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ABSTRACT

Two event-related brain potential (ERP) components, the frontocentral feedback-related
negativity (FRN) and the posterior P300, are key in feedback processing. The FRN typi-
cally exhibits greater amplitude in response to negative and unexpected outcomes,
whereas the P300 is generally more pronounced for positive outcomes. In an influential ERP
study, Hajcak et al., (2005) manipulated outcome valence and expectancy in a guessing
task. They found the FRN was larger for negative outcomes regardless of expectancy, and
the P300 larger for unexpected outcomes regardless of valence. These findings challenged
the dominant Reinforcement Learning Theory of the ERN. We aimed to replicate these
results within the #EEGManyLabs project (Pavlov et al., 2021) across thirteen labs. Our
replication, including robustness tests, a PCA and Bayesian models, found that both FRN
and P300 were significantly modulated by outcome valence and expectancy: FRN ampli-
tudes (no-reward - reward) were largest for unexpected outcomes, and P300 amplitudes
were largest for reward outcomes. These results were consistent across different methods
and analyses. Although our findings only partially replicate the original study, they un-
derscore the complexity of feedback processing and demonstrate how aspects of Rein-
forcement Learning Theory may apply to the P300 component, reinforcing the need for
rigorous ERP research methodologies.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

EEG
ERP

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Performance monitoring is critical for detecting possible mis-
matches between goals and actions and, upon their detection,
triggering specific remedial processes (Ullsperger, Fischer,
Nigbur, & Endrass, 2014). This monitoring can be based either
on internal cues, such as response errors, or external ones,
such as unfavorable or negative evaluative feedback. A wealth
of studies has used electroencephalographic (EEG) methods in
humans and established the electrophysiological correlates of
performance monitoring when it is based on internal or
external cues (Ullsperger, Danielmeier, & Jocham, 2014).
Regarding the latter process, two distinct and successive event-
related potential (ERP) components have been identified as
reliable markers of performance monitoring: the feedback-
related negativity (FRN) (Gehring & Willoughby, 2002) and the
P300 (Courchesne, Hillyard, & Courchesne, 1977). The FRN is a
negative component recorded at fronto-central electrodes
along the midline (most pronounced at electrodes Fz and FCz)
that typically peaks around 250 msec after feedback onset. It is
larger (i.e., more negative-going) for negative than positive
feedback/outcomes (Miltner, Braun, & Coles, 1997). Following
the FRN, the P300 component, or more specifically the P3b
(Polich, 2007; Walentowska, Moors, Paul, & Pourtois, 2016), is
elicited around 300—500 msec following feedback onset, and
shows a more central/centro-parietal scalp distribution than

the FRN (electrodes Cz and Pz). The P300 is larger (i.e., more
positive-going) for unexpected/infrequent than expected/
frequent events (Johnson & Donchin, 1980; Polich, 2007). The
P300 is most often studied in the context of attention
(Herrmann & Knight, 2001) and might reflect motivational
processes involved during outcome and feedback processing
(Huvermann, Bellebaum, & Peterburs, 2021; San Martin, 2012).
Along these lines, these two ERP components likely reflect
different aspects of information processing and/or a progres-
sive accumulation of evidence of internal predictions endorsed
by the participant during performance monitoring (Ullsperger,
Danielmeier, & Jocham, 2014).

The influential Reinforcement Learning Theory of the ERN
(ERN-RL) put forward by Holroyd and Coles (2002) proposed
that the FRN and its response-based counterpart, the error-
related negativity (ERN, Gehring, Goss, Coles, Meyer, &
Donchin, 2018) is a scalp manifestation of neural activity
originating from the (dorsal) ACC, which itself receives direct
dopaminergic inputs from the basal ganglia, including the
striatum. In this model (Holroyd & Coles, 2002; see also
Nieuwenhuis, Holroyd, Mol, & Coles, 2004), the FRN reflects
the detection of a discrepancy between the actual and the
expected outcome (i.e., prediction error). Moreover, the FRN
appears to be somewhat monotonically related to the size of
the prediction error: the more unexpected an outcome is, the
larger is the FRN (Holroyd, Krigolson, Baker, Lee, & Gibson,
2009; Weismiiller & Bellebaum, 2016), although this
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relationship might not be linear (Williams, Hassall, Trska,
Holroyd, & Krigolson, 2017). Whether the feedback is utili-
tarian (e.g., incentive-related) or performance-related (e.g.,
informing about accuracy) is irrelevant, as this prediction
error captured by the FRN is equally large for unexpected
outcomes in both cases (Nieuwenhuis, 2004).

Using this framework, Hajcak, Holroyd, Moser, and
Simons (2005) performed an EEG study in which they
assessed amplitude changes of the FRN and P300 compo-
nents as a function of both valence and expectancy. They
used a guessing task (a.k.a. the Doors Task; see Holroyd et al.,
2003) in which participants had to guess which of four pre-
sented doors hid a small monetary prize (.10$ reward).
Importantly, prior to the choice, the probability to win (25%,
50%, or 75%) was announced to manipulate outcome expec-
tancy. Results showed that the FRN did not differentiate
between these three levels of expectancy, while the P300
increased as a function of unexpectedness [i.e., it was more
pronounced for unexpected (25%) than neutral (50%) out-
comes, and for neutral than expected (75%) outcomes]. These
findings were found across two experiments in which ex-
pectancy was manipulated trial-wise (N = 17) and block-wise
(N = 12), respectively.

In the following years, these findings received mixed sup-
port, and the extent to which the P300 is insensitive to valence
and the FRN is insensitive to expectancy remains contested.
Whereas various experiments and meta-analyses have
consistently shown that the P300 increases with outcome un-
expectedness (Stewardson & Sambrook, 2020), the effect of
outcome valence on the P300 remains unclear. Some studies
report similar results as Hajcak et al. (2005), i.e., no effect of
outcome valence on the P300 component (Pfabigan,
Alexopoulos, Bauer, & Sailer, 2011), yet others have shown ef-
fects in the opposite direction, i.e., positive outcomes elicited
either larger or smaller P300 amplitudes (Glazer, Kelley,
Pornpattananangkul, Mittal, & Nusslock, 2018; San Martin,
2012; Stewardson & Sambrook, 2020). To explain these dis-
crepancies, methodological differences such as imbalanced
stimulus frequencies, have sometimes been discussed
(Stewardson & Sambrook, 2020). In comparison, the observed
insensitivity of the FRN to expectancy has gained much more
attention as this observation was at odds with the predictions
of the ERN-RL theory (Holroyd & Coles, 2002; Walsh &
Anderson, 2012) and inconsistent with previous empirical ob-
servations (Holroyd et al., 2003).

To reconcile the divergent findings, Hajcak et al. (2005)
suggested that this signed prediction error effect conferred
to the FRN was observed using trial-and-error learning
tasks, as opposed to guessing tasks. Consistent with this
interpretation, later ERP studies using learning-based tasks
reported modulations of the FRN by expectancy (e.g.,
Ferdinand, Mecklinger, Kray, & Gehring, 2012; Gu et al., 2021,
Holroyd et al., 2009; Warren & Holroyd, 2012), while expec-
tancy modulations were only rarely found in guessing tasks
(Gheza, Paul, & Pourtois, 2018; HajiHosseini, Rodriguez-
Fornells, & Marco-Pallarés, 2012). The close coupling of
choices, expectations, and the following outcomes could be
at the core of this discrepancy (Hajcak, Moser, Holroyd, &
Simons, 2007). Thus, while this finding for the FRN was
surprising at first, subsequent studies and some meta-

analyses confirmed that insensitivity (or lower sensitivity)
of the FRN to expectancy could be common in contexts in
which learning remains inherently limited, such as in
guessing tasks (e.g., Guthrie, 1942; Sambrook, Roser, &
Goslin, 2012).

This original study has engendered a large amount of ERP
studies and theoretical models, which have often used similar
guessing tasks, and characterized the electrophysiological
correlates of reward processing during performance moni-
toring in various contexts and situations (see Glazer et al,,
2018; San Martin, 2012; Walsh & Anderson, 2012). Moreover,
following the publication of this study, several methodological
and theoretical refinements have been proposed to explore
reward-based feedback processing at the FRN level. Chief
amongst these developments has been the recognition that
variation in the FRN signal may be the product of a super-
imposed positive-going deflection, a so-called Reward Posi-
tivity (RewP; see Proudfit, 2015). When conceptualizing
feedback-related ERPs as the difference between positive
and negative outcomes, the component labels are inter-
changeable as this new perspective affects only the direction
of the effects (i.e., for unexpected outcomes the component is
more positive or more negative) (Krigolson, 2018; Proudfit,
2015). However, when looking at the condition-specific ERPs,
this new perspective affects the sign of the prediction error. If
the response to negative, “worse-than-expected”, outcomes
drives the effects, the FRN/RewP captures a negative predic-
tion error. If the response to positive, “better-than-expected”,
outcomes drives the effects, the FRN/RewP captures a positive
prediction error. While many attempts have been made to
disentangle these different responses (Foti, Weinberg, Dien, &
Hajcak, 2011; Gable, Paul, Pourtois, & Burgdorf, 2021; Gheza
et al., 2018), the FRN/RewP probably captures both due to the
underlying frequency responses (Bernat, Nelson, & Baskin-
Sommers, 2015; Hoy, Steiner, & Knight, 2021). Nevertheless,
this paradigm shift did not only move the focus towards
positive (as opposed to negative) outcomes, but also contrib-
uted to important methodological discussions about how to
best measure this early ERP component following feedback
onset (Klawohn, Meyer, Weinberg, & Hajcak, 2020). Hence, it
appears important to investigate if the sensitivity to expect-
edness is driven by the response to positive or negative
outcomes.

