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ABSTRACT
Response inhibition, the cancellation of planned movement, is essential for everyday motor control. Extensive fMRI and brain 
stimulation research provides evidence for the crucial role of a number of cortical and subcortical regions in response inhibition, 
including the subthalamic nucleus (STN), presupplementary motor area (preSMA) and the inferior frontal gyrus (IFG). Current 
models assume that these regions operate as a network, with action cancellation originating in the cortical areas and then ex-
ecuted rapidly via the subcortex. Response inhibition slows in older age, a change that has been attributed to deterioration or 
changes in the connectivity and integrity of this network. However, previous research has mainly used whole-brain approaches 
when investigating changes in structural connectivity across the lifespan or has used simpler measures to investigate structural 
ageing. Here, we used high-resolution quantitative and diffusion MRI to extensively examine the anatomical changes that occur 
in this network across the lifespan. We found age-related changes in iron concentration in these tracts, increases in the apparent 
diffusion coefficient and some evidence for a decrease in myelin content. Conversely, we found very little evidence for age-related 
anatomical changes in the regions themselves. We propose that some of the functional changes observed in these regions in older 
adult populations (e.g., increased BOLD recruitment) are a reflection of alterations to the connectivity between the regions rather 
than localised regional change.

1   |   Introduction

Response inhibition is an essential part of everyday motor con-
trol, and is crucial for successfully navigating dynamic and 
complex environments. An important part of response inhibi-
tion is action cancellation, the sudden termination of planned 
or already-initiated movement (Sebastian, Pohl, et  al.  2013; 

Wessel and Aron  2017). Action cancellation is impeded in 
older age, with older adults typically showing delayed stopping 
latencies (Rey-Mermet and Gade 2018; Smittenaar et al. 2013; 
Tsvetanov et al. 2018). A consistent finding across the literature 
is that the subthalamic nucleus (STN), inferior frontal gyrus 
(IFG) and presupplementary motor area (preSMA) play cen-
tral roles in implementing action cancellation (see, e.g., Aron 
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et al. 2007; Diesburg and Wessel 2021; Isherwood et al. 2025; 
Isherwood et al. 2021; Lee et al. 2016; Lofredi et al. 2021; Xu 
et  al.  2016; Zandbelt et  al.  2013). These regions are thought 
to form a core fronto-basal ganglia ‘stopping network’, which 
rapidly interrupts motor activity when required. Importantly, 
age-related decline in action cancellation has been linked to 
functional and structural changes within this network, in-
cluding reduced engagement of prefrontal and basal ganglia 
regions, shifts in inhibitory control strategies and reduced 
structural connectivity between the STN, preSMA and IFG 
(Bissett and Logan  2011; Bloemendaal et  al.  2016; Coxon 
et  al.  2012; Van De Laar et  al.  2011). However, the specific 
neural breakdown that occurs in these cortical and subcor-
tical regions is incompletely understood. Here, we combine 
multiple imaging approaches to extensively examine the an-
atomical changes that occur in this network across the adult 
lifespan.

The neural correlates of response inhibition and action cancella-
tion are highly complex, and can vary depending on the specific-
ities of the task (Isherwood et al. 2023; Puri et al. 2018; Sebastian, 
Pohl, et al. 2013). Current models of response inhibition propose 
that these regions form a complex ‘stopping network’, and reg-
ulate the initiation and cancellation of actions through three 
cortico-basal ganglia pathways (the direct, indirect and hyperdi-
rect pathways), which send commands to the effector muscles via 
the STN and other parts of basal ganglia (Graybiel 2000; Rocha 
et al. 2023; Schroll and Hamker 2013). This framework was ini-
tially developed from research involving rodents and nonhuman 
primates (see, e.g., Coudé et al. 2018; Eagle et al. 2008; Nambu 
et al. 2002; Nougaret et al. 2013; Schmidt et al. 2009), but the 
anatomical plausibility of the hyperdirect pathway, which sends 
ultra-fast signals between the STN and the prefrontal cortex, has 
recently been established in humans (Bingham et al. 2023; Chen 
et al. 2020; Narayanan et al. 2020). Action cancellation itself was 
originally thought to be implemented via the hyperdirect path-
way, originating in the IFG (Aron et al. 2004, 2014; Aron and 
Poldrack 2006; Bingham et al. 2023; Cavanagh et al. 2014), while 
two-stage models of action cancellation hypothesise that both 
the indirect and hyperdirect pathways are critically involved 
in action cancellation, originating in humans in the preSMA 

and IFG respectively (Diesburg and Wessel 2021; Frank 2006; 
Schmidt and Berke 2017). As well as their individual contribu-
tions to action cancellation, the structural connectivity of these 
three regions has been shown to be an important predictor of 
stopping performance and other measures of response inhibi-
tion (Boen et al. 2022; Forstmann et al. 2012; King et al. 2012; 
Singh et al. 2021). This highlights the importance of considering 
how these regions cooperate and interact as a network in order 
to effectively coordinate movement, as well as considering their 
individual roles.

Action cancellation is frequently investigated using the stop-
signal task (SST), where participants have to make a default ‘go’ 
response in every trial, occasionally needing to cancel or inhibit 
this response after it has been initiated. Performance in trials 
where the response is cancelled is normally quantified by the 
stop-signal reaction time (SSRT), which estimates the speed of 
the latent stop process (Verbruggen et al. 2019). Older adults gen-
erally exhibit slower response times in SSTs and other response 
inhibition tasks (see e.g., Healey et al. 2024; Kang et al. 2022; 
Nikitenko et  al.  2020; Rey-Mermet and Gade  2018), but also 
show notably longer SSRTs compared to younger adults (Hsieh 
and Lin  2017; Van De Laar et  al.  2011; Williams et  al.  1999). 
Importantly, this increase in SSRT cannot solely be attributed to 
the aforementioned general slowing of response times (Bedard 
et al. 2002; Hu et al. 2018), indicating there is neural degradation 
unique to the stopping process in older age.

