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CHAPTER 4

Abstract

Background: The genetic landscape of cardiometabolic risk factors has been explored
extensively. However, insight in the effects of genetic variation on these risk factors over the
life course is sparse. Here, we performed genome-wide interaction studies (GWIS) on
different cardiometabolic risk factors to identify age-specific genetic risks.

Methods: This study included 270,276 unrelated European-ancestry participants from the
UK Biobank (54.2% women, a median age of 58 [interquartile range (IQR): 50, 63] years).
GWIS models with interaction terms between genetic variants and age were performed on
apolipoprotein B (ApoB), low-density lipoprotein-cholesterol (LDL-C), log-transformed
triglycerides (TG), body mass index (BMI), and systolic blood pressure (SBP). Replication
was subsequently performed in the Copenhagen General Population Study (CGPS) and the
Estonian Biobank (EstBB).

Results: Multiple lead variants were identified to have genome-wide significant interactions
with age (Pineraciion < 1€-08). In detail, rs429358 (tagging APOE4) was identified for ApoB
(Pinteraction = 9.0e-14) and TG (Pinseracion = 5.4e-16). Three additional lead variants were
identified for ApoB: rs11591147 (R46L in PCSK9, Pineraciion = 3.9€-09), rs34601365 (near
APOB, Pineraciion = 8.4e-09), and rs17248720 (near LDLR, Pinteraciion = 2.0e-09). Effect sizes
of the identified lead variants were generally closer to the null with increasing age. No
variant-age interactions were identified for LDL-C, SBP and BMI. The significant
interactions of rs429358 with age on ApoB and TG were replicated in both CGPS and EstBB.

Conclusions: The majority of genetic effects on cardiometabolic risk factors remains
relatively constant over age, with the noted exceptions of specific genetic effects on ApoB
and TG.

Keywords: Genome-wide interaction analyses, Gene-age interaction; Age-specific effects;
Cardiometabolic risk factors
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1. Introduction

Cardiovascular disease (CVD) remains a leading cause of death worldwide, and contributes
substantially to morbidity and healthcare costs (1, 2). It is widely recognized that
dyslipidaemia, hypertension, obesity, and behavioural factors such as smoking are important
cardiovascular risk factors (2, 3). With the expansion of human genetic datasets, genome-
wide association studies (GWAS) have provided increasing insight into the underlying
biological mechanisms of risk factors for multifactorial diseases which has resulted in the
identification of targets for cardiovascular risk management and CVD prevention (4-6). Also,
the Global Lipids Genetics Consortium (GLGC) identified several novel and ancestry-
specific loci for dyslipidaemia, resulting in improved insight in the underlying biology and
fine-mapping of functional variants (7, 8).

Most cardiometabolic risk factors are influenced by a combination of genetic and non-genetic
factors (9-11). Age is an important non-modifiable determinant for CVD risk (12, 13).
Several studies have reported that the relative impact of modifiable risk factors on CVD risk
may be greater in younger than in older individuals (14-16). However, the impact of age on
the genetic architecture of cardiovascular risk factors has not been widely explored yet (12),
which may be an explanation of the attenuated associations with increasing age. As the
number of people reaching advanced age is increasing, the investigation of interactions
between genetic variation and age on cardiovascular risk factors is increasingly important for
the identification of targets for CVD prevention and intervention in older people.

Cardiometabolic risk factors, including dyslipidaemia, hypertension, and obesity are
predominant risk factors for CVD (17-19). Few studies have examined the interactions of
genetic variants with age on blood pressure and body mass index (BMI), and only a few
variants with small effect sizes varying over the life time have been identified thus far (20,
21). Increased low-density lipoprotein-cholesterol (LDL-C) and triglycerides (TG) are main
components of dyslipidaemia associated with CVD risk (19, 22, 23). Recently, apoprotein B
(ApoB) has been identified as a more precise indicator of CVD risk than LDL-C (24, 25).
Thus far, insight in the effects of genetic variation on cardiometabolic risk factors over the
life course is limited. Therefore, we aimed to assess the interactions of genetic variants with
age on common cardiometabolic risk factors, namely ApoB, LDL-C, TG, BMI, and systolic
blood pressure (SBP), by large-scale genome-wide interaction analysis (GWIS).
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2. Methods

2.1 Study population and design

The primary (discovery) analyses of the present study were embedded in the prospective UK
Biobank (UKB) cohort, which recruited over 500,000 participants aged 40-70 years across
the entire United Kingdom during the baseline survey between 2006 and 2010. Extensive
phenotypic and genotypic details of the participants have been collected since the baseline
assessment, including sociodemographic data, lifestyle, physical measures, biological
samples (blood, urine and saliva), genome-wide genotyping, and longitudinal follow-up on
a wide range of health-related outcomes. The UKB cohort study was approved by the North-
West Multicentre Research Ethics Committee (MREC). All participants provided electronic
written informed consent for the study. A detailed description of the UKB cohort study has
been presented elsewhere (26).

