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Abstract  
Background: The genetic landscape of cardiometabolic risk factors has been explored 
extensively. However, insight in the effects of genetic variation on these risk factors over the 
life course is sparse. Here, we performed genome-wide interaction studies (GWIS) on 
different cardiometabolic risk factors to identify age-specific genetic risks. 

Methods: This study included 270,276 unrelated European-ancestry participants from the 
UK Biobank (54.2% women, a median age of 58 [interquartile range (IQR): 50, 63] years). 
GWIS models with interaction terms between genetic variants and age were performed on 
apolipoprotein B (ApoB), low-density lipoprotein-cholesterol (LDL-C), log-transformed 
triglycerides (TG), body mass index (BMI), and systolic blood pressure (SBP). Replication 
was subsequently performed in the Copenhagen General Population Study (CGPS) and the 
Estonian Biobank (EstBB). 

Results: Multiple lead variants were identified to have genome-wide significant interactions 
with age (Pinteraction < 1e-08). In detail, rs429358 (tagging APOE4) was identified for ApoB 
(Pinteraction = 9.0e-14) and TG (Pinteraction = 5.4e-16). Three additional lead variants were 
identified for ApoB: rs11591147 (R46L in PCSK9, Pinteraction = 3.9e-09), rs34601365 (near 
APOB, Pinteraction = 8.4e-09), and rs17248720 (near LDLR, Pinteraction = 2.0e-09). Effect sizes 
of the identified lead variants were generally closer to the null with increasing age. No 
variant-age interactions were identified for LDL-C, SBP and BMI. The significant 
interactions of rs429358 with age on ApoB and TG were replicated in both CGPS and EstBB. 

Conclusions: The majority of genetic effects on cardiometabolic risk factors remains 
relatively constant over age, with the noted exceptions of specific genetic effects on ApoB 
and TG.  

Keywords: Genome-wide interaction analyses, Gene-age interaction; Age-specific effects; 
Cardiometabolic risk factors  
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1. Introduction 
Cardiovascular disease (CVD) remains a leading cause of death worldwide, and contributes 
substantially to morbidity and healthcare costs (1, 2). It is widely recognized that 
dyslipidaemia, hypertension, obesity, and behavioural factors such as smoking are important 
cardiovascular risk factors (2, 3). With the expansion of human genetic datasets, genome-
wide association studies (GWAS) have provided increasing insight into the underlying 
biological mechanisms of risk factors for multifactorial diseases which has resulted in the 
identification of targets for cardiovascular risk management and CVD prevention (4-6). Also, 
the Global Lipids Genetics Consortium (GLGC) identified several novel and ancestry-
specific loci for dyslipidaemia, resulting in improved insight in the underlying biology and 
fine-mapping of functional variants (7, 8). 

Most cardiometabolic risk factors are influenced by a combination of genetic and non-genetic 
factors (9-11). Age is an important non-modifiable determinant for CVD risk (12, 13). 
Several studies have reported that the relative impact of modifiable risk factors on CVD risk 
may be greater in younger than in older individuals (14-16). However, the impact of age on 
the genetic architecture of cardiovascular risk factors has not been widely explored yet (12), 
which may be an explanation of the attenuated associations with increasing age. As the 
number of people reaching advanced age is increasing, the investigation of interactions 
between genetic variation and age on cardiovascular risk factors is increasingly important for 
the identification of targets for CVD prevention and intervention in older people. 

Cardiometabolic risk factors, including dyslipidaemia, hypertension, and obesity are 
predominant risk factors for CVD (17-19). Few studies have examined the interactions of 
genetic variants with age on blood pressure and body mass index (BMI), and only a few 
variants with small effect sizes varying over the life time have been identified thus far (20, 
21). Increased low-density lipoprotein-cholesterol (LDL-C) and triglycerides (TG) are main 
components of dyslipidaemia associated with CVD risk (19, 22, 23). Recently, apoprotein B 
(ApoB) has been identified as a more precise indicator of CVD risk than LDL-C (24, 25). 
Thus far, insight in the effects of genetic variation on cardiometabolic risk factors over the 
life course is limited. Therefore, we aimed to assess the interactions of genetic variants with 
age on common cardiometabolic risk factors, namely ApoB, LDL-C, TG, BMI, and systolic 
blood pressure (SBP), by large-scale genome-wide interaction analysis (GWIS).  
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2. Methods 

2.1 Study population and design 

The primary (discovery) analyses of the present study were embedded in the prospective UK 
Biobank (UKB) cohort, which recruited over 500,000 participants aged 40-70 years across 
the entire United Kingdom during the baseline survey between 2006 and 2010. Extensive 
phenotypic and genotypic details of the participants have been collected since the baseline 
assessment, including sociodemographic data, lifestyle, physical measures, biological 
samples (blood, urine and saliva), genome-wide genotyping, and longitudinal follow-up on 
a wide range of health-related outcomes. The UKB cohort study was approved by the North-
West Multicentre Research Ethics Committee (MREC). All participants provided electronic 
written informed consent for the study. A detailed description of the UKB cohort study has 
been presented elsewhere (26).  

