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Let L = (Ld)d∈N be any ordered probability sequence, i.e., satisfying 
0 < Ld+1 ≤ Ld for each d ∈ N and 

∑
d∈N Ld = 1. We construct 

sequences A = (ai)i∈N on the countably infinite alphabet N in 
which each possible block of digits α1, . . . ,αk ∈ N , k ∈ N , occurs 
with frequency 

∏k
d=1 Lαd . In other words, we construct L-normal 

sequences. These sequences can then be projected to normal 
numbers in various a˙ine number systems, such as real numbers 
x ∈ [0,1] that are normal in GLS number systems that correspond 
to the sequence L or higher dimensional variants. In particular, 
this construction provides a family of numbers that have a normal 
Lüroth expansion.

© 2025 The Authors. Published by Elsevier Inc. This is an open 
access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

For any integer N ≥ 2 each number x ∈ [0,1] has a base N-expansion:

x =
∑
i≥1 

ci

Ni
, ci ∈ {0,1, . . . , N − 1}, i ∈N.

* Corresponding author.
E-mail addresses: a.j.w.boonstra@vu.nl (A. Boonstra), kallecccj@math.leidenuniv.nl (C. Kalle).

https://doi.org/10.1016/j.jco.2025.101945
0885-064X/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jco.2025.101945
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jco.2025.101945&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:a.j.w.boonstra@vu.nl
mailto:kallecccj@math.leidenuniv.nl
https://doi.org/10.1016/j.jco.2025.101945
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


A. Boonstra and C. Kalle Journal of Complexity 89 (2025) 101945 

The corresponding digit set is the set {0,1, . . . , N − 1}. A number x ∈ [0,1] is called normal in base 
N ≥ 2 if for each k ≥ 1 and any digits γ1, . . . , γk ∈ {0,1,2, . . . , N − 1} it holds that

lim 
n→∞

#{1 ≤ i ≤ n : ci = γ1, . . . , ci+k−1 = γk}
n 

= 1 
Nk

,

i.e., if each block γ1, . . . , γk of k digits occurs with frequency 1 
Nk in the base N-expansion of x. It is 

a consequence of Borel’s normal number theorem from 1909 [4] that Lebesgue almost all numbers 
x ∈ [0,1] are normal in base N for any integer N ≥ 2. It is a different matter, however, to find explicit 
examples of such numbers. One of the most famous examples of a normal number in integer base N ≥
2 is Champernowne’s constant obtained by concatenating the base N representations of the natural 
numbers in increasing order, i.e.,

x = 0.123 · · · (N − 1)101112 · · ·1(N − 1)202122 · · ·2(N − 1) · · · ,

evaluated in base N , see [6]. The literature on normal numbers in integer base expansions is extensive. 
For some background and further information, we refer to e.g. [5,10] and the references therein.

Normality in base N is essentially a property of the digit sequence (ci)i∈N with respect to the 
probability vector ( 1 

N , . . . , 1 
N ) assigning frequency 1 

N to each of the digits, together with some inde
pendence on the occurrence of digits. Normal numbers are then obtained by projecting a sequence 
(ci)i∈N in which all blocks of digits appear with the right frequencies to the corresponding point ∑

k≥1
ck
Nk ∈ [0,1]. This article is concerned with normality in case the digit set contains a countably 

infinite number of digits, i.e., is given by N , and the frequencies of the digits are given by any or
dered probability sequence L = (Ld)d∈N , so with 0 < Ld+1 ≤ Ld for each d ∈ N and 

∑
d∈N Ld = 1. In 

analogy to the base N-expansions, we call a sequence (ai)i∈N ∈NN L-normal if for each k ∈N and 
each α1, . . . ,αk ∈N ,

lim 
n→∞

#{1 ≤ i ≤ n : ai = α1, . . . ,ai+k−1 = αk}
n 

=
k ∏

j=1

Lα j .

Normal sequences in this setting have already been considered in the case of Lüroth expansions, 
which were introduced by Lüroth in 1883 [12]. Lüroth expansions of numbers x ∈ (0,1] are expres
sions of the form

x =
∑
n≥1 

an∏n
i=1 ai(ai + 1)

, an ∈N, (1)

where the sum can either be finite or infinite. Lüroth expansions are generated by iterating the trans
formation

T L : (0,1] → (0,1], x �→
⌊

1

x 

⌋(⌊
1

x 

⌋
+ 1

)
x −

⌊
1

x 

⌋
,

see Fig. 1 for the graph. Setting for each n ≥ 1 that an(x) = a1(T n−1
L (x)) =

⌊
1 

T n−1
L (x)

⌋
, one obtains the 

expression from (1). As an(x) = k if T n−1
L (x) ∈ ( 1 

k+1 , 1
k 
]

we expect the digit k ∈N to appear with fre

quency 1 
k(k+1)

. A Lüroth normal number would therefore be a number x ∈ (0,1] for which a sequence 
(ai)i∈N ∈ NN exists such that (1) holds and (ai)i∈N is L-normal with respect to the probability se
quence L = ( 1 

k(k+1)

)
k∈N . Compared to base N-expansions, the two additional challenges in finding 

L-normal sequences are that the infinitely many different digits occur with different frequencies and 
that one cannot set up a process that adds blocks of digits according to their length, i.e., a straight
forward generalisation of Champernowne’s construction is impossible.

Normal numbers for Lüroth expansions and the more general setting of so-called GLS-expansions 
are considered in [1,3,7,13]. In [3,13], L-normal numbers for the probability sequence L = ( 1 

k(k+1)

)
k∈N

and with the Lüroth projection
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Fig. 1. The graph of the Lüroth transformation T L . 

(ai)i∈N �→
∑
n≥1 

an∏n
i=1 ai(ai + 1)

are considered. In the bachelor thesis [3] (supervised by C. Kraaikamp), Boks described a possible 
construction for an L-normal sequence, but the thesis does not contain a proof of normality. In [13] 
Madritsch and Mance gave a quite general construction for L-normal sequences. It resembles Cham
pernowne’s construction in that one first adds many copies of all possible blocks of length 2 with 
digits 2 and 3 (so 22, 23, 32 and 33), then many copies of all blocks of length 3 with digits 2, 3 and 
4, etcetera. Lüroth expansions and base N-expansions are both special cases of Generalised Lüroth Series 
(GLS) expansions introduced in [2]. These GLS expansions correspond to different probability sequences 
L on the digit set N in case of infinitely many digits or to probability vectors (Ld)1≤d≤N in the case 
of GLS expansions with N digits, N ∈ N . In [14], Vandehey considered normal numbers for GLS ex
pansions with finite digit sets. In [1], Aehle and Paulsen addressed the question of finding numbers 
with normal GLS expansions for infinite digit sets and established a connection with equidistributed 
sequences. In [7], Dajani, De Lepper and Robinson found an L-normal sequence for the probability 
sequence L = ( 1 

2n

)
n∈N .

Our main result is that we provide a family of L-normal sequences for any ordered probability 
sequence L. The construction for this family is based on the binary tree introduced in [3] for the 
sequence L = ( 1 

k(k+1)

)
k∈N , which we have adapted to also work for other sequences L, in particular 

those where the numbers Ld are not necessarily rational. As in [13], we also add many copies of 
blocks of digits, but we do not add them by increasing block length and compared to [13] our con
struction requires adding significantly fewer copies of the blocks. After having constructed L-normal 
sequences, we project these sequences to real numbers that have a normal GLS expansions, of which 
normal Lüroth expansions are a particular case.

As for Lüroth expansions, many types of number expansions are generated by dynamical systems 
which have an invariant measure that is ergodic and absolutely continuous with respect to Lebesgue 
measures. (In case of the Lüroth transformation, Lebesgue measure itself is invariant and ergodic.) The 
Birkhoff ergodic theorem then implies that the proportion of time that a typical orbit spends in any 
measurable subset of the interval [0,1] equals the measure of that subset. Normal numbers are ex
plicit examples of such typical orbits and one can therefore also consider them for certain dynamical 
systems without a strong association to number expansions. In the last section, we illustrate this with 
normal numbers for higher dimensional GLS transformations.

The article is outlined as follows. In Section 2 we give some preliminaries, we introduce the rooted 
binary tree on which our construction is based and we prove some properties of the tree. In Section 3
we provide the construction of a family of L-normal sequences and give the proof of normality. Sec
tion 4 is dedicated to relating the L-normal sequences found in Section 3 to normal numbers with 
respect to GLS expansions in one and higher dimensions.

