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are multiplicatively dependent integers, we provide explicit 
expressions for absolutely continuous stationary measures of 
the two-point motions. These stationary measures are infinite 
σfinite measures in the case of zero Lyapunov exponent. For 
varying Lyapunov exponent we find here a phase transition 
for the system of two-point motions, in which the support of 
the stationary measure explodes with intermittent dynamics 
and an infinite stationary measure at the transition point.
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1. Introduction

In this article we introduce a natural and simple toy model of iterated function systems 
on the interval with a�ine expanding and contracting maps and explore its dynamics. We 
focus in particular on the dynamics of two orbits simultaneously, the so-called two-point 
motions. Our set-up is as follows. Given a pair (M,N) of integers M,N ≥ 2, let

f0 : [0, 1) → [0, 1); x ↦→ Nx (mod 1)

be the N -adic map and let

fi : [0, 1) → [0, 1); x ↦→ (x + i− 1)/M, 1 ≤ i ≤ M,

be M contracting maps. Fig. 1 depicts the graphs for a few values of (M,N).
For a sequence ω = (ω0, ω1, . . .) ∈ {0, 1, . . . ,M}N , write

fn
ω = fωn−1 ◦ · · · ◦ fω1 ◦ fω0 , (1.1)

for n compositions of maps from {f0, f1, . . . , fM} with f0
ω = id equal to the identity map

ping. We consider orbits (fn
ω (x))n≥1 for points x ∈ [0, 1), where the ωi ∈ {0, 1, . . . ,M}

are picked independently and identically distributed with probabilities pi. Throughout 
the article we make the following assumption on the probability vector p = (p0, . . . , pM ): 
Choose the map f0 with probability 0 < p0 < 1 and all maps fi, 1 ≤ i ≤ M , with equal 
probability pi = 1−p0

M . So the randomness depends on a single parameter p0 ∈ (0, 1) and 
the probability vector p is of the special form

p =
(︃
p0,

1 − p0

M
, . . . ,

1 − p0

M

)︃
. (1.2)

Let ν denote the p-Bernoulli measure on {0, 1, . . . ,M}N . Let λ denote the Lebesgue 
measure.

We are interested in results on the two-point motions (fn
ω (x), fn

ω (y))n≥0 for x, y ∈ [0, 1)
and ω ∈ {0, 1, . . . ,M}N . Statistical properties of such two-point motions are obtained 
by studying the iterated function system on [0, 1)2 generated by the maps

Fig. 1. Graphs of f0, . . . , fM for (M,N) = (3, 2), (2, 2), (2, 3). 
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f
(2)
i (x, y) = (fi(x), fi(y)), 0 ≤ i ≤ M. (1.3)

We note that two-point motions in contexts of stochastic differential equations are con
sidered in work by Baxendale, see in particular [12--14]. For compositions of independent 
random diffeomorphisms it is investigated in [42].

Here we consider two types of results. Firstly, we investigate the asymptotics of the 
distances |fn

ω (x)−fn
ω (y)| when n → ∞. Below we show that, with the probability vector 

p from (1.2), the Lebesgue measure is a stationary measure for the iterated function 
system {fi ; 0 ≤ i ≤ M} on [0, 1). (We note that Lebesgue measure is not always the 
unique stationary measure, examples of non-uniqueness can be deduced from [17].) In 
this sense we treat conservative systems and one expects points from typical orbits to 
lie uniformly distributed in the unit interval. However, we will see that different values 
of M and N , or different values of p0, lead to significant differences in the behavior 
of two orbits with different initial conditions under the same composition of maps. We 
distinguish three different types of dynamical behavior, the occurrence of which hinges 
on the sign of the Lyapunov exponent

Lp0 = lim 
n→∞

1 
n

n−1∑︂
i=0 

ln f ′
ωi

= p0 ln(N) − (1 − p0) ln(M). (1.4)

This limit exists almost surely and equals the given constant by the strong law of 
large numbers. The following theorem assembles our main results on the asymptotics 
of |fn

ω (x) − fn
ω (y)|.

Theorem 1.1. Let M,N ≥ 2 be integers and 0 < p0 < 1 be given. For the iterated function 
system {f0, f1, . . . , fM} and probability vector p as in (1.2), we have the following.

(i) Suppose Lp0 < 0. Then

lim 
n→∞ |fn

ω (x) − fn
ω (y)| = 0

for all x, y ∈ [0, 1) and ν-almost all ω.
(ii) Suppose Lp0 = 0. Then for every ε > 0 we have

lim 
n→∞

1 
n
|{0 ≤ i < n ; |f i

ω(x) − f i
ω(y)| < ε}| = 1

for all x, y ∈ [0, 1) and ν-almost all ω, while for any small β > 0, any x, y ∈ [0, 1)
and ν-almost all ω either |fn

ω (x) − fn
ω (y)| = 0 for some n or |fn

ω (x) − fn
ω (y)| > β

for infinitely many values of n.
(iii) Suppose Lp0 > 0. Then

P (ε) = lim 
n→∞

1 
n

⃓⃓{0 ≤ i < n ; |f i
ω(x) − f i

ω(y)| < ε}⃓⃓
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exists for ν × λ-almost all (ω, x, y), and

lim 
ε→0

P (ε) = 0.

This theorem combines statements of Theorem 3.1, Theorem 3.4, Theorem 3.5 and 
Theorem 3.15 below.

To put the results in a broader context, we comment on the phenomena of synchro
nization, intermittency and instability, observed in the three different cases.

Lp0 < 0: In this case the contraction wins from the expansion and synchronization oc
curs, which means that orbits from different initial points in [0, 1) converge to each 
other almost surely. This is comparable to synchronization by noise [3,48]. Related 
synchronization results have been obtained in diverse settings, see e.g. [12,22,30,46]. 
Kleptsyn and Volk [40] treat such a phenomenon in the context of smooth monotone 
interval maps forced by transitive subshifts of finite type. Closely related is [26] that 
provides cases of synchronization for iterated function systems generated by interval 
diffeomorphisms. Synchronization by noise in random logistic maps is considered in 
[1,4,54].

Lp0 = 0: In this neutral case a phenomenon reminiscent of intermittency arises. Inter
mittency, first studied in [50], refers to the phenomenon where a dynamical system 
shows sudden transitions from a long period of exhibiting one type of dynamical 
behavior to a period of another type of dynamics. Recently this was analyzed in 
the context of random dynamics for the random Gauss-Rényi map [6,10,35,37,59], 
random LSV maps [7,8], random logistic maps [1,5] and more general families in 
[31,38].
In the setting of Theorem 1.1, orbits of different initial points are intermittently very 
close together or some distance apart. The set of iterates for which orbits are close has 
full density, but the complement is still an infinite set. A similar mechanism arises in 
iterated function systems of interval diffeomorphisms [26], or more generally for skew 
product systems with interval diffeomorphisms as fiber maps [32]. In both papers one 
gets a singular distribution of orbit points instead of the uniform distribution that 
we find.

Lp0 > 0: Here the expansion wins from the contraction and orbits tend to diverge from 
each other. Random interval maps with a condition on average expansion have been 
studied extensively, see e.g. [2,16,20,36,44,47]. Following the definition from [47] the 
expanding on average condition would correspond to p0

N +(1−p0)M < 1, which does 
not align with the condition that Lp0 > 0. Hence we do not rely on these expansions 
on average results here. The two-point maps are connected to Jablonski maps [52], 
and in the positive Lyapunov exponent case to research on invariant measures for 
random Jablonski maps [9,11,33,39].
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Our second set of main results concerns invariant measures of the iterated function 
system from (1.3), again with the probability vector p from (1.2), under an additional 
assumption on the expansion and contraction factors M and N . Two integers M,N ≥ 1
are called multiplicatively dependent if they are powers of the same natural number, i.e., 
if M = κℓ and N = κk for some integers κ > 1 and k, ℓ ≥ 1. Here we always take k, ℓ
to be relatively prime. This condition is equivalent to ln(N)/ ln(M) = k/ℓ ∈ Q. If M,N

are not multiplicatively dependent, they are called multiplicatively independent. Some of 
the difficulties in the analysis for Theorem 1.1 are caused by the points of discontinuity 
of f0 and can be circumvented in case M,N are multiplicatively dependent. This leads 
to the following theorem.

Write Δ = {(x, x) ; x ∈ [0, 1)} for the diagonal in [0, 1)2 and write Δε = {(x, y) ∈
[0, 1)2 ; |y− x| < ε} for the ε-neighborhood of Δ. We let a(ε) ∼ b(ε) stand for a(ε)/b(ε)
bounded and bounded away from zero as ε → 0.

Theorem 1.2. Let M,N ≥ 2 be integers and 0 < p0 < 1 be given. Assume that M and 
N are multiplicatively dependent with N = κk and M = κℓ. For the iterated function 
system {f (2)

0 , f
(2)
1 , . . . , f

(2)
M } and probability vector p as in (1.2), we have the following.

(i) Suppose Lp0 < 0. Then the iterated function system of two-point maps admits 
Lebesgue measure on Δ as stationary measure.

(ii) Suppose Lp0 = 0. Then the iterated function system of two-point maps admits 
Lebesgue measure on Δ as stationary measure. Furthermore, it admits an infinite 
σfinite absolutely continuous stationary measure of full topological support.

(iii) Suppose Lp0 > 0. Then the iterated function system of two-point maps admits 
Lebesgue measure on Δ as stationary measure. Furthermore, it admits an absolutely 
continuous stationary probability measure μ(2) of full topological support and with

μ(2)(Δε) ∼ ε− ln(ν1)/ ln(κ),

where ν1 is the unique real solution in (0, 1) to p0z
k+ℓ−zℓ+1−p0 = 0. The density 

of μ(2) is bounded precisely if ν1κ < 1.

The measure μ(2)(Δε) from Theorem 1.2(iii) quantifies the proportion of iterates that 
typical orbits fn

ω (x) and fn
ω (y) are close. This theorem combines statements of Corol

lary 2.2, Theorem 3.1, Theorem 3.7, Theorem 3.10 and Remark 3.13 below. Further 
results of a similar flavor, in particular with explicit expressions for stationary measures, 
or for stationary measures in case of multiplicatively independent pairs (M,N), are found 
in Section 3.

We stress that the original iterated function system {fi ; 0 ≤ i ≤ M} behaves inde
pendently of p0 in the sense that Lebesgue measure on the interval [0, 1) is stationary 
for all values of p0. The above theorem however makes clear that, depending on the 
parameters, the corresponding two-point motions show a range of different behaviors. In 
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particular the theorem describes a bifurcation or phase transition in the iterated function 
system of two-point motions as the Lyapunov exponent crosses zero for varying p0. See 
also [18] for the notion of stochastic n-point bifurcation. This phase transition involves a 
discontinuous change of the support of the stationary measure of the two-point motion 
(an explosion of its support) and an infinite stationary measure at the bifurcation point. 
Transitions that involve a Lyapunov exponent crossing zero have been considered in dif
ferent contexts such as stochastic differential equations [13], random dynamical systems 
[27,49,62,63], in studies of noise-induced order such as [23,24,43], and in settings with 
skew product systems such as [60].

The article is outlined as follows. In the next section we introduce preliminaries on 
random dynamics, we prove that Lebesgue measure is stationary for the iterated function 
systems {f0, f1, . . . , fM} and we introduce several extensions of these systems that are 
useful in later parts of the text. In particular we explain a connection to a class of 
heterochaos baker maps in three dimensions, similar to the map introduced in [52] as 
a model for heterogeneous chaos. Since the first appearance of our paper as a preprint 
there have been several investigations of, in particular, ergodic properties of heterochaos 
baker maps [55--58]. See [51] for further information on heterochaos baker maps.

In Section 3 we study the iterated function system {f (2)
0 , f

(2)
1 , . . . , f

(2)
M } and derive our 

main results. The section is divided into three parts depending on the sign of Lp0. All 
parts come with their own techniques. The case of a vanishing Lyapunov exponent uses 
theory of random walks involving stopping times with time dependent stopping criteria. 
This material is developed in Appendix A. We end the article with a short description 
of possible future extensions of this research.

Acknowledgments. The idea for this paper started with a project for a bachelor thesis of 
Pjotr Thibaudier. Discussions with him were quite helpful.

2. Skew product systems

2.1. Lebesgue measure is stationary

As usual an approach using a skew product system aids to describe the iterated 
function system as a single dynamical system, and to use the machinery of dynamical 
systems theory and ergodic theory. Write Σ = {0, . . . ,M}N for the space of one-sided 
infinite sequences of symbols in {0, . . . ,M}, endowed with the product topology obtained 
from the discrete topology on {0, . . . ,M}. Elements ω ∈ Σ will be written as ω = (ωi)i∈N . 
Let σ : Σ → Σ be the left shift operator defined by

(σω)i = ωi+1, i ≥ 0.

