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Abstract

Metallic engineered nanomaterials (ENMs) have enormous technological potential and are
increasingly applied across different fields and products. However, substances (including
ENMs) can be detrimental to the environment and human health, thus requiring systematic
testing to uncover potential hazardous effects (in compliance with REACH). Although
hazard testing traditionally involves the use of animal experiments, recent years have seen
a shift towards in silico modeling. High-quality data is required for in silico modeling, which
is frequently not readily available for ENMs. Vast amounts of data have been published in
literature but they are unstructured and scattered across numerous sources. To mitigate the
limitations in data availability, we have compiled and created a nanotoxicity dataset based
on published literature. The compiled dataset focuses mainly on acute in vivo endpoints
conducted in a laboratory setting using metallic nanomaterials. The data extracted from
literature include material information, physico-chemical properties, experimental condi-
tions, endpoint information, and literary meta-data. The dataset presented here is useful
for meta-analysis or in silico modeling purposes.

Dataset: Available from Zenodo (DOI: 10.5281/zenodo.18172528) (Direct URL: https:
//zenodo.org/records/18172528 (accessed on 7 January 2026)).

Dataset License: CC-BY

Keywords: nanomaterials; ecotoxicology; in vivo; literature

1. Summary
Engineered nanomaterials (ENMs) with a metal basis are ubiquitously applied across

various products (e.g., paint, sunscreen, catalyzers) and fields (e.g., healthcare, agriculture,
electronics) [1,2]. By altering their physico-chemical properties, ENMs with different func-
tionalities can easily be constructed, which makes them desirable materials for various use
cases [3]. However, substances (including ENMs) can have detrimental human health and
environmental effects, thereby making systematic testing to uncover potential hazardous
effects crucial (in compliance with REACH) [4,5].

Advanced technology allows for the easy manipulation of material physico-chemical
properties and results in a high diversity of manufactured ENMs [6]. Each modification
applied to ENMs gives rise to novel functionalities or behavior and hence hazard testing
must be conducted on a case-by-case basis [7,8]. The fate and behavior of ENMs are strongly
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driven by an interplay of their composition, physico-chemical properties, and the surround-
ing environmental conditions [9]. Upon entry into aquatic matrices, ENMs undergo rapid
transformations that alter their behavior and bioavailability towards species [10,11].

The complexity of ENMs and the diversity of materials with distinct functionalities
make case-by-case hazard testing challenging and infeasible [7,8]. As a result, traditional
hazard assessment has shifted more towards the use of in silico methods in recent years. The
successful application of in silico modeling requires high-quality data [12], but is frequently
obstructed by limited data availability in the case of ENMs [7,13–15]. One reason for the lack
of available data is that nanotoxicological data is largely scattered across literature [7,16].
Over the past two decades, numerous studies have investigated the effects of ENMs, thereby
generating considerable amounts of response data [3,16,17]. Although data has been com-
piled into various datasets or databases in the past (e.g., NanoE-Tox and eNanomapper), it
may not always be suitable for modeling purposes [18]. The stored data may contain several
data gaps or be heterogeneous (e.g., variables that are measured at different timepoints
and/or media). This is not necessarily an issue of the databases themselves, but rather stems
from unstandardized methods used within studies and a lack of proper reporting [19].

In the past, published nanotoxicological data from literature has been compiled into
NanoE-Tox [20] or the dataset of Gakis et al., 2023 [21]. The importance of such curated and
openly available data is that literary data can be readily reused and form part of secondary
analyses (e.g., meta-analyses or in silico modeling). While NanoE-Tox is a comprehensive
dataset, it is limited in the amount of features it collected from studies and considerably
more data has become available since its release in 2015. To aid with limited data availability,
we have compiled and created a nanotoxicity dataset based on published literature. The
compiled dataset focuses mainly on acute in vivo endpoints conducted in a laboratory
setting using metallic nanomaterials. Careful curation was applied to the collected data to
facilitate its reuse for secondary analyses but also to give users the freedom to manipulate
the data in whichever way they see fit. A key difference between published ENM datasets
and the dataset presented here is that the timepoints and media used for measurements
were considered and harmonized as much as possible. This dataset is, to the best of our
knowledge, the largest dataset currently available for metallic ENMs containing acute
in vivo EC50 ecotoxicity data on a wide range of aquatic species.

