performance of the algorithm was comparable (sensitivity 100%, specificity 89%, AUC 0.89 versus sensitivity 96%, specificity 92%, AUC 0.87, respectively). On suboptimal CTPAs, the AI algorithm did not miss any PE although the PE prevalence was low (14%, versus 40% in patients with optimal CTPA).

As current evidence is based on studies with a retrospective design and may be affected by bias, prospective studies – preferably randomized – are needed to compare AI versus standard radiological practice.

Prognostication

Another task that AI algorithms can provide is the segmentation or delineation of the borders of structures, which is valuable in quantitative image analysis.^{95, 129} Deep learning methods were indeed shown to accurately segment PE on CT images.^{130, 131}

Clot burden quantitatively measured with a deep learning convolutional neural network method to perform clot segmentation and calculate clot volume, correlated with the clot burden assessed with Qanadli scores and Mastora scores (rho 0.82 and 0.87, respectively).^{108, 132-134} Clot burden measured with a deep learning model also correlated with RV functional parameters on CTPA.¹⁰⁸ In a retrospective study of 101 patients with acute PE confirmed on CTPA, automated calculation of the RV/LV diameter ratio on CTPA using AI post-processing software was feasible in 87% of patients and correlated with manual analysis of RV/LV ratio (intraclass coefficient 0.78 to 0.83).¹³⁵ Use of AI may therefore contribute to the risk stratification of patients with acute PE.

Impact of clinical introduction

A sample of 440 medical imaging studies published in 2019 was evaluated in a study to assess the effect of imaging applications on the workload of radiologists. The authors demonstrated that almost half of the medical imaging applications, including AI applications, would increase the workload of radiologists, whilst 4-5% of the studied applications would reduce the workload.⁹⁹ Notably, AI applications were mainly associated with increased workload because of additional time required for post-processing and interpretation. Schmuelling et al. implemented a deep learning method for PE detection on CTPA combined with an electronic notification system at their radiology department and evaluated whether this improved the workflow.¹³⁶ Via a widget running on all reading stations, a pop-up window appeared for 60 seconds if the AI algorithm suspected a PE, to allow for immediate review of the images by the radiologist. The authors did not find a reduction in report reading and communication times, time to anticoagulation, or patient turnaround time in the emergency department. On the other hand, Batra et al. evaluated the effect of worklist prioritization based on an AI tool for flagging of suspected positive findings of acute PE on CTPA examinations and reprioritizing these to the top of the worklist, and found that report turnaround time for PE-positive CTPA examinations (i.e. time from completion of examination to available report) reduced.¹³⁷ Specifically, wait time (i.e. time from examination to initiation of report) reduced with a mean of 12 minutes for CTPA examinations positive for PE, while read time (time from report initiation to available report) did not differ between the pre-AI and post-AI periods.

Challenges

The development and implementation of AI algorithms comes with challenges. Training of deep learning algorithms requires large anonymized high-quality annotated datasets of labelled images, with accurate labelling of the pathology of interest, which may be affected by inter-reader variability.^{94,138,139} Medical imaging datasets should be large and heterogeneous, to limit bias due to geographical or technological factors or inherent bias e.g. based on age or gender, and avoid overfitting and underfitting.^{94,139,140} Integrating non-image data, such as the indication for the examination, medical history and clinical parameters, may add rich insights but also complexity.^{94,138,139} Deep learning applications should be thoroughly trained, tested and validated, with consideration of ethical and regulatory aspects and data privacy.¹³⁸⁻¹⁴⁰ After successful implementation in clinical practice, appropriate monitoring and maintenance of AI tools should be ensured.¹⁴¹

Another important challenge are the costs related to AI clinical tools and licenses, that may significantly increase the CTPA examination costs. Taking a broader perspective and looking at the vast array of AI applications for CT that are currently being evaluated for any CT, integration of AI tools for multiple indications is necessary to help arriving at applications of AI that are viable in clinical practice.

In conclusion, AI could provide value in diagnosing PE, but future studies should compare AI to current standard radiological practice and address the challenges that come along with its development and implementation, including assessment of cost-effectiveness, and should further evaluate the impact of clinical introduction of AI on patient outcomes.

Conclusions

Available and emerging diagnostic strategies for detection and management of acute PE extend beyond CTPA. The potential of PCCT, perfusion iodine maps based on subtraction or dual-energy acquisition, and SPECT and MRI techniques should be confirmed in future prospective management outcome studies (**Table 1**), with attention to relevant (long-term) outcomes, including patient-centered outcomes in addition to conventional clinical outcomes.¹⁴² Moreover, cost-benefit analyses could provide insight into the cost-effectiveness of these technologies. AI holds potential to improve workflows for the evaluation of PE, by providing support in various capacities. Further research is needed to establish which AI strategies are feasible to use in clinical practice and add value to the current diagnostic management of PE.

Table 1: Limitations and challenges associated with the imaging techniques.