Write [a0 · · · ak] for the cylinder

[a0 · · · ak] = {ω ∈ Σ ; ωj = aj , 0 ≤ j ≤ k}.
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We equip Σ with the Borel σ-algebra. Given any 0 < p0 < 1 and the corresponding 
positive probability vector p as specified in (1.2), we let ν = νp denote the Bernoulli 
measure on Σ that is defined on the cylinder sets by

ν([a0 · · · ak]) =
k∏︂

j=0
paj

.

The measure ν is an ergodic invariant measure for the shift map σ.
Define the skew product system F : Σ × [0, 1) → Σ × [0, 1) by

F (ω, x) = (σω, fω0(x)).

We use the notation F k(ω, x) = (σkω, fk
ω(x)) for iterates, where fk

ω is as defined in 
(1.1). We also write fk

η (x) for elements η = η0 · · · ηm−1 ∈ {0, . . . ,M}m, called words, 
with k ≤ m. With slight abuse of notation we will use λ to denote the one-, two- and 
three-dimensional Lebesgue measure, since the meaning will be clear from the context.

Proposition 2.1. Let 0 < p0 < 1. Then the corresponding product measure μ := ν × λ on 
Σ × [0, 1) is an invariant probability measure for F .

Proof. For invariance it suffices to consider product sets A = [a0 · · · aj ] × J of cylinder 
sets [a0 · · · aj ] and intervals J . Note that for each x ∈ [0, 1) there are N inverse images 
in f−1

0 {x} and there is a unique 1 ≤ j ≤ M for which an inverse image y ∈ [0, 1) with 
fj(y) = x exists. One immediately computes that

μ(F−1(A)) = μ

(︄
M⋃︂
i=0

[i a0 · · · aj ] × f−1
i (J)

)︄

= ν([a0 · · · aj ])
[︄
p0λ(f−1

0 (J)) + 1 − p0

M

M∑︂
i=1 

λ(f−1
i (J))

]︄

= ν([a0 · · · aj ])
[︃
p0N

λ(J)
N

+ 1 − p0

M
Mλ(J)

]︃

= μ(A). □
Note that the proof of Proposition 2.1 uses the specifics of the probability vector p.
Invariance of μ for F implies that λ is a stationary measure for the iterated function 

system {fi ; 0 ≤ i ≤ M} with probability vector p in the sense that

λ =
M∑︂
i=0 

pi(fi)∗λ.

Here (fi)∗ stands for the push forward measure (fi)∗λ(A) = λ(f−1
i (A)). Therefore, a 

direct consequence of Proposition 2.1 above is the following.
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Corollary 2.2. The diagonal Δ = {(x, x) ; x ∈ [0, 1)} is an invariant set for the iterated 
function system {f (2)

i ; 0 ≤ i ≤ M} from (1.3) with probability vector p and Lebesgue 
measure restricted to Δ = {(x, x) ; x ∈ [0, 1)} is a stationary measure.

Below we will also verify the ergodicity of the measure μ for the skew product F . In
stead of writing that μ is ergodic, we also say that the corresponding stationary measure 
λ is ergodic to mean the same. The proofs of ergodicity provided in the next section are 
different for the three cases identified in Theorem 1.1. They use a map that is isomorphic 
to F as well as an extension of this map. Later we will also use a multivalued map. For 
easy reference we use the remainder of this section to introduce all these different maps.

2.2. One- two- and three-dimensional piecewise a�ine maps

We first conjugate the shift map to an expanding interval map. Write

ri =
i−1 ∑︂
j=0 

pj , 0 ≤ i ≤ M + 1.

This gives 0 = r0 < r1 < · · · < rM < rM+1 = 1. Define the expanding interval map 
L : [0, 1] → [0, 1] by setting

L(w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w

p0
, 0 ≤ w < p0,

M(w − ri)
1 − p0

, ri ≤ w < ri+1, 1 ≤ i ≤ M.

(2.1)

See Fig. 2(a) for an example. Then the map h : Σ → [0, 1] given by

h(ω) =
∞ ∑︂
i=0 

i−1 ∏︂
j=0

pωj
rωi

(2.2)

satisfies h ◦ σ = L ◦ h and h∗ν = λ. There is only a countable set of codes in Σ on which 
h is not injective. So, as h is invertible after removing sets of zero measure, it defines a 
measurable isomorphism. From this we see that the skew product map F is measurably 
isomorphic to G : [0, 1)2 → [0, 1)2 given by

G(w, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(︃
w

p0
, Nx (mod 1)

)︃
, 0 ≤ w < p0,

(︃
M(w − ri)

1 − p0
, 
x + i− 1

M

)︃
, ri ≤ w < ri+1, 1 ≤ i ≤ M.

(2.3)

See Fig. 2(b) for an example.
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Fig. 2. Graphs of L and G for (M,N) = (2, 2) and p0 = 1
2 . G maps the colored areas in the unit square on 

the left to the areas of the same color on the right. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

Consider the invertible extension Γ : [0, 1)3 → [0, 1)3 of the maps L : [0, 1) → [0, 1)
from (2.1) and G : [0, 1)2 → [0, 1)2 from (2.3) given by

Γ(w, x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(︃
w

p0
, Nx− j,

p0(y + j)
N

)︃
,

0 ≤ w < p0,
j
N ≤ x < j+1

N , 0 ≤ j < N,

(︃
M(w − ri)

1 − p0
,
x + i− 1

M
, (1 − p0)y + p0

)︃
, ri ≤ w < ri+1, 1 ≤ i ≤ M.

(2.4)
For M = N = 2 and p0 = 1

2 , we get

Γ(w, x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(︃
2w, 2x− j,

y + j

4 

)︃
,

0 ≤ w < 1/2,
j
2 ≤ x < j+1

2 , j = 0, 1,

(︃
4w − (2 + i), x + i

2 
,
y + 1

2 

)︃
, 1

2 + i 
4 ≤ w < 1

2 + i+1
4 , i = 0, 1,

a graphical depiction of which is shown in Fig. 3. This particular map is somewhat 
reminiscent of the two-dimensional baker map B on [0, 1)2 given by

B(w, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(︂
2w, x2 

)︂
, 0 ≤ w < 1

2 ,

(︃
2w − 1, x + 1

2 

)︃
, 1

2 ≤ w < 1,

which has an expanding and a contracting direction, or more specific, a positive Lyapunov 
exponent ln(2) and a negative Lyapunov exponent − ln(2). The iterated function systems 
that we analyze in this article thus inspire three-dimensional analogues of the baker 
map. As mentioned in the introduction, similar maps feature in [51,52] in studies of 
heterogeneous chaos.
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Fig. 3. The map G for M = N = 2 and p0 = 1
2 maps the regions on the left to the regions on the right 

according to the colors.

The map Γ is invertible, the inverse being given by

Γ−1(w, x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(︃
p0w,

x + j

N
,
Ny

p0
− j

)︃
, jp0

N ≤y< (j+1)p0
N , 0≤j<N,

(︃
(1 − p0)(w + i)

M
+ p0,Mx− i,

y − p0

1 − p0

)︃
,

p0 ≤ y < 1,
i 
M ≤ x < i+1

M , 0 ≤ i < M.

Note that all maps L, G and Γ have Lebesgue measure, with appropriate dimension, as 
invariant measure. We have the following relation between Γ and F (for the purpose of 
the statement considered on compact spaces).

Lemma 2.3. The skew product F : Σ×[0, 1] → Σ×[0, 1] is a factor of the three-dimensional 
map Γ : [0, 1]3 → [0, 1]3.

Proof. Recall the definition of the isomorphism h : Σ → [0, 1] between the map 
L : [0, 1] → [0, 1] and the left shift σ : Σ → Σ from (2.2). Let πw,x : [0, 1]3 →
[0, 1]2, (w, x, y) → (w, x) be the canonical projection onto the first two coordinates. One 
easily verifies that the map (h−1, id) ◦ πw,x : [0, 1]3 → Σ × [0, 1] (up to sets of measure 
zero) is surjective, measurable, measure preserving and satisfies F ◦ ((h−1, id) ◦ πw,x) =
((h−1, id) ◦ πw,x) ◦ Γ, thus constituting a factor map. □
2.3. Multivalued maps

It is sometimes helpful to consider an associate iterated function system of multivalued 
maps. Write K for the class of nonempty compact subsets of [0, 1). Define the multivalued 
map F1 : K → K by

F1(A) =
M⋃︂
i=1

fi(A), (2.5)

in which the contracting maps f1, . . . , fM are combined. We also write

F0(A) = f0(A). (2.6)
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We can then look at the iterated function system generated by F0 and F1. A composition 
Fn
η with η ∈ {0, 1}N is a multivalued map. As all maps f1, . . . , fM that make up F1 have 

the same constant derivative 1/M , and f0 has constant derivative N , we can speak of 
(Fn

η )′. The graphs in Fn
η are equally spaced line pieces with constant slope (Fn

η )′. The 
number of elements in the set Fn

η ({x}) is independent of x ∈ [0, 1), so #Fn
η ({x}) =

#Fn
η ({0}), and Fn

η ({0}) is always of the form

Sj := {i/M j ; 0 ≤ i < M j}

for some j ≥ 0. Let Π : Σ → Σ2 be the projection that maps all symbols 1, . . . ,M to 1; 
so Π(ω) = η with

ηi =
{︄

0, ωi = 0,
1, ωi ∈ {1, . . . ,M}.

We use the next lemma in the section on intermittency.

Lemma 2.4. Let η = η0 · · · ηn−1 ∈ {0, 1}n, n ≥ 1, and let j ≥ 0 be such that Fn
η ({0}) =

Sj. Then for each i ̸= k,

ν({ω ∈ Π−1[η] ; fn
ω (0) = i/M j}) = ν({ω ∈ Π−1[η] ; fn

ω (0) = k/M j}).

Proof. Set γ = #{0 ≤ i ≤ n − 1 ; ηi = 1} for the number of occurrences of the digit 1 
in η. Note that Π−1[η] is the disjoint union of Mγ cylinders of length n in Σ. Note also 
that F1(S0) = S1 and F1(Sl) = Sl+1 for any l > 0, while F0(Sl) ⊆ Sl. There are i ̸= k

such that f0(i/M l) = f0(k/M l) if and only if there is an i such that f0(i/M l) = 0, so 
such that Ni/M l ∈ N, if and only if N and M share a common prime factor. Hence, if 
M and N are relatively prime, then Fn

η ({0}) = Sγ and for each i,

ν({ω ∈ Π−1[η] ; fn
ω (0) = i/Mγ}) = pn−γ

(︂1 − p

M

)︂γ
.

Suppose N and M are not relatively prime. The map f0 wraps the unit interval around 
itself N times with constant expansion factor. So, for any 0 ≤ m < l for which f0(Sl) =
Sm it follows that for each i1, i2,

#{0 ≤ k ≤ M l − 1 ; f0(k/M l) = i1} = #{0 ≤ k ≤ M l − 1 ; f0(k/M l) = i2}.

Since all cylinders [ω0 · · ·ωn−1] ⊆ Π−1[η] have equal ν-measure, this implies the 
lemma. □

Properties of graphs of fn
ω and Fn

η in relation to each other are illustrated in 
Figs. 4 and 10.
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Fig. 4. Left picture: a plot of the graphs of F 8
η for (M,N) = (3, 3) and η = (11010010). The red graph is the 

graph of f8
ω for ω = (12020020). Right picture: a plot of F 7

η for (M,N) = (3, 2) and η = (1010010). The 
red graph is the graph of f7

ω for ω = (3020020).

Fig. 5. Two time series of fn
ω for two different initial points, for (M,N) = (3, 2) and p0 = 1

2 . The signed 
difference between the two, depicted in the right panel, shows convergence of the orbits to each other.

3. Two-point dynamics

This central section treats the dynamics of the skew product systems for different 
values of (M,N) and p0, focusing on convergence and divergence of orbits and statistical 
properties of orbits. We treat separately the cases with Lp0 < 0, Lp0 = 0 and Lp0 > 0. 
Note that for p0 = 1/2, this is the same as M > N , M = N and M < N , respectively.

3.1. Lp0 < 0 (synchronization)

If the contraction is stronger than the expansion, one may expect the orbits of nearby 
points to converge to each other under identical compositions. The numerical observation 
in Fig. 5 illustrates this. 