To minimize population stratification bias, the present study restricted participants to 318,734 
unrelated individuals with European ancestry, based on the estimated kinship coefficients for 
all pairs and the self-reported ancestral background (27). After excluding individuals with 
missing values on the data of ApoB, LDL-C, TG, SBP and BMI, we ultimately included 
270,276 participants. Details of missingness for each trait are presented in supplementary 
Table S1, with the largest percentage of missingness for SBP being 8.7%. 

2.2 Cardiometabolic risk factors 

We selected ApoB, LDL-C, TG, SBP, and BMI as five risk factors of interest based on well-
established evidence in the literature on implicated biological mechanisms and causal 
associations with atherosclerotic CVD. All selected five cardiometabolic risk factors were 
collected and measured during the baseline assessment. ApoB (g/L), LDL-C (mmol/L), and 
TG (mmol/L) were measured based on blood samples with the Beckman Coulter AU5800. 
Consistent with studies conducted by some large consortia (8, 28, 29), the LDL-C level was 
divided by 0.7 if participants used statins, but no corrections were made for other lipids 
among statin users. TG was natural log-transformed to normal distribution for subsequent 
analyses. The BMI (kg/m2) values in the UKB data were calculated from height and weight. 
SBP (mmHg) was measured twice in a resting sitting position at the study centre, and the 
average of the two measurements was used. In agreement with previous studies, including 
genetic studies (21), if participants reported taking antihypertensive medication, 10 mmHg 
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were added to the mean of the measured SBP. Besides, if a value was more than 6 standard 
deviations (SD) above or below the mean, we set it to exactly at 6 SDs from the mean. 

2.3 Genotyping and genetic imputations 

UKB genotyping was conducted by Affymetrix using a bespoke BiLEVE Axium array for 
approximately 50,000 participants, and using the Affymetrix UK Biobank Axiom array for 
the remaining participants. All genetic data were quality controlled centrally by UKB 
resources. More information on the genotyping processes can be found online 
(https://www.ukbiobank.ac.uk). Based on the genotyped single-nucleotide polymorphisms 
(SNPs), UKB resources performed centralized imputations on the autosomal SNPs using the 
UK10K haplotype (30), 1000 Genomes Phase 3 (31), and Haplotype Reference Consortium 
reference panels (32). Autosomal SNPs were pre-phased using SHAPEIT3 and imputed using 
IMPUTE4. In total, ~96 million SNPs were imputed.  

2.4 Genome-wide interaction analyses 

Using the software program GEM (version 1.4.2) (33), the GWIS of each cardiovascular risk 
factor was carried out for the included 270,276 UKB individuals by the generalized linear 
model, with covariates including age, sex, first ten genetic principal components (PCs), and 
an interaction term between genetic variant and age. The first ten genetic PCs were 
downloaded from the UKB (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22009) 
and their inclusion as covariates in the model was to adjust for the potential population 
stratification. SNPs with a minor allele frequency below 0.001 were removed. The genome-
wide significant interaction effect was set at a P value less than 1e-8 (5e-8 /five risk factors) 
to correct for the multiple testing. We used the Functional Mapping and Annotation of 
Genome-Wide Association Studies (FUMA) web-based application (https://fuma.ctglab.nl/) 
(34) to identify independent lead genetic variants (r2 < 0.1), using the 1000 G Phase 3 EUR 
as reference panel population. Positional mapping is performed based on annotations 
obtained from ANNOVAR (35) with the maximum distance of 10kb from genetic variants to 
genes. 

2.5 Look-up analyses for potential gene-age interactions 

The power issues for strict genome-wide significant tests may result in some variants with 
weak interactions with age not being identified. In addition to the primary analyses, we thus 
performed conventional (marginal) GWAS, and extracted independent lead variants with 
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genome-wide significant effects on the corresponding risk factor (P-values for the marginal 
effects less than 5e-8). Subsequently, we explored their interaction effects with age in the 
GWIS described above. The statistically significant threshold of the interaction term was 
defined as 0.05 divided by the corresponding number of extracted genetic variants for each 
risk factor. The identified variants showing statistically significant interaction with age were 
then explored in GWAS Catalogue (https://www.ebi.ac.uk/gwas/) to investigate their mapped 
gene. 

2.6 Stratified analyses for lead genetic variants  

Included participants were categorized into three age groups, being 40-49, 50-59, 60-70 years. 
For lead genetic variants showing genome-wide significant interaction with age after 
Bonferroni correction (P-values for the interaction terms less than 1e-8), we performed linear 
regressions to assess the associations of their genotypes with the corresponding risk factors 
in the different age groups, adjusting for sex and the first ten genetic PCs. We further tested 
the interaction effects as well as the age-stratified effects of the identified lead variants and 
age in women and men separately. 

2.7 Replication of the main study results  

The Copenhagen General Population Study (CGPS) is an ongoing prospective cohort study 
of 109,751 Danish adults aged 20-110 years, recruited between 2003 and 2015 (36). Invited 
individuals were randomly selected from the national Danish Civil Registration System to 
represent the general population of white Danish adults. All participants filled in a 
questionnaire, had a physical examination, and had blood samples collected for biochemical 
analyses at the baseline survey.  