The results of this study sparked numerous conceptual
replications on the nature of the FRN/RewP and the P300
component across different tasks, motivational contexts, and
in clinical and non-clinical populations. To date, the work has
been cited over 620 times (Google Scholar in November 2024).
Yet, despite this intense focus, there has been no direct
replication of the original procedure, measures, and analyses.
The goal of the present study was to undertake a multi-lab
replication of Hajcak et al. (2005), using a trial-by-trial
manipulation of both expectancy and valence. We intended
to complement this direct replication with modern pre-
processing and analytical approaches to test the robustness of
the reported effects. Based on Hajcak et al. (2005), we hy-
pothesized that:

1. The FRN/RewP will not vary with expectancy. More spe-
cifically, the amplitude of the FRN/RewP will not be
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statistically different for expected, neutral, and unex-
pected outcomes.

2. The amplitude of the P300 will increase as a function of
unexpectedness (i.e., unexpected > neutral > expected),
irrespective of valence (reward versus no-reward).

Finally, if, in contrast to the original replication, but in line
with the RL-Theory, we would find an effect of expectedness
on FRN/RewP amplitudes, we would explore if this effect is
driven by the response to reward or no-reward outcomes.

2. Methods
2.1. Statistical power and recruitment procedures

To guide a decision on sample size, the non-significant
interaction of expectancy and location for the FRN/RewP
component reported in Hajcak et al. (2005) was used. Not
only is this the smallest reported effect, it is also the key
theoretically relevant result. Unfortunately, the original
paper did not report a complete set of statistical results
[“F(2,32) < 17), so estimates of the effect size of 7,? = .059"]
were only a rough overestimation of the true effect size.
Additionally, there was no meta-analytical evidence readily
available for this effect to compare this estimate. While a
meta-analysis by Sambrook and Goslin (2015) reported an
effect size of d = .71 for expectancy modulation of the FRN/
RewP (equal to calculated n,? = .11), it is important to note
that this was aggregated across mostly learning tasks, and it
is reasonable [and also discussed by Sambrook and Goslin
(2015)] to assume that the effect size could be smaller in
guessing tasks. While this could be considered an upper
bound of the FRN/RewP effect of expectancy during guessing
tasks, we refrained from using this estimate to guide an a-
priori sample size determination.

To circumvent these limitations, we opted for a sensitivity
analysis. Based on available resources, each of the thirteen
replicating labs will provide the data from 25 participants
[excluding participants because of computer malfunction,
drop out, technical problems, or insufficient clean data (see
below)], resulting in a sample size of 325 participants across all
labs. With such a sample size, a sensitivity analysis in More-
Power (6.0.4. Campbell & Thompson, 2012) showed that the
smallest effect size that can be reliably detected is 7, = .014
(¢ =.02,1-8=.90, 3 x 3 interaction in repeated measures
ANOVA). This allowed us to identify a much smaller effect
than any individual study on this matter has been able to
identify so far.

A similar rationale was applied to the non-significant
valence effect on the P300 [F(1,16) = < 1, calculated
np” = .048] and the non-significant interaction of valence and
expectancy [F(2,32) = 2.88, p > . 09, calculated n,*> = .152]. In
comparison, the effect size of the expectancy modulation on
the P300 was reported to be relatively large [F(2,32) = 45.48,
p <.001, &= .82, calculated 5, = .740]. Even after dividing this

! For this and the following statistics, npz was calculated from
the reported F values (Cohen, 1988; Lakens, 2013), when no F
values were reported, we used F = 1.

effect size in half to correct for shrinkage effects commonly
observed in replication studies [see Pavlov et al. (2021)], each
individual lab had the statistical power to replicate this effect
in the collected subsample (n = 25, a = .02, an = .370, 1 -
B = .99, main effect with 3 levels in repeated measures
ANOVA).

In each replicating lab, participants were recruited via
local advertisements or online recruitment systems. For
their participation, they were reimbursed with 15 EUR/200
NOK or course credits. Additionally, each participant
received a payout of their in-task wins of 5 EUR/17 AUD/50
NOK/5000 CLP. Participants were told that they could in-
crease their payouts if they chose the “correct door”. How-
ever, regardless of their choices the outcome was pre-
programmed and unrelated to the choices made by the
participants.

For each replicating lab (n = 13), the study was approved by
the local or national ethical committee/Institutional Review
Board [ANU (2022/859); Bond University (DA03365); German
Psychological Society (DGPS) (PK-22-02-21); Ghent University
(2022/14); Leiden University (2022-05-12-M.J.W. van der
Molen-V2-3819); University of Bergen, Faculty of Psychology
(2020/1926-28) & NSD (320122); UCM (CEC-UCM 54/2023);
Erasmus University Rotterdam (ETH2223-0061)].

2.2. Procedure

The procedure followed the process employed in Experiment
1 in Hajcak et al. (2005) as closely as possible, and any de-
partures from this were explicitly stated. Participants were
tested individually in an EEG laboratory. Upon their arrival in
the lab, they received a brief description of the experiment
and provided informed consent. Then they were prepared for
EEG recording and the EEG electrodes were attached. Partic-
ipants were familiarized with the guessing task and the
feedback using a practice block consisting of 40 trials (not
included in the analysis). Afterwards, they completed 6
blocks of the guessing task, with each block comprising 40
trials (240 trials in total). Self-paced breaks were allowed in
between blocks. Every other block, the experimenter entered
the testing room to inform about the current winnings
(which were presented on the screen), monitored the EEG
signal, and kept participants alert.

As this project was part of a wider initiative on replica-
bility in EEG (#EEGManyLabs), most of the laboratories in this
replication also collected resting state data EEG data together
with some personality measures (https://osf.io/sp3ck/)
(Pavlov et al., 2021). Neither EEG nor personality data was
analyzed in the current study but will be merged across sites
as part of a future replication project to be reported else-
where. For this purpose, participating labs recorded 8 min of
resting state EEG and participants will be asked to fill in three
brief questionnaires (using previously validated translations
into the local language where possible) prior to the start of
the guessing task for the present study. These include the
Karolinska Sleepiness Scale (KSS; Akerstedt & Gillberg, 1990),
the Positive and Negative Affect Schedule (PANAS; Watson,
Clark, & Tellegen, 1988) and the State Trait Anxiety In-
ventory Trait Version (STAI-T; Spielberger, Gorsuch, &
Lushene, 1970). After the guessing task, the labs recording
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cue
1000ms 1000ms

outcome

doors 500mMs 000ms

until response

Time

Fig. 1 — Trial structure. Each trial comprises three
successive visual events: a cue (that informs about reward
probability in the current trial), followed by the
presentation of four doors (imperative stimulus; the
participant is asked to pick one of them based on
guessing), before the outcome (either reward or no-reward)
is presented.

this additional data asked participants to fill in the Edinburgh
Handedness Inventory (EHI; Oldfield, 1971), the Behavioral
Inhibition and Approach System Scales (BIS-BAS; Carver &
White, 1994), the Center for Epidemiologic Studies Depres-
sion Scale (Radloff, 1977), and the Short Version of the Big
Five Inventory (Gerlitz & Schupp, 2005) questionnaires. In the
labs that did not record this additional data (see
Supplementary Table 7), only the guessing task was
presented.’

Each trial started with a cue presented for 1000 msec in the
center of the screen (see Fig. 1). The cue was presented as the
number 1, 2, or 3, corresponding to a probability of winning of
25%, 50%, or 75% (i.e., how many of the four doors contained a
prize). After this cue, four doors appeared in the center of the
screen and the participant was asked to select one of them by
pressing one of four predefined keys on the keyboard (exact
keys varied across labs but correspond to four horizontally
aligned keys pressed with the index and middle fingers of both
hands, e.g., ZCBM for QWERTY keyboards, see Supplementary
Table 7). Participants were asked to guess which door could
contain a prize. The four doors stayed on screen until the
response/choice. Then a blank screen ensued (500 msec),
before the outcome was presented in green font for 1000 msec.
The outcome was presented as a “+”, indicating that a small
monetary reward was attained (value is .04 EUR or .15 AUD or
.4 NOK or 35 CLP), or as a “0”, indicating that no-reward was
attained. The trial ended with a 1000 msec blank screen used
as inter-trial interval. Stimuli were presented in white on
black background. Accordingly, in this task, reward motiva-
tion was promoted while no punishment motivation was
involved.

There were six experimental conditions, corresponding
to the combinations of cue and outcome: expected reward
(i.e., “+” symbol following “3” used as cue, 60 trials), neutral
reward (i.e., “+” symbol following “2” used as cue, 40 trials),
unexpected reward (“+” symbol following “1” used as cue, 20
trials), expected no-reward (i.e., “0” symbol following “1”

2 Since the recording of the additional data before the guessing
task took less than 15 min, we did not expect that these differ-
ences would affect the results. Nevertheless, we accounted for
inter-lab variance in our statistical analyses (see below).

used as cue, 60 trials), neutral no-reward (i.e., “0” symbol
following “2” used as cue, 40 trials), and unexpected no-
reward (i.e., “o0” symbol following “3” used as cue, 20 tri-
als). Across all blocks, these 6 conditions were shown in
random order.

Upon completion of the task, participants were asked to
answer two questions related to the attention paid to the
numerical cue prior to the doors and the outcome during the
experiment. These were answered on a seven-point scale,
ranging from “ignored it” to “paid close attention” by the
corresponding numbers on the keyboard.

The whole experiment lasted approximately 1-1.5 h. The
experiment was programmed using Presentation software
(Neurobehavioral Systems, Inc., www.neurobs.com) and Psy-
choPy (Peirce, 2007) and translated into the local languages
(English, Dutch, German, Norwegian, Spanish). Additional
details on the used version of the experiment, the screen size,
operating systems, used equipment etc. at each replicating lab
are listed in the Supplementary Table 7.