We will establish such convergence in fact uniformly on [0, 1). The discontinuities of 
f0 form an obstacle in the analysis, since nearby points are mapped a positive distance 
apart if they are on different sides of a point of discontinuity of f0. Iterates fn

ω may 
have many discontinuities on [0, 1), as the graph in Fig. 6 illustrates. A Borel-Cantelli 
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Fig. 6. The graph of an iterate f12
ω for (M,N) = (3, 2) and some ω. Although the slope (f12

ω )′ is small, the 
map is not a contraction on [0, 1) because of the discontinuities.

argument (see for instance [21] for the Borel-Cantelli lemmas) however makes clear that 
orbits are only infrequently very close to the points of discontinuity of f0, which allows 
to prove the following result.

Theorem 3.1. Consider Lp0 < 0. For all x, y ∈ [0, 1),

lim 
n→∞ |fn

ω (y) − fn
ω (x)| = 0

for ν-almost all ω ∈ Σ.

Proof. Let ζ be a number with eLp0 < ζ < 1. With ai = ln(f ′
i), we can write

(fn
ω )′ = e

∑︁n−1
i=0 aωi .

Recall from (1.4) that

lim 
n→∞

1 
n

n−1∑︂
i=0 

aωi
= Lp0 < ln(ζ) < 0,

for ν-almost all ω. So, for ν-almost all ω, 
∑︁n−1

i=0 aωi
− n ln(ζ) converges to −∞ and 

therefore e
∑︁n−1

i=0 aωi/ζn goes to zero as n → ∞. We find that for ν-almost all ω,

max{(fn
ω )′/ζn, n ≥ 0}

exists. Hence, for ν-almost all ω ∈ Σ, there exists a Cω > 0 so that

(fn
ω )′ ≤ Cωζ

n.

For any ε̃ > 0 one can choose C > 1 and a set ΩC ⊂ Σ of measure ν(ΩC) > 1 − ε̃, so 
that (fn

ω )′ ≤ Cζn for all ω ∈ ΩC . Let n1 = n1(ε̃) be such that Cζn1 < 1/n2
1.



14 A.J. Homburg, C. Kalle / Advances in Mathematics 482 (2025) 110605 

Write

B(r) =
N−1⋃︂
i=1 

[︃
i 
N

− r,
i 
N

+ r

]︃
(3.1)

for the r-neighborhood of the set 𝒞 = {1/N, . . . , (N−1)/N} of discontinuity points of f0. 
Let En = Σ × B(1/n2). By the F -invariance of μ it holds that μ(F−n(En)) = μ(En) =
1/n2, so by the Borel-Cantelli lemma, we get for μ-almost all (ω, x) ∈ Σ × [0, 1) that 
Fn(ω, x) ∈ En for at most finitely many n. Hence, the set of points

B = {(ω, x) ∈ Σ × [0, 1) ; ∃ n0 = n0(ω, x) s.t. fn
ω (x) ̸∈ B

(︁
1/n2)︁ for all n ≥ n0}

satisfies μ(B) = 1.
Write

𝒞∗ =
⋃︂
n≥0

⋃︂
i1···in∈ 

{0,1,...,M}n

f−1
i1...in

(𝒞)

for the set of points in [0, 1) that are eventually mapped to 𝒞 by some ω ∈ Σ. As 𝒞∗ is a 
countable set,

μ
(︁
(ΩC × ([0, 1) \ 𝒞∗)) ∩B

)︁
> 1 − ε̃,

which means that we can find an x ∈ [0, 1) \ 𝒞∗, such that

ν
(︁{ω ∈ Σ ; (ω, x) ∈ (ΩC × ([0, 1) \ 𝒞∗)) ∩B})︁ > 0. (3.2)

Fix such a point x. Then for any ω in the set from (3.2) there is, by continuity, an open 
interval Jω with x ∈ Jω, such that

fn
ω (Jω) ∩ 𝒞 = ∅, for all n < max{n0, n1}.

By the choice of (ω, x) we get for all n ≥ max{n0, n1} that fn
ω (x) ̸∈ B(1/n2) and 

(fn
ω )′ ≤ Cζn < 1/n2. Hence, we recursively obtain that for all n ≥ max{n0, n1} the set 

fn
ω (Jω) is an interval and

λ(fn
ω (Jω)) ≤ λ(fn−1

ω (Jω))
n2 ≤ 1 

n2 ,

so that fn
ω (Jω) ∩ 𝒞 = ∅. Moreover, for every ω in the set from (3.2) there is an n ≥ 1, 

such that
(︂
x− 1 

n
, x + 1 

n

)︂
⊆ Jω.
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So we can find an n2 ≥ 1 such that the set

Ω̂ :=
{︂
ω ∈ Σ ; (ω, x) ∈ (ΩC × ([0, 1) \ 𝒞∗)) ∩B and 

(︂
x− 1 

n2
, x + 1 

n2

)︂
⊆ Jω

}︂

satisfies ν(Ω̂) > 0.
For each t ≥ 1 and η ∈ {1, . . . ,M}t, the set f t

η([0, 1)) is an interval of length 1/M t. 
The union of these intervals, varying over all η ∈ {1, . . . ,M}t for fixed t, covers [0, 1). 
Hence, there exist t ∈ N and η ∈ {1, . . . ,M}t with f t

η([0, 1)) ⊂ (︁x − 1 
n2

, x + 1 
n2

)︁
. Then 

for each concatenated sequence ω̃ = ηω, with ω ∈ Ω̂, and each n ≥ 1 the image fn
ω̃ ([0, 1))

is an interval with limn→∞ λ(fn
ω̃ ([0, 1))) = 0. Hence, we have found a set Ψ = ηΩ̂ ⊂ Σ

with ν(Ψ) > 0, so that for any y, z ∈ [0, 1),

lim 
n→∞ |fn

ω̃ (y) − fn
ω̃ (z)| = 0. (3.3)

The following argument concludes the proof of Theorem 3.1 from (3.3). Assume that 
there is a set Ξ ⊆ Σ with ν(Ξ) > 0 of ω for which fn

ω ([0, 1)) is not contained in an interval 
of length shrinking to 0. We will derive a contradiction from this. By the Lebesgue density 
theorem we can take a density point ξ of Ξ, meaning

lim 
j→∞

ν([ξ1 · · · ξj ] ∩ Ξ)
ν([ξ1 · · · ξj ]) = 1.

(The Lebesgue density theorem is formulated for Lebesgue measure on the interval, but 
transfers to Bernoulli measure on Σ, compare (2.1).) Then

lim 
j→∞

ν(σj([ξ1 · · · ξj ] ∩ Ξ)) = 1

and moreover,

σj([ξ1 · · · ξj ] ∩ Ξ) ⊂ Ξ.

This contradicts the construction of the set Ψ with ν(Ψ) > 0, since Ψ ∩ Ξ = ∅.
Alternatively, and perhaps more elegantly, one could proceed from (3.3) as suggested 

by the referee as follows. Let Ω′ ⊂ Σ be the set of ω ∈ Σ for which limn→∞ |fn
ω (y) −

fn
ω (x)| = 0 holds for all x, y ∈ [0, 1). Note that σ−1(Ω′) ⊂ Ω′. Since σ preserves the 

measure ν, we obtain σ−1(Ω′) = Ω′ up to a set of measure zero. By ergodicity of σ we 
find ν(Ω′) ∈ {0, 1}. Now (3.3) shows that we cannot have ν(Ω′) = 0. □

Next we set out to prove that the product measure μ = ν × λ is ergodic for F . To 
do so we use the system Γ from Section 2.2. The proof relies on the statements on the 
dynamics in Theorem 3.1.

Theorem 3.2. Consider Lp0 < 0. The measure μ is an ergodic invariant measure for F .
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Proof. Ergodicity of Lebesgue measure for Γ will be established by exploiting invertibility 
of Γ and using a Hopf argument as in [61, Section 4.2.6]. From Proposition 2.3 it then 
follows that μ is ergodic for F .

Let φ be a continuous function on [0, 1)3 and consider the time averages

φ+(u) = lim 
n→∞

1 
n

n−1∑︂
i=0 

φ(Γi(u)),

φ−(u) = lim 
n→∞

1 
n

n−1∑︂
i=0 

φ(Γ−i(u)).

As Lebesgue measure is invariant, we find that there is a set V ⊂ [0, 1)3 of full Lebesgue 
measure, so that for u ∈ V , the two limits exist and are equal (see [61, Section 3.2.3]):

φ+(u) = φ−(u), for Lebesgue almost all u.

For u ∈ [0, 1)3, write

W s(u) = {v ∈ [0, 1)3 ; v = u + (0, x, y) for some x, y}

and

Wu(u) = {v ∈ [0, 1)3 ; v = u + (w, 0, 0) for some w}.

Using Theorem 3.1 we get that for u in a set of full Lebesgue measure, if v ∈ W s(u)
then |Γn(u) − Γn(v)| → 0 as n → ∞ and therefore φ+(u) = φ+(v). Likewise for u in 
a set of full Lebesgue measure, if v ∈ Wu(u) then |Γ−n(u) − Γ−n(v)| → 0 as n → ∞
and therefore φ−(u) = φ−(v). We conclude that for u in a set U ⊂ V of full Lebesgue 
measure, φ+ is constant along W s(u) and φ− is constant along Wu(u).

As in [61, Lemma 4.2.17], using Fubini’s theorem one sees that there is a set Y of 
full Lebesgue measure in [0, 1)3 so that for given u, v ∈ Y there are u′, v′ ∈ Y ∩ U with 
u′ ∈ W s(u), v′ ∈ W s(v) and moreover v′ ∈ Wu(u′). It follows that for such points 
u, v ∈ Y ∩ U ,

φ−(u) = φ+(u) = φ+(u′) = φ−(u′) = φ−(v′) = φ+(v′) = φ+(v) = φ−(v).

Hence, φ+ and φ− exist and are constant on a set of full Lebesgue measure. □
As a corollary, typical orbits of the iterated function system {fi ; 0 ≤ i ≤ M} are 

uniformly distributed on [0, 1). This is made explicit in the following result. Let A ⊂ [0, 1)
and write χA for its characteristic function:

χA(x) =
{︄

0, x ̸∈ A,

1, x ∈ A.
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Fig. 7. A time series of fn
ω (x) for (M,N) = (3, 3). The right panel shows the signed difference with another 

time series with the same ω.

Proposition 3.3. Consider Lp0 < 0. For a Borel set A with λ(A) > 0,

lim 
n→∞

1 
n

n−1∑︂
i=0 

χA(f i
ω(x)) = λ(A)

for μ-almost all (ω, x) ∈ Σ × [0, 1).

Proof. The measure μ is ergodic for F by Theorem 3.2. The proposition therefore follows 
from an application of Birkhoff’s ergodic theorem to the integrable function χA◦π2, where 
π2 : Σ × [0, 1) → [0, 1) is the canonical projection on the second coordinate of F . □
3.2. Lp0 = 0 (intermittency)

In the case where expansion and contraction balance each other, a phenomenon rem
iniscent of intermittency arises. In Fig. 7 the panel on the right shows signed distances 
between two orbits with different starting points but identical ω. One sees that the orbits 
are mostly close together with occasional bursts where the orbits diverge. We make this 
statement quantitative and provide proofs below. The reader is invited to compare the 
results with [26] on iterated functions systems of interval diffeomorphisms. The novelty in 
the setting here is the use of an expanding map, which enables having Lebesgue measure 
as stationary measure and a uniform distribution of orbit points.

Theorem 3.4. Consider Lp0 = 0. For every ε > 0, for all x, y ∈ [0, 1),

lim 
n→∞

1 
n

⃓⃓{0 ≤ i < n ; |f i
ω(x) − f i

ω(y)| < ε}⃓⃓ = 1

for ν-almost all ω ∈ Σ.
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We describe the strategy in words before giving the formal proof. As in the proof 
of Theorem 3.1, we will rely on a Borel-Cantelli type argument. The proof also uses 
statements on random walks on the line that are developed in Appendix A.

Let ε > 0 be small. The main strategy is to subdivide time into periods where we 
are sure that the distances |f i

ω(x) − f i
ω(y)| are small enough (smaller than ε) followed 

by periods where the distances might be too big. Then we proceed by showing that 
the latter periods take up only a negligible part of time. To do this we fix a word 
ζ1 · · · ζD ∈ {1, . . . ,M}D with D large enough so that 1/MD < ε. Now start with the 
entire interval [0, 1) and iterate under fn

ω until an iterate n1 = n1(ω) with n1 > D and 
σn1−D+1ω ∈ [ζ1 · · · ζD]. So the final D symbols ωn1−D+1 · · ·ωn1 equal ζ1 · · · ζD. Then 
fn1+1
ω ([0, 1)) is contained in the interval

J = fD
ζ ([0, 1)), (3.4)

which has length smaller than ε. Hence, we arrived at a time n1+1 for which |fn1+1
ω (x)−

fn1+1
ω (y)| < ε. The expected stopping time, that is, the average value of ω ↦→ n1(ω), is 

finite.
Now we are interested in the number of iterates it takes until the image fn

ω ([0, 1)), n >

n1 +1, is no longer contained in an interval of size ε. As in the proof of Theorem 3.1 the 
discontinuities of f0 pose a difficulty here. To control possible intersections of fn

ω ([0, 1)) ⊂
f
n−(n1+1)
σn1+1ω (J) with the set 𝒞 of critical points, we take a slightly different approach. 