To minimize population stratification bias, the present study restricted participants to 318,734
unrelated individuals with European ancestry, based on the estimated kinship coefficients for
all pairs and the self-reported ancestral background (27). After excluding individuals with
missing values on the data of ApoB, LDL-C, TG, SBP and BMI, we ultimately included
270,276 participants. Details of missingness for each trait are presented in supplementary
Table S1, with the largest percentage of missingness for SBP being 8.7%.

2.2 Cardiometabolic risk factors

We selected ApoB, LDL-C, TG, SBP, and BMI as five risk factors of interest based on well-
established evidence in the literature on implicated biological mechanisms and causal
associations with atherosclerotic CVD. All selected five cardiometabolic risk factors were
collected and measured during the baseline assessment. ApoB (g/L), LDL-C (mmol/L), and
TG (mmol/L) were measured based on blood samples with the Beckman Coulter AU5800.
Consistent with studies conducted by some large consortia (8, 28, 29), the LDL-C level was
divided by 0.7 if participants used statins, but no corrections were made for other lipids
among statin users. TG was natural log-transformed to normal distribution for subsequent
analyses. The BMI (kg/m?) values in the UKB data were calculated from height and weight.
SBP (mmHg) was measured twice in a resting sitting position at the study centre, and the
average of the two measurements was used. In agreement with previous studies, including
genetic studies (21), if participants reported taking antihypertensive medication, 10 mmHg
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were added to the mean of the measured SBP. Besides, if a value was more than 6 standard
deviations (SD) above or below the mean, we set it to exactly at 6 SDs from the mean.

2.3 Genotyping and genetic imputations

UKB genotyping was conducted by Affymetrix using a bespoke BiLEVE Axium array for
approximately 50,000 participants, and using the Affymetrix UK Biobank Axiom array for
the remaining participants. All genetic data were quality controlled centrally by UKB
resources. More information on the genotyping processes can be found online
(https://www.ukbiobank.ac.uk). Based on the genotyped single-nucleotide polymorphisms

(SNPs), UKB resources performed centralized imputations on the autosomal SNPs using the
UK10K haplotype (30), 1000 Genomes Phase 3 (31), and Haplotype Reference Consortium
reference panels (32). Autosomal SNPs were pre-phased using SHAPEIT3 and imputed using
IMPUTEA4. In total, ~96 million SNPs were imputed.

2.4 Genome-wide interaction analyses

Using the software program GEM (version 1.4.2) (33), the GWIS of each cardiovascular risk
factor was carried out for the included 270,276 UKB individuals by the generalized linear
model, with covariates including age, sex, first ten genetic principal components (PCs), and
an interaction term between genetic variant and age. The first ten genetic PCs were
downloaded from the UKB (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22009)
and their inclusion as covariates in the model was to adjust for the potential population

stratification. SNPs with a minor allele frequency below 0.001 were removed. The genome-
wide significant interaction effect was set at a P value less than le-8 (5e-8 /five risk factors)
to correct for the multiple testing. We used the Functional Mapping and Annotation of
Genome-Wide Association Studies (FUMA) web-based application (https://fuma.ctglab.nl/)
(34) to identify independent lead genetic variants (1> < 0.1), using the 1000 G Phase 3 EUR
as reference panel population. Positional mapping is performed based on annotations
obtained from ANNOVAR (35) with the maximum distance of 10kb from genetic variants to
genes.

2.5 Look-up analyses for potential gene-age interactions

The power issues for strict genome-wide significant tests may result in some variants with
weak interactions with age not being identified. In addition to the primary analyses, we thus
performed conventional (marginal) GWAS, and extracted independent lead variants with
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genome-wide significant effects on the corresponding risk factor (P-values for the marginal
effects less than 5e-8). Subsequently, we explored their interaction effects with age in the
GWIS described above. The statistically significant threshold of the interaction term was
defined as 0.05 divided by the corresponding number of extracted genetic variants for each
risk factor. The identified variants showing statistically significant interaction with age were
then explored in GWAS Catalogue (https://www.ebi.ac.uk/gwas/) to investigate their mapped
gene.