2.3. Neurophysiological recordings

The replicating labs were using one of the following four EEG
systems: (1) Biosemi Active 2; (2) BrainAmp DC, (3) BrainAmp
actiCHamp Plus, (4) NeurOne Tesla. Using elastic caps, all labs
recorded with either 32 or 64 channels positioned according to
the extended 10/20 EEG system (Chatrian, Lettich, & Nelson,
1985). One to four of these 32/64 electrodes or one to four
additional external electrodes were used to record electro-
oculogram (EOG), and two were placed on the left and right
mastoids. One EOG electrode was attached below the left eye,
additional electrodes were placed above the left eye and on
the outer canthi of the two eyes in some labs. The EEG (and
EOQG) data was sampled at 512, 500, 1000 Hz (depending on the
setup). Labs also varied in their use of active versus passive
electrodes, and the applied online reference/ground (CMS/
DRL, Cz, FCz, AFz). For details on each lab’s set-up, see
Supplementary Table 7.2

2.4.  Artifact removal and EEG preprocessing

Data preprocessing closely followed the original study,
including the following steps: activity recorded from Fz, Cz,
and Pz and the additional external electrodes were: (i) re-
referenced to Cz (the online-reference of the original study);
(ii) filtered with a high-/low-pass filter of .05 and 35 Hz [the
offline filter settings of the original study; EEGLAB defaults
(Delorme & Makeig, 2004), transition bandwidth .05/8.75 Hz,
passband edge .05/35 Hz, cutoff frequency (-6 dB) .025/
39.38 Hz] (iii) down-sampled to 200/250/256 Hz as the original
study recorded with a sampling rate of 200 Hz; (iv) segmented
into epochs of interest (—500/+1500 msec around the onset of
the outcome); (v) corrected for ocular artifacts (following
Gratton, Coles, & Donchin, 1983, implemented into MATLAB);

3 The new recordings deviate from the original study in a few
notable points: amplifier setup (Grass Model 7D polygraph with
Neurosoft Quik-caps), number of recording sites (9), sampling
rate (200 Hz), as well as pre-processing software (VPM) and
applied offline filters (bandpass .05—-35 Hz).
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(vi) re-referenced to the linked mastoids; (vii) cleaned of seg-
ments containing artifacts (25 msec of invariant analog data
on any channel; voltage exceeding +100 uV)* (viii) low-pass
filtered at 20 Hz using a FIR filter [eeglab defaults, transition
bandwidth 5 Hz, passband edge 20 Hz, cutoff frequency
(-6 dB) 22.5 Hz]; (ix) baseline corrected to —200 to O msec prior
to outcome onset.

In addition to the use of a data preprocessing protocol that
closely followed the one provided in the original study, the
data was also preprocessed according to recent developments
in psychophysiology, which allowed us to test the robustness
of the results. Activity recorded from all EEG sensors was: (i)
down-sampled to 500/512 Hz (if recorded with higher sam-
pling rates); (ii) re-referenced to mastoids; (iii) high-pass
filtered at .1 Hz using a FIR filter [eeglab defaults, transition
bandwidth .1 Hz, passband edge .1 Hz, cutoff frequency
(-6 dB) .05 Hz]; (iv) low-pass filtered at 40 Hz using a FIR filter
[eeglab defaults, transition bandwidth 10 Hz, passband edge
40 Hz, cutoff frequency (-6 dB) 45 Hz]; (v) interpolated
(spherically) if activity is invariant (>5 sec) or not correlated to
other channels (r < .8); (vi) cleaned from bad segments iden-
tified by ASR (with burst criterion of 55 SD, ran on 1 Hz high-
pass filtered data; segments flagged as bad are then removed
from the unfiltered data); (vii) cleaned for ocular artifacts
through an Independent Component Analysis (ICA, infomax,
performed on 1 Hz high-pass filtered data, rank lowered by the
number of interpolated channels, otherwise eeglab defaults;
weights were then applied to the unfiltered data) and ICLabel
based on the probability of being not a brain component [<30
%) but ocular artifacts (>70%)]; (viii) segmented into epochs of
interest (—200/4-800 msec around the onset of the outcome);
(ix) baseline corrected to —200 to 0 msec prior to outcome
onset; and (x) cleaned of bad segments [epochs deviating more
than 3.29 SD (Tabachnick & Fidell, 2007) from trimmed
normalized means with respect to joint probability, kurtosis
or the spectrum].

2.5. Outlier handling

The original study did not mention the use of any particular
outlier criterion, and therefore for the direct replication the
data from all participants was included.

Nevertheless, to test the robustness of the results, we
aimed to ensure good data quality in two ways: First, from all
complete recordings, we excluded participants who had more
than 75% of trials rejected (i.e., only 60 trials out of the 240
trials used). Second, we excluded participants who had less
than 8 trials per condition as the FRN/RewP shows good in-
ternal consistency with at least 8 trials (Ethridge & Weinberg,
2018). Included trial number as well as standardized mea-
surement error (Luck, Stewart, Simmons, & Rhemtulla, 2021)
were calculated and reported to describe data quality across
conditions (and across participating labs).

4 The original study excluded data segments based on invariant
data and/or A/D values exceeding the converter's minimum/
maximum values. Since all replicating labs recorded with a
different setup than the original study, we chose this cut-off
instead.

To ensure that all participants paid attention to the nu-
merical cues as well as the outcome, participants were
excluded if they indicated in the attention ratings that they
ignored the cue (i.e., answering with one or two on the seven-
point scale).

2.6. Quantification of the ERPs

The FRN/RewP was quantified at Fz, Cz, and Pz as follows:
First, a difference wave was created by subtracting the ERP
observed for reward outcomes from the ERP observed for no-
reward outcomes. This difference wave was computed sepa-
rately for expected outcomes (expected no-reward minus ex-
pected reward), neutral outcomes (neutral no-reward minus
neutral reward), and unexpected outcomes (unexpected no-
reward minus unexpected reward). For each level of expec-
tancy, the FRN/RewP was initially defined as the maximum
negative amplitude of these difference waves within a win-
dow between 200 and 500 msec following outcome onset. This
quantification procedure led to the peak of the FRN/RewP
component to be misclassified with an average peak of
325 msec (SD = 87, Range = 203—496). In around 30% of cases,
the FRN/RewP peak was identified after the P300 peak. We
therefore repeated the analysis constraining the time window
to end at the peak of the P300 component (if earlier than
500 msec after outcome onset). These results were mostly
similar to the original quantification method. We report the
results from the more appropriately scored FRN in the main
text and highlight possible differences (where they arose) in
the footnotes.

The P300 was scored at Pz as follows. Unlike the FRN/RewP,
no difference wave was created. For each of the six conditions,
the P300 was defined as the most positive peak in the ERP
200—600 msec following outcome onset.

In addition to this direct replication of the ERP compo-
nents, we also scored the FRN/RewP and the P300 as mean
amplitudes, since peak amplitude values are often more
sensitive to high-frequency noise (Luck, 2014). Together with
comparing different preprocessing of the data, this allowed
us to test the robustness of the results. The FRN/RewP was
scored following current recommendations as the mean
amplitude 200—300 msec following outcome onset (Gheza
et al.,, 2018; Krigolson, 2018; Proudfit, 2015; Sambrook &
Goslin, 2015), while the P300 was scored as the mean
amplitude 300—500 msec following outcome onset.

Moreover, since difference waves reduce some of the in-
formation helpful for follow-up tests, we additionally scored
the FRN/RewP using the actual condition ERPs at Fz (for both
peak and mean scoring).

Considering that the FRN/RewP and the P300 components
occur in rapid succession, we additionally quantified the EEG
components in terms of a principal component analysis (PCA)
to ascertain possibly dissociable effects on these components
and to disentangle them better using the ERP PCA Toolkit (EP
Toolkit, version 2.80; Dien, 2010b). The individual ERPs (for
each of the six conditions) from the preprocessing following
current standards and after excluding outliers (see above) was
used for this analysis. Considering the differences in the
recording systems that were used, the individual ERPs were
first standardized. Specifically, data was downsampled to a
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common denominator (500 Hz) and only 56 electrodes which
were common across most labs were used (8 labs, 224 par-
ticipants).” The ERPs were then subjected to a recommended
two-step sequential PCA (Spencer, Dien, & Donchin, 1999,
2001). If not further specified, all default values in the graph-
ical interface were used. The procedure began with a temporal
Promax rotation to capture the variance across the time points
from the average ERP data, followed by a spatial Infomax (ICA)
rotation to obtain the variance of the spatial distribution of the
data across the common recording sites (Dien, 2010a). The
number of factors retained in each step depended on the scree
plot, such that only factors explaining more variance than
identified in random data was included (similar to parallel
testing, see Dien, 2012). From all temporospatial factor com-
binations, default windowing was applied to screen out fac-
tors explaining less than .5% variance. All remaining factors
were reconstructed into voltage space, in which the voltage
accounted for at the peak time point and channel were eval-
uated as ERP waveforms. Factors whose peak latencies and
channels coincided (based on visual inspection) with the ca-
nonical scalp distribution and time course of the FRN/RewP
(fronto-central, 200—300 msec) and P3 components (posterior-
central, 300—500 msec) were tested.

2.7. Statistical analyses

The main focus of the analyses was (1) a direct replication of
the approach applied in the original study using repeated
measures analyses of variance (ANOVAs). However, we also
tested the robustness of these effects (2) in multilevel models
(MLMs), and (3) in a meta-analysis of our effects identified in
each lab.

2.7.1. Direct replication through ANOVAs

The ERP amplitudes calculated from the preprocessing and
quantification methods used in the original study were sub-
jected to two ANOVAs. For the FRN/RewP, the peak amplitude
values were analyzed using a 3 (Location) x 3 (Expectancy)
ANOVA. For the P300, a 2 (Valence) x 3 (Expectancy) ANOVA
was used. In case a sphericity violation was detected,
Greenhouse—Geisser correction was applied to p values. The
significance alpha level was set to .02.

Moreover, to test if the results for the FRN/RewP were driven
by the response to reward outcomes or no-reward outcomes,
we calculated a 2 (Valence) x 3 (Expectancy) ANOVA on the
amplitudes extracted at Fz (where it was shown to be maximal
in the original study) together with the corresponding post-hoc
tests. The main analyses are complemented by a series of
robustness analyses (see below and Table 1).