Suppose p is such that 1/(p + 1)2 < ε < 1/p2. We iterate instead until the image 
fm1+1
ω ([0, 1)), m1 > n1, is no longer contained in an interval of size 1/(p + m1 − n1)2. 

Note that this criterion depends on the number of iterates m1. This defines an iterate 
m1 = m1(σn1ω) that marks the end of a period of time where we are sure that the 
images fn

ω ([0, 1)) are small enough. The expected stopping time, the average value of 
m1 − n1, will be shown to be infinite.

Finally, we continue the procedure and obtain a sequence 0 = m0 < n1 < m1 < n2 <

m2 < · · · of stopping times. Here

(1) fni+1
ω ([0, 1)) is contained in an interval of length ε. This is guaranteed by stopping 

after the appearance of a specific word ωni−D+1 · · ·ωni
= ζ1 · · · ζD, so that we find 

fni+1
ω ([0, 1)) ⊂ J ;

(2) fmi+1−ni
σniω (J) is not (more accurately, with the conditions we use it can no longer 

be guaranteed to be) contained in an interval of length 1/(p + mi − ni)2 (which is 
smaller than ε). The use of interval lengths that are decreasing in mi − ni, instead 
of working with a fixed interval length ε, is done to control and be able to avoid 
intersections with critical points.

The natural number mi is the first integer beyond ni for which this holds, and ni

is the first integer beyond mi−1 + D (we let m0 = 0) with σni−D+1ω ∈ [ζ1 · · · ζD]. As 
f j−ni

σniω (J) contains f j
ω([0, 1)), we have that during iterates ni + 1 ≤ j ≤ mi, f j

ω([0, 1)) is 
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contained in an interval of length ε. Note that this does not mean that f j
ω([0, 1)) is itself 

an interval. We find that the ni − mi−1 have finite expectation and the mi − ni have 
infinite expectation. This is combined to prove the occurrence of intermittency.

Proof of Theorem 3.4. Fix an ε > 0 and a word ζ1 · · · ζD ∈ {1, . . . ,M}D with D large 
enough so that 1/MD < ε. Let J = fD

ζ ([0, 1)), then λ(J) < ε. Let p ∈ N satisfy 
1/(p + 1)2 < ε < 1/p2 and let xJ denote the midpoint of J . Recall the definition of 
r-neighborhoods B(r) of the points of discontinuity 𝒞 from (3.1). We seek estimates for 
the stopping time

W (ω) = min
{︃
n > 0 ; (fn

ω )′ > 1 
(p + n)2ε or fn

ω (xJ) ∈ B
(︂ 1 

(p + n)2
)︂

with ωn = 0
}︃
.

(3.5)
To understand the conditions, note that if f i

ω(J) ∩ 𝒞 = ∅ for 0 ≤ i < n and (fn
ω )′ ≤

1 
(p+n)2ε , then fn

ω (J) is an interval with λ(fn
ω (J)) < 1 

(p+n)2 . Further, if for 0 ≤ i < n

we have f i
ω(xJ) ̸∈ B

(︁ 1 
(p+i)2

)︁
when ωi = 0, and (f i

ω)′ ≤ 1 
(p+i)2ε , then f i

ω(J) ∩ 𝒞 = ∅ for 
0 ≤ i < n. Consequently, these conditions plus (fn

ω )′ ≤ 1 
(p+n)2ε imply that fn

ω (J) is an 

interval with λ(fn
ω (J)) < 1 

(p+n)2 .
Hence, W (ω) is such that for all for n < W (ω) the set fn

ω (J) is an interval with 
λ(fn

ω (J)) ≤ 1 
(p+n)2 < ε.

In the following analysis we first look at the derivatives of compositions, so at the first 
condition in (3.5). For this, consider the process for dn = (fn

ω )′, given by d0 = 1 and

dn+1 =
{︄
Ndn, ωn+1 = 0,
dn/M, ωn+1 ∈ {1, . . . ,M}.

For each n ≥ 0, let zn = − ln(dn). For zn we obtain the random walk given by z0 = 0
and

zn+1 =
{︄
zn − ln(N), ωn+1 = 0,
zn + ln(M), ωn+1 ∈ {1, . . . ,M},

for n ≥ 0. Recall that Lp0 = 0 means p0 ln(N) − (1 − p0) ln(M) = 0. The average 
step size for this random walk, equal to −Lp0 , is zero. The criterion dn > 1 

(p+n)2ε , 
which is the first condition appearing in the definition (3.5) of W (ω), is equivalent to 
zn < − ln

(︁ 1 
(p+n)2

)︁
+ ln(ε). Therefore, we are interested in the stopping time

W1(ω) = min
{︃
n > 0 ; zn < − ln

(︂ 1 
(p + n)2

)︂
+ ln(ε)

}︃

= min
{︃
n > 0 ; (fn

ω )′ > 1 
(p + n)2ε

}︃
,



20 A.J. Homburg, C. Kalle / Advances in Mathematics 482 (2025) 110605 

which satisfies W1(ω) ≥ W (ω). By Lemma A.3 in the appendix, the average of the 
stopping time W1(ω) is infinite:

∫︂
Σ 

W1(ω) dν(ω) = ∞.

If for each u > 0 we set

Cu = {ω ∈ Σ ; ωi ∈ {1, . . . ,M} for 0 ≤ i < u}, (3.6)

then we also have 
∫︁
Cu

W1(ω) dν(ω) = ∞ for any u > 0. This holds since the first u
iterates give contractions and the ωi’s are independent.

To study the second condition in the definition of W (ω), write Σ2 = {0, 1}N and let 
Π : Σ → Σ2 be as in Section 2.3, i.e., projecting all symbols 1, 2, . . . ,M to 1. Consider 
iterates Fn

η with F0, F1 as defined in (2.5), (2.6). With η = Π(ω) we have (Fn
η )′ = (fn

ω )′. 
The calculated stopping time W1(ω) is thus identical for any symbol sequence in Π−1{η}
and we may write W1(η).

Fix η ∈ Σ2 and let n = W1(η). The multivalued map F i
η is built from a�ine graphs 

with slope (F i
η)′, stacked in an equidistant fashion (see for example Fig. 4). Let

Ξi =
{︃
ω ∈ Π−1([η0 · · · ηn−1]) ; f i

ω(xJ) ̸∈ B
(︂ 1 

(p + i)2
)︂

whenever ωi = 0
}︃

and set

Ξ = ∩n−1
i=0 Ξi.

Since n = W1(η), the set Ξ contains all sequences ω ∈ Π−1([η0 · · · ηn−1]) that satisfy 
both conditions from the definition of W (ω) in (3.5) up to the stopping time W1(ω), so 
for which W (ω) = W1(ω). We next show that for certain η this collection is large enough 
to conclude that 

∫︁
Σ W (ω)dν(ω) = ∞.

From (F i
η)′ = (f i

ω)′ ≤ 1 
(p+i)2ε for 0 ≤ i < n, we get that there are at least ⌈ε(p + i)2⌉

different graphs in F i
η. Let ξi be the number of points in F i

η({xJ}) lying in B(1/(p + i)2)
and write ψi = ξi/#F i

η({xJ}) for the proportion of points from F i
η({xJ}) contained in 

B(1/(p + i)2). A closed interval of length b contains at most ⌈b (#F i
η({xJ}) + 1)⌉ points 

of F i
η({xJ}). It follows that there is a constant K > 0, independent of i and η, with

ψi ≤ K/(p + i)2.

We conclude that ψi is summable. So there exists a u > 0 with 
∑︁∞

i=u ψi < 1/2. Here u
can be taken uniformly in η, as the above estimates are uniform in η.

Now let η ∈ [1u] with W1(η) = n. This implies that W (ω) > u for each ω from 
Π−1([η0, . . . , ηn−1]). From Lemma 2.4 it follows that
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ψi = ν(Π−1([η0 · · · ηn−1]) \ Ξi)
ν(Π−1([η0 · · · ηn−1])) 

,

assuming ωi = 0. Since ηi = 1 for all 0 ≤ i < u and 
∑︁∞

i=u ψi < 1/2 we then have

ν(Ξ) 
ν(Π−1([η0 · · · ηn−1]))

≥ 1/2. (3.7)

Hence ∫︂
Cu

W (ω) dν(ω) ≥
∫︂

{ω∈Cu ; W (ω)=W1(ω)}

W (ω) dν(ω)

≥
∑︂

η∈[1u],W1(η)=n,n≥u

n ν(Π−1([η0 · · · ηn−1]))/2

= ∞.

In the second estimate we used (3.7) which says that for each η ∈ [1u] with S(η) = n, at 
least half of Π−1([η0 · · · ηn−1]) counts in the integral. We conclude

∫︂
Σ 

W (ω) dν(ω) = ∞.

Define the stopping time

V (ω) = min{n ≥ D − 1 ; σn−D+1ω ∈ [ζ1 · · · ζD]},

where ζ1 · · · ζD is the word fixed at the beginning of the proof. For ν-almost every ω ∈ Σ
the stopping time V (ω) is finite. So for ν-almost every ω ∈ Σ it takes a finite number of 
iterates k before fk

ω([0, 1)) ⊆ fD
ζ ([0, 1)) = J and thus λ(fk

ω([0, 1))) < ε.
It is well known that the average of the stopping time V (ω) is bounded:

∫︂
Σ 

V (ω) dν(ω) < ∞.

Combining the knowledge on the stopping times V (ω) and W (ω), we get for ν-almost 
all ω ∈ Σ an infinite sequence of stopping times 0 < n1 < m1 < n2 < m2 < · · · with

ni = V (σmi−1ω),

mi = W (σniω)

(where we set m0 = 0). By the strong law of large numbers, see [21, Theorems 2.4.1 
and 2.4.5] (for finite and infinite expectations respectively) we have that for ν-almost all 
ω ∈ Σ,
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lim 
n→∞

1 
n

n ∑︂
i=1 

(ni −mi−1) < ∞,

lim 
n→∞

1 
n

n ∑︂
i=1 

(mi − ni) = ∞.

This implies the theorem (see the calculation in the proof of [5, Theorem 4]). □
Theorem 3.5. Consider Lp0 = 0. Let β be a small positive number. Let x, y ∈ [0, 1). Then 
for ν-almost all ω ∈ Σ, either |fn

ω (x) − fn
ω (y)| = 0 for some n or |fn

ω (x) − fn
ω (y)| > β

for infinitely many values of n.

Proof. The proof follows from the following observation. If x < y are close, then as long 
as f i

ω, 1 ≤ i < n, is continuous on the interval [x, y], we have

|fn
ω (x) − fn

ω (y)| = (fn
ω )′|x− y|.

The values zn = − ln((fn
ω )′) are given by a random walk z0 = 0 and

zn+1 =
{︄

zn − ln(N), ωn+1 = 0,
zn + ln(M), ωn+1 ∈ {1, . . . ,M},

for n ≥ 0. Because p0 ln(N) − (1 − p0) ln(M) = 0, this random walk is recurrent. So 
(fn

ω )′ = e−zn takes on arbitrarily large values. □
Modifying the proof of Theorem 3.2 allows to prove ergodicity of μ from Proposi

tion 2.1 also in case Lp0 = 0.

Theorem 3.6. Consider Lp0 = 0. The measure μ = ν×λ is an ergodic invariant measure 
for F .

Proof. The proof follows that of Theorem 3.2, replacing the statement of Theorem 3.1
by the statement and arguments of Theorem 3.4. The proof of Theorem 3.4 calculates 
stopping times to get the statement on the dynamics of the x-coordinate. We must 
incorporate the y-coordinate. The following observations show how this works.

Write πw, πx, πy : [0, 1)3 → [0, 1) for the coordinate projection to the w-coordinate, x
coordinate, and y-coordinate, respectively. First consider a ζ ∈ Σ with ζi ∈ {1, . . . ,M}
for 0 ≤ i < D for some large D. Then J = fD

ζ ([0, 1)) is a small interval, see (3.4). 
Recall the definition of the isomorphism h between the left shift σ and the expanding 
interval map L from (2.2). Note that πyΓD(h(ζ), x, y) is independent of x and H =
πyΓD(h(ζ), x, [0, 1)) is an interval of length λ(H) = (1− p0)D. This is small for D large.