2.6 Stratified analyses for lead genetic variants

Included participants were categorized into three age groups, being 40-49, 50-59, 60-70 years.
For lead genetic variants showing genome-wide significant interaction with age after
Bonferroni correction (P-values for the interaction terms less than 1e-8), we performed linear
regressions to assess the associations of their genotypes with the corresponding risk factors
in the different age groups, adjusting for sex and the first ten genetic PCs. We further tested
the interaction effects as well as the age-stratified effects of the identified lead variants and
age in women and men separately.

2.7 Replication of the main study results

The Copenhagen General Population Study (CGPS) is an ongoing prospective cohort study
of 109,751 Danish adults aged 20-110 years, recruited between 2003 and 2015 (36). Invited
individuals were randomly selected from the national Danish Civil Registration System to
represent the general population of white Danish adults. All participants filled in a
questionnaire, had a physical examination, and had blood samples collected for biochemical
analyses at the baseline survey.

The Estonian Biobank (EstBB) is a population-based biobank cohort that currently comprises
more than 200,000 individuals, representing ~ 20% of the adult population in Estonia. Details
of the EstBB has been described elsewhere (37). Briefly, all included participants completed
a comprehensive questionnaire at baseline, including personal data, genealogical data,
lifestyle data, medical history and current health status, etc. Blood samples for DNA, plasma,
and white blood cell are also collected and stored at baseline. Besides, all EstBB participants
have been genotyped. The EstBB project is being conducted according to the Estonian
Human Genes Research Act (HGRA), and all included participants have signed a broad
informed consent form.

70



CHAPTER 4

For replication purposes of the main findings, in CGPS and EstBB, we tested the interactions
between the lead variants and age, and performed the age-stratified analyses. For analyses
conducted in EstBB, generalised linear models were adjusted for sex, age (not included in
age-stratified analyses) and the first ten genetic PCs. As only a small proportion of
participants have chip data in CGPS, the generalised linear models in CGPS were unadjusted
for genetic PCs and only adjusted for sex and age. In EstBB and CGPS, interactions were
also tested separately for women and men, and were further carried out in the sub-population
of 40- to 70-year-olds to align with the UKB study population.

71



CHAPTER 4

3. Results

3.1 Characteristics of study participants

A total of 270,276 unrelated European-ancestry participants (54.2% women, and a median
age at inclusion of 58 [interquartile range (IQR): 50, 63] years) from UKB were eligible for
analyses in this study. The baseline characteristics of the cardiometabolic risk factors in the
UKB stratified by age are presented in Table 1. In addition, 97,283 participants (65.6%
women) from EstBB, and 107,435 participants (55.11% women) for ApoB and 107,504
participants (55.10% women) for TG from CGPS were included for validation analyses. The
detailed characterises from both two validation studies were presented in Table S2. In general,
and as expected, the levels of the examined risk factors were higher in the older group.

The genotype frequencies of the lead genetic variants (detailed below) in different age groups
from the UKB and validation studies (EstBB and CGPS) were presented in Table 2. The
frequencies of the examined genotypes were similar across the different age groups.

Table 1 The baseline characteristics of the study population from UK Biobank

Overall 40-49 50-59 60-70
n 270276 67989 95695 106592
Age (median [IQR]) 58 [50, 63] 46 [43, 48] 56 [53, 59] 64 (62, 67]
Sex = Men, n (%) 123805 (45.8) 30901 (45.4) 42116 (44.0) 50788 (47.6)
ApoB (g/L), mean (SD) 1.03 (0.24) 1.00 (0.23) 1.06 (0.23) 1.04 (0.24)
LDL-C (mmol/L), mean (SD)  3.57 (0.86) 3.46 (0.79) 3.66 (0.84) 3.56 (0.90)
TG (mmol/L), median [IQR] [1.015.,429. 14] [0.912',321.00] [1.015',5317] [1.111.,527.20]
SBP (mmHg), mean (SD) 137.86 (18.57)  129.54 (15.85) 136.95 (17.76)  143.98 (18.66)
BMI (kg/m2), mean (SD) 2734 (4.70)  2692(4.85)  27.43(4.84)  27.53 (4.46)
iifli?‘;/f)‘;weri“g medication = 45909 (17.0) 2844 (4.2) 13085 (13.7) 30000 (28.1)
E}();/lo‘;weri“g medication =1, 5,503202)  4133(6.1) 16822 (17.6) 33738 (31.7)