3 
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2. The L-tree

2.1. Notation for words and sequences

Throughout the text we use the notation �n,k� for intervals in the integers in the following way: 
for n,k ∈Z let

�n,k� = {i ∈Z : n ≤ i ≤ k}.
We consider words and sequences in the alphabet A = N . For clarity of notation, we use A instead 
of N when we refer to N as the digit set. For each n ≥ 1, the set An contains all words of length n, 
which are all strings u = u1 . . . un with ui ∈ A for all 1 ≤ i ≤ n. The set A0 is the set containing only 
the empty word, which we denote by ε . For us it will be convenient to let A∗ = ⋃

n≥1 An be the set 
of all words with digits in A and let A∗

ε = ⋃
n≥0 An be the set of all words with digits in A together 

with the empty word. Let |u| denote the length of u, so |u| = n if u ∈An , n ≥ 0. If u = u1 . . . um ∈Am

for some m ≥ 1 and 1 ≤ n ≤ m, then we let u|n = u1 · · · un . For a word α ∈A∗ we let

A(α) = {u ∈ A∗ : u||α| = α} (2)

be the set of words that start with α. For two words u, v ∈ A∗ , we use uv to denote the con
catenation. For a word u = u1 . . . un ∈ An , n ≥ 1, set u+ = u1 . . . un−1(un + 1). For two words 
u = u1 · · · un, v = v1 · · · vk ∈ A∗ we say that v is a subword of u if there is a 1 ≤ j ≤ n such that 
u j · · · u j+k−1 = v and v is a prefix of u if it is a subword with j = 1. In particular this implies that 
1 ≤ k ≤ n.

Let AN be the set of all one-sided infinite sequences (ai)i≥1 with ai ∈A for all i ≥ 1. Throughout 
the text we fix a sequence L = (Ld)d∈N with 0 < Ld+1 ≤ Ld < 1 for all d ∈ N and 

∑
d∈N Ld = 1. The 

numbers Ld represent the probabilities with which we would like to see each of the digits d ∈ A
appear in a sequence A ∈ AN . Note that the ordering of the entries of L according to size is just 
for notational convenience, since by relabeling we could obtain any redistribution of the probabilities 
over the digits. For a word α = α1 · · ·αk ∈A∗ we set

μ(α) :=
k ∏

i=1 
Lαi

and we let μ(ε) = 1. For any A = a1a2 · · · ∈AN , α = α1 . . . αn ∈A∗ and subset T ⊆N , define

N A(α, T ) := #{i ∈ T : ai = α1, . . . ,ai+k−1 = αk}
#T 

.

We call a sequence A ∈AN L-normal if for all α ∈A∗ ,

lim 
n→∞ N A(α, �1,n�) = μ(α).

2.2. Construction of the tree

For our fixed probability sequence L = (Ld)d∈N we construct a rooted, labeled, binary probability 
tree, which is strongly reminiscent of the tree introduced in [3] and which we call the L-tree. For 
each n ≥ 1 set

pn := Ln

1 − ∑n−1
i=1 Li

and qn := 1 − pn = 1 − ∑n
i=1 Li

1 − ∑n−1
i=1 Li

,

where we let 
∑0

i=1 Li = 0. One can think of pn as the probability of seeing the digit n while knowing 
that the digit is at least n and of qn as the probability of seeing a digit unequal to n while knowing 
that the digit is at least n.

4 
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Fig. 2. The first six levels of the L-tree. 

The set of nodes of the L-tree is A∗ with root 1. The set of edges E is given by

E = {(u, u1), (u, u+) : u ∈ A∗}.
To be more precise, each node u = u1 . . . un has two children: a left child with label u1 and a right 
child with label u+ . We consider the edge labelling of the tree given by the map

f : E → [0,1]; (u, v) �→
{

pun , if u = u1 . . . un, v = u1,

qun , if u = u1 . . . un, v = u+.

Thus for n ≥ 1 the L-tree uses the rule

u1u2 . . . un

u1u2 . . . un1 u1u2 . . . u+
n .

pun
qun

Fig. 2 shows the first six levels of the L-tree with the nodes written vertically. Note that for each 
u ∈A∗

ε and each v ∈A∗ it holds that

f (uv, uv1) = f (v, v1) and f (uv, uv+) = f (v, v+). (3)

For each word u = u1 . . . un ∈A∗
ε , define the depth of u by

D(u) =
n ∑

i=1 
ui,

with 
∑0

i=1 ui = 0. Then D(u) is the number of nodes in the path starting from the root 1 and ending 
in the node u. Immediately from the definition we obtain the identity

D(uv) = D(u) + D(v), u, v ∈ A∗
ε . (4)

5 
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For what follows later it is useful to introduce the notation u−2 for the grandparent of a word u ∈A∗
with D(u) ≥ 3, which is the unique word v ∈A∗ such that u ∈ {v11, v2, v+1, (v+)+}. For each n ≥ 1
write G(n) for the collection of words that appear at depth n of the tree, so

G(n) = {u ∈ A∗ : D(u) = n}.
For any word u = u1 . . . un ∈A∗ , write 1 = u1, u2, . . . , uD(u) = u for the sequence of nodes in the path 
from 1 to u. Then we set

W (u) =
D(u)−1∏

i=1 
f (ui, ui+1)

to denote the product of the probabilities along the path from 1 to u, which we call the weight of u. 
Here we let 

∏0
i=1 f (ui, ui+1) = 1. We collect some properties of the weight W .

Lemma 2.1. The following statements hold.

(i) For any n ∈N , 
∑

u∈G(n) W (u) = 1.
(ii) For any u ∈A∗

ε and v ∈A∗ , W (uv) = W (u1)W (v).
(iii) For any u ∈A∗

ε W (u1) = μ(u).

Proof. For (i), fix an n ∈N . Since pk + qk = 1 for each k ∈N , it holds for each u ∈ G(k) that

W (u) = W (u1) + W (u+).

Therefore,∑
u∈G(n)

W (u) = 
∑

u∈G(n−1)

W (u1) +
∑

u∈G(n−1)

W (u+)

= 
∑

u∈G(n−1)

W (u) = · · · =
∑

u∈G(1)

W (u) = 1.
(5)

For (ii), using (3) we obtain

W (uv) = 
D(uv)−1∏

j=1 
f
(
(uv) j, (uv) j+1

)

= 

⎛
⎝D(u)−1∏

j=1 
f (u j, u j+1)

⎞
⎠ · f (u, u1) ·

⎛
⎝ D(uv)−1 ∏

j=D(u)+1

f
(
(uv) j, (uv) j+1

)⎞⎠

= 
D(u1)−1∏

j=1 
f
(
(u1) j, (u1) j+1

) D(v)−1∏
j=1 

f (v j, v j+1)

= W (u1)W (v).

For (iii) we first consider a single digit d ∈A and note that

W (d) =
d−1∏
j=1 

q j = 1 −
d−1 ∑
j=1 

L j . (6)

This gives W (d1) = pd
∏d−1

j=1 q j = Ld . Then for u = u1 . . . un by repeated application of this fact and 
(ii) we get

6 
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W (u1) = W (u1 . . . un−11)W (un1) = W (u1 . . . un−21)W (un−11)W (un1)

= · · · =
n ∏

j=1

W (u j1) =
n ∏

j=1

Lu j = μ(u). �

Lemma 2.1 shows that for u = u1 . . . un ∈ A∗, μ(u) 
W (u)

= W (u1)
W (u) = pun , so this ratio generally does not 

converge as the proximity of W (u) to μ(u) is determined by the last digit un of u. The following 
lemma will be useful later.

Lemma 2.2. The following holds:

lim 
n→∞

∑
u∈G(n)

W (u)|u| = ∞.

Proof. For ease of notation set Δn = ∑
u∈G(n) W (u)|u|, n ∈N . Fix an n ∈N and observe that for each 

d ∈ �1,n − 1� it holds that

{v ∈ A∗ : dv ∈ G(n)} = G(n − d).

By isolating the first digit in the words from G(n) and using Lemma 2.1 and (6) we have

Δn = W (n) +
n−1 ∑
d=1 

∑
u∈G(n):u=dv

W (u)|u|

= W (n) +
n−1 ∑
d=1 

∑
v∈G(n−d)

W (d1)W (v)(|v| + 1)

= W (n) +
n−1 ∑
d=1 

Ld

∑
v∈G(n−d)

W (v)(|v| + 1)

= W (n) +
n−1 ∑
d=1 

Ld

⎛
⎝1 +

∑
v∈G(n−d)

W (v)|v|
⎞
⎠

= W (n) +
n−1 ∑
d=1 

Ld(1 + Δn−d)

= 1 −
n−1 ∑
d=1 

Ld +
n−1 ∑
d=1 

Ld +
n−1 ∑
d=1 

LdΔn−d

= 1 +
n−1 ∑
d=1 

LdΔn−d.

As Δ1 = 1, we have Δ2 > Δ1. Now let N ∈N≥2, and suppose that Δn > Δn−1 for all n ∈ �2, N�. Then

ΔN+1 = 1 +
N∑

d=1 
LdΔN+1−d > 1 +

N−1∑
d=1 

LdΔN−d + LNΔ1 = ΔN + LNΔ1 > ΔN .

