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Abstract
Classical decision models assume that the parameters giving rise to choice behavior
are stable, yet emerging research suggests these parameters may fluctuate over time.
Such fluctuations, observed in neural activity and behavioral strategies, have significant
implications for understanding decision-making processes. However, empirical studies
on fluctuating human decision-making strategies have been limited due to the extensive
data requirements for estimating these fluctuations. Here, we introduce hMFC (Hierarchi-
cal Model for Fluctuations in Criterion), a Bayesian framework designed to estimate slow
fluctuations in the decision criterion from limited data. We first showcase the importance
of considering fluctuations in decision criterion: incorrectly assuming a stable criterion
gives rise to apparent history effects and underestimates perceptual sensitivity. We then
present a hierarchical estimation procedure capable of reliably recovering the underlying
state of the fluctuating decision criterion with as few as 500 trials per participant, offer-
ing a robust tool for researchers with typical human datasets. Critically, hMFC does not
only accurately recover the state of the underlying decision criterion, it also effectively
deals with the confounds caused by criterion fluctuations. Lastly, we provide code and
a comprehensive demo to enable widespread application of hMFC in decision-making
research.

Author summary
Every day, we make numerous decisions, from choosing what to eat to how we inter-
pret the world around us. Traditionally, researchers have assumed that a key part of our
decision-making process, namely the decision criterion, stays stable over time. How-
ever, increasing evidence suggests that instead of being stable, the decision criterion can
fluctuate from moment to moment. In this work, we introduce the Hierarchical Model
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for Fluctuations in Criterion (hMFC), a new computational model that can accurately
estimate these fluctuations, even with limited data. Capturing these moment-to-moment
changes is critical: ignoring them can bias estimates of perceptual sensitivity and the
influence of past choices on current decisions. By estimating criterion fluctuations,
hMFC can correct these biases. With hMFC, we offer researchers a powerful tool for
uncovering the dynamic nature of human decisions. To support wide adoption, we also
provide open source software together with a demo, making this approach accessible to
the broader scientific community.

Introduction
Every day we make a multitude of decisions: deciding when to cross the street, whether to

code can be found at
www.github.com/robinvloeberghs/hMFC.
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has gone toward understanding the computational mechanisms underlying perceptual [1],
value-based [2], risky [3], and social decisions [4]. A common theme in these frameworks
is that decisions are formed by comparing evidence to a decision criterion. Classical models
of decision-making assume that observers generate an internal representation of the relevant
information, typically referred to as “evidence” or the “decision variable” [5]. To generate
a binary choice, this decision variable is compared to an internal decision criterion. Due to
the inherent noisiness of the brain or changes in internal states (e.g., changes in attention),
repeated presentation of the same stimulus will not always lead to the same internal represen-
tation of that stimulus [6,7]. Instead, multiple trials of the same stimulus produce a distribu-
tion of internal decision variables (Fig 1A). This inherent variability explains why participants
make variable responses when repeatedly presented with the same stimulus.

A key component in these models is the decision criterion, which allows to explain
biases in decision-making. When observers choose one answer more often than another,
their behavior can be modelled as the result of a shift in decision criterion, independent
of their sensitivity to decision-relevant information [5]. Empirically, the decision criterion
depends on internal and external factors: for instance, it shifts in response to external feed-
back [8], expectancy [9], task instructions [10], monetary rewards [11], and the base rate of
stimuli [12].

Although it is widely recognized that the decision criterion can be flexibly shifted depend-
ing on the environment, a common implicit assumption is that in the absence of experi-
mental manipulations, this (potentially biased) criterion remains constant across a series of
experimental trials. Although this assumption allows computational models to be simple and
tractable, it may be overly simplistic. Indeed, the idea of trial-by-trial variability in the cri-
terion can be traced back to early work [13–15], and has been noted often in the literature
[16,17]. However, this line of work focuses mostly on the criterion distribution (mean and
variance), rather than attempting to estimate the trial-to-trial trajectory of the fluctuating
decision criterion.

More recently, the dynamical nature of cognitive processes has received renewed interest
in cognitive and computational neuroscience [18]. One reason for this trend is the availabil-
ity of new computational tools to quantify trial-by-trial fluctuations from behavioral and/or
neural data. Indeed, increasing evidence suggests that several computational parameters that
are thought to underlie decision-making are not stationary, but rather fluctuate over trials
[19–23]. For example, Ashwood and colleagues [19] demonstrated that decision behavior in
mice can be described by three discrete states persisting for 10 to 100 trials, each with differ-
ent psychometric parameters. Other work has focused on modeling continuous trial-by-trial
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Fig 1. The consequences of fluctuations in decision criterion. A) Many theories of decision-making assume that choices are formed by comparing a decision variable
to a criterion. According to signal detection theory, an observer will respond A or B, depending on whether the decision variable falls left or right to this criterion,
respectively. Whereas this criterion is typically assumed to be fixed across a series of trials (static criterion), here we investigate the consequences of this criterion slowly
fluctuating across time (fluctuating criterion). B) Fluctuations in criterion can be modelled as a time series using a first-order autoregressive model AR(1). An AR(1)
model has two free parameters that control the temporal dependency (a) and the scale of the fluctuations (𝜎2). The four panels show how the criterion changes over time
under different values of these two parameters. C) Simulations show that it is of critical importance to consider fluctuations in decision criterion. Despite the absence
of an effect of previous response (true wprevious response = 0), they give rise to artificial choice history effects. D) Likewise, while the generative psychometric slope (true
wstimulus = 1.25) is constant for all conditions, fluctuations in decision criterion lead to an underestimation of the slope of the psychometric function. E) Fluctuations in
criterion lead to an underestimation of d′, a popular signal-detection measure of sensitivity.

https://doi.org/10.1371/journal.pcbi.1013291.g001

changes in the overall bias (i.e., intercept; [21]) and other parameters of a logistic regression
model [23]. Combining behavior with neural recordings, Cowley et al. [20] found that during
a multi-hour session, monkeys’ hit and false alarm rate slowly drifted (i.e. suggesting a slow
drift in the decision criterion) and co-varied with neural activity in area V4 and prefrontal
cortex. In other work, Mochol and colleagues [22] showed that decision behavior in monkeys
is influenced by fast (previous trial’s response and reward) and slow (moving window of 130
trials) biases, both encoded in the PFC, that are integrated into the current decision.