2.7.2. Robustness test through MLMs

To better account for variability across participants and lab-
oratories, we fitted eight Bayesian multilevel linear models on
the FRN/RewP and P300 amplitude values. These models were
set up identically, but the dependent variable was extracted

> Restricting the analyses to only common channels across all
thirteen labs resulted in a dramatically lower number of channels
(19). Hence, we chose to include those channels present in most
labs as a tradeoff between sample size and channel number.

either after (1) “original” or “current standard” preprocessing
pipelines, and (2) quantified as either “peak” scores (as in the
original publication) or as “mean” scores (as a more robust
measure of the ERP components). By crossing these analytical
choices, we were able to assess the impact of these choices on
the outcome and the robustness of the replication.

The models were specified as follows [in Wilkinson nota-
tion (Wilkinson & Rogers, 1973)]:

FRN/RewP_amplitudes = 1 + location * expectancy -+
(1 + location * expectancy | laboratory/participant).®

P300_amplitudes = 1 + valence * expectancy + (1 + valence
* expectancy | laboratory/participant).

Robustness test 1. Amplitudes were extracted after the
preprocessing of the original publication and defined as the
maximum peak in the specified time window. This followed
the analysis of the original publication most closely, while
controlling for inter-lab variance.

Robustness test 2. Amplitudes were extracted after the
preprocessing of the original publication and defined as the
mean in the specified time window:.

Robustness test 3. Amplitudes were extracted after the
preprocessing according to current standards and defined as
the maximum peak in the specified time window.

Robustness test 4. Amplitudes were extracted after the
preprocessing according to current standards and defined as
the mean in the specified time window.

We allowed intercepts and slopes to vary as a function of
participant and laboratory, to model varying effects on ampli-
tude peak (or mean) originating from different laboratory
setups and individual characteristics (e.g., skull thickness, hair).
As a likelihood function, we chose a Gaussian distribution.

An important aspect of Bayesian analysis is the choice of
priors (e.g., Natarajan & Kass, 2000). Given the unknown sus-
ceptibility of the electrophysiological signal to inter-individual
differences in relation to the predictors of interest, we placed a
weakly informative prior on intercepts and slopes: a normal
distribution with ¢ = 0 and ¢ = 10. Since we had no prior
knowledge regarding the other model parameters (e.g., stan-
dard deviation of laboratory or participant), we kept the soft-
ware default weakly informative priors.

Models were fitted in R using the brms package (Biirkner,
2018), which employed the probabilistic programming lan-
guage Stan (Carpenter et al.,, 2017) to implement a Markov
chain Monte Carlo (MCMC) algorithm (Hoffman, 2014) to es-
timate posterior distributions of the parameters of interest.
We started sampling by using 4 MCMC chains with 4000 iter-
ations (2000 warm-up) and no thinning. In case of non-
convergence, we increased the number of iterations by 500
until convergence was reached or a maximum of 8000 itera-
tions per chain. Model convergence was assessed as follows:
(i) visual inspection of trace plots, rank plots, and graphical
posterior predictive checks (Gabry, Simpson, Vehtari,

Betancourt, & Gelman, 2019); (ii) Gelman-Rubin R statistic
(Gelman & Shalizi, 2013) between 1 and 1.05 (see also

¢ Additionally, we reported the following model in the supple-
ment: FRN/RewP_amplitudes_at_Fz = 1 + valence * expectancy +
(1 + valence * expectancy | laboratory/participant). This addi-
tional analysis helped to identify if the response to reward out-
comes or no-reward outcomes was driving the effect.
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Table 1 — Overview of analyses and reported results.

Hajcak Direct Robustness Robustness Robustness Robustness Robustness Robustness
et al. Replication Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
Pre-processing Original Original Original Original Current standard Current standard Original Current standard
Outlier None None None None Applied Applied None Applied
Handling
Quantification of Peak Peak Peak Mean Peak Mean Peak PCA
ERPs
Statistical ANOVA ANOVA MLM MLM MLM MLM Meta- ANOVA
Test Analysis
N FRN 17 307 307 360 297 328 13/307 230
N P300 17 360 360 360 323 328 13/360 230
FRN replication
Expectancy Not sign. Sign. AF FZ + AF FZ + Sign. (1/1) sign.
np? < .08° 7> = .08 PZ - PZ - r=.32 .
[.05, .13] [.22, 42]
Location Sign. Sign. 4 S T 44 Sign. n.r.
= .34% n,° = .34 r = .60
[.28, .39] [.52, .66]
Location x Not sign. Sign. n.a. n.a. n.a. n.a. Sign. nr.
expectancy np° < .02° > = .02 r=.16
[.01, .04] [.05, .27]
P300 replication
Valence Not sign. Sign. AF e AF i Sign. (2/3) sign.
np° < .06° 2 = .32 r=.59
[.24, .39] [49, .68]
Expectancy Sign. Sign. 4 4k A 4 Sign. (2/3) sign.
e = 74 = 37 r=.63
[.32, .42] [.56, .69]
Valence x Not sign. Not sign. n.a. n.a. n.a. n.a. Not sign. Not sign.
expectancy np? = .15% np° = < .001 r=.07
[<.001, .02] [-.04, .17]

Note: For the original results, the direct replication and the meta-analysis (Robustness Test 5), the entries show the effect sizes along the applied analysis (n,?, 1) together with their 95% CI. For the
Bayesian statistics (Robustness test 1—4), the ++/— is a descriptive summary of the positive/negative evidence for H1 across the relevant paired comparisons to approximate the main effects. For the
PCA (Robustness Test 6), the number of components capturing the respective ERP and showing that significant effect is reported.

N refers to sample size of the analysis.

n.r. refers to not relevant: PCA includes spatial components and need to be considered as such.

n.a. refers to not applicable: Robustnesstests 1—4 were carried out using paired comparisons using Bayesian MLMs.

# Unlike in the original study, the PCA included the two factors outcome expectancy and valence, which showed a significant interaction.

@ As the original study did not report an effect size, these are deduced from the reported F-statistics and p-values.

® For non-significant effects, no exact statistics were reported and these values reflect the largest effect size compatible with those.
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Nalborczyk, Batailler, Loevenbruck, Vilain, & Biirkner, 2019).
Goodness-of-fit was assessed via Bayesian R? (Gelman,
Goodrich, Gabry, & Vehtari, 2019).

Posterior distributions of the model parameters were
summarized using the mean and 95% credible interval (CI).
Differences between conditions were calculated by computing
the difference between posterior distributions of the respec-
tive conditions and summarized as above.

The existence of an effect was ascertained using the MAP-
Based p-Value (pMAP), a Bayesian equivalent of the fre-
quentist p-value (Mills, 2018). This index represents the odds
of the posterior distribution of the parameter of interest
against the point null hypothesis Hp = 0 and, mathematically,
corresponds to the density value at 0 divided by the density
at the Maximum A Posteriori (MAP) (see also Makowski, Ben-
Shachar, Chen, & Liidecke, 2019). Following the current
arbitrary p-value convention for Registered Reports in Cor-
tex, we considered an effect statistically significant if pMAP <
.02.

Two caveats of the pMAP should be noted here (Makowski
et al., 2019). First, just like the frequentist p-value, pMAP al-
lows us to assess the presence of an effect, not its magnitude or
practical importance. Second, pMAP is sensitive only to the
amount of evidence for the alternative hypothesis Hy, but it is not
useful when assessing the amount of evidence in favor of the
null hypothesis Ho. In our case, pMAP < .02 would suggest that
the effect is statistically significant. However, pMAP > .02
would not allow us to conclude that the effect does not exist,
only uncertainty about its existence (absence of evidence
rather than evidence of absence).

To address these issues and increase the informativeness
of our results, we additionally computed Bayes factors [BFs
(Jeffreys, 1998; Kass & Raftery, 1995; Morey, Romeijn, &
Rouder, 2016)]. BFs indicate “the extent to which the data sway
our relative belief from one hypothesis to the other” (Etz &
Vandekerckhove, 2018, p. 10). BFs were calculated as a
Savage—Dickey density ratio (Dickey & Lientz, 1970;
Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010), i.e.,
comparing the marginal likelihoods of the alternative model
against a model in which the tested parameter (i.e., the pos-
terior distribution of condition differences) has been restricted
to the point-null. We descriptively qualified BFs according to
the arbitrary convention proposed by Kass and Raftery (1995):
(i) BF4o = 1: no evidence in favor of Hy; (ii) 1 < BF;o < 3: weak
evidence in favor of Hy; (iii) 3 < BF;o < 20: positive evidence in
favor of Hy; (iv) 20 < BF;o < 150: strong evidence in favor of Hy;
(v) BF10 > 150: very strong evidence in favor of H;. The reciprocal
of BFyo (i.e., BFo1 = 1/BFy) indicated the corresponding evi-
dence in favor of Ho.

As outlined, in our Bayesian multilevel models, we focused
on estimating the posterior distributions of the parameters of
interest rather than directly analyzing main effects and in-
teractions. This approach provided a more nuanced under-
standing of the data by offering credible intervals for each
parameter. As the model estimates the differences between
specific conditions and their associated uncertainty, it is not
designed to explicitly isolate and test interaction effects in the
conventional sense.

2.7.3. Meta-analysis (robustness test 5)

Even though each replicating lab only had the statistical
power to test the effect of expectancy on the P300, the data of
each lab was separately subjected to the same ANOVAs
described above (2.7.1). Then, a random effects meta-analysis
was run where the effect sizes of valence (for the P300) or
electrode (for the FRN/RewP), expectancy, and their interac-
tion gathered in each replicating lab were combined.
Following the method utilized previously in other large-scale
replication projects (Ebersole, Mathur, & Baranski, 2020;
Open Science Collaboration, 2015), as implemented in the esc
package for R (Liidecke, 2019), we converted partial eta
squared to correlation coefficients. Given that eta represents a
non-directional effect size, we established directionality by
fitting linear regression models, analogous to ANOVAs, and
derived the sign of the regression coefficients for each effect of
interest. We utilized Fisher’s z-transformed correlation co-
efficients, adjusted by the signs from the linear regressions,
from each laboratory in our meta-analyses. The back-
transformed correlation coefficients are presented and
depicted in forest and funnel plots. The metafor package
(Viechtbauer, 2010) for R was used for the meta-analysis.