Hence, the sequence (Δn)n∈N is strictly increasing and since Δ2 > 1 this shows that there is a δ1 ∈
(0,1) such that Δn ≥ 1 + δ1 for all n ∈N≥2.

7 
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As 
∑

d∈N Ld = 1, we can find an N1 ∈N≥2 such that 
∑N1−1

d=1 Ld + 1
2 δ1 ≥ 1. This leads to

ΔN1+1 > 1 +
N1−1∑
d=1 

LdΔN1+1−d

≥ 1 + (1 + δ1)

N1−1∑
d=1 

Ld

≥ 1 + (1 + δ1)

(
1 − 1

2
δ1

)
= 2 + 1

2
(δ1 − δ2

1).

Set δ2 = 1
2 (δ1 − δ2

1) ∈ (0,1). Then this shows that Δn ≥ 2 + δ2 for all n ≥ N1 + 1. Continuing in this 
manner, inductively set

δm = 1 
m

(δm−1 − δ2
m−1), m ∈ N≥2.

Let M ∈N≥2 and assume that there exist integers 2 ≤ N1 < N2 < · · · < NM−1 such that Δn ≥ m + 1 +
δm+1 for all n ≥ Nm + 1, 1 ≤ m < M . Since δm ∈ (0,1) for each m ∈ N , there exists an NM > NM−1

such that

NM−NM−1∑
d=1 

Ld + 1 
M + 1

δM ≥ 1.

This yields

ΔNM+1 > 1 +
NM−NM−1∑

d=1 
LdΔNM+1−d

≥ 1 +
NM−NM−1∑

d=1 
Ld(M + δM)

≥ 1 + (M + δM)

(
1 − 1 

M + 1
δM

)

= M + 1 + 1 
M + 1

(δM − δ2
M)

= M + 1 + δM+1.

Hence, we can find a strictly increasing sequence of integers (Nm)m∈N with the property that for 
each m ∈N we have Δn > m for all n > Nm . Thus limn→∞ Δn = ∞. �
3. L-normality

In this section we introduce a set of sequences A ∈ AN for which we prove that they are L
normal. These sequences will arise from concatenating the words in the nodes of the L-tree depth by 
depth with a certain multiplicity. We will therefore introduce some notation to regard a sequence of 
digits in AN as a sequence of words in (A∗)N as well.

3.1. Normality of concatenation sequences

A concatenation map is a map c :N →N that satisfies

• c(1) = 1,

8 
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• c(i + 1) − c(i) ∈ {0,1} for all i ∈N ,
• #{i : c(i) = k} < ∞ for each k ∈N .

It can be used to split a sequence A = (ai)i∈N ∈ AN into a sequence of words (u j) j∈N ∈ (A∗)N
by specifying which digits ai belong to the same word: for each j ∈ N there is an m( j) = min{i ∈
N : c(i) = j} and an M( j) = max{i ∈N : c(i) = j}, such that {i ∈N : c(i) = j} = �m( j), M( j)�. Hence, 
to each A ∈ AN and concatenation map c we can associate a unique sequence Ac = (u j) j∈N with 
u j = am( j) . . .aM( j) ∈ A∗ for each j ∈ N . We refer to the sequence Ac as the concatenation sequence 
associated to the pair (A, c). We illustrate these definitions with two examples.

Example 3.1. In [3, Page 21] Boks constructed the sequence

1 1 1 2 1 1 1 2 1 1 2 3 1 1 1 3 1 2 2 1 1 1 1 3 1 2 3 · · · . (7)

This sequence was built by concatenating words from the L-tree with L = ( 1 
d(d+1)

)d∈N as the colours 
indicate, i.e., we can associate to it the concatenation map c given by the sequence

1 2 2 3 4 4 4 5 5 6 6 7 8 8 8 9 (10) (10) (11) (11) (12) (12) (12) (13) (14) (14) (15) . . . (8)

and obtain that Ac = (u j) j∈N is given by u1 = 1, u2 = 1 1, u3 = 2, u4 = 1 1 1, u5 = 2 1 u6 = 1 2, 
u7 = 3, u8 = 1 1 1, u9 = 3, u10 = 1 2, u11 = 2 1, u12 = 1 1 1, u13 = 3, u14 = 1 2, u15 = 3, etcetera. Thus 
the digit a9, for example, belongs to u5, which has m(5) = 8 and M(5) = 9. As another example, 
u12 = a21a22a23, so that m(12) = 21 and M(12) = 23. Finally, u15 = a27 and m(15) = M(15) = 27.

For a constant K1 ∈ R>1, we call a sequence A ∈ AN an (L, K1)-tree sequence if there is a con
catenation map c :N →N such that the concatenation sequence Ac = (u j) j∈N satisfies the following 
two properties.

(P1) For all n ≥ 1,

{
j ∈N : u j ∈ G(n)

} =
�
�n−1 ∑

m=1

m! + 1,

n ∑
m=1

m!
�
� .

(P2,K1 ) For each n ≥ 1 and β ∈ G(n) there is an error eβ ∈ (−K1, K1) such that

#

{
1 ≤ j ≤

n ∑
m=1

m! : u j = β

}
= n!W (β) + eβ .

In other words, (P1) says that the sequence Ac contains precisely n! words of depth n and that all of 
these words appear before any word of depth n + 1 appears. (P2,K1 ) implies that for each n ∈N and 
β ∈ G(n) the number of times that β occurs in Ac deviates from n!W (β) by at most the constant K1. 
To show that we can construct sequences satisfying (P2,K1 ), note that for each n ∈N and β ∈ G(n) we 
can start by adding 
n!W (β)� copies of the word β . Clearly n!W (β) − 
n!W (β)� ∈ (0,1). Combining 
this with Lemma 2.1(i) and the fact that #G(n) = 2n , we obtain

0 <
∑

β∈G(n)

(n!W (β) − 
n!W (β)�) = n! −
∑

β∈G(n)


n!W (β)� < 2n,

so that ∑
β∈G(n)


n!W (β)� ∈ �n! − (2n − 1),n!�.
This shows that we can achieve eβ ∈ [−1,1] for each β ∈ G(n) by adding at most 2n −1 unique words 
β ∈ G(n) one additional time. Hence, for any constant K1 > 1 sequences satisfying (P1) and (P2,K1 ) 
can be constructed.

9 
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For constants K1 ∈ R>1 and K2 ∈ R>4 we call A ∈ AN an (L, K1, K2)-tree sequence if it is an 
(L, K1)-tree sequence that additionally satisfies the following property.

(P3,K2 ) For each n ∈ N≥3,k ∈ �1,n(n − 1)� and β ∈ G(n − 2), there is an error ek
β ∈ (−K2, K2) such 

that

#
{

j ∈
� n−1 ∑

m=1

m! + (n − 2)!(k − 1) + 1,

n−1 ∑
m=1

m! + (n − 2)!k
	

: u−2
j = β

}

= (n − 2)!W (β) + ek
β .

Property (P3,K2 ) says that if we were to split the words of depth n in Ac into n(n − 1) groups of 
(n − 2)! words in order of appearance, then in each of these groups the words appear in such a way 
that their grandparents satisfy (P2,K2 ), i.e., with error margin K2 instead of the error margin K1 which 
holds for the words of depth n. Note that this is independent of how the words from G(n − 2) in the 
sequence Ac were actually chosen. In each group the division of the words over the grandparents can 
be different as long as (P2,K2 ) is respected.

The next lemma shows that it is possible to achieve (P1), (P2,K1 ) and (P3,K2 ) simultaneously.

Lemma 3.1. For each K1 ∈R>1 and K2 ∈R>4 an (L, K1, K2)-sequence A ∈AN exists.

Proof. Fix an n ≥ 3 and a β ∈ G(n − 2). To satisfy (P1) and (P2,K1 ) we proceed as above and add each 
word u ∈ {β11, β2, β+1, (β+)+} either 
W (u)n!� or �W (u)n!
 times to Ac so that we add a total of 
n! words from G(n). Note that

n(n − 1)
W (u)(n − 2)!� ≤ 
W (u)n!� ≤ �W (u)n!
 ≤ n(n − 1)�W (u)(n − 2)!
.
Since ∑

u∈G(n) : u−2=β


(n − 2)!W (u)� >
∑

u∈G(n) : u−2=β

((n − 2)!W (u) − 1) = (n − 2)!W (β) − 4,

and similarly∑
u∈G(n) : u−2=β

�(n − 2)!W (u)
 < (n − 2)!W (β) + 4,

we can spread the available words from {β11, β2, β+1, (β+)+} across the n(n − 1) groups of (n − 2)!
words in such a way that the number of words with grandparent β in each group lies between 
(n − 2)!W (β) − 4 and (n − 2)!W (β) + 4. This gives an (L, K1, K2)-tree sequence. �

For A ∈AN , a concatenation map c and a word α ∈A∗ , let

Ac(α) = { j ∈N : u j = α} (9)

and for each α ∈A∗ and n ≥ 1 let

Ac(α,n) = { j ∈N : u j ∈ G(n) and u j = αγ for some γ ∈ A∗} (10)

be the set of indices of words in Ac that have depth n and have α as a prefix. The next proposition 
on (L, K1)-tree sequences A states that for any α ∈ A∗ the proportion of words in Ac that have α as 
a prefix asymptotically equals μ(α) and in that sense the proposition indicates a form of L-normality 
of the concatenation sequence Ac .

