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1. Introduction
For any integer N > 2 each number x € [0, 1] has a base N-expansion:

Ci .
x:Zﬁli’ cief0,1,...,N—1},ieN.

i>1
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The corresponding digit set is the set {0,1,...,N — 1}. A number x € [0, 1] is called normal in base
N > 2 if for each k > 1 and any digits y1,..., % €{0,1,2,..., N — 1} it holds that

#Hl<i<n:ci=y1,....Ck—1=W} 1

lim =,
n— 00 n Nk
i.e,, if each block 1, ..., y of k digits occurs with frequency ﬁ in the base N-expansion of x. It is

a consequence of Borel's normal number theorem from 1909 [4] that Lebesgue almost all numbers
x € [0, 1] are normal in base N for any integer N > 2. It is a different matter, however, to find explicit
examples of such numbers. One of the most famous examples of a normal number in integer base N >
2 is Champernowne’s constant obtained by concatenating the base N representations of the natural
numbers in increasing order, i.e.,

x=0.123...(N-1)101112---1(N — 1)202122---2(N—1)-- -,

evaluated in base N, see [6]. The literature on normal numbers in integer base expansions is extensive.
For some background and further information, we refer to e.g. [5,10] and the references therein.

Normality in base N is essentially a property of the digit sequence (cj)jcy With respect to the
probability vector (%, e %) assigning frequency % to each of the digits, together with some inde-
pendence on the occurrence of digits. Normal numbers are then obtained by projecting a sequence
(ci)ien in which all blocks of digits appear with the right frequencies to the corresponding point
Zkz] % € [0, 1]. This article is concerned with normality in case the digit set contains a countably
infinite number of digits, i.e., is given by N, and the frequencies of the digits are given by any or-
dered probability sequence L = (Lg)gery, 50 with 0 < Lgq < Lg for eachde N and ) 4.y La=1.In
analogy to the base N-expansions, we call a sequence (a;)ijeN € NN [-normal if for each k € N and
each aq,...,ay e N,

. k
#l<i<n:a=o1,...,014k—1 =}
n—o00 n l_[ &j
j=1
Normal sequences in this setting have already been considered in the case of Liiroth expansions,
which were introduced by Liiroth in 1883 [12]. Liiroth expansions of numbers x € (0, 1] are expres-
sions of the form

Qn
x=) —— g, eN, (1)
; Moa@+1n "

where the sum can either be finite or infinite. Liiroth expansions are generated by iterating the trans-
formation

HERSH
Tp:(0,1]— (0, 1], x> | = —|+1)x=]-]1,
X X X

see Fig. 1 for the graph. Setting for each n > 1 that a,(x) = a1(T£'_1(x)) = {ﬁJ one obtains the
L

expression from (1). As ap(x) =k if Tf’1 x) € (ﬁ, %] we expect the digit k € N to appear with fre-
quency m A Liiroth normal number would therefore be a number x € (0, 1] for which a sequence
(ai)ieN € NN exists such that (1) holds and (ai)ieN is L-normal with respect to the probability se-
quence L = (m)kEN. Compared to base N-expansions, the two additional challenges in finding
L-normal sequences are that the infinitely many different digits occur with different frequencies and
that one cannot set up a process that adds blocks of digits according to their length, i.e., a straight-
forward generalisation of Champernowne’s construction is impossible.

Normal numbers for Liiroth expansions and the more general setting of so-called GLS-expansions
are considered in [1,3,7,13]. In [3,13], L-normal numbers for the probability sequence L = (m)keN
and with the Liiroth projection
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Fig. 1. The graph of the Liiroth transformation T;.

Qn
(@)ieN H> ; —H?:1 a@ )

are considered. In the bachelor thesis [3] (supervised by C. Kraaikamp), Boks described a possible
construction for an L-normal sequence, but the thesis does not contain a proof of normality. In [13]
Madritsch and Mance gave a quite general construction for L-normal sequences. It resembles Cham-
pernowne’s construction in that one first adds many copies of all possible blocks of length 2 with
digits 2 and 3 (so 22, 23, 32 and 33), then many copies of all blocks of length 3 with digits 2, 3 and
4, etcetera. Liiroth expansions and base N-expansions are both special cases of Generalised Liiroth Series
(GLS) expansions introduced in [2]. These GLS expansions correspond to different probability sequences
L on the digit set N in case of infinitely many digits or to probability vectors (Ly)1<4<n in the case
of GLS expansions with N digits, N € N. In [14], Vandehey considered normal numbers for GLS ex-
pansions with finite digit sets. In [1], Aehle and Paulsen addressed the question of finding numbers
with normal GLS expansions for infinite digit sets and established a connection with equidistributed
sequences. In [7], Dajani, De Lepper and Robinson found an L-normal sequence for the probability
sequence L = (), -

Our main result is that we provide a family of L-normal sequences for any ordered probability
sequence L. The construction for this family is based on the binary tree introduced in [3] for the
sequence L = (k(le]))keN, which we have adapted to also work for other sequences L, in particular
those where the numbers L; are not necessarily rational. As in [13], we also add many copies of
blocks of digits, but we do not add them by increasing block length and compared to [13] our con-
struction requires adding significantly fewer copies of the blocks. After having constructed L-normal
sequences, we project these sequences to real numbers that have a normal GLS expansions, of which
normal Liiroth expansions are a particular case.

As for Liiroth expansions, many types of number expansions are generated by dynamical systems
which have an invariant measure that is ergodic and absolutely continuous with respect to Lebesgue
measures. (In case of the Liiroth transformation, Lebesgue measure itself is invariant and ergodic.) The
Birkhoff ergodic theorem then implies that the proportion of time that a typical orbit spends in any
measurable subset of the interval [0, 1] equals the measure of that subset. Normal numbers are ex-
plicit examples of such typical orbits and one can therefore also consider them for certain dynamical
systems without a strong association to number expansions. In the last section, we illustrate this with
normal numbers for higher dimensional GLS transformations.

The article is outlined as follows. In Section 2 we give some preliminaries, we introduce the rooted
binary tree on which our construction is based and we prove some properties of the tree. In Section 3
we provide the construction of a family of L-normal sequences and give the proof of normality. Sec-
tion 4 is dedicated to relating the L-normal sequences found in Section 3 to normal numbers with
respect to GLS expansions in one and higher dimensions.
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2. The L-tree
2.1. Notation for words and sequences

Throughout the text we use the notation [[n, k|| for intervals in the integers in the following way:
for n,k € Z let

[nk]={ieZ :n<i<k}.

We consider words and sequences in the alphabet A = N. For clarity of notation, we use A instead
of N when we refer to N as the digit set. For each n > 1, the set A" contains all words of length n,
which are all strings u =u1...u, with u; € A for all 1 <i <n. The set A0 is the set containing only
the empty word, which we denote by €. For us it will be convenient to let A* ={J,.; A" be the set
of all words with digits in A and let A} =J,.,.A" be the set of all words with digits in A together
with the empty word. Let |u| denote the length of u, so [u|=nifue A", n>0.fu=u;...uyc A"
for some m>1 and 1 <n <m, then we let u|, =uq---uy,. For a word o € A* we let

Al@)={uec A* : u|jq =} (2)

be the set of words that start with «. For two words u,v € A*, we use uv to denote the con-
catenation. For a word u = uq...up, € A", n>1, set u™ =uq...up_1(uy + 1). For two words
U=1uq---Up,v="vy---vx € A* we say that v is a subword of u if there is a 1 < j <n such that
uj---ujpr—1 = v and v is a prefix of u if it is a subword with j = 1. In particular this implies that
1<k<n.