2.7.4. Temporospatial principal component analysis (PCA)
(robustness test 6)

The PCA factors were analyzed using the statistics function of
the EP toolkit using all default parameters. The implemented
ANOVAs are robust against violations of statistical assump-
tions. It included the following features: (i) trimmed means
(cutting the outer quartiles) and winsorized covariances that
protect against outliers; (ii) a bootstrapping routine (499,999
simulations, ran 11 times) that estimated the population dis-
tribution instead of assuming the normality of this distribu-
tion; and (i) a Welch—James approximate degrees-of-
freedom statistic that did not assume homogeneity of error
variance (Dien, 2010b). The robust 2 x 3 repeated-measures
ANOVA included the within-subject factors Valence and Ex-
pectancy. The p-value was adjusted with the Bonferroni
correction for multiple comparisons. Follow-up tests for sig-
nificant interactions were reported. In case the interaction
effect needed a better characterization of its source, the EP
Toolkit implements a Dunn-Sidék post-hoc test.

The PCA identified 31 temporal factors x 5 spatial factors
based on the Scree plot, generating a total of 155 tempor-
ospatial factor combinations. Using an automated windowing
step, the factors were further sifted through a predetermined
minimum .5% threshold for accounted variance. The
remaining PCA factors after the windowing step were then
visually inspected for further analysis. Factors that only
resembled the FRN/RewP and P300 components, based on
canonical time course and scalp topography, were subjected
to the robust ANOVA test.

Similar to the results from the main analyses above, we
expected for the factor corresponding to the FRN/RewP a sig-
nificant main effect for valence (more factor negativity for no-
reward outcomes), but no effect of expectancy or their inter-
action. In contrast, for the factor corresponding to the P300
component, we expected a significant effect of expectancy


https://doi.org/10.1016/j.cortex.2024.12.017
https://doi.org/10.1016/j.cortex.2024.12.017

CORTEX 184 (2025) 150—1I71 159

Valence Effect
(Reward - NoReward)

Unexpected Neutral Expected

P300 FRN

Expectancy Effect
(Unexpected - Expected)

NoReward Reward

®®® O
000 @

Average
(Across Expectancy Levels)

NoReward Reward

O @®

O
@ ©@®|

Fig. 2 — Topographical Plots of Valence and Expectancy Effects for FRN/RewP and P300 components. The FRN/RewP and P300
components were defined as the average amplitude in the 200—300 msec and 300—500 msec interval after outcome onset,
respectively (preprocessing according to current standards as original preprocessing included only three channels).

(more factor positivity for unexpected outcomes), but no effect
of valence or their interaction.

2.8. Evaluation of the replication and robustness of

effects

The replication’s success was mainly evaluated in the light of
the outcomes of the ANOVAS (see 2.7.1) above: The FRN/RewP
results were considered to be replicated successfully if the
ANOVA showed a significant main effect of position (Fz > Pz),
but no significant effect of expectancy or the interaction of
expectancy and position. The P300 results were considered to
be replicated successfully if the ANOVA showed a significant
main effect of expectancy (unexpected > expected), but no
significant effect of valence or the interaction of expectancy
and position.

However, going beyond the mere replication of the original
study, we provided preliminary robustness tests by comparing
these results to the outcomes of the MLMs [see (2.7.2.) above]
and a PCA [see (2.7.4) above]. If the MLMs and the PCA pro-
vided evidence for a similar pattern of results as (2.7.1), the
effect was considered not only to be replicated but robust and,
to some extent, independent of analytical choices. If the direct
replication failed, i.e., significant effects were detected where
none were expected, or expected effects did not reach signif-
icance, the MLMs were particularly important to conclude if
the effects are present or not. If the pattern diverged across
the robustness tests, possible sources of these discrepancies
were discussed (with regard to preprocessing choices and/or
quantification of the ERPs). Finally, the results of the MLM,
(Robustness Test 1) were compared to the meta-analysis [see
(2.7.3) above].

2.9.  Analysis of ratings

The descriptive statistics for the subjective ratings pertaining
to the attention paid to the cue and the feedback were re-
ported (see Hajcak et al., 2005).

2.10. Sharing of data and code

Pre-processing steps were carried out using EEGLAB 2022.0
(Delorme & Makeig, 2004) implemented in MATLAB 2019,
while statistical analyses were carried out in R (R-Core-Team,
2019). All experimental procedures, pre-processing scripts,
analytical analyses are shared openly via the Open Science

Framework (OSF, https://osf.io/2w9gy). All collected data will
be made available online through GIN (https://gin.g-node.org/
EEGManyLabs/EEGManyLabs_Replication_
HajcakHolroyd2005). This study is a registered report, the
preregistered stage 1 manuscript can be accessed at https://
osf.io/dbArs.

3. Results

The results of the direct replication as well as all robustness
tests are summarized in Table 1.

3.1 Participants

In total, 370 participants were tested across the thirteen labs
(M = 28.46, SD = 4.39, Range = 21—37). All participants gave
written informed consent. Sixty-six percent were women.
Across all labs, 4 recordings were incomplete (e.g., computer
failing, fainting of participants, battery issues, recording is-
sues) and 5 participants were excluded since data from the
mastoids were too noisy. For the original pre-processing, 2
participants had less than one trial after data cleaning. For
the preprocessing according to current standards, 14 partic-
ipants had less than eight trials after data cleaning. FRN/
RewP or P300 peaks could not be detected in at least one
condition for 66 participants (for the additional analyses
where reward and no-reward outcomes were analyzed
separately, this number increased to 108). Nineteen partici-
pants were excluded from analysis since they reported to not
have paid attention to the cue. The final number of partici-
pants can be found in Table 1.

3.2. Direct replication through ANOVAs

The FRN/RewP component showed the expected frontocentral
distribution peaking on average around 270 msec after feed-
back onset (SD = 41, Range = 203—495). The P300 component
showed the expected central distribution peaking on average
around 355 msec after feedback onset (SD = 72,
Range = 203—-598), see Fig. 2.

The direct replication, using the original preprocessing and
peak values, revealed for the FRN/RewP component significant
main effects of Expectancy (Table 2, row 1) and Location (Table
2, row 2) and an interaction between these two factors (Table 2,
row 2). The FRN/RewP was largest for unexpected outcomes
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Table 2 — Statistics of the direct replication.

Effect F dfy df, p 5 95 % CI n5
FRN/RewP component at Fz, Cz, Pz
1 Expectancy 28.34 1.79 546.6 <.001 .08 .05, .13
2 Location 154.16 1.50 460.17 < .001 34 .28, .39
3 Expectancy x location 6.71 2.65 811.27 <.001 .02 .01, .04
FRN/RewP component at Fz
4 Valence 514.64 1 262 < .001 .66 .60, .71
5 Expectancy 6.09 1.72 451.22 .004 .02 <.01, .05
6 Valence x expectancy 10.70 1.81 474.82 <.001 .04 .01, .07
P300 component at Pz
7 Valence 167.73 1 359 < .001 32 .24, .39
8 Expectancy 215.18 1.74 625.04 < .001 .37 .32, 42
9 Valence x expectancy 1.60 1.72 617.4 .207 <.01 <.01, .02
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Fig. 3 — ERP Plots using the preprocessing following the original preprocessing at electrode sites Fz, Cz, and Pz, separately
for the different conditions. Shaded Areas represent + - SEM.

(Munexpectea = —9.65 nV, sd = 6.46 US Myeytra1 = —9.03 1V, sd = 5.6

us MExpected = —7.58 uv, sd =

4.57) and at electrode Fz

7 When using the pre-registered quantification time window
following the original study, similar results were obtained:
Location [Fy.49536.60 = 141.36, p < .001, 57 = .28, 95% CI (.23, .33)],
Expectancy [F1_79,641_32 =44.11, p <.001, T]; =.11, 95% CI (07, 15)],
Interaction [Fy g 100s.85 = 5.03, p = .002, n; = .01, 95% CI (<.001, .03)].

(Mcz = —9.38 uV, sd = 5.66 us Mgz = —9.62 pV, sd = 5.64 us Mpz.
= —7.27 pV, sd = 5.4). The difference between unexpected and
expected outcome was largest at Fz (Mcz = —1.79 uV, sd = 6.27
Us Mgz = —2.75 nV, sd = 6.28 us Mpz = —1.81 pV, sd = 5.91), see
Figs. 2—4.”

To better understand the impact of expectancy and
valence, we re-ran our analyses of the FRN/RewP component
at Fz, treating reward and no-reward outcomes as separate
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Valence level. The FRN component is shown at Fz, while the P300 component is shown at Pz.

conditions (i.e., without creating a difference wave prior to
statistical analysis). This approach confirmed a significant
main effect of Valence (Table 2, row 4), with more positive
FRN/RewP amplitudes for reward compared to no-reward
outcomes (Mgewara = 7.4 nV, sd = 6.27 US MpoReward-
=1.18 pV, sd = 4.97). The main effect of Expectancy was also
significant (Table 2, row 5), with more positive values for
unexpected compared to expected outcomes (Muynexpected-
= 467 wV, sd = 7.22 s Myeutral = 3.88 uV, sd = 6.2 vus
Meypectea = 4.09 1V, sd = 5.81). Additionally, the interaction
between Valence and Expectancy was significant (Table 2,
row 6), see Fig. 4. The difference between unexpected and
expected outcomes was largest (most positive) and only
significant for reward outcomes (Mnorewara = —.34 WV,
sd = 4.46, p = .18, d = —.08 US Mpewara = 1.25 pV, sd = 4.84,
p <.001,d = .26).2

For the P300 component, the main effect of Valence was
significant (Table 2, row 7), as was the main effect of Expec-
tancy (Table 2, row 8). However, the interaction between these
two factors was not significant (Table 2, row 9). P300 values
were largest for reward compared to no-reward outcomes
(Mrewara = 16 nV, sd = 7.21 US Myoreward = 13.64 pV, sd = 6.93),
and for unexpected compared to expected outcomes
(Munexpected = 16.66 uV, sd = 7.59 US Myeutrat = 14.29 uV,
sd = 6.86 US Mgypected = 13.51 1V, sd = 6.65), see Figs. 3 and 4.