Imaging technique	Limitations	Challenges and future research directions
CTPA	<ul style="list-style-type: none"> - Radiation exposure - Exposure to iodinated contrast 	<ul style="list-style-type: none"> - Dose reduction strategies for continuous reduction in radiation dose - With detection of contrast-filling defects in subsegmental pulmonary arteries, unknown clinical relevance of isolated subsegmental PE (<i>SAFE-SSPE trial NCT04263038 is currently ongoing</i>)
PCCT	<ul style="list-style-type: none"> Compared to conventional CT: - Higher costs for PCCT hardware/ software systems - Larger storage space required 	<ul style="list-style-type: none"> - Potential of higher resolution and lower radiation dose is yet to be confirmed in future prospective management outcome studies
Perfusion iodine maps based on subtraction or DECT	<ul style="list-style-type: none"> - Compared to CTPA alone, sensitivity did not significantly improve, and the value of iodine maps for guiding management of the patient may be limited - DECT does require dedicated hardware 	<ul style="list-style-type: none"> - Large prospective diagnostic or therapeutic management outcome studies investigating CT perfusion images combined with DECT or CTPA are unavailable
SPECT	<ul style="list-style-type: none"> - The optimal technique (V/Q SPECT vs Q SPECT, with or without non-enhanced CT) is not yet defined - Unable to provide alternative diagnosis if PE is ruled out 	<ul style="list-style-type: none"> - SPECT imaging techniques should be validated in large prospective management outcome studies, and the accuracy of SPECT compared with planar V/Q scintigraphy and CTPA should be prospectively determined using an independent reference standard
MRA	<ul style="list-style-type: none"> - Insufficient sensitivity - High proportion of inconclusive scans - Limited availability (especially in urgent settings) - Longer study duration compared with CTPA - Costs associated with MRI 	<ul style="list-style-type: none"> - Provided sensitivity improves, MRA may provide an alternative to CTPA that is independent of radiation or iodinated contrast media (<i>IRM-EP2 study NCT02059551 evaluating diagnostic performance of MRA combined with leg ultrasound for suspected PE is currently ongoing</i>) - Use of ferumoxytol as alternative for gadolinium-based contrast agents should be further evaluated before recommended in guidelines
MRDTI	<ul style="list-style-type: none"> - Limited availability (especially in urgent settings) - Costs associated with MRI - To date, mainly evaluated for diagnosis of deep vein thrombosis 	<ul style="list-style-type: none"> - MRDTI for diagnosis of PE should be evaluated in prospective outcome studies - Accuracy of MRDTI for smaller, (sub) segmental clots is unknown: challenge to equal accuracy of multidetector CTPA - Appearance of high signal intensity relies on methaemoglobin formation: role of MRDTI in the acute setting (i.e. within hours) could be further explored

Abbreviations CTPA: computed tomography pulmonary angiography, PCCT: photon-counting computed tomography, DECT: dual-energy computed tomography, SPECT: single-photon emission computed tomography, MRA: magnetic resonance angiography, MRDTI: magnetic resonance direct thrombus imaging, CT: computed tomography, V/Q: ventilation/perfusion, PE: pulmonary embolism, MRI: magnetic resonance imaging, SAFE-SSPE: Surveillance versus Anticoagulation For low-risk patients with isolated SubSegmental Pulmonary Embolism.

References

1. Konstantinides SV, Meyer G, Becattini C, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). *Eur Heart J.* 2020;41(4):543-603.
2. Huisman MV, Barco S, Cannegieter SC, et al. Pulmonary embolism. *Nat Rev Dis Primers.* 2018;4:18028.
3. Huisman MV, Klok FA. How I diagnose acute pulmonary embolism. *Blood.* 2013;121(22):4443-8.
4. Huisman MV, Klok FA. Diagnostic management of acute deep vein thrombosis and pulmonary embolism. *J Thromb Haemost.* 2013;11(3):412-22.
5. Nguyen ET, Hague C, Manos D, et al. Canadian Society of Thoracic Radiology/Canadian Association of Radiologists Best Practice Guidance for Investigation of Acute Pulmonary Embolism, Part 1: Acquisition and Safety Considerations. *Can Assoc Radiol J.* 2022;73(1):203-13.
6. Zhang LJ, Lu GM, Meinel FG, et al. Computed tomography of acute pulmonary embolism: state-of-the-art. *Eur Radiol.* 2015;25(9):2547-57.
7. Kirsch J, Wu CC, Bolen MA, et al. ACR Appropriateness Criteria® Suspected Pulmonary Embolism: 2022 Update. *J Am Coll Radiol.* 2022;19(11s):S488-s501.
8. Lu GM, Luo S, Meinel FG, et al. High-pitch computed tomography pulmonary angiography with iterative reconstruction at 80 kVp and 20 mL contrast agent volume. *Eur Radiol.* 2014;24(12):3260-8.
9. Alobeidi H, Alshamari M, Widell J, et al. Minimizing contrast media dose in CT pulmonary angiography with high-pitch technique. *Br J Radiol.* 2020;93(1111):20190995.
10. Rajiah P, Ciancibello L, Novak R, et al. Ultra-low dose contrast CT pulmonary angiography in oncology patients using a high-pitch helical dual-source technology. *Diagn Interv Radiol.* 2019;25(3):195-203.
11. Silva M, Milanese G, Cobelli R, et al. CT angiography for pulmonary embolism in the emergency department: investigation of a protocol by 20 ml of high-concentration contrast medium. *Radiol Med.* 2020;125(2):137-44.
12. Schönfeld T, Seitz P, Krieghoff C, et al. High-pitch CT pulmonary angiography (CTPA) with ultra-low contrast medium volume for the detection of pulmonary embolism: a comparison with standard CTPA. *Eur Radiol.* 2023.
13. Chen T, Xiao H, Shannon R. Does dual-energy computed tomography pulmonary angiography (CTPA) have improved image quality over routine single-energy CTPA? *J Med Imaging Radiat Oncol.* 2019;63(2):170-4.
14. Brendlin AS, Winkelmann MT, Peisen F, et al. Diagnostic Performance of a Contrast-Enhanced Ultra-Low-Dose High-Pitch CT Protocol with Reduced Scan Range for Detection of Pulmonary Embolisms. *Diagnostics (Basel).* 2021;11(7).
15. Winkelmann MT, Walter SS, Stock E, et al. Effects of radiation dose reduction on diagnostic performance of 3rd generation Dual Source CT pulmonary angiography. *Eur J Radiol.* 2021;134:109426.
16. Petritsch B, Pannenbecker P, Weng AM, et al. Comparison of Dual- and Single-Source Dual-Energy CT for Diagnosis of Acute Pulmonary Artery Embolism. *Rofo.* 2021;193(4):427-36.
17. Bongartz G., Golding S.J., Jurik A.G., et al. European Guidelines for Multislice Computed Tomography. Funded by the European Commission. Contract number FIGM-CT2000-20078-CT-TIP. March 2004.
18. Gosling O, Loader R, Venables P, et al. Cardiac CT: are we underestimating the dose? A radiation dose study utilizing the 2007 ICRP tissue weighting factors and a cardiac specific scan volume. *Clin Radiol.* 2010;65(12):1013-7.
19. Tester J, Rees M, Pascoe D, et al. Diagnostic imaging for suspected pulmonary embolism during pregnancy and postpartum: A comparative radiation dose study. *J Med Imaging Radiat Oncol.* 2023;67(3):223-31.