Let AN be the set of all one-sided infinite sequences (a;)i>=1 with a; € A for all i > 1. Throughout
the text we fix a sequence L = (Lg)gey With 0 < Lgpq <Lg<1forallde N and ) ;. n Lg=1. The
numbers Lg represent the probabilities with which we would like to see each of the digits d € A
appear in a sequence A € AN, Note that the ordering of the entries of L according to size is just
for notational convenience, since by relabeling we could obtain any redistribution of the probabilities
over the digits. For a word o = &1 - - - ¢ € A* we set

k
(@) =[] Le;
i=1

and we let () =1.For any A=ajay--- € AN o = ...an € A* and subset T € N, define

#ieT:a,=01,...,011 =}
#T '

We call a sequence A € AN L-normal if for all o € A*,

Na(x, T) :=

lim Na(e, [1,n]) = p(a).
n—-oo
2.2. Construction of the tree

For our fixed probability sequence L = (Lg)4ey We construct a rooted, labeled, binary probability
tree, which is strongly reminiscent of the tree introduced in [3] and which we call the L-tree. For
each n>1 set

L 1=, L
pni=———— and gpi=1-py=—==—,
1= Li =30 L
where we let Z?:] L; = 0. One can think of p, as the probability of seeing the digit n while knowing

that the digit is at least n and of g, as the probability of seeing a digit unequal to n while knowing
that the digit is at least n.
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Fig. 2. The first six levels of the L-tree.

The set of nodes of the L-tree is .A* with root 1. The set of edges £ is given by

E={u,ul), w,u") : uecA*).

To be more precise, each node u = uq...u, has two children: a left child with label u1 and a right
child with label u™. We consider the edge labelling of the tree given by the map

Pu,, ifu=uqi...uy, v=ul,

f:&€—10,1]; (U, v) —~ .
Qu,,» ifu=uj...up, v=ut.

Thus for n > 1 the L-tree uses the rule

uquy...Up
pV Wn
ugly...upl ujuy...ujt

Fig. 2 shows the first six levels of the L-tree with the nodes written vertically. Note that for each
u € A} and each v € A* it holds that

fwv,uvl)= f(v,vl) and f(uv,uv?) = f(v,v"). (3)

For each word u =uy ...u, € A%, define the depth of u by

D)= uj.
i=1

with 2?21 u; = 0. Then D(u) is the number of nodes in the path starting from the root 1 and ending
in the node u. Immediately from the definition we obtain the identity

Dmv)=D(u)+D(v), u,veA:. (4)
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For what follows later it is useful to introduce the notation u—2 for the grandparent of a word u € A*
with D(u) > 3, which is the unique word v € A* such that u € {v11,v2, v*t1, (vF)*}. For each n > 1
write G(n) for the collection of words that appear at depth n of the tree, so

Gn)={uec A*: D(u)=n}.

For any word u =uq...u, € A%, write 1 =uq,uy, ..., upu) = u for the sequence of nodes in the path
from 1 to u. Then we set

D(u)—1

wa = [] faiui)

i=1

to denote the product of the probabilities along the path from 1 to u, which we call the weight of u.
Here we let ]—I?:l f(ui,ui11) = 1. We collect some properties of the weight W.

Lemma 2.1. The following statements hold.
(i) ForanyneN, " .comy W) =1.

(ii) Foranyu € AZ and v € A*, W (uv) = W @ul)W (v).
(iii) Forany u e A} W (u1) = u(u).

Proof. For (i), fix an n € N. Since py + qx =1 for each k € N, it holds for each u € G(k) that

W@ =W@l) +Wah).

Therefore,

Z W (u)

Z Wul) + Z W@t

ueGn ueG(n-1) ueG(n-1) (5)
= Z Wu) = = Z W) =1.
ueGn-1) ueG(1)

For (ii), using (3) we obtain

D(uv)—-1
wavy= [ f(@v); @v)j)

j=1
D(u)—1 D(uv)—1

=| [[ fajup | -faun-| J] fl@v; @v))
j=1 j=Du)+1

D(u1)—1 D(v)—-1

= ] fl@vj@vin) [] fogvia
j=1 j=1

=W@l)W(v).

For (iii) we first consider a single digit d € A and note that

d—1 d—1
wd=[]eg=1->L; (6)
j=1 j=1

This gives W (d1) = py 1_[?;} qj = Lq. Then for u =uq...u, by repeated application of this fact and
(ii) we get
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W) =Wq...up 1 DWu,) =W ... up2DW (Uun_11)W (us1)

= =[[wa=]]L,=nw. o
j=1 j=1

Lemma 2.1 shows that for u =uy...u, € A*, "A‘,((':l)) = ‘(‘,/V((':‘l)) = Pu,, so this ratio generally does not

converge as the proximity of W(u) to w(u) is determined by the last digit u, of u. The following
lemma will be useful later.

Lemma 2.2. The following holds:

lim > W)l =oco.
ueG(n)

Proof. For ease of notation set A, = ZueG(n) W (u)|u|, n € N. Fix an n € N and observe that for each
d € [1,n—1] it holds that

(veA® :dveGn)}=Gn—d).

By isolating the first digit in the words from G(n) and using Lemma 2.1 and (6) we have

n—1
Ap=Wm+Y Y Wyl

d=1ueG(n):u=dv

n—1

=Wm+), Y WAHWm(vi+1)
d=1veG(n—d)
n—1

=Wm+) Lo Y, WW(vI+1)

d=1 veG(n—d)

n—1
=W+ L1+ Y, Wyl
d=1 veG(n—d)
n—1
=W+ La(l+ Ang)
d=1
n—1 n—1 n—1
=1-) La+) Li+) Ladnd
d=1 d=1 d=1
n—1
=1+ LiAna.
d=1

As A1 =1, we have Ay > Aq. Now let N € N>;, and suppose that A, > A, for all n € [2, N]. Then

N N—-1
An+1 =1+ ZLdANJH,d >14 Z LgAN_q+LNA1=AN+ LNA1 > AN.
d=1 d=1

Hence, the sequence (Ap)ucny is strictly increasing and since A, > 1 this shows that there is a §; €
(0, 1) such that A, > 1+ 8 for all n € N»,.



A. Boonstra and C. Kalle Journal of Complexity 89 (2025) 101945

As > 4en La=1, we can find an Ny € N3 such that Zé\’;;l Ly + %81 > 1. This leads to

Ni1-1
ANj+1 > 14 Z LaAN,+1-d
d=1
N1—1
=14+0+8) ) La
d=1

1 1
Zl+(1+81)(1—581>:2+5(81—8%).

