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Abstract 
Background: Plasma 1-H nuclear magnetic resonance (1H-NMR) metabolomic measures 
have yielded significant insight into the pathophysiology of cardiometabolic disease, but their 
inter-related nature complicates causal inference and clinical interpretation. This study aimed 
to investigate the associations of unrelated 1H-NMR metabolomic profiles with coronary 
artery disease (CAD) and ischemic stroke (IS). 

Methods: Principal component analysis was performed on 168 1H-NMR metabolomic 
measures in 56,712 unrelated European participants from UK Biobank to retrieve 
uncorrelated principal components (PCs), which were used in Cox-proportional hazard 
models. For each outcome, two-sample Mendelian randomization (MR) analyses were then 
conducted based on three non-overlapping databases, followed by a meta-analysis.  

Results: The first six PCs collectively explaining 88% of the total variance were identified. 
For CAD, results from Cox and MR analyses were generally directionally consistent. The 
pooled odds ratios (ORs) [95% CI] for CAD per one-SD increase in genetically-influenced 
PC1 and PC3 (both characterized by distinct ApoB-associated lipoprotein profiles) were 1.04 
[1.03, 1.05] and 0.94 [0.93, 0.96], respectively. Besides, the pooled OR [95% CI] for CAD 
per one-SD increase in genetically-influenced PC4, characterized by simultaneously 
decreased small HDL and increased large HDL, and independent of ApoB, was 1.05 [1.03, 
1.07]. For IS, increases of PC3 and PC5 (characterized by increased amino acids) were 
associated with a lower risk and a higher risk, respectively.  

Conclusions: This study confirms associations of ApoB-associated lipoprotein profiles with 
CAD and IS, and highlights the possible existence of an ApoB-independent lipoprotein 
profile, characterized by a distinctive HDL sub-particle distribution, driving CAD.  

Keywords: metabolomic measures; apolipoprotein B; high-density lipoprotein; coronary 
artery disease; ischemic stroke 
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1. Introduction  
The effectiveness of lowering plasma low-density lipoprotein-cholesterol (LDL-C) to reduce 
coronary artery disease (CAD) risk is beyond any doubt (1). Lowering of plasma triglyceride 
(TG) levels may also reduce CAD risk on top of LDL-C lowering (2, 3). These observational 
findings have been attributed to a reduction in apolipoprotein B (ApoB), which has been 
suggested as the primary marker for cardiovascular disease risk independent of lipid content 
(cholesterol or TG) and type of ApoB-containing lipoprotein (cholesterol-rich LDL or TG-
rich very-low-density lipoprotein [VLDL]) (4, 5). In addition, although an inverse association 
between high-density lipoprotein-cholesterol (HDL-C) and cardiovascular disease risk has 
long been established in prospective studies (6), Mendelian randomization (MR) studies (7) 
and clinical trials (8, 9) have so far failed to convincingly support a causal role for HDL-C in 
cardiovascular disease. 

Importantly, lipoprotein metabolism is a highly dynamic system via which lipids and specific 
apolipoproteins are passively and actively exchanged between the different lipoprotein 
classes in the course of their transport and metabolism within the circulation. Considering 
lipoprotein classes such as LDL or HDL in isolation disregards the intricate interdependence 
of plasma lipoproteins. It would therefore be more appropriate to consider individual 
lipoprotein profiles as a whole, characterized by specific distributions of lipids and 
apolipoproteins over the different lipoprotein classes. Metabolomic platforms based on 1-H 
nuclear magnetic resonance (1H-NMR) imaging of plasma samples provide such individual 
profiles by generating detailed measures on the composition, size, number and distribution 
of the different lipoprotein classes in a sample (10). In addition to lipoproteins, other 
metabolomic measures, such as some amino acids are also comprised in these platforms. 
Analyses of metabolomic measures as intermediates between exposures and clinical 
outcomes, is a powerful approach to dissect complex etiologic mechanisms linking metabolic 
processes to disease (11). 

The interrelated nature of the lipoproteins also makes it difficult to identify specific genetic 
instruments for a single lipid or lipoprotein species without pleiotropic effects on the other 
lipoprotein subclasses. When performing MR studies, this may lead to biased estimations of 
health effects (12). Here, we tested the hypothesis that individual 1H-NMR metabolomics 
profiles can be grouped into different overall patterns, which are independent from each other 
and may have differential associations with diseases. To address this hypothesis, we 
performed principal component analysis (PCA) on 1H-NMR metabolomic measures from 
UK Biobank (UKB) participants. The principal components (PCs) can be regarded as 
uncorrelated traits, characterized by a specific overall metabolomic profile, which were 
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exploited to determine the associations with CAD and ischemic stroke (IS), and to triangulate 
findings from observational research through multivariable-adjusted regressions and large-
scale multicohort MR analyses (13). 