20. Baumgartner C, Tritschler T, Aujesky D. Subsegmental Pulmonary Embolism. *Hamostaseologie*. 2023.
21. Baumgartner C, Klok FA, Carrier M, et al. Clinical Surveillance vs. Anticoagulation For low-risk patients with isolated SubSegmental Pulmonary Embolism: protocol for a multicentre randomised placebo-controlled non-inferiority trial (SAFE-SSPE). *BMJ Open*. 2020;10(11):e040151.
22. Boon G, Ende-Verhaar YM, Beenen LFM, et al. Prediction of chronic thromboembolic pulmonary hypertension with standardised evaluation of initial computed tomography pulmonary angiography performed for suspected acute pulmonary embolism. *Eur Radiol*. 2022;32(4):2178-87.
23. Ende-Verhaar YM, Meijboom LJ, Kroft LJM, et al. Usefulness of standard computed tomography pulmonary angiography performed for acute pulmonary embolism for identification of chronic thromboembolic pulmonary hypertension: results of the InShape III study. *J Heart Lung Transplant*. 2019;38(7):731-8.
24. Braams NJ, Boon G, de Man FS, et al. Evolution of CT findings after anticoagulant treatment for acute pulmonary embolism in patients with and without an ultimate diagnosis of chronic thromboembolic pulmonary hypertension. *Eur Respir J*. 2021;58(6).
25. Boon G, Jairam PM, Groot GMC, et al. Identification of chronic thromboembolic pulmonary hypertension on CTPAs performed for diagnosing acute pulmonary embolism depending on level of expertise. *Eur J Intern Med*. 2021;93:64-70.
26. Willemink MJ, Persson M, Pourmorteza A, et al. Photon-counting CT: Technical Principles and Clinical Prospects. *Radiology*. 2018;289(2):293-312.
27. Si-Mohamed SA, Mialhes J, Rodesch PA, et al. Spectral Photon-Counting CT Technology in Chest Imaging. *J Clin Med*. 2021;10(24).
28. Greffier J, Villani N, Defez D, et al. Spectral CT imaging: Technical principles of dual-energy CT and multi-energy photon-counting CT. *Diagn Interv Imaging*. 2023;104(4):167-77.
29. Pannenbecker P, Huflage H, Grunz JP, et al. Photon-counting CT for diagnosis of acute pulmonary embolism: potential for contrast medium and radiation dose reduction. *Eur Radiol*. 2023;33(11):7830-9.
30. Agostini A, Borgheresi A, Mari A, et al. Dual-energy CT: theoretical principles and clinical applications. *Radiol Med*. 2019;124(12):1281-95.
31. Sanghavi PS, Jankharia BG. Applications of dual energy CT in clinical practice: A pictorial essay. *Indian J Radiol Imaging*. 2019;29(3):289-98.
32. Weiss J, Notohamiprodjo M, Bongers M, et al. Noise-optimized monoenergetic post-processing improves visualization of incidental pulmonary embolism in cancer patients undergoing single-pass dual-energy computed tomography. *Radiol Med*. 2017;122(4):280-7.
33. Zantonelli G, Cozzi D, Bindi A, et al. Acute Pulmonary Embolism: Prognostic Role of Computed Tomography Pulmonary Angiography (CTPA). *Tomography*. 2022;8(1):529-39.
34. Weidman EK, Plodkowski AJ, Halpenny DF, et al. Dual-Energy CT Angiography for Detection of Pulmonary Emboli: Incremental Benefit of Iodine Maps. *Radiology*. 2018;289(2):546-53.
35. Chae EJ, Seo JB, Jang YM, et al. Dual-energy CT for assessment of the severity of acute pulmonary embolism: pulmonary perfusion defect score compared with CT angiographic obstruction score and right ventricular/left ventricular diameter ratio. *AJR Am J Roentgenol*. 2010;194(3):604-10.
36. Grob D, Oostveen LJ, Prokop M, et al. Imaging of pulmonary perfusion using subtraction CT angiography is feasible in clinical practice. *Eur Radiol*. 2019;29(3):1408-14.
37. van Dam LF, Kroft LJM, Boon G, et al. Computed tomography pulmonary perfusion imaging and 3-months clinical outcomes after acute pulmonary embolism. *Thromb Res*. 2021;199:32-4.
38. Grob D, Smit E, Prince J, et al. Iodine Maps from Subtraction CT or Dual-Energy CT to Detect Pulmonary Emboli with CT Angiography: A Multiple-Observer Study. *Radiology*. 2019;292(1):197-205.