Alongside these behavioural changes, older adults also show 
changed neural recruitment patterns in response inhibition 
tasks. During SSTs, older adults tend to show less activation 
in the traditional ‘stopping regions’ (STN, preSMA, IFG), but 
increased activity in a wide range of additional regions (Hu 
et  al.  2018; Hu et  al.  2019; Kang et  al.  2022; Kleerekooper 
et al. 2016; Sebastian, Baldermann, et al. 2013). These broader 
recruitment patterns have also been observed in other tasks (see 
e.g., Kennedy et  al.  2015; Zhu et  al.  2010). Theoretical frame-
works such as the dedifferentiation hypothesis, Scaffolding 
Theory of Ageing and Cognition (STAC) and Compensation-
Related Utilisation of Neural Circuits Hypothesis (CRUNCH) 
postulate that these broader recruitment patterns serve as a 
compensatory mechanism for localised deterioration in the re-
gions that were previously more specialised in performing these 
tasks (Geerligs et al. 2015; Kang et al. 2022; Reuter-Lorenz and 
Park 2014). This more widespread recruitment serves to main-
tain behavioural performance, but as task demand increases or 
when there is further structural degradation, this compensation 
is less effective and behavioural performance begins to decline. 
Age-related structural decline in the brain has indeed been ob-
served, but patterns of decline vary from region to region and 
between different networks (Geerligs et al. 2015; Zimmermann 
et  al.  2016). Changes in specific networks and regions need 
therefore to be individually considered and cannot be described 
in a generalised manner.

Age-related connectivity changes have previously been in-
vestigated using diffusion-weighted imaging (DWI), a struc-
tural application of magnetic resonance imaging (MRI) which 
quantifies the movement of water molecules in the brain. 
This movement is anatomically constrained by brain struc-
tures such as white matter and fibre bundles. Determining 

Summary

•	 Response inhibition relies on a specific cortical–sub-
cortical network including the presupplementary 
motor area, inferior frontal gyrus and subthalamic 
nucleus. The functionality of this network changes 
with age; we examined how structural changes may 
underpin this changed functionality.

•	 Age-related changes were more pronounced in the 
connections between these regions, rather than the 
regions themselves. Findings showed increased iron 
concentration, higher diffusivity and potential de-
crease in myelination of the white matter tracts.

•	 The functional changes seen in older adults (e.g., in-
creased BOLD activation) may reflect compensatory 
recruitment due to degraded connectivity, rather than 
direct deterioration of individual brain regions.
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the magnitude and direction of water diffusion thus enables 
estimation of the underlying anatomy (Grier 2020; O'Donnell 
and Westin 2011). There are a number of common diffusion 
metrics, but two widely-used ones are the apparent diffu-
sion coefficient (ADC) and fractional anisotropy (FA) (Beck 
et al. 2021; Lazari and Lipp 2021; Porcu et al. 2021; Sullivan 
and Pfefferbaum 2006). The ADC relates to the net diffusion 
in a voxel, and will increase as water movement becomes less 
anatomically constrained (e.g., with breakdown of brain struc-
ture). FA is a ratio measure that quantifies the extent to which 
the water movement is anisotropic (nonuniform). Higher val-
ues of FA (closer to 1) indicate that the movement is more con-
strained. Both measures are generally thought to reflect white 
matter integrity and be influenced by biophysical measures 
(Grier  2020; O'Donnell and Westin  2011). These measures 
have frequently been used to investigate neuroanatomical 
changes across the adult lifespan (see e.g., Beck et  al.  2021; 
Henriques et  al.  2023; Lebel et  al.  2012). The changes that 
occur in these metrics in older age vary from region to region, 
but generally, FA will increase and ADC will decrease.

Connectivity between the canonical stopping regions (STN, 
IFG, preSMA), indexed via various diffusion metrics, has 
been associated with response inhibition performance and 
SSRT in children, adolescents and young adults (Aron 2007; 
Boen et al. 2022; King et al. 2012; Madsen et al. 2020; Zhang 
and Iwaki  2020). While there has been less investigation of 
older adults, broader changes in diffusion indices (i.e., not 
specific to the stopping network) have been linked to response 
inhibition performance (Yang et al. 2019) and connectivity be-
tween the preSMA and STN has been found to be predictive 
of SSRT (Coxon et al. 2012). Aside from these few examples, 
investigations regarding the anatomical changes that occur in 
this network across the adult lifespan have been limited, par-
ticularly in healthy populations.

Further, although the aforementioned diffusion metrics are 
often assumed to directly index myelin integrity, they are 
likely influenced by a range of microstructural properties 
in older adults, including axonal loss, fibre dispersion and 
variability in fibre and neurite orientation (Beck et al. 2021; 
Grussu et al. 2017; Lazari and Lipp 2021), and are thus rela-
tively unspecific in terms of the anatomical changes they cap-
ture. Assessments of neuroanatomical ageing can therefore be 
complemented by other imaging techniques. Quantitative MRI 
(qMRI) can be used to estimate histological measures of brain 
tissue, such as iron and myelin, in vivo (Keuken et al. 2017; 
Madden and Merenstein  2023; Miletić et  al.  2022; Weiskopf 
et  al.  2015). As well as being critical for normal brain func-
tion, these biophysical properties are highly relevant in inves-
tigations of the ageing brain. Demyelination is a hallmark of 
ageing, and iron is increasingly recognised as an important 
factor in both diseased and healthy ageing contexts (Buyanova 
and Arsalidou 2021). Importantly, age-related changes in iron 
and myelin concentrations tend to be region-specific, with 
certain areas exhibiting high levels of iron accumulation and 
others showing minimal changes (Daugherty and Raz  2015; 
Hagemeier et  al.  2012; Miletić et  al.  2022). Taken together, 
assessment and interpretation of neuroanatomical changes 
across the lifespan need to be quite region-specific, that is, 
generalised hypotheses may not apply to individual networks 

or regions (Geerligs et  al.  2015). Utilisation of multimodal 
imaging approaches aids in building a richer picture of ana-
tomical change, enhancing understanding of the intricate and 
dynamic changes that occur across the adult lifespan (Tardif 
et al. 2016).

Here, we combined high-resolution DWI and ultra-high field 
qMRI (acquired at 3 and 7 Tesla respectively) to examine the 
physiology of the stopping network across the lifespan in an 
adult sample. We quantified age-related changes in these mea-
sures, providing a comprehensive assessment of the neuroana-
tomical changes that may precipitate the behavioural changes in 
action cancellation observed in older populations. Additionally, 
given that diffusion measures are so frequently assumed to 
index myelination and the limited availability of DWI and qMRI 
datasets in the same sample, we explored the relationship be-
tween the diffusion measures and age, iron and myelin to guide 
the interpretation of DWI metrics in future studies.

2   |   Methods

2.1   |   Participants

We used the Amsterdam ultra-high field adult lifespan data-
base (AHEAD; Alkemade et al. 2020), which comprises multi-
modal MRI data from 105 healthy adults. We used the subset 
of these (N = 49, 27 females) for whom DWI data are also avail-
able (Keuken et  al.  2022). Participants were scanned on two 
different days, some weeks apart. The quantitative images were 
acquired in the first session and the diffusion images were ac-
quired in the second. The overarching procedure is depicted in 
Figure  1. Participants were 21–83 years old. Exclusion criteria 
were any factors that may interfere with MRI scanning, for ex-
ample, MRI incompatibility, pregnancy, or self-reported claus-
trophobia. All procedures were in accordance with the Code of 
Ethics of the World Medical Association and approved by the 
Institutional Review Board at the University of Amsterdam 
(ERB number 2016-DP-6897). Informed consent was obtained 
from participants including permission for the future release of 
de-identified data.

