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Chapter 1 

 

Introduction to lipid nanoparticle technology for mRNA delivery: bridging 

vaccine applications with fundamental insights into nano-bio interactions  
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1. The concept of mRNA-based medicine 

Nucleic acids are biomacromolecules essential for life that play crucial roles in the evolution 

and health of living organisms. According to the central dogma of molecular biology, nucleic 

acids—deoxyribonucleic acid (DNA) and ribonucleic acid (RNA)—carry and regulate 

expression of genetic information, which is read in cells to produce RNAs (transcription) and 

proteins (translation) [1–3]. (Figure 1a). In eukaryotic cells, DNA is first transcribed into a 

messenger (m)RNA precursor, which is then spliced to generate a mature mRNA. This mature 

mRNA transcript is subsequently translated by ribosomes to produce functional proteins 

responsible for nearly every task of cellular life [4,5]. The better understanding of the 

mechanisms involved in the flow of genetic information within biological systems has opened 

new avenues in modern medicine [6–8]. In this scenario, nucleic acid-based therapeutics have 

emerged as a new class of drugs that hold promise for combating multiple diseases. They are 

generally divided into two classes: small nucleic acid drugs and mRNA-based drugs; Figure 

1b-e shows their mechanisms of action. The former includes small antisense oligonucleotides 

(ASOs), siRNA (small interfering RNA), shRNA (short hairpin RNA), miRNA (microRNA), 

which are engineered to target specific (abnormal) genes and modulate their expression or 

function [6,9,10]. On the other hand, mRNA-based drugs rely on the production of desired 

proteins using the body’s natural protein synthesis machinery [11,12]. Unlike DNA that needs 

to cross the nuclear membrane, mRNA only needs to reach the cytoplasm [4], and it is unable 

to integrate into the host genome due to its natural degradation during translation; as a result, 

the protein expression is intrinsically transient avoiding unwanted long-term effects, desirable 

in many gene therapy approaches [3,13]. 

After the first demonstration in vivo of the mRNA-based drug efficacy in which naked 

mRNAs were intramuscularly injected into mice to induce the expression of functional proteins 

[14], the field of mRNA-based medicine has rapidly expanded, prompting the development of 

multiple therapeutic modalities. These mainly include: a) prophylactic and therapeutic 

vaccines, where synthetic mRNAs designed to encode specific protein antigens are 

administered to trigger humoral and cellular immune responses against pathogens in patients, 

in order to prevent or treat diseases [13,15,16]; b) protein replacement therapies, where mRNAs 

are delivered to compensate desired proteins inside the target cells or to supply therapeutic 

proteins [17–19]; c) cancer immunotherapies, where mRNAs encoding either tumor-associated 

antigens, tumor-specific antigens, or immunostimulatory factors, such as costimulatory ligands, 
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receptors, enzymes, or cytokines, enhance or suppress the host immune response against cancer 

cells [20–23]; d) cell-based therapies, where cells of interest are transfected ex vivo with 

synthetic mRNAs to induce specific phenotypic or functional changes, and subsequently 

administered to the patient. For example, chimeric antigen receptor T (CAR-T) cells and 

chimeric antigen receptor-macrophage (CAR-M) cells can be produced ex vivo using synthetic 

mRNAs [24,25]; and e) gene editing, which involves the use of mRNAs to deliver gene-editing 

tools, particularly, the clustered regularly interspaced short palindromic repeats associated 

nucleases (CRISPR-Cas), allowing for highly precise and efficient targeting of defined DNA 

regions of the genome (Figure 1e) [26,27]. CRISPR-Cas gene editing can be achieved using 

mRNAs encoding Cas proteins and guide (g)RNA sequences [28]. 

 

Figure 1. Classification and mechanisms of nucleic acid-based therapeutics. a Schematic 

representation of central dogma of molecular biology that illustrates the flow of genetic 

information from DNA to RNA to protein, providing the conceptual framework for nucleic 

acid-based therapeutics [1,2]. b Antisense oligonucleotides (ASOs) regulate gene expression 
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by blocking translation, inducing RNase H-mediated degradation, or modulating pre-mRNA 

splicing [8,9]. c RNA interference strategies employ double-stranded RNA precursors—

including siRNAs, shRNAs, and miRNAs—which are processed and loaded into RISC to 

mediate sequence-specific mRNA cleavage, degradation, and/or translational repression 

[29,30]. d mRNA act as transient templates for protein expression, enabling applications such 

as vaccination, protein replacement, and cell reprogramming [18,20,21]. e CRISPR-Cas 

systems mediate targeted genome editing by guiding the Cas nuclease to specific DNA 

sequences through RNA-DNA base pairing, leading to precise cleavage and enabling gene 

disruption, correction, or insertion [31,32]. 