10 
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Proposition 3.1. Fix some K1 ∈ R>1 . Let α ∈ A∗ and ε > 0. Then there is an N ∈ N such that for all n ≥ N
and any (L, K1)-tree sequence A ∈AN ,∣∣∣∣#Ac(α,n)

n! − μ(α)

∣∣∣∣ < ε.

Proof. Note that by (4) it follows that if u j = αγ ∈ G(n), then D(γ ) = n − D(α). Hence, for each 
n > D(α) and any (L, K1)-tree sequence A this yields

#Ac(α,n) =
∑

γ ∈G(n−D(α))

#Ac(αγ ).

Let A be any (L, K1)-tree sequence. By (P1) we know that all j with u j = αγ ∈ G(n) satisfy j ∈
�∑n−1

m=1 m! + 1,
∑n

m=1 m!�. Then from (P2,K1 ) and Lemma 2.1 we obtain

#Ac(α,n) = 
∑

γ ∈G(n−D(α))

#Ac(αγ )

= 
∑

γ ∈G(n−D(α))

(n!W (αγ ) + eαγ )

= n!W (α1)
∑

γ ∈G(n−D(α))

W (γ ) +
∑

γ ∈G(n−D(α))

eαγ

= n!μ(α) +
∑

γ ∈G(n−D(α))

eαγ .

(11)

Since ∑
γ ∈G(n−D(α))

eαγ ∈ (−K12n, K12n), (12)

and

lim 
n→∞

2n

n! = 0, (13)

the result follows. �
3.2. Normality along the depth subsequence

For each n ∈ N a word u ∈ G(n) has length |u| ∈ �1,n�. In this subsection we first study for 
(L, K1)-tree sequences A ∈ AN the average word length of words in Ac , counted with multiplicity. 
For each n ∈N write

d(n) :=
∑

j:u j∈G(n)

|u j|

for the total number of digits in A that belong to words from G(n). From (P2,K1 ) we see that

d(n) = n!
∑

u∈G(n)

W (u)|u| +
∑

u∈G(n)

eu|u|.

If we put ên := ∑
u∈G(n) eu|u| ∈ (−nK12n,nK12n), then

d(n) − ên

n! =
∑

u∈G(n)

W (u)|u|. (14)

11 
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Note that the different values of d(n) for different (L, K1)-tree sequences A are captured by the cor
responding ên . Since limn→∞ n2n

n! = 0, it follows from Lemma 2.2 that limn→∞ d(n)
n! = ∞ uniformly in 

A in the sense that if we fix a K1 ∈ R>1, then for any M ∈ N there is an N ∈ N such that for all 
(L, K1)-tree sequences A ∈AN and all n ≥ N ,

d(n)

n! > M. (15)

By (P1), the total number of words in Ac that have depth at most n is

#

{
j ∈N : u j ∈

n ⋃
m=1

G(n)

}
=

n ∑
m=1

m!.

For n ≥ 1, set d∗(n) = ∑n
m=1 d(m). The cumulative average number of digits per word in Ac up to 

depth n is then given by

d∗(n) ∑n
m=1 m! .

Observe that for each n ∈N it holds that 
∑n

m=1 m! = n! + ∑n−1
m=1 m! < n! + n · (n − 1)! = 2n!, thus

d∗(n) ∑n
m=1 m! ≥ d(n)

2n! .

From (15) we then obtain that in the limit this ratio is unbounded, which is stated in the following 
lemma.

Lemma 3.2. Fix a K1 ∈ R>1 . For any M ∈ N there is an N ∈ N such that for all (L, K1)-tree sequences 
A ∈AN and all n ≥ N,

d∗(n) ∑n
m=1 m! > M.

Given a word α ∈ A∗ , instead of computing the proportion of indices i that mark the start of the 
occurrence of the words α in A, we start by concerning ourselves with the occurrences of the word 
α as a subword of the words u j of Ac . We introduce some further notation, basically to transfer the 
notation introduced above for the elements u j of the sequence Ac to the elements ai of the sequence 
A.

For each i ∈ N let mi and Mi be the least and greatest index for which c(i) = c(mi) = c(Mi), 
respectively.

Example 3.1 (continued). Recall from (7) the sequence

1 1 1 2 1 1 1 2 1 1 2 3 1 1 1 3 1 2 2 1 1 1 1 3 1 2 3 · · ·
and from (8) the corresponding concatenation map c given by

1 2 2 3 4 4 4 5 5 6 6 7 8 8 8 9 (10) (10) (11) (11) (12) (12) (12) (13) (14) (14) (15) . . . .

For the digit a3 = 1 we see that c(3) = c(2) = 2, while c(1) = 1 and c(4) = 3, or similarly, a3 lies in 
the word u1 = a2a3. So, m3 = 2 and M3 = 3. Also m2 = 2 and M2 = 3. Another example is a6 = 1, 
which is part of u4 = a5a6a7. Thus, m6 = 5 and M6 = 7. Note the difference between mi and m( j): mi
represents the index of the first digit of the word that contains the digit ai , while m( j) represents the 
index of the first digit of the word u j . For the last example, it holds that m(4) = m5 = m6 = m7 = 5
and M(4) = M5 = M6 = M7 = 7 as u4 = a5a6a7.

12 
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We now set

pc(i) := ami ...ai−1 ∈ A∗
ε,

sc(i) := ai ...aMi ∈ A∗.

So, uc(i) = pc(i)sc(i). For each 1 ≤ l ≤ n let

U A(n, l) := {i ∈N : D(uc(i)) = n, D(pc(i)) < n − l}
= 

⋃
β∈A∗

ε :
D(β)<n−l

{i ∈ N : D(uc(i)) = n, pc(i) = β}

be the set of those indices i that correspond to words of depth n and are such that the word sc(i), 
starting at index i, has depth at least l. If we take l = D(α) for some α ∈ A∗ , then U A(n, D(α))

contains those indices i for which it is possible for α to occur as a subword of uc(i) starting at the 
position of the digit ai . The set of those indices i for which this actually happens is given by the 
following set. For α ∈A∗ let A(α) be as defined in (2) and let

U A,α(n) := {i ∈ U A(n, D(α)) : sc(i) ∈ A(α)}
= 

⋃
β∈A∗

ε :
D(β)<n−D(α)

{i ∈N : D(uc(i)) = n, pc(i) = β, sc(i) ∈ A(α).}

The next lemma states that among those indices i that still allow enough room within their respective 
words uc(i) for α to appear, i.e., indices i ∈ U A(n, D(α)), the proportion of indices i where α actually 
occurs as a subword of uc(i) at the position of ai tends to μ(α) as n → ∞.

Lemma 3.3. Fix a K1 ∈ R>1 . Let α ∈ A∗ and ε > 0. Then there is an N ∈ N such that for any (L, K1)-tree 
sequence A ∈AN and all n ≥ N,

|N A(α, U A(n, D(α))) − μ(α)| < ε.

Proof. For α,β ∈A∗ and any n ∈N let

A(β,n) = {i ∈N : pc(i) = β, D(uc(i)) = n},
A(β,α,n) = {i ∈N : pc(i) = β, sc(i) ∈ A(α), D(uc(i)) = n},

so that

U A(n, l) =
⋃

β∈A∗
ε :

D(β)<n−l

A(β,n) and U A,α(n) =
⋃

β∈A∗
ε :

D(β)<n−D(α)

A(β,α,n).

Recall the definition of Ac(β,n) from (10) (so with β instead of α) and note that to each j ∈ Ac(β,n)

there corresponds a unique i ∈ A(β,n) with c(i) = j and vice versa. Hence

#A(β,n) = #Ac(β,n),

and similarly,

#A(β,α,n) = #Ac(βα,n).