 



CHAPTER 2  

21 
 

2 

2. Materials and Methods  

2.1 Project design 

In the present study, we performed PCA on 1H-NMR metabolomic measures and conducted 
prospective multivariable-adjusted regression analyses to investigate the associations 
between selected PCs and examined diseases in UKB participants. In line with the principles 
of triangulation (13), i.e., integrating evidence from several different epidemiological 
approaches that have differing and unrelated key sources of bias, the MR analysis was further 
conducted to assess potential causal associations of selected PCs with examined 
cardiovascular diseases. 

2.2 Study population  

A detailed description of the UKB cohort has been presented elsewhere (14). In brief, the 
UKB cohort recruited 502,628 participants aged 40-70 years across the entire United 
Kingdom during the baseline survey between 2006 and 2010. Extensive phenotypic and 
genotypic details of the participants have been collected since the baseline assessment, 
including sociodemographic data, lifestyle, biological samples, genome-wide genotyping and 
longitudinal follow-up on a wide range of health-related outcomes. The UKB cohort study 
was approved by the North-West Multicentre Research Ethics Committee (MREC), and the 
access for information to invite participants was approved by the Patient Information 
Advisory Group (PIAG) from England and Wales. The study was conducted in accordance 
with the principles of the Declaration of Helsinki. All participants provided electronic written 
informed consent.  

The UKB relevant team randomly sampled baseline participants from the full cohort 
population and released their metabolomic measurements 
(https://biobank.ndph.ox.ac.uk/showcase/refer.cgi?id=130). These metabolomic 
measurements were performed on approximately 121,726 baseline participants between June 
2019 and April 2020 (Phase 1) and on approximately 275,000 baseline participants between 
April 2020 and June 2022 (Phase 2). Participants from Phase 1 were used in the main 
analysis, and the remaining participants from phase 2 were used for the validation analysis. 

Among participants from Phase 1 release data, 110,002 participants with complete 
metabolomic measures and genetics data were initiated for enrolment in the main analysis. 
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To minimize ancestry and population stratification bias, we restricted the study population to 
71,736 unrelated individuals of European ancestry, based on the estimated kinship 
coefficients for all pairs and the self-reported ancestral background. A subset of 57,846 
participants free from cardiometabolic disease (notably CAD, diabetes, and IS) and without 
taking cholesterol-lowering medication prior to the baseline survey were then selected for 
further studies. Finally, a total of 56,712 participants with complete data on covariables, 
including age, sex, the Townsend deprivation index, smoking status, alcohol consumption, 
body mass index (BMI), blood pressure lowering medication, and fasting time, were eligible 
for this study. 

2.3 Profiling of metabolomic measures 

The blood sample collection of UKB participants was undertaken at baseline between 2006 
and 2010, and the blood sample handling and storage protocol has been previously described 
(15). The details of obtaining the NMR-based metabolomics data for UKB participants, 
including quality control, have been clearly described elsewhere 
(https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=220) and in previous studies (16, 17). 
In brief, EDTA plasma samples collected at baseline recruitment were measured using a high 
throughput 1H-NMR-metabolomics platform (Nightingale Health, Helsinki, Finland). The 
NMR-based metabolomics platform has been broadly applied in large-scale epidemiologic 
studies, providing additional evidence to reveal underlying biological mechanisms (10, 18). 
This study included 168 direct metabolomic measures, which were listed in Table S1, along 
with their concentrations in the study population. 

2.4 Principal component analysis 

PCA is a method used for dimension reduction by projecting each data point onto a new 
orthogonal coordinate system while capturing as much of the variation as possible (19). The  
uncorrelated patterns identified by the PCA method from interrelated risk factors are also 
known as PCs. In this study, all 168 metabolomic measures from 56,712 participants were 
first transformed to approximate a normal distribution by inverse rank-based normal 
transformation and standardized with standard deviation (SD) one and mean zero. PCA was 
then performed as a singular value decomposition of the 168 standardized data matrix. The 
correlations between the metabolomic measures and each PC could be represented by 
loadings, defined as the eigenvector scaled up by the square roots of the eigenvalues of the 
respective PC (19). For individual participant, each PC score was calculated by summing the 
standardized measures weighted by the corresponding eigenvectors (19). 
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2.5 Prospective analyses 