Set §, = %(81 — 8%) € (0,1). Then this shows that A, > 2 + §; for all n > N1 + 1. Continuing in this

manner, inductively set

1
e G 82_1), meN.

Let M € N>, and assume that there exist integers 2 < N; < Ny <--- < Ny_1 such that Ay >m+1+
Sm+y1 for all n > Ny +1, 1 <m < M. Since 8y, € (0,1) for each m € N, there exists an Ny > Np—1
such that

Ny—Np-1

1
> La+ Sm=1.
et M+1
This yields
Nm—Nm-1
ANy+1 > 1+ Z LiANy+1-d
d=1
Ny—Np-1
=14+ > Lg(M+5y)
d=1

1
>1 M+é6 1-— )
>1+( +M)( M1 M)

1
=M+1+—(Ou — 82
M1 oM o)
=M+ 14+ 5p+1-
Hence, we can find a strictly increasing sequence of integers (Np;)men With the property that for
each m e N we have A, > m for all n > Ny;. Thus limy_ o0 Ay =00. O

3. L-normality

In this section we introduce a set of sequences A € AN for which we prove that they are L-
normal. These sequences will arise from concatenating the words in the nodes of the L-tree depth by
depth with a certain multiplicity. We will therefore introduce some notation to regard a sequence of
digits in AN as a sequence of words in (A*)N as well.
3.1. Normality of concatenation sequences

A concatenation map is a map ¢ : N — N that satisfies

e c(1)=1,
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e c(i+1)—c(@i)e{0,1} forallie N,

e #{i : c(i) =k} < oo for each k € N.
It can be used to split a sequence A = (a;)jcN € AN into a sequence of words (#j)jeN € (AHN
by specifying which digits a; belong to the same word: for each j € N there is an m(j) = min{i €
N : c(i) = j} and an M(j) = max{i € N : c(i) = j}, such that {i € N : c(i) = j} = [m(j), M(j)]. Hence,
to each A € AN and concatenation map ¢ we can associate a unique sequence A. = (uj)jeny with
Uj =apg...am € A* for each j € N. We refer to the sequence A. as the concatenation sequence
associated to the pair (A, ¢). We illustrate these definitions with two examples.

Example 3.1. In [3, Page 21] Boks constructed the sequence

1112 21123 31221 3123 ... (7)

This sequence was built by concatenating words from the L-tree with L = (m)deN as the colours
indicate, i.e., we can associate to it the concatenation map c given by the sequence

1223444556678889(10)(10) (11)(11) (12) (12) (12) (13) (14) (14) (15) ... (8)
and obtain that Ac = (uj)jeny is given by w3 =1, =11, u3 =2, 4 =111, us =21 ug =12,
=3, ug=111,u=3, ug=12, u;1 =21, u;p =111, w3 =3, uy4 = 12, uy5 = 3, etcetera. Thus
the digit ag, for example, belongs to us, which has m(5) =8 and M(5) = 9. As another example,
Uy = a21032023, SO that m(12) =21 and M(12) = 23. Finally, u;5 = a7 and m(15) = M(15) = 27.

For a constant K; € R.1, we call a sequence A € AN an (L, K1)-tree sequence if there is a con-
catenation map ¢ : N — N such that the concatenation sequence Ac = (1) jery satisfies the following
two properties.

(Pq) Foralln>1,

n—1 n
[ieN:ujecm}= Zm!—i—l,Zm!
m=1 m=1

(P2,k,) For eachn>1 and B € G(n) there is an error eg € (—K1, K1) such that
n
#11<j<) m:uj=pt=nW(p)+ep.
m=1

In other words, (P1) says that the sequence A, contains precisely n! words of depth n and that all of
these words appear before any word of depth n+ 1 appears. (P k,) implies that for each n € N and
B € G(n) the number of times that 8 occurs in A deviates from n!W (8) by at most the constant K;.
To show that we can construct sequences satisfying (P , ), note that for each n € N and g € G(n) we
can start by adding [n!W (B8)] copies of the word . Clearly n!W (8) — [n'W(8)] € (0, 1). Combining
this with Lemma 2.1(i) and the fact that #G(n) = 2", we obtain

0< Y W@ - W@ =n- Y [nW(B)]<2",
BeG(n) BeGmn)
so that

> W @) en! - @"—1),nl].
BeG(n)
This shows that we can achieve eg € [—1, 1] for each g € G(n) by adding at most 2" —1 unique words
B € G(n) one additional time. Hence, for any constant K; > 1 sequences satisfying (P1) and (P2 k,)
can be constructed.
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For constants K; € R.q and K € Ro4 we call Ae AN an (L, Ky, K3)-tree sequence if it is an
(L, Kq)-tree sequence that additionally satisfies the following property.

(P3,k,) For each n € Nx3,k € [1,n(n — 1)] and B € G(n — 2), there is an error eig € (—K3, K3) such
that

n—1 n—1
#[je [[Zm!+(n—2)!(k—1)+1, Zm!+(n—2)!k]] :u;zz,s]
m=1 m=1

= (- 2)W(p) +ek.

Property (Ps3,,) says that if we were to split the words of depth n in A. into n(n — 1) groups of
(n — 2)! words in order of appearance, then in each of these groups the words appear in such a way
that their grandparents satisfy (P k, ), i.e., with error margin K> instead of the error margin K1 which
holds for the words of depth n. Note that this is independent of how the words from G(n — 2) in the
sequence A. were actually chosen. In each group the division of the words over the grandparents can
be different as long as (P2 k,) is respected.

The next lemma shows that it is possible to achieve (Pq), (P2,k,) and (P3 k,) simultaneously.

Lemma 3.1. For each K1 € R-1 and K5 € R-4 an (L, K1, K»)-sequence A € AN exists.

Proof. Fix ann>3 and a B € G(n —2). To satisfy (P1) and (P2 g, ) we proceed as above and add each
word u € {11, 82, 871, (BT) ™} either |W (u)n!| or [W (u)n!] times to A so that we add a total of
n! words from G(n). Note that

nn—-HIWwn-2)!] < [Wan!| < TW@@n!l <n(n—D[W@)(n —2)!1.
Since
Z [n=2)IW(u)]| > Z (M=2)!W@) —1)=n-2)'W(B) —4,
ueGn) :u—2=4 ueG(n):u=?=4
and similarly
> tm-2wWan] < - 2)W ) +4,
ueGn):u—2=4

we can spread the available words from {811, 82, 71, ()"} across the n(n — 1) groups of (n — 2)!
words in such a way that the number of words with grandparent B8 in each group lies between
n—2)!IW(B) —4 and (n —2)!W(B) + 4. This gives an (L, K1, K»)-tree sequence. O

For A € AN a concatenation map ¢ and a word o € A*, let

Acl@)={jeN:uj=a} 9)

and for each @ € A* and n > 1 let

Ac(a,n)={jeN :ujeGm) and u; = oy for some y € A"} (10)

be the set of indices of words in A. that have depth n and have « as a prefix. The next proposition
on (L, K1)-tree sequences A states that for any o € A* the proportion of words in A; that have « as
a prefix asymptotically equals p (o) and in that sense the proposition indicates a form of L-normality
of the concatenation sequence A..