The Estonian Biobank (EstBB) is a population-based biobank cohort that currently comprises 
more than 200, 000 individuals, representing ~ 20% of the adult population in Estonia. Details 
of the EstBB has been described elsewhere (37). Briefly, all included participants completed 
a comprehensive questionnaire at baseline, including personal data, genealogical data, 
lifestyle data, medical history and current health status, etc. Blood samples for DNA, plasma, 
and white blood cell are also collected and stored at baseline. Besides, all EstBB participants 
have been genotyped. The EstBB project is being conducted according to the Estonian 
Human Genes Research Act (HGRA), and all included participants have signed a broad 
informed consent form. 
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For replication purposes of the main findings, in CGPS and EstBB, we tested the interactions 
between the lead variants and age, and performed the age-stratified analyses. For analyses 
conducted in EstBB, generalised linear models were adjusted for sex, age (not included in 
age-stratified analyses) and the first ten genetic PCs. As only a small proportion of 
participants have chip data in CGPS, the generalised linear models in CGPS were unadjusted 
for genetic PCs and only adjusted for sex and age. In EstBB and CGPS, interactions were 
also tested separately for women and men, and were further carried out in the sub-population 
of 40- to 70-year-olds to align with the UKB study population. 
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3. Results 

3.1 Characteristics of study participants 

A total of 270,276 unrelated European-ancestry participants (54.2% women, and a median 
age at inclusion of 58 [interquartile range (IQR): 50, 63] years) from UKB were eligible for 
analyses in this study. The baseline characteristics of the cardiometabolic risk factors in the 
UKB stratified by age are presented in Table 1. In addition, 97,283 participants (65.6% 
women) from EstBB, and 107,435 participants (55.11% women) for ApoB and 107,504 
participants (55.10% women) for TG from CGPS were included for validation analyses. The 
detailed characterises from both two validation studies were presented in Table S2. In general, 
and as expected, the levels of the examined risk factors were higher in the older group.  

The genotype frequencies of the lead genetic variants (detailed below) in different age groups 
from the UKB and validation studies (EstBB and CGPS) were presented in Table 2. The 
frequencies of the examined genotypes were similar across the different age groups.  

Table 1 The baseline characteristics of the study population from UK Biobank 

 Overall 40-49 50-59 60-70 

n 270276 67989 95695 106592 

Age (median [IQR]) 58 [50, 63] 46 [43, 48] 56 [53, 59] 64 [62, 67] 

Sex = Men, n (%) 123805 (45.8) 30901 (45.4) 42116 (44.0) 50788 (47.6) 

ApoB (g/L), mean (SD) 1.03 (0.24) 1.00 (0.23) 1.06 (0.23) 1.04 (0.24) 

LDL-C (mmol/L), mean (SD) 3.57 (0.86) 3.46 (0.79) 3.66 (0.84) 3.56 (0.90) 

TG (mmol/L), median [IQR] 1.49 
[1.05, 2.14] 

1.31 
[0.92, 2.00] 

1.50 
[1.06, 2.17] 

1.57 
[1.14, 2.20] 

SBP (mmHg), mean (SD) 137.86 (18.57) 129.54 (15.85) 136.95 (17.76) 143.98 (18.66) 

BMI (kg/m2), mean (SD) 27.34 (4.70) 26.92 (4.85) 27.43 (4.84) 27.53 (4.46) 

Lipid-lowering medication = 
1, n (%) 45929 (17.0) 2844 ( 4.2) 13085 (13.7) 30000 (28.1) 

BP-lowering medication = 1, 
n (%) 54693 (20.2) 4133 ( 6.1) 16822 (17.6) 33738 (31.7) 

Abbreviations: ApoB, apolipoprotein B; BMI, body mass index; BP, blood pressure; IQR: interquartile range; LDL-
C, low-density lipoprotein cholesterol; SBP, systolic blood pressure; SD, standard deviation; TG, triglyceride. 
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3.2 Genome-wide interaction analyses 

In total, we observed genome-wide significant interaction effects (P-values for interaction 
terms < 5e-8) between 258 genetic variants and age on the examined phenotypes, of which 
234 for ApoB, 23 for TG, and 1 for BMI (Table S3). No genome-wide significant gene-age 
interaction effects were identified for LDL-C and SBP. After Bonferroni correction for 
multiple testing for the number of examined phenotypes, 70 variants remained that had 
genome-wide significant interaction effects with age (P-values for interaction terms < 1e-8), 
of which 48 for ApoB and 22 for TG.  

Among these 70 variants with significant interactions with age, four lead variants for ApoB 
(rs11591147: Pinteraction = 3.9e-09, βinteraction = 0.0018, mapping to PCSK9; rs34601365: 
Pinteraction = 8.4e-09, βinteraction = -0.0006, mapping to TDRD15; rs17248720: Pinteraction = 2.0e-
09, βinteraction = 0.0007, mapping to LDLR; and rs429358: Pinteraction = 9.0e-14, βinteraction = -
0.0009, mapping to PVRL2, TOMM40, APOE, and APOC1), and one lead variant for TG 
(rs429358: Pinteraction = 5.4e-16, βinteraction = -0.0019, mapping to PVRL2, TOMM40, APOE, 
and APOC1) were identified (Figure 1). 