2.2   |   DWI

2.2.1   |   Data Acquisition

The diffusion images were acquired at the Spinoza Centre for 
Neuroimaging in Amsterdam, the Netherlands with a Philips 
3 T Ingenia CX MRI scanner using a 32-channel receiver head 
coil. We used an MS-ME (multi slice spin-echo) single shot se-
quence with 1.28 mm isotropic resolution. Diffusion weight-
ing was isotopically distributed along 48, 56 and 64 directions 
with b values of 700 s/mm2, 1000 s/mm2 and 1600 s/mm2 re-
spectively. Due to memory limitations, the 64-direction scan 
was split into two 32-direction scans. Twelve b0 volumes were 
acquired within the MS-ME sequences and an additional eight 
were acquired at the end with an inverted fat shift direction. 
Scan parameters: TE = 78 ms, FA = 90°, TR = 8100 ms, acceler-
ation factor SENSEAP = 2, FOV = 205 × 205, slice gap = 0 mm, 
TAb0 = 00:49 min, TAb700 = 13:48 min, TAb1000 = 17:19 min, 
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TAb1600 = 9:44 min for each half, that is, 19:28 min in total. Total 
acquisition time ≈100 min.

2.2.2   |   Preprocessing

The preprocessing pipeline for this diffusion dataset has been 
previously reported (Keuken et al. 2022). In brief, all data were 
denoised using the PCA-based function dwidenoise in MRtrix 
V3.0.2 (Tournier et al. 2019). Gibbs artefacts were removed using 
the mrdegibbs function in MRtrix, and susceptibility-induced 
off-resonance field distortions were corrected using the different 
phase-encoding blips of the b0 images in topup, implemented 
with FSL V5.0.11 (Smith et al. 2004). The output from topup was 
used to apply eddy current correction using eddyOpenMP in 
FSL. Finally, an N4 bias correction was applied using dwibias-
correct and a brain mask estimated using dwi2mask, both with 
MRtrix.

2.2.3   |   Tractography

Connectivity between the three ROIs (IFG-preSMA, IFG-STN 
and STN-preSMA in each hemisphere) was estimated from 
whole-brain tractography, implemented using MRtrix (Tournier 
et al. 2019). This process was performed in individual space for 
each participant. The final six tracts were transformed into MNI 
space via 2-step registration using ANTS (SyN for Step 1 and 
SyNAggro for Step 2).

From the preprocessed diffusion images (see 2.2.2), fibre ori-
entation distributions (FODs) were estimated using dwi2fod 
(Tournier et al. 2004). We used the msmt_csd algorithm, which 
is designed for data with multiple b values (Jeurissen et al. 2014). 
We then performed whole-brain tractography based on the FODs 
using tckgen with 25 million streamlines. We used the iFOD2 
(Second-Order Integration Over FODs) algorithm, a probabilis-
tic algorithm that is able to track fibres through regions with 
high levels of fibre crossing and complex geometry such as the 
subcortex (Tournier et al. 2010). Note that we adjusted the FOD 
amplitude cutoff point for track termination from 0.1 to 0.05; we 
found the original cutoff value to be too conservative for some of 
the older adults in the dataset, drastically limiting the number 

of streamlines identified for those participants in regions with 
white matter inflammation or lesions.

We then refined the whole-brain tractograms using tcksift2 (Smith 
et al. 2015) and isolated the streamlines that were connected to any 
of the ROIs using tck2connectome (Hagmann et al. 2008). The STN 
was defined based on the Multi-Contrast Anatomical Subcortical 
Structures Parcellation (MASSP) automated algorithm (Bazin 
et al. 2020). The IFG and preSMA were defined based on masks 
from Neubert and colleagues (IFG: Neubert et al. 2014; preSMA: 
Neubert et  al.  2015). Subsampled tractograms from two partici-
pants are shown in Figure 2.

Once we had the refined tractogram from tck2connectome, we 
used connectome2tck to identify the streamlines between each 
pair of the three ROIs, that is, the streamlines between IFG-
preSMA, STN-IFG and STN-preSMA in each hemisphere. An 
example of three of the six tracts for one participant can be 
found in Figure 3. A more detailed visualisation of these tracts 
(including axial, sagittal and coronal views across multiple par-
ticipants) is available in the Supporting Information.

2.2.4   |   Estimation of Generalised FA and ADC

Rather than the conventional estimation methods for FA (using 
the diffusion tensor model), we estimated generalised FA (GFA) 
as per Tuch (2004):

This approach makes use of the white matter FODs (generated 
in 2.2.3), with ψ given as the FOD coefficients. This poses sev-
eral advantages over tensor estimation methods. Traditional 
tensor-based FA estimation assumes a single dominant dif-
fusion direction per voxel, which is computationally simple 
but may inadequately represent the complexity of white mat-
ter microstructure. Given that standard DWI sequences have 
a resolution of 1–2 mm3 while axon diameters range from 1 
to 20 μm, a single voxel often contains thousands of axons 

(1)GFA =

�����n
∑n

i=1

�
Ψui

−Ψ
�2

(n − 1)
∑n

i=1Ψui

2

FIGURE 1    |    Image acquisition and processing steps. Participants were scanned on two different days, with the qMRI images acquired in the first 
session and the DWI images in the second. All processing was initially conducted in individual space and then ultimately co-registered to MNI space.
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forming multiple tracts with different orientations. Up to 
90% of voxels contain multiple fibre populations (Jeurissen 
et al. 2013; Schilling et al. 2021), meaning that diffusion esti-
mates based on a single dominant direction can oversimplify 
the underlying anatomy. Particularly, these approaches tend 
to favour the identification of major connectivity pathways, 
limiting reconstruction of more minor pathways (Behrens 
et al. 2007; Dell'Acqua and Tournier 2019; Volz et al. 2018) and 
making estimates unreliable, particularly in highly-crossing 
regions (frequently referred to as the crossing fibre prob-
lem: Alexander et al. 2001; Behrens et al. 2003). Instead, the 

FOD-based approach used for GFA preserves multidirectional 
anisotropy information, enabling a more accurate represen-
tation of microscopic fibre anisotropy, particularly in regions 
with pronounced curvature or extensive crossing fibres (Tan 
et al. 2015; Tuch 2004). It should be interpreted in the same 
manner as standard FA (i.e., it quantifies the extent to which 
water movement is anisotropic in that voxel).