2. Data Description
2.1. Data Structure

The nanotoxicity dataset is compiled of (raw) data collected from literature and pre-
sented in the form of Comma-Separated Value (CSV) spreadsheets. Two .csv files are
presented, one containing the nanotoxicity dataset (“nanotox_database_raw.csv”) and the
second one containing variable descriptions (“variable_descriptions.csv”). The variable
descriptions give a short description of the extracted variables and default units. Default
units correspond to numeric variables in the dataset where entries are expressed in the
described unit (such entries have no explicitly mentioned units entered behind values).
Values may also contain explicitly mentioned units behind values, thereby indicating that
they differ from the variable’s default unit and require conversion for harmonization.

2.2. Dataset Overview

The compiled dataset contains 2851 ecotoxicological datapoints on acute in vivo nanotox-
icity based on 59 metallic nanomaterials and 149 aquatic species. Data was extracted from
474 literary papers published between 2006 and 2022. The dataset comprises aquatic species
which can be categorized into the following species groups: crustacea, algae, fish, diatoms,
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protozoa, (aquatic) plants, cyanobacteria, nematoda, rotifera, gastropoda, cnidaria, insecta,
and annelida.

Below follows a brief summary analysis of the dataset which gives insight into the
extracted data and its diversity. The majority of the dataset is made up of observations for
Ag (26.1%), ZnO (16.6%), TiO2 (16.2%), CuO (6.4%), SiO2 (6.4%), and CeO2 (6.3%) (Figure 1).
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Figure 1. Number of observations for the most abundant 20 ENMs within the dataset. Values on the
right of the bars represent the counts for the corresponding material.

Data for the remaining 53 ENMs make up 22% of the observations. Similarly, obser-
vations for Daphnia magna (24.8%), Danio rerio (15.1%), and Raphidocelis subcapitata (10.6%)
make up the majority of the dataset (Figure 2).
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Figure 2. Number of observations for the most abundant 20 species within the dataset. Values on the
right of the bars represent the counts for the corresponding material.

Studies may not always report data for all variables, resulting in gaps within the
dataset (Figure 3). Figure 3 displays the completeness of the dataset which indicates the
availability of information for a given variable. Completion rates of >50% were observed
for the majority of variables with the exception of surface area, crystallinity, hydrodynamic
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size (measured at the end of exposure), polydispersity index, method of dispersion, pre-
illumination, and water quality information (water hardness, conductivity, ionic strength,
alkalinity, dissolved oxygen).
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Figure 3. (a): Percentage completeness for variables related to the physico-chemical properties of
ENMs within the dataset. (b): Percentage completeness for variables related to the experimental
conditions of nanotoxicological experiments within the dataset. (c): Percentage completeness for
variables related to the toxicological outcomes of nanotoxicological experiments within the dataset.
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Due to its similarity to NanoE-Tox [20], we would like to highlight the key differences
between NanoE-Tox and the dataset presented here. Both datasets are similar in their
structure and setup, containing largely similar variables extracted from literature. A key
difference here is that data from more recent publications are available (after the release of
NanoE-Tox and until 2022). Additional differences between NanoE-Tox and our dataset
can be found below:

- NanoE-Tox contains data on metallic ENMs, fullerenes, and carbon nanotubes. Our
dataset focuses solely on metallic nanomaterials and EC50 values. Additionally, yeast
and bacteria are absent from our dataset as they were not species groups focused on
during our literature search.