 

2. Design of mRNA-based drugs 

mRNA-based drugs are typically synthesized in cell-free systems via in vitro transcription 

(IVT), from a DNA template, and they are designed to be structurally like natural mRNAs [33]. 

Eukaryotic mRNA consists of a single-stranded RNA molecule built from nucleotides, which 

are linked together by phosphodiester bonds to form a backbone with a repeating pattern of 

sugar-phosphate groups—each nucleotide containing a ribose sugar, a phosphate group, and a 

nitrogenous base: adenine (A), guanine (G), cytosine (c), or uracil (U) (figure 2a) [34]. Mature 

mRNA has a tripartite structure consisting of an open reading frame (protein-coding sequence 

that gets translated into the desired protein) flanked by two untranslated regions (UTRs) at both 

the 5’ and 3’ ends (Figure 2b) [35]. The 5’ end is capped with a modified 7-methyl-guanosine 

(m7G) residue, and the 3’ end of mRNA is terminated with a poly(A) tail [34]. However, the 

development of mRNA-based drugs has not been straightforward. Unmodified mRNA is highly 

unstable under physiological conditions, and it is quickly degraded by extracellular and 

intracellular ribonucleases, which in turn leads to poor pharmacokinetics and biodistribution 

[15,21]. Furthermore, the large, negatively charged size of mRNA molecules makes cellular 

internalization very inefficient [5,19]. Lastly, exogenously delivered, unmodified IVT mRNAs 

stimulate the activation of various Toll-like receptors and/or cytoplasmic receptors e.g., RIG-I, 

PKR, and MDA5, which results in the activation of innate immune pathways that stall the 

cellular translational machinery, accelerate mRNA degradation and prevent effective protein 

production [36,37]. 
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Figure 2. Optimization of mRNA structure and delivery strategies. a Chemical composition of 

mRNA, consisting of a ribose-phosphate backbone and the four nucleobases adenine (A), 

cytosine (C), guanine (G), and uracil (U), linked through phosphodiester bonds, with the ribose 

2’-hydroxyl group distinguishing RNA from DNA [17,35]. b General architecture of 

therapeutic mRNA, including the 5’ cap, untranslated regions (UTRs), open reading frame 

(ORF), and poly(A) tail; chemical modifications, such as incorporation of N1-

methylpseudouridine (m1ψ), are introduced to enhance stability, reduce immunogenicity, and 

improve translational efficiency [33,38,39]. c Physical delivery approaches, including 

electroporation, sonoporation, and gene gun technology, enable direct introduction of mRNA 

but are largely restricted to localized or ex vivo applications [40]. d Viral vector-based systems 

allow efficient gene transfer but remain limited by immunogenicity, restricted payload capacity, 

and manufacturing complexity. e Nanoparticle-based platforms, most notably lipid 

nanoparticles (LNPs), are the predominant strategy for systemic delivery, offering protection 

of mRNA cargo, biocompatibility, and tunable targeting properties [41,42]. 
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2.1. mRNA modifications for optimal therapeutic performance 

Chemical modifications of the phosphate backbone, ribose sugar, and nucleobase in the 

mRNA components, the 5’ cap, 5’ and 3’ UTRs, open reading frame and poly(A) tail, have 

helped prevent exonuclease degradation and enhance ribosomal catalysis, while reducing 

recognition by immune sensors, leading to an enhanced mRNA stability and translation 

efficiency [43]. These modifications are carried out during various stages of the IVT reaction 

[44]. In this regard, Cap analogs—modified nucleotides used to mimic the natural 5’ cap 

structure—not only protect mRNA from 5’ to 3’ exoribonucleases and increase protein 

synthesis rate but also increases capping efficiency that improves the mRNA production yield 