Next, whenever u, v ∈ [0, 1)3 with πwu = πwv and πxΓ(u), πxΓ(v) are close to each 
other, then πyΓ contracts the distance between the points with a uniform contraction 
factor. So if |πxΓi(u)−πxΓi(v)| stays small, then also |πyΓi(u)−πyΓi(v)| stays small. □
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As in Proposition 3.3 we conclude that typical orbits are uniformly distributed. Recall 
from (1.3) the definition of the two-point maps f (2)

i : [0, 1)2 → [0, 1)2 given by

f
(2)
i (x, y) = (fi(x), fi(y)), 0 ≤ i ≤ M.

In Corollary 2.2 we established that Lebesgue measure on the diagonal Δ = {(x, x) ; x ∈
[0, 1)} ⊂ [0, 1)2 is stationary for the iterated function system on [0, 1)2 generated by f (2)

i

with probabilities pi, 0 ≤ i ≤ M . In the theorem below we write λ|A for two-dimensional 
Lebesgue measure restricted to A. The theorem gives, for multiplicatively dependent 
M,N , an explicit expression for an infinite stationary measure of full topological support, 
with a density that diverges along the diagonal Δ.

Theorem 3.7. Consider Lp0 = 0 and (M,N) with N,M multiplicatively dependent: N =
κk and M = κℓ. Then the iterated function system generated by the two-point maps f (2)

i , 
0 ≤ i ≤ M , admits a σfinite infinite absolutely continuous stationary measure.

Proof. We look for an invariant measure m(2) of the form m(2) =
∑︁∞

h=0 mh with

mh = bh

κh−1∑︂
j=0 

κh λ|[j/κh,(j+1)/κh)2 , (3.8)

where bh can be read as the mass assigned to 
⋃︁κh−1

j=0
[︁
j/κh, (j + 1)/κh

)︁2, which is the 
union of the squares on the diagonal of size 1 

κ2h determined by κ-adic neighbors i/κ2h, (i+
1)/κ2h. So mh([0, 1)2) = bh and for the total measure we have

m(2)([0, 1)2) =
∞ ∑︂
h=1

mh([0, 1)2) =
∞ ∑︂
h=1

bh.

Consider the push-forward map of measures given by

𝒫m = p0

(︂
f

(2)
0

)︂
∗
m +

M∑︂
j=1 

1 − p0

M

(︂
f

(2)
j

)︂
∗
m. (3.9)

Then 𝒫 maps 
∑︁∞

i=0 mi to 
∑︁∞

i=0 m̂i, with

m̂0 = p0(m0 + · · · + mk),

m̂1 = p0mk+1,

... = 
...

m̂ℓ−1 = p0mk+ℓ−1,

m̂ℓ = (1 − p0)m0 + p0mk+ℓ,
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... = 
...

m̂ℓ+j = (1 − p0)mj + p0mj+k+ℓ,

... = 
...

A measure of the sought form 
∑︁∞

h=0 mh with mh as in (3.8) is determined by the sequence 
of numbers (bi)i∈N . Write

ℳ(N) = {(bi)i∈N ; bi ≥ 0} ,

which can be identified with the set of σfinite measures on N. The push-forward map 𝒫
from (3.9) induces a map 𝒬 : ℳ(N) → ℳ(N). To make this explicit, suppose 𝒫 maps ∑︁∞

i=0 mi to 
∑︁∞

i=0 m̂i, and (bi)i∈N is given by (3.8) and likewise (b̂i)i∈N corresponds to ∑︁∞
i=0 m̂i. Denoting b = (bi)i∈N , b̂ = (b̂i)i∈N , then

𝒬(b) = b̂.

Identifying the union of squares ∪κh−1
j=0 [j/κh, (j+1)/κh)2 with the integer h, 𝒬 becomes 

the push-forward operator associated to the random walk on N given by

xn+1 =
{︄

max{0, xn − ℓ}, ωn+1 = 0,
xn + k, ωn+1 ∈ {1, . . . ,M}. (3.10)

As k and ℓ are relatively prime, by Bézout’s identity there are integers α, β with 
αk + βℓ = 1. Noting this, it follows from Lp0 = 0 that (3.10) is recurrent. It is in fact 
null-recurrent, and not positively recurrent, since Lp0 = 0 implies that the expected 
return time to a site is infinite (see [41, Section 2.3]). By [19] there is a unique infinite 
stationary measure for (3.10). This gives the fixed point 𝒬(b) = b with the required 
property that 

∑︁∞
h=0 bh = ∞. □

Stationary measures for the two-point maps may not be unique, as Example 3.8 shows.

Example 3.8. Take M = N = 3. Let Λ be the middle third Cantor set on [0, 1]. Take the 
product set Υ1 = Λ2 in [0, 1]2 and for i ≥ 1 define recursively

Υi+1 =
3 ⋃︂

j=1
f

(2)
j (Υi ∩ [0, 1)2)

(these are closed sets; the definition involves taking closures as the maps fi are defined 
on the left closed, right open interval [0, 1)). One can characterize Υi as the set of points 
(x, y) that in a ternary representation admit an expansion
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Fig. 8. Depicted is the invariant set ∪∞
i=1Υi for the two-point maps with M = N = 3. In the case p0 = 1/2, 

so that Lp0 = 0, the two-point maps admit an infinite stationary measure supported on ∪∞
i=1Υi.

(0.a1a2 . . . ai−1b1b2 . . . , 0.a1a2 . . . ai−1c1c2 . . .)

with aj ∈ {0, 1, 2}, 1 ≤ j < i, and bj , cj ∈ {0, 2}, 1 ≤ j. The first i digits in the expansions 
for x and y are identical. The sets Υi accumulate onto the diagonal as i → ∞.

Now Υ1 is essentially invariant under f (2)
0 , or more precise,

f
(2)
0 (Υ1 ∩ [0, 1)2) = Υ1.

Further,

f
(2)
0 (Υi+1 ∩ [0, 1)2) = Υi,

f
(2)
j (Υi ∩ [0, 1)2) ⊂ Υi+1, j = 1, 2, 3.

If p0 = 1/2, so that Lp0 = 0, then the reasoning of Theorem 3.7 provides an infinite 
stationary measure m(2) on [0, 1)2 of the form

m(2) =
∞ ∑︂
h=0

mh,

where mh is supported on Υh and satisfies mh(Υh) = 1 (see Fig. 8). Details are left to 
the reader.

In the same setting, still with M = N = 3, the map f0 has a periodic orbit of period 
2; x2 = f0(x1), x1 = f0(x2). The set Υ1 = (x1, x2) ∪ (x2, x1) is invariant under f (2)

0 . 
Define recursively Υi+1 = f

(2)
1 (Υi) ∪ f

(2)
2 (Υi) ∪ f

(2)
3 (Υi). The union ∪∞

i=1Υi consists 
of isolated points that accumulate onto the diagonal, and is invariant for the iterated 
function system of two-point maps. One can find a stationary measure that assigns 
positive measure to its points.
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Fig. 9. A time series of fn
ω (x) for p0 = 1/2 and (M,N) = (2, 3). The right panel shows a signed difference 

with another time series with the same ω.

3.3. Lp0 > 0 (divergence)

A goal of this section is to explain the outcome of numerical experiments such as 
depicted in Fig. 9. From a dynamics point of view this is done in Theorem 3.15 below.

First we establish the ergodicity of the product measure μ = ν × λ, which proceeds 
by connecting to Theorem 3.2.

Theorem 3.9. Consider Lp0 > 0. The measure μ is an ergodic invariant measure for F .

Proof. Recall the definition of the invertible map Γ : [0, 1)3 → [0, 1)3 from (2.4) with 
inverse

Γ−1(w, x, y) =

⎧⎪⎪⎨
⎪⎪⎩

(︂
p0w,

x+j
N , Ny

p0
− j
)︂
, jp0

N ≤ y < (j+1)p0
N , 0 ≤ j < N,(︂

(1−p0)(w+i)
M ,Mx− i, y−p0

1−p0

)︂
,

p0 ≤ y < 1,
i 
M ≤ x < i+1

M , 0 ≤ i < M.

As in the proof of Theorem 3.2 one proves that three-dimensional Lebesgue measure is 
ergodic for Γ−1, with the difference that now the map is expanding in the direction of y
and contracting in the direction of w. Lebesgue measure is therefore also ergodic for Γ. 
Reasoning as for Theorem 3.2, it follows that μ is ergodic for F . □

As a corollary we have that typical orbits are uniformly distributed, see Proposi
tion 3.3.

Before we formulate and prove the result that provides the last part of Theorem 1.1, 
we first focus on stationary measures for the iterated function system generated by 
the two-point maps. We will give two results. Firstly, for multiplicatively dependent 
M,N we provide an explicit expression for a stationary measure m(2) that is absolutely 
continuous with respect to Lebesgue and has full topological support and that, contrary 
to the case Lp0 = 0 (see Theorem 3.7), is a finite measure. Fig. 11 shows a numerical 
approximation of the density function of this stationary measure for p0 = 1/2 and 
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Fig. 10. Left picture: a plot of the graphs of F 8
η for (M,N) = (3, 3) and η = (10010010). The red graph 

is the graph of f8
ω for ω = (20020020). Right picture: a plot of the graphs of F 7

η for (M,N) = (3, 2) and 
η = (0010010). The red graph is the graph of f7

ω for ω = (0020030).

Fig. 11. A plot of the stationary distribution for the two-point motion by a numerically computed histogram 
of an orbit, for p0 = 1/2 and (M,N) = (3, 9).

(M,N) = (3, 9). Secondly, we prove the existence of such a measure for all pairs (M,N)
without identifying an explicit expression. The proof of the second result will again run 
into the difficulties caused by the discontinuities of f0, see Fig. 10 that includes a plot 
of the graphs of F 7

η with F0, F1 introduced in (2.5), (2.6).
If N = κk and M = κℓ, then Lp0 > 0 reads p0k ln(κ) − (1 − p0)ℓ ln(κ) > 0. We will 

use that this implies

ℓ 
k + ℓ

< p0 < 1. (3.11)

Theorem 3.10. Consider Lp0 > 0 and (M,N) with N,M multiplicatively dependent: 
N = κk and M = κℓ. Then the iterated function system generated by the two-point maps 
f

(2)
i , 0 ≤ i ≤ M , admits an absolutely continuous stationary measure m(2) of the form
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m(2) =
∞ ∑︂
h=0

bh

κh−1∑︂
j=0 

κh λ|[j/κh,(j+1)/κh)2 ,

with bh satisfying the recurrence equation

bj+k+ℓ = 1 
p0

bj+ℓ − 1 − p0

p0
bj , j ≥ 0,

and a suitable initial condition on b0, . . . , bk+ℓ−1.
Moreover, with ν1 being the unique real solution in (0, 1) to p0ζ

k+ℓ − ζ + 1 − p0 = 0,

lim 
h→∞

bh/ν
h
1

exists and is a positive number.

Proof. We take the setup of the proof of Theorem 3.7, which we briefly repeat. We look 
for an invariant measure m(2) of the form m(2) =

∑︁∞
h=0 mh with

mh = bh

κh−1∑︂
j=0 

κh λ|[j/κh,(j+1)/κh)2 . (3.12)

Consider the push-forward map 𝒫 of measures from (3.9). A measure of the sought for 
form 

∑︁∞
h=0 mh with mh as in (3.12) is determined by the sequence of numbers (bi)i∈N . 

The push-forward map 𝒫 from (3.9) induces a map 𝒬 : ℳ1(N) → ℳ1(N), where

ℳ1(N) =
{︄

(bi)i∈N ; bi ≥ 0,
∞ ∑︂
i=0 

bi = 1
}︄
.

As noted in the proof of Theorem 3.7, 𝒬 is the push-forward operator associated to 
the random walk on N given by

xn+1 =
{︄

max{0, xn − k}, ωn+1 = 0,
xn + ℓ, ωn+1 ∈ {1, . . . ,M}. (3.13)

As Lp0 > 0, this is a positive recurrent random walk. Hence 𝒬 admits a fixed point in 
ℳ1(N).

Having established the existence of a fixed point 𝒬(b) = b, we continue with cal
culations that will result in expressions for bh. The stationary measure m(2) satisfies 
𝒫m(2) = m(2). For the coefficients bh, h ≥ 0, this gives equations

bk = 1 − p0

p0
b0 − b1 − · · · − bk−1,

bk+1 = 1 
p0

b1,
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... = 
...

bk+ℓ−1 = 1 
p0

bℓ−1,

bk+ℓ = 1 
p0

bℓ − 1 − p0

p0
b0,

... = 
...

bj+k+ℓ = 1 
p0

bj+ℓ − 1 − p0

p0
bj ,

... = 
...

The recurrence equation bj+k+ℓ = 1 
p0
bj+ℓ − 1−p0

p0
bj that appears here, is equivalent to 

the linear system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bh+1
bh+2

...
bh+ℓ+1

...
bh+k+ℓ−1
bh+k+ℓ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 · · · 0
0 0 1 · · · 0 · · · 0
...