10
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Proposition 3.1. Fix some K1 € R.1. Let « € A* and & > 0. Then there is an N € N such that for alln > N
and any (L, K1)-tree sequence A € AN,

#Ac (e, n)
n! -

<é€.

m(e)

Proof. Note that by (4) it follows that if u; = oy € G(n), then D(y) =n — D(«). Hence, for each
n> D(a) and any (L, Kq)-tree sequence A this yields

#Acl,m)y= Y #A(ay).
y€Gn—D(@))

Let A be any (L, Kq)-tree sequence. By (P1) we know that all j with u; =ay € G(n) satisfy j e
[t mi4+1, 3% _, m!]. Then from (P, k,) and Lemma 2.1 we obtain

#Ac@m = Y #Acday)
y€G(n—D (@)

= > W@y +eay)

yeGn—D(a))

(11)
=nW@l) Y. WO+ Y e
y€Gn—D()) y€G(n—D(@))
=nlu(a) + Z eqy -
yeGn—D())
Since
D> eay € (—K12" K12", (12)
y€G(n—D(@))
and
21’!
lim = =0, (13)
n—oo n!

the result follows. O
3.2. Normality along the depth subsequence

For each n € N a word u € G(n) has length |u| € [1,n]. In this subsection we first study for
(L, K1)-tree sequences A € AN the average word length of words in A, counted with multiplicity.
For each n € N write

dmy = Y |uj|
jiujeGn)
for the total number of digits in A that belong to words from G(n). From (P3 k,) we see that
dmy=n! Y Wmlul+ Y eulul.
ueG(n) ueG(n)
If we put e, := ZueG(n) eyl € (—nK12",nK,2"), then

d(n) —éy Z W (u)ul. (14)

n
ueG(n)

11
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Note that the different values of d(n) for different (L, Kq)-tree sequences A are captured by the cor-
responding ;. Since lim,_, s %’ =0, it follows from Lemma 2.2 that lim;_, % = oo uniformly in
A in the sense that if we fix a K; € R.1, then for any M € N there is an N € N such that for all

(L, K1)-tree sequences A € AN and all n >N,

i > M. (15)
n!

By (P1), the total number of words in A. that have depth at most n is

n n
#1jeN:uje Jomp=> m.
m=1

m=1

For n > 1, set d*(n) = Y _r_;d(m). The cumulative average number of digits per word in A, up to
depth n is then given by

d*(n)
Ymom!
Observe that for each n € N it holds that 1, _;m!=n!+ "L m! <n!4n-(n—1)! =2n!, thus

d*(n) - d(n)

Yom_qm! T 2n!’

From (15) we then obtain that in the limit this ratio is unbounded, which is stated in the following
lemma.

Lemma 3.2. Fix a K1 € R.q. For any M € N there is an N € N such that for all (L, Kq)-tree sequences
Ae AN andalln > N,

d*(n)

Y m=g m!

Given a word o € A*, instead of computing the proportion of indices i that mark the start of the
occurrence of the words « in A, we start by concerning ourselves with the occurrences of the word
o as a subword of the words u; of A.. We introduce some further notation, basically to transfer the
notation introduced above for the elements u; of the sequence A to the elements a; of the sequence
A.

For each i € N let m; and M; be the least and greatest index for which c(i) = c(m;) = c(M;),
respectively.

Example 3.1 (continued). Recall from (7) the sequence

1112 21123 31221 3123 ...

and from (8) the corresponding concatenation map c given by

1223444556678889(10)(10) (11)(11) (12) (12) (12) (13) (14) (14) (15) ....

For the digit a3 =1 we see that c¢(3) = c¢(2) =2, while ¢(1) =1 and c(4) = 3, or similarly, a3 lies in
the word uq = azas. So, m3 =2 and M3 = 3. Also my =2 and M, = 3. Another example is ag =1,
which is part of u4 = asaga;. Thus, mg =5 and Mg = 7. Note the difference between m; and m(j): m;
represents the index of the first digit of the word that contains the digit a;, while m(j) represents the
index of the first digit of the word u;. For the last example, it holds that m(4) =ms =mg=m7 =5
and M(4) = M5 = Mg = M7 =7 as u4 = asagay.

12
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We now set
pc(i) :=am,...ai—1 € A%,
sc(i) :=aj...am, € A*.
So, Uiy = pc(i)sc(i). For each 1 <l <n let
Ua(,l):={i e N : D(uci)=n, D(pc(i)) <n—1}

= U {ie N : D(uci)) =n, pc@i) = B}
peAf:
D(B)<n—I

be the set of those indices i that correspond to words of depth n and are such that the word s.(i),
starting at index i, has depth at least . If we take | = D(«) for some « € A*, then Ua(n, D())
contains those indices i for which it is possible for « to occur as a subword of uc; starting at the
position of the digit a;. The set of those indices i for which this actually happens is given by the
following set. For o € A* let A(x) be as defined in (2) and let

Upa):={ieUan, D(@)) : sc(i) € Al@)}
= J {ieN:D@) =n, pc@ =4 sc(i) € A@).}
BeA¥:
D(B)<n—D(a)

The next lemma states that among those indices i that still allow enough room within their respective
words uc for o to appear, i.e., indices i € Ua(n, D(«)), the proportion of indices i where « actually
occurs as a subword of u.; at the position of a; tends to w(a) as n — oo.

Lemma 3.3.Fix a K; € R.. Let @ € A* and & > 0. Then there is an N € N such that for any (L, K1)-tree
sequence A € AN and alin > N,

INa(a,Up(n, D(@))) — p(a)| < €.

Proof. For o, 8 € A* and any ne N let
AB,n) ={i e N:pc(i) =B, D(ucip) =n},
AB,a,n) ={i e N : pc(i) = B, sc(i) € A(@), D(uci)) =n},
so that
Uush= |J A@Bm and Upxam= | J AB.amn.
BeA¥: BeA¥:
D(B)<n—I D(B)<n—D(a)

Recall the definition of A.(B8,n) from (10) (so with g instead of o) and note that to each j € Ac(B8,n)
there corresponds a unique i € A(8,n) with c(i) = j and vice versa. Hence

#A(B,n) =#Ac(B,n),
and similarly,
#A(B,a,n) =#A:(Ba,n).