Abbreviations: ApoB, apolipoprotein B; BMI, body mass index; BP, blood pressure; IQR: interquartile range; LDL-
C, low-density lipoprotein cholesterol; SBP, systolic blood pressure; SD, standard deviation; TG, triglyceride.
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3.2 Genome-wide interaction analyses

In total, we observed genome-wide significant interaction effects (P-values for interaction
terms < 5Se-8) between 258 genetic variants and age on the examined phenotypes, of which
234 for ApoB, 23 for TG, and 1 for BMI (Table S3). No genome-wide significant gene-age
interaction effects were identified for LDL-C and SBP. After Bonferroni correction for
multiple testing for the number of examined phenotypes, 70 variants remained that had
genome-wide significant interaction effects with age (P-values for interaction terms < le-8),
of which 48 for ApoB and 22 for TG.

Among these 70 variants with significant interactions with age, four lead variants for ApoB
(rs11591147: Pineraction = 3.9¢-09, Pinteraction = 0.0018, mapping to PCSK9; rs34601365:
Pinteraciion = 8.4€-09, Binteraction = -0.0006, mapping to TDRD15; 1s17248720: Pjnseraction = 2.0e-
09, Pinteraction = 0.0007, mapping to LDLR; and 1s429358: Piyeraction = 9.0e-14, Binteraction = -
0.0009, mapping to PVRL2, TOMM40, APOE, and APOCI), and one lead variant for TG
(rs429358: Pinseraction = 5.4€-16, Pinteraction = -0.0019, mapping to PVRL2, TOMM40, APOE,
and APOC1) were identified (Figure 1).

Except for the interaction of rs17248720 with age on ApoB in women, the interactions of the
lead variants with age remained significant (P-values for the interaction terms < 0.01) in both
women and men (Table S4). In addition, the interaction results from validation cohorts
(EstBB and CGPS) were presented in Table S5. Notably, both two cohorts showed significant
interactions between rs429358 [tagging APOE4] and age on ApoB (Pinteraction = 4.60e-05 in
EstBB; Pinteraction = 9.07¢-05 in CGPS) and on TG (Pinteraction = 2.59€-05 in EstBB; Pinseraction
=2.35e-07 in CGPS). These interactions remained in both women and men, and in the 40-70
year old subpopulation. (Table S5).
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Figure. 1 Circular Manhattan plot for the log-transformed (base 10) P-values of the interaction terms between
genetic variants and age. Abbreviations in clockwise direction: ApoB, apolipoprotein B; TG, triglyceride; LDLC,
low-density lipoprotein cholesterol; BMI, body mass index; BP, blood pressure. The orange line indicates a P-value
of 5e-8, and the red line indicates a P-value of 1e-8 after Bonferroni correction for multiple testing. Red dots indicate
genome-wide significant SNPs with P-values smaller than Se-8 for the interaction terms. Labelled gene names in
black were identified by FUMA.
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3.3 Look-up analyses for potential gene-age interactions

A total of 958 independent genetic variants showed marginal effects on the corresponding
risk factor, of which 145 were associated with ApoB, 175 with TG, 198 with LDL-C, 239
with BMI and 201 with SBP. Among these genetic variants, a total of 17 independent variants
showed evidence for interaction with age after correction for multiple testing, i.e., 9 for ApoB
(P-values for the interaction terms < 0.05/145), 2 for TG (P-values for the interaction terms
< 0.05/175), 1 for LDL-C (P-values for the interaction terms < 0.05/198), 3 for BMI (P-
values for the interaction terms < 0.05/239), and 2 for SBP (P-values for the interaction terms
<0.05/201). In addition to already identified genes by GWIS, several more genes were found,
such as LIPC for ApoB (1261334, Pinteraction = 4.44e-060) and TG (rs1077835, Pinteraction =
1.16e-04), and FTO (rs11642015, Pinteraction = 1.1€-04) for BMI (Table 3).

3.4 Stratified analyses

Figure 2 shows the associations of the four lead SNPs (rs11591147, rs34601365, rs17248720,
1rs429358) with ApoB and the association of rs429358 with TG in different age groups from
UKB. The homozygous genotypes were observed to have greater effects on the
corresponding risk factors than the heterozygous genotypes. Notably, with the exception of
the association between the homozygous group of rs11591147 [R46L in PCSK9] and ApoB,
the associations of the genotype groups (both heterozygous and homozygous) relative to the
reference group with the corresponding phenotypes attenuated with age. For example, the
homozygous genotype (C; C) of rs429358 [tagging APOE4] had the largest effect on TG in
the 40- to 49-year-old age group, with a 1.11-fold [95% CI: 1.08, 1.14] increase, and had the
smallest effect in the 60- to 70-year-old age group, with a 1.03-fold [95% CI: 1.01, 1.05]
increase.