Despite much progress in this line of research, an important shortcoming in the current
literature is that the few methods that are available to estimate the decision criterion at the
single-trial level require too many trials and fix crucial parameters instead of estimating them.
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In this work, we propose a new model that solves these issues. First, we start with investigat-
ing the consequences of fluctuations in decision criterion. We do so by simulating the effects
of fluctuations in criterion on common measures of decision-making behavior and highlight
the problems that these fluctuations may cause in interpreting experimental data. We then
present a novel hierarchical framework that allows trial-to-trial estimation of fluctuations
in the decision-criterion and show that its parameters can be recovered even with a small
number of trials (i.e., 500). Lastly, we show that this model solves the confounds caused by
unaccounted fluctuations in decision criterion.

Why should we care about fluctuations in decision criterion?
In the next section we simulate the empirical consequences of criterion fluctuations, and
especially highlight how these could impact different experimental conclusions. Rather than
assuming a fixed decision criterion across time, we model the criterion fluctuations as a first-
order autoregressive process (AR(1); see [21] and [23] for similar approaches). An AR(1)
model describes the temporal dynamics of a time series, in this case the decision criterion,
via two parameters. First, an autoregressive coefficient a captures the temporal dependency
between two successive time points (xt and xt–1). In general, for an AR(1) model to have stable
behavior, amust take values between -1 and +1. When a = 0, the resulting criterion is sam-
pled from a normal distribution without across-trial autocorrelation. Second, a zero-mean
error term with variance 𝜎2 causes the random fluctuations. Fig 1B illustrates how variations
in both these parameters influence a simulated time series of the decision criterion. Smaller
magnitudes of a (bottom left panel) make a time series more mean-reverting, with shorter
fluctuations around its mean. In contrast, when a time series is less mean-reverting due to
larger values for a (top left panel), it will deviate more strongly from its mean for longer peri-
ods. The variance of the error term 𝜎2 governs the scale of the random fluctuations and thus
acts as a scaling parameter, as can be seen by comparing the left and right panels. The left and
right panel time series show the exact same dynamics but merely differ in magnitude on the
y-axis.

Having established a model to generate fluctuations in decision criterion, we next use
simulations to show that these fluctuations can lead to biased and erroneous inferences in var-
ious commonly used metrics that (implicitly) assume stable criteria. Below, we discuss three
examples highlighting the importance of accounting for a time-varying criterion. First, the
presence of criterion fluctuations can mimic a causal influence of previous responses, causing
apparent sequential effects in decision-making. Second, criterion fluctuations lead to biased
estimates of popular measures of sensitivity. Specifically, both the slope of the psychomet-
ric function and d′ from SDT are underestimated in the presence of criterion fluctuations.
Third, the ability to quantify criterion fluctuations from trial to trial will contribute to a better
understanding of decision-making and its neural basis.

Criterion fluctuations can create apparent sequential effects. A wealth of studies have
suggested that decisions are not isolated events, but instead show sequential effects: past tri-
als bias the current decision. Such sequential effects have been observed in humans [24–32],
primates [22,33], and rodents [21,34–37] for a wide range of tasks. In 2AFC tasks, one exam-
ple of a sequential effect is the tendency to repeat previous responses, also known as choice
history bias, repetition bias, serial dependencies, perseveration, or hysteresis [25,30,31,38–
44]. These effects are often taken as evidence that observers maintain active representations
of their environment or decision history: an influence of previous responses is typically inter-
preted and modeled as causal effect, where observers update their criterion based on some
combination of past stimuli, choices and rewards [24,30,34,43]. For example, Treisman and
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Williams [15] suggested that sequential effects can be explained by adjusting the criterion on
the current trial as a function of the observer’s previous response.

However, sequential effects can also arise in absence of any “systematic” adjustments,
purely as the consequence of random fluctuations in the decision criterion [see also, 21,
34,45]. To illustrate this point, we simulate five different datasets consisting of 50 agents
with 5000 trials each. Critically, we simulate behavior in which the decision criterion is not
stable but instead fluctuates over time according to a first-order autoregressive process. To
alter the dynamics of the criterion fluctuations, each dataset is generated with different val-
ues for a and 𝜎2. On each trial, the response is drawn from a Bernoulli distribution with the
probability governed by stimulus evidence (true wstimulus = 1.25), previous response (true
wprevious response = 0), and a fluctuating value over trials representing the fluctuations in cri-
terion. Note that adding this fluctuating value to the Bernoulli probability is mathematically
identical to comparing a decision variable to a varying criterion (i.e., fluctuating criterion;
Fig 1A). When this value does not fluctuate (a = 0 and 𝜎2 = 0) this corresponds to a fixed
and unbiased criterion (i.e., static criterion; Fig 1A). In Fig 1C, we confirm that simulated
observers using a fixed criterion do not display a tendency to repeat the previous response
(i.e., no choice history bias). However, a fluctuating decision criterion causes the emergence
of apparent choice history bias, despite the absence of any “systematic” criterion shifting in
function of previous response (true wprevious response = 0) (see [34, Fig 2], and [21] for similar
simulations). As expected, this apparent choice history bias increases when the random fluc-
tuations in decision criterion become stronger (i.e., increased a and 𝜎2). In sum, researchers
interested in choice history effects cannot ignore the possibility of fluctuations in the decision
criterion.