The family of sets {U A(n, D(α))}n∈N is pairwise disjoint, as is the family of sets {U A,α(n)}n∈N . Then 
for any n > D(α) by (11) it follows that

13 
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N A(α, U A(n, D(α))) = #U A,α(n) 
#U A(n, D(α))

=

∑
β∈A∗

ε :
D(β)<n−D(α)

#A(β,α,n)

∑
β∈A∗

ε :
D(β)<n−D(α)

#A(β,n) 

=

∑
β∈A∗

ε :
D(β)<n−D(α)

(
n! · μ(βα) + ∑

γ ∈G(n−D(βα)) eβαγ

)
∑

β∈A∗
ε :

D(β)<n−D(α)

(
n! · μ(β) + ∑

γ ∈G(n−D(β)) eβγ

)

= μ(α)

∑
β∈A∗

ε :
D(β)<n−D(α)

(
μ(β) + 1 

μ(α)n!
∑

γ ∈G(n−D(βα)) eβαγ

)
∑

β∈A∗
ε :

D(β)<n−D(α)

(
μ(β) + 1 

n!
∑

γ ∈G(n−D(β)) eβγ

) .

Note that for any n > D(α),

0 < L1 = μ(1) ≤
∑

β∈A∗
ε :

D(β)<n−D(α)

μ(β) ≤ n,

and by (12),∑
β∈A∗

ε :
D(β)<n−D(α)

∑
γ ∈G(n−D(βα))

eβαγ ,
∑

β∈A∗
ε :

D(β)<n−D(α)

∑
γ ∈G(n−D(β))

eβγ ∈ (−K 2
1 4n, K 2

1 4n).

Therefore,∑
β∈A∗

ε :
D(β)<n−D(α)

(
μ(β) + 1 

μ(α)n!
∑

γ ∈G(n−D(βα)) eβαγ

)
∑

β∈A∗
ε :

D(β)<n−D(α)

(
μ(β) + 1 

n!
∑

γ ∈G(n−D(β)) eβγ

) ∈
⎛
⎝1 − 1 

μ(α)

K 2
1 4n

n!L1

1 + K 2
1 4n

n!L1

,
1 + 1 

μ(α)

K 2
1 4n

n!L1

1 − K 2
1 4n

n!L1

⎞
⎠ ,

and the result follows. �
For any n, l ∈ N set U∗

A(n, l) = ⋃n
m=1 U A(m, l). The next step is to extend Lemma 3.3 to 

U∗
A(n, D(α)).

Proposition 3.2. Fix K1 ∈ R>1 . Let α ∈ A∗ and ε ∈ (0,μ(α)). Then there is an N ∈ N such that for all 
(L, K1)-tree sequences A ∈AN and all n ≥ N,

|N A
(
α, U∗

A(n, D(α))
) − μ(α)| < ε.

Proof. Fix ε ∈ (0,μ(α)). By Lemma 3.3 we know that there exists an N1 ∈N such that for all m ≥ N1

and each A we have

|μ(α) − N A(α, U A(m, D(α)))| < 1

2
ε.

Note that for each (L, K1)-tree sequence A we have #U A(m, D(α)) ≥ 1 for all m > D(α). Hence, there 
is an N2 > N1 such that for all n ≥ N2 and all (L, K1)-tree sequences A,

0 <

∑N1−1
m=1 #U A(m, D(α)) ∑n
m=N1

#U A(m, D(α))
<

1

2
ε.

Since N A(α, U A(m, D(α))) ∈ [0,1] for all m ∈N and A and again using that

14 
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U A(n, D(α)) ∩ U A(m, D(α)) = ∅, n �= m,

we have the following estimate for all n ≥ N2 and A:

N A
(
α, U∗

A(n, D(α))
) =

∑n
m=1 #{i ∈ U A(m, D(α)) : sc(i) ∈ A(α)}∑n

m=1 #U A(m, D(α)) 

=
∑n

m=1 N A(α, U A(m, D(α))) · #U A(m, D(α))∑n
m=1 #U A(m, D(α)) 

≤
∑N1−1

m=1 #U A(m, D(α)) + ∑n
m=N1

(μ(α) + 1
2ε) · #U A(m, D(α))∑n

m=1 #U A(m, D(α)) 

≤
∑N1−1

m=1 #U A(m, D(α)) ∑n
m=N1

#U A(m, D(α))
+

∑n
m=N1

(μ(α) + 1
2ε) · #U A(m, D(α))∑n

m=N1
#U A(m, D(α)) 

<
1

2
ε + μ(α) + 1

2
ε

= μ(α) + ε.

Similarly, we obtain

N A
(
α, U∗

A(n, D(α))
) ≥

∑n
m=N1

(μ(α) − 1
2ε) · #U A(m, D(α))∑n

m=1 #U A(m, D(α)) 

=
∑n

m=N1
(μ(α) − 1

2ε) · #U A(m, D(α))∑n
m=N1

#U A(m, D(α)) 
·
∑n

m=N1
#U A(m, D(α))∑n

m=1 #U A(m, D(α)) 

=
(
μ(α) − 1

2
ε
)

·
(

1 −
∑N1−1

m=1 #U A(m, D(α))∑n
m=1 #U A(m, D(α)) 

)

≥
(
μ(α) − 1

2
ε
)

·
(

1 − 1

2
ε
)

≥ μ(α) − (1 + μ(α))
1

2
ε

≥ μ(α) − ε.

This gives the result. �
The next result compares the number of indices in U∗

A(n, D(α)) to the total number of indices 
corresponding to digits in words up to depth n, which is d∗(n).

Lemma 3.4. Fix a K1 ∈R>1 . Let α ∈ A∗ and ε > 0. Then there is an N1 ∈N such that for all n ≥ N1 and all 
(L, K1)-tree sequences A ∈AN ,

#U A(n, D(α))

d(n) 
∈ (1 − ε,1]

and there is an N2 ∈N such that for all n ≥ N2 and all (L, K1)-tree sequences A ∈AN ,

#U∗
A(n, D(α))

d∗(n) 
∈ (1 − ε,1].

Proof. For any u ∈ A∗ it holds that |u| ≤ D(u). Hence, by (4), for any (L, K1)-tree sequence A and 
index i ∈N it holds that

|sc(i)| ≤ D(uc(i)) − D(pc(i)).
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Fix i ∈N and suppose that D(uc(i)) = n, |sc(i)| > D(α). Then i ∈ U A(n, D(α)), as

D(pc(i)) = D(uc(i)) − D(sc(i)) < D(uc(i)) − D(α).

In other words, at most D(α) digits ai of each word uc(i) in Ac with D(uc(i)) = n do not belong to 
U A(n, D(α)). This yields

#U A(n, D(α)) ≥ d(n) − D(α)n!.
Let ε > 0. Then by (15) there exists an N1 ∈N such that for all n ≥ N1 and any (L, K1)-tree sequence 
A,

1 ≥ #U A(n, D(α))

d(n) 
≥ d(n) − D(α)n!

d(n) 
= 1 − D(α)

n! 
d(n)

> 1 − ε.

Similarly, from Lemma 3.2 we obtain an N2 ∈ N such that for all n ≥ N2 and any (L, K1)-tree se
quence A,

1 ≥ #U∗
A(n, D(α))

d∗(n) 
≥ d∗(n) − D(α)

∑n
m=1 m!

d∗(n) 
> 1 − ε. �

With this lemma we can extend the result from Proposition 3.2 from U∗
A(n, D(α)) to all of �1,d∗(n)�.

Proposition 3.3. Fix a K1 ∈R>1 . Let α ∈A∗ and ε > 0. Then there is an N1 ∈N such that for all n ≥ N1 and 
(L, K1)-tree sequences A = (ai)i∈N ∈AN ,

|N A(α, �d∗(n − 1) + 1,d∗(n)�) − μ(α)| < ε

and there is an N2 ∈N such that for all n ≥ N2 and (L, K1)-tree sequences A = (ai)i∈N ∈AN ,

|N A(α, �1,d∗(n)�) − μ(α)| < ε.

Proof. Write |α| = k. Then

N A(α, �d∗(n − 1) + 1,d∗(n)�)
= 

#{i ∈ U A(n, D(α)) : ai = α1, . . . ,ai+k−1 = αk}
d(n) 

+ #{i ∈ �d∗(n − 1) + 1,d∗(n)� \ U A(n, D(α)) : ai = α1, . . . ,ai+k−1 = αk}
d(n) 

= 
N A(α, U A(n, D(α))) · #U A(n, D(α))

d(n) 

+ N A(α, �d∗(n − 1) + 1,d∗(n)� \ U A(n, D(α))) · (d(n) − #U A(n, D(α)))

d(n) 
.

Let ε > 0. By Lemma 3.3 and Lemma 3.4 there is an N1 ∈ N such that for each n ≥ N1 and each 
(L, K1)-tree sequence A,

1 − ε

3 
<

#U A(n, D(α))

d(n) 
≤ 1

and

|N A(α, U A(n, D(α))) − μ(α)| < ε

3 
.