Except for the interaction of rs17248720 with age on ApoB in women, the interactions of the 
lead variants with age remained significant (P-values for the interaction terms < 0.01) in both 
women and men (Table S4). In addition, the interaction results from validation cohorts 
(EstBB and CGPS) were presented in Table S5. Notably, both two cohorts showed significant 
interactions between rs429358 [tagging APOE4] and age on ApoB (Pinteraction = 4.60e-05 in 
EstBB; Pinteraction = 9.07e-05 in CGPS) and on TG (Pinteraction =  2.59e-05 in EstBB; Pinteraction 
=2.35e-07 in CGPS). These interactions remained in both women and men, and in the 40-70 
year old subpopulation. (Table S5).  
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Figure. 1 Circular Manhattan plot for the log-transformed (base 10) P-values of the interaction terms between 
genetic variants and age. Abbreviations in clockwise direction: ApoB, apolipoprotein B; TG, triglyceride; LDLC, 
low-density lipoprotein cholesterol; BMI, body mass index; BP, blood pressure. The orange line indicates a P-value 
of 5e-8, and the red line indicates a P-value of 1e-8 after Bonferroni correction for multiple testing. Red dots indicate 
genome-wide significant SNPs with P-values smaller than 5e-8 for the interaction terms. Labelled gene names in 
black were identified by FUMA. 
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3.3 Look-up analyses for potential gene-age interactions  

A total of 958 independent genetic variants showed marginal effects on the corresponding 
risk factor, of which 145 were associated with ApoB, 175 with TG, 198 with LDL-C, 239 
with BMI and 201 with SBP. Among these genetic variants, a total of 17 independent variants 
showed evidence for interaction with age after correction for multiple testing, i.e., 9 for ApoB 
(P-values for the interaction terms < 0.05/145), 2 for TG (P-values for the interaction terms 
< 0.05/175), 1 for LDL-C (P-values for the interaction terms < 0.05/198), 3 for BMI (P-
values for the interaction terms < 0.05/239), and 2 for SBP (P-values for the interaction terms 
< 0.05/201). In addition to already identified genes by GWIS, several more genes were found, 
such as LIPC for ApoB (rs261334, Pinteraction = 4.44e-06) and TG (rs1077835, Pinteraction = 
1.16e-04), and FTO (rs11642015, Pinteraction = 1.1e-04) for BMI (Table 3).  

3.4 Stratified analyses 

Figure 2 shows the associations of the four lead SNPs (rs11591147, rs34601365, rs17248720, 
rs429358) with ApoB and the association of rs429358 with TG in different age groups from 
UKB. The homozygous genotypes were observed to have greater effects on the 
corresponding risk factors than the heterozygous genotypes. Notably, with the exception of 
the association between the homozygous group of rs11591147 [R46L in PCSK9] and ApoB, 
the associations of the genotype groups (both heterozygous and homozygous) relative to the 
reference group with the corresponding phenotypes attenuated with age. For example, the 
homozygous genotype (C; C) of rs429358 [tagging APOE4] had the largest effect on TG in 
the 40- to 49-year-old age group, with a 1.11-fold [95% CI: 1.08, 1.14] increase, and had the 
smallest effect in the 60- to 70-year-old age group, with a 1.03-fold [95% CI: 1.01, 1.05] 
increase. 

The results of the age-stratified analyses for women and men from UKB were similar to those 
of the main analysis (Figure S1). In addition, the age-stratified analyses in validation cohorts 
showed similar results to the main analyses (Figure 2). The direction and the decreasing trend 
with aging for all the genetic effects, especially for rs429358, are in line with the main 
analyses.  
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Figure. 2 Associations between the genotypes of the lead SNPs and the corresponding phenotypes for age-
stratified analyses in UKB and two validation cohorts. ApoB, apolipoprotein B; EA, effect allele; SNP: single 
nucleotide polymorphism; TG: triglyceride. Cohort names: UKB, UK Biobank; EstBB, Estonian Biobank; CGPS, 
Copenhagen General Population Study. The ‘60-69 *’ indicates that the age group in UKB is 60-70, while in other 
cohorts is 60-69. The ‘70-79 *’ indicates that the age group in EstBB is 70-80, while in CGPS is 70-79. In UKB and 
EstBB, linear regressions were adjusted for sex and the first ten genetic principal components, whereas in CGPS 
only sex was adjusted. For EstBB, the figure showed the results of rs62122481 (effect allele: A), which is an proxy 
SNP for rs34601365. 
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4. Discussion 
Our genome-wide interaction studies in 270,276 unrelated European-ancestry participants 
from UKB identified multiple genetic variants that showed significant interactions with age 
on two of the five examined cardiometabolic risk factors. Specifically, four lead variants were 
identified for ApoB: rs11591147 [R46L in PCSK9], rs34601365 [near TDRD15 and APOB], 
rs17248720 [near LDLR], and rs429358 [tagging APOE4]; one lead variant was identified 
for TG: rs429358 [tagging APOE4]. No genome-wide significant interaction effects were 
found for LDL-C, SBP and BMI. The effect sizes of identified lead variants were closer to 
null with increasing age. The interactions of rs429358 [tagging APOE4] with age were 
replicated in EstBB and CGPS.  