...
...

. . .
...

. . . 0
0 0 0 · · · 1 · · · 0
...

...
...

. . .
...

. . . 0
0 0 0 · · · 0 · · · 1

−1−p0
p0

0 0 · · · 1 
p0

· · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bh
bh+1

...
bh+ℓ

...
bh+k+ℓ−2
bh+k+ℓ−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

h ≥ 0. Denote the above matrix by A. Its characteristic equation is p0ζ
ℓ+k−ζℓ+1−p0 = 0, 

so that

p0(ζk+ℓ − 1) = ζℓ − 1. (3.14)

We claim that for any p0 < 1 the zeros of the characteristic equation, thus the eigen
values of A, are as follows.

(1) A has a simple eigenvalue at 1, which is the only eigenvalue on the unit circle. There 
are k − 1 eigenvalues outside the unit circle and there are ℓ eigenvalues inside the 
unit circle. Write them as

η0 = 1, η1, . . . , ηk−1 ∈ {z ∈ C ; |z| > 1}, ν1, . . . , νℓ ∈ {z ∈ C ; |z| < 1};

(2) The eigenvalue with largest modulus among {ν1, . . . , νℓ} is single, real and positive. 
Let ν1 ∈ (0, 1) be this eigenvalue.

To prove the statements on the eigenvalues, write Sr(a) = {z ∈ C ; |z − a| = r} for 
the circle in the complex plane of radius r and center a. Consider ζ ∈ C with |ζ| = r. 
Then
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Fig. 12. The circles Sp0rk+l (−p0) and Srl (−1) for the values p0 = − 1
2 , N = 4, M = 2 and r = 1

4 (solid), 
r = 1

2 (dashed), r = r̂ =
√

5−1
2 (dash dotted), r = 85 

100 (densely dotted) and r = 1 (loosely dotted).

p0(ζk+ℓ − 1) ∈ Sp0rk+ℓ(−p0), ζℓ − 1 ∈ Srℓ(−1).

Solutions to (3.14) with |ζ| = r can occur only if these two circles Sp0rk+ℓ(−p0) and 
Srℓ(−1) intersect, so we consider their mutual position.

First consider the situation that p0 = 1. For r = 1 the resulting circles Sp0(−p0) and 
S1(−1) are identical and for any other value of r the circles do not intersect. The solutions 
to (3.14) are therefore given by {e2π(j/k)i, 0 ≤ j < k}. Together with the solution at 0, 
with multiplicity ℓ, these are the solutions to (3.14) with p0 = 1.

Now assume ℓ 
k+ℓ < p0 < 1, see (3.11). For r = 1, Sp0(−p0) and S1(−1) intersect only 

at the origin. As k and ℓ are relatively prime, and therefore also k+ℓ and ℓ are relatively 
prime, ζ = 1 is the unique solution with |ζ| = 1 to (3.14).

Now consider ℓ 
k+ℓ < p0 < 1 with r < 1. Write h0(r) = p0(rk+ℓ−1) and h1(r) = rℓ−1. 

Then −1 = h1(0) < h0(0) = −p0, while 0 = h1(1) = h0(1). The function h′
0(r)/h′

1(r) =
p0

k+ℓ
ℓ r

k is monotone increasing on [0, 1], from 0 at r = 0 to p0
k+ℓ
ℓ > 1 at r = 1. There 

is therefore a unique solution r̂ = r̂(p0) in (0, 1) to h0(r) = h1(r), see Fig. 12 for an 
illustration. Moreover, r̂ → 0 as p0 → 1 and r̂ → 1 as p0 → ℓ 

k+ℓ .
This means that Sp0r̂k+ℓ(−p0) is tangent to Sr̂ℓ(−1) (at r̂ℓ − 1). For r̂ < r < 1, 

Sp0rk+ℓ(−p0)∩Srℓ(−1) = ∅. We conclude that the real solution ν1 = r̂ is the solution to 
(3.14) of largest modulus of solutions inside the unit disc. Again as k and ℓ are relatively 
prime, it is an isolated solution, and other solutions inside the unit disc have smaller 
modulus.

Since eigenvalues depend continuously on p0, and 1 is an isolated eigenvalue and the 
only eigenvalue on the unit circle for ℓ 

k+ℓ < p0 < 1, eigenvalues can not cross the unit 
circle when varying p0. So for any ℓ 

k+ℓ < p0 < 1, there are ℓ eigenvalues inside the circle 
of radius r̂(p0), there is an isolated eigenvalue at 1, and the remaining k− 1 eigenvalues 
lie outside the unit circle. This concludes the proof of the statements on the solutions to 
(3.14).

A solution to the equations for bh is determined by an initial vector b0, . . . , bk+ℓ−1. 
For higher indices h, bh is given by the recurrence equation. For a solution with bh
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converging to 0 as h → ∞, we need the initial vector to be contained in the sum of the 
(generalized) eigenspaces corresponding to the contracting eigenvalues ν1, . . . , νℓ. Recall 
that we already know there is such a solution to the equations.

The initial condition can not be contained in the range of (A− ν1) (thus must have a 
component in the direction of the eigenvector corresponding to the unique real positive 
eigenvalue ν1, when decomposing in a basis of generalized eigenvectors), since otherwise 
bh can not be positive for all h. As ν1 is the eigenvalue of largest modulus of all eigenvalues 
inside the unit circle, this implies bh/νh1 converges to a positive value as h → ∞. □

Example 3.8 is relevant to the context of Theorem 3.10: there may be various station
ary measures that are not absolutely continuous.

Remark 3.11. In the above proof we concluded the existence of a fixed point of 𝒬 in 
ℳ1(N) from positive recurrence of (3.13). Here we connect to a different approach. 
Consider the diffeomorphism h : R → (0, 1) given by h(x) = ex

1+ex . The random walk 
(3.13) considered on R is topologically conjugated through h with the iterated function 
system

yn+1 =

⎧⎨
⎩max

{︂
0, e−ℓyn

1+(e−ℓ−1)yn

}︂
, ωn+1 = 0,

ekyn

1+(ek−1)yn
, ωn+1 = 1

(3.15)

on (0, 1). By continuous extension we have 1 as a common fixed point for the two maps 
generating (3.15). Moreover, the iterated function systems have a positive Lyapunov 
exponent Lp0 at 1. Following the reasoning of [26, Lemma 3.2] (see also [25, Proposi
tion 4.1]; it amounts to following a Krylov-Bogolyubov procedure on a suitable closed 
class of measures), the iterated function system (3.15) admits a stationary measure sup
ported on h(N). Hence 𝒬 admits a fixed point in ℳ1(N).

Example 3.12. We work out the general result of Theorem 3.10 in two special cases.

(1) Pairs (M,N) with N = Mk correspond to κ = M and ℓ = 1. By Theorem 3.10, the 
iterated function system generated by the two-point maps f (2)

i , 0 ≤ i ≤ M , admits 
an absolutely continuous stationary measure m(2) of the form

m(2) =
∞ ∑︂
h=0

bh

Mh−1∑︂
j=0 

Mh λ|[j/Mh,(j+1)/Mh)2 ,

with bh = νh1 for ν1 the unique real solution in (0, 1) to

p0ζ
k+1 − ζ + 1 − p0 = 0.
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For k = 1 the solution ν1 is given by ν1 = 1−p0
p0

. For k = 2 it is given by ν1 =

−1
2 + 1

2

√︂
1 + 41−p0

p0
.

(2) The second special case we consider is of pairs (M,N) with M = N ℓ. This cor
responds to κ = N and k = 1. Then the iterated function system generated by 
the two-point maps f (2)

i , 0 ≤ i ≤ M , admits an absolutely continuous stationary 
measure m(2) of the form

m(2) =
∞ ∑︂
h=0

bh

Nh−1∑︂
j=0 

Nh λ|[j/Nh,(j+1)/Nh)2

with

b0 = 1,

bj = (1 − p0)/pj0, 1 ≤ j ≤ ℓ,

bj+1 = 1 
p0

bj − 1 − p0

p0
bj−ℓ, j ≥ ℓ.

We have bh ∼ νh1 , where ν1 is the unique solution in (0, 1) to p0ζ
ℓ+1−ζℓ+1−p0 = 0. 

For ℓ = 1, this gives ν1 = 1−p0
p0

. For ℓ = 2, ν1 = 1−p0+
√︁

(1−p0)(1+3p0)
2p0

.

Remark 3.13. Writing m(2) obtained in Theorem 3.10 as

m(2) =
∞ ∑︂
h=0

bhκ
h
κh−1∑︂
j=0 

λ|[j/κh,(j+1)/κh)2 ,

and noting bh ∼ νh1 , it is clear that its density is bounded if ν1κ < 1.

The two-point maps f (2)
i are examples of Jablonski maps [34]. In the literature, see 

[9,15,33], it is proved that random Jablonski maps admit an absolutely continuous sta
tionary measure under an expansion on average condition. In our setting this gives that 
the iterated function system generated by {f (2)

i }, 0 ≤ i ≤ M , admits an absolutely con
tinuous stationary measure if p0

N + (1 − p0)M < 1. Under this condition the stationary 
measure has bounded Tonelli variation. We apply [11] to get an absolutely continuous 
stationary measure under the condition Lp0 > 0. This may not have bounded Tonelli 
variation, compare also Remark 3.13 and [47, Section 4]. In contrast to Theorem 3.10, 
here we do not have an explicit expression for the density function.

Theorem 3.14. Consider Lp0 > 0. The iterated function system on [0, 1)2 generated by 
f

(2)
i , 0 ≤ i ≤ M , admits an absolutely continuous stationary probability measure m(2). 

Furthermore, m(2) has full topological support.
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Proof. We will apply [11] that considers skew product maps with an invertible base map. 
For this reason we take the map F̂ (2) : {0, . . . ,M}Z × [0, 1)2 → {0, . . . ,M}Z × [0, 1)2
given by

F̂ (2)(ω, x, y) = (σω, f (2)
ω0

(x, y)).

The base map of the skew product system, that is, σ acting on {0, . . . ,M}Z, is invertible. 
The p-Bernoulli measure on {0, . . . ,M}Z with p as in (1.2), which we also denote by 
ν as in the one-sided case, is an ergodic invariant probability measure, so we fit the 
setting considered in [11]. Under the condition Lp0 > 0, [11, Theorem 4.2 and Remark 5] 
provides a family μ(2)

ω of random absolutely continuous invariant measures on [0, 1)2. 
Invariant here means (︂

f (2)
ω0

)︂
∗
μ(2)
ω = μ(2)

σω, for ν-almost all ω.

Furthermore, the measure μ̂(2) with marginal ν on {0, . . . ,M}Z and fiber measures μ(2)
ω

on {ω} × [0, 1)2, is invariant under F̂ (2).
Let Π̂ : {0, . . . ,M}Z × [0, 1)2 → Σ × [0, 1)2 be the natural coordinate projection

Π̂((ωi)i∈Z, x, y) = ((ωi)i∈N , x, y).

Then μ(2) = Π̂∗
(︁
μ̂(2))︁ is an invariant measure for F (2). To show that μ(2) is an absolutely 

continuous measure, take a set A ⊂ Σ × [0, 1)2 of zero measure for ν × λ. We wish to 
show that μ(2)(A) = 0. Now Π̂−1(A) has zero measure for ν×λ on {0, . . . ,M}Z× [0, 1)2. 
So Π̂−1(A)∩ (︁{ω} × [0, 1)2

)︁
has zero Lebesgue measure for almost all ω ∈ {0, . . . ,M}Z. 

It thus has zero measure for μ(2)
ω , for almost all ω ∈ {0, . . . ,M}Z, by absolute continuity 

of μ(2)
ω . Hence A has zero measure for μ(2).

By [45, Theorem 3.1 and Corollary 3.1], μ(2) is an invariant product measure, so of 
the form μ(2) = ν ×m(2).

By iterating under the expanding map f (2)
0 we recognize that m(2) has full topological 

support. Namely, take any open set O ⊂ [0, 1)2. Now 
(︂
f

(2)
0

)︂n
maps rectangles

Rn
ij = [i/Nn, (i + 1)/Nn) × [j/Nn, (j + 1)/Nn)

onto [0, 1)2. Take a set of positive m(2) measure. As m(2) is absolutely continuous, we can 
take a Lebesgue density point of this set. For n large and the rectangle Rn

ij containing this 

Lebesgue density point, 
(︂
f

(2)
0

)︂−n

(O) ∩ Rn
ij has positive m(2) measure. The topological 

support of m(2) therefore intersects O. □
We also have the following related dynamical statement, showing that orbits may 

stick close together for some iterates, but then diverge again. Recall that Δε denotes the 
ε-neighborhood {(x, y) ∈ [0, 1)2 ; |x− y| < ε} of the diagonal Δ in [0, 1)2.
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Theorem 3.15. Consider Lp0 > 0. Let 0 < t < 1. There is a set of points (ω, x, y) in 
Σ × [0, 1)2 of full ν × λ-measure, for which

P (ε) = lim 
n→∞

1 
n

⃓⃓{0 ≤ i < n ; 
⃓⃓
f i
ω(x) − f i

ω(y)
⃓⃓
< ε}⃓⃓

exists. Moreover,

lim 
ε→0

P (ε) = 0.