Then
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|N A(α, �d∗(n − 1) + 1,d∗(n)�) − μ(α)|
≤ |N A(α, U A(n, D(α))) − μ(α)|#U A(n, D(α))

d(n) 
+ μ(α)

∣∣∣∣#U A(n, D(α))

d(n) 
− 1

∣∣∣∣
+ N A(α, �d∗(n − 1) + 1,d∗(n)� \ U A(n, D(α))) · d(n) − #U A(n, D(α))

d(n) 

<
ε

3 
+ μ(α)

ε

3 
+ ε

3 
< ε.

Similarly,

N A(α, �1,d∗(n)�) = 
#{i ∈ U∗

A(n, D(α)) : ai = α1, . . . ,ai+k−1 = αk}
d∗(n) 

+ #{i ∈ �1,d∗(n)� \ U∗
A(n, D(α)) : ai = α1, . . . ,ai+k−1 = αk}

d∗(n) 

= 
N A(α, U∗

A(n, D(α))) · #U∗
A(n, D(α))

d∗(n) 

+ N A(α, �1,d∗(n)� \ U∗
A(n, D(α))) · (d∗(n) − #U∗

A(n, D(α)))

d∗(n) 
.

The result now follows as above from Lemma 3.4 and Proposition 3.2. �
Proposition 3.3 states that (L, K1)-tree sequences A ∈ AN have normality along the subsequence 

of indices (d∗(n))n∈N . The additional assumption (P3,K2 ) aims to control what happens for the inter
mediate indices i ∈ �d∗(n − 1) + 1,d∗(n)�. In the next section we prove that this is enough to obtain 
L-normal sequences.

3.3. L-normal sequences

Let A = (ai)i∈N ∈AN be an (L, K1, K2)-tree sequence for some K1 ∈R>1 and K2 ∈R>4 and with 
concatenation map c. The digits ai with indices i ∈ �d∗(n − 1) + 1,d∗(n)� correspond to all n! words 
uc(i) ∈ G(n) that appear in Ac . The assumption of property (P3,K2 ) regards a division of the indices in 
the interval �d∗(n − 1) + 1,d∗(n)� into n(n − 1) intervals of indices that each correspond to (n − 2)!
words from Ac . For any n ∈N≥3 and k ∈ �1,n(n − 1)� let

Ik
A(n) :=

{
i ∈N : c(i) ∈

� n−1 ∑
m=1

m! + 1 + (n − 2)!(k − 1),

n−1 ∑
m=1

m! + (n − 2)!k
	}

be the set of corresponding indices in A.

Proposition 3.4. Fix α ∈ A∗ and let A be an (L, K1, K2)-tree sequence. Then for all ε > 0 there is an N ∈N
such that for all n ≥ N and k ∈ �1,n(n − 1)�,

|N A(α, Ik
A(n)) − μ(α)| < ε.

Proof. For each n ∈N≥3 and k ∈ �1,n(n − 1)� consider the words

u∑n−1
m=1 m!+(k−1)(n−2)!+ j, j ∈ �1, (n − 2)!�.

Property (P3,K2 ) implies that the grandparents of these words satisfy (P2,K2 ). Therefore, we can 
construct an (L, K2)-tree sequence A′ = A′(n,k) ∈ AN for which the concatenation sequence A′

c′ =
(u′

j) j∈N has

17 
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u′∑n−3
m=1 m!+ j

= u−2∑n−1
m=1 m!+(k−1)(n−2)!+ j

, j ∈ �1, (n − 2)!�.
For the error margins this implies that e′

β = ek
β for each β ∈ G(n − 2). Since for each word u we have 

|u−2| ≤ |u| ≤ |u−2| + 2, it then holds that

d′(n − 2) ≤ #Ik
A(n) ≤ d′(n − 2) + (n − 2)! · 2, (16)

where d′(n − 2) = ∑
j:u′

j∈G(n−2) |u′
j |.

We now compare the possible occurrences of the word α in the string

u′∑n−3
m=1 m!+1

. . . u′∑n−2
m=1 m! (17)

to those in the string

u∑n−1
m=1 m!+(k−1)(n−2)!+1 . . . u∑n−1

m=1 m!+k(n−2)!. (18)

Changing a word u′∑n−3
m=1 m!+ j

to the corresponding word u∑n−1
m=1 m!+(k−1)(n−2)!+ j amounts to changing 

or adding at most two digits. Note that a change or addition of a single digit of the sequence A′ in 
a given position i∗ , say, has an effect on the number of occurrence of the word α ∈ A′ only in the 
range of indices �i∗ − |α| + 1, i∗�. Hence, the change from (17) to (18) can result in a change in at 
most 2|α| + 2 occurrences of the word α. Since Ik

A(n) contains digits belonging to precisely (n − 2)!
words, we obtain

|N A(α, Ik
A(n))#Ik

A(n)− N A′(α, �(d′)∗(n − 3)+ 1, (d′)∗(n − 2)�)d′(n − 2)| ≤ (n − 2)!(2|α| + 2).

Combining this with (16) gives

N A(α, Ik
A(n)) ≤ N A′(α, �(d′)∗(n − 3) + 1, (d′)∗(n − 2)�) + (2|α| + 2)

(n − 2)! 
d′(n − 2)

and

N A(α, Ik
A(n))

≥ N A′(α, �(d′)∗(n − 3) + 1, (d′)∗(n − 2)�)
(

1 

1 + 2 (n−2)! 
d′(n−2)

)
− (2|α| + 2)

(n−2)! 
d′(n−2)

1 + 2 (n−2)! 
d′(n−2)

. 

The result now follows by applying (15) and Proposition 3.3 to the sequence A′ . �
Proposition 3.4 gives the normality of (L, K1, K2)-tree sequences A along the subsequence of 

indices marked by the endpoints of the sets Ik
A(n). To prove the L-normality of (L, K1, K2)-tree se

quences it remains to consider the indices that fall within the sets Ik
A(n). This is done in the next 

theorem.

Theorem 3.1. Let A be an (L, K1, K2)-tree sequence. Then for any α ∈A∗ ,

lim 
M→∞ N A(α, �1, M�) = μ(α).

Proof. For any integer M ≥ d∗(6) there are unique integers nM ∈ N and kM ∈ �1,nM(nM − 1)� such 
that M ∈ IkM

A (nM). Write

R M = M − d∗(nM − 1) −
kM−1∑
k=1 

#Ik
A(nM) ∈N.

18 
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Then

N A(α, �1, M�) = 
N A(α, �1,d∗(nM − 1)�)d∗(nM − 1)

M
+

kM−1∑
k=1 

N A(α, Ik
A(nM))#Ik

A(nM)

M

+ N A(α, �M − R M + 1, M�)R M

M
.

We begin by showing that limM→∞ R M
M = 0, so that we can disregard the last term. As in the proof of 

Proposition 3.4, using (P3,K2 ) we find an (L, K2)-tree sequence A′ = A′(nM ,kM) ∈ AN for which the 
concatenation sequence A′

c′ = (u′
j) j∈N has

u′∑nM −3
m=1 m!+ j

= u−2∑nM −1
m=1 m!+(kM−1)(nM−2)!+ j

, j ∈ �1, (nM − 2)!�.
Note that R M ≤ #IkM

A (nM). If we again let d′(n − 2) = ∑
j:u′

j∈G(n−2) |u′
j| for each n ∈ N , then R M ∈

�1,d′(nM − 2) + 2(nM − 2)!�. Recall the definition of the increasing sequence (Δn)n∈N from the proof 
of Lemma 2.2. By (14) we have for any n ∈N≥3 that

d′(n − 2) 
d∗(n − 1)

≤ d′(n − 2)

d(n − 1) 
≤ Δn−2 · (n − 2)! + (n − 2)K22n−2

Δn−1 · (n − 1)! − (n − 1)K12n−1

≤
Δn−2
n−1 + K22n−2

(n−2)! 
Δn−1 − K12n−1

(n−2)! 

≤
1 

n−1 + K22n−2

Δn−2(n−2)!
1 − K12n−1

Δn−2(n−2)!
.

By Lemma 2.2,

lim 
n→∞

1 
n−1 + K22n−2

Δn−2(n−2)!
1 − K12n−1

Δn−2(n−2)!
= 0.

As limM→∞ nM = ∞, by (15) we also have

lim 
M→∞

(nM − 2)! 
d(nM − 2)

= 0.

Clearly M > d∗(NM − 1) > d(nM − 2), so that we can write

0 ≤ R M

M
≤ d′(nM − 2) 

d∗(NM − 1)
+ 2(nM − 2)!

d(nM − 2) 
. (19)

This shows that

lim 
M→∞

R M

M
= 0, (20)

yielding

lim 
M→∞

N A(α, �M − R M + 1, M�)R M

M
= 0.