ADC was calculated for each of the three b values, and these 
values were averaged to get a voxelwise, whole-brain estimation 
of ADC per participant (Moreau et al. 2018):

2.3   |   Quantitative MRI (QMRI)

2.3.1   |   Data Acquisition

The quantitative images were acquired at the Spinoza Centre for 
Neuroimaging with a Philips 7 T Achieva MRI scanner with a 
32-channel, phased-array coil. T1, T2* and QSM contrasts were 
obtained using an MP2RAGEME (multiecho magnetisation-
prepared rapid gradient echo) sequence (Caan et al. 2019) with 
0.7 mm isotropic resolution. MP2RAGEME is an extension of 
the MP2RAGE sequence (Marques et  al.  2010), and acquires 
two rapid gradient echo images (GRE1 and GRE2) in the sag-
ittal plane after a 180° inversion pulse and excitation pulses 
with inversion times of TI1 = 670 ms and TI2 = 3675.4 ms. A 
multiecho readout was added to the second inversion at four 
echo times (TE1 = 3 ms, TE2,1–4 = 3, 11.5, 19, 28.5 ms). Other 
scan parameters: FAGRE1,GRE2 = (4°, 4°), TRGRE1 = 6.2 ms, 
TRGRE2 = 31 ms, TRMPRAGEME = 6778 ms, acceleration fac-
tor SENSEPA = 2, FOV = 205 × 205 × 164 mm, acquisition ma-
trix = 292 × 290, bandwidth = 404.9 MHz, reconstructed voxel 
size = 0.67 × 0.67 × 0.7 mm, TFE (turbo factor) = 150 resulting in 
176 shots. Total acquisition time = 19.53 min.

(2)

ADC =
1

3

�
−

1

700
ln

�
⟨b700⟩
⟨b0⟩

�
−

1

1000
ln

�
⟨b1000⟩
⟨b0⟩

�
−

1

1600
ln

�
⟨b1600⟩
⟨b0⟩

��

FIGURE 2    |    Whole-brain tractograms from two separate participants, shown in the coronal (left) and axial (right) planes. Note that these images 
show subsampled tractograms, with 200,000 streamlines for ease of visualisation. The tractography used for analysis had 25 million streamlines, 
estimated using fibre orientation distributions. Colours represent the local orientation of that tract (red: Left–right; green: Anterior–posterior; blue: 
Inferior–superior).

FIGURE 3    |    Three of the six tracts of interest from one partici-
pant. The tracts of interest were the STN-IFG, STN-preSMA and IFG-
preSMA in each hemisphere, but for ease of visualisation, each tract is 
only shown in one hemisphere here. The depicted tracts are right STN-
IFG (blue), right STN-preSMA (green) and left IFG-preSMA (pink), im-
posed over the mean b0 image.
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2.3.2   |   Iron and Myelin Approximation

The procedure for estimating iron and myelin from this sample 
has been reported in full elsewhere (Miletić et al. 2022). In brief, 
preprocessing and the reconstruction of quantitative values was 
implemented in Python using Nighres (Huntenburg et al. 2018). 
Before reconstruction, the raw images were skull-stripped and 
denoised using LCPCA (Bazin et al. 2019). Voxelwise values of 
iron and myelin were estimated for each participant using pre-
viously established models based on R1, R2* and quantitative 
susceptibility mapping (QSM) metrics, as described in Miletić 
et al. (2022):

These estimations yielded whole-brain maps with iron and my-
elin estimates per voxel for each participant. From here, we ap-
plied the masks for each of the ROIs and for the tracts of interest 
generated in 2.2.3, resulting in estimations of iron and myelin 
concentration in those regions and tracts for each participant. 
The overarching procedure is depicted in Figure 1.

2.4   |   Data Analysis

We investigated age-related regional and network changes in 
the stopping network across four measures: iron, myelin, GFA 
and ADC. We first assessed age-related alterations in iron and 
myelin in the IFG, preSMA and STN (regional changes), and 
then in iron, myelin, GFA and ADC in the IFG–preSMA, STN–
IFG and STN–preSMA (network changes).

In each instance, we fit a series of polynomial regression mod-
els with participant age as a linear, quadratic, and/or cubic 
term. All models were fit with OLS, implemented using the 
Python package statsmodels (Seabold and Perktold 2010). Given 
the varying number of parameters in our candidate models, 
we compared the relative model fits using Bayesian informa-
tion criterion (BIC), which quantifies the trade-off between 
goodness-of-fit and model complexity (i.e., the number of free 
parameters in a model; Schwarz 1978). In each case, the model 
with the lowest BIC was taken as the winning model. For each 
winning model, we then identified influential datapoints using 
Cook's distance, with a threshold cutoff of 4/n (≈0.08; Rawlings 
et al. 1998). Individual datapoints that exceeded this threshold 
were removed. We then refit the data to each of the candidate 
models and re-selected the winning model, again using BIC for 
model comparison.

We quantified the relationship between age and our measures 
of interest using two complementary approaches. First, we 
tested whether iron and myelin mediated the associations be-
tween age and GFA/ADC using mediation analyses. Second, 
we computed partial correlations among iron, myelin, ADC 
and GFA, controlling for age. Finally, to examine the relation-
ships between anatomical changes in different regions, we 
assessed whether iron and myelin levels in specific regions 
mediated the associations between age and iron/myelin levels 
in the tracts.

3   |   Results

3.1   |   Averaging Between Hemispheres and Outlier 
Analysis

Student t-tests were used to assess if there were any significant 
differences between hemispheres for any of the outcome vari-
ables for any region or tract. All t-tests were nonsignificant (all 
p > 400). We therefore collapsed the data across hemispheres 
to reduce the number of fitted models and increase statistical 
power. The results of all t-tests can be found in the Supporting 
Informations.

Outliers were identified using Cook's distance. After identifying 
each winning model, we removed influential datapoints using 
a threshold cutoff of 4/n (Rawlings et al. 1998) and refitted all 
candidate models on the data, excluding these datapoints, and 
reselecting the winning model. This removed an average of 2.67 
datapoints per model (5.44% of total datapoints). Exclusions for 
each model can be found in the analysis code (https://​osf.​io/​
hnz79/​​).

3.2   |   Regional Changes (IFG, preSMA, STN)

We fit a series of polynomial regressions to assess age-related 
changes in each of the individual regions of interest (IFG, 
preSMA, STN) for iron and myelin, with participant age as 
a linear, quadratic, and/or cubic term, using BIC for model 
comparison. The six model candidates can be found in the 
Supporting Information. Model comparison results for all can-
didate models (including BIC values) can be found at https://​
osf.​io/​hnz79/​​.