Criterion fluctuations lead to an underestimation of perceptual sensitivity metrics.
Many researchers are interested in perceptual sensitivity, which is often measured using one
of two popular methods: the psychometric slope and d′ in signal detection theory (SDT).
Both assess how well individuals can discriminate stimuli, and each has its own method of
quantifying sensitivity. The psychometric slope is obtained by presenting stimuli at multiple
levels of intensity and fitting a psychometric function to the data. The slope from this func-
tion is often directly used as a measure of sensitivity, or researchers may infer a threshold
of interest by evaluating the slope at a particular stimulus intensity strength [46]. However,
in the presence of criterion fluctuations, the slope of the psychometric function is severely
biased (Fig 1D). Specifically, the estimated slope of the psychometric function decreases with
increasing strength of criterion fluctuations, despite having the same generative psychomet-
ric slope (true wstimulus = 1.25). This underestimation occurs because fluctuations in the cri-
terion lead to more variable responding to identical stimuli, which flattens the psychometric
function [16,27,47]. Such distortions may impact scientific conclusions, for example when
determining the threshold for conscious access [48], or a specific level of performance [49]. In
sum, researchers applying psychometric functions in their work should be aware of criterion
fluctuations and its consequences.

Similarly, inspired by signal detection theory researchers often use d′, the difference
between z-scored hits and z-scored false alarms, as a measure of sensitivity [47]. For a given
level of true sensitivity, d′ remains unchanged in the presence of biased decision criteria (cf.
iso-sensitivity curves; [5]). Although this property holds in the presence of a fixed response
bias (i.e., static criterion; Fig 1A), the property does not hold when the criterion fluctu-
ates [13]. Specifically, criterion fluctuations lead to underestimation of the true sensitivity,
biasing estimates of d′. To demonstrate this point, we again simulate behavior for different
observers that all have the same true sensitivity (i.e., same wstimulus), but differ in criterion
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fluctuation dynamics. The simulation follows the same procedure as before (Fig 1D) but now
only includes one level of (signed) evidence. If we compute d′ based on the data without
criterion fluctuations, we get an estimated d′ of 1.09 (Fig 1E). However, while the average
criterion is accurately recovered (S1 Fig), the presence of criterion fluctuations biases d′

estimates downwards. In sum, researchers interested in comparing sensitivity, as measured
by d′, across participants or conditions should account for the possibility of criterion
fluctuations.

Criterion fluctuations as a topic of study in human neuroscience. The above exam-
ples illustrate how criterion fluctuations can result in various biases. Note that the impact of
fluctuations is not limited to only these examples: the concern that non-stationarities might
underlie post-error and post-confidence slowing—i.e., slow fluctuation in the decision bound-
ary of the drift diffusion model—has been raised in other domains as well [50,51]. While
these examples stress the importance of controlling for these fluctuations, it is crucial to high-
light that the criterion fluctuations are themselves an intriguing phenomenon worthy of
exploration. A growing body of research illustrates that decision-making is characterized by
non-stationarities [19–23,50–53]. Whereas these non-stationarities seem to be a fundamen-
tal feature of decision-making, they are still often ignored or considered a nuisance. Recently,
a general trend in cognitive neuroscience is emerging towards more dynamical approaches,
with more effort spent to capture time-varying internal states [7,18,54]. The ability to mea-
sure trial-to-trial criterion fluctuations opens up new avenues for research, such as uncovering
the neural mechanisms underpinning them, identifying more phenomena in which they play
a role, and leveraging this understanding to improve computational models. For example,
quantifying criterion fluctuations with an AR(1) model and estimating its parameters allows
the comparison of these parameters over subjects and experimental manipulations. In sum,
studying criterion fluctuations will advance our understanding of decision-making and its
underlying mechanisms.

Previous attempts to measure criterion fluctuations
In the previous section, we showcase different scenarios illustrating the importance of
considering fluctuations in the decision criterion. In the context of choice history bias (i.e.,
repetition effects in function of previous response), earlier work attempted to control for
criterion fluctuations through a model-free approach [34,45], similar to one developed in
the post-error slowing literature [50]. Since the criterion is assumed to be autocorrelated,
it should have a similar influence on temporally adjacent trials. In theory, it should thus be
possible to dissociate: (i) a causal influence of the previous response on the current trial, from
(ii) an acausal influence of the next response on the current trial, which reflects the value of
the criterion that varies only slowly across several trials. Lak et al. [34] proposed to obtain
a drift-free measure of choice history bias by subtracting the acausal from the causal influ-
ence. Although this model-free approach sounds promising, Gupta and Brody [21] demon-
strated that this is only effective in the context of a specific subset of updating strategies (i.e.,
no systematic updating and symmetric win-stay lose-switch). In the presence of other updat-
ing strategies, such as win-stay lose-stay or win-stay lose-nothing, their model-free correction
resulted in inaccurate and biased estimates. Therefore, this proposed model-free approach
is not an appropriate tool to correct for criterion fluctuations. Moreover, it does not allow
extracting a trial-by-trial measure of the latent criterion to study its neural and physiological
basis.