In the present study, three independent variants, which are located near or in genes that play 
a clear role in ApoB metabolism, were found to have significant interactions with age on 
ApoB levels. First, it is well known that the proprotein convertase kexin/subtilisin type 9 
(PCSK9) increases plasma levels of LDL-C by interacting with the LDL receptor (LDLR) 
and decreasing endocytic recycling of the LDLR. The missense R46L variant in the PCSK9 
gene is thought to inhibit this cycle and thereby lower LDL-C (38, 39). A previous study 
showed that carriers of PCSK9 R46L variant could lower LDL-C level and ApoB level (40). 
In addition, the common variant rs17248720-T, located at the 5’ end of LDLR gene, was 
found to be associated with increased LDLR transcriptional activity, lower LDL-C levels (41), 
and lower non-high-density lipoproteins (non-HDL) cholesterol levels (42). These 
observations are in line with changes in ApoB levels. In accordance, we found that both the 
R46L variant in PCSK9 and the rs17248720-T variant near the LDLR gene were associated 
with the lower ApoB levels. Since ApoB-100 is the main structural protein of LDL, the lower 
LDL-C levels caused by the R46L variant and rs17248720-T variant is therefore likely 
paralleled by reduced ApoB levels. Lastly, rs34601365 is in vicinity of the TDRD15 and 
APOB genes, which are located in the same genomic locus, less than 250kb apart. There is 
evidence that the rs34601365 or its proxy SNP rs62122481 (effect allele: A, mapping to 
APOB) associated with higher ApoB levels (43). 

Interestingly, our study, including the replication analyses, found that rs429058, tagging the 
APOE4, had significant interactions with age on both ApoB and TG levels. Apolipoprotein 
E (ApoE) is an apolipoprotein component of chylomicrons, very-low-density lipoproteins 
(VLDL) and HDL. ApoE plays an important role as ligand responsible for the clearance of 
chylomicron and VLDL remnants in the liver through interaction with hepatic lipoprotein 
receptors, primarily the LDLR (44, 45). Among the three ApoE isoforms (ε2, ε3, and ε4), 
encoded by different APOE alleles, ApoE ε3 is the most common isoform. Relative to ApoE 
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ε3, the ApoE ε4 has been found to be associated with higher TG, ApoB, and LDL-C levels 
(46). This has been attributed to the preference of ApoE ε4 for VLDL, a higher ApoE ε4-
associated VLDL-production rate and/or higher VLDL-TG-lipolysis activity (47). In addition, 
participants with the homozygous APOE ε4 have a lower hepatic LDLR activity than 
individuals with homozygous APOE ε3 (48), which could lead to reduced clearance of VLDL 
remnants and, consequently, to TG accumulation as well. Our findings of elevated levels of 
ApoB and TG associated with the APOE ε4 variant (rs429358, effect allele: C) are consistent 
with these results and conclusions. 

It is well-known that the APOE ε4 is negatively associated with human longevity (49). As 
shown in Table 2, the frequency of the APOE ε4 allele was somewhat lower in older 
individuals (>70 years), and the interaction between rs429358 and age may be partially 
attributable to the negative effect of APOE ε4 on longevity. In addition, we found that the 
genetic effects of all the identified variants on the corresponded phenotypes decreased with 
increasing age. There is evidence that the increase of LDL-C with age is explained by a 
reduced capacity for its removal, which would be mediated via a reduced hepatic LDLR 
expression (50). This finding has been validated by some animal studies (51). In conjunction 
with the roles of all the identified genes in lipoprotein metabolism as described above, the 
reduction in LDLR expression could also explain the attenuated genetic effects (including 
APOE ε4 allele) with aging in our study.  

Previous studies identified different genetic variants showing age-dependent effects on lipids 
levels during life course (52-54). For example, one study identified an age-dependent 
association (Pinteraction = 0.024) between rs2429917 [SGSM2] and LDL-C (50), while another 
study did not find any significant variants for LDL-C after the adjustment for multiple testing 
(53). In addition, one study of blood pressure using meta-regression models with a joint 2 
degree of freedom likelihood ratio test identified 20 independent genetic variants exhibiting 
significant interactions with age, but none of those variants passed the interaction term test 
with a threshold of P < 5e-8 (21). Our study did not find genetic effects on SBP that varied 
significantly (P < 5e-8) across age, and only further identified 2 SNPs showing significant 
variant-age interactions (P < 0.00025) by look-up analyses (Table 3), one of which mapped 
to the same gene [CCDC71L] as found in the previous study (21). For the genetic effects on 
BMI over age, the present study identified one SNP with a threshold of P < 5e-8 (Figure 1), 
and further identified three SNPs with a threshold of P < 0.00021 by lookup analyses (Table 
3). Three of the mapped genes  i.e., TMEM18, FTO, and SEC16B, were also found in previous 
studies with a nominal significant threshold (Pinteraction < 0.05) (20, 55). However, it is 
important to note that, based on the studies mentioned above, there is little evidence of 
significant changes in genetic effects throughout the life course, which is concordant with 
our findings. Considering the increased prevalence of cardiovascular disease with aging (56, 
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57), all these findings may imply that the relative importance of genetic effects versus 
environmental influences could decrease with aging. 