[17]. Capping technologies such as anti-reverse cap analog (ARCA) and CleanCap® enable 

synthesis of mRNAs with 5’-cap1 or 5’-cap2 structures, known to increase the half-life of 

mRNA-based drugs [38,45,46]. The 3′ and 5′ UTRs can also be engineered for the target cell 

of interest, thereby improving translation efficiency and tissue-specificity [43,47]. On the other 

hand, the poly(A) tail at the 3’ end of mRNA is engineered to act as a protective buffer against 

degradation by 3’-5’ exonucleases in a length-dependent manner; a poly(A) tail length of 100-

300 nucleotides has been shown to be optimal for balancing mRNA stability and translation 

efficiency [12,17]. Nucleotide modifications of mRNA constructs can also reduce 

immunogenicity and increase translation. For example, substituting uridine with pseudouridine 

(ψ) or its methylated derivative N1-methyl-pseudouridine (m1ψ) enhances base stacking and 

raises the melting point, thereby improving mRNA stability, as well as it induces changes in 

the secondary structure of mRNA which correlated with high translation yields, while 

minimizing cellular recognition by the innate immune system [39,48]. 

2.2. mRNA delivery systems 

To achieve the desired biological effect, mRNAs must be delivered to specific target cells 

and translated efficiently to produce therapeutic levels of the protein of interest, and chemical 

modifications to mRNA are not yet sufficiently developed to overcome these obstacles [49,50]. 

To this end, several approaches are being considered for mRNA delivery, in particular, 

electroporation methods, viral vectors, and nano-sized delivery systems have proven to be the 

most promising mRNA delivery strategies (Figure 2c-e) [7,26,51]. Electroporation involves the 

application of voltage pulses to generate an electrical field that creates temporary pores in the 

cell membrane, which allows the mRNA to enter [52,53]. However, irreversible disruption of 

cell membrane and the loss of intracellular components compromise cell viability and 
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subsequent translation activity [26,53]. Viral vectors, particularly adeno-associated viruses 

(AAVs), can efficiently deliver mRNA into cells; nevertheless, issues such as immunogenicity, 

potential toxicity, insertional mutagenesis, limited loading capacity, and complex 

manufacturing processes have so far limited their clinical approval [40,54]. On the other hand, 

with the application of nanotechnology in medicine (i.e. nanomedicine), a variety of materials 

have been developed for mRNA delivery, including lipids, polymers, carbohydrates, peptides 

and proteins, and inorganic compounds (Figure 2e) [41,42,55–57]. Nanoparticle-based delivery 

systems have the potential to pass through biological barriers, improve mRNA stability in vivo, 

prolong mRNA circulation time, deliver mRNA to its target site and release it into the cytosol 

to be translated, and minimize side-effects [7,42]. Nanoparticle-mediated mRNA delivery to 

target tissues is significantly influenced by the physicochemical properties of nanocarriers, such 

as composition, size, shape, surface charge, surface functionalization, 

hydrophobicity/hydrophilicity, as well as their interaction with serum proteins and cell surface 

receptors [56,57]. However, targeted delivery and efficient endosomal escape remain key 

bottlenecks in the field of mRNA therapeutics, reinforcing the need for more effective mRNA 

delivery platforms [49,58,59]. 

3. Lipid nanoparticles for mRNA delivery 

Lipid nanoparticles (LNPs) are the most successful nanocarriers for the intracellular 

delivery of exogenous RNAs used for gene silencing (siRNA) [60,61] expression (mRNA) 

[62,63] and editing (CRISPR/Cas9) [64,65]. Three RNA-LNP products have already been 

approved for clinical use, including Onpattro®—the first siRNA-LNP drug for the treatment of 

polyneuropathies resulting from the hereditary transthyretin amyloidosis—and the two mRNA-

based vaccines against SARS-CoV-2 [60,66,67]. 
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Figure 3. Molecular properties of nucleic acid-based LNPs. a Individual lipid components and 

nucleic acid payloads used in LNPs and formation of the nanoparticle after microfluidic mixing. 

b Molecular structures of commonly used helper lipids. Phospholipids can vary on head group 

or chain length and saturation. c Structural lipids are usually sterols. Clinically-approved LNPs 

incorporate cholesterol; however, other sterol analogs have been observed to influence LNP 

morphology and mRNA transfection. d PEG-lipids providing structural and long-term stability 

on the LNP are also used to prolong circulation lifetimes or can be designed to dissociate for 

LNP interaction when in contact with biological fluids. e ICLs contain tertiary amine-based 

head groups that, when the pH is lower than their pKa, they become protonated and thus 

positively charged. Abbreviations: PC = phosphatidylcholine, PE = phosphatidylethanolamine, 