If M and N are multiplicatively dependent with N = κk, M = κℓ, then

P (ε) ∼ ε− ln(ν1)/ ln(κ),

where ν1 is the unique solution in (0, 1) to p0ζ
k+ℓ − ζ + 1 − p0 = 0.

Proof. The statement for general pairs (M,N) follows from [16, Proposition 4.1], see 
also [11, Theorem 4.5], combined with Theorem 3.14.

Extra reasoning is needed to prove the statement for multiplicatively dependent M
and N . Write

Sh =
κh−1∑︂
j=0 

[j/κh, (j + 1)/κh)2.

Take a point (x0, y0) ∈ [0, 1)2, which we consider to lie in S0 = [0, 1)2. Iterate (xn, yn) =(︂
f

(2)
ω

)︂n
(x0, y0). If we let hn with h0 = 0 follow the random walk (3.13), so

hn+1 =
{︄

max{0, hn − k}, ωn+1 = 0,
hn + ℓ, ωn+1 ∈ {1, . . . ,M},

then we find (xn, yn) ∈ Shn
. For the distance of (xn, yn) to the diagonal Δ it is irrele

vant in which rectangle [j/κhn , (j + 1)/κhn)2) the point (xn, yn) lies, but the position 
inside the rectangle is. If we rescale all rectangles to [0, 1)2, we find a sequence of points 
(x̃n, ỹn) ∈ [0, 1)2. The point (x̃n+1, ỹn+1) can only differ from (x̃n, ỹn) if (x̃n, ỹn) and 
(x̃n+1, ỹn+1) both lie in Shn

= Shn+1 = S0; in this case (x̃n+1, ỹn+1) = N(x̃n, ỹn) 
(mod 1). Summarizing,

(x̃n+1, ỹn+1) =
{︄

N(x̃n, ỹn) (mod 1), Shn
= Shn+1 = S0,

(x̃n, ỹn), Shn
̸= Shn+1 .

As hn = hn+1 = 0 occurs for a positive proportion of iterates, for almost all ω, and 
(x, y) ↦→ N(x, y) (mod 1) is ergodic with respect to Lebesgue measure, for typical initial 
points (x0, y0) and almost all ω, (x̃n, ỹn) is uniformly distributed. This implies P (ε) =
m(2)(Δε) and the estimate m(2)(Δε) ∼ ε− ln(ν1)/ ln(κ). □
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Fig. 13. Shown are time series of signed differences of two orbits, for (M,N) = (3, 3). The left panel is for 
p0 = 0.6, the right panel is for p0 = 0.9. In both figures, Lp0 > 0. The stationary measure m(2) of the 
two-point maps has bounded density function for p0 > 3/4: the density of m(2) is unbounded for the left 
panel and bounded for the right panel.

Fig. 13 shows time series of signed differences of two orbits, for (M,N) = (3, 3) and 
two different values of p0. The stationary measure has unbounded density for the left 
panel and bounded density for the right panel. Theorem 3.15 explains and quantifies the 
relative stickiness of orbits visible in the left panel. Where we associate the dynamics 
for zero Lyapunov exponent to intermittency, one may argue that also the occurrence 
of a stationary density for the two-point iterated function system that blows up at the 
diagonal relates to intermittency.

In addition to the above result, we have for ν × λ-almost all (ω, x, y),

lim inf
n→∞ 

|fn
ω (x) − fn

ω (y)| = 0,

lim sup
n→∞ 

|fn
ω (x) − fn

ω (y)| = 1,

for multiplicatively dependent M,N .

4. Final remarks

We conclude with brief remarks on left out topics and on generalizations that would 
extend the core findings of this paper to a broader framework.

4.1. Multiplicatively dependent pairs (M,N)

We note that some of our results in Section 3 admit simpler proofs in the specific 
and restricted case of multiplicatively dependent pairs (M,N). Especially the proofs of 
Theorem 3.1 and Theorem 3.4 can be simplified by applying the following Lemma 4.1, 
which stresses properties of graphs of fn

ω in this case. We call intervals of the form 
[i/κj , (i + 1)/κj), for some integers κ > 1, j ≥ 0 and 0 ≤ i < κj , κ-adic intervals.
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Lemma 4.1. Consider (M,N) with M and N multiplicatively dependent: N = κk and 
M = κℓ. Then for each n ≥ 1 and each ω ∈ Σ the graph of fn

ω is contained in a strip 
of the form [i/κj , (i + 1)/κj), for some integers j ≥ 0 and 0 ≤ i < κj. Moreover, fn

ω

is a piecewise linear map with constant slope of which all branches have the interval 
[i/κj , (i + 1)/κj) as their image.

Proof. A direct computation shows that fi, for any 0 ≤ i ≤ M , maps any κ-adic interval 
to a κ-adic interval. Note that, if the interval contains a discontinuity point of f0 in its 
interior, then f0 maps this interval to [0, 1). □

The pictures in Figs. 4 and 10 illustrate the differences between multiplicatively de
pendent and multiplicatively independent pairs (M,N).

4.2. Phase transitions for general random systems

The toy model studied here shows a phase transition for the two-point motion occur
ring when the Lyapunov exponent crosses zero. In Theorem 1.2 we have seen that this 
involves an explosion of the support of the stationary measure and an infinite stationary 
measure at the transition point. A central question is whether this is a typical scenario 
for more general classes of systems.

In this article we looked at iterated function systems generated by expanding and 
contracting a�ine maps on the unit interval, determined by a pair of integers (M,N), and 
a probability vector p determined by a parameter p0. For fixed M and N , a parameterized 
family of systems arises by varying the probability vector p more generally. It would be 
interesting to investigate how the dynamical properties of this family depend on p. 
Where our setting has Lebesgue measure as stationary measure, a first question would 
be to determine a stationary measure for the iterated function system. For probability 
vectors other than p as in (1.2) one can start with constructing a stationary measure as 
in [16,36,44,47] and continue from there.

There are various other generalizations thinkable. One may consider different classes 
of a�ine maps. One can generalize to nonlinear maps. In [27] a somewhat similar setup is 
discussed for circle maps, showing that the maps need not be uniformly expanding and 
contracting. One can also consider higher dimensional analogs.

Finally, there is no need to restrict to iterated function systems, and one can study 
the same type of questions for skew product systems driven by more general noise.

4.3. d-point motions

Where we focused on 2-point motions, one may iterate more than two points by 
considering d-point maps f (d)

i : [0, 1)d → [0, 1)d given by

f
(d)
i (x1, . . . , xd) = (fi(x1), . . . , fi(xd)).
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This makes little difference in the cases of nonpositive Lyapunov exponent Lp0 , as we al
ready analyzed the fate of the entire interval [0, 1) under iterations. But take for instance 
the setting of Theorem 3.10 with Lp0 > 0 and multiplicatively dependent (M,N). The 
reasoning to prove Theorem 3.10 provides, under the given assumptions, an absolutely 
continuous stationary measure m(d) for the iterated function system generated by the 
d-point maps f (d)

i , 0 ≤ i ≤ M , of the form

m(d) =
∞ ∑︂
h=0

bh

κh−1∑︂
j=0 

κh(d−1) λ|[j/κh,(j+1)/κh)d .

Its density is bounded if ν1κ
d−1 < 1 (compare Remark 3.13). The transition values of 

p0 where the density of m(d) changes from bounded to unbounded thus depend on d. 
This agrees with the observation that it becomes increasingly less likely to find iterates 
of higher numbers of points close to each other.

Appendix A. Random walks with small drift

Reductions to random walks on the half line or the line are a recurring tool for the 
study of the iterated function systems in this paper. This appendix develops results that 
are used in the main text in the study of intermittency.

A.1. Stopping times for random walks with a small negative drift

Write Σ2 = {0, 1}N endowed with the product topology and the Borel σ-algebra. Fix 
a 0 < p0 < 1 and write ν2 for the (p0, 1 − p0)-Bernoulli measure on Σ2 determined on 
any cylinder set

[a0 · · · ak] = {ω ∈ Σ2 ; ωi = ai, 0 ≤ i ≤ k}, ai ∈ {0, 1},

by

ν2([a0 · · · ak]) = p
#{0≤i≤k ; ai=0}
0 (1 − p0)#{0≤i≤k ; ai=1}.

For real numbers L < 0 and R > 0 consider the random walk given by

zn+1 =
{︄

zn + L, ωn = 0,
zn + R, ωn = 1,

(A.1)

so the step L < 0 is taken with probability p0, the step R > 0 with probability 1 − p0. 
We assume that the average drift α given by

α = p0L + (1 − p0)R
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is small and negative, so α < 0.
Consider escape from [0,∞) for the random walk (A.1). For z0 ∈ [0,∞), define the 

stopping time

T = min{n ∈ N ; zn < 0}.

Lemma A.1. Assume z0 ∈ [0, R). Then 
∫︁
Σ2

T (ω) dν2 ≥ −p0L/|α|.

Proof. By Wald’s identity, see for instance [53, Section VII.2],

∫︂
Σ2

T (ω) dν2 = 1 
α

∫︂
Σ2

zT (ω) − z0 dν2.

Note that T (ω) as a function of z0 is minimal for z0 = 0. Then

1 
α

∫︂
Σ2

zT (ω) − z0 dν2 = 
1 
|α|
∫︂
Σ2

z0 − zT (ω) dν2

≥ 
1 
|α|
∫︂
[0] 

−zT (ω) dν2 = −p0L

|α| . □

Next consider escape from an interval [0,K] with K a large positive number. So let 
z0 ∈ [0,K] and define

TK = min{n > 0 ; zn < 0 or zn > K}.

It is well known that the average stopping time to reach (−∞, 0) ∪ (K,∞) is finite:

∫︂
Σ2

TK(ω) dν2(ω) < ∞.

To see this it suffices to realize that escape from [0,K] is guaranteed after a sufficient 
number of identical symbols, either 0 or 1, in ω. We will discuss the probability of escape 
through 0, when starting close to K, and establish that the probability of escaping 
through 0 can be made arbitrarily small by taking the drift α close enough to 0 and K
large enough. For the next lemma we take a context of parameterized families of random 
walks: consider (A.1) with

L = L0 + α, R = R0 + α, (A.2)

where p0L0 + (1 − p0)R0 = 0. The average drift α < 0 is taken as the parameter.
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Lemma A.2. Consider (A.1) with L,R given by (A.2). Given ρ > 0, there is a small 
α0 < 0 and a large K > 0, so that for α0 < α < 0 and z0 ∈ (K +L,K] ⊂ [0,K], we have

ν2({ω ∈ Σ2 ; zTK
< 0}) ≤ ρ.

Proof. Write ζ0 = 0 and ζn = zn − zn−1 for n ≥ 1. For n ≥ 0 write Sn = ζ0 + · · ·+ ζn =
zn − z0. Note that for n ≥ 1, Sn depends on ω0, . . . , ωn−1. Consider the function

Gn = er
∗Sn ,

where r∗ > 0 is the solution of

p0e
Lr∗ + (1 − p0)eRr∗ = 1.

By developing the exponential functions in a Taylor series, one can check that this 
equation has a unique solution r∗ > 0 with r∗ → 0 as α → 0:

p0

(︃
1 + Lr∗ + 1

2L
2(r∗)2

)︃
+ (1 − p0)

(︃
1 + Rr∗ + 1

2R
2(r∗)2

)︃
= 1 + 𝒪 (︁(r∗)3)︁

yields

αr∗ + 1
2
(︁
p0L

2 + (1 − p0)R2)︁ (r∗)2 = 𝒪 (︁(r∗)3)︁
and thus

α + 1
2
(︁
p0L

2 + (1 − p0)R2)︁ r∗ = 𝒪 (︁(r∗)2)︁
for r∗ ̸= 0, from which r∗ can be solved by the implicit function theorem. Now Gn is a 
martingale as for any cylinder [a0 . . . an−1] ⊆ Σ2,∫︂

[a0...an−1]

er
∗Sn+1 dν2 =

∫︂
[a0...an−1]

er
∗Sner

∗ζn+1 dν2

= er
∗Sn

∫︂
[a0...an−1]

er
∗ζn+1 dν2

= er
∗Sn

⎛
⎜⎝ ∫︂

[a0...an−10]

eLr∗ dν2 +
∫︂

[a0...an−11]

eRr∗ dν2

⎞
⎟⎠

= er
∗Sn

⎛
⎜⎝ ∫︂

[a0...an−1]

p0e
Lr∗ + (1 − p0)eRr∗ dν2

⎞
⎟⎠
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=
∫︂

[a0...an−1]

er
∗Sn dν2.