39. van Dam LF, Kroft LJM, Huisman MV, et al. Computed Tomography Pulmonary Perfusion for Prediction of Short-Term Clinical Outcome in Acute Pulmonary Embolism. *TH Open*. 2021;5(1):e66-e72.
40. Bailey EA, Bailey DL, Roach PJ. V/Q imaging in 2010: a quick start guide. *Semin Nucl Med*. 2010;40(6):408-14.
41. Metter D, Tulchinsky M, Freeman LM. Current Status of Ventilation-Perfusion Scintigraphy for Suspected Pulmonary Embolism. *AJR Am J Roentgenol*. 2017;208(3):489-94.
42. Bajc M, Olsson B, Palmer J, et al. Ventilation/Perfusion SPECT for diagnostics of pulmonary embolism in clinical practice. *J Intern Med*. 2008;264(4):379-87.
43. Gutte H, Mortensen J, Jensen CV, et al. Detection of pulmonary embolism with combined ventilation-perfusion SPECT and low-dose CT: head-to-head comparison with multidetector CT angiography. *J Nucl Med*. 2009;50(12):1987-92.
44. Stein PD, Freeman LM, Sostman HD, et al. SPECT in acute pulmonary embolism. *J Nucl Med*. 2009;50(12):1999-2007.
45. Leblanc M, Leveillée F, Turcotte E. Prospective evaluation of the negative predictive value of V/Q SPECT using 99mTc-Technegas. *Nucl Med Commun*. 2007;28(8):667-72.
46. Grüning T, Drake BE, Farrell SL, et al. Three-year clinical experience with VQ SPECT for diagnosing pulmonary embolism: diagnostic performance. *Clin Imaging*. 2014;38(6):831-5.
47. Collart JP, Roelants V, Vanpee D, et al. Is a lung perfusion scan obtained by using single photon emission computed tomography able to improve the radionuclide diagnosis of pulmonary embolism? *Nucl Med Commun*. 2002;23(11):1107-13.
48. Reinartz P, Wildberger JE, Schaefer W, et al. Tomographic imaging in the diagnosis of pulmonary embolism: a comparison between V/Q lung scintigraphy in SPECT technique and multislice spiral CT. *J Nucl Med*. 2004;45(9):1501-8.
49. Stein PD, Sostman HD, Matta F. Critical review of SPECT imaging in pulmonary embolism. *Clinical and Translational Imaging*. 2014;2(5):379-90.
50. Bajc M, Schümichen C, Grüning T, et al. EANM guideline for ventilation/perfusion single-photon emission computed tomography (SPECT) for diagnosis of pulmonary embolism and beyond. *Eur J Nucl Med Mol Imaging*. 2019;46(12):2429-51.
51. Squizzato A, Venturini A, Pelitti V, et al. Diagnostic Accuracy of V/Q and Q SPECT/CT in Patients with Suspected Acute Pulmonary Embolism: A Systematic Review and Meta-analysis. *Thromb Haemost*. 2023;123(7):700-13.
52. Iftikhar IH, Iftikhar NH, Naeem M, et al. SPECT Ventilation/Perfusion Imaging for Acute Pulmonary Embolism: Meta-analysis of Diagnostic Test Accuracy. *Acad Radiol*. 2023.
53. Phillips JJ, Straiton J, Staff RT. Planar and SPECT ventilation/perfusion imaging and computed tomography for the diagnosis of pulmonary embolism: A systematic review and meta-analysis of the literature, and cost and dose comparison. *Eur J Radiol*. 2015;84(7):1392-400.
54. Bajc M, Olsson B, Gottsäter A, et al. V/P SPECT as a diagnostic tool for pregnant women with suspected pulmonary embolism. *Eur J Nucl Med Mol Imaging*. 2015;42(8):1325-30.
55. van Geuns RJ, Wielopolski PA, de Bruin HG, et al. Basic principles of magnetic resonance imaging. *Prog Cardiovasc Dis*. 1999;42(2):149-56.
56. Huisman MV, Klok FA. Magnetic resonance imaging for diagnosis of acute pulmonary embolism: not yet a suitable alternative to CT-PA. *J Thromb Haemost*. 2012;10(5):741-2.
57. Dronkers CE, Klok FA, Huisman MV. Current and future perspectives in imaging of venous thromboembolism. *J Thromb Haemost*. 2016;14(9):1696-710.
58. Stein PD, Chenevert TL, Fowler SE, et al. Gadolinium-enhanced magnetic resonance angiography for pulmonary embolism: a multicenter prospective study (PIOPED III). *Ann Intern Med*. 2010;152(7):434-43, w142-3.
59. Sostman HD, Jablonski KA, Woodard PK, et al. Factors in the technical quality of gadolinium enhanced magnetic resonance angiography for pulmonary embolism in PIOPED III. *Int J Cardiovasc Imaging*. 2012;28(2):303-12.