Parameterised winning models with corresponding BIC are 
shown in Table 1. Winning models showed linear age-related 
changes in myelin for all three ROIs. Age-related changes in 
iron were found to be linear for the IFG and preSMA, and qua-
dratic for the STN.

3.3   |   Network Changes (IFG-preSMA, STN-IFG, 
STN-preSMA)

3.3.1   |   Age-Related Changes in Iron, Myelin, GFA 
and ADC

We first assessed age-related changes in the stopping network for 
the biophysical (iron and myelin) and diffusion measures (GFA 
and ADC). As in 3.2, we fit a series of polynomial regression mod-
els with participant age as a linear, quadratic, and/or cubic term, 
using BIC for model comparison. See Supporting Information 
for all candidate models. Model comparison results for all candi-
date models (including BIC values) can be found at https://​osf.​io/​
hnz79/​​. The parameterised winning models are described below 
and reported in Table 2 with their corresponding BIC.

3.3.1.1   |   Iron and Myelin.  The winning models showed lin-
ear age-related increases in iron in the STN-IFG and STN-preSMA 
tracts, and quadratic changes in the IFG-preSMA tract. The 
winning models showed quadratic changes in myelin in 

(3)
Iron=0.24×R2∗ +98.28×QSM−3.83

Myelin=0.11×R2∗ +31.87×R1−7.99
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the STN-IFG and STN-preSMA tracts, and linear changes in 
the IFG-preSMA tract.

3.3.1.2   |   ADC and GFA.  The winnings models identified 
quadratic changes in ADC for all three tracts of interest and lin-
ear changes for GFA. The coefficients for these models are par-
ticularly small due to their scale; normal white matter ADC 
ranges from 0.60 − 1.05 × 10−3mm2/s (Sener 2001), while GFA is 
a ratio, that is, values are between 0 and 1 (Figley et al. 2022). 
Note that some of the models showed small changes in BIC 
(e.g., BIC difference < 6), indicating there was not meaningful 
improvement in the model fit while accounting for model com-
plexity (Raftery 1995). These models are interpreted with cau-
tion. All candidate models can be found in https://​osf.​io/​hnz79/​​.

Figure  4 shows the winning models for iron, myelin, ADC 
and GFA.

3.3.2   |   Mediation and Partial Correlation Analyses

To further investigate the relationships between these variables, 
we conducted mediation analyses to assess whether iron and 
myelin influenced the association between age and diffusion 
measures in each tract of interest. Neither iron nor myelin sig-
nificantly mediated the relationship between age and diffusion 
values (p > 0.872 for all tracts), suggesting that the associations 
between age and diffusion measures are independent of iron 
and myelin levels.

Next, we examined whether iron and myelin levels in spe-
cific regions mediated the relationship between age and those 
measures in the corresponding tracts (e.g., whether iron in the 
preSMA mediated the relationship between age and iron in the 
preSMA-IFG tract). After correcting for multiple comparisons, 
we found that iron in the IFG significantly mediated the rela-
tionship between age and iron levels in both the IFG-preSMA 
and STN-IFG tracts (p = 0.003 and p = 0.005 respectively). No 
other significant mediation effects were observed for iron or 
myelin in any other regions (all p > 0.360). Estimates and signif-
icance tests for direct, indirect and total effects for each media-
tion analysis can be found in the Supporting Information.

We used partial correlations to investigate the relationship be-
tween the measures of interest (iron, myelin, ADC and GFA) per 
tract, with age given as a covariate in order to account for its 
effects. There was a weak to moderate negative correlation be-
tween almost all variables, except for iron and myelin, where the 
relationship was negligible (IFG-preSMA: r = 0.034, STN-IFG: 
r = −0.032, STN-preSMA: r = 0.006). The full partial correlation 
matrices are reported in the Supporting Information.

We also ran a series of linear models to test for the effects of sex 
and potential age-by-sex interactions. These analyses revealed 

TABLE 1    |    Age-related changes in iron and myelin in the IFG, 
preSMA and STN.

Region Measure Winning model BIC

IFG Iron � = 3.858 + 0.015x 91

Myelin � = 7.549 − 0.009x 115

preSMA Iron � = 4.510 − 0.010x 99

Myelin � = 8.046 + 0.031x 204

STN Iron � = 6.732 + 0.371x − 0.004x2 257

Myelin � = 15.353 − 0.011x 156

Note: Parameterised winning models showing age-related changes in iron and 
myelin in the regions of interest. γ denotes the outcome variable (iron or myelin); 
x denotes age. Winning models were selected based on BIC.

TABLE 2    |    Age-related changes in the stopping network.

Measure Tract Winning model BIC

Myelin IFG-preSMA � = 11.856 + 0.009x 115

STN-IFG � = 11.103 + 0.094x − 0.001x2 100

STN-preSMA � = 11.961 + 0.099x − 0.001x2 94

Iron IFG-preSMA � = 3.409 + 0.071x − 0.001x2 79

STN-IFG � = 5.159 + 0.019x 79

STN-preSMA � = 4.812 + 0.011x 76

ADC IFG-preSMA � =
(
7.96 × 10−4

)
−
(
3.71 × 10−6

)
x +

(
5.26 × 10−8

)
x2 −798

STN-IFG � =
(
7.51 × 10−4

)
−
(
4.69 × 10−6

)
x +

(
6.38 × 10−8

)
x2 −793

STN-preSMA � =
(
7.23 × 10−4

)
−
(
3.41 × 10−6

)
x +

(
4.67 × 10−8

)
x2 −802

GFA IFG-preSMA � = 0.830 −
(
3.90 × 10−5

)
x −798

STN-IFG � = 0.851 +
(
6.03 × 10−5

)
x −793

STN-preSMA � = 0.859 +
(
8.84 × 10−5

)
x −802

Note: Parameterised winning models showing age-related anatomical changes in the tracts of interest. γ denotes the outcome variable (iron, myelin, ADC or GFA); x 
denotes age. Note the coefficients are small for ADC and FA due to the small scale of these metrics.
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no significant main effects or interaction effects of sex in any 
model across all regions and tracts (all p > 0.061).

4   |   Discussion

The STN, IFG and preSMA play distinct roles in action cancel-
lation. Current models of response inhibition propose that these 
regions, among others, operate as a network, coordinating activ-
ity in order to successfully cancel or modify volitional movement. 
This inhibitory ability is compromised in older populations, with 
older adults being slower to cancel their movements. In the current 
study, we quantified anatomical changes that occur in the STN, 
IFG and preSMA and their connecting pathways by combining 
high-resolution DWI and ultra-high field qMRI in the same partic-
ipants, quantifying changes using polynomial regression. To our 
knowledge, this is the first study to examine age-related biophysi-
cal and structural changes in the stopping network.