Outcome diagnoses were coded according to the International Classification of Diseases 
edition 10 (ICD-10) and were based on the date of the first occurrence. CAD is defined as 
angina pectoris (I20), myocardial infarction (MI) (I21 and I22), and acute and chronic 
ischemic heart disease (IHD) (I24 and I25); IS is defined as cerebral infarction (I63). These 
variables have been generated by the UKB data management team through a standard 
algorithm 
(https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/first_occurrences_outcomes.pdf), 
combining self-reported health conditions from baseline and linked data from hospital 
admissions, primary care, and death registers. The linked data and its sources were presented 
here (https://biobank.ndph.ox.ac.uk/showcase/exinfo.cgi?src=Data_providers_and_dates). 
Outcomes in this prospective analysis were incident diseases during the time period from 
recruitment to January 1st, 2021. Follow-up time is computed from the baseline visit to the 
diagnosis of incident disease, loss-to-follow-up or death, or the end of the study period, 
whichever came first.  

The prospective analyses were performed for the included 56,712 UKB participants. Three 
multivariable-adjusted Cox proportional hazards models were fitted to estimate hazard ratios 
(HRs) and corresponding 95% confidence intervals (95% CI) for the associations of PCs with 
incident CAD and IS: Model 1 was adjusted for age, sex, and the Townsend deprivation index; 
Model 2 was additionally adjusted for smoking status, alcohol consumption frequency, BMI, 
and blood pressure lowering medication; Model 3 was additionally adjusted for fasting time. 
To assess non-linear associations between PCs and outcomes, a penalized cubic regression 
spline was applied, adjusted for the same covariates in Model 3. We also performed 
multicollinearity diagnosis for Model 3 based on the variance inflation factor (VIF), which 
is equal to or greater than one (absence of multicollinearity). As a rule of thumb, a VIF value 
that exceeds 5 indicates a problematic amount of multicollinearity (20). To test the interaction 
effects with sex and age, multiplicative interaction terms between PCs and age and sex were 
added to Model 3. Sex-stratified (in women and men) and age-stratified (in 40-49, 50-59, and 
60-70 years) analyses were further conducted using the fully-adjusted regression Model 3. 

2.6 Mendelian randomization  

MR analysis uses genetic variants, typically single-nucleotide polymorphisms (SNPs), as 
instrumental variables (21). This study used the two-sample MR method, which requires that 
groups of participants in the gene-exposure association analysis and gene-outcome 
association analysis do not overlap (22, 23). Gene-exposure association was based on 
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performing genome-wide association studies (GWAS) on each PC. Gene-outcome 
association was estimated or extracted from three large databases for each outcome. The 
overall workflow of MR analyses was presented in Figure 1.  

 
Figure 1. The overall workflow of Mendelian randomization analyses in the present study. CAD: coronary 
artery disease; CHD: coronary heart disease; IS: ischemic stroke; PCA: principal component analysis; GWAS: 
genome-wide association study; MR: Mendelian Randomization. 

Genotyping and genetic imputations 

UK Biobank has undertaken a project to genotype all 500,000 participants. The majority of 
participants (~450k) are genotyped on the UK Biobank Axiom® Array, with 50,000 
participants genotyped on the Affymetrix UK BiLEVE Axiom® array. The quality control of 
the genetic data was undertaken at the Wellcome Trust Centre for Human Genetics (WTCHG). 
Further details of the array design, genotyping and imputation procedures have been 
described elsewhere (24). In addition, UK Biobank resources performed centralized 
imputations on the autosomal SNPs using computationally efficient methods combined with 
the Haplotype Reference Consortium reference panels (25), UK10K haplotype (26), and 
1000 Genomes Phase 3 (27). Autosomal SNPs were pre-phased using SHAPEIT3 and 
imputed using IMPUTE4. In total, ~96 million SNPs were imputed.  

Associations of genetic variants with exposure 
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Using the software program GEM (version 1.4.2) (28), the GWAS was performed for each 
PC with the regression model adjusted for age, sex, first 10 genetic PCs, and fasting time. 
SNPs with a minor allele frequency below 0.001 were removed. For each PC, genome-wide 
significant SNPs (P < 5*10-8) were selected, and then pruned to obtain independent 
instrumental variables by the TwoSampleMR and ieugwasr packages, which use the PLINK 
clumping method with a clumping window of 10Mb and linkage disequilibrium r2 < 0.001 
(29). To avoid potential residual pleiotropic effects, only SNPs without overlap among PCs 
were selected and subsequently used to extract the gene-outcome associations. The 
proportion of exposure variation explained by the genetic variants was depicted by the R2 
statistic (30), and the potentially weak instrument bias was examined by the F-statistic, for 
which a threshold greater than 10 is conventionally considered sufficient for MR analysis 
(23).  