The results of the age-stratified analyses for women and men from UKB were similar to those
of the main analysis (Figure S1). In addition, the age-stratified analyses in validation cohorts
showed similar results to the main analyses (Figure 2). The direction and the decreasing trend
with aging for all the genetic effects, especially for rs429358, are in line with the main
analyses.
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Phenotypes SNP
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rs11591147
ApoB

rs17248720
ApoB

rs34601365
ApoB

rs429358
InTG

rs429358

Figure. 2 Associations between the genotypes of the lead SNPs and the corresponding phenotypes for age-
stratified analyses in UKB and two validation cohorts. ApoB, apolipoprotein B; EA, effect allele; SNP: single
nucleotide polymorphism; TG: triglyceride. Cohort names: UKB, UK Biobank; EstBB, Estonian Biobank; CGPS,
Copenhagen General Population Study. The ‘60-69 *’ indicates that the age group in UKB is 60-70, while in other
cohorts is 60-69. The “70-79 *’ indicates that the age group in EstBB is 70-80, while in CGPS is 70-79. In UKB and
EstBB, linear regressions were adjusted for sex and the first ten genetic principal components, whereas in CGPS
only sex was adjusted. For EstBB, the figure showed the results of rs62122481 (effect allele: A), which is an proxy

SNP for rs34601365.
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4. Discussion

Our genome-wide interaction studies in 270,276 unrelated European-ancestry participants
from UKB identified multiple genetic variants that showed significant interactions with age
on two of the five examined cardiometabolic risk factors. Specifically, four lead variants were
identified for ApoB: rs11591147 [R46L in PCSK9], rs34601365 [near TDRD15 and APOB],
rs17248720 [near LDLR], and rs429358 [tagging APOE4]; one lead variant was identified
for TG: rs429358 [tagging APOE4]. No genome-wide significant interaction effects were
found for LDL-C, SBP and BMI. The effect sizes of identified lead variants were closer to
null with increasing age. The interactions of rs429358 [tagging APOE4] with age were
replicated in EstBB and CGPS.

In the present study, three independent variants, which are located near or in genes that play
a clear role in ApoB metabolism, were found to have significant interactions with age on
ApoB levels. First, it is well known that the proprotein convertase kexin/subtilisin type 9
(PCSKD9) increases plasma levels of LDL-C by interacting with the LDL receptor (LDLR)
and decreasing endocytic recycling of the LDLR. The missense R46L variant in the PCSK9
gene is thought to inhibit this cycle and thereby lower LDL-C (38, 39). A previous study
showed that carriers of PCSK9 R46L variant could lower LDL-C level and ApoB level (40).
In addition, the common variant rs17248720-T, located at the 5’ end of LDLR gene, was
found to be associated with increased LDLR transcriptional activity, lower LDL-C levels (41),
and lower non-high-density lipoproteins (non-HDL) cholesterol levels (42). These
observations are in line with changes in ApoB levels. In accordance, we found that both the
R46L variant in PCSK9 and the rs17248720-T variant near the LDLR gene were associated
with the lower ApoB levels. Since ApoB-100 is the main structural protein of LDL, the lower
LDL-C levels caused by the R46L variant and rs17248720-T variant is therefore likely
paralleled by reduced ApoB levels. Lastly, rs34601365 is in vicinity of the TDRD15 and
APOB genes, which are located in the same genomic locus, less than 250kb apart. There is
evidence that the rs34601365 or its proxy SNP rs62122481 (effect allele: A, mapping to
APOB) associated with higher ApoB levels (43).

Interestingly, our study, including the replication analyses, found that rs429058, tagging the
APOE4, had significant interactions with age on both ApoB and TG levels. Apolipoprotein
E (ApoE) is an apolipoprotein component of chylomicrons, very-low-density lipoproteins
(VLDL) and HDL. ApoE plays an important role as ligand responsible for the clearance of
chylomicron and VLDL remnants in the liver through interaction with hepatic lipoprotein
receptors, primarily the LDLR (44, 45). Among the three ApoE isoforms (g2, €3, and &4),
encoded by different APOE alleles, ApoE €3 is the most common isoform. Relative to ApoE
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€3, the ApoE &4 has been found to be associated with higher TG, ApoB, and LDL-C levels
(46). This has been attributed to the preference of ApoE &4 for VLDL, a higher ApoE &4-
associated VLDL-production rate and/or higher VLDL-TG-lipolysis activity (47). In addition,
participants with the homozygous APOE &4 have a lower hepatic LDLR activity than
individuals with homozygous APOE &3 (48), which could lead to reduced clearance of VLDL
remnants and, consequently, to TG accumulation as well. Our findings of elevated levels of
ApoB and TG associated with the APOE ¢4 variant (rs429358, effect allele: C) are consistent
with these results and conclusions.