- ENM shape data was harmonized using a categorical scheme (more detail in Section 3),
compared to the unharmonized shape information presented within NanoE-Tox.

- Impurity was not collected due to a lack of information within the studies and unstan-
dardized reporting within the studies.

- “Characterization in test environment” from NanoE-Tox does not consider the time-
points at which measurements were performed. Our dataset considers the timepoints
and media used to conduct measurements as they strongly affect measurements [22].

- Our dataset does not include the mechanism of toxicity but contains additional ex-
perimental detail such as dispersion methods, aging/weathering, UV radiation, and
water quality information.

3. Methods
3.1. Data Collection

Research papers containing nanotoxicity data were collected between September 2021
and July 2022 through Web of Science’s advanced search feature. The general focus of
the search was laboratory-based ecotoxicological experiments conducted using metallic
nanomaterials and aquatic species. Search strings were constructed as follows:

(KEYWORDS RELATED TO SPECIES GROUP AND/OR SPECIES NAME) AND
(nanopar* OR nanomat* OR enm) AND (toxic* OR ecotox* OR acute OR mortal* OR lethal*
OR vivo OR ec50* OR lc50*) NOT (clay* OR plastic* OR fiber*)

Material-specific keywords were substituted depending on the material and species of
interest during the search process. Studies were collected for the following species groups
and ENMs:

- ENMs: Zn, Ag, Au, ZnO, TiO2, CuO, CdO, Bi2O3, CeO2, Cu, Fe3O4, Co3O4,
WO3, MgO, Sb2O3, Pd, Mn3O4, Al2O3, SiO2, NiO, La2O3, Gd0.97CoO3, La2NiO4,
(La0.6Sr0.4)0.95CoO3, Ce0.9Gd0.1O2, LaCoO3, LaFeO3, (La0.5Sr0.5)0.99MnO3, Ce0.8Pr0.2O2,
Co, Se, Fe2O3, SnO2, CuFe2O4, CoFe2O4, NiFe2O4, Al, Ni, Mn2O3, Pt, ZrO2, PbS,
Al2O3.TiO2, BaFe12O19, Cr2O3, CuZnFe4O4, Mg(OH)2, Sn, W, CdS, Ag-Au, Cr, In2O3,
ZnS, BaTiO3, B, Ag2S, Ag2O, Y2O3.

- Species groups: algae, diatom, cyanobacteria, protozoa, aquatic plants, cnidaria,
crustacea (amphipoda, anostraca, cladocera, copepoda, ostracoda), fish, mollusca,
rotifera, annelida, nematoda, insecta.

Such a wide range of search terms were necessary to ensure a thorough literature
search, allowing for the inclusion of as much ecotoxicity data as possible. Each publications
was initially screened on its quality, whereby papers lacking basic material characterization
(size and material composition information) were immediately discarded. Data extracted
from the studies included information regarding material information and meta-data,
physico-chemical properties, experimental conditions, endpoint information and literary
meta-data. The majority of collected variables are in line with the requirements of REACH
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for the registration of nanoforms [23] as well as reporting checklists such as MIRIBEL [24],
nanoCRED [25], and sciRAPnano [26]. It should be noted that there is currently no consen-
sus on which parameters should be reported within studies [27], thus causing significant
differences in the level of detail of data across papers. Although the previously mentioned
reporting checklists are comprehensive in their requirements, the majority of studies do not
report all information. Therefore, the set of variables extracted here were chosen because
they were broadly reported across the majority of papers and also generally used within
in silico models or meta-analyses. Furthermore, while the solubility and purity are con-
sidered crucial physico-chemical parameters, these were not collected here due to general
underreporting and severely unstandardized measurement of both features.

It is important to recognize that studies may reuse previously published data which
can result in duplicates if extracted. Therefore, each paper was carefully examined to ensure
the extracted data did not originate from another publication. If data was duplicated across
multiple publications, then this data was extracted from only one publication. Additionally,
to mitigate human error during data extraction, entries were rechecked multiple times.