3.3.  Bayesian MLMs (robustness test 1—4)

As we aimed to replicate a null effect, we included Bayesian
statistics to allow testing for the absence of specific effects
(i-e., Valence for P300, Expectancy for FRN). Moreover, to better
control for unknown Lab effects in this multi-lab sample, we
carried out these analyses using multilevel linear models. The
results of the different Bayesian MLMs aligned with the results

8 When using the pre-registered time window for quantifying
the peak, the interaction was not significant: Valence [F; 340 = 309.
47,p < .001, 1, = .48, 95% CI (.4, .54)], Expectancy [F1.9,650.08 = 5.32,
p = .006, 175 = .02, 95% CI (<.001, .04)], Interaction [F;96501 = 1.92,
p = .149, n5 = .01, 95% CI (<.001, .02)]. Since determining a negative
peak for reward outcomes can be difficult, using a mean window
approach could provide a solution to score this component.
However, using this alternative scoring method, the results were
similar, see Supplementary Table 3.

of the direct replication based on ANOVAs (see above). These
robustness tests varied the preprocessing (original versus
current standard) as well as the quantification method (peak
versus mean amplitude). The detailed BF are reported in
Tables 3 and 4. For more details, all comparisons, and pa-
rameters, please consult the supplementary section 8.3.

For the FRN/RewP component, we found positive evidence for
the effect of Location across all preprocessing and quantification
methods (Table 3, row 4/5, robustness test 1—4). In comparison,
the interaction between Expectancy and Location was depen-
dent on the quantification choice: When using a peak amplitude
as quantification, there was positive to strong evidence for an
effect of Expectancy at all electrodes (Table 3, row 1/2, robustness
test 1/3). When using the mean amplitude as quantification
(Table 3, row 1/2, robustness test 2/4), the Expectancy effect was
only weakly supported at Fz (weak evidence for H,), but not at Pz
(positive evidence for Hy), suggesting that this effect could be
robustly detected at electrode Fz, but not at Pz.

When we assessed the FRN/RewP component separately for
reward and no-reward outcomes, we found strong evidence for
the expected main effect of Valence, which was robustly found
across all preprocessing and quantification methods (Table 3,
row 7/8, robustness test 1—4). Regarding Expectancy, the type of
quantification method used actually influenced the results:
When using a mean quantification, we found positive evidence
for an effect of Expectancy for reward outcomes (Table 3, row 5,
robustness test 2/4), but not for no-reward outcomes (positive
evidence for Hy, Table 3, row 6, robustness test 2/4). However,
when using a peak quantification, the results were dependent
on the preprocessing methods: For the original preprocessing,
there was positive evidence for an effect of Expectancy for
reward outcomes (Table 3, row 5, robustness test 1), but not for
no-reward outcomes (weak evidence for Hy, Table 3, row 6,
robustness test 1). In contrast, for the preprocessing according to
current standards, the opposite pattern emerged: there was
weak evidence against an effect of Expectancy for reward out-
comes (Table 3, row 5, robustness test 3), but positive evidence
for an Expectancy effect for no-reward outcomes (Table 3, row 6,
robustness test 3). These results suggest that the mean quanti-
fication is probably better suited than the peak scoring to cap-
ture a robust effect of Expectancy for reward outcomes, given
that they often do not elicit a clear peak (see last panel in Fig. 3).
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Table 3 — Bayes factor analysis for the different robustness tests and FRN/RewP component.

Original Current Standards
Peak Mean Peak Mean
(RobTest 1) (RobTest 2) (RobTest 3) (RobTest 4)
1 Expectancy at Fz Unexpected Diff Fz - <.001* .004* <.001* .004*
Expected Diff Fz BF =125 BF =191 BF = 23.15 BF =1.42
HF 3 +++ +
2 Expectancy at Pz Unexpected Diff Pz - <.001* .506 <.001* .811
Expected Diff Pz BF =54 BF = -3.17 BF = 5.98 BF = -3.74
++ == ++ ==
3 Location for Unexpected Unexpected Diff Fz - <.001* <.001* <.001* <.001*
Unexpected Diff Pz BF = 13.19 BF =20.2 BF = 15.79 BF =15.61
S s S St
4 Location for Expected Expected Diff Fz - <.001* <.001* <.001* <.001*
Expected Diff Pz BF =7.67 BF =12 BF = 10.42 BF = 12.26
++ ++ ++ ++
5 Expectancy for Reward Unexpected reward <.001* <.001* 442 <.001*
Fz- expected reward Fz BF = 4.64 BF = 11.83 BF = —2.87 BF = 6.79
A A = A
6 Expectancy for NoReward Unexpected NoReward .369 .023* <.001* .696
Fz - expected NoReward Fz BF = —-2.92 BF = —.42 BF = 3.45 BF = —3.8
- ++° --
7 Valence for Unexpected Unexpected reward <.001* <.001* <.001* <.001*
Fz- unexpected NoReward Fz BF = 38.94 BF = 41.94 BF = 24.87 BF = 26.36
A +++ S e
8 Valence for Expected Expected reward Fz- <.001* <.001* <.001* <.001*
Expected NoReward Fz BF = 23.99 BF = 33.6 BF = 26.37 BF =25.21
+++ +++ +++ +++

Note. First value refers to the p-Map value, an asterisk indicating a significant effect, BF = logarithmic Bayes Factor (BF) of H1. +++/— - - indicates
strong evidence in favor of/against H1. ++/— - positive evidence. + weak evidence. Diff = Difference NoReward — Reward outcome. When using
the original pre-registered quantification time window following the original study, similar results were obtained unless specified otherwise in

the footnotes. RobTest = Robustness Test.
& The pre-registered quantification showed an opposite effect: .092; BF =
® The pre-registered quantification showed an opposite effect: .239; BF =

=947
—2.34.

Table 4 — Bayes factor analysis for the different robustness tests of P300 component at Pz.

Original Current Standards
Peak Mean Peak Mean
1 Expectancy for Reward Unexpected reward - expected reward <.001* <.001* <.001* <.001*
BF = 28.76 BF = 26.83 BF = 27.88 BF = 23.07
A e S A
2 Expectancy for NoReward Unexpected NoReward - expected NoReward <.001* <.001* <.001* <.001*
BF=1641 BF=1794 BF=2149  BF=1484
++ ++ +++ ++
3 Valence for Unexpected Unexpected reward - unexpected NoReward <.001* <.001* <.001* .001*
BF = 8.85 BF =7.84 BF =784 BF =524
++ ++ S A
4 Valence for Expected Expected reward - expected NoReward <.001* <.001* <.001* <.001*
BF = 8.07 BF =4.71 BF =7.31 BF =4.72
++ ++ ++ ++

Note. First value refers to the p-Map value, an asterisk indicating a significant effect, BF = BF,, = logarithmic Bayes Factor (BF) of H1. +++ in-

dicates strong evidence in favor of H1. ++ positive evidence.

For the P300 component, we found positive to strong evi-
dence for the main effect of Expectancy (BF;o = 14.84—28.76,
p < .001) across all valence types, but also positive evidence for
the main effect of Valence (BF;o = 4.72—8.85, p < .001) across all
expectancy types. This pattern was robustly found across all
preprocessing and quantification methods.

3.4.  Meta-analysis (robustness test 5)

For the meta-analysis, forest and funnel plots were computed.
We report and plot median and distribution of the weighted
effect sizes, 95% confidence intervals, and the number of labs
successfully replicating the original effect.
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Fig. 5 — Forest Plots. Correlation coefficients (converted from partial eta squared) for various laboratories. Circle size
corresponds to sample size, indicating the robustness of findings in each lab. The orange square shows the meta-
analytically aggregated score. The blue circle shows the effect size from Hajcak et al. (2005) (derived from the reported F
statistic). Correlation coefficients are coded in such a way that positive values are evidence in favor of the expected effect
under consideration (noted in the caption). UX = Unexpected. EX = Expected. R = Reward. NR = NoReward. Please note that
the FRN is a negative potential, hence a smaller (more negative) amplitude shows a stronger effect. ANU = Australian
National University, Australia. BON = Bond University, Australia. CIM = Central Institute of Mental Health Mannheim,
Germany. ERA = Erasmus University Rotterdam, The Netherlands. GUF = Goethe University Frankfurt am Main, Germany.
MSH = Medical School Hamburg, Germany. TUD = Technical University Dresden, Germany. UCM = CINPSI Neurocog
UCMaule, Chile. UGE = Ghent University, Belgium. UHH = University Hamburg, Germany. UIB = University of Bergen,
Norway. UNL = Leiden University, The Netherlands. URE = University of Regensburg, Germany

The meta-analysis on the FRN/RewP showed significant
main effects of Expectancy [r = .32, p < .001, 95% CI (.22, .42),
Q(12) = 2.3, p = .999, I? = .0%] and Location [r = .60, p < .001,
95% CI (.52, .66), Q(12) = 8.6, p = .733, I? = .0%], as well as
interaction between these two factors [r = .16, p = .005, 95%
CI (.05, .27), Q(12) = 13.1, p = .359, I? = 6.7%]. The large main
effect of Location was robustly detected across all labs
except one (i.e., 12 out of 13 labs showed a significant effect
in the expected direction, with the FRN/RewP the largest at
Fz > Cz > Pz). While all labs showed that the FRN/RewP was
numerically larger for unexpected compared to expected
outcomes, this relatively small effect was only significant in
a few of them (i.e., 4 out of 13 labs showed it). Moreover,
the interaction between Location and Expectancy was only
significant in 2 out of 13 labs, and some of them
showed even opposite effects (see Fig. 5 and Supplementary
Fig. 4).