Mendelian randomization (MR) has emerged as a valuable tool to investigate potential causal 
associations by using genetic variants as instruments against false inferences resulting from 
confounding and reverse causality (58, 59). One of the assumptions to use MR methods is 
that the relationship between the genetic variant and the exposure should stay constant over 
time. Thus, the present study provides evidence that most genetic variants likely fulfil this 
key condition during adulthood. However, with the development of drug-targeted MR studies 
focusing on specific genetic variants (60), such as the effects of PCSK9 inhibitor on 
atherosclerotic risk, caution must be exercised when combining or comparing results across 
studies with different age distributions.  

The present study was conducted in a large study sample with a relatively large statistical 
power to detect genetic variants showing genome-wide significant interactions with age. In 
addition, our main findings were replicated in two other large cohort studies with a much 
larger age range. However, there are some limitations to be addressed. First, due to the lack 
of data for the number, dose, and type of antihypertensive medications taken, we could not 
correct the blood pressure parameters accurately. In addition, detailed data on the specific 
lipid-lowering agents were not available. Although it is reasonable to assume that the largest 
majority of participants taking lipid-lowering medications were taking statins, the LDL-C 
levels may not be accurately corrected. Last, we screened for age-dependent genetic effects 
by incorporating an interaction term between variants and age in statistical models. This 
approach does not address the molecular mechanisms underlying the interactions in 
determining a phenotype, thereby potentially limiting insights into the biology.  

In conclusion, the present study indicates that the majority of genetic effects on 
cardiometabolic risk factors remain relatively constant over middle age, with the noted 
exception of some specific genetic effects on ApoB and TG, which play a less prominent role 
in old versus young age. 
 

 



CHAPTER 4  
 

82 
 

Reference 
1. Vaduganathan M., Mensah G. A., Turco J. V., Fuster V., Roth G. A. The Global Burden of Cardiovascular 
Diseases and Risk: A Compass for Future Health. J Am Coll Cardiol. 2022;80(25):2361-71. 
2. Fry E. T. A., Pineiro D. J. One World, One Heart. J Am Coll Cardiol. 2023;81(12):1211-3. 
3. Lindstrom M., DeCleene N., Dorsey H., Fuster V., Johnson C. O., LeGrand K. E., et al. Global Burden 
of Cardiovascular Diseases and Risks Collaboration, 1990-2021. J Am Coll Cardiol. 2022;80(25):2372-425. 
4. Uffelmann Emil, Huang Qin Qin, Munung Nchangwi Syntia, de Vries Jantina, Okada Yukinori, Martin 
Alicia R., et al. Genome-wide association studies. Nature Reviews Methods Primers. 2021;1(1). 
5. Tam V., Patel N., Turcotte M., Bosse Y., Pare G., Meyre D. Benefits and limitations of genome-wide 
association studies. Nat Rev Genet. 2019;20(8):467-84. 
6. Buniello A., MacArthur J. A. L., Cerezo M., Harris L. W., Hayhurst J., Malangone C., et al. The NHGRI-
EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. 
Nucleic Acids Res. 2019;47(D1):D1005-D12. 
7. Willer Cristen J., Schmidt Ellen M., Sengupta Sebanti, Peloso Gina M., Gustafsson Stefan, Kanoni 
Stavroula, et al. Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. 
Nature Genetics. 2013;45(11):1274-83. 
8. Graham S. E., Clarke S. L., Wu K. H., Kanoni S., Zajac G. J. M., Ramdas S., et al. The power of genetic 
diversity in genome-wide association studies of lipids. Nature. 2021;600(7890):675-9. 
9. Chekanova V., Abolhassani N., Vaucher J., Marques-Vidal P. Association of clinical and genetic risk 
factors with management of dyslipidaemia: analysis of repeated cross-sectional studies in the general population of 
Lausanne, Switzerland. BMJ Open. 2023;13(2):e065409. 
10. Virolainen S. J., VonHandorf A., Viel Kcmf, Weirauch M. T., Kottyan L. C. Gene-environment 
interactions and their impact on human health. Genes Immun. 2023;24(1):1-11. 
11. Laville V., Majarian T., Sung Y. J., Schwander K., Feitosa M. F., Chasman D. I., et al. Gene-lifestyle 
interactions in the genomics of human complex traits. Eur J Hum Genet. 2022;30(6):730-9. 
12. Rodgers J. L., Jones J., Bolleddu S. I., Vanthenapalli S., Rodgers L. E., Shah K., et al. Cardiovascular 
Risks Associated with Gender and Aging. J Cardiovasc Dev Dis. 2019;6(2). 
13. North B. J., Sinclair D. A. The intersection between aging and cardiovascular disease. Circ Res. 
2012;110(8):1097-108. 
14. Tromp J., Paniagua S. M. A., Lau E. S., Allen N. B., Blaha M. J., Gansevoort R. T., et al. Age dependent 
associations of risk factors with heart failure: pooled population based cohort study. BMJ. 2021;372:n461. 
15. Jansen S. A., Huiskens B., Trompet S., Jukema J., Mooijaart S. P., Willems van Dijk K., et al. Classical 
risk factors for primary coronary artery disease from an aging perspective through Mendelian Randomization. 
Geroscience. 2022;44(3):1703-13. 
16. Kaneko H., Yano Y., Okada A., Itoh H., Suzuki Y., Yokota I., et al. Age-Dependent Association Between 
Modifiable Risk Factors and Incident Cardiovascular Disease. J Am Heart Assoc. 2023;12(2):e027684. 
17. Yusuf S., Joseph P., Rangarajan S., Islam S., Mente A., Hystad P., et al. Modifiable risk factors, 
cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income 
countries (PURE): a prospective cohort study. Lancet. 2020;395(10226):795-808. 
18. Bays H. E., Taub P. R., Epstein E., Michos E. D., Ferraro R. A., Bailey A. L., et al. Ten things to know 
about ten cardiovascular disease risk factors. Am J Prev Cardiol. 2021;5:100149. 
19. Du Z., Qin Y. Dyslipidemia and Cardiovascular Disease: Current Knowledge, Existing Challenges, and 
New Opportunities for Management Strategies. J Clin Med. 2023;12(1). 
20. Winkler T. W., Justice A. E., Graff M., Barata L., Feitosa M. F., Chu S., et al. The Influence of Age and 
Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS 
Genet. 2015;11(10):e1005378. 
21. Simino J., Shi G., Bis J. C., Chasman D. I., Ehret G. B., Gu X., et al. Gene-age interactions in blood 
pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia. Am J Hum 
Genet. 2014;95(1):24-38. 
22. Ibi D., Blauw L. L., Noordam R., Dolle M. E. T., Jukema J. W., Rosendaal F. R., et al. Triglyceride-
lowering LPL alleles combined with LDL-C-lowering alleles are associated with an additively improved lipoprotein 
profile. Atherosclerosis. 2021;328:144-52. 
23. Nordestgaard B. G. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New 
Insights From Epidemiology, Genetics, and Biology. Circ Res. 2016;118(4):547-63. 