Let ε > 0. Combining Proposition 3.3, Proposition 3.4 and (20) we know that there exists an N ∈ N
such that for all M ∈N with nM ≥ N it holds that
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N A(α, �1,d∗(nM − 1)�)d∗(nM − 1)

M
+

kM−1∑
k=1 

N A(α, Ik
A(nM))#Ik

A(nM)

M

≤ (μ(α) + ε)
d∗(nM − 1) + ∑kM−1

k=1 #Ik
A(nM)

M
≤ μ(α) + ε

and

N A(α, �1,d∗(nM − 1)�)d∗(nM − 1)

M
+

kM−1∑
k=1 

N A(α, Ik
A(nM))#Ik

A(nM)

M
≥ (μ(α) − ε)(1 − ε).

This yields the desired result. �
Let us give two examples of constructions of (L, K1, K2)-tree sequences, one for the Lüroth proba

bility sequence L = ( 1 
d(d+1)

)d∈N and one for the dyadic probability sequence L = ( 1 
2d )d∈N .

Example 3.2. Let L = ( 1 
d(d+1)

)d∈N . We describe the construction of an (L,1 + ε,4 + ε)-tree sequence 
up to the words of depth 4.

Depth 1: According to (P1) we add one word of depth 1. As G(1) = {1}, this leaves no choice and we 
put a1 = 1 = u1. For the concatenation sequence c this implies that m(1) = M(1) = 1, so c(1) = 1.
Depth 2: Condition (P1) tells us that we add two words of depth 2. We have

p1 = 1/2 
1 − 0

= 1

2
= 1 − 1

2
= q1.

Since G(2) = {11,2} and W (11) = 1
2 = W (2), it is natural to add both words once. Note however that 

(P2,1+ε) would also allow either word to be used twice. We choose to put u2 = 11 and u3 = 2. This 
yields a2 = a3 = 1 and a4 = 2 and c(2) = c(3) = 2 and c(4) = 3.
Depth 3: By condition (P1) we have to add six words from the set G(3) = {111,12,21,3}. Since 
p2 = 1/6 

1−1/2 = 1
3 and q2 = 2

3 , the words have weights

W (111) =
(1

2

)2 = 1

4
, W (12) =

(1

2

)2 = 1

4
, W (21) = 1

2
· 1

3
= 1

6
, W (3) = 1

2
· 2

3
= 1

3
.

For ε < 1
2 , (P2,1+ε) forces us to add 111 and 12 either once or twice. It is again natural to 21 once 

and 3 twice, but as in the previous step (P2,1+ε) allows us to give or take at least one. As we still 
do not have to take (P3,4+ε) into account, we can choose e.g., u4 = 111, u5 = 111, u6 = 12, u7 = 21, 
u8 = 3, u9 = 3. This gives

a5 · · ·a16 = 111 111 12 21 3 3.

Hence, c(5) = c(6) = c(7) = 4, c(8) = c(9) = c(10) = 5, c(11) = c(12) = 6, c(13) = c(14) = 7, c(15) = 8, 
c(16) = 9.
Depth 4: Starting with condition (P1), we add 24 words from G(4) = {1111, 112, 121, 13, 211, 22, 31, 4}. 
We have p3 = 1/12 

1−(1/2+1/6)
= 1

4 and q3 = 3
4 . Therefore, the weights are

W (1111) = 1
8 , W (112) = 1

8 , W (121) = 1 
12 , W (13) = 1

6 ,

W (211) = 1 
12 , W (22) = 1 

12 , W (31) = 1 
12 , W (4) = 1

4 .

Although (P2,1+ε) again leaves some room for variation, we choose to add the words 1111 and 112 
three times each, the words 121, 211, 22 and 31 twice each, the word 13 four times and the word 4 
six times. We now also have to consider (P3,4+ε). The words 1111, 112, 121 and 13 have grandparent 
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11 and the words 211, 22, 31 and 4 have grandparent 2. We divide the 24 words we will add up 
into twelve groups of two words each. In each of these groups, one word has to come from the 
set {1111,112,121,13} and one words has to come from the set {211,22,31,4}. We can take for 
example

u10 u11 u12 u13 u14 u14 u16 u17 u18 u19 u20 u21
1111 211 1111 211 1111 22 112 22 112 31 112 31

u22 u23 u24 u25 u26 u27 u28 u29 u30 u31 u32 u33
121 4 121 4 13 4 13 4 13 4 13 4,

which so far yields

A = 1 11 2 111 111 12 21 3 3 1111 211 1111 211 1111 22 112 22 112 31 112 31 121 4 121 4 13

4 13 4 13 4 13 4 · · · .

The growth rate in this construction may be summarized as follows: at every step n, we add 
n! words of length at most n. Within one step, words are repeated proportionally to their weight, 
yielding at most n! repetitions. So, at leach step we add fewer than n!n digits to A. The construction 
provided in [13, Section 5.3] also adds words to the sequence step by step, but words added in step n
all have length n. As in our construction, words are repeated in proportion to the desired occurrence 
rate, but their construction adds at least (n + 1)!2 · 
n2 · log(n)� words of length exactly n at every 
step, therefore producing a much larger number of digits per step. In particular this implies that in 
our construction higher digits occur earlier.

Example 3.3. We now let L = ( 1 
2d )d∈N , as in [7, Proposition 4.6 (iii)] and construct the initial part of 

an (L,1 + ε,4 + ε)-sequence. Observe that all labels pn,qn of the L-tree are equal to 1
2 . This leads to 

the following construction.

Depth 1 and 2: The labels of these depths are equal to those in the previous example, so we can 
choose again a1 = a2 = a3 = 1,a4 = 2 and c(1) = 1, c(2) = c(3) = 2, c(4) = 3.
Depth 3: We again have to add 6 words from the set G(3) = {111,12,21,3}. They now all have 
weights 1

4 , which implies (for small enough ε) that we add all words at least once and two words of 
choice twice. We choose to add 111 and 12 twice. As we again still do not have to take (P3,4+ε) into 
account, we can choose e.g., u4 = 111, u5 = 111, u6 = 12, u7 = 12, u8 = 21, u9 = 3. This gives

a5 · · ·a17 = 111 111 12 12 21 3.

Hence, c(5) = c(6) = c(7) = 4, c(8) = c(9) = c(10) = 5, c(11) = c(12) = 6, c(13) = c(14) = 7, c(15) =
c(16) = 8, c(17) = 9.
Depth 4: To conclude this example, we add 24 words from G(4) = {1111,112,121,13,211,22,31,4}. 
All weights are 1

8 so we add every word 3 times. Taking (P3,4+ε ) into account, we alternate between 
the first four words {1111,112,121,13} and the last four words {211,22,31,4}. An example is

u10 u11 u12 u13 u14 u14 u16 u17 u18 u19 u20 u21
1111 211 1111 211 1111 211 112 22 112 22 112 22

u22 u23 u24 u25 u26 u27 u28 u29 u30 u31 u32 u33
121 31 121 31 121 31 13 4 13 4 13 4,

which so far yields

A = 1 11 2 111 111 12 12 21 3 1111 211 1111 211 1111 211 112 22 112 22 112 22 121 31 121

31 121 31 13 4 13 4 13 4 · · · .
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Comparing this to the construction from [7] yields the following. In [7], words are added to the 
sequence according to their occurrence in the Kepler tree. The structures of the Kepler tree and the 
L-tree from our construction are similar in that they are both binary trees (with 2n nodes at depth n) 
and that summing the lengths of the words that appear at depth n gives a total of 2n−2(n + 1) digits. 
The difference is that in the construction from [7] each of these 2n words are added precisely once, 
while we add n! words of depth n. Hence, the construction from [7] proceeds through the tree at a 
much faster pace, leading to higher digits occurring sooner.

Remark 3.1. A natural question that might arise is why condition (P3,K2 ) takes into account the grand
parents and not the parents or grandparents of higher order. Condition (P3,K2 ) is used to control the 
R M digits in the proof of Theorem 3.1. The length of the n(n − 1) ``compartments'' Ik

A(n) is negligible 
compared to the total length M . A similar construction using the parents instead of the grandparents 
would result in only n compartments of larger length, which is not enough to bound R M . Therefore, 
using the parents instead of the grandparents would not work.

On the other hand, the proof of Theorem 3.1 would still work if we would consider higher order 
grandparents as this would result in more compartments of smaller length. In fact, for any 1 ≤ k < n, a 
division into n(n − 1) . . . (n −k) compartments with the division of the words governed by the (k + 1)
st order grandparents is possible. We decided on k = 1 as the most natural and simple choice. Using 
higher order grandparents would have the advantage of a more even spreading of words, generally 
yielding a more steady convergence of N A(α, �1, M�). It is even possible to let k > 1 vary from step 
to step, e.g. by taking k = n − 1, which was implicitly done in [3].