The meta-analysis on the P300 showed significant main
effects of Expectancy [r = .63, p < .001, 95% CI (.56, .69),
Q(12) =9.5,p = .661, I> = .0%] and Valence [r = .59, p < .001, 95%

CI (49, .68), Q(12) = 20.3, p = .062, I> = 41.3%], while the
interaction between them was not significant [r = .07, p = .23,
95% CI (—.04, .17), Q(12) = 11.9, p = .457, I?> = .0%)]. The large
main effect of Expectancy was robustly detected across all
labs (i.e., all 13 labs showed a significant effect in the expected
direction, with the P300 being larger for unexpected compared
to expected outcomes). Similarly, the large main effect of
Valence was robustly detected in a majority of labs (i.e., 11 out
of 13 labs showed a significant effect in the expected direction,
with the P300 being larger for reward compared to no-reward
outcomes). In comparison, the interaction between Valence
and Expectancy was only significant in one lab, where the
effect was reversed compared to most other labs (see Fig. 5
and Supplementary Fig. 4).

For all effects, the aggregated effect sizes across all labs fell
within the estimated confidence interval of the original sam-
ple, which were quite wide. However, for the previously re-
ported significant effects (i.e., main effect of Location for the
FRN, main effect of Expectancy for the P300 component), the
aggregated effect sizes were smaller than the ones reported in
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the original study. In comparison, for the previously reported
non-significant effects (i.e., main effect of Expectancy for the
FRN, main effect of Valence for the P300 component), the
aggregated effect sizes were larger than the ones reported in
that study.

3.5.  Temporospatial principal component analysis
(robustness test 6)

For the PCA analysis, the data of 230 participants coming from
8 labs could be used (the other ones did not include the rele-
vant channels). Based on the time course and scalp distribu-
tion, four temporospatial factors were identified that closely
corresponded to the FRN/RewP and P300 components. One of
these factors captured the spatiotemporal variations of the
FRN/RewP component, while the remaining ones captured
that of the P300 component (see Fig. 6).

The PCA factor TF03SF1, corresponding to the FRN/RewP
component, exhibited a peak latency at 276 msec over the
central area (maximal at Cz). The robust ANOVA revealed a
significant main effect of Valence (Twj/C101980 = 271.02,
p < .001, MSe = 38.75), exhibiting a larger positivity for reward
than no-reward outcomes (M rewara = 12.08 uV, sd = .04 vs M
NoReward = 6.15 nV, SD = .03). In contrast, the main effect of
Expectancy was not significant (Twyt/C2.0176.0 = 1.67, p = .189,
MSe = 13.01). Moreover, the interaction between them was
significant (Twj;/C2.0,176.0 = 6.16, p < .002, MSe = 5.28), with this
PCA factor differentiating better reward from no-reward out-
comes for unexpected compared to expected outcomes. The
positivity was larger for unexpected reward compared to ex-
pected rewards, while the opposite pattern was true for no-
reward outcomes (M unexpected Reward = 12.38 uV, sd = .04 vs
M Expected Reward — 11.66 uv, sd = .03 us M Unexpected NoReward-
=629V, sd = .03us M =6.35 uV, sd = .03).

Expected NoReward

The PCA factor TF04SF1, which corresponded to the P300
component, exhibited a peak latency at 366 msec over the
central area (maximal at Cz). Although the robust ANOVA
revealed no significant main effect of Valence (Twy/
C1.0,198.0 = 1.03, p = .311, MSe = 15.76), the effect of Expectancy
reached significance (Twy;/C2.0,176.0 = 37.78, p < .001, MSe = 7.91),
exhibiting the largest positivity for the unexpected outcomes
(M Unexpectea = 7.50 pV, sd = .02 US M pxpected = 5.85 nV, sd = .02
US M neutral = 6.22 pV, sd = .02). The interaction between
Valence and Expectancy was not significant (Twy/
C2.0.176.0 = 3.29, p = .0389, MSe = 4.98).

Two additional PCA factors could be related to the P300
component and are described in the supplementary material
since their latency was later than the average peak of this ERP
component after 400 msec, although still falling within the
time interval of the P300 component according to some
models; see (Polich, 2007). These two additional factors were
both significantly modulated by Valence, while only one of
them additionally showed a significant main effect of Expec-
tancy. None of them showed a significant interaction effect,
see Supplementary section 4.

4, Discussion

In this study, we directly replicated Hajcak et al. (2005) as part
of the #EEGManyLabs project (Pavlov et al., 2021). We exam-
ined the sensitivity of the FRN and P300 components to
outcome valence and expectancy using a simple guessing
task. Hajcak et al. (2005) found that the FRN distinguished
reward from no-reward outcomes regardless of expectancy,
while the P300 differentiated unexpected from expected out-
comes, independent of valence. This led to a two-stage model
of feedback processing: valence is processed at the FRN level,


https://doi.org/10.1016/j.cortex.2024.12.017
https://doi.org/10.1016/j.cortex.2024.12.017

CORTEX 184 (2025) 150—1I71 165

while expectancy mostly influences the P300. Our replication,
with an unprecedented sample size of up to 360 participants
across 13 laboratories worldwide, partly corroborates these
findings but contradicts this simple two-stage model. Unlike
Hajcak et al. (2005), we found that both the FRN/RewP and the
P300 components were significantly modulated by both
outcome expectancy and valence. In addition to the exact
replication using the same EEG pre-processing and scoring
methods, we conducted several robustness tests, a meta-
analysis including laboratory as a variable, and a PCA. These
methods consistently confirmed our findings for the FRN/
RewP and P300 components.

The original study reported significant effects of expec-
tancy only for the P300 (valence was not tested for the FRN)
while, for the FRN/RewP and P300 components, it reported
null-effects of expectancy and valence, respectively. There-
fore, we aimed for a large sample size in our study to detect
small but relevant effects (Paul et al., 2020). In comparison, the
original study had a modest sample size (n = 17), common in
neurophysiology at that time (Picton et al., 2000). However,
with a well-powered sample, we observed that expectancy
had a small to moderate effect on the FRN/RewP component.
With only 17 participants, detecting a similar significant effect
would have been rather unlikely given that the statistical
power to detect an effect of np? = .08 with 17 participants is
only around 40%. Consequently, the previously reported
“insensitivity” of the FRN/RewP to expectancy was most likely
a false negative finding, emphasizing that absence of evidence
does not equate to evidence of absence.

Our study shows instead that the FRN/RewP is robustly
modulated by expectancy, albeit to a lesser extent than by
valence, and to a lesser extent than the P300 component. This
result challenges the view that the FRN/RewP solely repre-
sents binary outcome valence processing (Hajcak, Moser,
Holroyd, & Simons, 2006; Kujawa, Smith, Luhmann, &
Hajcak, 2013). To explain it, the reinforcement learning
framework provides a more plausible model, according to
which the FRN/RewP captures activity in a dopaminergic
fronto-striatal network where both valence and expectancy
are processed concurrently (Holroyd & Coles, 2002; Ullsperger,
Fischer, et al,, 2014). At the same time, it remains to be
determined which role the P300 component could play in this
ERN-RL framework. Moreover, using a guessing task rather
than a learning task, our replication indicates that reinforce-
ment learning (see Sutton & Barto, 1998) is not required to
produce these ERP effects. This implies that the cue infor-
mation about reward probability was sufficient to influence
feedback processing. These findings support the idea that
subjective expectancy, rather than reward probability maxi-
mization, could actually drive these FRN/RewP amplitude
changes (Walentowska, Severo, Moors, & Pourtois, 2019).
Notably, other ERP findings suggest that even when reward
probabilities were held constant, the FRN/RewP amplitudes
could vary depending if reward probabilities were perceived
as better or worse than previously experienced (Mushtag,
Stoet, Bland, & Schaefer, 2013). In this vein, later results
from Hajcak et al. (2007) are also informative: using the same
guessing task as used here, the authors asked participants
about their reward expectations either before or after the in-
formation cue. They found that the FRN/RewP component was

sensitive to the expectancy manipulation only when partici-
pants rated their expectations after the presentation of the
information cue, suggesting that this effect depends on the
close coupling of (subjective) predictions and outcomes. In the
current study, our results show that participants reported
paying attention to both the reward probability cue and the
feedback, possibly indicating they sought to maximize
reward, even though outcomes were unrelated to any
behavioral strategy. Thus, it is possible that the effect of
(objective) expectancy on the FRN/RewP component becomes
larger the more explicitly subjective expectations align with
manipulated variables. We suggest that a potentially fruitful
line of future study could be to directly compare the impact of
subjective and objective reward probabilities.

The second discrepancy worth-mentioning between our
results and the original study is that also the P300 component
is robustly modulated by both valence and expectancy, and
not only expectancy as postulated by the two-stage model
outlined above. While expectancy’s influence on the P300 is
well-documented across various domains (Polich, 2007),
valence effects on this ERP component during performance
monitoring are less consistent (Ullsperger, Fischer, et al,
2014). Some have even argued that it is blind to outcome
valence (Hajcak et al., 2006; Kujawa et al., 2013). Our replica-
tion clearly demonstrates that the P300 amplitude is signifi-
cantly modulated by outcome valence, being larger for reward
than no-reward outcomes. This suggests that its amplitude
variations likely reflect a motivational effect (Nieuwenhuis,
Aston-Jones, & Cohen, 2005; San Martin, 2012). Although the
specific processes underlying the P300 remain unclear
(Verleger, 2020), our findings indicate that this component is
enhanced for favorable outcomes, possibly reflecting
approach motivation (Harmon-jones, Harmon-Jones, & Price,
2013). This aligns with a study on social feedback process-
ing, which also found enhanced P300 activity for favorable,
expected outcomes (Van der Veen, van der Molen, Sahibdin, &
Franken, 2014). Nevertheless, since we did not include a loss
condition (only no-reward versus reward), it remains an open
question how these effects compare to unfavorable outcomes.
Additional EEG research is needed to address this question
and directly assess the extent to which motivationally rele-
vant or meaningful outcomes could influence the P300
component (Glazer et al., 2018; San Martin, 2012; Stewardson
& Sambrook, 2020). In this context, it appears important to
clarify whether relevance, memory updating, or perhaps
another cognitive or emotional process drives this neuro-
physiological effect.