60. Revel MP, Sanchez O, Couchon S, et al. Diagnostic accuracy of magnetic resonance imaging for an acute pulmonary embolism: results of the 'IRM-EP' study. *J Thromb Haemost*. 2012;10(5):743-50.
61. Revel MP, Sanchez O, Lefort C, et al. Diagnostic accuracy of unenhanced, contrast-enhanced perfusion and angiographic MRI sequences for pulmonary embolism diagnosis: results of independent sequence readings. *Eur Radiol*. 2013;23(9):2374-82.
62. Aziz MU, Hall MK, Pressacco J, et al. Magnetic Resonance Angiography in Pulmonary Embolism: A Review. *Curr Probl Diagn Radiol*. 2019;48(6):586-91.
63. Starekova J, Chu SY, Bluemke DA, et al. MRA as the Preferred Test for Pulmonary Embolism During the Iodinated Contrast Media Shortage of 2022: A Single-Center Experience. *AJR Am J Roentgenol*. 2023;1-11.
64. Roshkovan L. Editorial Comment: MR Angiography May Finally Be Ready to Become a First-Line Imaging Modality for Assessment of Pulmonary Embolism. *AJR Am J Roentgenol*. 2023.
65. Benson DG, Schiebler ML, Repplinger MD, et al. Contrast-enhanced pulmonary MRA for the primary diagnosis of pulmonary embolism: current state of the art and future directions. *Br J Radiol*. 2017;90(1074):20160901.
66. Allen BD, Schiebler ML, François Cl. Pulmonary Vascular Disease Evaluation with Magnetic Resonance Angiography. *Radiol Clin North Am*. 2020;58(4):707-19.
67. Ohno Y, Yoshikawa T, Kishida Y, et al. Unenhanced and Contrast-Enhanced MR Angiography and Perfusion Imaging for Suspected Pulmonary Thromboembolism. *AJR Am J Roentgenol*. 2017;208(3):517-30.
68. Tsuchiya N, van Beek EJ, Ohno Y, et al. Magnetic resonance angiography for the primary diagnosis of pulmonary embolism: A review from the international workshop for pulmonary functional imaging. *World J Radiol*. 2018;10(6):52-64.
69. Alghamdi SA, Sr. Gadolinium-Based Contrast Agents in Pregnant Women: A Literature Review of MRI Safety. *Cureus*. 2023;15(5):e38493.
70. American College of Radiology (ACR). Manual on Contrast Media. 2023. Available from: https://www.acr.org/-/media/ACR/Files/Clinical-Resources/Contrast_Media.pdf.
71. Bergmann LL, Ackman JB, Starekova J, et al. MR Angiography of Pulmonary Vasculature. *Magn Reson Imaging Clin N Am*. 2023;31(3):475-91.
72. Starekova J, Nagle SK, Schiebler ML, et al. Pulmonary MRA During Pregnancy: Early Experience With Ferumoxytol. *J Magn Reson Imaging*. 2023;57(6):1815-8.
73. Magnetic Resonance Imaging Combined With Venous Ultrasonography of the Legs for Pulmonary Embolism (IRM-EP2). ClinicalTrials.gov Identifier: NCT02059551.
74. Moody AR. Direct imaging of deep-vein thrombosis with magnetic resonance imaging. *Lancet*. 1997;350(9084):1073.
75. Moody AR, Pollock JG, O'Connor AR, et al. Lower-limb deep venous thrombosis: direct MR imaging of the thrombus. *Radiology*. 1998;209(2):349-55.
76. Gautam G, Sebastian T, Klok FA. How to Differentiate Recurrent Deep Vein Thrombosis from Postthrombotic Syndrome. *Hamostaseologie*. 2020;40(3):280-91.
77. Tan M, Mol GC, van Rooden CJ, et al. Magnetic resonance direct thrombus imaging differentiates acute recurrent ipsilateral deep vein thrombosis from residual thrombosis. *Blood*. 2014;124(4):623-7.
78. Moody AR. Magnetic resonance direct thrombus imaging. *J Thromb Haemost*. 2003;1(7):1403-9.
79. Westerbeek RE, Van Rooden CJ, Tan M, et al. Magnetic resonance direct thrombus imaging of the evolution of acute deep vein thrombosis of the leg. *J Thromb Haemost*. 2008;6(7):1087-92.
80. van Dam LF, Dronkers CEA, Gautam G, et al. Magnetic resonance imaging for diagnosis of recurrent ipsilateral deep vein thrombosis. *Blood*. 2020;135(16):1377-85.
81. Dronkers CE, Srámková A, Huisman MV, et al. Accurate diagnosis of iliac vein thrombosis in pregnancy with magnetic resonance direct thrombus imaging (MRDTI). *BMJ Case Rep*. 2016;2016.

