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1. Introduction
In this article we introduce a natural and simple toy model of iterated function systems
on the interval with affine expanding and contracting maps and explore its dynamics. We
focus in particular on the dynamics of two orbits simultaneously, the so-called two-point
motions. Our set-up is as follows. Given a pair (M, N) of integers M, N > 2, let
fo:[0,1) = [0,1); 2 = Na (mod 1)
be the N-adic map and let

fi:[0,1) = [0,1); x— (x+i—1)/M, 1<i< M,

be M contracting maps. Fig. 1 depicts the graphs for a few values of (M, N).

For a sequence w = (wp,w1,-..) € {0,1,..., MIN write
fngwn,lo"'ofwlofwoa (11)
for n compositions of maps from { fo, f1,..., far} with 2 = id equal to the identity map-

ping. We consider orbits (f(z)),>1 for points x € [0,1), where the w; € {0,1,..., M}
are picked independently and identically distributed with probabilities p;. Throughout
the article we make the following assumption on the probability vector p = (po, ..., pn):
Choose the map fy with probability 0 < pp < 1 and all maps f;, 1 < i < M, with equal

probability p; = 1;}[”0. So the randomness depends on a single parameter py € (0,1) and

the probability vector p is of the special form

1-— 1-—
p= (po, P po) ) (1.2)

M M

Let v denote the p-Bernoulli measure on {0,1,..., M }N. Let A denote the Lebesgue
measure.

We are interested in results on the two-point motions (f7(x), f2(y))n>o0 for z,y € [0,1)
and w € {0,1,..., M}N. Statistical properties of such two-point motions are obtained
by studying the iterated function system on [0,1)? generated by the maps

1 1 1
2
3 1 1
1 2 2
3
0 1 0 1 0

Fig. 1. Graphs of fo,..., fm for (M, N) = (3,2),(2,2),(2,3).
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FP(@,y) = (fil@), fily), 0<i<M. (1.3)

We note that two-point motions in contexts of stochastic differential equations are con-
sidered in work by Baxendale, see in particular [12-14]. For compositions of independent
random diffeomorphisms it is investigated in [42].

Here we consider two types of results. Firstly, we investigate the asymptotics of the
distances | f7(z) — f(y)| when n — co. Below we show that, with the probability vector
p from (1.2), the Lebesgue measure is a stationary measure for the iterated function
system {f;; 0 < i < M} on [0,1). (We note that Lebesgue measure is not always the
unique stationary measure, examples of non-uniqueness can be deduced from [17].) In
this sense we treat conservative systems and one expects points from typical orbits to
lie uniformly distributed in the unit interval. However, we will see that different values
of M and N, or different values of pg, lead to significant differences in the behavior
of two orbits with different initial conditions under the same composition of maps. We
distinguish three different types of dynamical behavior, the occurrence of which hinges
on the sign of the Lyapunov exponent

n—1

o1
L,, = nh—>Héo - ;lnfi)i =poIn(N) — (1 — pg) In(M). (1.4)

This limit exists almost surely and equals the given constant by the strong law of
large numbers. The following theorem assembles our main results on the asymptotics

of [f5(x) = f5(y)l-

Theorem 1.1. Let M, N > 2 be integers and 0 < pg < 1 be given. For the iterated function
system {fo, f1,- .-, fm} and probability vector p as in (1.2), we have the following.

(i) Suppose Ly, < 0. Then

Jim | f5(2) = f5(y)[ =0
for all x,y € [0,1) and v-almost all w.
(ii) Suppose Ly, = 0. Then for every e > 0 we have

lim {0 < n3 | (@)~ ()| <<l =1

n—oo n
for all z,y € [0,1) and v-almost all w, while for any small 8 >0, any z,y € [0,1)
and v-almost all w either |f2(xz) — f2(y)| = 0 for some n or |fI(x) — f2(y)| > B
for infinitely many values of n.

(iii) Suppose Ly, > 0. Then

Pe) = lim 2 [{0<i<n:|fi(e) - fily)l <<}

n—o00 nN
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exists for v x A-almost all (w,x,y), and

lim P(e) = 0.

e—0

This theorem combines statements of Theorem 3.1, Theorem 3.4, Theorem 3.5 and

Theorem 3.15 below.

To put the results in a broader context, we comment on the phenomena of synchro-

nization, intermittency and instability, observed in the three different cases.

L,, < 0: In this case the contraction wins from the expansion and synchronization oc-

curs, which means that orbits from different initial points in [0,1) converge to each
other almost surely. This is comparable to synchronization by noise [3,48]. Related
synchronization results have been obtained in diverse settings, see e.g. [12,22,30,46].
Kleptsyn and Volk [40] treat such a phenomenon in the context of smooth monotone
interval maps forced by transitive subshifts of finite type. Closely related is [26] that
provides cases of synchronization for iterated function systems generated by interval
diffeomorphisms. Synchronization by noise in random logistic maps is considered in
[1,4,54].

= 0: In this neutral case a phenomenon reminiscent of intermittency arises. Inter-

mittency, first studied in [50], refers to the phenomenon where a dynamical system

shows sudden transitions from a long period of exhibiting one type of dynamical
behavior to a period of another type of dynamics. Recently this was analyzed in
the context of random dynamics for the random Gauss-Rényi map [6,10,35,37,59],
random LSV maps [7,8], random logistic maps [1,5] and more general families in
[31,38].

In the setting of Theorem 1.1, orbits of different initial points are intermittently very
close together or some distance apart. The set of iterates for which orbits are close has
full density, but the complement is still an infinite set. A similar mechanism arises in
iterated function systems of interval diffeomorphisms [26], or more generally for skew
product systems with interval diffeomorphisms as fiber maps [32]. In both papers one
gets a singular distribution of orbit points instead of the uniform distribution that
we find.

> 0: Here the expansion wins from the contraction and orbits tend to diverge from

each other. Random interval maps with a condition on average expansion have been

studied extensively, see e.g. [2,16,20,36,44,47]. Following the definition from [47] the
expanding on average condition would correspond to £ + (1 —po)M < 1, which does
not align with the condition that L,, > 0. Hence we do not rely on these expansions
on average results here. The two-point maps are connected to Jablonski maps [52],
and in the positive Lyapunov exponent case to research on invariant measures for
random Jablonski maps [9,11,33,39].
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Our second set of main results concerns invariant measures of the iterated function
system from (1.3), again with the probability vector p from (1.2), under an additional
assumption on the expansion and contraction factors M and N. Two integers M, N > 1
are called multiplicatively dependent if they are powers of the same natural number, i.e.,
if M = k* and N = «F for some integers x > 1 and k,¢ > 1. Here we always take k, ¢
to be relatively prime. This condition is equivalent to In(N)/In(M) =k/¢ € Q. If M, N
are not multiplicatively dependent, they are called multiplicatively independent. Some of
the difficulties in the analysis for Theorem 1.1 are caused by the points of discontinuity
of fo and can be circumvented in case M, N are multiplicatively dependent. This leads
to the following theorem.

Write A = {(z,2) ; z € [0,1)} for the diagonal in [0,1)? and write A. = {(z,y) €
[0,1)%; |y — 2| < €} for the e-neighborhood of A. We let a(g) ~ b(e) stand for a(e)/b(e)
bounded and bounded away from zero as € — 0.

Theorem 1.2. Let M, N > 2 be integers and 0 < py < 1 be given. Assume that M and
N are multiplicatively dependent with N = k* and M = k*. For the iterated function
system {féQ), f1(2), cey f](j)} and probability vector p as in (1.2), we have the following.

(i) Suppose L,, < 0. Then the iterated function system of two-point maps admits
Lebesgue measure on A as stationary measure.

(ii) Suppose L,, = 0. Then the iterated function system of two-point maps admits
Lebesgue measure on A as stationary measure. Furthermore, it admits an infinite
o-finite absolutely continuous stationary measure of full topological support.

(iii) Suppose L,, > 0. Then the iterated function system of two-point maps admits
Lebesgue measure on A as stationary measure. Furthermore, it admits an absolutely
continuous stationary probability measure 1? of full topological support and with

#(2) (Ae) ~eT In(v1)/ ln(n)7

where vy is the unique real solution in (0,1) to poz*+t* —2'4+1—py = 0. The density
of u@ is bounded precisely if vik < 1.

The measure ;2 (A,) from Theorem 1.2(iii) quantifies the proportion of iterates that
typical orbits f'(x) and f'(y) are close. This theorem combines statements of Corol-
lary 2.2, Theorem 3.1, Theorem 3.7, Theorem 3.10 and Remark 3.13 below. Further
results of a similar flavor, in particular with explicit expressions for stationary measures,
or for stationary measures in case of multiplicatively independent pairs (M, N), are found
in Section 3.

We stress that the original iterated function system {f;; 0 < i < M} behaves inde-
pendently of py in the sense that Lebesgue measure on the interval [0, 1) is stationary
for all values of py. The above theorem however makes clear that, depending on the
parameters, the corresponding two-point motions show a range of different behaviors. In
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particular the theorem describes a bifurcation or phase transition in the iterated function
system of two-point motions as the Lyapunov exponent crosses zero for varying pg. See
also [18] for the notion of stochastic n-point bifurcation. This phase transition involves a
discontinuous change of the support of the stationary measure of the two-point motion
(an explosion of its support) and an infinite stationary measure at the bifurcation point.
Transitions that involve a Lyapunov exponent crossing zero have been considered in dif-
ferent contexts such as stochastic differential equations [13], random dynamical systems
[27,49,62,63], in studies of noise-induced order such as [23,24,43], and in settings with
skew product systems such as [60].

The article is outlined as follows. In the next section we introduce preliminaries on
random dynamics, we prove that Lebesgue measure is stationary for the iterated function
systems { fo, f1,--., far} and we introduce several extensions of these systems that are
useful in later parts of the text. In particular we explain a connection to a class of
heterochaos baker maps in three dimensions, similar to the map introduced in [52] as
a model for heterogeneous chaos. Since the first appearance of our paper as a preprint
there have been several investigations of, in particular, ergodic properties of heterochaos
baker maps [55-58]. See [51] for further information on heterochaos baker maps.

In Section 3 we study the iterated function system {féQ), fl(z), R f](\j)} and derive our
main results. The section is divided into three parts depending on the sign of L,,. All
parts come with their own techniques. The case of a vanishing Lyapunov exponent uses
theory of random walks involving stopping times with time dependent stopping criteria.
This material is developed in Appendix A. We end the article with a short description
of possible future extensions of this research.