Associations of genetic variants with outcome 

Associations of the identified exposure-related SNPs with each outcome were estimated or 
extracted from three large databases. Specifically, summary statistics for CAD were extracted 
from UKB, FinnGen study (31) and CARDIoGRAMplusC4D (32). Summary statistics for 
IS were extracted from UKB, FinnGen study (31) and MEGASTROKE (33). The 
descriptions of the large databases and the detailed process for extracting the gene-outcome 
associations are presented in Supplementary eMethods. 

Estimation of the associations between principal components and outcome 

The associations of PCs with each outcome from each database were estimated by the 
inverse-variance weighted (IVW) method, which combines the Wald ratio estimates (the 
estimated association of the genetic variant with outcome divided by the estimated 
association of the genetic variant with exposure) for individual genetic variants by a fixed-
effect meta-analysis with inverse-variants weights (23). Those estimates were expressed as 
log odds ratios (ORs) for each PC per one-SD increase. We subsequently conducted meta-
analyses for each PC to pool the estimates from the three outcome databases. The 
heterogeneity of the estimated ORs from three databases for each PC was represented by I2, 
and detected by the Cochran Q test. 

Given that the IVW method assumes all genetic instruments are valid (e.g., no horizontal 
pleiotropy), we conducted sensitivity analyses using the weighted-median estimator and the 
MR-Egger method to assess whether IVW analyses were biased due to horizontal pleiotropy 
(34, 35). Rather than taking a weighted mean of the ratio estimates as in the IVW method, 
the weighted-median estimator could still provide a consistent estimate of the causal effect 
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even when up to 50% of the identified genetic variants are invalid IVs (34). In contrast to the 
IVW method, the MR-Egger method does not require a zero horizontal pleiotropy effect, and 
could detect pleiotropy by the intercept term (under the InSIDE assumption), which when 
different from zero indicates a bias in the IVW estimation (35). 

2.7 Validation  

After excluding participants already included in the main analysis, and in line with the 
exclusion criteria in the main analysis, a total of 77,212 European-ancestry and unrelated 
participants from UKB phase 2 release were included, who were free of cardiometabolic 
disease (notably CAD, diabetes, and IS) and not taking cholesterol-lowering medication prior 
to the baseline survey.  

The loadings (the correlations between the 168 metabolomic measures and each PC) in the 
validation analysis were derived using the same methodology as in the main analysis 
(including inverse rank-based normal transformation and standardization). To compare the 
PCA results from the validation analysis with the PCA results from the main analysis, we 
further calculated the correlations between the loadings of each PC obtained from the main 
and validation samples, expressed as an R-square. In addition, using the independent SNPs 
and the corresponding weights identified in the main MR analysis, the genetic risk score for 
each PC was calculated in the validation sample. We subsequently assessed the associations 
between genetic risk scores and the corresponding PCs from the validation data, and 
examined the extent to which the genetic risk scores explained the variance in the 
corresponding PCs. 

All statistical analyses described above were performed in the R (version 4.0.2) software, 
with ‘prcomp’, ‘survival’ and ‘TwoSampleMR’ packages for PCA, Cox regression analyses 
and MR analyses, respectively. 
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3. Results 
The present study included 56,712 unrelated European-ancestry participants (57% women, a 
median age of 56 [IQR: 49, 62] years) from the UKB cohort in the main analyses. The 
baseline characteristics of the included participants are presented in Table 1 stratified by sex. 
During the 13.7-year follow-up period, 3,253 participants developed CAD, and 640 
participants developed IS, with incidence rates of 501 [95% CI: 484, 519] and 97 [89, 104] 
per 100,000 person-years, respectively. 

3.1 Principal component analysis 

Considering the combination of the eigenvalues-greater-than-one rule (36), explained 
variance and loading interpretability, the first six PCs with a cumulative explained variance 
of 88% were selected for further analyses. The detailed eigenvalues and explained variances 
of all PCs are presented in Table S2. 

The loadings for the first six PCs are shown in Figure 2 and summarized in Table 2. In detail, 
PC1 (46.7% variance explained) is mainly characterized by higher levels of ApoB, ApoB-
containing lipoproteins and fatty acids. PC2 (22.5% variance explained) is mainly 
characterized by higher levels of apolipoprotein A1 (ApoA1), HDL particles and lower levels 
of VLDL particles. PC3 (9.4% variance explained) is characterized by lower levels of most 
ApoB-containing lipoproteins, but higher levels of ApoA1 and HDL particles. PC4 (5.0% 
variance explained) is characterized by lower levels of small HDL particles and higher levels 
of very large HDL particles, independent of ApoB. PC5 (2.7% variance explained) is 
characterized by higher levels of amino acids, and PC6 (1.6% variance explained) is 
characterized by higher ketone body levels. 
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Table 2. The main loadings of the first six principal components (PCs) 