82. van Dam LF, Klok FA, Tushuizen ME, et al. Magnetic Resonance Thrombus Imaging to Differentiate Acute from Chronic Portal Vein Thrombosis. *TH Open*. 2020;4(3):e224-e30.

83. van Dam LF, Dronkers CEA, Gautam G, et al. Detection of upper extremity deep vein thrombosis by magnetic resonance non-contrast thrombus imaging. *J Thromb Haemost*. 2021;19(8):1973-80.

84. Dronkers CEA, Klok FA, van Haren GR, et al. Diagnosing upper extremity deep vein thrombosis with non-contrast-enhanced Magnetic Resonance Direct Thrombus Imaging: A pilot study. *Thromb Res*. 2018;163:47-50.

85. Dronkers CEA, Klok FA, van Langevelde K, et al. Diagnosing Recurrent DVT of the Leg by Two Different Non-Contrast-Enhanced Magnetic Resonance Direct Thrombus Imaging Techniques: A Pilot Study. *TH Open*. 2019;3(1):e37-e44.

86. van Dam LF, Kroft LJ, Dronkers CE, et al. Magnetic Resonance Direct Thrombus Imaging (MRDTI) Can Distinguish Between Old and New Thrombosis in the Abdominal Aorta: a Case Report. *Eur J Case Rep Intern Med*. 2020;7(1):001351.

87. van Dam LF, Dronkers CEA, Gautam G, et al. Detection of upper extremity deep vein thrombosis by magnetic resonance non-contrast thrombus imaging. *J Thromb Haemost*. 2021;19(8):1973-80.

88. Fraser DG, Moody AR, Morgan PS, et al. Diagnosis of lower-limb deep venous thrombosis: a prospective blinded study of magnetic resonance direct thrombus imaging. *Ann Intern Med*. 2002;136(2):89-98.

89. Moody AR, Liddicoat A, Krarup K. Magnetic resonance pulmonary angiography and direct imaging of embolus for the detection of pulmonary emboli. *Invest Radiol*. 1997;32(8):431-40.

90. Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. *Eur Heart J*. 2022;43(38):3618-731.

91. Delcroix M, Torbicki A, Gopalan D, et al. ERS statement on chronic thromboembolic pulmonary hypertension. *Eur Respir J*. 2021;57(6).

92. Yamaguchi T, Ehara S, Shibata A, et al. Acute pulmonary embolism with high-intensity signals on magnetic resonance direct thrombus imaging. *Eur Heart J Cardiovasc Imaging*. 2021;22(11):e159.

93. Klok FA, Pruefer D, Rolf A, et al. Magnetic resonance direct thrombus imaging for pre-operative assessment of acute thrombosis in chronic thromboembolic pulmonary hypertension. *Eur Heart J*. 2019;40(11):944.

94. Azour L, Ko JP, Toussie D, et al. Current imaging of PE and emerging techniques: is there a role for artificial intelligence? *Clin Imaging*. 2022;88:24-32.

95. Soffer S, Klang E, Shimon O, et al. Deep learning for pulmonary embolism detection on computed tomography pulmonary angiogram: a systematic review and meta-analysis. *Sci Rep*. 2021;11(1):15814.

96. Wang RC, Miglioretti DL, Marlow EC, et al. Trends in Imaging for Suspected Pulmonary Embolism Across US Health Care Systems, 2004 to 2016. *JAMA Netw Open*. 2020;3(11):e2026930.

97. Bruls RJM, Kwee RM. Workload for radiologists during on-call hours: dramatic increase in the past 15 years. *Insights Imaging*. 2020;11(1):121.

98. Hanna TN, Lamoureux C, Krupinski EA, et al. Effect of Shift, Schedule, and Volume on Interpretive Accuracy: A Retrospective Analysis of 2.9 Million Radiologic Examinations. *Radiology*. 2018;287(1):205-12.

99. Kwee TC, Kwee RM. Workload of diagnostic radiologists in the foreseeable future based on recent scientific advances: growth expectations and role of artificial intelligence. *Insights Imaging*. 2021;12(1):88.

100. Stals MAM, Takada T, Kraaijpoel N, et al. Safety and Efficiency of Diagnostic Strategies for Ruling Out Pulmonary Embolism in Clinically Relevant Patient Subgroups : A Systematic Review and Individual-Patient Data Meta-analysis. *Ann Intern Med*. 2022;175(2):244-55.