Instead of the model-free approach, Gupta and Brody [21] have proposed a model-based
approach which explicitly models criterion fluctuations as an AR(1) process in a Bernoulli
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linear dynamical system. With this approach they were able to correctly recover a wide range
of updating strategies. However, there are some key limitations that prevent a widespread
usage of their approach, especially in human cognitive neuroscience. First, the authors only
tested their model using very large datasets: simulated datasets with 40.000 trials, or rat data
with 50.000 trials, obtained over many sessions. Second, the authors only focused on the
recovery of history biases but did not quantitatively investigate the recovery of the criterion
trajectory and its underlying computational parameters. Instead, they assumed a fixed autore-
gressive coefficient a of .9995. Similarly, Roy et al. [23] developed a method to estimate trial-
by-trial fluctuations in the weights of a logistic regression model, which captures criterion
fluctuations through the intercept. However, the weights were assumed to evolve over time
according to an AR(1) process with a fixed to 1 (i.e., a random walk). Given that the param-
eter a plays a crucial role in capturing the temporal dynamics of a time series (i.e., as shown
in Fig 1B), fixing this parameter to a specific value is therefore an overly strong assumption. It
is likely that the generative autoregressive coefficient of criterion fluctuations in experimental
data deviates from this value, which may bias estimates of trial-to-trial criterion trajectories.

Hierarchical Model for Fluctuations in Criterion (hMFC)
In the current work, we develop the Hierarchical Model for Fluctuations in Criterion (hMFC),
which aims to solve these limitations by extending earlier approaches in various respects.
First, to solve the issue that the model requires a high number of trials to be fitted, we
implement a Bayesian hierarchical estimation approach. This allows to combine data across
multiple participants and concurrently models both group level estimates and individual
estimates. Therefore, fewer trials are required to obtain reliable parameter estimates. Second,
instead of fixing a in the AR(1) to .9995 [21] or 1 [23], we implement this in our model as a
free parameter. This is of crucial importance because when the true value for a deviates from
the assumed value, it causes biases in the parameters estimates and a poorer recovery of the
criterion fluctuations, as will be illustrated later using empirical and simulating data. Having
a as a free parameter does require a hierarchical estimation approach for good recovery at
lower trial numbers (S2 Fig). This free parameter allows to capture a wide range of criterion
fluctuation dynamics and ultimately enables researchers not just to control for criterion fluc-
tuations, but also to study these fluctuations and its dynamics as the main topic of investiga-
tion (e.g., comparing a over different experimental manipulations or investigating individual
differences). Finally, we provide easy to use code and software demos to enable the applica-
tion of our model by the cognitive neuroscience community.

In sum, in order to model fluctuations in the decision criterion, we implement a hierarchi-
cal framework within a Bernoulli linear dynamical system, called the Hierarchical Model for
Fluctuations in Criterion (hMFC). Next, we elaborate on the technical details of hMFC.

Methods
The generative model
First, consider a single session consisting of a sequence of T trials. On each trial t = 1,… ,T,
the agent makes a binary response yt. Our generative model assumes the response is drawn
from a Bernoulli distribution:

yt ∼ Bern(f(w⊤ut + xt)) (1)

where the probability of a response is governed by the covariates ut ∈ℝp, the latent fluctuat-
ing criterion xt ∈ℝ, and the weights w∈ℝp. The sigmoid transformation, f(z) = 1/(1+ e–z),
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constrains the conditional probability to be between 0 and 1. The vector ut contains the
observed input variables or covariates on trial t, such as the stimulus evidence or previous
response. The influence of these covariates on the Bernoulli probability is captured by the
weights w∈ℝp. The fluctuating criterion xt ∈ℝ on trial t, which is not directly observable, is
assumed to follow a first-order autoregressive process:

xt = b + axt–1 + 𝜖t, 𝜖t ∼N(0,𝜎2) (2)

where a∈ [0, 1] is the autoregressive coefficient which captures the temporal dynamics of
the criterion fluctuations (Fig 1B), and 𝜎2 controls the variance of the fluctuations (i.e., 𝜎2

is a scaling parameter). The intercept b enables to estimate the mean of the criterion tra-
jectory, which in turn allows to capture overall biases. Note that adding a drifting value xt
to the log-odds of the Bernoulli distribution is mathematically equivalent to comparing a
decision variable to a fluctuating criterion (Fig 1A). In sum, the model predicts responses
based on a combination of the weighted variables ut and the fluctuating criterion xt, as illus-
trated in Fig 2A. Ultimately, this model allows us to disentangle two sources that influ-
ence the response probability: (i) the influence of ut, and (ii) the influence of the fluctuating
criterion xt.

The hierarchical prior: putting the ‘h’ in hMFC
Having explained the generative model and the behavior it generates (Fig 2A), we next focus
on the inverse step, namely estimating the underlying latent parameters given observed
behavior. In many settings, we need to obtain accurate parameter estimates from only tens to
hundreds of trials per subject. Small values of T pose statistical challenges for parameter esti-
mation. However, we can pool information across individuals to aid in inference. To this end,
we developed a hierarchical Bayesian model that allows for per-subject parameter estimates,
while sharing information across subjects via a global prior distribution (Fig 2B). We infer the
per-subject parameters, the latent criterion trajectory for each subject, as well as the strength
of the hierarchical prior using a fully Bayesian inference algorithm.

In the hierarchical model, each subject i = 1,… ,N has its own responses yi,t, covariates
ui,t, and fluctuating criterion, xi,t, for t = 1,… ,Ti. Each subject also has its own parameters
𝜃i = (wi, ai,𝜎2

i ,𝜇x,i), where wi ∈ℝp denote the covariate weights, ai ∈ [0, 1] is the autoregres-
sive parameter, 𝜎2

i is the variance of the latent criterion fluctuations, and 𝜇x,i is the mean of
the criterion trajectory. Using the estimates for ai and 𝜇x,i the AR(1) intercept bi (Fig 2B) is
derived as bi = 𝜇x,i (1 – ai). We learn a hierarchical prior that captures how the subject-level
parameters 𝜃i vary across the population. The hierarchical prior allows us to share statistical
power from other subjects when estimating 𝜃i. This results in better parameter recovery, even
when a relatively small number trials per subject is available [55].