PCs 
Explained 
variance 

Meaning of the loadings 

PC1 46.7% 
Positively correlated with ApoB, ApoB-containing lipoproteins and fatty 
acids 

PC2 22.5% 
Positively correlated with ApoA1 and HDL particles and negatively 
correlated with VLDL particles 

PC3 9.4% 
Negatively correlated with most ApoB-containing lipoproteins, and 
positively correlated with ApoA1 and HDL particles 

PC4 5.0% 
Negatively correlated with small HDL particles and positively with large 
and very large HDL particles 

PC5 2.7% Positively correlated with amino acids 

PC6 1.6% Positively correlated with ketone bodies 

Abbreviations: ApoB, apolipoprotein B; HDL, high-density lipoprotein; PCs, principal components; VLDL, very-
low-density lipoprotein. 
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Figure 2. A circular loading plot of the six principal components. From the outside to the inside, each circle 
represents the correlation between the respective principle components (PC) and 168 metabolomic measures. All 
metabolomic measures are divided into 30 groups and shown in clockwise order. Red or blue colour indicates the 
increase or decrease of metabolomic measures in the six PCs. 
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3.2 Prospective multivariable-adjusted regression analyses  

The VIF values of PCs and included covariates in model 3 were all less than 5 and most of 
them were even less than 1.5, indicating absence of multicollinearity (Table S3). According 
to the curves based on the spline models (Figure S1 and Figure S2), the linearity assumption 
for the associations of PCs with CAD and IS was appropriate. The estimated multivariable-
adjusted associations of the six PCs with the incident diseases are presented in Figure 3. For 
the risk of CAD, the HRs [95% CI] for per one-SD increase in PC1, PC2, PC3 and PC4 were 
1.02 [1.02, 1.03], 0.98 [0.97, 0.99], 0.98 [0.97, 0.99], and 1.02 [1.01, 1.03], respectively. For 
the risk of IS, the HRs [95% CI] for per one-SD increase in PC4 and PC6 were 1.04 [1.01, 
1.07] and 1.08 [1.03, 1.34], respectively. In addition, for the CAD risk, PC1 showed 
interaction (Pinteraction = 3.26e-11) with age, while PC2 (Pinteraction = 0.004) and PC3 (Pinteraction 
= 0.01) showed interactions with sex. No interactions with age or sex were observed with IS. 
The estimated risk directions in the stratified analyses were similar to the main analyses. 
Consistent with the interaction tests, PC1-associated CAD risk attenuated with increasing 
age, and PC2 was more strongly associated with CAD in women, while PC3 was more 
strongly associated with CAD in men (Figure S3). 

3.3 Mendelian randomization  

A total of 150 independent SNPs were found to be significantly associated with the PCs, 
presented in Table S4 with the corresponding mapping genes. In detail, 41 SNPs, 37 SNPs, 
31 SNPs, 22 SNPs, 11 SNPs, and 8 SNPs explained 7.3%, 9.0%, 7.5%, 9.0%, 0.9%, and 1.1% 
of the variation in PC1, PC2, PC3, PC4, PC5 and PC6, respectively. All F statistics were 
larger than 10. Supplementary tables provide the details of the independent and non-
overlapping genetic variants, including their position, gene-exposure associations and 
corresponding R2 statistics and F statistics, and gene-outcome associations (Table S5-10). 

For the association of each PC with each outcome, Cochran Q statistics detected no 
heterogeneity (P values > 0.05) in the estimated ORs across the three outcome databases 
(Table S11). Figure 3 shows the estimated associations between each PC and each outcome 
from each database by the inverse-variance weighted (IVW) method, and their pooled 
estimates across the three databases. For the risk of CAD, the pooled estimated ORs [95% 
CI] per one-SD increase in PC1, PC3 and PC4 were 1.04 [1.03, 1.05], 0.94 [0.93,0.96] and 
1.05 [1.03, 1.07], respectively. For the risk of IS, the pooled estimated ORs [95% CI] per 
one-SD increase in PC3, PC5 and PC6 were 0.97 [0.96,0.99], 1.12 [1.07, 1.18] and 0.91 [0.84, 
0.99], respectively. 
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The estimated ORs based on the weighted-median estimator analyses were similar to those 
from IVW analyses (Table S11). No horizontal pleiotropic effect was detected according to 
the tests for intercept terms by MR-Egger analyses, except for the effect of PC5 on CHD 
from the FinnGen database with P value of 0.04 (Table S12). 