Broadly, we identified substantial age-related anatomical 
change at the network level, that is, in the tracts that connect 

these regions, with less evidence for localised change, that is, an-
atomical change in the regions themselves. Taken together, the 
results suggest that the behavioural changes in response inhibi-
tion efficacy and altered neural recruitment patterns may be the 
product of network-level breakdown, or connectivity alterations.

4.1   |   Minimal Localised Changes (ROIs)

We found the age-related changes in iron or myelin to be mostly 
linear for the regions of interest (IFG, preSMA, STN), although 
these changes were minimal. Age-related changes in iron con-
centration have previously been observed in the STN, although 
not always (for a review, see Madden and Merenstein 2023). It 
should be noted that estimation methods for iron vary. Here, 
we used a combination of QSM and R2* to estimate iron; previ-
ous work has often used QSM or R2* individually as proxies for 
iron (see, e.g., Betts et al. 2016; Burgetova et al. 2021; Keuken 
et al. 2017). The sample size of the current study was limited due 
to the availability of DWI data, and we have previously observed 
age-related iron accumulation in the STN in larger samples 

FIGURE 4    |    Age-related changes in the IFG-preSMA, STN-IFG and STN-preSMA tracts in iron (top left), myelin (top right), apparent diffusion 
coefficient (ADC; bottom left) and generalised fractional anisotropy (GFA; bottom right). Note that some models had relatively small (i.e., < 6) im-
provement in BIC, indicating that their fits should be interpreted with caution. Error bars depict confidence interval of the regression line.
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(Miletić et al. 2022). Further, much previous work has focused 
on clinical samples and, particularly, identified iron accumu-
lation patterns in clinical samples late in the disease course. 
Iron accumulation in the STN has been correlated with severe 
motor symptoms in late-stage Parkinson's disease (PD) and has 
been hypothesised to be an important predictor of therapeutic 
and surgical outcomes (Brown et al. 2022; Huang et al. 2020). 
However, in early disease stages this association is less clear 
(Shin et al. 2018) and in healthy ageing contexts, the age-related 
changes can be inconsistent (Madden and Merenstein  2023). 
Collectively, these findings suggest that local iron change may 
exhibit subtle variations, and the relationship between local an-
atomical changes and functional or behavioural change may be 
more difficult to describe, especially compared to broader net-
work changes (see below, 4.2).

Turning to the cortex, to our knowledge there are no studies 
that have specifically examined age-related changes in iron 
in the cortex in nonclinical populations. However, Burgetova 
et  al.  (2021) did identify age-related changes in magnetic sus-
ceptibility in broader premotor and frontal regions, with these 
susceptibility changes assumed to be influenced by iron concen-
tration. Varied broader cortical changes in some qMRI metrics 
in older adult populations have also been observed (Gracien 
et  al.  2017; Seiler et  al.  2020), including in prefrontal areas 
(Gozdas et al. 2021), but again, these are not particularly region-
specific. Although there are some limitations to our approach 
(see 4.5), this highlights the difficulty in capturing specific ana-
tomical change even in relatively large cortical areas.

4.2   |   Age-Related Changes in the Stopping 
Network

We observed quadratic and linear increases in iron in the tracts 
of interest (IFG-preSMA, STN-IFG and STN-preSMA), qua-
dratic and linear changes in myelin and quadratic increases 
in ADC. GFA showed a linear increase across the lifespan, al-
though this change was minimal (see Figure  4). Further, our 
mediation analysis found very few indirect effects (see the 
Supporting Information), suggesting that the observed anatom-
ical changes do not operate in a simple linear cascade. This in-
terpretation is reinforced by the fact that the preferred models 
describing age-related change were frequently nonlinear. These 
results imply that changes in iron, myelin and diffusivity may 
reflect relatively independent ageing processes, each contribut-
ing in distinct ways to the broader decline in inhibitory control.

4.2.1   |   Iron

Iron is increasingly recognised as a significant factor in both 
diseased and healthy ageing contexts. While it is an essential 
component of neural functioning, iron is also an active oxidiser. 
Excessive iron accumulation is thought to be a factor in tissue 
degeneration, interrupting normal cellular functioning and 
causing degradation of cellular components such as mitochon-
dria, lipids and proteins (Daugherty and Raz 2015; Hagemeier 
et al. 2012). Its accumulation has also been proposed to impact 
other neurophysiological measures, such as neural oscillatory 
patterns in the beta frequency band (Lin et al. 2023). Lin and 

colleagues propose that in a PD context, observed alterations 
in beta oscillatory activity are caused by excessive iron accu-
mulation. This accumulation causes dopaminergic cell death 
in critical motor-related regions, affecting subcortical activity 
mediated by acetylcholine and γ-aminobutyric acid (GABA) 
and causing alterations in the intricate inhibitory circuitry of 
the subcortex. This ultimately leads to hyperactivation of the 
STN and the observed increase in beta oscillations. Beta oscil-
lations have also been tightly coupled with stopping behaviour 
(Wessel  2020), with beta band coherence between frontal and 
motor regions (including the preSMA and IFG) correlated with 
stopping efficacy (Ding et al. 2023). GABAergic activity has also 
been linked to response inhibition in both younger and older 
adults, and older adults tend to show a reduction of GABAergic 
levels and activity (Faßbender et al. 2021; Hermans et al. 2019; 
Quetscher et  al.  2015; Verstraelen et  al.  2021). Here, we have 
shown patterns of iron accumulation in the stopping network 
across the adult lifespan. Tentatively, this accumulation may be 
a critical component of the neural breakdown that occurs in this 
network in older age, which ultimately leads to the aforemen-
tioned observed neural and behavioural changes, including al-
terations to beta oscillatory activity and GABergic activity, and 
SSRT slowing.

4.2.2   |   Myelin

Like iron, myelin is essential for healthy brain function, speed-
ing signal conduction and facilitating longer-range signal 
transmission (Radtke et al. 2007; Williamson and Lyons 2018; 
Yeatman et al. 2014). Changes in myelin are associated with typ-
ical healthy ageing, with a loss of myelin sheaths and myelin-
ated nerve fibres affecting the functioning of neural circuits and 
contributing to normal cognitive decline (Peters  2009; Zhang 
et al. 2021). Altered demyelination patterns have also been ob-
served in a number of neurodegenerative conditions such as 
AD and multiple sclerosis (Bartzokis 2011; Grussu et al. 2017; 
Radtke et  al.  2007). These demyelination patterns have been 
proposed to be a critical element of the neural breakdown that 
occurs in AD (incidentally, stimulated by iron accumulation; see 
Bartzokis 2011; Bartzokis et al. 2007; Khattar et al. 2021).