We specified hierarchical priors for the four types of per-subject parameters. First, we
assume a Gaussian prior on the weights,

wi ∼N(𝜇w, diag(𝜎2
w)), (3)

where 𝜇w ∈ℝp and 𝜎2
w ∈ℝ

p
+ denote the global mean and variance of the per-subject

weights. Second, we assume a truncated normal prior on the per-subject autoregressive
coefficient,

ai ∼ TruncNorm(𝜇a,𝜎2
a, [0, 1]) (4)
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Fig 2. An overview of the generative model and its hierarchical structure. A) The figure displays, using 100 simulated trials for one
agent, responses sampled from a Bernoulli distribution (i.e., a series of weighted coin flips). The trial-by-trial Bernoulli probabilities are a
function of a weighted combination of the observed covariates ut and the latent criterion fluctuations xt. The first three columns show how
the covariates, drawn from a standard normal distribution N(0, 1) evolve randomly over time. Summing the weighted covariates with the
criterion trajectory results in the log-odds of the Bernoulli distribution. After applying a sigmoid transformation to transform log-odds
into probabilities, we draw from the Bernoulli distribution (i.e., weighted coin flip) to produce binary responses. B) For each subject i we
infer weights (wi,0,wi,1,… ,wi,p) and model the latent criterion fluctuations xi,t as an AR(1) process with per-subject intercept bi, autore-
gressive coefficient ai, and variance 𝜎2

i . Through the specification of hierarchical priors we allow the sharing of statistical strength across
subjects when estimating these individual parameters. Like the individual parameters, the parameters of the hierarchical distributions are
iteratively updated during the estimation procedure. Note that bi is not estimated directly and therefore does not have a hierarchical prior.
Instead, we estimate the mean of the criterion trajectory 𝜇x,i, for which a normal hierarchical prior with zero mean and 𝜎2

𝜇x as variance is
assumed. Following the formula for the mean of an AR(1) process we can derive bi = 𝜇x,i (1 – ai).

https://doi.org/10.1371/journal.pcbi.1013291.g002

where 𝜇a and 𝜎2
a are the global mean and variance, respectively, and the domain is con-

strained to [0,1] because negative values of ai would lead to large jumps in the criterion, and
values greater than 1 would lead to unstable dynamics. Third, we specify an inverse gamma
(IGa) prior for the variance of the criterion fluctuations,

𝜎2
i ∼ IGa(𝛼𝜎2 ,𝛽𝜎2), (5)
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with shape parameter 𝛼𝜎2 ∈ℝ+ and a scale parameter 𝛽𝜎2 ∈ℝ+. Note that 𝛼𝜎2 is not esti-
mated directly. Instead, we estimate 𝜇𝜎2 and derive 𝛼𝜎2 as 𝛽𝜎2 /𝜇𝜎2 + 1. This reparametriza-
tion helps to prevent highly correlated estimates for 𝛼𝜎2 and 𝛽𝜎2 .

Fourth, a Gaussian prior is assumed for the per-subject mean of the criterion trajectory
𝜇x,i,

𝜇x,i ∼N(0,𝜎2
𝜇x) (6)

with the mean being zero and 𝜎2
𝜇x as the variance over the per-subject 𝜇x,i.

Finally, we place weakly informative priors on the parameters of the hierarchical model,
𝜂 = (𝜇w,𝜎2

w,𝜇a,𝜎2
a,𝜇𝜎2 ,𝛽𝜎2 ,𝜎2

𝜇x), see the S1 Appendix for complete details. These global
parameters will be inferred and iteratively updated alongside the per-subject parameters using
a fully Bayesian inference algorithm, which we describe next.

A posterior inference algorithm
We develop a fully Bayesian inference algorithm to estimate the posterior distributions of the
per-subject criterion trajectory and parameters, as well as the parameters of the hierarchical
prior. We use an augmented, blocked Gibbs sampling algorithm to produce samples that are
asymptotically drawn from the desired posterior distribution.

The Gibbs sampling algorithm proceeds by iteratively sampling the conditional distri-
bution of one block of variables, holding the rest fixed. However, this approach requires the
closed-form expressions for the conditional distributions. This tractability can be achieved if
the model is conditionally conjugate. Unfortunately, the Bernoulli likelihood is not conjugate
with the Gaussian hierarchical priors for the covariate weights or the AR(1) model for the cri-
terion trajectories. To circumvent this challenge, we employ the Pólya-gamma augmentation
trick [56]. With this augmentation, we can obtain a closed-form expression for the per-subject
covariate weights wi given the response, covariates, criterion fluctuations, and the hierarchical
priors.

For the three other per-subject parameters, ai, 𝜎2
i , and 𝜇x,i closed-form expressions for the

conditional posteriors are available. First, for ai the truncated normal prior is conjugate with
the AR(1) model likelihood. Similarly, the inverse gamma prior for 𝜎2

i is conjugate with the
AR(1) model of the latent criterion fluctuations and the Gaussian prior is conjugate with the
per-subject criterion trajectory average 𝜇x,i.

After Pólya-gamma augmentation, the conditional distribution of the latent criterion fluc-
tuations is a chain-structured Gaussian graphical model. We generate exact samples from
this conditional distribution using a forward filtering/backward sampling algorithm [57]. The
forward filtering step computes the filtering distributions of the latent criterion fluctuations,
given all the responses up to a certain trial. Once the filtering distributions have been com-
puted for each trial, the backward sampling step generates a sequence of latent fluctuations,
working backward from the last trial Ti down to the first. This procedure produces a sequence
of latent fluctuations xi = (xi,1,… , xi,Ti) that is distributed according to its conditional distribu-
tion given the per-subject parameters, covariates, responses, and Pólya-gamma augmentation
variables.