3.4 Validation   

Similar to the main analysis, the top six PCs from the validation analysis have a cumulative 
explained variance of 87.75%. The detailed loadings of each PC were presented in Figure S4. 
The correlations between the loadings of each PC from the main and validation analyses were 
greater than 0.99 (Figure 4). In addition, in the validation data, the associations between the 
genetic risk scores and the corresponding PC1, PC2, PC3, PC4, PC5 and PC6 were 0.23, 0.25, 
0.26, 0.28, 0.08, and 0.09, respectively, with P values less than 2.2e-16. Similar to the 
explained variance found in the MR study, the genetic risk scores explained 5.5%, 6.5%, 
6.7%, 7.7%, 0.68% and 0.79% of the variance in PC1, PC2, PC3, PC4, PC5, and PC6 
respectively. 
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Figure 3. Associations of the six principal components with the risks of coronary artery disease and ischemic 
stroke by prospective multivariable-adjusted regression analyses (A) and Mendelian randomization (B). In 
subplot A, the x-axis presents the estimated hazard ratios (95% CI) for the incident coronary artery disease (CAD), 
and ischemic stroke (IS) according to per one-SD increase in each PC. The right y-axis indicates results from specific 
models. Model-1 was adjusted for sex, age and Townsend index; Model-2 was Model-1 additionally adjusted for 
smoking status, alcohol consumption frequency, BMI and blood pressure lowering medication; Model-3 was Model-
2 additionally adjusted for fasting time. In subplot B, the x-axis presents the estimated odds ratios (95% CI) by 
inverse-variance weighted method for the risks of CAD and IS per one-SD increase in each PC; the right y-axis is 
labelled with the names of three data sources of the summary association statistics between genetic variants and 
outcome, and with ‘summary’ indicating the fixed-effect meta-analysis. For the two subplots, red lines (but not black 
lines) indicate significant associations between PCs and outcomes.  
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Figure 4. Correlations of the loading results between main analysis and validation analysis. X-axis shows the 
loadings of all 168 metabolomic measures in each PC from the main analysis, and Y-axis shows the corresponding 
loadings of the 168 metabolomic measures in each PC from the validation. Correlations are presented as R2 values 
and P values, indicating correlation magnitude and correlation tests, respectively. All 168 metabolomic measures 
were presented in 30 groups with different colours. 



CHAPTER 2  

35 
 

2 

4. Discussion 
We applied PCA on 168 1H NMR-based metabolomic measures in 56,712 UKB participants 
and identified six main PCs representing uncorrelated metabolomic profiles, with a 
cumulative explained variance of 88%. Multivariable-adjusted Cox regression and large-
scale multicohort MR analyses were used to examine the disease risks associated with PCs. 
PC1 (characterized by higher levels of ApoB and ApoB-containing lipoproteins) was 
associated with a higher risk of CAD, and PC3 (characterized by lower levels of ApoB-
containing lipoproteins and higher levels of ApoA1 and HDL particles) was associated with 
a lower risk of CAD. Notably, PC4 (characterized by lower levels of small HDL particles and 
higher levels of very large HDL particles) was also associated with higher risk of CAD. In 
addition, PC3 and PC5 (characterized by higher levels of amino acids) were associated with 
lower and higher IS risk, respectively.  

The loadings of each PC represent the contributions of the various lipoprotein subfractions 
(and other measured metabolites) to the corresponding PC and thus represent specific sub-
particle lipoprotein profiles. The notable observation is that, apparently, the combined 
production, metabolism and clearance of lipoproteins not only result in the overall 
distribution of lipids and apolipoproteins over major lipoproteins such as HDL, VLDL and 
LDL, but also in a limited number of independent sub-particle lipoprotein profiles as 
represented by the PCs. Our MR analyses provided evidence for causality of some of the PCs 
with specific cardiovascular disease outcomes. However, it should be emphasized that the 
inherent interconnectivity of the different components in the PCs complicates assigning 
causality to individual components.  

Nevertheless, our findings on the associations of PC1 and PC3, which mainly captured higher 
and lower ApoB-associated lipoproteins, respectively, with CAD are in line with previous 
findings that ApoB-containing lipoproteins drive atherogenic cardiovascular disease (4, 5). 
All ApoB-containing lipoproteins carry a single ApoB molecule and the concentration of 
ApoB thus directly reflects the number of circulating particles. The concentration of particles 
is the primary determinant for entry and entrapment in the arterial wall (via osmotic pressure), 
which is the first step in the development of atherogenesis. This explains why, in large 
prospective cohort analyses and clinical trials, ApoB is superior over LDL-C or triglycerides, 
which correlate with, but do not directly reflect, particle number (5, 37).  