CHAPTER 4  
  

83 
 

4 

24. Marston N. A., Giugliano R. P., Melloni G. E. M., Park J. G., Morrill V., Blazing M. A., et al. Association 
of Apolipoprotein B-Containing Lipoproteins and Risk of Myocardial Infarction in Individuals With and Without 
Atherosclerosis: Distinguishing Between Particle Concentration, Type, and Content. JAMA Cardiol. 2022;7(3):250-
6. 
25. Grundy S. M., Stone N. J., Bailey A. L., Beam C., Birtcher K. K., Blumenthal R. S., et al. 2018 
AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of 
Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on 
Clinical Practice Guidelines. Circulation. 2019;139(25):e1082-e143. 
26. Sudlow C., Gallacher J., Allen N., Beral V., Burton P., Danesh J., et al. UK biobank: an open access 
resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 
2015;12(3):e1001779. 
27. Bycroft C., Freeman C., Petkova D., Band G., Elliott L. T., Sharp K., et al. The UK Biobank resource 
with deep phenotyping and genomic data. Nature. 2018;562(7726):203-9. 
28. Noordam R., Bos M. M., Wang H., Winkler T. W., Bentley A. R., Kilpelainen T. O., et al. Multi-ancestry 
sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration. Nat Commun. 
2019;10(1):5121. 
29. Kilpelainen T. O., Bentley A. R., Noordam R., Sung Y. J., Schwander K., Winkler T. W., et al. Multi-
ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nat Commun. 
2019;10(1):376. 
30. UK10K Consortium ., Walter K., Min J. L., Huang J., Crooks L., Memari Y., et al. The UK10K project 
identifies rare variants in health and disease. Nature. 2015;526(7571):82-90. 
31. 1000 Genomes Project Consortium ., Auton A., Brooks L. D., Durbin R. M., Garrison E. P., Kang H. M., 
et al. A global reference for human genetic variation. Nature. 2015;526(7571):68-74. 
32. McCarthy S., Das S., Kretzschmar W., Delaneau O., Wood A. R., Teumer A., et al. A reference panel of 
64,976 haplotypes for genotype imputation. Nat Genet. 2016;48(10):1279-83. 
33. Westerman Kenneth E., Pham Duy T., Hong Liang, Chen Ye, Sevilla-González Magdalena, Sung Yun Ju, 
et al. GEM: scalable and flexible gene–environment interaction analysis in millions of samples. Bioinformatics. 
2021;37(20):3514-20. 
34. Watanabe K., Taskesen E., van Bochoven A., Posthuma D. Functional mapping and annotation of genetic 
associations with FUMA. Nat Commun. 2017;8(1):1826. 
35. Wang K., Li M., Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. 
36. Johansen M. O., Afzal S., Vedel-Krogh S., Nielsen S. F., Smith G. D., Nordestgaard B. G. From plasma 
triglycerides to triglyceride metabolism: effects on mortality in the Copenhagen General Population Study. Eur Heart 
J. 2023;44(39):4174-82. 
37. Leitsalu L., Haller T., Esko T., Tammesoo M. L., Alavere H., Snieder H., et al. Cohort Profile: Estonian 
Biobank of the Estonian Genome Center, University of Tartu. Int J Epidemiol. 2015;44(4):1137-47. 
38. Coppinger C., Movahed M. R., Azemawah V., Peyton L., Gregory J., Hashemzadeh M. A Comprehensive 
Review of PCSK9 Inhibitors. J Cardiovasc Pharmacol Ther. 2022;27:10742484221100107. 
39. Lagace T. A. PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Curr 
Opin Lipidol. 2014;25(5):387-93. 
40. Verbeek R., Boyer M., Boekholdt S. M., Hovingh G. K., Kastelein J. J., Wareham N., et al. Carriers of 
the PCSK9 R46L Variant Are Characterized by an Antiatherogenic Lipoprotein Profile Assessed by Nuclear 
Magnetic Resonance Spectroscopy-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37(1):43-8. 
41. De Castro-Orós Isabel, Pérez-López Javier, Mateo-Gallego Rocio, Rebollar Soraya, Ledesma Marta, 
León Montserrat, et al. A genetic variant in the LDLRpromoter is responsible for part of the LDL-cholesterol 
variability in primary hypercholesterolemia. BMC Medical Genomics. 2014;7(1):17. 
42. Gretarsdottir S., Helgason H., Helgadottir A., Sigurdsson A., Thorleifsson G., Magnusdottir A., et al. A 
Splice Region Variant in LDLR Lowers Non-high Density Lipoprotein Cholesterol and Protects against Coronary 
Artery Disease. PLoS Genet. 2015;11(9):e1005379. 
43. Richardson T. G., Sanderson E., Palmer T. M., Ala-Korpela M., Ference B. A., Davey Smith G., et al. 
Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart 
disease: A multivariable Mendelian randomisation analysis. PLoS Med. 2020;17(3):e1003062. 
44. Kypreos K. E., Zannis V. I. LDL receptor deficiency or apoE mutations prevent remnant clearance and 
induce hypertriglyceridemia in mice. J Lipid Res. 2006;47(3):521-9. 
45. Khalil Y. A., Rabes J. P., Boileau C., Varret M. APOE gene variants in primary dyslipidemia. 
Atherosclerosis. 2021;328:11-22. 