Finally, we update the parameters of the hierarchical prior 𝜂 by sampling from their con-
ditional distribution under a weakly informative prior. For the three group-level parameters
of the normal priors on the covariate weights and criterion trajectory mean, 𝜇w, 𝜎2

w and 𝜎2
𝜇x ,

we have closed-form expressions for the conditional distributions. We update the remaining
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hierarchical prior parameters—𝜇a, 𝜎2
a, 𝜇𝜎2 and 𝛽𝜎2—using random-walk Metropolis-Hastings

with a symmetric Gaussian proposal distribution. The parameter 𝛼𝜎2 is then derived as
𝛽𝜎2 /𝜇𝜎2 + 1.

Together, these updates yield a Markov chain whose stationary distribution is the posterior
distribution over the latent per-subject fluctuations, per-subject parameters, and hierarchical
prior parameters. Repeatedly applying these updates yields samples that are asymptotically
distributed according to this posterior. We can use these samples to estimate posterior expec-
tations and perform hypothesis tests, as demonstrated in the results below. Complete details
of the augmented, blocked Gibbs sampling algorithm can be found in the S1 Appendix.

Accessing the model
Our modeling and inference code, together with a comprehensive demonstration, is avail-
able at www.github.com/robinvloeberghs/hMFC. In addition, more in-depth plots for the
simulation results are also available at this link.

Results
To assess the effectiveness of the hMFC parameter estimation, we simulate data with a varying
number of trials (500, 1000, 2500 or 5000 trials) per subject, with 50 subjects per dataset and
50 datasets per trial count. For each subject i, three weights, wi = (wi,0,… ,wi,2), are indepen-
dently drawn from a normal distribution with mean 𝜇w = (0.0, 0.2, –0.1) and variance 𝜎2

w =
(1, 1, 1). Similarly, the covariates ut ∈ℝ3 are also sampled from a standard normal distribu-
tion (mean zero, identity covariance). The criterion fluctuations are sampled from an AR(1)
model with the autoregressive coefficient ai drawn from a truncated normal (mean 0.98, stan-
dard deviation 0.03, minimum value 0, and maximum value 1), 𝜎2

i sampled from an inverse
gamma distribution (𝜇𝜎2 = 0.2, 𝛽𝜎2 = 0.5), and 𝜇x,i sampled from a normal distribution with
mean 0 and standard deviation 0.5.

Group-level (global) parameter recovery
The group-level (global) parameters 𝜂 = (𝜇w,𝜎2

w,𝜇a,𝜎2
a,𝜇𝜎2 ,𝛽𝜎2 ,𝜎2

𝜇x) are accurately recov-
ered. For at least 46/50 datasets, the generative value lies within the 95% credible interval of
the posterior estimates (S3 Fig). Only 𝛽𝜎2 was more difficult to recover at lower trial counts
(40/50 datasets), but this did not impact the recovery of the criterion trajectories (as shown
later). The recovery of the parameter improved with higher trial numbers (48/50 datasets).
Most important, for 𝜇w and 𝜎2

w the 95% credible interval contains the true value for 50/50
datasets. Note that the width of these posteriors stays relatively constant for different trial
counts (S4 Fig). On the other hand, the posterior width shrinks with an increasing number of
subjects. Fig 3A demonstrates, using example datasets, that increasing the number of subjects
while keeping the number of trials constant (n=500) results in narrower posterior distribu-
tions. This effect is further illustrated in Fig 3B, which displays the overlaid posteriors for all
50 simulated datasets. Jointly, this suggests that in order to make more reliable inferences at
the group level, for hMFC it is more advisable to gather more subjects rather then gathering
more trials per subject. No problematic correlations between the inferred values of different
parameters were observed, suggesting that the model can distinguish all parameters (S5 Fig).
Lastly, the autocorrelation of the posterior samples quickly decays over lags, suggesting good
mixing of the samples (S6A Fig).
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Fig 3. An overview of the estimated posteriors distributions for the group-level (global) parameters when varying the number of subjects per dataset, with 500
trials per subject. A) The posterior distributions become more narrow as the number of subjects increases. The true parameter values are indicated by the red dashed
line. B) Each row shows the overlaid posteriors for all 50 simulated datasets with a varying number of subjects per dataset. The estimated posteriors are corrected and
centered on the true value (denoted by an asterisk). For 𝜇∗w and 𝜎∗w the true value is defined as the mean or standard deviation of the true per-subject parameters wi
within each dataset. Due to boundaries in the parameter space, with 𝜎w, 𝜎a, 𝜇𝜎2 , and 𝛽𝜎2 being strictly positive, the posterior distributions can be skewed. It should
be noted that there is a slight underestimation for 𝜇a, 𝜎a, and 𝛽𝜎2 . This is presumably due to the true 𝜇a being so close to the upper boundary of 1, which causes the
posterior distribution of this parameter to be asymmetric and possibly leading to compensatory effects for the other parameter estimates. Overall, we see an excellent
recovery of the group-level (global) parameters.

https://doi.org/10.1371/journal.pcbi.1013291.g003

Per-subject (local) parameter recovery
The inference algorithm can generally recover all per-subject parameters (Fig 4A). The per-
subject weights wi,0, wi,1, wi,2 show excellent recovery (r > .98), even for datasets with only 500
trials per subject (Fig 4D). The autoregressive model parameters ai, 𝜎2

i , and 𝜇x,i, which cap-
ture the dynamics of the criterion fluctuations, show an excellent recovery with many trials
per subject (r = .94 for ai, r = .92 for 𝜎2

i , r = .90 for 𝜇x,i with 5000 trials), but are less accurately
estimated when fewer trials per subject are available (r = .70 for ai and r = .68 for 𝜎2

i , r = .63
for 𝜇x,i with 500 trials) (Fig 4B, 4C). The autocorrelation of the posterior samples looks good
(S6B Fig) and no systematic correlations were present across the true and inferred values of
different parameters (S7 Fig).