Remark 3.2. Looking at (P1), we see possibilities to reduce the size of each construction step. Con
sidering (13) and the proofs of Lemma 3.3 and Proposition 3.2, we conjecture that the number of 
words added each step could be reduced to 4n , which would also have implications for the proof 
of Lemma 3.2. Even with this much slower growth rate, some form of condition (P3,K2 ) will still be 
necessary. Perhaps a division into 4

n 
2 compartments of 4

n 
2 words would suffice.

4. Normal numbers

In this section we project the L-normal sequences obtained in the previous section to [0,1]n for 
some n ∈N to obtain normal numbers in certain number systems.

4.1. GLS expansions

GLS expansions are number representations of real numbers in [0,1]. We will introduce GLS 
expansions through the algorithm that produces them. Let I = {(	d, rd] : d ∈N} be a countable collec
tion of pairwise disjoint subintervals of [0,1], set Ld = rd −	d , d ∈N , for the lengths of these intervals 
and assume that I satisfies 0 < Ld+1 ≤ Ld < 1 for each d ∈ N and 

∑
d∈N Ld = 1. In other words, I

gives an interval partition of [0,1] and the intervals are ordered in size. Let (εd)d∈N ∈ {0,1}N . Then 
the GLS transformation associated to I and (εd)d∈N is the map T : [0,1] → [0,1] given by

T (x) =
{

(−1)εd (x−	d)+εd Ld
Ld

, if x ∈ (	d, rd], d ∈N,

0, if x �∈ ⋃
d≥1(	d, rd],

(21)

see Fig. 3. For x ∈ [0,1] for which T i(x) ∈ ⋃
d∈N(	d, rd] for each i ≥ 0 we can define two sequences 

by setting for each i ∈ N the i-th digit and sign, respectively, by ai = ai(x) = d and si = si(x) = εd if 
T i−1(x) ∈ (	d, rd], d ∈N . Then iterations of T give a GLS expansion of the form

x =
∑
n≥1 

(−1)
∑n−1

i=1 si (	an + sn Lan )

n−1∏
i=1 

Lai ,

22 
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0 L3 L1 L2 1

1

Fig. 3. The graph of a GLS transformation restricted to (	1, r1] ∪ (	2, r2] ∪ (	3, r3] with ε1 = ε2 = 1 and ε3 = 0. 

where we set (−1)
∑0

i=1 si = 1 and 
∏0

i=1 Lai = 1. (Note that there are at most countably many points 
x ∈ [0,1] that do not satisfy T i(x) ∈ ⋃

d∈N(	d, rd] for each i ≥ 0.) The Lüroth expansions and the 
Lüroth transformation T L are recovered by setting r1 = 1 and rn+1 = 	n = 1 

n+1 and εn = 0 for n ∈N .

Since an(x) = d if T n−1(x) ∈ (	d, rd], we expect the digit d to occur with frequency Ld . In fact, it 
is a consequence of the Birkhoff ergodic theorem, see [2], that this is indeed the case for Lebesgue 
almost all x ∈ [0,1]. Therefore, we call an x ∈ [0,1] GLS normal with respect to I and (εd)d∈N if for 
any k ≥ 1 and any digits α1, . . . ,αk ∈N it holds for the digit sequence (ai)i∈N of x that

lim 
n→∞

#{1 ≤ i ≤ n : ai = α1, . . . ,ai+k−1 = αk}
n 

=
n ∏

j=1

Lα j ,

or equivalently, if the digit sequence (ai)i∈N is an (Ld)d∈N -normal sequence. Note that the signs 
εd have no effect on the length of the interval (	d, rd] and thus also no effect on the value of Ld . 
Therefore, if we let A = (ai)i∈N be any (L, K1, K2)-tree sequence and set the sequence of signs (si)i∈N
to be the one corresponding to (εd)d∈N , so si = εai for each i ∈N , then the number

x =
∑
n≥1 

(−1)
∑n−1

i=1 si (	an + sn Lan )

n−1∏
i=1 

Lai

is GLS normal.

Example 4.1. We calculate the GLS normal numbers corresponding to Example 3.2 and Example 3.3. 
For simplicity, for both examples we take εd = 0 for all d ∈ N , and let I be such that the intervals 
are ordered from right to left in size.

For Example 3.2 this gives I = {( 1 
d+1 , 1

d ] : d ∈ N}, so that the projection of the sequence A =
1112111111122133 · · · from Example 3.2 will yield a Lüroth normal number. We obtain 	1 = 1

2 , 	2 =
1
3 , L1 = 1

2 and L2 = 1
6 . Therefore, the Lüroth normal number given by A is

x = 	1 + L1	1 + L2
1	1 + L3

1	2 + L3
1L2	1 + · · ·

= 1

2
+ 1 

22
+ 1 

23
+ 1 

23 · 3
+ 1 

23 · 6 · 2
+ · · · = 0.9374 . . . ,

where the last string of digits represents the decimal expansion of x.
For Example 3.3 we obtain I = {( 1 

2d , 1 
2d−1 ] : d ∈ N}. We now have 	1 = 1

2 , 	2 = 1
4 , L1 = 1

2 and 
L2 = 1

4 , which for the sequence A = 11121111111212213 · · · gives

x = 	1 + L1	1 + L2
1	1 + L3

1	2 + L3
1L2	1 + · · ·

= 1

2
+ 1 

22
+ 1 

23
+ 1 

23 · 4
+ 1 

23 · 4 · 2
+ · · · = 0.9373 . . . .
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4.2. Multidimensional GLS expansions

We can extend the number system from the previous section to higher dimensions. Fix some 
N ∈ N and for each 1 ≤ k ≤ N let Ik = {(	(k)

d , r(k)

d ] : d ∈ N} and (ε(k)

d )d∈N be as in Section 4.1. For 
each 1 ≤ k ≤ N let Tk be the GLS transformation for Ik and (ε(k)

d )d∈N as given in (21). We can define 
the map T̂ : [0,1]N → [0,1]N by setting

T̂ (x) = T̂ (x1, . . . , xN) = (Tk(xk))1≤k≤N .

Such maps T̂ are specific examples of Jablońksi maps as introduced in [9] and further analysed for 
their dynamical properties in e.g., [8,11].

Applications of T̂ simultaneously produce GLS expansions for the coordinates xk by iteration in the 
sense that for points x = (x1, . . . , xN ) such that T n

k (xk) ∈ ⋃
d∈N(	

(k)

d , r(k)

d ] for each 1 ≤ k ≤ N and all 
n ∈ N , iterations of T̂ assign to each xk a digit sequence (a(k)

i )k≥1 and a sign sequence (s(k)
i )k≥1 so 

that the point x is given by

x =
⎛
⎝∑

n≥1 
(−1)

∑n−1
i=1 s(k)

i (	
(k)
an + s(k)

n L(k)
an )

n−1∏
i=1 

L(k)
ai

⎞
⎠

1≤k≤N

,

where L(k)
ai

= r(k)
ai

− 	
(k)
ai

. Therefore, x is represented by the digit sequence (a(1)
i , . . . ,a(N)

i )i∈N ∈ (NN )N

and the sign sequence (s(1)
i , . . . , s(N)

i )i≥1 ∈ ({0,1}N )N . Assume there exists a bijection f : NN → N
that satisfies the following: if for i = (i1, . . . , iN), j = ( j1, . . . , jN) ∈NN it holds that

N∏
k=1

L(k)
ik

≥
N∏

k=1

L(k)
jk

,

then f (i) ≤ f ( j). Then let L = (Ld)d∈N be the positive probability sequence with Ld = ∏N
k=1 L(k)

dk
, 

where (d1, . . . ,dN ) = f −1(d).
The map T̂ is invariant and ergodic with respect to the N-dimensional Lebesgue measure on 

[0,1]N . Therefore, the Birkhoff ergodic theorem implies that for each α1, . . . ,αk ∈ N and Lebesgue 
almost all x ∈ [0,1]N we have

lim 
n→∞

#{1 ≤ i ≤ n : f (a(1)
i , . . . ,a(N)

i ) = α1, . . . , f (a(1)

i+k−1, . . . ,a(N)

i+k−1) = αk}
n 

=
k ∏

j=1

Lα j . (22)

Hence, it would be natural to call an x ∈ [0,1]N normal in this multidimensional GLS number system 
if (22) holds for all α1, . . . ,αk ∈N , k ≥ 1. Let A = (ai)i∈N be any (L, K1, K2)-tree sequence. For each 
i ∈N let (a(1)

i , . . . ,a(N)
i ) = f −1(ai) and let the sign sequence (s(1)

i , . . . , s(N)
i )i∈N be given by s(k)

i = ε
(k)

a(k)
i

, 

1 ≤ k ≤ N , i ≥ 1. Then the point

x =
⎛
⎝∑

n≥1 
(−1)

∑n−1
i=1 s(k)

i (	
(k)
an + s(k)

n L(k)
an )

n−1∏
i=1 

L(k)
ai

⎞
⎠

1≤k≤N

is normal according to this definition.
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