Acknowledgments. The idea for this paper started with a project for a bachelor thesis of
Pjotr Thibaudier. Discussions with him were quite helpful.

2. Skew product systems
2.1. Lebesque measure is stationary

As usual an approach using a skew product system aids to describe the iterated
function system as a single dynamical system, and to use the machinery of dynamical
systems theory and ergodic theory. Write ¥ = {0,..., M}N for the space of one-sided
infinite sequences of symbols in {0,..., M}, endowed with the product topology obtained
from the discrete topology on {0, ..., M}. Elements w € ¥ will be written as w = (w;);eN-
Let 0 : ¥ — X be the left shift operator defined by

(Uw)i = Wi+1, ) Z 0.
Write [ag - - - ai] for the cylinder

lag---ar] = {w € X;wj =a;,0<j <k}
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We equip ¥ with the Borel g-algebra. Given any 0 < py < 1 and the corresponding
positive probability vector p as specified in (1.2), we let ¥ = vy, denote the Bernoulli
measure on Y that is defined on the cylinder sets by

k
W(lao -+ ax]) = [ pay-
=0

The measure v is an ergodic invariant measure for the shift map o.
Define the skew product system F : 3 x [0,1) — X x [0,1) by

F(w,z) = (ow, fu,(z)).

We use the notation F¥(w,z) = (cfw, f¥(z)) for iterates, where fF is as defined in
(1.1). We also write f,’;(x) for elements n = 1o+ -1 € {0,..., M}™, called words,
with & < m. With slight abuse of notation we will use A to denote the one-, two- and
three-dimensional Lebesgue measure, since the meaning will be clear from the context.

Proposition 2.1. Let 0 < pg < 1. Then the corresponding product measure p:=v X X on
¥ x [0,1) is an invariant probability measure for F.

Proof. For invariance it suffices to consider product sets A = [ag - --a;] x J of cylinder
sets [ag - - - a;] and intervals J. Note that for each = € [0,1) there are N inverse images
in fy'{z} and there is a unique 1 < j < M for which an inverse image y € [0,1) with
fj(y) = x exists. One immediately computes that

M
p(FH(A)) = p (U[iao ] X fi_l(‘])>
i=0
M
= v(lag--a,)) [powolu)) y2B ;wﬁu»]
— v([ao - -~ a;)) {;mv% + IXfOM)\(J)]

=u(A). O

Note that the proof of Proposition 2.1 uses the specifics of the probability vector p.
Invariance of p for F' implies that A is a stationary measure for the iterated function
system {f;; 0 <4 < M} with probability vector p in the sense that

M

A= pi(fi)X

=0

Here (f;). stands for the push forward measure (f;).\(A) = A(f; '(A)). Therefore, a
direct consequence of Proposition 2.1 above is the following.



8 A.J. Homburg, C. Kalle / Advances in Mathematics 482 (2025) 110605

Corollary 2.2. The diagonal A = {(x,x); x € [0,1)} is an invariant set for the iterated
function system {fi(z) ;0 <4 < M} from (1.3) with probability vector p and Lebesgue
measure restricted to A = {(z,x); x € [0,1)} is a stationary measure.

Below we will also verify the ergodicity of the measure p for the skew product F'. In-
stead of writing that u is ergodic, we also say that the corresponding stationary measure
A is ergodic to mean the same. The proofs of ergodicity provided in the next section are
different for the three cases identified in Theorem 1.1. They use a map that is isomorphic
to F' as well as an extension of this map. Later we will also use a multivalued map. For
easy reference we use the remainder of this section to introduce all these different maps.

2.2. One- two- and three-dimensional piecewise affine maps

We first conjugate the shift map to an expanding interval map. Write
1—1
ri=>» pj, 0<i<M+1.
j=0

This gives 0 = 19 < r1 < -+ < rpy < ry+1 = 1. Define the expanding interval map
L :[0,1] — [0,1] by setting

) 0§w<p05
Lw) = 2.1)
M(w —r;)

, i< w<rip, 1 <i <M.
1—po

See Fig. 2(a) for an example. Then the map h: ¥ — [0,1] given by

oo i—1

h(w) = Z prjrwi (2.2)

i=0 j=0

satisfies hoo = Loh and h,v = A. There is only a countable set of codes in ¥ on which
h is not injective. So, as h is invertible after removing sets of zero measure, it defines a
measurable isomorphism. From this we see that the skew product map F' is measurably
isomorphic to G : [0,1)% — [0,1)? given by

(E,Nx (mod 1)>, 0 <w < po,

Po

G(w,z) = (2.3)
Mw-—r;) z+i—1 .
( 1(_p0)7 i )7 ri Sw <rip1, 1 <0< M.

See Fig. 2(b) for an example.
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(a) L (b) G
Fig. 2. Graphs of L and G for (M, N) = (2,2) and pp = % G maps the colored areas in the unit square on

the left to the areas of the same color on the right. (For interpretation of the colors in the figure(s), the
reader is referred to the web version of this article.)

Consider the invertible extension I' : [0,1)% — [0,1)® of the maps L : [0,1) — [0,1)
from (2.1) and G : [0,1)? — [0,1)? from (2.3) given by

. o<
(ng_j’po(yH)) 4 =
Do N

Mw-—r;) z+i—1 .
( 1<_p0 )7 U a(l—po)y+]90), i <w <7rip1,1 <i <M.
(2.4)

FoerNzZandpoz%,weget

Y+ 0<w<1/2,
2,2z — j, — |, ) 1
: §<r<ir =01,
D(w,z,y) =
~rx+i y+1 . , )
(4w—(2+z), B 7yT), %+ﬁ§w<%+%,z:0,l,

a graphical depiction of which is shown in Fig. 3. This particular map is somewhat
reminiscent of the two-dimensional baker map B on [0,1)? given by

(2w,g), 0§w<%,

B(w,z) =

z+1
<2w—1, 5 ), %§w<1,
which has an expanding and a contracting direction, or more specific, a positive Lyapunov
exponent In(2) and a negative Lyapunov exponent — In(2). The iterated function systems
that we analyze in this article thus inspire three-dimensional analogues of the baker
map. As mentioned in the introduction, similar maps feature in [51,52] in studies of

heterogeneous chaos.
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0 0 .I

Fig. 3. The map G for M = N = 2 and py = % maps the regions on the left to the regions on the right
according to the colors.

The map T is invertible, the inverse being given by

- _ ‘
(pow,x]—’\;ja_y_j>v %§y<%70§j<-]\[a
Do
I w,z,y) =
1- j - <y<l,
(( po)WHi) e Y po>’ =y
M 1 —po L<r<8l0<i<M

Note that all maps L, G and I have Lebesgue measure, with appropriate dimension, as
invariant measure. We have the following relation between I and F' (for the purpose of
the statement considered on compact spaces).

Lemma 2.3. The skew product F : ¥x[0,1] — Xx[0,1] is a factor of the three-dimensional
map T :[0,1]3 — [0,1]3.

Proof. Recall the definition of the isomorphism h : ¥ — [0,1] between the map
L :[0,1] — [0,1] and the left shift o : ¥ — ¥ from (2.2). Let my. : [0,1]* —
[0,1]2, (w,z,y) = (w,z) be the canonical projection onto the first two coordinates. One
easily verifies that the map (h™',id) o my . : [0,1]* — ¥ x [0,1] (up to sets of measure
zero) is surjective, measurable, measure preserving and satisfies F o ((h_l, id) oy 4) =
((h71,id) o my ») o I, thus constituting a factor map. O

2.3. Multivalued maps

It is sometimes helpful to consider an associate iterated function system of multivalued
maps. Write K for the class of nonempty compact subsets of [0, 1). Define the multivalued
map F; : K — K by

M
Fy(4) = | £i(4), (2.5)
i=1
in which the contracting maps f1, ..., far are combined. We also write

Fo(4) = fo(A). (2.6)
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We can then look at the iterated function system generated by Fy and F;. A composition
F} with n € {0, 1} is a multivalued map. As all maps fi, ..., fas that make up Fy have
the same constant derivative 1/M, and fp has constant derivative N, we can speak of
(F}')". The graphs in F}! are equally spaced line pieces with constant slope (F}')". The
number of elements in the set F}'({z}) is independent of z € [0,1), so #F({z}) =
#F;({0}), and F*({0}) is always of the form

S; = {i/M7; 0<i< M’}

for some j > 0. Let IT : ¥ — 35 be the projection that maps all symbols 1,..., M to 1;
so II(w) = n with

0, w;=0,
i =
1, w; € {1,,M}
We use the next lemma in the section on intermittency.

Lemma 2.4. Let n =10 1p—1 € {0,1}", n > 1, and let j > 0 be such that F}'({0}) =
Sj. Then for each i # k,

v({{w € T )5 £3(0) = i/M7}) = v({w € I~ [n]; f1(0) = k/M7}).

Proof. Set v = #{0 < i <n—1;n =1} for the number of occurrences of the digit 1
in 7. Note that I1=![n] is the disjoint union of M7 cylinders of length n in ¥. Note also
that F1(Sp) = S1 and F1(S;) = Si41 for any [ > 0, while Fy(S;) C S;. There are i # k
such that fo(i/M') = fo(k/M') if and only if there is an i such that fo(i/M') = 0, so
such that Ni/M! € N, if and only if N and M share a common prime factor. Hence, if
M and N are relatively prime, then F'({0}) = S, and for each i,

W € Tl f200) = i/ =t (2

Suppose N and M are not relatively prime. The map fy wraps the unit interval around
itself N times with constant expansion factor. So, for any 0 < m <[ for which fy(S;) =
Sy, it follows that for each iy, io,

#{O<k <M =15 folk/M") =i} = #{0 <k < M' =15 fo(k/M") = is}.

Since all cylinders [wp---w,—1] € II71[n] have equal v-measure, this implies the
lemma. O

Properties of graphs of f7 and Fj' in relation to each other are illustrated in
Figs. 4 and 10.
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(a) (3,3),n = (11010010) (b) (3,2),n = (1010010)

Fig. 4. Left picture: a plot of the graphs of Fn8 for (M, N) = (3,3) and n = (11010010). The red graph is the
graph of f8 for w = (12020020). Right picture: a plot of F; for (M, N) = (3,2) and n = (1010010). The
red graph is the graph of f7 for w = (3020020).

05

40 0 10 20 30 40

Fig. 5. Two time series of f for two different initial points, for (M, N) = (3,2) and po = 4. The signed
difference between the two, depicted in the right panel, shows convergence of the orbits to each other.