It is well-known that the APOEF &4 is negatively associated with human longevity (49). As
shown in Table 2, the frequency of the APOE ¢4 allele was somewhat lower in older
individuals (>70 years), and the interaction between rs429358 and age may be partially
attributable to the negative effect of APOE ¢4 on longevity. In addition, we found that the
genetic effects of all the identified variants on the corresponded phenotypes decreased with
increasing age. There is evidence that the increase of LDL-C with age is explained by a
reduced capacity for its removal, which would be mediated via a reduced hepatic LDLR
expression (50). This finding has been validated by some animal studies (51). In conjunction
with the roles of all the identified genes in lipoprotein metabolism as described above, the
reduction in LDLR expression could also explain the attenuated genetic effects (including
APOE &4 allele) with aging in our study.

Previous studies identified different genetic variants showing age-dependent effects on lipids
levels during life course (52-54). For example, one study identified an age-dependent
association (Pjeraciion = 0.024) between rs2429917 [SGSM2] and LDL-C (50), while another
study did not find any significant variants for LDL-C after the adjustment for multiple testing
(53). In addition, one study of blood pressure using meta-regression models with a joint 2
degree of freedom likelihood ratio test identified 20 independent genetic variants exhibiting
significant interactions with age, but none of those variants passed the interaction term test
with a threshold of P < 5e-8 (21). Our study did not find genetic effects on SBP that varied
significantly (P < Se-8) across age, and only further identified 2 SNPs showing significant
variant-age interactions (P < 0.00025) by look-up analyses (Table 3), one of which mapped
to the same gene [CCDC71L] as found in the previous study (21). For the genetic effects on
BMI over age, the present study identified one SNP with a threshold of P < 5e-8 (Figure 1),
and further identified three SNPs with a threshold of P < 0.00021 by lookup analyses (Table
3). Three of the mapped genes i.e., TMEM18, FTO, and SEC16B, were also found in previous
studies with a nominal significant threshold (Piueracion < 0.05) (20, 55). However, it is
important to note that, based on the studies mentioned above, there is little evidence of
significant changes in genetic effects throughout the life course, which is concordant with
our findings. Considering the increased prevalence of cardiovascular disease with aging (56,
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57), all these findings may imply that the relative importance of genetic effects versus
environmental influences could decrease with aging.

Mendelian randomization (MR) has emerged as a valuable tool to investigate potential causal
associations by using genetic variants as instruments against false inferences resulting from
confounding and reverse causality (58, 59). One of the assumptions to use MR methods is
that the relationship between the genetic variant and the exposure should stay constant over
time. Thus, the present study provides evidence that most genetic variants likely fulfil this
key condition during adulthood. However, with the development of drug-targeted MR studies
focusing on specific genetic variants (60), such as the effects of PCSK9 inhibitor on
atherosclerotic risk, caution must be exercised when combining or comparing results across
studies with different age distributions.

The present study was conducted in a large study sample with a relatively large statistical
power to detect genetic variants showing genome-wide significant interactions with age. In
addition, our main findings were replicated in two other large cohort studies with a much
larger age range. However, there are some limitations to be addressed. First, due to the lack
of data for the number, dose, and type of antihypertensive medications taken, we could not
correct the blood pressure parameters accurately. In addition, detailed data on the specific
lipid-lowering agents were not available. Although it is reasonable to assume that the largest
majority of participants taking lipid-lowering medications were taking statins, the LDL-C
levels may not be accurately corrected. Last, we screened for age-dependent genetic effects
by incorporating an interaction term between variants and age in statistical models. This
approach does not address the molecular mechanisms underlying the interactions in
determining a phenotype, thereby potentially limiting insights into the biology.

In conclusion, the present study indicates that the majority of genetic effects on
cardiometabolic risk factors remain relatively constant over middle age, with the noted
exception of some specific genetic effects on ApoB and TG, which play a less prominent role
in old versus young age.
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