PG = phosphatidylglycerol. 
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3.1. LNP self-assembly 

LNPs are kinetically stable spherical particles exhibiting a diameter of ~100 nm and near-

neutral surface charge at physiological pH [66–68]. The “optimal” combination of the LNP 

components allows for efficient RNA entrapment and cytosolic delivery. Moreover, lipid 

components can individually dictate circulation lifetimes, biodistribution, cell selectivity, or 

transfection potency and therefore rational design of LNPs are of great importance for the 

outcome of each individual therapeutic. LNPs have a sophisticated nanostructure based on the 

synergistic effect of individual lipid components comprising the assembly (Figure 3) [69]. 

Components include “helper” lipids that provide structural integrity (i.e., phospholipids and 

PEG-lipids), hydrophobic “structural” lipids which reside in the LNP core (i.e., cholesterol) and 

ionizable cationic lipids (ICLs), that complex RNA and facilitate transfection. ICLs with an 

apparent pKa between 6-7, allow electrostatic interaction driven complexation with nucleic acid 

molecules in acidic pH, followed by LNP assembly [70].  

3.2. Nano-bio interactions 

LNPs—like other nanocarriers—encounter several biological barriers, which could 

potentially reduce their performance (Figure 4). Upon intravenous administration, LNPs must 

avoid immune detection, prevent non-specific interactions with proteins and non-target tissues, 

reach and internalize into the target cells, and finally facilitate endosomal escape for payload 

release in the cytosol [39,49,71]. Notably, it has been estimated that only a small percentage of 

the injected LNP dose reaches its target cells, and that less than 2% of the LNP-siRNA reaches 

the cytosol after endocytosis [72]. On this journey, LNPs interact with several biomolecules 

(serum proteins) and biological structures (cell membranes), which influence the ability of 

LNPs to deliver their payload into the target site. Such nano-bio interactions, which in turn 

determine biodistribution and LNP fate, are mainly determined by the physicochemical 

properties of LNPs, including lipid composition, particle size, surface charge, apparent pKa and 

morphology. 
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Figure 4. In vivo fate of mRNA-LNPs following systemic administration. After mRNA-LNPs 

reach the bloodstream, PEG-shedding can take place, which facilitates adsorption of serum 

proteins onto the LNP surface, which in turn could influence nanoparticle clearance and 

phagocytosis, but also enable receptor-mediated endocytosis in target cells. Once endocytosed, 

mRNA-LNPs are entrapped in early, recycling, and late endosomes where pH drops to acidic 

values (pH ∼6.0–6.5). At this stage, the ICLs will be positively charged in the acidic lumen of 

the endosomal compartments, and therefore electrostatically interact with anionic endosomal 

phospholipids. Abundant membrane phospholipids prefer planar membrane geometries. 

However, electrostatic interaction with the ICLs leads to the formation of conical-shaped lipid 

pairs inducing liquid-crystalline phases in the endosomal membrane (hexagonal phase HII). 

Such non-bilayer phases disrupt the endosome, resulting in subsequent cytosolic escape of the 

RNA payload. If would not escape the endosomes, mRNA-LNPs will either recycle back to the 

bloodstream via the recycling endosomes or will be degraded when endosomes fuse with 

lysosomes. Abbreviations: PL = phospholipid, ζ = membrane curvature, inv. hexagonal 

= inverse hexagonal. 
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3.2.1. LNP-serum protein interactions 

After administration, LNPs instantly interact with biological components, particularly, 

plasma proteins and mononuclear phagocytic cells (monocytes, macrophages and dendritic 

cells) responsible for clearance. PEGylation has demonstrated to prolong the blood circulation 

half-life of LNPs by offering a “stealth effect” that reduces interactions with immune system-

triggering proteins e.g., opsonins, which recognize and bind to macrophage and phagocyte 

receptors [73,74]. However, PEGylation, especially in high mol% content, also decreases 

particle-cell membrane interactions and hence reduces transfection potency [73,75]. 