The family of sets {Ua(n, D(a))}neN is pairwise disjoint, as is the family of sets {U4 o (1) }heN- Then
for any n > D(«) by (11) it follows that

13
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peAr  #A(B,a,n)
#UaaM)  D(B)<n—D()
#Ua(n, D(@)) Y. pear:  #HA(Bn)
D(B)<n—D(x)

D pean (Tl!'N«(ﬂOl)+Zyec(n—D(,3a))eﬂt¥)/)
D(B)<n—D(a)

> peAax (n!'M(ﬂ)+2yeG(n—D(ﬂ))eﬁy>
D(B)<n-D()

1
> BeAL: (“(:3)"'#(04);1! Zyec(n—n(ﬂa))eﬁw)
D(B)<n—D(x)

Na(a,Ua(n, D(@))) =

= u(@) ;
peAL: (M(ﬁ) + 1 Ly ecm-D(p)) eﬂy)
D(B)<n-Di@)

Note that for any n > D(«),
O<Li=pMs Y  wE=n

BeA::
D(B)<n—D(x)

and by (12),
> > epay. Y D epy e (K74 K74,
BeA¥: yeGn—D(Ba)) BeAf: yeGn—D(B))
D(B)<n—D(a) D(B)<n—D(a)
Therefore,
1
> pear (“(IBH' weon! 2y eGn—D(Ba)) eﬁa)/) 1— 1 K4 1 K4
D(B)<n—D(@) m(a) nlly n(@) nlly
1 K240 K24n ’
2 pear (“(ﬂHmZyeG(n—D(ﬂ)) eﬂy) 1+ 35 1- 45

D(B)<n—D(@)

and the result follows. O

For any n,l e N set Uj(n,]) = Um=1Ua(n, D). The next step is to extend Lemma 3.3 to
U3 (n, D(@)).

Proposition 3.2. Fix K; € R.q. Let « € A* and € € (0, u(e)). Then there is an N € N such that for all
(L, K1)-tree sequences A € AN andalin > N,

INa (e, Uj(n. D(@)) — p(@)] <.

Proof. Fix € € (0, u(«)). By Lemma 3.3 we know that there exists an Ny € N such that for all m > N
and each A we have

1
|u(a) = Na(a, Ua(m, D()))| < 3¢

Note that for each (L, K1)-tree sequence A we have #U4(m, D(«)) > 1 for all m > D(«). Hence, there
is an Ny > Ny such that for all n > N, and all (L, Kq)-tree sequences A,

SN-T4UAm, D(@) 1

m=1 -

> m=n, #Ua(m, D()) <3¢

Since Na(a,Ua(m, D(«))) €[0,1] for all me N and A and again using that

0<

14
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Ua(n,D(a)) NUa(m, D(@)) =0, n#m,

we have the following estimate for all n > N, and A:
Yoo #i€Ua(n, D(@)) : sc(i) € Ax)}
> 1 #Ua(m, D(c))
_ Yome1Na(@,Ua(m, D(@))) - #U a(m, D(cx))
Y me1#Ua(m, D(@))

_ Xt #Ua(m, D(@)) + Y, ((@) + 36) - #Ua(m. D(@)
- > m=1 #Ua(m, D(a))
_ YNUT#UAM, D(@) Y, (1(@) + 3€) - #Ua(m, D(@))
= Yom_n, #Ua(m, D(a)) > hen, #Ua(m, D(@))

Na (o, U (n, D(@))) =

1 1
< 58 + (o) + 58
=u(a) +e&.
Similarly, we obtain
S men, (@) — 3€) - #Ua(m, D(a))
> m—1#Ua(m, D())
Zm N, (@) — 3&) - #Ua(m, D(@))  Xn=n, #Ua(m, D(@))
> m=n, #Ua(m, D(a)) > m—1 #Ua(m, D())

1 NV #Ua(m, D(@))
= (M(o[) — 58) . (] —

Na (o, Uj(n, D(@))) >

Zm:l #Ua(m, D())

- (-3 (1-3)

1
> ple) —(1+ M(Ol))§8
> u() —e&.
This gives the result. O

The next result compares the number of indices in U7 (n, D()) to the total number of indices
corresponding to digits in words up to depth n, which is d*(n).

Lemma 3.4. Fixa K1 € R.. Let @ € A* and ¢ > 0. Then there is an N € N such that for alln > N1 and all
(L, K1)-tree sequences A € AN,

#Upa(n, D(@))

d(n)
and there is an N2 € N such that for alln > N and all (L, K1)-tree sequences A € AN,
#U7% (n, D(@))

d*(n)

e(1—¢g,1]

e(l—e¢, 1]

Proof. For any u € A* it holds that |u| < D(u). Hence, by (4), for any (L, K1)-tree sequence A and
index i € N it holds that
Isc(D)] < D(uci)) — D(pc(D).

15
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Fix i € N and suppose that D(uc)) =n, |sc(i)] > D(«). Then i € Ua(n, D(xv)), as

D(pc(i)) = D(ucy) — D(sc(i)) < D(uceiy) — D(@).
In other words, at most D(«) digits a; of each word uc) in Ac with D(uci;) =n do not belong to
Ua(n, D()). This yields

#Ua(n, D(x)) > d(n) — D(a)n!.

Let € > 0. Then by (15) there exists an N1 € N such that for all n > N; and any (L, K1)-tree sequence
A,
#Us(n, D(x d(n) — D(a)n! n!
. A ())Z (n) (@) 1D 1
d(n) d(n) d(n)
Similarly, from Lemma 3.2 we obtain an N; € N such that for all n > N and any (L, Ky)-tree se-
quence A,

- #U(n, D()) . d*(m) — D(a) Y _;m!
- d*(n) - d*(n)

1

>1—€e. O

With this lemma we can extend the result from Proposition 3.2 from Uj(n, D(«)) to all of

[1,d*m)].

Proposition 3.3. Fixa K1 € R. . Let @ € A* and & > 0. Then there is an N1 € N such that for alln > N1 and
(L, K1)-tree sequences A = (G;)ieN € AN

INa(a, [d*(n = 1) + 1, d*(W)]) — u(a)| < &
and there is an N, € N such that for alln > N and (L, K1)-tree sequences A = (a;)icN € AN,

INa(er, [1,d*m)]) — p(e)] <e.

Proof. Write || = k. Then
Na(a, [d*(n— 1) +1,d*m)])

_ #ieUa(m,D(@)) : ai=0a1,...,0i4k—1 = 0}
- d(n)
#Hie[dn-1D)+1,d*M]\Ua(n,D(@)) : ai =01, ..., ditk—1 = %}
_l’_
d(n)
_ Na(a,Ua(n, D(@))) - #Ua(n, D(@))
o d(n)
n Na(a, [d*(n—1) +1,d* )]\ Ua(n, D(@))) - (d(n) — #Ua(n, D(a)))
d(n) '

Let £ > 0. By Lemma 3.3 and Lemma 3.4 there is an Ny € N such that for each n > Ny and each
(L, Kq)-tree sequence A,

1-8_ #Ua(n, D(a)) <
3 dn)

and
INA(@. Ua(n, D(@))) — 11(@)] < §

Then

16
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INa(er, [d*(n — 1) +1,d*)]) — n(@)]

#Ua(n, D(a)) #Ua(n, D(o))
<INa(,Ua(n, D(a))) — IL(OI)IT + p(@) T -
—# D
+NA@, [d* (= 1)+ 1, d*m] \ Ua(n, D(@))) - 1V %y,w»
PN
<3 u,(oc)3 3 <éE.
Similarly,
N, [1,d*m]) = #{ie U (n, D(@)) :;Ii(:)al, ooy Qigpk—1 = O}
#Hie[1,d*M]\Ux(n, D(@)) : ai =01, ..., Aiyp—1 =0k}
+
d*(n)
_ Nu(e, Ui, D(a))) - #U% (n, D(@))
B d*(n)
Na(a, [1,d*(m)] \ U (n, D(@))) - (d*(n) — #U% (n, D(«x)))
+ () .