Per-subject criterion trajectory recovery
Importantly, although the per-subject parameters ai, 𝜎2

i , and 𝜇x,i show somewhat lower recov-
ery with low trial numbers, the model can still very accurately recover the trial-to-trial latent
criterion trajectory (Fig 5) crucial for investigations into its neural and physiological bases.
The recovery, measured as the correlations between the true and inferred latent trajectory, is
generally high (r > .83), and consistent across datasets (Fig 5A). As shown for one example
subject, the true and the inferred trajectory strongly correlate (r = .88), even though the model
is not always able to perfectly recover high-frequency fluctuations in the true latent trajectory
(Fig 5C).
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Fig 4. Recovery of the per-subject parameters of the hMFC model. A) The covariate weights w show excellent recovery even with low trial numbers (note that the lines
for the different weights overlap). The model is able to recover ai and 𝜎2

i very well with high trial numbers, but recovery drops with a limited number of data points per
subject. Each dot represents the recovery correlation for one dataset. Note that error bars (standard error) are shown but they are very small. B-E) The recovery for ai
(B) and 𝜎2

i (C) and 𝜇x,i (D) and covariate weights wi,0, wi,1, wi,2 (E) is shown for an example dataset with 500 trials and 5000 trials per subject. Each dot represents one
subject. The line shows the diagonal.

https://doi.org/10.1371/journal.pcbi.1013291.g004

At lower trial counts (n=500), recovery ranges from 0.59 to 0.96. across subjects (Fig 5B).
This variation is partly due to the stochastic criterion fluctuations themselves, but also relates
to the combination of parameters governing the individual AR(1) processes. Specifically,
trajectory recovery is more difficult for lower values of ai combined with higher values of
𝜎2
i (S8 Fig).
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Fig 5. Recovery of the latent criterion trajectory. A) Each dot represents the recovery correlation of the criterion trajectory of one dataset, averaged over subjects. Note
that error bars (standard error) are plotted but are very small. B) A representative dataset of 50 subjects with 500 trials each shows an average correlation between true
and inferred criterion fluctuations of r = .84. C) True and inferred criterion fluctuations for an example subject. The shaded area represents the 95% credible interval of
the estimated posterior at each trial.

https://doi.org/10.1371/journal.pcbi.1013291.g005

Computation time
Fitting the data of 50 subjects with 500 trials each for 1000 iterations takes around 1 hour on
a regular laptop with only CPU’s. When GPU’s are available the computation time is reduced
to around 5 minutes, making this procedure sufficiently lightweight to run easily on typical
human datasets even for researchers without dedicated computing facilities.

Application hMFC to sequential effects and measures of sensitivity
Having verified that the inference procedure recovers the generative hMFC model, we assess
if it also corrects for the spurious effects that can arise from ignoring criterion fluctuations:
apparent sequential effects and underestimated d′ (as shown in Fig 1). We fit the hMFC model
with stimulus evidence and previous response as covariates, similar to the data shown in Fig 1
but now with wprevious response = 0.5. As a consequence, there is a repetition effect even when
no criterion fluctuations are present (S9 Fig). As the criterion fluctuations become stronger,
this repetition effect increases. Importantly, we ran the fits either with or without estimating
criterion fluctuations, allowing us to test if the model can accurately distinguish between these
two sources underlying the repetition effect.

When hMFC estimates criterion fluctuations, the true value of the previous response slope
(wprevious response = 0.5, red line) falls within the posterior distribution across all conditions—
even when the data contain no actual criterion fluctuations (Fig 6A). However, when the
fluctuations are present but hMFC does not estimate them (i.e., assumes a fixed criterion) the
repetition effects driven by the criterion fluctuations are absorbed by the previous response
slope, resulting in an inflated estimate for wprevious response . As the criterion fluctuations
become stronger the posterior distributions are shifted further away from the true value (i.e.,
replicating the finding from Fig 1C, using our model fit). These results show that not esti-
mating criterion fluctuations while they are present leads to inflated estimates for the sys-
tematic effect of previous response. Most importantly, it also shows that hMFC can correctly
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Fig 6. The recovered posterior distributions from hMFC with the criterion estimated as AR(1) or assumed to be fixed (i.e., no fluctu-
ations are estimated). When criterion fluctuations are present but not estimated the posterior estimates for wprevious response are inflated
(A) whereas for wstimulus they are underestimated (B). In contrast, when the criterion fluctuations are accounted for with hMFC we see
a correct recovery of the posterior estimates for both parameters. Estimating criterion fluctuations with hMFC therefore helps to address
biases in these parameters.

https://doi.org/10.1371/journal.pcbi.1013291.g006

distinguish between the two sources of choice history bias, namely a systematic effect of previ-
ous response and criterion fluctuations.

In a similar vein, when criterion fluctuations are not estimated, the psychometric slopes are
systematically underestimated (Fig 6B) compared to the generative value (wstimulus = 1.25, red
line). Fortunately, estimating criterion fluctuations resolves this underestimation. In sum, the
hMFC corrects for estimation biases by explicitly estimating the fluctuations in the criterion.

Applying hMFC to an empirical dataset
In the previous sections we have shown that hMFC accurately recovers the generative param-
eters on simulated data, and that it corrects for biases that occur when not measuring cri-
terion fluctuations. As a final endeavor, we effectively fitted hMFC to an empirical data by
Shekhar and Rahnev (2021) [58], consisting of 20 subjects with 2790 trials each. In addition,
using these empirical fits we will demonstrate the benefit of having the autoregressive coef-
ficient ai as a free parameter, instead of assuming a fixed value [21,23] by simulating data
based on the empirical parameter estimates.