Considering this, PEG-lipids can be designed to dissociate from the LNP surface upon contact 

with biological fluids, and exchange with plasma lipoproteins, a process termed PEG-lipid 

shedding [76]. The PEG-lipid dissociation rate from LNPs in blood circulation is highly 

determined by the PEG-lipid anchor length. C14 anchor PEG-lipids dissociate faster (>45%/h) 

than C18 anchor PEG-lipids (0.2%/h) [77]. After PEG-lipid shedding, serum proteins are 

rapidly adsorbed on the LNP surface leading to the formation of a protein layer called protein 

corona, which modifies the physicochemical features of RNA-LNPs and determines their 

biodistribution and cellular uptake [78,79]. The protein corona of several LNP formulations has 

been recently found to be rich in apolipoproteins (Apo), which are known to facilitate cellular 

uptake via receptor-mediated endocytosis [80,81]. For instance, the selective recognition and 

hepatic uptake of Onpattro® relies on the adsorption of ApoE, which binds to low-density 

lipoprotein receptor (LDLR), abundantly expressed on hepatocytes [60]. The strong interaction 

between the LNPs and N-terminal lipid-binding region of ApoE via tryptophan residues causes 

conformational changes in ApoE, which results in a high affinity to LDLRs [78]. 

3.2.2. Interactions of LNPs with tissues and cells  

Considering that nanoparticle physicochemical properties will profoundly influence 

(desired and undesired) nano-bio interactions, LNPs can be engineered for cell and tissue-

selective targeting and payload delivery (Table 1).  
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Table 1. A selection of reviewed LNPs which demonstrated enhanced tissue/cell targeting. 

Lipid Composition Lipid ratio 
Target 
tissue 

Target cell Payload Function Ref 

Dlin-MC3-DMA, Chol, 
DSPC, DMG-PEG2k 

50/38.5/10/1.5 Liver Hepatocytes siRNA 
Transthyretin silencing 
(treatment for 
amyloidosis) 

[60,82] 

ALC-0315, Chol, DSPC, 
DMG-PEG2k 

50/38.5/10/1.5 Liver HSCs siRNA 
ADAMTS13 silencing 
(biodistribution studies) 

[83] 

Dlin-MC3-DMA, Chol, 
DSPG, DMG-PEG2k 

50/38.5/10/1.5 Liver LSECs mRNA 
eGFP/mCherry 
expression 
(biodistribution studies) 

[84] 

246C10, Chol, DOPE, 
mannose-DSPE-PEG2k 

26.5/50.5/20/3 Liver LSECs mRNA 
mFLuc expression 
(biodistribution studies) 

[85] 

306O10, Chol, DOPE, 
DMPE-PEG2k 

22.5/40/35/2.5 Liver - mRNA 
mFLuc expression 
(biodistribution studies) 

[86] 

306O10, Chol, DOPS, 
DMPE-PEG2k 

22.5/40/35/2.5 Spleen - mRNA 
mFLuc expression 
(biodistribution studies) 

[86] 

306O10, Chol, DOTAP, 
DMPE-PEG2k 

22.5/40/35/2.5 Lung - mRNA 
mFLuc expression 
(biodistribution studies) 

[86] 

5A2-SC8, Chol, DOPE, 
DMG-PEG2k, 18PA (SORT) 

16.7/33.3/16.7/3.3/30 Spleen Macrophages mRNA 
mFLuc expression 
(biodistribution studies) 

[87,88] 

5A2-SC8, Chol, DOPE, 
DMG-PEG2K, DODAP 
(SORT) 

19.05/38.1/19.05/3.8/20 Liver Hepatocytes mRNA 
mFLuc expression 
(biodistribution studies) 

[87,88] 

5A2-SC8, DOPE, CHO, 
DMG-PEG2k, DOTAP 
(SORT) 

11.9/23.8/11.9/2.4/50 
11.9/11.9/23.8/2.4/50 

Lung 
Endothelial 
cells 

mRNA 
mFLuc expression 
(biodistribution studies) 

[87,88] 

PBA-Q76-O16B, NT1-O14B 
(NT-lipidoid) 

5/5 and 3/7a Brain Neuronal cells ASO 
Tau silencing 
(biodistribution studies) 

[89] 

BP-lipid, Chol, DOPE, 
DMPE-PEG2k 

35/46.5/16/2.5 
Bone 
Surface and 
marrow 

- mRNA 
mFLuc expression 
(biodistribution studies) 

[90] 

Abbreviations in the table that cannot be found in main text: ASO = antisense oligonucleotide. 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC); 