By Doob’s optional stopping theorem, see for instance [53, Theorem VII.2.2], we see that 
for any large K,

∫︂
Σ2

er
∗STK dν2 = er

∗S0 = 1.

This gives
∫︂
Σ2

er
∗zTK dν2 = ez0r

∗
.

Observe that zTK
∈ [L, 0) or zTK

∈ (K,K + R]. For any large K let

AK = ν2({ω ∈ Σ2 ; zTK
(ω) < 0}) > 0

be the probability that zTK
< 0. Let 0 < ρ < 1. Our goal is to show that we can find α0

and K such that AK ≤ ρ for all α ∈ (α0, 0). For any α < 0 write
∫︂
Σ2

er
∗zTK dν2 = AKec1r

∗
+ (1 −AK)eKr∗ec2r

∗
,

with

ec1r
∗

= 1 
AK

∫︂
{ω∈Σ2 ; zTK

<0}

er
∗zTK dν2,

ec2r
∗

= 1 
1 −AK

∫︂
{ω∈Σ2 ; zTK

>K}

er
∗(zTK

−K) dν2.

Note that c1 ∈ [L, 0] and c2 ∈ [0, R]; c1 represents the average value that zTK
takes if 

the random walk escapes through 0 and c2 + K is the average value that zTK
takes if 

the random walk escapes through K. We obtain

AK = ec2r
∗ − ez0r

∗
e−Kr∗

ec2r∗ − ec1r∗e−Kr∗ .

Since r∗ → 0 as α → 0, the terms ec1r∗ , ec2r∗ and ez0r
∗
e−Kr∗ converge to 1 as α → 0. 

So we can take α0 small so that for the corresponding r∗0 ,

ec2r
∗
0 − ez0r

∗
0 e−Kr∗0 < ρ/2.
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Fig. 14. Time dependent stopping levels where stopping levels Kn lie on a non constant curve. 

Now taking K large enough ensures that AK < ρ for these values of α0 and K.
To show that AK < ρ for any α with α0 < α < 0, fix such an α. We must now consider 

that zn depends on α and write zα,n. Clearly, for a fixed value of z0,

zα0,n < zα,n.

This implies that ν2({ω ∈ Σ2 ; zTK
< 0}) of escape through 0 decreases with α. The 

lemma follows. □
A.2. Stopping times for random walks with time dependent levels

We stay with the random walk zn from (A.1), but now with the no drift condition

p0L + (1 − p0)R = 0.

Let εn = 1/n2 and note that 
∑︁∞

n=1 εn < ∞. Let also ε > 0 and p ≥ 1 be such that 
εp+1 < ε < εp. We assume that ε is small or equivalently that p is large. Define Kn =
− ln(εn+p) + ln(ε), so

Kn = 2 ln(n + p) + ln(ε). (A.3)

Note that K0 = 2 ln(p) + ln(ε) < 0 and that limn→∞ Kn = ∞. Suppose z0 > K0. 
We want to know the average stopping time to reach the n-dependent level Kn. Time 
dependent stopping levels like these have been considered in [28] and [29, Section 4.5]. 
We use the statements that are derived here in the study of intermittency in Section 3.2. 
Write

S = min{n > 0 ; zn < Kn}.

It is standard that in the case of no drift the expected stopping time to reach a point 
smaller than the fixed level K0 is infinite. We will show that the expected value of S is 
still infinite, using the slow growth of Kn. Fig. 14 illustrates the setting.
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Lemma A.3. ∫︂
Σ2

S(ω) dν2(ω) = ∞.

Proof. The strategy of the proof is to give a lower bound for the integral from the 
lemma by considering, instead of the stopping level Kn, a sequence of a�ine stopping 
levels (M (m)

n )m≥0 that have slope decreasing to 0 as m → ∞. We then translate the 
situation of having a random walk with no drift and a�ine stopping levels to a random 
walk with small negative drift and a constant stopping level K, so that we can apply 
the results from the previous section. The stopping levels M (m)

n are obtained by taking 
tangent lines to Kn at suitable moments m. We will first explain this last part for an 
arbitrary suitable time m.

We will work with a large positive number K; a condition for K will be given in the 
course of the proof. As we have zm > K + Km with positive probability, for a suitable 
positive integer m, to prove the lemma we may assume

z0 > K + K0.

Counting iterates from m on by writing n = m+ i, i ≥ 0, and translating the values Kn

by K0−Km replaces Kn by Ki+m+K0−Km = 2 ln(i+m+p)+2 ln(p)−2 ln(p+m)+ln(ε), 
i ≥ 0. This is of the form (A.3) and shows that we may also assume that p is large in 
(A.3); a condition for p will also be given in the course of the proof.

We construct a stochastic process un built from random walks v(mi)
n , mi ≤ n ≤ mi+1

for certain stopping times mi. We start with two ingredients, the introduction of stopping 
times Sm and Um,l.

Definition of a stopping time Sm. Start with an integer m ≥ 0 such that zm >

K+Km. For all n > m we replace the level Kn by a level Mn = M
(m)
n depending a�inely 

on n:

Mn = αm + βmn

with αm, βm so that the line x ↦→ αm + βmx is tangent to x ↦→ 2 ln(x + p) + ln(ε) at 
x = m. This gives

αm = Km − 2m/(m + p) and βm = 2/(m + p).

As the graph of x ↦→ 2 ln(x + p) is concave, we have Kn ≤ Mn. Consider the stopping 
time

U := min{n > m ; zn < Mn + K} ≤ min{n > m ; zn < Kn + K}.

Define
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v(m)
n = zn −Mn = zn − βm(n−m) −Km.

So v(m)
m = zm−Km and thus v(m)

m > K. The sequence v(m)
n defines a random walk given 

by

v
(m)
n+1 = zn+1 − βm(n + 1 −m) −Km =

{︄
v
(m)
n + L− βm, ωn = 0,
v
(m)
n + R− βm, ωn = 1.

Hence, the random walk v(m)
n has a negative drift −βm = − 2 

m+p , which is small if p is 
large and depends on and is decreasing in m. The demand zn < Mn + K is equivalent 
to v(m)

n < K. Write

Sm(ω) = min{n > m ; v(m)
n < K}

and denote Em(Sm) =
∫︁
Σ2

Sm dν2. Note that the smallest value of Em(Sm), for varying 

v
(m)
m ≥ K, is obtained for v(m)

m = K. As the expected stopping time is similar to the 
reciprocal of the average drift, see Lemma A.1,

Em(Sm) ≥ −p0(L− βm)
βm

≥ −p0L

2 
(m + p). (A.4)

Definition of a stopping time Um,l. The second ingredient is the random walk v(m)
n

with values inside the interval [0,K]. Assume v(m)
l ∈ (K − L,K] for a positive integer 

l > m and consider a second stopping time

Um,l(ω) = min
{︂
n > l ; v(m)

n < 0 or v(m)
n > K

}︂
.

Note that v(m)
n < 0 is equivalent to zn < Mn and v(m)

n > K is equivalent to zn > Mn+K. 
Write

ρm = ν2

(︂{︂
ω ∈ Σ2 ; v(m)

Um,l
< 0
}︂)︂

for the probability that v(m)
n crosses 0. As v(m)

l ∈ (K + L,K], by Lemma A.2 we find 
that ρm will be small for all sufficiently large m if K is large. More precisely, given any 
ρ > 0 we can choose p sufficiently small (so that the drift −βm is close enough to zero 
for all m) and K sufficiently large such that ρm < ρ for all m or equivalently

ν2

(︂{︂
ω ∈ Σ2 ; v(m)

Um,l
> K

}︂)︂
≥ 1 − ρ (A.5)

for all m.

Construction of the process un. Let m0 = 0, assume u0 > K, and define the 
process un, n ≥ 0, as follows. Write l0 = Sm0 . If l0 < ∞, let m1 = Um0,l0 . For m0 ≤ n ≤
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Fig. 15. A possible path zn with indicated stopping times. 

m1 we let un = v
(m0)
n . Inductively, suppose li is defined for 0 ≤ i < k and mi is defined 

for 0 ≤ i ≤ k. We have un defined for 0 ≤ i ≤ mk. Then set

lk = Smk
.

If lk < ∞, we let un = v
(mk)
n for mk ≤ n ≤ lk and let

mk+1 = Umk,lk .

For mk+1 < ∞, we have either v(mk)
mk+1 < 0 or v(mk)

mk+1 > K. If v(mk)
mk+1 > K, then we let

un = v(mk)
n , lk ≤ n ≤ mk+1.

Note that umk+1 −Kmk+1 > K.
If some v(mi)

mi+1 < 0, we let mj = mi+1 for j > i. A path of the corresponding walk zn
with indicated stopping times is depicted in Fig. 15. A similar visualization of paths un

is presented in Fig. 16.

Estimating the average of the stopping time S. Having constructed the path 
un with the sequence of stopping times mk, we can estimate the expected value of the 
stopping time S. We first set the parameters. Set c = −p0L

2 and let ρ > 0 be small 
enough such that (1 − ρ)(1 + c) > 1. Let α0 < 0 and K > 0 be as given by Lemma A.2. 
Choose p so that − 2 

p ∈ (α0, 0). Let 1 
(p+1)2 < ε < 1 

p2 and let Kn, M (m)
n be as defined 

before. Note that the choice of p implies that −βm ∈ (α0, 0) for all m ≥ 0. Let

E0 = {ω ∈ Σ2 ; l0(ω) < ∞ and v(m0)
m1

(ω) > K}

and for n ≥ 1 let
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Fig. 16. Visualization of breaking up random walks un in parts where un > K or un ∈ [0, K]. 

En = {ω ∈ En−1 ; ln(ω) < ∞ and v(mn)
mn+1

(ω) > K}.

Note that S(ω) ≥ l0(ω) for all ω ∈ Σ2 and that for ω ∈ En we have

S(ω) ≥ l0(ω) + l1(ω) −m1(ω) + · · · + ln+1(ω) −mn+1(ω), n ≥ 0.

Hence,

∫︂
Σ2

S dν2 ≥
∫︂
Σ2

l0 dν2 +
∑︂
n≥0

∫︂
En

ln+1 −mn+1 dν2. (A.6)

As established in (A.4),

E(l0) ≥ −p0L

2 
p = cp.

The set E0 is a union of cylinders on which the time m1 is constant. Let η = η0 · · · ηk ∈
{0, 1}k be such that the cylinder C = [η0 · · · ηk] is in E0 with k = m1(ω) =: m1(η) for 
each ω ∈ C and write l0(η) for the value l0(ω), ω ∈ C. Then by Lemma A.1,

∫︂
C

l1 −m1 dν2 ≥ −p0L

2 
(m1(η) + p)ν2(C) ≥ c(l0(η) + p)ν2(C).

From (A.5) we see that

∫︂
E0

l1 −m1 dν2 ≥ ν2(E0)c(cp + p) ≥ (1 − ρ)cp(1 + c).

Similarly, let η = η0 · · · ηk ∈ {0, 1}k be such that the cylinder C = [η0 · · · ηk] ⊆ E1
with k = m2(ω) =: m2(η) for each ω ∈ C and write l0(η),m1(η), l1(η) for the values 
l0(ω),m1(ω), l1(ω), ω ∈ C, respectively. From Lemma A.1 we get
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∫︂
C

l2 −m2 dν2 ≥ − p0L

2 
(m2(η) + p)ν2(C)

≥ c(l1(η) + p)ν2(C) ≥ c(l0(η) + l1(η) −m1(η) + p)ν2(C).

Then (A.5) gives
∫︂
E1

l2 −m2 dν2 ≥ ν2(E1)c(cp + c(cp + p) + p) ≥ (1 − ρ)2cp(1 + c)2.

Continuing, we find for each n ≥ 1 and η = η0 · · · ηk ∈ {0, 1}k for which the cylinder 
C = [η0 · · · ηk] ⊆ En−1 satisfies k = mn(ω) =: mn(η) for each ω ∈ C that

∫︂
En−1

ln −mn dν2 ≥ (1 − ρ)ncp(1 + c)n.

Together with (A.6) and the assumption that (1 − ρ)(1 + c) > 1 this yields

∫︂
Σ2

S dν2 ≥
∞ ∑︂
i=0 

cp(1 − ρ)i(1 + c)i = ∞. □
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