101. Stals MAM, Moumneh T, Ainal FN, et al. Noninvasive diagnostic work-up for suspected acute pulmonary embolism during pregnancy: a systematic review and meta-analysis of individual patient data. *J Thromb Haemost*. 2023;21(3):606-15.
102. Banerjee I, Sofela M, Yang J, et al. Development and Performance of the Pulmonary Embolism Result Forecast Model (PERFORM) for Computed Tomography Clinical Decision Support. *JAMA Netw Open*. 2019;2(8):e198719.
103. Topff L, Ranschaert ER, Bartels-Rutten A, et al. Artificial Intelligence Tool for Detection and Worklist Prioritization Reduces Time to Diagnosis of Incidental Pulmonary Embolism at CT. *Radiol Cardiothorac Imaging*. 2023;5(2):e220163.
104. Weikert T, Winkel DJ, Bremerich J, et al. Automated detection of pulmonary embolism in CT pulmonary angiograms using an AI-powered algorithm. *Eur Radiol*. 2020;30(12):6545-53.
105. Müller-Peltzer K, Kretzschmar L, Negrão de Figueiredo G, et al. Present Limitations of Artificial Intelligence in the Emergency Setting - Performance Study of a Commercial, Computer-Aided Detection Algorithm for Pulmonary Embolism. *Rofo*. 2021;193(12):1436-44.
106. Huhtanen H, Nyman M, Mohsen T, et al. Automated detection of pulmonary embolism from CT-angiograms using deep learning. *BMC Med Imaging*. 2022;22(1):43.
107. Huang SC, Kothari T, Banerjee I, et al. PENet-a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. *NPJ Digit Med*. 2020;3:61.
108. Liu W, Liu M, Guo X, et al. Evaluation of acute pulmonary embolism and clot burden on CTPA with deep learning. *Eur Radiol*. 2020;30(6):3567-75.
109. Rajan D, Beymer D, Abedin S, et al. Pi-PE: A Pipeline for Pulmonary Embolism Detection using Sparsely Annotated 3D CT Images2019.
110. Tajbakhsh N, Shin JY, Gotway MB, et al. Computer-aided detection and visualization of pulmonary embolism using a novel, compact, and discriminative image representation. *Med Image Anal*. 2019;58:101541.
111. Yang X, Lin Y, Su J, et al. A Two-Stage Convolutional Neural Network for Pulmonary Embolism Detection From CTPA Images. *IEEE Access*. 2019;PP:1-.
112. Pan I. Deep Learning for Pulmonary Embolism Detection: Tackling the RSNA 2020 AI Challenge. *Radiol Artif Intell*. 2021;3(5):e210068.
113. Belkouchi Y, Lederlin M, Ben Afia A, et al. Detection and quantification of pulmonary embolism with artificial intelligence: The SFR 2022 artificial intelligence data challenge. *Diagn Interv Imaging*. 2023.
114. Ma X, Ferguson EC, Jiang X, et al. A multitask deep learning approach for pulmonary embolism detection and identification. *Sci Rep*. 2022;12(1):13087.
115. Li X, Wang X, Yang X, et al. Preliminary study on artificial intelligence diagnosis of pulmonary embolism based on computer in-depth study. *Ann Transl Med*. 2021;9(10):838.
116. Grenier PA, Ayobi A, Quenet S, et al. Deep Learning-Based Algorithm for Automatic Detection of Pulmonary Embolism in Chest CT Angiograms. *Diagnostics (Basel)*. 2023;13(7).
117. Ajmera P, Kharat A, Seth J, et al. A deep learning approach for automated diagnosis of pulmonary embolism on computed tomographic pulmonary angiography. *BMC Med Imaging*. 2022;22(1):195.
118. Khan M, Shah PM, Khan IA, et al. IoMT-Enabled Computer-Aided Diagnosis of Pulmonary Embolism from Computed Tomography Scans Using Deep Learning. *Sensors (Basel)*. 2023;23(3).
119. Pu J, Gezer NS, Ren S, et al. Automated detection and segmentation of pulmonary embolisms on computed tomography pulmonary angiography (CTPA) using deep learning but without manual outlining. *Med Image Anal*. 2023;89:102882.
120. Langius-Wiffen E, Nijholt IM, de Boer E, et al. Computer-aided Pulmonary Embolism Detection on Virtual Monochromatic Images Compared to Conventional CT Angiography. *Radiology*. 2021;301(2):420-2.

121. Huang SC, Pareek A, Zamanian R, et al. Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection. *Sci Rep.* 2020;10(1):22147.

122. Cheikh AB, Gorincour G, Nivet H, et al. How artificial intelligence improves radiological interpretation in suspected pulmonary embolism. *Eur Radiol.* 2022;32(9):5831-42.

123. Langius-Wiffen E, de Jong PA, Hoesein FAM, et al. Retrospective batch analysis to evaluate the diagnostic accuracy of a clinically deployed AI algorithm for the detection of acute pulmonary embolism on CTPA. *Insights Imaging.* 2023;14(1):102.

124. Kligerman SJ, Lahiji K, Galvin JR, et al. Missed pulmonary emboli on CT angiography: assessment with pulmonary embolism-computer-aided detection. *AJR Am J Roentgenol.* 2014;202(1):65-73.