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE); 1,2-distearoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (DSPG); 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP); 1,2-dioleoyl-3-dimethylammonium-propane (DODAP). aw/w ratio.
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Systemic administration of Onpattro®, that exploits the ApoE-LDLR uptake pathway, 

resulted in liver accumulation and preferential uptake by hepatocytes [60]. In turn, by replacing 

the ICL Dlin-MC3-DMA for ALC-0315, a higher LNP accumulation in hepatic stellate cells 

(HSCs) was observed, likely due to differences in protein corona composition [83]. Moreover, 

hepatocyte targeting could be achieved by producing LNPs with sizes smaller than the 

fenestration diameter in the liver [91]. We also recently demonstrated that switching the LNP 

surface charge from neutral to anionic, leads to the preferential accumulation of Dlin-MC3-

DMA-based LNPs in the hepatic reticuloendothelial system (RES), mediated by the scavenger 

receptor Stabilin-2 [84]. In a similar fashion, Kim et al., explored the ability of LNPs to target 

liver sinusoidal endothelial cells (LSECs) by functionalizing their surface with mannose-based 

targeting ligands, resulting in selective mRNA delivery to LSECs [85]. 

LNPs can be also engineered to target non-liver tissues. by modulating the lipid composition 

and therefore modifying properties such as surface charge and apparent pKa of LNPs. For 

instance, the replacement of neutral phospholipids (DSPC or DOPE) with anionic (DSPG or 

18:PA) or cationic (DOTAP or EPC) alternatives, leads to redirection of mRNA delivery from 

liver to spleen and lungs, respectively (Figure 2a) [86,92]. These differences in organ targeting 

can be only achieved when the phospholipid concentration in LNPs is 40 mol % [86]. On the 

other hand, the Siegwart group recently developed a new strategy called selective organ 

targeting (SORT) wherein a fifth component (SORT molecules) is added to LNP formulations 

to selectively target extrahepatic tissues through passive targeting (Figure 2b) [87,93]. In this 

context, systemically administered LNPs containing SORT molecules such as cationic 

(DOTAP), anionic (18PA), and ionizable (DODAP) lipids enabled selective mRNA delivery 

and CRISPR-Cas gene editing to lung, spleen, and liver, respectively [88]. Particularly, 50%-

DOTAP-SORT-LNPs preferentially accumulated in lung endothelial cells, while 30%-18PA-

SORT-LNPs did in splenic macrophages. Mechanistically, tissue-specific targeting by SORT 

LNPs occurs via PEG-lipid shedding, protein corona formation—of which composition is 

determined by the SORT molecule employed—and subsequent interactions with receptors 

abundantly expressed in the target tissue [94]. The addition of SORT molecules modifies the 

apparent pKa of LNPs and further affects the LNP-serum protein interactions. Liver-targeting 

SORT LNPs exhibited an apparent pKa in the range of 6-7 and acquired an ApoE-rich protein 

corona. SORT LNPs with higher apparent pKa values (>9) had a protein corona rich in 

vitronectin, which mediated lung targeting due to the abundant expression of vitronectin 

receptors by lung endothelial cells. On the other hand, the protein corona displayed on spleen-
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targeting SORT LNPs (apparent pKa between 2 and 6) was found to be rich in β2-glycoprotein 

I, which bound to phosphatidyl serine-exposing blood cells, promoting LNP filtration from 

blood circulation to the spleen [88,94]. Instead of incorporating additional components into 

LNP formulations, synthesis of a new generation of ICLs containing targeting head groups has 

been also exploited to target different organs via active targeting. For instance, Xu and 

coworkers synthesized a series of neurotransmitter-based lipoids that can cross blood-brain 

barrier (BBB), leading to a higher accumulation of LNPs and subsequent payload release in 

various regions of the mouse brain, including cerebral cortex, hippocampus, and cerebellum 

[89]. A similar approach has been employed by the Mitchell group to deliver mRNA into the 

bone marrow microenvironment [90]. They designed ICLs containing bisphosphonates (BP) 

head groups that displayed a high affinity for hydroxyapatite and bone surfaces, which 

improved LNP accumulation and mRNA transfection in the bone microenvironment. 