3. Two-point dynamics

This central section treats the dynamics of the skew product systems for different
values of (M, N) and pg, focusing on convergence and divergence of orbits and statistical
properties of orbits. We treat separately the cases with L,, <0, Ly, = 0 and L,, > 0.
Note that for po = 1/2, this is the same as M > N, M = N and M < N, respectively.

3.1. Lp, <0 (synchronization)

If the contraction is stronger than the expansion, one may expect the orbits of nearby
points to converge to each other under identical compositions. The numerical observation
in Fig. 5 illustrates this.

We will establish such convergence in fact uniformly on [0,1). The discontinuities of
fo form an obstacle in the analysis, since nearby points are mapped a positive distance
apart if they are on different sides of a point of discontinuity of fo. Iterates f may
have many discontinuities on [0, 1), as the graph in Fig. 6 illustrates. A Borel-Cantelli
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Fig. 6. The graph of an iterate f12? for (M, N) = (3,2) and some w. Although the slope (f1?)’ is small, the
map is not a contraction on [0, 1) because of the discontinuities.

argument (see for instance [21] for the Borel-Cantelli lemmas) however makes clear that
orbits are only infrequently very close to the points of discontinuity of fy, which allows
to prove the following result.

Theorem 3.1. Consider L,, < 0. For all z,y € [0,1),

for v-almost all w € X.

Proof. Let ¢ be a number with efr0 < ¢ < 1. With a; = In(f/), we can write
(f2) = eXi=d e,

Recall from (1.4) that

n—1
1
lim — Z a,, = Ly, <In(¢) <0,
=0

n—oo N 4

for v-almost all w. So, for v-almost all w, Z?:_Ol a,;, — nlin(¢) converges to —oo and

therefore eXio %w; /C™ goes to zero as n — oco. We find that for v-almost all w,
max{(f;)"/¢",n = 0}
exists. Hence, for v-almost all w € X, there exists a C,, > 0 so that
(f2) < Cu¢™

For any £ > 0 one can choose C' > 1 and a set Q¢ C X of measure v(Qc) > 1 — &, so
that (f7)" < C¢" for all w € Qc. Let ny = ny(£) be such that C¢™ < 1/n3.
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Write

B(r) = J:(_]: {% -, % + r] (3.1)

for the r-neighborhood of the set C = {1/N,..., (N —1)/N} of discontinuity points of fo.
Let E, = ¥ x B(1/n?). By the F-invariance of y it holds that u(F~"(E,)) = u(E,) =
1/n?, so by the Borel-Cantelli lemma, we get for p-almost all (w,z) € ¥ x [0,1) that
F"(w,x) € E, for at most finitely many n. Hence, the set of points

B = {(w,z) € £ x1[0,1); Ing = no(w,x) s.t. f(z) ¢ B (1/n2) for all n > ng}

satisfies u(B) = 1.
Write

c= U #L.©

n>0  i1-in€
{0,1,..., M}

for the set of points in [0, 1) that are eventually mapped to C by some w € ¥.. As C* is a
countable set,

u((Qe % (0,1)\C) N B) > 1-&,
which means that we can find an € [0,1) \ C*, such that
v({w € 5 (w,z) € (Qc x ([0,1)\ C*)) N B}) > 0. (3.2)

Fix such a point . Then for any w in the set from (3.2) there is, by continuity, an open
interval J,, with x € J,, such that

MJ,)NnC =0, forall n<max{ng,ni}.

By the choice of (w,z) we get for all n > max{ng,n1} that f*(z) ¢ B(1/n?) and
(f™) < O¢™ < 1/n%. Hence, we recursively obtain that for all n > max{ng,n;} the set
fI(J,) is an interval and

(f5~1(J))

AT < 2 L

n? = n?
so that f(J,) NC = 0. Moreover, for every w in the set from (3.2) there is an n > 1,
such that
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So we can find an ny > 1 such that the set

Q= {wEZ; (w,z) € (e x ([0,1)\ €*)) N B and (x—nizw—i—ni) ng}

A~

satisfies v(Q) > 0.

For each t > 1 and n € {1,..., M}, the set f!([0,1)) is an interval of length 1/M".
The union of these intervals, varying over all n € {1,..., M}! for fixed ¢, covers [0, 1).
Hence, there exist ¢ € N and 7 € {1,..., M}" with f/([0,1)) C (z — ;5,2 + ;-). Then
for each concatenated sequence @ = nw, with w € 0, and each n > 1 the image f2([0,1))
is an interval with lim,_, A(f2([0,1))) = 0. Hence, we have found a set ¥ = ) ¢ ¥
with v(¥) > 0, so that for any y, z € [0, 1),

i |f2() — f2(2)] = 0. (33)

The following argument concludes the proof of Theorem 3.1 from (3.3). Assume that

there is a set = C ¥ with v(Z) > 0 of w for which f7([0, 1)) is not contained in an interval

of length shrinking to 0. We will derive a contradiction from this. By the Lebesgue density
theorem we can take a density point £ of =, meaning

R (GERALE

e CE ) B

(The Lebesgue density theorem is formulated for Lebesgue measure on the interval, but
transfers to Bernoulli measure on ¥, compare (2.1).) Then

lim v(o? (|- &) NE)) =1

j—o0
and moreover,
ol([&-gINE) CE.

This contradicts the construction of the set ¥ with v(¥) > 0, since ¥ N E = (.

Alternatively, and perhaps more elegantly, one could proceed from (3.3) as suggested
by the referee as follows. Let ' C X be the set of w € ¥ for which lim, o |f(y) —
f(x)| = 0 holds for all z,y € [0,1). Note that c=1(£2') C €. Since o preserves the
measure v, we obtain o~ (£) = Q' up to a set of measure zero. By ergodicity of o we
find v () € {0,1}. Now (3.3) shows that we cannot have v(') =0. O

Next we set out to prove that the product measure p = v x A is ergodic for F. To
do so we use the system I' from Section 2.2. The proof relies on the statements on the
dynamics in Theorem 3.1.

Theorem 3.2. Consider L,, < 0. The measure i is an ergodic invariant measure for F.
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Proof. Ergodicity of Lebesgue measure for I' will be established by exploiting invertibility
of T and using a Hopf argument as in [61, Section 4.2.6]. From Proposition 2.3 it then
follows that p is ergodic for F'.

Let ¢ be a continuous function on [0, 1) and consider the time averages

n—1

() = Tim > p(l(w),
=0

() = lim L3 o).
=0

As Lebesgue measure is invariant, we find that there is a set V' C [0,1)? of full Lebesgue
measure, so that for u € V, the two limits exist and are equal (see [61, Section 3.2.3]):
o

@ (u) = ¢ (u), for Lebesgue almost all w.

For u € [0,1)3, write

We(u) ={ve€[0,1)®; v =u+ (0,z,y) for some z,y}
and

Wu) = {ve€[0,1)®; v =u+ (w,0,0) for some w}.

Using Theorem 3.1 we get that for u in a set of full Lebesgue measure, if v € W*(u)
then [I™(u) — I'(v)| — 0 as n — oo and therefore p*(u) = p*(v). Likewise for u in
a set of full Lebesgue measure, if v € W*(u) then |I'""(u) — I'"(v)] - 0 as n — oo
and therefore ¢~ (u) = ¢~ (v). We conclude that for u in a set U C V of full Lebesgue
measure, o+ is constant along W*(u) and ¢~ is constant along W% (u).

As in [61, Lemma 4.2.17], using Fubini’s theorem one sees that there is a set Y of
full Lebesgue measure in [0,1)? so that for given u,v € Y there are v/,v' € Y N U with
u € W (u), v € W#9(v) and moreover v/ € W*(u'). It follows that for such points
u,v €Y NU,

() =@ (u) = " () = ¢~ () =~ () =T (v) = 9T (v) = ¢~ (v).
Hence, ¢t and ¢~ exist and are constant on a set of full Lebesgue measure. 0O

As a corollary, typical orbits of the iterated function system {f;; 0 < i < M} are
uniformly distributed on [0, 1). This is made explicit in the following result. Let A C [0, 1)
and write y 4 for its characteristic function:

() 0, z&A,
€Tr) =
xa 1, ze€A.
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Fig. 7. A time series of f (x) for (M, N) = (3, 3). The right panel shows the signed difference with another
time series with the same w.

Proposition 3.3. Consider L,, < 0. For a Borel set A with A\(A) > 0,

n—1

Jim S A ) = M)

for p-almost all (w,z) € ¥ x [0,1).

Proof. The measure p is ergodic for F' by Theorem 3.2. The proposition therefore follows
from an application of Birkhoff’s ergodic theorem to the integrable function y 407y, where
ma : X x [0,1) — [0,1) is the canonical projection on the second coordinate of F. O

3.2. Lp, =0 (intermittency)

In the case where expansion and contraction balance each other, a phenomenon rem-
iniscent of intermittency arises. In Fig. 7 the panel on the right shows signed distances
between two orbits with different starting points but identical w. One sees that the orbits
are mostly close together with occasional bursts where the orbits diverge. We make this
statement quantitative and provide proofs below. The reader is invited to compare the
results with [26] on iterated functions systems of interval diffeomorphisms. The novelty in
the setting here is the use of an expanding map, which enables having Lebesgue measure
as stationary measure and a uniform distribution of orbit points.

Theorem 3.4. Consider L,, = 0. For every ¢ > 0, for all x,y € [0,1),

tim {0 < i < ns |fi(e) ~ fil)] <<} =1

n—00

for v-almost all w € X.
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We describe the strategy in words before giving the formal proof. As in the proof
of Theorem 3.1, we will rely on a Borel-Cantelli type argument. The proof also uses
statements on random walks on the line that are developed in Appendix A.

Let € > 0 be small. The main strategy is to subdivide time into periods where we
are sure that the distances |f:(x) — f{(y)| are small enough (smaller than ¢) followed
by periods where the distances might be too big. Then we proceed by showing that
the latter periods take up only a negligible part of time. To do this we fix a word
¢Gio--¢p € {1,...,M}P with D large enough so that 1/MP < e. Now start with the
entire interval [0,1) and iterate under f7 until an iterate ny = ny(w) with ny > D and
om=PHly € [¢1---(p]. So the final D symbols w,, pi1-- Wy, equal ¢;---(p. Then
fm+1(]0,1)) is contained in the interval

7 = fP(0. 1)), (3.4)

which has length smaller than . Hence, we arrived at a time nj +1 for which |11 (z) —
fmtl(y)| < e. The expected stopping time, that is, the average value of w — nj(w), is
finite.