125. Langius-Wiffen E, de Jong PA, Mohamed Hoesein FA, et al. Added value of an artificial intelligence algorithm in reducing the number of missed incidental acute pulmonary embolism in routine portal venous phase chest CT. *Eur Radiol.* 2023.

126. Wildman-Tobriner B, Ngo L, Mammarappallil JG, et al. Missed Incidental Pulmonary Embolism: Harnessing Artificial Intelligence to Assess Prevalence and Improve Quality Improvement Opportunities. *J Am Coll Radiol.* 2021;18(7):992-9.

127. Batra K, Xi Y, Al-Hreish KM, et al. Detection of Incidental Pulmonary Embolism on Conventional Contrast-Enhanced Chest CT: Comparison of an Artificial Intelligence Algorithm and Clinical Reports. *AJR Am J Roentgenol.* 2022;219(6):895-902.

128. Ebrahimian S, Digumarthy SR, Homayounieh F, et al. Predictive values of AI-based triage model in suboptimal CT pulmonary angiography. *Clin Imaging.* 2022;86:25-30.

129. Vaidyanathan A, van der Lubbe M, Leijenaar RTH, et al. Deep learning for the fully automated segmentation of the inner ear on MRI. *Sci Rep.* 2021;11(1):2885.

130. Liu Z, Yuan H, Wang H. CAM-Wnet: An effective solution for accurate pulmonary embolism segmentation. *Med Phys.* 2022;49(8):5294-303.

131. Aydin N, Cihan Ç, Çelik Ö, et al. [Segmentation of acute pulmonary embolism in computed tomography pulmonary angiography using the deep learning method]. *Tuberk Toraks.* 2023;71(2):131-7.

132. Zhang H, Cheng Y, Chen Z, et al. Clot burden of acute pulmonary thromboembolism: comparison of two deep learning algorithms, Qanadli score, and Mastora score. *Quant Imaging Med Surg.* 2022;12(1):66-79.

133. Qanadli SD, El Hajjam M, Vieillard-Baron A, et al. New CT index to quantify arterial obstruction in pulmonary embolism: comparison with angiographic index and echocardiography. *AJR Am J Roentgenol.* 2001;176(6):1415-20.

134. Mastora I, Remy-Jardin M, Masson P, et al. Severity of acute pulmonary embolism: evaluation of a new spiral CT angiographic score in correlation with echocardiographic data. *Eur Radiol.* 2003;13(1):29-35.

135. Foley RW, Glenn-Cox S, Rosdall J, et al. Automated calculation of the right ventricle to left ventricle ratio on CT for the risk stratification of patients with acute pulmonary embolism. *Eur Radiol.* 2021;31(8):6013-20.

136. Schmuelling L, Franzeck FC, Nickel CH, et al. Deep learning-based automated detection of pulmonary embolism on CT pulmonary angiograms: No significant effects on report communication times and patient turnaround in the emergency department nine months after technical implementation. *Eur J Radiol.* 2021;141:109816.

137. Batra K, Xi Y, Bhagwat S, et al. Radiologist Worklist Reprioritization Using Artificial Intelligence: Impact on Report Turnaround Times for CTPA Examinations Positive for Acute Pulmonary Embolism. *AJR Am J Roentgenol.* 2023;221(3):324-33.

138. Lee SM, Seo JB, Yun J, et al. Deep Learning Applications in Chest Radiography and Computed Tomography: Current State of the Art. *J Thorac Imaging.* 2019;34(2):75-85.

139. Rajpurkar P, Chen E, Banerjee O, et al. AI in health and medicine. *Nat Med.* 2022;28(1):31-8.
140. Neri E, de Souza N, Brady A, et al. What the radiologist should know about artificial intelligence – an ESR white paper. *Insights into Imaging.* 2019;10(1):44.
141. Daye D, Wiggins WF, Lungren MP, et al. Implementation of Clinical Artificial Intelligence in Radiology: Who Decides and How? *Radiology.* 2022;305(3):555-63.
142. de Jong CMM, Rosovsky RP, Klok FA. Outcomes of venous thromboembolism care: future directions. *J Thromb Haemost.* 2023;21(5):1082-9.

Supplementary material

Table S1: Details regarding radiation dose of computed tomography pulmonary angiography acquisition with subtraction performed in current practice at Leiden University Medical Center.

Acquisition	DLP in mGy*cm (mean, SD)
Dual scan and scan&view	7.34 (0.78)
Helical (low-dose)	25.24 (8.44)
Sure start (contrast)	19.74 (5.48)
Helical (contrast)	112.20 (47.82)
Total	164.53 (54.60)

These data are based on a random selection of 12 CTPA scans performed during the first week of November 2023 to exclude acute PE, on Toshiba 320-slice CT scanners, CTPA protocol with subtraction acquisition at 100 kV, to illustrate radiation dose in our current practice.

Mean total effective dose: 2.30 mSv using a conversion factor of 0.014, or 3.17 mSv using a conversion factor of 0.019. Dose length product (DLP) is a measure for radiation output.

Abbreviations DLP: dose length product, mGy: milligray, SD: standard deviation, CTPA: computed tomography pulmonary angiography, PE: pulmonary embolism, CT: computed tomography, kV: kilovolt, mSv: millisievert.