CHAPTER 4  
 

84 
 

46. Rasmussen K. L., Tybjaerg-Hansen A., Nordestgaard B. G., Frikke-Schmidt R. Plasma levels of 
apolipoprotein E, APOE genotype, and all-cause and cause-specific mortality in 105 949 individuals from a white 
general population cohort. Eur Heart J. 2019;40(33):2813-24. 
47. Hara M., Iso O. N., Satoh H., Noto H., Togo M., Ishibashi S., et al. Differential effects of apolipoprotein 
E isoforms on lipolysis of very low-density lipoprotein triglycerides. Metabolism. 2006;55(8):1129-34. 
48. Demant T., Bedford D., Packard C. J., Shepherd J. Influence of apolipoprotein E polymorphism on 
apolipoprotein B-100 metabolism in normolipemic subjects. J Clin Invest. 1991;88(5):1490-501. 
49. Deelen J., Beekman M., Uh H. W., Helmer Q., Kuningas M., Christiansen L., et al. Genome-wide 
association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. 
Aging Cell. 2011;10(4):686-98. 
50. Ericsson S., Eriksson M., Vitols S., Einarsson K., Berglund L., Angelin B. Influence of age on the 
metabolism of plasma low density lipoproteins in healthy males. The Journal of Clinical Investigation. 
1991;87(2):591-6. 
51. Martini C., Pallottini V., Cavallini G., Donati A., Bergamini E., Trentalance A. Caloric restrictions affect 
some factors involved in age-related hypercholesterolemia. J Cell Biochem. 2007;101(1):235-43. 
52. Dumitrescu L., Brown-Gentry K., Goodloe R., Glenn K., Yang W., Kornegay N., et al. Evidence for age 
as a modifier of genetic associations for lipid levels. Ann Hum Genet. 2011;75(5):589-97. 
53. Dumitrescu L., Carty C. L., Franceschini N., Hindorff L. A., Cole S. A., Buzkova P., et al. Post-genome-
wide association study challenges for lipid traits: describing age as a modifier of gene-lipid associations in the 
Population Architecture using Genomics and Epidemiology (PAGE) study. Ann Hum Genet. 2013;77(5):416-25. 
54. Shirts B. H., Hasstedt S. J., Hopkins P. N., Hunt S. C. Evaluation of the gene-age interactions in HDL 
cholesterol, LDL cholesterol, and triglyceride levels: the impact of the SORT1 polymorphism on LDL cholesterol 
levels is age dependent. Atherosclerosis. 2011;217(1):139-41. 
55. Hardy R., Wills A. K., Wong A., Elks C. E., Wareham N. J., Loos R. J., et al. Life course variations in 
the associations between FTO and MC4R gene variants and body size. Hum Mol Genet. 2010;19(3):545-52. 
56. Ebeling M., Rau R., Malmstrom H., Ahlbom A., Modig K. The rate by which mortality increase with age 
is the same for those who experienced chronic disease as for the general population. Age Ageing. 2021;50(5):1633-
40. 
57. Tsao C. W., Aday A. W., Almarzooq Z. I., Alonso A., Beaton A. Z., Bittencourt M. S., et al. Heart Disease 
and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022;145(8):e153-
e639. 
58. Smith G. D., Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to 
understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1-22. 
59. Davies N. M., Holmes M. V., Davey Smith G. Reading Mendelian randomisation studies: a guide, 
glossary, and checklist for clinicians. BMJ. 2018;362:k601. 
60. Daghlas Iyas, Gill Dipender. Mendelian randomization as a tool to inform drug development using human 
genetics. Cambridge Prisms: Precision Medicine. 2023;1. 