Now we are interested in the number of iterates it takes until the image f7([0,1)), n >
n1 + 1, is no longer contained in an interval of size €. As in the proof of Theorem 3.1 the
discontinuities of fy pose a difficulty here. To control possible intersections of f([0,1)) C
f:,;(ff:l)(J) with the set C of critical points, we take a slightly different approach.
Suppose p is such that 1/(p + 1) < & < 1/p?>. We iterate instead until the image
fmi+1([0,1)), m1 > ng, is no longer contained in an interval of size 1/(p + m1 — nq)?.
Note that this criterion depends on the number of iterates m;. This defines an iterate
my = mq(c™w) that marks the end of a period of time where we are sure that the
images f([0,1)) are small enough. The expected stopping time, the average value of
my — ny, will be shown to be infinite.

Finally, we continue the procedure and obtain a sequence 0 = mg < ny < mj < ng <
me < --- of stopping times. Here

(1) fmt1([0,1)) is contained in an interval of length . This is guaranteed by stopping
after the appearance of a specific word wy,,—p+1 -+ wn, = (1 ---{p, so that we find
2 ([0,1)) € J;

(2) fritl=mi(J) is not (more accurately, with the conditions we use it can no longer
be guaranteed to be) contained in an interval of length 1/(p + m; — n;)? (which is
smaller than ). The use of interval lengths that are decreasing in m; — n;, instead
of working with a fixed interval length ¢, is done to control and be able to avoid

intersections with critical points.

The natural number m; is the first integer beyond n; for which this holds, and n;
is the first integer beyond m;—1 + D (we let mo = 0) with o =Py e [¢r - Cp]. As
Toi(J) contains f7([0,1)), we have that during iterates n; +1 < j < m;, f2([0,1)) is

o™iw
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contained in an interval of length e. Note that this does not mean that f7([0, 1)) is itself
an interval. We find that the n; — m;_1 have finite expectation and the m; — n; have
infinite expectation. This is combined to prove the occurrence of intermittency.

Proof of Theorem 3.4. Fix an ¢ > 0 and a word (;---(p € {1,..., M}P with D large
enough so that 1/MP < e. Let J = fcp([O,l)), then A(J) < €. Let p € N satisfy
1/(p+1)? < ¢ < 1/p? and let x; denote the midpoint of J. Recall the definition of
r-neighborhoods B(r) of the points of discontinuity C from (3.1). We seek estimates for
the stopping time

1

m or fl(xy)e€ B(

W(w):min{n>0; (o) > Withwn:O}.

(3.5)
To understand the conditions, note that if fi(J)NC =0 for 0 <4 < n and (f7) <
W’ then fI'(J) is an interval with A\(f2(J)) < n)2 Further, if for 0 < i < n
we have fi(z;) & B( p+z)2) when w; = 0, and (f%)’ then fi(J)NC = 0 for
oy imply that f(J) is an

1
(p+n)2)

(p+1)26 ’

IN |/\’~§

0 < i < n. Consequently, these conditions plus (f
interval with A(f2(J)) < m.

Hence, W(w ) is such that for all for n < W(w) the set f(J) is an interval with
AfE () < (p+n)2 <e.

In the following analysis we first look at the derivatives of compositions, so at the first
condition in (3.5). For this, consider the process for d,, = (f)’, given by dy = 1 and

1
(p+n)%e

Ndna Wn41 = 0,
n+l1 —
dp/M, woir € {1,..., M},

For each n > 0, let z,, = —In(d,). For z, we obtain the random walk given by zp = 0
and

zn —In(N), wpe1 =0,
Zn+1 =
zn +In(M), wnpy1 €{1,..., M},

for n > 0. Recall that L,, = 0 means poIn(N) — (1 — po)In(M) = 0. The average
step size for this random walk, equal to —L,,, is zero. The criterion d, > W,
which is the ﬁrst condition appearing in the definition (3.5) of W(w), is equivalent to
Zn < —1In ( e + 2 ) + In(g). Therefore, we are interested in the stopping time

W1 (w) = min {n >0; 2, <—1In (m) +1n(5)}

: ny/ 1
:mln{n>0;(fw) >m},
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which satisfies Wi (w) > W(w). By Lemma A.3 in the appendix, the average of the
stopping time W (w) is infinite:

[ Wi i) = .
)

If for each u > 0 we set
Cy={weX; w; e{l,...,M} for 0 <i<u}, (3.6)

then we also have fCu W1 (w) dv(w) = oo for any w > 0. This holds since the first u
iterates give contractions and the w;’s are independent.

To study the second condition in the definition of W (w), write X9 = {0, 1} and let
II: 3 — 35 be as in Section 2.3, i.e., projecting all symbols 1,2,..., M to 1. Consider
iterates I with Fy, F1 as defined in (2.5), (2.6). With n = II(w) we have (F}})" = (f2)".
The calculated stopping time W;(w) is thus identical for any symbol sequence in I~ 1{n}
and we may write Wy (n).

Fix n € X3 and let n = Wi(n). The multivalued map Ffl is built from affine graphs
with slope (F}))’, stacked in an equidistant fashion (see for example Fig. 4). Let

1

2= {w € Hfl([no 1)) f‘f)(mJ) o4 B(W> whenever w; = 0}

and set

— 1=,
=N,—5 Zs-

[1]

Since n = Wi(n), the set = contains all sequences w € II~([ng - --n,_1]) that satisfy
both conditions from the definition of W(w) in (3.5) up to the stopping time Wi (w), so
for which W (w) = Wi (w). We next show that for certain » this collection is large enough
to conclude that [ W(w)dv(w) = co.

From (F}) = (f.) < W for 0 <i < n, we get that there are at least [e(p + 7)?]
different graphs in F7\. Let &; be the number of points in F({z}) lying in B(1/(p +1)?)
and write ¢; = & /#F}({xs}) for the proportion of points from F}({x}) contained in
B(1/(p+1)?). A closed interval of length b contains at most [b(#F:({z})+1)] points
of F}({xs}). Tt follows that there is a constant K > 0, independent of i and 7, with

¢ < K/(p+1i)°.

We conclude that v; is summable. So there exists a u > 0 with Zfiu ¥; < 1/2. Here u
can be taken uniformly in 7, as the above estimates are uniform in 7.

Now let n € [1%] with Wy(n) = n. This implies that W (w) > u for each w from
I Y([no, .- ,Mn-1]). From Lemma 2.4 it follows that
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i =

)

v ([no - n—1]) \ Ei)
v(IT=2([no - - - M—1]))

assuming w; = 0. Since 1; = 1 for all 0 <14 < u and Z;’iu 1; < 1/2 we then have

S () = % 3.7

Hence

[weave = / W (w) dv(w)

Ch {weCy; W(w)=W1(w)}

> > nv(M ([no -+ 1n-1]))/2
ne1*],Wi(n)=n,n>u

= Q.

In the second estimate we used (3.7) which says that for each n € [1%] with S(n) = n, at
least half of TI=Y([no - - - 7,,—1]) counts in the integral. We conclude

[ W) dne) = .
>

Define the stopping time
V(w)=min{n >D —1; c" P luec [ - -C¢pl},

where (3 - - - (p is the word fixed at the beginning of the proof. For v-almost every w € %
the stopping time V(w) is finite. So for v-almost every w € ¥ it takes a finite number of
iterates k before £¥(]0,1)) C fCD([O, 1)) = J and thus A(f*([0,1))) < e.

It is well known that the average of the stopping time V' (w) is bounded:

/V(w)du(w) < o0.

b

Combining the knowledge on the stopping times V(w) and W (w), we get for v-almost
all w € ¥ an infinite sequence of stopping times 0 < n; < my < ng < mg < --- with

n; = V(e w),
m; = W(c™w)
(where we set mg = 0). By the strong law of large numbers, see [21, Theorems 2.4.1

and 2.4.5] (for finite and infinite expectations respectively) we have that for v-almost all
w € X,
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1 n
Jim, 5 2 = i) <o,
1 n
Jim 2D (i —ni) = o0

This implies the theorem (see the calculation in the proof of [5, Theorem 4]). O

Theorem 3.5. Consider L,, = 0. Let 8 be a small positive number. Let x,y € [0,1). Then
for v-almost all w € X, either |f(x) — f2(y)| = 0 for some n or |f1(z) — f2(y)| > B
for infinitely many values of n.

Proof. The proof follows from the following observation. If x < y are close, then as long
as fi, 1 <i < n, is continuous on the interval [z, %], we have

o) = fZw)l = (f2) e — yl.

The values z, = —In((f7)’) are given by a random walk zy = 0 and

; _J z—In(N), wpy1 =0,
"R 2+ (M), wpe € {1,..., M},
for n > 0. Because poIn(N) — (1 — po) In(M) = 0, this random walk is recurrent. So
(f) = e *n takes on arbitrarily large values. O

Modifying the proof of Theorem 3.2 allows to prove ergodicity of u from Proposi-
tion 2.1 also in case L,, = 0.

Theorem 3.6. Consider L,, = 0. The measure ;1 = v X X is an ergodic invariant measure
for F.

Proof. The proof follows that of Theorem 3.2, replacing the statement of Theorem 3.1
by the statement and arguments of Theorem 3.4. The proof of Theorem 3.4 calculates
stopping times to get the statement on the dynamics of the z-coordinate. We must
incorporate the y-coordinate. The following observations show how this works.

Write 7y, 7, 7y 1 [0,1)% — [0, 1) for the coordinate projection to the w-coordinate, z-
coordinate, and y-coordinate, respectively. First consider a ¢ € ¥ with ¢; € {1,..., M}
for 0 < i < D for some large D. Then J = fCD([O,l)) is a small interval, see (3.4).
Recall the definition of the isomorphism A between the left shift o and the expanding
interval map L from (2.2). Note that m,['?(h(¢),z,y) is independent of x and H =
7, TP (h(¢), 2, [0,1)) is an interval of length A(H) = (1 — po)”. This is small for D large.

Next, whenever u,v € [0,1)® with m,u = m,v and m,['(u), 7, I'(v) are close to each
other, then m,I' contracts the distance between the points with a uniform contraction
factor. So if |, ' (u) — 7, " (v)| stays small, then also |m, ' (u) —m, ' (v)| stays small. O
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As in Proposition 3.3 we conclude that typical orbits are uniformly distributed. Recall
from (1.3) the definition of the two-point maps fi(2) :10,1)2 = [0,1)? given by

FP(@,y) = (fi(2), fily), 0 < i < M.