The result now follows as above from Lemma 3.4 and Proposition 3.2. O

Proposition 3.3 states that (L, K1)-tree sequences A € AN have normality along the subsequence
of indices (d*(n))pen. The additional assumption (P3 k,) aims to control what happens for the inter-
mediate indices i € [d*(n — 1) + 1,d*(n)]. In the next section we prove that this is enough to obtain
L-normal sequences.

3.3. L-normal sequences

Let A= (aj)iecN € AN be an (L, K1, K3)-tree sequence for some K; € R.; and K2 € R.4 and with
concatenation map c. The digits a; with indices i € [d*(n — 1) + 1,d*(n)] correspond to all n! words
Uy € G(n) that appear in Ac. The assumption of property (P3 g, ) regards a division of the indices in
the interval [d*(n — 1) + 1,d*(n)] into n(n — 1) intervals of indices that each correspond to (n — 2)!
words from Ac. For any n € N>3 and k € [1,n(n —1)] let

n—1 n—1
1% () = [i EN:ciye [Ym+1+m—2hk—1, Y m+n—2K }
1

m=1 m=

be the set of corresponding indices in A.

Proposition 3.4. Fix @« € A* and let A be an (L, K1, K»)-tree sequence. Then for all ¢ > O thereisan N € N
such that foralln > N and k € [1,n(n — 1)],

INa(et, I () — p(@)] <.
Proof. For each n € N3 and k € [1,n(n — 1)] consider the words

Usnt k-2 4 € [ =21,

Property (P3 k,) implies that the grandparents of these words satisfy (P;,). Therefore, we can
construct an (L, Ky)-tree sequence A’ = A'(n,k) € AN for which the concatenation sequence A/C, =
(u})jeN has

17
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/ -2 .
u =u 1, (n—2)!].
n3 mitj Sl ml (k=1 (n=2)!+j jel.( i

For the error margins this implies that e% = e’fg for each g € G(n — 2). Since for each word u we have
lu=2| < |u| < |u~2| +2, it then holds that

din—2)<#Km) <dn-2)+n-2)-2, (16)

where d'(n —2) = Zj:u;ec(n—z) |u.
We now compare the possible occurrences of the word « in the string

/ !
uZﬁ.fl mi+1 .”uZ;In;Zlm! (17
to those in the string
U it e—1)(n—2)1+1 " ¥ mipkn—2)1° (18)

Changing a word u/_,_, ., ; to the corresponding word Uy amounts to changing

3 mitj L mi(k=1)(n—2)!+j
or adding at most two digits. Note that a change or addition of a single digit of the sequence A’ in
a given position i*, say, has an effect on the number of occurrence of the word o € A’ only in the
range of indices [i* — |o| + 1,i*]. Hence, the change from (17) to (18) can result in a change in at
most 2|x| + 2 occurrences of the word «. Since I’j‘(n) contains digits belonging to precisely (n — 2)!
words, we obtain

INa(a, I )#1% () — Ny (e, [(@)*(n—3) + 1. (@) (0= 2)]d' (n — 2)| < (1 —2)!2]er| +2).
Combining this with (16) gives

—2)!
Na(e, (M) < Na(a, [d)*(n=3)+1, @) (n—2)]) + Qla| + 2)%
and
Na(a, I ()
/ / 1 d(%:f)z‘)
> Na (o, [(d Yn—=3)+1,d)*(n— 2D o | T 2la] +2)W.
d'(n—-2) d' (n—-2)

The result now follows by applying (15) and Proposition 3.3 to the sequence A’. O

Proposition 3.4 gives the normality of (L, Ky, Ky)-tree sequences A along the subsequence of
indices marked by the endpoints of the sets Iﬁ(n). To prove the L-normality of (L, K1, K»)-tree se-

quences it remains to consider the indices that fall within the sets I’j‘(n). This is done in the next
theorem.

Theorem 3.1. Let A be an (L, K1, K»)-tree sequence. Then for any o € A*,

Jm Na(e, [1, M]) = p(@).

Proof. For any integer M > d*(6) there are unique integers ny € N and ky € [1,ny(ny — 1)] such
that M e I’;\"” (np). Write

kv —1
Ry=M—d*(ny—1)— ) #l%(nm) eN.
k=1

18
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Then
km—1 k k
Na(a, [1,d*(ny — D)]d*(ny — 1) Na(a, Iy (nv)#1, (np)
Naler [1. MD) = M + k2—1 T

Na(ae, [M — Ry +1, MDRy
+ i .

We begin by showing that limp_, o RWM =0, so that we can disregard the last term. As in the proof of
Proposition 3.4, using (P3 k,) we find an (L, K»)-tree sequence A" = A'(ny, ky) € AN for which the
concatenation sequence A, = (u/j) jeN has

/ -2 .
u _ =u _ s e 1, (ny —2)!.
M miei Y M m ey— 1) (g —2)1+ jell. =2

Note that Ry < #IIX‘” (np). If we again let d'(n — 2) = Zj'u’.eG(n72) |u’j| for each n € N, then Ry €
el
[1,d (npm —2) + 2(ny — 2)!]. Recall the definition of the increasing sequence (Ap)pcny from the proof
of Lemma 2.2. By (14) we have for any n € N3 that
dn-2) - dn-2) - An_y- (M =2+ (n —2)Kp2"2
d*m—1) " din—1) ~ Ap_1-(n—1! = —1)K2n1

Apn—y | K272
= + o
ciles
-
An-1 = G
1 Kp2" 2
- 1 + An_2(1=2)!
- R Vi
Ap—2(n—-2)!
By Lemma 2.2,
1 Kp2"2
. n—1 + Ap_3(n-=2)!
lim =1 AL
n—oo 1 _ K2~

Ap—2(n=2)!
As limp;— sy = 00, by (15) we also have
ny —2)! B
M—ood(ny —2)

Clearly M > d*(Np — 1) > d(np — 2), so that we can write

Ry dmy—2) 20y—2)!
Ofﬁfd*(NM—U * diny —2)° 1e)

This shows that

R
lim -2 _o, (20)
M—oco M
yielding
N M —R 1, M])R
lim ale, [ m+1,M]) M _,
M— o0 M

Let & > 0. Combining Proposition 3.3, Proposition 3.4 and (20) we know that there exists an N € N
such that for all M € N with ny; > N it holds that

19



A. Boonstra and C. Kalle Journal of Complexity 89 (2025) 101945

](M,]

Na(a, [1,d*(ny — D])d*(ny — 1) Na (e, I () #1K ()
M t 2 M
k=1
d* (M — km—1 4 1k
< (uto) + T =D F Ly #a00)
M
<o) +e¢
and
* . * _ kny—1 k
Na(a, [1,d (nMM DDd*(ny — 1) Py Na(a, Iy (nI(/Iw))#I A(m) > (@) — )1 — ).
k=1

This yields the desired result. O

Let us give two examples of constructions of (L, K1, K»)-tree sequences, one for the Liiroth proba-
bility sequence L = (ﬁ)deN and one for the dyadic probability sequence L = (;—d)deN.