Previous work has identified broad quadratic decreases in 
myelin with older age, similar to those observed in the cur-
rent study (Buyanova and Arsalidou 2021; Khattar et al. 2021; 
Miletić et al. 2022). Note that just like in the case of iron, dif-
ferent MRI metrics have been used as proxies for myelin. For 
example, Yeatman et  al.  (2014) used R1, Khattar et  al.  (2021) 
used myelin water fraction, and Grydeland et al. (2019) used the 
T1/T2 ratio. Whilst these estimates have been associated with 
myelination, they have also been demonstrated to be impacted 
by other factors (e.g., the T1/T2 ratio is more strongly associated 
with axon density than myelin density; Grydeland et al. 2019). 
Comparison of findings should, therefore, be made with due 
caution. Here (using a combination of R1 and R2*), we observed 
some patterns of demyelination in cortical–subcortical tracts. 
Both the IFG and the preSMA, and their connections to the 
STN, are thought to be critical in action cancellation and motor 
control (forming the hyperdirect and indirect pathways: Aron 
et  al.  2014; Bingham et  al.  2023; Diesburg and Wessel  2021; 
Kemp et  al.  2024; Munakata et  al.  2011). Action cancellation 
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itself, which is thought to be realised via these two pathways, 
is specifically compromised in older adult populations. More 
proactive or attentional elements of stopping performance are 
relatively well-preserved in older age (Bloemendaal et al. 2016; 
Hermans et  al.  2019; Kleerekooper et  al.  2016). Speculatively, 
the decrease in myelination observed in the STN-cortical tracts 
(STN-preSMA and STN-IFG) may represent some neuroana-
tomical changes that underpin these behavioural changes.

4.2.3   |   ADC and FA

We observed marked quadratic increases in the stopping network 
in ADC, but minimal changes in GFA (see Figure  4). With re-
spect to response inhibition networks, work to date has examined 
the relationship between response inhibition networks and FA, 
rather than GFA, but these findings have been highly variable. 
For example, Madsen et al. (2020) found FA correlated with SSRT 
in the preSMA only (i.e., not in the IFG or in any subcortical re-
gions), whereas Coxon et al. (2012) found this association in the 
IFG. Boen et  al.  (2022) found an association between stopping 
accuracy and FA in an IFG subcomponent1-preSMA tract only 
(other regions of interest included the caudate, putamen, insula 
and STN). These estimations of FA have largely been done using a 
tensor estimation method with relatively simple protocols, which 
has a number of limitations. An extensive comparison of estima-
tion techniques is beyond the scope of this paper, but briefly, these 
methods assume that diffusivity in each voxel can be described 
in a single direction. This creates problems in instances of cross-
ing fibres (which may occur in up to 90% of all voxels: Jeurissen 
et al. 2013; Schilling et al. 2021) and favours the identification of 
major connectivity pathways, limiting reconstruction of more 
minor pathways (Dell'Acqua and Tournier 2019; Volz et al. 2018).

Conversely, GFA is useful for estimating diffusivity in more 
complex tissue environments, that is, in regions where there 
are many crossing fibres (Glenn et  al.  2015; Sun et  al.  2023). 
Although like FA, GFA does correlate negatively with age 
(Porcu et al. 2021), previous work has found these changes to 
be highly specific from region to region, meaning generalised 
statements about age-associated changes should be considered 
with caution (Teipel et  al.  2014). Moreover, changes to white 
matter structure may have varying impacts on these metrics, 
particularly FA. They quantify relative diffusivity, meaning that 
if degradation to white matter causes uniform changes to dif-
fusivity, FA can be largely unchanged despite gross changes in 
the white matter (Figley et al. 2022). Additionally, in tensor esti-
mation approaches, only the diffusivity in the major direction is 
quantified. If there are increases in white matter density in one 
of the nonmajor directions, this will lower the anisotropy in that 
voxel, which will paradoxically lower FA, when there has actu-
ally been an increase in white matter density (Figley et al. 2022). 
This indicates that while FA is sensitive to anatomical changes, 
its interpretation in terms of specific causes remains challeng-
ing (Jones and Cercignani 2010). Instead, metrics which assess 
net diffusion, that is, not diffusion in a particular direction, may 
provide more sensitive estimations.

Converse to the GFA results, for ADC (a measure of net diffu-
sion: Helenius et al. 2002), we found consistent age-related in-
creases in all tracts of interest. In young adults, mean diffusivity 

has been found to positively correlate with SSRT in STN-IFG 
and STN-preSMA tracts (Rae et al. 2015), indicating that white 
matter integrity is intrinsic to action cancellation efficacy. Here, 
we observed an age-associated increase in ADC, which may be 
reflective of alterations in the underlying anatomy (importantly, 
these changes probably more reliably reflect anatomical degra-
dation, as ADC has been demonstrated to be more sensitive to 
underlying anatomical changes than FA: Scheurer et al. 2011).

4.3   |   Models of Ageing

Theoretical frameworks of ageing such as STAC and CRUNCH 
postulate that functional recruitment changes observed in 
older adult populations are preceded by measurable anatomi-
cal changes. For example, the STAC model hypothesises that 
functional recruitment changes are preceded by anatomical 
change including brain volume reduction, connectivity/white 
matter changes, cortical thinning and dopamine depletion (Park 
and Reuter-Lorenz  2009; Reuter-Lorenz and Park  2014). These 
changes result in broader recruitment patterns, which compen-
sate for the structural changes by recruiting a wider range of neu-
ral regions than was previously required. Here, we have shown, 
for the first time, evidence of complex anatomical changes spe-
cific to the stopping network, and suggest that these may precede 
or underpin the well-documented functional and behavioural 
changes in response inhibition in older adult populations.

Crucially, the majority of these anatomical changes were ob-
servable in the tracts that connect the canonical stopping re-
gions, and not the regions themselves, despite these regions 
showing blood-oxygenation level dependent (BOLD) activity 
changes in older adult populations (Bloemendaal et  al.  2016; 
Coxon et al. 2016). We suggest that it may be the connectivity 
changes that most crucially underpin these observed functional 
changes or at least are the most broadly measurable. This is a 
particularly salient point given the requirement for fast and ef-
ficacious transmission of information in subcortical–cortical 
pathways under response inhibition frameworks (Aron  2007; 
Diesburg and Wessel 2021; Narayanan et al. 2020), which may 
deteriorate in older age.

It should also be noted that variation in localised anatomical 
changes (i.e., in individual regions) is thought to be the cause 
of the substantial individual differences in age-related cognitive 
change (Kang et al. 2022). Likewise, in the context of response 
inhibition, a range of anatomical measures has been found to 
modulate individual performance (see, e.g., Boy et  al.  2010; 
Chowdhury et al. 2019; Coxon et al. 2016; Forstmann et al. 2012; 
King et al. 2012). More localised anatomical changes, for example, 
changes to the stopping regions themselves, were not particularly 
evident in the current study, but may be better elucidated with 
the use of behavioural data, where anatomical changes could be 
linked with individual cognitive or behavioural measures.