3.2. Data Harmonization

Integrating data from different sources requires significant data curation in order to
create harmonized data. Therefore, the following steps were taken:

- ENM shape data was harmonized by utilizing the TEM/SEM images in studies (if
available). This was performed using the shape classes as described in the Supplemen-
tary Materials (Table S3.1.1) of Balraadjsing et al. 2022 [13], with some modifications.
Changes made to this classification include the merging of “spherical” and “nearly
spherical” classes into “spheroid” due to the large variety of images where no clear
distinction could be made between both classes. Furthermore, the new category “tri-
angular” was added for ENMs that resemble triangular shapes. When no images were
present, then the shape as described by the authors was used.

- When the coating was not disclosed within a study then the ENM was assumed to
be uncoated.

- Exposure conditions (e.g., temperature, illumination, pH) that were not clearly dis-
closed in the underlying publications were assumed to be the same as the culturing
conditions (if this was reported).

- Due to species names changing over time (e.g., Raphidocelis subcapitata), their (cur-
rent) taxonomic information was assessed and harmonized using WoRMS (https:
//www.marinespecies.org/ (accessed on 1 September 2022)), algaebase (https://
www.algaebase.org/ (accessed on 1 September 2022)), and fishbase (www.fishbase.org
(accessed on 1 September 2022)).

3.3. Filling in Data Gaps

Due to the large gaps from underreported information within studies or unstandard-
ized experiments, we opted to fill in gaps where possible as follows:

- Gaps related to the physico-chemical parameters of well-characterized JRC ENMs
(e.g., NM-100, NM-101, etc.) were filled in where possible. This was performed using
the following resources: [28–31].

- When the culturing conditions were not reported, then the standardized guidelines
were used to fill in the exposure conditions.

- Literature was consulted to fill in water-quality gaps or to identify the composition of
the media:

# SAN PIN tap water: SanPin 2.1.4.1074-01 protocol.
# (Synthetic) seawater: [32,33].

https://doi.org/10.3390/data11010022
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# Deionized/ultrapure/distilled/double distilled water/MilliQ: ASTM D1193-
06(2018) protocol [34], ISO 3696:1987 protocol [35], Millipore (http://www.
merckmillipore.com (accessed on 1 October 2022)).

# Class I and Class V natural waters: [36].
# Dechlorinated tap water: salinity filled in as 0‰ because in theory no chlorine

should be present.
# Composition for remaining standardized and frequently used media: [37].

4. User Notes
Due to the differences in reporting formats across the papers and the unstandardized

experiments, the dataset is presented in its raw form and requires further processing and
curation before conducting formal analyses. This gives users the opportunity to manipulate
and harmonize the data in a manner that suits their analysis. Furthermore, the lack of
standardization also resulted in incomplete data being collected for specific variables. This
was the case for the hydrodynamic size and zeta potential, wherein the timepoints and
media in which they were measured varied significantly across papers, along with the
methods used for measurements and reporting of data. Instead, it is noted that data is
available for the entry, allowing users to further collect the data should they wish to do
so. Additionally, while the primary length was largely incomplete, the gaps can be readily
filled in by assuming that the primary length was 0 for spherical particles, should the user
wish to do so. Length is not a relevant dimension for spherical particles.

Assessment schemes may be used to assess the quality and reliability of ecotoxicity
studies such as nanoCRED [25] or SciRAPNano [26]. While this could give crucial insight
into the quality of each datapoint, such an assessment was not conducted here. Such
assessment schemes are highly detailed and are time-consuming to complete, which was
beyond the scope of this dataset. For quick evaluation of study quality, users may calculate
completion scores to assess whether studies reported all necessary experimental and
material information.

We would like to note that this dataset represents a fixed snapshot of ecotoxicity
literature for metallic nanomaterials until 2022. No updates will be made to this dataset in
the future by us, but other users are welcome to do so.
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