3.2.3. Cellular uptake 

Receptor-mediated endocytosis is the main process by which RNA-LNPs are taken up by 

cells. Early studies showed that fluorescently-labeled siRNA-LNPs enter cells via clathrin-

mediated endocytosis [72], which was further corroborated for mRNA-LNPs [78]. This 

endocytic pathway is responsible for the cellular uptake of lipid- and cholesterol-enriched LDLs 

by binding to ApoE that targets them to LDLRs [95]. As mentioned above, the LNP-protein 

corona complex is enriched with ApoE after PEG-lipid shedding, to target LDLRs [72,96]. It 

has recently been shown that ApoE adsorption causes rearrangement of LNP components, 

affecting the LNP nanostructure, which is expected to affect the intracellular RNA delivery 

mediated by LNPs [78]. LNPs can also be functionalized with antibodies for cytosolic mRNA 

delivery via caveolae-mediated endocytosis in lung endothelial cells expressing caveolae-

associated proteins [97]. Importantly, studies using small molecules to block endocytic 

pathways revealed that macropinocytosis and phagocytosis also contribute to the cell 

internalization of some LNP formulations [72,98]. In fact, immunes cells commonly use 

phagocytosis to engulf and destroy exogenous particles, including LNPs [99,100]. Note that 

positively charged LNPs may be taken up by clathrin- or caveolae-mediated endocytosis after 

electrostatic interactions with anionic macromolecules, such as proteoglycans and 

glycosaminoglycans of cell membranes [99]. Finally, membrane fusion has been recently 

employed to deliver siRNA and mRNA in mouse and human cells via LNPs containing 

membrane-fusogenic cationic lipids or fusogenic coiled-coil peptides [100,101]. Direct fusion 
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with the cell membrane allows for payloads to be directly delivered to the cytosol, avoiding 

therefore endocytic routes from where LNPs need to escape [101]. 

3.2.4. Intracellular trafficking  

Following endocytosis, LNPs are entrapped in endosomes that, eventually, fuse with 

lysosomes [70,96]. In early endosomes, physiological pH (~7.4) decreases to acidic values 

(pH~6.5), and after further endosome maturation (late endosome) pH decreases even further 

(pH~6.0) before final fusion with lysosomes (pH~5.0) [102]. For cytosolic mRNA delivery, 

LNPs must help mRNA escape from the endosomes before lysosome formation which 

eventually leads to LNP and mRNA degradation (Figure 4). The pH-responsive property of 

ICLs is pivotal for endosomal escape. In the acidic endosomes, ICLs are positively charged and 

electrostatically interact with negatively charged phospholipids of the endosomal membrane, 

creating non-bilayer liquid crystalline phases (i.e., hexagonal HII phase), which facilitate 

endosomal disruption and escape of mRNA into the cytosol [68,70,103]. The optimal pKa of 

ICLs has been intensively studied and LNPs with excellent transfection potency display 

apparent pKa values between 6.0 and 6.7 [62,63,104]. However, not only the pKa, but also other 

structural properties affect the ability of ICLs to induce transfection. ICLs with an accentuated 

coned-shape molecular structure, such as the clinically-approved Dlin-MC3-DMA, ALC-0315 

and SM-102, have shown to destabilize the lipid bilayer of cell membrane [104–106].  

Moreover, a recent study showed that LNPs with cubic and hexagonal nanostructures fuse more 

easily with endosomal membranes than lamellar LNPs, resulting in higher endosomal escape 

rates [103]. In a similar fashion, induction of phase-separated blebs in the LNP nanostructure 

led to enhanced transfection efficiency [107]. 

Although the process of endosomal escape by LNP has not been completely resolved yet, 

pioneering studies reported that LNP-RNA escape occurs in the early and late endosomes 

[72,108,109]. Recruitment of cytosolic galectins by damaged endosomes in response to LNPs 

as well as colocalization of LNPs with endosomal trafficking proteins, such as EEA1, APPL1 

and Rab11, corroborate endosomal escape [72,99,110]. More recently, Zerial and coworkers 

showed that mRNA-LNPs displaying high transfection efficiency accumulated in early- and 

recycling-endosomes, where escape mainly occurred, probably because of their positive and 

negative membrane curvatures that favor interactions with ICLs, leading to membrane leakages 

[99]. In this respect, it is interesting that Patel et al. showed that by substituting cholesterol to 

25% and 50% 7a-hydroxycholesterol in mRNA-LNPs reduced the presence of recycling 
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endosomes and observed enhanced mRNA delivery to primary human T cells ex vivo by 1.8-

fold and 2.0-fold, respectively [111]. Moreover, other sterol analogues have been also observed 

to induce morphological changes in LNPs and increase mRNA potency, likely due to different 

endosomal trafficking and enhanced endosomal escape [112,113]. 
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4. Scopus and outline of the thesis 