Our study found that PC4 was also associated with CAD, which seemed independent from 
ApoB. Based on the loading values (Figure 2), the higher PC4-related risk of CAD is 
associated with a very specific HDL size distribution characterized by lower levels of small 
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HDL particles and higher levels of large HDL particles. To assess the contribution of ApoB 
to CAD in PC4, we further reperformed the MR analyses for the residual PC4, which was 
derived by regressing PC4 on ApoB. The result (Figure S5) showed that for the risk of CAD, 
the estimated pooled OR [95% CI] was 1.07 [1.03, 1.11] for per one-SD increase in residual-
PC4. These analyses provide evidence for a potential (causal) association of HDL 
particles/composition with CAD, independent of ApoB. 

Given the lack of potential causal evidence between HDL-C levels and CAD, the focus of 
HDL research has shifted to the assessment of the roles of HDL function in CAD, such as 
reverse cholesterol transport, and inhibition of inflammation and oxidative stress (38-40). 
Reverse cholesterol transport, being the most extensively studied function of HDL, includes 
cellular cholesterol efflux to nascent HDL particles, cholesterol esterification, maturation of 
HDL and cholesterol clearance via the liver. Previous studies indicated that cholesterol efflux 
capacity was inversely associated with cardiovascular events, independent of HDL-C (41-
43). In addition, cholesterol clearance from HDL was shown to play a role in reverse 
cholesterol transport and CAD. The scavenger receptor class BI (SR-BI) promotes selective 
hepatic uptake of cholesterol, primarily from large cholesterol-enriched HDL particles (44), 
and hepatic SR-BI deficiency was associated with an increased risk of CAD despite increased 
HDL-C levels (45). Presumably, this increased HDL-C is caused by the accumulation of 
cholesterol loaded large HDL particles that cannot be cleared via SR-BI by the liver. In line 
with this interpretation, the present study showed that PC4 indicated higher levels of large 
HDL particles, and was associated with increased CAD risk. 

In addition, previous evidence suggested that the HDL particle profile measured by NMR 
spectroscopy, especially small HDL particles, should be considered to better stratify CAD 
risk in the population (46). Notably, in line with our observations, small HDL was found to 
have atheroprotective effects (47, 48). Very small HDL particle number has been previously 
found to be strongly associated with lower CAD risk in patients with type 1 diabetes (49). 
Moreover, a recent study showed that the plasma proteome of the different HDL subspecies 
differed markedly, in parallel with in vitro cholesterol efflux capacity. Interestingly, 
prominent differences in the protein composition of small (preβ-1) HDL particles and large 
(α-1) HDL particles were found in CHD patients versus controls (50). Therefore, these studies 
combined with our data provide evidence for the hypothesis that for HDL-targeted therapy 
to be effective in prevention of CAD, higher levels of small HDL particles and lower levels 
of large HDL particles are warranted.  

In recent years, HDL has been proposed as therapeutic target to combat atherosclerotic 
cardiovascular diseases (51). ApoA1 is one of the main proteins in HDLs, and it has long 
been suggested that increasing the plasma levels of ApoA1 should result in an increased level 
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of small HDL particles, increased cholesterol efflux capacity and reduced CAD risk (41), in 
line with the observed PC4 associations in the present study. However, the results from the 
recently conducted AEGIS-II trial showed that weekly four infusions of CSL112 (composed 
of human plasma–derived apoA1) did not result in a significant reduction (HR: 0.93 [95% 
CI: 0.81, 1.05]) in the risk of recurrent cardiovascular events after acute myocardial infarction 
during 90 days of follow-up (52). Although increased HDL-C was observed in AEGIS-II, the 
pre- and postinjection cholesterol efflux capacity and HDL particle distribution were not 
assessed. These data have prompted the question for reconceptualization of HDL function in 
CAD (53). The short duration of follow-up and the advanced stage of atherosclerotic 
cardiovascular disease in this secondary prevention trial may explain the negative results of 
AEGIS-II. Moreover, in line with the observed association with large HDL particles, not only 
increased efflux of cholesterol from atherosclerotic plaques to HDL may be required for 
benefit, but also an increased flux of cholesterol from large HDL particles to the liver. 