Example 3.2. Let L = (m)deN- We describe the construction of an (L, 1+ €, 4 + ¢)-tree sequence
up to the words of depth 4.

Depth 1: According to (P1) we add one word of depth 1. As G(1) = {1}, this leaves no choice and we
put a; =1 =u;4. For the concatenation sequence c this implies that m(1) = M(1) =1, so c(1) =1.
Depth 2: Condition (P1) tells us that we add two words of depth 2. We have

1/2 1 1 1

1-0 2 2
Since G(2) ={11,2} and W(11) = 2 = W (2), it is natural to add both words once. Note however that
(P2,1+¢) would also allow either word to be used twice. We choose to put u; =11 and us = 2. This
yields ap =a3 =1 and agy =2 and c¢(2) =c(3) =2 and c(4) =
Depth 3: By condition (P1) we have to add six words from the set G(3) = {111, 12,21, 3}. Since

P2=173=73 L and q2_3,the words have weights
N2 1 N2 1 11 1 12 1
W(111)=(—) S W(12)=(—) = WQD=z-2=-, W@ == 2=_,
2) T34 2) T34 2376 2373

For € < % (P2,1+4¢) forces us to add 111 and 12 either once or twice. It is again natural to 21 once
and 3 twice, but as in the previous step (P3 14¢) allows us to give or take at least one. As we still
do not have to take (P3 44¢) into account, we can choose e.g., ug =111, us =111, ug = 12, u; =21,
ug =3, ug = 3. This gives

as---a16 =111111122133.

Hence, ¢(5) = c(6) = c(7) =4, ¢(8) = c(9) = c(10) =5, c(11) = ¢(12) = 6, c(13) = c(14) = 7, ¢(15) = 8,
c(16)=9

Depth 4: Starting with condition (P1), we add 24 words from G(4) ={1111,112,121,13,211,22,31,4}.
1/12

We have p3 = =g /3175 = 1 and g3 = 3. Therefore, the weights are
W(1111)_8, W(112)_8, waz =L, was)= %
WERID =24, WE=4, WEh=54. W@ =

Although (P2 1+¢) again leaves some room for variation, we choose to add the words 1111 and 112
three times each, the words 121, 211, 22 and 31 twice each, the word 13 four times and the word 4
six times. We now also have to consider (P3 4+¢). The words 1111, 112, 121 and 13 have grandparent
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11 and the words 211, 22, 31 and 4 have grandparent 2. We divide the 24 words we will add up
into twelve groups of two words each. In each of these groups, one word has to come from the
set {1111,112,121, 13} and one words has to come from the set {211, 22,31, 4}. We can take for
example

Uijp U1 | U2 U3 | U4 U4 | U1e U7 | U1 Uq9 | U2 U21
1111 211 (1111 211 | 1111 22 {112 22 | 112 31 [ 112 31
Uzy U23 | U4 U5 | U6 U7 | U3 U9 | U3p U317 | U32 U33
121 4 121 4 13 4 13 4 13 4 13 4,

which so far yields

A=1112111111122133111121111112111111221122211231112311214121413
4134134134 --.

The growth rate in this construction may be summarized as follows: at every step n, we add
n! words of length at most n. Within one step, words are repeated proportionally to their weight,
yielding at most n! repetitions. So, at leach step we add fewer than n!n digits to A. The construction
provided in [13, Section 5.3] also adds words to the sequence step by step, but words added in step n
all have length n. As in our construction, words are repeated in proportion to the desired occurrence
rate, but their construction adds at least (n + 1)!? - [n2 - log(n)| words of length exactly n at every
step, therefore producing a much larger number of digits per step. In particular this implies that in
our construction higher digits occur earlier.

Example 3.3. We now let L = (Zl—d)deN, as in [7, Proposition 4.6 (iii)] and construct the initial part of

an (L, 1+ ¢&,4 + ¢)-sequence. Observe that all labels p,, g, of the L-tree are equal to % This leads to
the following construction.

Depth 1 and 2: The labels of these depths are equal to those in the previous example, so we can
choose again a; =a; =a3=1,a4=2 and c(1) =1,c(2) =c(3) =2,c(4) = 3.

Depth 3: We again have to add 6 words from the set G(3) = {111, 12,21, 3}. They now all have
weights }l, which implies (for small enough ¢) that we add all words at least once and two words of
choice twice. We choose to add 111 and 12 twice. As we again still do not have to take (P3 44¢) into
account, we can choose e.g., us =111, us =111, ug = 12, uy = 12, ug = 21, ug = 3. This gives

as---a;7=1111111212213.

Hence, c(5) = c(6) =c(7) =4, c(8) =c(9) =c(10) =5, c(11) =c(12) =6, c(13) =c(14) =7, c(15) =
c(16) =8, c(17) = 9.

Depth 4: To conclude this example, we add 24 words from G(4) = {1111, 112,121, 13, 211, 22, 31, 4}.
All weights are % so we add every word 3 times. Taking (P3 4+¢) into account, we alternate between
the first four words {1111, 112,121, 13} and the last four words {211, 22, 31, 4}. An example is

Uijp U1 | U2 U3 | U14 U4 | We U7 | U1g U9 | U0 U2
1111 211 (1111 211 | 1111 211|112 22 | 112 22 | 112 22
Upy Up3 | U4 U5 | U6 U7 | U2z U9 | U3p U371 | U3z U33
121 31 | 121 31 | 121 31 13 4 13 4 13 4,

which so far yields

A=11121111111212213111121111112111111211112221122211222 12131121
3112131134134134---.
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Comparing this to the construction from [7] yields the following. In [7], words are added to the
sequence according to their occurrence in the Kepler tree. The structures of the Kepler tree and the
L-tree from our construction are similar in that they are both binary trees (with 2" nodes at depth n)
and that summing the lengths of the words that appear at depth n gives a total of 27 2(n + 1) digits.
The difference is that in the construction from [7] each of these 2" words are added precisely once,
while we add n! words of depth n. Hence, the construction from [7] proceeds through the tree at a
much faster pace, leading to higher digits occurring sooner.

Remark 3.1. A natural question that might arise is why condition (P3 , ) takes into account the grand-
parents and not the parents or grandparents of higher order. Condition (P3 g, ) is used to control the
Ry digits in the proof of Theorem 3.1. The length of the n(n — 1) “compartments” I’j‘ (n) is negligible
compared to the total length M. A similar construction using the parents instead of the grandparents
would result in only n compartments of larger length, which is not enough to bound Ry. Therefore,
using the parents instead of the grandparents would not work.

On the other hand, the proof of Theorem 3.1 would still work if we would consider higher order
grandparents as this would result in more compartments of smaller length. In fact, forany 1 <k <n, a
division into n(n —1)...(n —k) compartments with the division of the words governed by the (k+ 1)-
st order grandparents is possible. We decided on k =1 as the most natural and simple choice. Using
higher order grandparents would have the advantage of a more even spreading of words, generally
yielding a more steady convergence of N4(c, [1, M]). It is even possible to let k > 1 vary from step
to step, e.g. by taking k =n — 1, which was implicitly done in [3].