In Corollary 2.2 we established that Lebesgue measure on the diagonal A = {(z,2) ; = €
[0,1)} C [0,1)? is stationary for the iterated function system on [0,1)? generated by fi(z)
with probabilities p;, 0 < i < M. In the theorem below we write A|, for two-dimensional
Lebesgue measure restricted to A. The theorem gives, for multiplicatively dependent
M, N, an explicit expression for an infinite stationary measure of full topological support,
with a density that diverges along the diagonal A.

Theorem 3.7. Consider L,, =0 and (M, N) with N, M multiplicatively dependent: N =
kF and M = k*. Then the iterated function system generated by the two-point maps fi(g),
0 <i< M, admits a o-finite infinite absolutely continuous stationary measure.

Proof. We look for an invariant measure m(? of the form m® = 3>°7° 'mj, with

k" —1
h =00 D K Ay Gy ey (3:8)
3=0
where b, can be read as the mass assigned to U; 8 [3/6", (G + 1)/I€h)2, which is the

union of the squares on the diagonal of size ﬁ determined by s-adic neighbors i /2", (i+
1)/k2". So my,([0,1)%) = by, and for the total measure we have

th 01 th

Consider the push-forward map of measures given by

Pm = pg( ) f —Po (f(Q))* (3.9)

Then P maps Y o qm; t0 Y .o M, with

1o = po(mo + -+ + my),

A

mi = PoMg+1,

Me—1 = PoMptr—1,

me = (1 — po)mo + pomie,
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ey = (1 —po)m; + pomyke,

A measure of the sought form Y ;7 ; my, with my, as in (3.8) is determined by the sequence
of numbers (b;);en. Write

M(N) = {(bs)ien ; bs > 0},

which can be identified with the set of o-finite measures on N. The push-forward map P
from (3.9) induces a map Q : M(N) — M(N). To make this explicit, suppose P maps
YoM to Yooy, and (b;);en is given by (3.8) and likewise (bi)ien corresponds to
52, 7. Denoting b = (b;)ien, b = (bi)ien, then

Identifying the union of squares U;};al [7/k", (j+1)/k")? with the integer h, Q becomes
the push-forward operator associated to the random walk on N given by

max{0,z, — ¥}, wp41 =0,
x = 3.10
el {xn—i—k, wnt1 € {1,..., M} ( )

As k and £ are relatively prime, by Bézout’s identity there are integers «, 8 with
ak + ¢ = 1. Noting this, it follows from L,, = 0 that (3.10) is recurrent. It is in fact
null-recurrent, and not positively recurrent, since L,, = 0 implies that the expected
return time to a site is infinite (see [41, Section 2.3]). By [19] there is a unique infinite

stationary measure for (3.10). This gives the fixed point Q(b) = b with the required
property that Y7 (b, =oc0. O

Stationary measures for the two-point maps may not be unique, as Example 3.8 shows.

Example 3.8. Take M = N = 3. Let A be the middle third Cantor set on [0, 1]. Take the
product set T1 = A% in [0,1]? and for i > 1 define recursively

3
Tiv1 = U fj@) (T:N10,1)?)

j=1

(these are closed sets; the definition involves taking closures as the maps f; are defined
on the left closed, right open interval [0,1)). One can characterize Y; as the set of points
(z,y) that in a ternary representation admit an expansion
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0 02 04 06 08 1

Fig. 8. Depicted is the invariant set U;—; Y; for the two-point maps with M = N = 3. In the case pg = 1/2,
so that L, = 0, the two-point maps admit an infinite stationary measure supported on U2, T;.

(0.&1(12 N ai,1b1b2 N 7O.a1a2 ...a;—-1C1Co .. )

witha; € {0,1,2},1 < j <i,and bj,c; € {0,2}, 1 < j. The first ¢ digits in the expansions
for z and y are identical. The sets T; accumulate onto the diagonal as i — co.
Now 7Y is essentially invariant under fég), or more precise,

52) (Tl N [0, 1)2) =17;.

Further,

F (i N[0, 1)2) = 1y,

F2N[0,1)2) € Tir, =123

If po = 1/2, so that L,, = 0, then the reasoning of Theorem 3.7 provides an infinite
stationary measure m(? on [0,1)? of the form

m(2) = i mp,
h=0

where my, is supported on Y}, and satisfies mp,(Th) = 1 (see Fig. 8). Details are left to
the reader.

In the same setting, still with M = N = 3, the map fy has a periodic orbit of period
2; xo = fo(x1), x1 = fo(z2). The set V1 = (x1,22) U (z2,21) is invariant under féQ).
Define recursively Y;;1 = f1(2>(n) U f2(2)(Ti) U f?EQ)(Ti). The union U2, T, consists
of isolated points that accumulate onto the diagonal, and is invariant for the iterated
function system of two-point maps. One can find a stationary measure that assigns
positive measure to its points.
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Fig. 9. A time series of f (z) for pg = 1/2 and (M, N) = (2, 3). The right panel shows a signed difference
with another time series with the same w.

3.3. Lp, > 0 (divergence)

A goal of this section is to explain the outcome of numerical experiments such as
depicted in Fig. 9. From a dynamics point of view this is done in Theorem 3.15 below.

First we establish the ergodicity of the product measure y = v x A\, which proceeds
by connecting to Theorem 3.2.

Theorem 3.9. Consider L,, > 0. The measure [ is an ergodic invariant measure for F.

Proof. Recall the definition of the invertible map T' : [0,1)% — [0,1)3 from (2.4) with

inverse

(pow’z;j’lz\g_)’ jlz\)fogy<(j+1\lf)po70§j<Nv
I w,z,y) = , <y<l1
5 Ly (1—po) (w+i) L u— Pox>Y )
(70” ,Mx — 1, 7{71’;3),

i i1 .
MSZ‘<W’0SZ<M

As in the proof of Theorem 3.2 one proves that three-dimensional Lebesgue measure is
ergodic for I' ™!, with the difference that now the map is expanding in the direction of y
and contracting in the direction of w. Lebesgue measure is therefore also ergodic for T'.
Reasoning as for Theorem 3.2, it follows that u is ergodic for F. O

As a corollary we have that typical orbits are uniformly distributed, see Proposi-
tion 3.3.

Before we formulate and prove the result that provides the last part of Theorem 1.1,
we first focus on stationary measures for the iterated function system generated by
the two-point maps. We will give two results. Firstly, for multiplicatively dependent
M, N we provide an explicit expression for a stationary measure m(? that is absolutely
continuous with respect to Lebesgue and has full topological support and that, contrary
to the case Lp, = 0 (see Theorem 3.7), is a finite measure. Fig. 11 shows a numerical
approximation of the density function of this stationary measure for py = 1/2 and
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Fig. 10. Left picture: a plot of the graphs of Fn8 for (M,N) = (3,3) and n = (10010010). The red graph
is the graph of f8 for w = (20020020). Right picture: a plot of the graphs of Fn7 for (M,N) = (3,2) and
n = (0010010). The red graph is the graph of 7 for w = (0020030).
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Fig. 11. A plot of the stationary distribution for the two-point motion by a numerically computed histogram
of an orbit, for pg = 1/2 and (M, N) = (3,9).

(M,N) = (3,9). Secondly, we prove the existence of such a measure for all pairs (M, N)
without identifying an explicit expression. The proof of the second result will again run
into the difficulties caused by the discontinuities of fy, see Fig. 10 that includes a plot
of the graphs of F7 with Fy, Fy introduced in (2.5), (2.6).

If N =kF and M = k*, then L,, > 0 reads pokIn(k) — (1 — po)¢In(x) > 0. We will
use that this implies

l
— < < 1. 3.11
PN (3.11)
Theorem 3.10. Consider L,, > 0 and (M,N) with N, M multiplicatively dependent:
N = k* and M = k*. Then the iterated function system generated by the two-point maps
fi(z), 0 <i < M, admits an absolutely continuous stationary measure m® of the form
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oo rh—1
2) h
m® = o D K" Al (o e
h=0 =0

with by, satisfying the recurrence equation

1 1-— Po
bjthte = —bjpp — ——
Po

bj, ] Z 07
and a suitable initial condition on by, ..., bgye—1.
Moreover, with vy being the unique real solution in (0,1) to polFtt —(4+1—-py=0,

lim by, /vt
h—o0
exists and is a positive number.

Proof. We take the setup of the proof of Theorem 3.7, which we briefly repeat. We look
for an invariant measure m? of the form m® = 3"3°  m; with

kh—1

mp, = by, Z K" >\|[j/mh,,(j+1)/ﬁh)2 . (312)
=0

Consider the push-forward map P of measures from (3.9). A measure of the sought for
form Y;7 ,my, with my, as in (3.12) is determined by the sequence of numbers (b;);en-
The push-forward map P from (3.9) induces a map Q : M;(N) — M;(N), where

My (N) = {(bi)ieN ;b > O’ibi = 1}.

=0

As noted in the proof of Theorem 3.7, Q is the push-forward operator associated to
the random walk on N given by
max{0,z, — k}, wpy1 =0,
x = 3.13
o {xn+€, wpt1 € {1,..., M} (3.13)
As L,, > 0, this is a positive recurrent random walk. Hence Q admits a fixed point in
Mi(N).

Having established the existence of a fixed point Q(b) = b, we continue with cal-
culations that will result in expressions for bj,. The stationary measure m(?) satisfies
Pm® =m® . For the coefficients by, h > 0, this gives equations

1—po

by, = pbo—b1—"'—bk—1,
Po
1

br+1 = —by,
Do
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1
brte—1 = —be_1,

Po

1 1 — Po

brye = —by — bo,

Po 0

1 1—po
bjthte = —bjpe — ——bj,
Ik Do I Do !

The recurrence equation bjyp4s = pio e — 1;:() b; that appears here, is equivalent to
the linear system

bait 0 10 0 0 by
bh+2 0 0 1 0 0 bh+1
: : - 0 :
bhoor1 | = 0 oo - 1 0 bhte ;
: : Do : 0 :
bhkto—1 0 0 0 0 1 bht k-2
bh+k+e - 1;% 0 0 p% 0 bhtk+e-1

h > 0. Denote the above matrix by A. Its characteristic equation is po¢‘t*—(¢f4+1—py = 0,
so that

po(CFHt—1)=¢"—1. (3.14)

We claim that for any pg < 1 the zeros of the characteristic equation, thus the eigen-
values of A, are as follows.