Given that the FRN/RewP and P300 components rapidly
follow each other, overlapping effects of expectancy and
valence may be artificially inflated. This makes our additional
PCA analysis particularly important, as both components
clearly distinguish between reward and no-reward outcomes.
The PCA allowed us to disentangle successive and overlapping
ERP components (Dien, 2012). While carefully controlling for
the influence of other spatiotemporal components, the PCA
revealed that the valence effect at the FRN/RewP level was
distinct and independent from that of the P300. Our findings
therefore suggest that valence processing is multifaceted and
influences both the FRN/RewP and P300, which likely capture
distinct facets of it. Speculatively, the FRN/RewP may reflect
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early hedonic feedback processing (“liking”), while the sub-
sequent P300 may represent its motivational value
(“wanting”), consistent with theoretical frameworks that
decompose brain pleasure mechanisms into liking and
wanting components (see Berridge, Schmeichel, & Espana,
2012). A related effect could be shown when considering
saturation to (e.g., food-related) rewards, which affected only
the P300 component (Huverman et al, 2021). Even more
speculatively, a similar division might be applied to the pro-
cessing of outcome expectancy because the PCA analysis
confirmed distinct and independent effects of it on the FRN/
RewP and the P300. This implies that, similar to valence, ex-
pectancy processing during performance monitoring could
involve multiple components. While the PCA effectively dis-
entangles these components, the functional significance of
these successive expectancy (as well as valence) effects re-
mains challenging to grasp. Because it could not be addressed
directly with the current ERP analyses, future studies are
needed to shed light on it and eventually improve or amend
current theoretical models of performance monitoring.
Moreover, at the methodological level, since we used visual
inspection to select the main PCA factors corresponding to the
FRN/RewP and P300, we believe that replicability could be
enhanced in the future if automated procedures or algorithms
would be used to carry out this selection.

Based on our results, one could hypothesize that the FRN/
RewP reflects a “crude” reward prediction error in a midbrain-
dependent fronto-striatal loop (Schultz, 2016). Consistent with
this hypothesis, single-trial ERP studies have shown that both
FRN/RewP and P300 are influenced by prediction errors but
this influence varies depending on the context (Hoy et al,
2021; Weber & Bellebaum, 2024). Interestingly, even cere-
bellar output is crucial for learning from action outcomes, as
disruptions in cerebellar function impair the FRN/RewP
component (Huvermann et al., 2024). The fronto-striatal
reward prediction error signal is then being relayed to areas
such as the hippocampus or entorhinal cortex involved in
memory or reinforcement learning, potentially giving rise to
the P300 component (Soltani & Knight, 2000).

Besides the theoretical implications and better functional
delineation of the FRN/RewP and P300 components during
performance monitoring, our replication highlights their
sensitivity to different EEG data processing methods.
Embedded in the #EEGManylabs project, our replication
aimed to address methodological limitations of previous EEG
research, such as small sample sizes and lack of preregistra-
tion (Pavlov et al., 2021). We performed an almost exact
replication with sufficient statistical power and supplemented
it with robustness tests, including a PCA and a meta-analysis.
Overall, these analyses largely concurred on a robust ampli-
tude modulation of the FRN/RewP by expectancy. Nonethe-
less, there are some differences between them worth
mentioning, as they might explain some of the discrepant
results reported earlier in the literature. First, the peak-
scoring method showed the expectancy effect of the FRN/
RewP most robustly (see also Paul et al., 2020). In contrast, the
mean-scoring method yielded more topographical precision
as it was confined to Fz, where this component is expected to
reach its maximum amplitude given its intracranial genera-
tors are presumably located in the dorsal medial prefrontal

cortex (Hauser et al., 2014). At the same time, the liability of
the peak-scoring to noise (see Luck, 2005) led to a larger SME as
a measure of within-subject variability across trials (see
Supplementary Table 1). Fortunately, the pre-processing
strategies did not have a large influence on the pattern of re-
sults. However, they were aimed to be as similar as possible,
with the largest difference concerning the correction of ocular
artifacts. Other important methodological choices, e.g., the
choice of reference or the time-window used to define the ERP
components, were not investigated, but are probably worth
exploring further in future EEG studies. Multiverse analyses,
which systematically explore the influence of methodological
choices across multiple analytical pipelines, could also pro-
vide valuable insights into these questions (see Clayson, 2024).

Aligned with the ERN-RL framework, the FRN/RewP dif-
ference was found to be larger for unexpected events, with a
stronger response observed for unexpected versus expected
outcomes. Alongside the traditional difference-wave
approach (reward versus no-reward) used to assess the influ-
ence of expectancy effects on the FRN/RewP component, we
further assessed the components separately for reward and
no-reward outcomes to investigate whether the expectancy
effect was driven by one type of outcome, providing additional
insights into its mechanism. Prior research suggests that the
RewP (in response to reward) can serve as the counterpart to
the FRN (in response no-reward or loss) with opposite polarity
(Kappenman, Farrens, Zhang, Stewart, & Luck, 2021; Proudfit,
2015). Although difference-waves are used to analyze these
effects in this framework, the RewP and FRN'’s different spatio-
temporal properties may obscure distinct modulatory effects
of expectancy and valence for reward and no-reward outcome,
respectively (Gheza et al., 2018). Our findings strongly support
this distinction, showing that expectancy effects were stron-
ger and more robust for rewards than no-rewards, indicating
that the RewP/FRN component was boosted in particular in
response to unexpected reward outcomes, while the RewP/
FRN component was not influenced by the expectancy of no-
reward. Bayes factors provided evidence for the absence of
an expectancy effect for no-rewards (when using mean-
scoring, which is more suitable to define the RewP in the
absence of a clear peak). This finding is not surprising, as re-
wards were more relevant to participants in the current task,
while no-rewards were presumably less informative. There-
fore, the relevance or informativeness of feedback, which may
be closely linked to the participants' curiosity and motivation
for information-seeking, should be considered in future study
designs (Kidd & Hayden, 2015). It is possible that expectancy
impacts feedback processing at the level of the FRN/RewP
component only when the feedback is meaningful to the
participant (Walentowska, Paul, Severo, Moors, & Pourtois,
2018). Additionally, prior research using the absence of aver-
sive outcomes as positive outcomes (i.e., “rewarding”) has
often failed to find that the RewP/FRN component (defined as a
difference score) is larger for unexpected than expected
feedback, highlighting the importance of outcome type in
determining expectancy effects (e.g., Talmi, Atkinson, & El-
Deredy, 2013; Bauer et al., 2024). More broadly, these findings
suggest that using difference waves may not be ideal for
examining the modulatory effects of expectancy on early
performance monitoring ERP components, as this method can
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obscure potentially asymmetrical effects on the overlapping
RewP and FRN components.

At the methodological level, our series of robustness
tests allowed us to compare various analytical approaches
for data collected across multiple labs. These approaches
included an ANOVA on the entire dataset without ac-
counting for potential differences between labs, a Bayesian
multilevel model (MLM) with random intercepts and slopes
for each lab, and a random-effects meta-analysis across all
13 labs, which accounted for the lab effect and estimated
heterogeneity. Importantly, accounting for the differences
between labs did not significantly alter the effect sizes (e.g.,
n5 = .08 in ANOVA vs 77 = .10 in the meta-analysis for the
FRN expectancy effect, and 73 = .32 in ANOVA vs n3 = .35 in
the meta-analysis for the P300 valence effect). The use of
Bayesian MLM, compared to the meta-analysis, did not
noticeably affect the results either, at least for the peak
scoring approach.

We collected data from 13 laboratories across seven
countries on three continents. Despite noticeable differences
in hardware and potential variations in local populations, the
overall effect, exemplified by the expectancy effect on FRN,
remained consistent. Strikingly, conventional heterogeneity
estimates indicated no variability. This result is important
because it indirectly suggests that the effects in this task are
quite robust. Notably, the effect size for the expectancy effect
on FRN in the ANOVA in our replication turned out to be
exactly the same as our estimate of the effect size in the
original study. Moreover, our effect sizes for all effects of in-
terest fell within the confidence interval of the original study.
The diverse nature of our sample, along with the absence of
variability in the results, further supports the robustness of
the observed effects.

In addition to these methodological insights, our study
provides some recommendations for future EEG studies on the
FRN/RewP and P300 components regarding sample size esti-
mation, should the same task be used (see Supplementary
Table 8). In short, for each ERP component and effect under
consideration (i.e., Location, Valence, Expectancy, or their
interaction), we have used the effect size reported in this study
and computed a sample size estimation. We believe this in-
formation could be valuable to researchers working on perfor-
mance monitoring. Moreover, because the data and scripts of
this replication are publicly available, they could easily be used
in future studies to perform additional analyses (e.g., time-
frequency decompositions). Similarly, our data could be
pooled together with other EEG data sets available in the liter-
ature and contribute to mega-studies or mega-analyses
(Costafreda, 2009). These efforts would have the potential to
provide a more precise estimate of the effect size under scru-
tiny or to identify possible moderators (e.g., learning, different
feedback types or stimuli used). Additionally, since we collected
some personality questionnaires, pooling with existing data
could allow the investigation of interindividual differences in
feedback processing. Furthermore, this study highlights the
broader significance of replication studies in advancing psy-
chological theories. Replication not only validates previous
findings but also refines and challenges existing theories in
cognitive neuroscience, ensuring that they are robust and
generalizable. Thus, we can wuncover nuances and

inconsistencies that lead to a deeper understanding of psy-
chological processes.

In conclusion, our replication underscores the complexity
of feedback processing in the brain and reveals several ad-
vantages of a large and collaborative EEG data collection to
gain novel insights. Crucially, we found no support of the two-
stage model of feedback processing. Instead, our new results
suggest that the premises of the ERN-RL model might also
include the P300 component, besides the FRN/RewP. In light of
them, we suggest an integrated model of evaluative feedback
processing where both valence and expectancy are concur-
rently processed across multiple stages. Furthermore, we
advocate for more stringent methods, including the use of
preregistration and the consideration of effect sizes to deter-
mine appropriate sample sizes, and hope the present repli-
cation and associated resources could be used to guide future
research on the electrophysiological correlates of feedback
processing.
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