Remark 3.2. Looking at (P1), we see possibilities to reduce the size of each construction step. Con-
sidering (13) and the proofs of Lemma 3.3 and Proposition 3.2, we conjecture that the number of
words added each step could be reduced to 4", which would also have implications for the proof
of Lemma 3.2. Even with this much slower growth rate, some form of condition (P3 k,) will still be

P . n n
necessary. Perhaps a division into 42 compartments of 42 words would suffice.

4. Normal numbers

In this section we project the L-normal sequences obtained in the previous section to [0, 1]" for
some n € N to obtain normal numbers in certain number systems.

4.1. GLS expansions

GLS expansions are number representations of real numbers in [0, 1]. We will introduce GLS
expansions through the algorithm that produces them. Let 7 = {(£4, 4] : d € N} be a countable collec-
tion of pairwise disjoint subintervals of [0, 1], set Ly =14 — {4, d € N, for the lengths of these intervals
and assume that 7 satisfies 0 < Ly+1 <Lg <1 for each d e N and ) ;.py Lg = 1. In other words, Z
gives an interval partition of [0, 1] and the intervals are ordered in size. Let (&g)4cN € {0, 13N, Then
the GLS transformation associated to Z and (&g)4en is the map T : [0, 1] — [0, 1] given by

(D (x—tp)+eala  if ¢ deN
TG0 = ” 1 x € (bg,rql, d €N, 1)
0, leQUdz1(Ed»rd],

see Fig. 3. For x € [0, 1] for which Ti(x) € (Ugeny ®a, 4] for each i > 0 we can define two sequences
by setting for each i € N the i-th digit and sign, respectively, by a; = aj(x) =d and s; = s;(x) = &4 if
Ti=1(x) € (¢4,14], d € N. Then iterations of T give a GLS expansion of the form

n—1
n—1 .
X= § (—l)zizl Si (a, + snLa,) l_[ La,w
n>1 i=1
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0 I3 Lq Ly 1

Fig. 3. The graph of a GLS transformation restricted to (¢1,r1]U (£2,12] U (¢3,13] with & =¢2 =1 and &3 =0.

where we set (—1)2?:1 Si=1 and ﬂ?:1 Lg; = 1. (Note that there are at most countably many points
x € [0,1] that do not satisfy Ti(x) e Ugeny (€a, Tq] for each i > 0.) The Liiroth expansions and the
Liiroth transformation T are recovered by setting r{ =1 and rp41 =4, = # and ¢, =0 for ne N.

Since an(x) =d if T""1(x) € (¢g, 4], we expect the digit d to occur with frequency Lg. In fact, it
is a consequence of the Birkhoff ergodic theorem, see [2], that this is indeed the case for Lebesgue
almost all x € [0, 1]. Therefore, we call an x € [0, 1] GLS normal with respect to Z and (&g)4ey if for
any k > 1 and any digits o1, ..., o € N it holds for the digit sequence (a;);cry Of x that

#{l<izn:igi=on,.. Qg =) T
nlgrolo n - l_[ Laj ’

j=1
or equivalently, if the digit sequence (a;)icn iS an (Lg)gen-normal sequence. Note that the signs
&4 have no effect on the length of the interval (£4,74] and thus also no effect on the value of Lg.
Therefore, if we let A = (a;);cy be any (L, Ky, Kp)-tree sequence and set the sequence of signs (S;);eN
to be the one corresponding to (£4)4eN., SO Si = &g for each i € N, then the number

n—1
n—1
X = Z(_])Zi:1 si (Ca, + SnlLay) l_[ Ly,

n>1 i=1

is GLS normal.

Example 4.1. We calculate the GLS normal numbers corresponding to Example 3.2 and Example 3.3.
For simplicity, for both examples we take &4 =0 for all d € N, and let Z be such that the intervals
are ordered from right to left in size.

For Example 3.2 this gives Z = {(ﬁ, %] : d € N}, so that the projection of the sequence A =
1112111111122133--- from Example 3.2 will yield a Liiroth normal number. We obtain ¢1 = % b=
1. Ly =1 and L, = }. Therefore, the Liiroth normal number given by A is

Xx=01+ L1161 + 130 + L3 + L3Loty + - -
1 1 1 1 1
ST I T3 e
where the last string of digits represents the decimal expansion of x.
For Example 3.3 we obtain Z = {(zld, 2‘1%1] :d e N}. We now have ¢; =1, &=1, L1 =1 and
Ly = %, which for the sequence A =11121111111212213--- gives

+...=0.9374...,

X=01+ L1l + L3 + L3 + L1ty + -+
oY e
T2 022 23 23,4 23.4.2 o
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4.2. Multidimensional GLS expansions

We can extend the number system from the previous section to higher dimensions. Fix some
N e N and for each 1 <k <N let ZF = {(Z(k),rg‘)] :d e N} and (sd ) 4cny be as in Section 4.1. For

each 1 <k <N let Ty be the GLS transformation for Z¥ and (sd ))deN as given in (21). We can define
the map T :[0, 11N — [0, 1]V by setting

T@® =T, ..., xn) = (Ti(X)) 1 <k<N-

Such maps T are specific examples of Jablofksi maps as introduced in [9] and further analysed for
their dynamical properties in e.g., [8,11].

Applications of T simultaneously produce GLS expansions for the coordinates x; by iteration in the
sense that for points ® = (x1,...,xy) such that T}/ (x) € UdEN(E(k), rék)] for each 1 <k <N and all
n e N, iterations of T assign to each x; a digit sequence (afk))kz1 and a sign sequence (sl@k))kZ] o}
that the point x is given by

(k)
Z( ])Zl 15t e(k) (k)L(k)) HL(k) !

n>1 i=1 1<k<N
where L(k) = r,gk) K(k) Therefore, x is represented by the digit sequence (a“) (N)),EN e (NMHN
and the sign sequence (5(1) (N))l>1 € ({0, 1}M)N. Assume there exists a bl]ECthH f:NN > N

that satisfies the following: if for i=(i1,...,in), j=(j1,..., in) € NV it holds that

=105

then f(i) < f(j). Then let L = (Lg)4ey be the positive probability sequence with Ly = ]_[k 1L
where (dq,...,dy) = f1(d).

The map T is invariant and ergodic with respect to the N-dimensional Lebesgue measure on
[0, 11N, Therefore, the Birkhoff ergodic theorem implies that for each a1, ..., € N and Lebesgue
almost all x € [0, 1]V we have

(k)

. 1 N 1 k
. #l<i<n:f@",....d")=ar,....f@_,.....al) D=0y &

i =[]le;- 22
n—o0 n

Hence, it would be natural to call an x € [0, 1]N normal in this multidimensional GLS number system
if (22) holds for all o1, ..., € N, k> 1. Let A= (a;);en be any (L, K1, K)-tree sequence. For each
ieN let (a?l), . (N)) f 1(g;) and let the sign sequence (s(l) (N)),EN be given by s(k) = s(lfk)

1<k<N,i>1.Then the point

n—1
x=|> (- T st (e(k)+s(k)L(k))HLg.<)
nz1 i 1<k<N

is normal according to this definition.
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