(1) A has a simple eigenvalue at 1, which is the only eigenvalue on the unit circle. There
are k — 1 eigenvalues outside the unit circle and there are ¢ eigenvalues inside the
unit circle. Write them as

770:]-3 771;~-»,77k71€{Z€(C§|Z|>1}a Vl,...,Z/ZE{ZE(C;|Z|<1};

(2) The eigenvalue with largest modulus among {v1,...,v,} is single, real and positive.
Let 11 € (0,1) be this eigenvalue.

To prove the statements on the eigenvalues, write S,(a) = {z € C ; |z —a| = r} for
the circle in the complex plane of radius r and center a. Consider ¢ € C with || = .
Then
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Fig. 12. The circles S, ,x+:(—po) and S,.(—1) for the values pg = -1, N=4, M =2and r =1 (solid),

r = % (dashed), r = # = ‘/3271 (dash dotted), r = &5 (densely dotted) and 7 = 1 (loosely dotted).

po(¢FTE = 1) € Sy prte(—po), ¢t —1€8,..(-1).

Solutions to (3.14) with |(| = r can occur only if these two circles S, ,x+¢(—po) and
S,e(—1) intersect, so we consider their mutual position.

First consider the situation that py = 1. For r = 1 the resulting circles Sy, (—po) and
S1(—1) are identical and for any other value of r the circles do not intersect. The solutions
to (3.14) are therefore given by {e?7U/k) (0 < j < k}. Together with the solution at 0,
with multiplicity ¢, these are the solutions to (3.14) with py = 1.

Now assume %_Le <po <1,see (3.11). For r =1, Sp,(—po) and S;(—1) intersect only
at the origin. As k and £ are relatively prime, and therefore also k + ¢ and ¢ are relatively
prime, ¢ = 1 is the unique solution with |{| =1 to (3.14).

Now consider ﬁ < po < 1 with r < 1. Write ho(r) = po(r*+¢—1) and hy(r) = r —1.
Then —1 = hy1(0) < ho(0) = —po, while 0 = h1(1) = ho(1). The function hy(r)/hi(r) =
po%rk is monotone increasing on [0, 1], from 0 at » = 0 to po# > 1 at r = 1. There
is therefore a unique solution # = #(pg) in (0,1) to ho(r) = hy(r), see Fig. 12 for an
illustration. Moreover, # — 0 as pg — 1 and # — 1 as py — l%e'

This means that S, s+:(—po) is tangent to Spe(—1) (at 7 —1). For # < r < 1,
ori+e(—p0o) N Spe(—1) = (. We conclude that the real solution v = 7 is the solution to

S

P
(3.14) of largest modulus of solutions inside the unit disc. Again as k and ¢ are relatively
prime, it is an isolated solution, and other solutions inside the unit disc have smaller
modulus.

Since eigenvalues depend continuously on pg, and 1 is an isolated eigenvalue and the

L
k42

circle when varying pg. So for any kL-;-é < pg < 1, there are ¢ eigenvalues inside the circle

only eigenvalue on the unit circle for < po < 1, eigenvalues can not cross the unit
of radius #(pg), there is an isolated eigenvalue at 1, and the remaining k — 1 eigenvalues
lie outside the unit circle. This concludes the proof of the statements on the solutions to
(3.14).

A solution to the equations for by, is determined by an initial vector by, ..., bgtr—1.
For higher indices h, by is given by the recurrence equation. For a solution with by,
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converging to 0 as h — oo, we need the initial vector to be contained in the sum of the
(generalized) eigenspaces corresponding to the contracting eigenvalues vy, . .., 1. Recall
that we already know there is such a solution to the equations.

The initial condition can not be contained in the range of (A —14) (thus must have a
component in the direction of the eigenvector corresponding to the unique real positive
eigenvalue v1, when decomposing in a basis of generalized eigenvectors), since otherwise
by, can not be positive for all h. As 1 is the eigenvalue of largest modulus of all eigenvalues
inside the unit circle, this implies by, /v converges to a positive value as h — co. O

Example 3.8 is relevant to the context of Theorem 3.10: there may be various station-
ary measures that are not absolutely continuous.

Remark 3.11. In the above proof we concluded the existence of a fixed point of Q in
M1 (N) from positive recurrence of (3.13). Here we connect to a different approach.

Consider the diffeomorphism h : R — (0,1) given by h(z) = 1i; The random walk

(3.13) considered on R is topologically conjugated through h with the iterated function

system

)
€ Yn —

Ynt1 = (3.15)

Yn

€ J—
T+ (eF—Dyn Wn1 =1

on (0,1). By continuous extension we have 1 as a common fixed point for the two maps
generating (3.15). Moreover, the iterated function systems have a positive Lyapunov
exponent L, at 1. Following the reasoning of [26, Lemma 3.2] (see also [25, Proposi-
tion 4.1]; it amounts to following a Krylov-Bogolyubov procedure on a suitable closed
class of measures), the iterated function system (3.15) admits a stationary measure sup-
ported on h(N). Hence Q admits a fixed point in M;(N).

Example 3.12. We work out the general result of Theorem 3.10 in two special cases.

(1) Pairs (M, N) with N = M* correspond to k = M and ¢ = 1. By Theorem 3.10, the
iterated function system generated by the two-point maps fi(Q), 0 <7< M, admits
an absolutely continuous stationary measure m(? of the form

00 Mh—1
2) _ h
m® = "on D M (e
h=0  j=0

with b, = v} for v; the unique real solution in (0,1) to

ol —C+1—py=0.
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1—po
Po

For k£ = 1 the solution v; is given by v; = . For k = 2 it is given by 11 =

—5 3/l H45E,

(2) The second special case we consider is of pairs (M, N) with M = N*. This cor-
responds to kK = N and k£ = 1. Then the iterated function system generated by
the two-point maps fi(Q)7 0 < i < M, admits an absolutely continuous stationary

measure m(? of the form

) Nh—1
2 h
m® =3 b Y N Al wn a2
h=0  j=0
with
bo =1,
b; = (1 - po)/p}, 1<j<t,
1 1—po )
biiy = —b: — b e, >0,
A Do ’ Do it J

We have by, ~ v}, where v is the unique solution in (0,1) to po¢‘T —¢*+1—pg = 0.

L=po For { = 2, 1 = 1=kotv/U-ro)(Ltpo)

Po 2po

For ¢ =1, this gives v, =

Remark 3.13. Writing m(® obtained in Theorem 3.10 as

Kh—1

o0
@ _ h
m® = Ok D N () ey
h=0 7=0

and noting by, ~ v}, it is clear that its density is bounded if 115 < 1.

The two-point maps fi(Q) are examples of Jablonski maps [34]. In the literature, see
[9,15,33], it is proved that random Jablonski maps admit an absolutely continuous sta-
tionary measure under an expansion on average condition. In our setting this gives that
the iterated function system generated by { fl@)}, 0 <14 < M, admits an absolutely con-
tinuous stationary measure if £ + (1 — pg)M < 1. Under this condition the stationary
measure has bounded Tonelli variation. We apply [11] to get an absolutely continuous
stationary measure under the condition L,, > 0. This may not have bounded Tonelli
variation, compare also Remark 3.13 and [47, Section 4]. In contrast to Theorem 3.10,
here we do not have an explicit expression for the density function.

Theorem 3.14. Consider Ly, > 0. The iterated function system on [0, 1)% generated by
fi(Q), 0 <i < M, admits an absolutely continuous stationary probability measure m 2.
Furthermore, m® has full topological support.
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Proof. We will apply [11] that considers skew product maps with an invertible base map.
For this reason we take the map F'® : {0,...,M}% x [0,1)2 — {0,..., M}~ x [0,1)2
given by

F®(w,z,y) = (ow, f{2 (z,1)).

Z is invertible.

The base map of the skew product system, that is, o acting on {0,..., M}
The p-Bernoulli measure on {0, ..., M}Z with p as in (1.2), which we also denote by
v as in the one-sided case, is an ergodic invariant probability measure, so we fit the
setting considered in [11]. Under the condition L,, > 0, [11, Theorem 4.2 and Remark 5]
provides a family ug) of random absolutely continuous invariant measures on [0,1)2.
Invariant here means

(f@)) ,u(Q) = u((i),, for v-almost all w.

wo w
Furthermore, the measure ﬂ(2) with marginal v on {0,..., M}Z and fiber measures ug)
on {w} x [0,1)?, is invariant under £(2.
Let I1:{0,...,M}Z x [0,1)2 — ¥ x [0,1)? be the natural coordinate projection

A

H((wi)iez: 2, y) = (Wi)ien, 2,y).

Then p? = 11, (ﬂ(2)) is an invariant measure for F(?). To show that ;) is an absolutely
continuous measure, take a set A C ¥ x [0,1)? of zero measure for v x A\. We wish to
show that 12 (A) = 0. Now II='(A) has zero measure for v x A on {0,..., M}~ x[0,1)2.
So II-1(4)N ({w} x [0,1)?) has zero Lebesgue measure for almost all w € {0,..., M}Z.
It thus has zero measure for ug), for almost all w € {0, ..., M}%, by absolute continuity
of uSJZ). Hence A has zero measure for p(?).

By [45, Theorem 3.1 and Corollary 3.1], w2 is an invariant product measure, so of
the form p® = v x m®.

By iterating under the expanding map f(gQ) we recognize that m(?) has full topological

n
support. Namely, take any open set O C [0,1)%. Now ( féz)) maps rectangles

Ry = [i/N", (i +1)/N") x [j/N",(j +1)/N")
onto [0, 1)2. Take a set of positive m(?) measure. As m? is absolutely continuous, we can
take a Lebesgue density point of this set. For n large and the rectangle R}; containing this
Lebesgue density point, ( fé2)) - (O) N R has positive m(® measure. The topological

support of m(? therefore intersects O. O

We also have the following related dynamical statement, showing that orbits may
stick close together for some iterates, but then diverge again. Recall that A, denotes the
e-neighborhood {(z,y) € [0,1)?; |x — y| < &} of the diagonal A in [0,1)2.
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Theorem 3.15. Consider Ly, > 0. Let 0 < t < 1. There is a set of points (w,x,y) in
¥ x [0,1)2 of full v x A\-measure, for which

P(e) = lim = |{0<i<n;

1
n—o00 M

fila) = fo(w)] <&}
exists. Moreover,

lim P(e) = 0.

e—0

If M and N are multiplicatively dependent with N = k¥, M = k°, then
P(E) ~ e~ ln(ul)/ln(f@)7
where vy is the unique solution in (0,1) to poC**t* —( +1—pg = 0.