Despite the clinical success of mRNA-LNP vaccines, major challenges remain in achieving 

efficient, targeted, and safe delivery for diverse therapeutic applications. Key limitations 

include incomplete understanding of how LNP composition influences biodistribution and 

immune responses, the poor predictability of in vitro potency for in vivo efficacy, and 

insufficient tools to visualize and track LNPs at high spatial resolution within cells. Addressing 

these knowledge gaps is essential for improving both the performance and the rational design 

of next-generation mRNA-LNP systems.  

This thesis explores the design, optimization, and mechanistic characterization of LNP 

systems for mRNA-based therapeutics and vaccines to address current limitations in delivery 

efficiency, targeting precision, and mechanistic understanding. It encompasses a critical 

overview of nucleic acid medicine and nanomedicine advances, with emphasis on LNP-

mediated delivery, followed by systematic experimental investigations into how LNP 

composition, particularly ionizable lipids, influences physicochemical properties, cellular 

uptake, protein expression, and immune responses. This thesis further explores novel 

immunization strategies, biodistribution, macrophage interactions, and intracellular trafficking, 

complemented by advanced imaging approaches for super-resolved visualization of LNP 

localization. Together, these studies integrate materials science, immunology, and cell biology 

to address key barriers to the clinical translation of mRNA-LNP technology.   

The main aim of this thesis is to advance the rational design and functional optimization of 

LNP-based mRNA delivery systems for therapeutic and vaccine applications. This involves 

systematically evaluating how variations in LNP composition, particularly ionizable lipids, 

affect delivery performance, immune activation, and biodistribution in both in vitro and in vivo 

contexts. Furthermore, it seeks to develop and validate innovative immunization strategies, 

such as heterologous prime–boost regimens with costimulatory mRNA-LNP boosters, to 

enhance antigen-specific cellular immunity. Another core objective is to establish state-of-the-

art analytical and imaging tools, including bioorthogonal click chemistry combined with 

expansion microscopy, for the precise visualization of LNPs within cells. Through these 

combined approaches, the thesis aims to generate both fundamental insights and practical 

methodologies to improve the efficacy, specificity, and translational potential of LNP-mRNA 

therapeutics and vaccines.  
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Chapter 1 provides a focused exploration of nucleic acid-based medicine modalities and 

recent advances of nanomedicine in delivering them to their target sites, particularly, LNPs as 

delivery systems mRNA-based therapeutics and vaccines.   

Chapter 2 explores the role of ionizable lipids in determining the effectiveness of LNPs for 

mRNA delivery and vaccination. Four ionizable lipids were tested for their impact on LNP 

properties, cellular uptake, protein expression, and immune response. The findings show that 

LNP composition significantly influences biological outcomes and that in vitro potency does 

not consistently predict in vivo efficacy.  

Chapter 3 presents a novel heterologous prime-boost vaccination regimen designed to 

maximize antigen-specific cellular immunity. The strategy involves primary immunization with 

LNPs encapsulating mRNA encoding a model antigen, followed one week later by a 

costimulatory booster to enhance T cell priming. The study further examines the application of 

CD40L-mRNA-LNPs as costimulatory boosters, assessing their potential to enhance antigen-

specific immune responses.  

Chapter 4 provides a comprehensive examination of the biological interactions between 

LNPs and macrophages, focusing on biodistribution, cellular uptake, and intracellular 

trafficking. Utilizing advanced analytical techniques in combination with both cell culture and 

zebrafish models, the chapter elucidates the key biological barriers that hinder efficient mRNA 

delivery to target cells.  

Chapter 5 describes an alternative approach for the intracellular visualization of LNPs using 

confocal microscopy. This strategy involves the chemical modification of an ionizable lipid to 

incorporate a clickable moiety, followed by its formulation into LNPs and subsequent delivery 

to cells. Once internalized, the clickable moiety is covalently conjugated with fluorescent dyes 

via bioorthogonal click chemistry, enabling its precise intracellular localization and tracking. 

When combined with expansion microscopy, this approach allows imaging of the labeled lipids 

at super-resolution, providing unprecedented spatial detail of their intracellular distribution. 
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