Estimating hMFC to the empirical dataset reveals values ranging from 0.81 to 0.96 for ai,
and values between 0.05 and 0.35 for 𝜎2

i (Fig 7A). Using the per-subject parameter estimates
and the empirical data we simulated a new dataset and fitted two versions of hMFC in which
ai is freely estimated or in which ai is fixed to .9995. As can be seen in Fig 7B–7C hMFC is
able to recover the parameter well when ai is freely estimated. However, when ai is fixed both
the recovery of the parameters and the criterion trajectories suffer. In fact, Fig 7D shows that
when ai is fixed the correlation between the true and inferred criterion trajectory is consis-
tently lower (t = 7.37, p < 0.001) and the root mean square error (RMSE) higher (t = –8.30,
p < 0.001). These results show that hMFC is able to recover the parameter range found in
empirical data, and demonstrate the importance of having ai as a free parameter.
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Fig 7. Applying hMFC to an empirical dataset. A) The estimated posterior means for each subject of ai and 𝜎2
i when fitting hMFC to

an empirical dataset of Shekhar and Rahnev (2021) [58]. Based on these empirical fits of the per-subject parameters we simulated a new
dataset and refitted two variants of hMFC where ai was freely estimated or fixed to .9995 (following Gupta and Brody (2022) [21], Roy et al.
(2021) [23]). B) When ai is freely estimated we see a good recovery for the parameters ai and 𝜎2

i , and the criterion trajectory
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(example subject with first 500 trials shown). C) With ai fixed to .9995 we see a systematic underestimation of 𝜎2
i . Most importantly, this also

affects the recoverability of the criterion trajectory. D) For all 20 subjects the correlation between the true and estimated criterion trajectory
is higher with ai as a free parameter compared to having it fixed. Similarly, the root mean squared error (RMSE) is lower when ai is estimated.
However, accurate recovery of ai at low trial counts requires a hierarchical estimation procedure (S1 Fig).

https://doi.org/10.1371/journal.pcbi.1013291.g007

Discussion
Computational models of decision-making typically assume stationarity in the parameters
underlying the decision computation. However, an increasing body of research highlights
the dynamic nature of decision making and shows that computational variables underlying
decision-making may fluctuate over time. One example of these non-stationarities are fluc-
tuations in the decision criterion. Ignoring such latent fluctuations can lead to false interpre-
tations and inaccurate estimates. Specifically, criterion fluctuations can lead to behavior that
mimics a causal relationship in sequential effects, and they can lead to an underestimation of
two popular measures of perceptual sensitivity (d′ in SDT and the psychometric slope).

Here, we developed the Hierarchical Model for Fluctuations in Criterion (hMFC), a
Bayesian hierarchical model to obtain trial-by-trial estimates of the decision criterion. Even
with only 500 trials per participant, which is common in studies on human cognitive neu-
roscience, the model parameters and the latent criterion trajectory itself can be accurately
inferred. Importantly, the hMFC can effectively correct for biases that occur when criterion
fluctuations are ignored.

Although hMFC confers several advantages, it is not without limitations. A first limitation
is that it only allows an AR(1) process to govern the decision criterion, i.e., the intercept of
the model, whereas it assumes all other parameters are fixed. Future work may explore how
to extend this hierarchical Bayesian framework to simultaneously infer fluctuations in the
weights of other covariates, e.g. those reflecting stimulus sensitivity or trial history [23]. A
second limitation is that hMFC uses observed choices to estimate latent trajectories, but it
does not consider reaction times. Future work may explore how to extend this approach to
also incorporate reaction times in the estimation of the latent states of parameters. Finally,
as showcased in the paper hMFC works very well for estimating the latent trajectory of the
decision criterion. Therefore, researchers seeking to infer those trajectories in their datasets
will find hMFC a useful tool. Researchers that are, however, interested in the parameters giv-
ing rise to these fluctuations (e.g., ai and 𝜎2

i ) should carefully inspect the parameter recov-
ery results to determine in which cases they can interpret these estimates. Indeed, for very
low trial counts or low number of participants some group-level parameter estimates are
not always within the 95% credibility interval of the true values. In those cases, focusing
on acquiring data from subjects or more trials per subject could effectively alleviate these
concerns.

We provide open access to the code for hMFC and created an interactive demo for
researchers interested in applying this model to their data. Through this work, we hope to
enable further research in human cognitive neuroscience aimed at understanding the dynam-
ics of decision-making.

Supporting information
S1 Appendix. Detailed mathematical description of Hierarchical Model for Fluctuations
in Criterion (hMFC), including notation, model specification, prior distributions, poste-
rior inference with Gibbs sampling, and initialization procedures.
(PDF)
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S1 Fig. Recovery of a fluctuating decision criterion using traditional methods.
(TIF)

S2 Fig. Recovery of per-subject AR(1) parameters in a simulated dataset with 50 subjects,
illustrating the benefits of hierarchical priors when trial counts are low.
(TIF)

S3 Fig. Overview of frequency with which true parameter values fall within 95% credible
intervals as a function of subject and trial counts.
(TIF)

S4 Fig. Recovery of group-level parameters across varying numbers of trials per subject.
Example posteriors and overlaid posterior distributions are shown.
(TIF)

S5 Fig. Correlations between inferred group-level parameters across 50 simulated
datasets.
(TIF)

S6 Fig. Autocorrelation plots for group-level and per-subject parameters.
(TIF)

S7 Fig. Correlations between true and inferred per-subject parameters.
(TIF)

S8 Fig. Correlation between true and estimated criterion trajectories as a function of the
true AR(1) parameters (a and 𝜎2).
(TIF)

S9 Fig. Effect of criterion fluctuations on response repetition behavior in simulated data
with a systematic effect of previous response.
(TIF)
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