Proof. The statement for general pairs (M, N) follows from [16, Proposition 4.1], see
also [11, Theorem 4.5], combined with Theorem 3.14.

Extra reasoning is needed to prove the statement for multiplicatively dependent M
and N. Write

k=1
Sp=Y /" (G+1)/6")>
j=0

Take a point (x¢,9o) € [0,1)?, which we consider to lie in So = [0, 1)2. Tterate (2, yn) =
( ff)) (o, ¥o)- If we let hy, with o = 0 follow the random walk (3.13), so

n ) max{0,h, — Kk}, wpq41 =0,
e hn+£7 Wn+1€{1,...,M},

then we find (z,,yn) € Sh, . For the distance of (z,,yn) to the diagonal A it is irrele-
vant in which rectangle [j/x"", (5 4+ 1)/k"")?) the point (z,,y,) lies, but the position
inside the rectangle is. If we rescale all rectangles to [0,1)2, we find a sequence of points
(Zn,¥n) € [0,1)2. The point (F,41,Jn+1) can only differ from (Z,,9,) if (¥,,%,) and
(Zn+1,Un+1) both lie in Sp, = Sp = Sp; in this case (Zn+1,Un+1) = N(Zn,Tn)
(mod 1). Summarizing,

n+1

N(jnagn) (mOd 1)7 Shn = Shn+1
(jnagn)v Shn, # Shn,+1'

- . =S,
(g1 Uns1) = { 0

As hy, = hp41 = 0 occurs for a positive proportion of iterates, for almost all w, and
(z,y) = N(z,y) (mod 1) is ergodic with respect to Lebesgue measure, for typical initial
points (zg,yo) and almost all w, (&, J,) is uniformly distributed. This implies P(e) =
m®(A,) and the estimate m® (A,) ~ g~ 1)/ In(x) 4
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Fig. 13. Shown are time series of signed differences of two orbits, for (M, N) = (3, 3). The left panel is for
po = 0.6, the right panel is for po = 0.9. In both figures, L,, > 0. The stationary measure m® of the
two-point maps has bounded density function for po > 3/4: the density of m®@ is unbounded for the left
panel and bounded for the right panel.

Fig. 13 shows time series of signed differences of two orbits, for (M, N) = (3,3) and
two different values of py. The stationary measure has unbounded density for the left
panel and bounded density for the right panel. Theorem 3.15 explains and quantifies the
relative stickiness of orbits visible in the left panel. Where we associate the dynamics
for zero Lyapunov exponent to intermittency, one may argue that also the occurrence
of a stationary density for the two-point iterated function system that blows up at the
diagonal relates to intermittency.

In addition to the above result, we have for v x A-almost all (w, z,y),

lim inf |£2() — ()] =0,

limsup [f7(z) — f5(y) =1,

n—oo

for multiplicatively dependent M, N.
4. Final remarks

We conclude with brief remarks on left out topics and on generalizations that would
extend the core findings of this paper to a broader framework.

4.1. Multiplicatively dependent pairs (M, N)

We note that some of our results in Section 3 admit simpler proofs in the specific
and restricted case of multiplicatively dependent pairs (M, N). Especially the proofs of
Theorem 3.1 and Theorem 3.4 can be simplified by applying the following Lemma 4.1,
which stresses properties of graphs of f”' in this case. We call intervals of the form
[i/k7, (i 4+ 1)/K7), for some integers k > 1, j > 0 and 0 < i < k7, k-adic intervals.
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Lemma 4.1. Consider (M, N) with M and N multiplicatively dependent: N = k* and
M = x'. Then for each n > 1 and each w € X the graph of f" is contained in a strip
of the form [i/K, (i + 1)/K7), for some integers j > 0 and 0 < i < x/. Moreover, fm
is a piecewise linear map with constant slope of which all branches have the interval
[i/k7, (i +1)/K?) as their image.

Proof. A direct computation shows that f;, for any 0 < i < M, maps any k-adic interval
to a k-adic interval. Note that, if the interval contains a discontinuity point of fy in its
interior, then fy maps this interval to [0,1). O

The pictures in Figs. 4 and 10 illustrate the differences between multiplicatively de-
pendent and multiplicatively independent pairs (M, N).

4.2. Phase transitions for general random systems

The toy model studied here shows a phase transition for the two-point motion occur-
ring when the Lyapunov exponent crosses zero. In Theorem 1.2 we have seen that this
involves an explosion of the support of the stationary measure and an infinite stationary
measure at the transition point. A central question is whether this is a typical scenario
for more general classes of systems.

In this article we looked at iterated function systems generated by expanding and
contracting affine maps on the unit interval, determined by a pair of integers (M, N), and
a probability vector p determined by a parameter pg. For fixed M and N, a parameterized
family of systems arises by varying the probability vector p more generally. It would be
interesting to investigate how the dynamical properties of this family depend on p.
Where our setting has Lebesgue measure as stationary measure, a first question would
be to determine a stationary measure for the iterated function system. For probability
vectors other than p as in (1.2) one can start with constructing a stationary measure as
in [16,36,44,47] and continue from there.

There are various other generalizations thinkable. One may consider different classes
of affine maps. One can generalize to nonlinear maps. In [27] a somewhat similar setup is
discussed for circle maps, showing that the maps need not be uniformly expanding and
contracting. One can also consider higher dimensional analogs.

Finally, there is no need to restrict to iterated function systems, and one can study
the same type of questions for skew product systems driven by more general noise.

4.8. d-point motions

Where we focused on 2-point motions, one may iterate more than two points by
considering d-point maps fi(d) :10,1)% = [0,1)¢ given by

F D@y, a) = (filxr),- .. fi(za)-
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This makes little difference in the cases of nonpositive Lyapunov exponent L,,, as we al-
ready analyzed the fate of the entire interval [0, 1) under iterations. But take for instance
the setting of Theorem 3.10 with L,, > 0 and multiplicatively dependent (M, N). The
reasoning to prove Theorem 3.10 provides, under the given assumptions, an absolutely
continuous stationary measure m(® for the iterated function system generated by the
d-point maps fi(d), 0 <i< M, of the form

o) nhfl
d _ h(d—1)
m @ =3 "b Y K Al an (1) tye -
h=0 =0

Its density is bounded if v1x%1 < 1 (compare Remark 3.13). The transition values of
po where the density of m® changes from bounded to unbounded thus depend on d.
This agrees with the observation that it becomes increasingly less likely to find iterates
of higher numbers of points close to each other.

Appendix A. Random walks with small drift

Reductions to random walks on the half line or the line are a recurring tool for the
study of the iterated function systems in this paper. This appendix develops results that
are used in the main text in the study of intermittency.

A.1. Stopping times for random walks with a small negative drift

Write Yo = {0, 1}N endowed with the product topology and the Borel o-algebra. Fix
a0 < pg <1 and write vy for the (pp, 1 — pg)-Bernoulli measure on Yo determined on
any cylinder set

[ag - -ar] ={w € Xo; w; =a;, 0 <i <k}, a; € {0,1},
by

ag]) = p#{OSiSk ; ai:o}(l L V#{0<i<k; ai=1}

va(lag - - Do)

For real numbers L < 0 and R > 0 consider the random walk given by

Zn+ L, w, =0,
- {%+R o (A1)

so the step L < 0 is taken with probability pg, the step R > 0 with probability 1 — py.
We assume that the average drift o given by

a=poL+ (1 —po)R
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is small and negative, so a < 0.
Consider escape from [0, 00) for the random walk (A.1). For zy € [0,00), define the
stopping time

T =min{n € N ; z, < 0}.
Lemma A.1. Assume 2o € [0, R). Then [;, T(w)dve > —poL/|al.

Proof. By Wald’s identity, see for instance [53, Section VII.2],
1
/T(w) dvy = — /zT(w) — 29 dvs.
@
22 E2

Note that T'(w) as a function of zy is minimal for zg = 0. Then

1
— /ZT(W) — 2o dvy

(67

1

— | 20— 2 dv:

|Oé|/ 0 T(w) 2
22 Z2

1 L
> —/—ZT(W) dvy = 222
|al |af

(0]
Next consider escape from an interval [0, K| with K a large positive number. So let
2o € [0, K] and define

Tx =min{n >0; z, <0or z, > K}.

It is well known that the average stopping time to reach (—oo,0) U (K, c0) is finite:

/TK(oJ) dva(w) < 0.

PP

To see this it suffices to realize that escape from [0, K] is guaranteed after a sufficient
number of identical symbols, either 0 or 1, in w. We will discuss the probability of escape
through 0, when starting close to K, and establish that the probability of escaping
through 0 can be made arbitrarily small by taking the drift « close enough to 0 and K
large enough. For the next lemma we take a context of parameterized families of random
walks: consider (A.1) with

L="Ly+q, R=Ry+ q, (AQ)

where pgLg + (1 — pg)Rp = 0. The average drift @ < 0 is taken as the parameter.
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Lemma A.2. Consider (A.1) with L, R given by (A.2). Given p > 0, there is a small
ap < 0 and a large K > 0, so that for ag < a <0 and zg € (K+ L, K] C [0, K], we have

VQ({LU € Yo ; 21 < 0}) <p.

Proof. Write (, =0and (,, =z, —zp_1 forn > 1. For n > 0 write S, = (o + -+ (. =
zn — 2o. Note that for n > 1, S,, depends on wy,...,w,_1. Consider the function

G, =¢e" o,
where r* > 0 is the solution of

poe”* +(1- po)eR’” =1.