In addition, we observed associations between ApoB-associated lipoprotein profiles and IS 
risk, with both the prospective multivariable-adjusted regressions and MR analyses showing 
a trend in higher IS risk for PC1, and a trend in lower IS risk for PC3 (Figure 3). Our findings 
are supported by previous evidence that strongly suggests a positive association between 
ApoB and IS risk (54, 55). Notably, previous studies have shown that a higher ApoB/ApoA1 
ratio is associated with a higher risk of IS, especially in younger individuals (56, 57). In line 
with these previous findings, we observed that PC3, which is not only characterized by lower 
levels of ApoB but also higher levels of ApoA1, associated with lower IS risk. Therefore, our 
study provides further evidence for the effects of dyslipidemia on the development of IS, 
especially for the role of ApoB and ApoB/ApoA1 ratio.  

We also found that PC5, mainly characterised by higher levels of different amino acids, is a 
risk factor for IS. Especially the branched chain amino acids (BCAAs), valine, leucine and 
isoleucine contribute to PC5. In line with our observations, previous studies have shown a 
positive association between baseline circulating BCAAs and IS risk (58, 59). It is well-
known that BCAAs play a role in energy homeostasis through nutrient signalling, and high 
levels of circulating BCAAs are associated with metabolic disorders, including obesity, 
insulin resistance and type 2 diabetes (60-62). However, the functional roles and underlying 
mechanisms of BCAAs in IS remain unclear (63). In addition, as BCAAs can readily pass 
the blood brain barrier and are required for glutamate synthesis, high levels of BCAA have 
been implicated in glutamate excitotoxicity, which could trigger oxidative stress, 
inflammation and endothelial damage (64). In addition to BCAAs, we found that other amino 
acids, such as glutamine, phenylalanine and tyrosine, also positively contributed to PC5. A 
previous study summarized the differential and potential roles of these amino acids in IS, and 
indicated that these might be biomarkers for early diagnosis in IS patients (63). Although we 
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identified a positive association between PC5 and IS using MR analysis, additional studies 
are needed to determine which amino acid(s) mainly drive the development of IS.  

There is increasing evidence that ketone bodies (specifically, acetoacetate, acetone, and β-
hydroxybutyrate [β-OHB]) are protective against cardiovascular disease by providing an 
important additional source of ATP production and being important signalling molecules (65-
67). However, the potential protective effects observed in previous studies are mainly based 
on experimental or clinical research on patients with cardiovascular disease, whereas 
epidemiological associations between plasma ketone bodies and cardiovascular events have 
only been rarely explored and remain unclear. One prospective study found that the positive 
association of ketone bodies with stroke became null when the regression model was fully 
adjusted for potential confounding factors (68). Similar to the previous study, we found that 
the association of PC6 (mainly characterized by higher levels of ketone bodies) with IS 
attenuated with a HR [95% CI] of 1.05 [0.99, 1.11] if regression Model 3 was additionally 
adjusted for physical activity.  

In addition, it is well-known that IS is a late-life disease that often occurs after a long period 
of exposure to risk factors. The risk estimation of IS could therefore be confounded by many 
other unmeasured factors. For the prospective analyses in the present study, the limited age 
range from 40-70, the low disease incidence and residual confounding effects may explain 
the null effect of PC5 with IS, and the attenuated association of PC6 with IS after further 
adjusting for physical activity. Interpretation of stroke risks should always be done with 
caution, and it is advisable to evaluate and synthesize evidence from different studies, 
including studies on underlying biological mechanisms. 

The large number of 1H-NMR-based metabolomic measures in a large number of disease-
free individuals, especially various lipids and lipoprotein fractions, enabled thorough 
description of the interrelationship among metabolomic measures and the identification of 
specific profiles. For MR analyses, a large-scale multicohort design was used in the present 
study, which provided ample power and mutual validation. However, there are also some 
limitations that need to be considered. First, UKB plasma samples used for the NMR 
measurements suffered from 5-10% dilution, which may slightly affect the absolute 
concentrations of metabolomic measures but is expected to have limited impact on most 
epidemiological analyses (17). In addition, the metabolomic measures from UKB are from 
non-fasting samples, resulting in measurements of lipids and lipoproteins that may not be 
representative for average daily levels, especially TG. However, recent studies suggested that 
fasting is not routinely required for relative risk analysis of lipid profiles, and that the 
measurement of ApoB is stable with or without fasting (69). Finally, although we conducted 
validation analyses based on an independent sample from the UKB cohort, this does not 
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represent an independent validation as both samples were recruited according to the same 
criteria and study protocol. In future studies, additional validation analyses using external 
data beyond the UKB cohort are needed.    

In conclusion, the present study, based on uncorrelated profiles of metabolomic measures, 
not only confirms the effect of ApoB-containing lipoproteins on CAD, but also provides 
evidence for the potential role of HDL sub-particle distribution in the development of CAD. 
Furthermore, our findings support the notion that lipids, lipoproteins and amino acids are 
important risk factors for the development of IS. 
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