4.4   |   Myelin and Iron Do Not Mediate Diffusion 
Indices

DWI is a way of estimating the structure of the underlying white 
matter, based on the assumption that the movement in the white 
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matter is more constrained than in the grey matter or cerebro-
spinal fluid. It is assumed that demyelination affects these mea-
sures, resulting in increases in diffusivity (i.e., the movement 
of water is less constrained). There are few studies that have 
correlated diffusion measures with non-DWI approximations 
of myelin or ex  vivo measures, particularly outside of a clini-
cal context, meaning the extent to which these metrics do truly 
index myelin remains unclear (Arshad et  al.  2016; Henriques 
et al. 2023; Lazari and Lipp 2021).

Here, we first identified relationships between age and the dif-
fusion metrics, and then used a mediation approach to assess 
if iron and myelin were mediators of these relationships. We 
largely found no mediation effects (except for one instance, but 
the direct effect was still larger than the indirect effect, that is, 
the mediation effect was comparatively small). Given we are 
only examining a small number of tracts, these results should 
not be taken as representative of the whole brain. However, it 
does demonstrate that, particularly in an ageing context, diffu-
sion metrics may not directly reflect myelination. This is perhaps 
unsurprising given the huge number of anatomical changes that 
take place in older age; while demyelination and iron accumu-
lation are certainly a part of these, there are also broader ana-
tomical changes including a loss of dendritic spines, decreases in 
brain volume and alterations of astrocytes and other microglia 
(Palmer and Ousman  2018; Yeatman et  al.  2014), which more 
broadly affects the central nervous system and will also impact 
diffusivity. Thus, whilst diffusion metrics can be a highly useful 
metric for studying anatomical change, direct interpretations 
of the specific changes that they index should be made with 
caution.

4.5   |   Limitations

The present study has several limitations. First, the data in the 
present study are purely anatomical, that is, we have no be-
havioural data for the participants. Behavioural data were col-
lected for this sample, but due to COVID-19 restrictions, was 
gathered online, resulting in a small sample size and insufficient 
data quality for further analyses (the MRI data had been ac-
quired prior to this time). Instead, we relied on brain-behaviour 
relations reported in the literature to inform our interpretations. 
Future work should correlate these metrics (behavioural, qMRI 
and DWI) in the same sample to strengthen the findings, partic-
ularly given the emphasis on individual differences known to af-
fect ageing and stop signal performance (Chowdhury et al. 2019; 
Forstmann et al. 2012; Isherwood et al. 2023).

Second, the iron and myelin metrics used in this sample are ap-
proximations. There is no direct way to measure iron and myelin 
content in vivo, but as discussed above, there are a number of dif-
ferent ways to approximate these metrics. In the current study, 
we used simplified biophysical linear models that estimated 
iron and myelin concentrations using a combination of qMRI 
contrast values. These models were selected from eight model 
candidates, with all possible combinations of R1, R2* and QSM 
parameters. Their predictability was verified using literature-
based concentrations (for details, see Miletić et  al.  2022), but 
they are proxies nonetheless.

Third, imaging acquisition and analysis in older adults presents 
unique challenges. Age-related anatomical changes are highly 
variable and can interfere with standard preprocessing pipe-
lines, for example, by reducing the accuracy of brain parcella-
tion (Alkemade et al. 2022; Bazin et al. 2020). Moreover, MRI 
values can be independently affected by age-related alterations, 
which may confound results and obscure specific anatomical 
changes. For instance, white matter hyperintensities, commonly 
observed in older individuals, can affect diffusion metrics. 
These hyperintensities can be identified using fluid attenuated 
inversion recovery (FLAIR) scans (Tubi et al. 2020), but these 
were not part of the acquisition sequence in the present study. 
Additionally, we note that recent advances in diffusion MRI 
modelling, such as NODDI (neurite orientation dispersion and 
density imaging; Zhang et al. 2012) and SANDI (soma and neur-
ite density imaging; Palombo et al. 2020), enable detailed in vivo 
estimations of microstructural properties, including grey matter 
changes. Unfortunately, these models require higher b values 
during acquisition than those used in the current dataset to pro-
duce reliable parameter estimates. As such, while their use was 
not feasible in this study, future studies may find them highly 
useful in estimating age-related neuroanatomical change.

Finally, we chose to focus on three regions of interest in the 
present study. While these regions are well-documented 
as being intrinsic to action cancellation (see e.g., Aron 
et  al.  2014; Borgomaneri et  al.  2020; Chen et  al.  2020; Lee 
et  al.  2016; Lofredi et  al.  2021), there are many additional 
regions that have been associated with response inhibition, 
particularly in the subcortex. Theoretical models of stopping 
such as the PTC model postulate that response inhibition in-
volves a complex interplay of cortical and subcortical regions 
including the substantia nigra, globus pallidus and striatum 
(Diesburg and Wessel 2021; Schmidt et al. 2013; Schmidt and 
Berke 2017), with experimental evidence also identifying the 
ventral tegmental area and thalamus (Isherwood et al. 2025; 
Tennyson et al. 2018). Due to difficulties imaging the subcor-
tex (de Hollander et al. 2017; Miletić et al. 2020), the specific 
role of these regions remains undetermined; more research is 
required to disentangle their specific role in action cancella-
tion. Future work could include a broader range of anatom-
ical regions in order to more fully encompass the response 
inhibition-associated regions.

5   |   Conclusion

A large body of imaging and brain stimulation research has 
identified the IFG, preSMA and STN as being intrinsic to ac-
tion cancellation. These regions, among others, form a stopping 
‘network’, and are thought to coordinate to realise action selec-
tion and cancellation through a series of subcortical–cortical 
pathways. The connectivity of these regions is known to be an 
important factor in action cancellation and stopping, with im-
proved connectivity of these regions associated with increased 
performance in the stop-signal task.

Here, we quantified the anatomical changes that occur in these 
regions across the lifespan and in the white matter pathways that 
connect them, combining high-resolution DWI and ultra-high 
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field qMRI in the same sample. We found substantial changes in 
iron concentration in these tracts, increases in ADC, and some 
evidence for demyelination. Conversely, we found very little ev-
idence for age-related anatomical changes in the regions them-
selves. We propose that some of the functional changes observed 
in these regions in older adult populations (e.g., increased BOLD 
recruitment) are a reflection of alterations to the stopping net-
work itself, that is, to connectivity changes, rather than to local-
ised regional change.
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