By developing the exponential functions in a Taylor series, one can check that this
equation has a unique solution 7* > 0 with 7* — 0 as a — 0:

o (1 + L+ %LQ(r*V) + (1= po) <1 + Rr* + %R2(T*)2> =1+0((r")°)
yields
ar' + 2 (poI + (1 - po) B) () = O ((r*)°)
and thus
a+ % (PoL? + (1 = po)R?) r* = O ((r)?)

for r* % 0, from which 7* can be solved by the implicit function theorem. Now G,, is a
martingale as for any cylinder [ag . ..a,—1] C 2o,

o St dvy = / o Sn T Gt dvs
lag...an_1] lag...an—1]
=¢" Sn / e St duy
[ao...an—1]
= / el dvy + / e duy
\[ao...a,l_lo] lag...an—11]

= O / poel™ + (1 = po)e™ duy

\[ao...an_l]
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= / e’ Sn dvs.
lag...an—1]

By Doob’s optional stopping theorem, see for instance [53, Theorem VII.2.2], we see that
for any large K,

/eT STr g = " %0 = 1.
PP}
This gives
/er T dyy = €07
Yo

Observe that zp, € [L,0) or zr, € (K, K + R]. For any large K let
Ag =w({w € Xy ; zr (w) <0}) >0

be the probability that zr, < 0. Let 0 < p < 1. Our goal is to show that we can find «ag
and K such that Ax < p for all « € (ap,0). For any a < 0 write

*

/er *Ti dyg = Age®” + (1 — AK)eK’" e?” |

32
with
cir® 1 r*zr
e = — e" *Tx duy,
Ak
{weXs ; 27, <0}
cor™ 1 r*(zr,, —K)
e = e K dVQ.
1-Ag

{weXs ; 27 >K}

Note that ¢; € [L,0] and ¢z € [0, R]; ¢1 represents the average value that zr, takes if
the random walk escapes through 0 and cp + K is the average value that zr, takes if
the random walk escapes through K. We obtain

* * *
ec2r’ _ gZoT e—Kr

Ag =

ecar* _ geir* o—Kr* :

Since 7* — 0 as a — 0, the terms e“1”", e©"" and e®" ¢~ K" converge to 1 as a — 0.
So we can take ag small so that for the corresponding 7,

* * *
€20 _ ezor[)e—Kro < p/2
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o~ - LN
204 ® Son K,

Fig. 14. Time dependent stopping levels where stopping levels K, lie on a non constant curve.

Now taking K large enough ensures that Ax < p for these values of oy and K.
To show that Ax < p for any a with ag < a < 0, fix such an a. We must now consider
that z, depends on a and write 2, ,. Clearly, for a fixed value of zy,

Zag,n < Za,n-

This implies that vo({w € X2 ; 21, < 0}) of escape through 0 decreases with a. The
lemma follows. 0O

A.2. Stopping times for random walks with time dependent levels
We stay with the random walk z, from (A.1), but now with the no drift condition

p()L + (1 - po)R =0.

Let £, = 1/n? and note that > - e, < co. Let also € > 0 and p > 1 be such that
ep+1 < € < €p. We assume that € is small or equivalently that p is large. Define K,, =
—1In(ep4p) +1In(e), so

K, =2In(n+p) + In(e). (A.3)

Note that Ky = 2In(p) + In(¢) < 0 and that lim, . K,, = oo. Suppose zo > Kj.
We want to know the average stopping time to reach the n-dependent level K. Time
dependent stopping levels like these have been considered in [28] and [29, Section 4.5].
We use the statements that are derived here in the study of intermittency in Section 3.2.
Write

S =min{n >0; 2z, < K, }.
It is standard that in the case of no drift the expected stopping time to reach a point

smaller than the fixed level Ky is infinite. We will show that the expected value of S is
still infinite, using the slow growth of K,,. Fig. 14 illustrates the setting.
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Lemma A.3.

[ s () .

Yo

Proof. The strategy of the proof is to give a lower bound for the integral from the
lemma by considering, instead of the stopping level K,,, a sequence of affine stopping
levels (M,Sm))mzo that have slope decreasing to 0 as m — oo. We then translate the
situation of having a random walk with no drift and affine stopping levels to a random
walk with small negative drift and a constant stopping level K, so that we can apply

) are obtained by taking

the results from the previous section. The stopping levels Mr(Lm
tangent lines to K,, at suitable moments m. We will first explain this last part for an
arbitrary suitable time m.

We will work with a large positive number K; a condition for K will be given in the
course of the proof. As we have z,, > K + K,, with positive probability, for a suitable

positive integer m, to prove the lemma we may assume
zo > K + Kj.

Counting iterates from m on by writing n = m + ¢, ¢ > 0, and translating the values K,
by Ko— K, replaces K, by K;m+Ko— Ky, = 2In(i+m+p)+21n(p)—2In(p+m)+ln(e),
i > 0. This is of the form (A.3) and shows that we may also assume that p is large in
(A.3); a condition for p will also be given in the course of the proof.

We construct a stochastic process u,, built from random walks v,(Lmi), m; <n < miyq
for certain stopping times m;. We start with two ingredients, the introduction of stopping

times Sy, and U, ;.

DEFINITION OF A STOPPING TIME S,,. Start with an integer m > 0 such that z,, >
K+ K,,. For all n > m we replace the level K,, by a level M,, = M,(lm) depending affinely
on n:

M, = oy + Bmn

with @, B so that the line z — oy, + Bz is tangent to z — 21n(x + p) + In(e) at
x = m. This gives

am =Ky —2m/(m+p) and B, =2/(m+p).

As the graph of  — 2In(z + p) is concave, we have K,, < M,,. Consider the stopping
time

U:=min{n>m; z, < M, + K} <min{n >m; z, < K,, + K}.

Define
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™ = 2, — My, = 2z, — Bm(n —m) — K.

So v,(nm) = zm — K,,, and thus vy(nm) > K. The sequence vslm) defines a random walk given

by

(m)

m) | 0
”n+12n+1ﬂm(n+lm)Km{vn +L—=Pm, wn=0,

a ’U7(zm)+R_ﬂm7 wp = 1.

(m)

Hence, the random walk vy, ~ has a negative drift —3,, = which is small if p is

2
m+p’
large and depends on and is decreasing in m. The demand z, < M,, + K is equivalent

to u&m) < K. Write
Spn(w) = min{n >m; o™ < K}

and denote E,,(S,,) = f22 Sm dva. Note that the smallest value of E,, (S,,), for varying

vfn’”) > K, is obtained for vﬁnm) = K. As the expected stopping time is similar to the

reciprocal of the average drift, see Lemma A.1,

E (S >> _pO(L_ﬂm) > —poL

> Lol > B+ ) (A1)

DEFINITION OF A STOPPING TIME Uy, ;. The second ingredient is the random walk v%m)

with values inside the interval [0, K]. Assume vl(m) € (K — L, K] for a positive integer
I > m and consider a second stopping time

Upn,i(w) = min {n >0 <0 or o™ > K}.

Note that o™ < 0 is equivalent to z, < M, and vi™ > K is equivalent to z, > M, + K.
Write

Pm = V2 ({w € 3o ; U[(JT:?Z < O})

for the probability that o™ crosses 0. As vlm) € (K + L, K], by Lemma A.2 we find
that p,, will be small for all sufficiently large m if K is large. More precisely, given any
p > 0 we can choose p sufficiently small (so that the drift —f,, is close enough to zero
for all m) and K sufficiently large such that p,, < p for all m or equivalently

vy ({w €Yo v,(}:)‘l > K}) >1—p (A.5)
for all m.

CONSTRUCTION OF THE PROCESS u,. Let my = 0, assume ug > K, and define the
process Uy, n > 0, as follows. Write Iy = Sy,,,. If o < 00, let my = Upyy 1. For mp <n <
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Fig. 15. A possible path z,, with indicated stopping times.
mq we let u, = v,(fn"). Inductively, suppose [; is defined for 0 < ¢ < k and m; is defined

for 0 < i < k. We have u,, defined for 0 < i < my. Then set

Iy = Sy -

If I}, < oo, we let u,, = v,(lm’“) for my, < n <l and let

mk-i—l = Umk,lk .

For my41 < oo, we have either v&?ﬁl <0or vﬁn“’;i)l > K. If v,%’jr)l > K, then we let

Up = 0™, e << mg

Note that wm,, , — K, > K.

If some vfnnﬁ)l < 0, we let m; = m4q for j > i. A path of the corresponding walk z,
with indicated stopping times is depicted in Fig. 15. A similar visualization of paths wu,
is presented in Fig. 16.

ESTIMATING THE AVERAGE OF THE STOPPING TIME S. Having constructed the path
u, with the sequence of stopping times my, we can estimate the expected value of the
stopping time S. We first set the parameters. Set ¢ = —% and let p > 0 be small
enough such that (1 — p)(1+¢) > 1. Let ag < 0 and K > 0 be as given by Lemma A.2.
Choose p so that —% € (ap,0). Let W <e< p% and let K, M{™ be as defined
before. Note that the choice of p implies that —f,, € (ap,0) for all m > 0. Let

Ey={we Xy; lp(w) < oo and vfﬁ’fo)(w) > K}

and for n > 1 let
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possible paths escaping through 0

Fig. 16. Visualization of breaking up random walks wu,, in parts where u,, > K or u, € [0, K].

E,={we€E, 1;l,(w) <oo and v{™) (w) > K}.

Mn+1

Note that S(w) > lp(w) for all w € X5 and that for w € E,, we have

S(w) = lo(w) + 1 (w) = ma(w) + -+ L1 (@) = Mg (w), 0 > 0.

Hence,
/SdZ/Q 2 /lo dl/Q + Z / ln+1 — Mp+1 dl/g. (AG)
N N n20p,

As established in (A.4),

L
E(ly) > —pOTp = cp.

The set Fy is a union of cylinders on which the time m; is constant. Let n =ng---n; €
{0,1}* be such that the cylinder C' = [ng - --nx] is in Ep with k = my(w) =: my(n) for
each w € C and write ly(n) for the value lp(w), w € C. Then by Lemma A.1,

[t = madve = =9 s ) + () = ellala) + pIa(©).
C

From (A.5) we see that

/l1 —my dvs > va(Ep)c(ep+p) > (1 — p)ep(1 +¢).

Eq

Similarly, let = n9---mx € {0,1}* be such that the cylinder C' = [ng---m] C Fi
with & = mg(w) =: ma(n) for each w € C and write lg(n), m1(n),l1(n) for the values
lo(w),m1(w),l1(w), w € C, respectively. From Lemma A.1 we get
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poL
/l2 —mydyy 2 — == (ma(n) +p)r2(C)
c

> c(li(n) + p)ra(C) > c(lo(n) + la(n) — mi(n) + p)r2(C).

Then (A.5) gives

/ ly — madvs > va(En)e(cp+ c(cp +p) +p) > (1 — p)ep(1 + o).
Ey

Continuing, we find for each n > 1 and n = ny---m, € {0,1}* for which the cylinder
C =1[no---nx] C Ep_1 satisfies k = m,, (w) =: m,,(n) for each w € C that

/ Iy —mpdvg > (1= p)ep(l+ )™
En—l

Together with (A.6) and the assumption that (1 — p)(1 + ¢) > 1 this yields

/Sdl/2 > icp(l —p)(1+e)f =0c0. O

8 i=0
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