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General Introduction  

Cardiovascular disease 

Cardiovascular diseases (CVDs) refer to a group of disorders of the heart and blood vessels, 
such as coronary artery disease (CAD) and ischemic stroke. A major underlying cause of 
various CVDs is atherosclerosis, which is characterized by the accumulation of fat, 
cholesterol, inflammatory cells and other substances in the arterial wall. This accumulation 
may ultimately cause (severely) reduced blood flow, and the plaque may also burst resulting 
in the formation of a blood clot and occlusion of major vessels (1). Various modifiable risk 
factors have been extensively described in scientific literature as causes for atherosclerosis 
and subsequent CVD, including but not limited to, smoking, hypertension, obesity, 
hyperglycaemia and dyslipidaemia (2). According to the World Health Organization (WHO), 
emphasis on CVD prevention and management of these risk factors has led to a 27% 
reduction in the age-standardized global mortality related to CVD between 2000 and 2019 
(3). However, CVD still remains a leading cause of death, and contributes substantially to 
morbidity and healthcare costs (4-6).  

To further reduce the disease burden of CVD, a more comprehensive and personalized 
understanding of disease mechanisms is essential. This requires optimal disease classification 
and prediction and effective treatment. Leveraging information from different biological 
layers, ranging from genetic polymorphisms to metabolic alterations in large datasets, is 
particularly valuable to identify biologically relevant pathways (7). Especially, recent 
advances in affordable high-throughput assessment of whole genomes, transcriptomes, 
proteomes, and metabolomes in large study samples have enabled a deeper understanding of 
underlying pathophysiology, and enabled the identification of clinical biomarkers and novel 
potential therapeutic targets for CVD (7-9).  

Metabolomics 

Metabolomics, one of the ‘omics’ sciences, utilises a variety of analytical tools for the 
quantitative and qualitative assessment of metabolites such as amino acids, organic acids, 
fatty acids, lipids, and many other small molecules (10). Metabolites are substrates, 
intermediates and end products of metabolism, which are characteristic for the expressed 
phenotype (11), and are thought to reflect the combined effects of genetic and environmental 
exposures (10, 12). Single biomarkers may not fully characterize complex biological 
phenomena, and metabolomics approaches now offer the opportunity to measure many 
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metabolites simultaneously, providing insight in a more comprehensive spectrum of dynamic 
metabolic processes (13).  

The two most commonly applied analytical technologies in metabolomics are based on 
nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). This thesis 
mainly used the 1H-NMR based metabolomic measures from the Nightingale platform 
(Nightingale Health Plc., Helsinki, Finland), which has been widely applied in large-scale 
epidemiological studies to identify underlying biological mechanisms and to improve disease 
risk prediction (14, 15). NMR spectroscopy relies on the fact that the magnetic properties of 
1H in a metabolite depend on their surrounding chemical environment. When exposed to a 
range of radio frequencies, protons absorb energy at specific frequencies and release it, which 
is then measured. One of the largest categories of the 1H-NMR metabolomic measures from 
the Nightingale platform are lipoproteins. A detailed lipoprotein profile is provided consisting 
of characteristics and composition of the different sizes of high-density lipoprotein (HDL), 
low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) particles.  

Total and LDL cholesterol are major risk factors for CVD (16). However, lipoprotein 
metabolism is a highly dynamic system through which lipids and specific apolipoproteins are 
passively and actively exchanged between the different lipoprotein classes in the course of 
their transport and metabolism within the circulation. Considering lipoprotein classes such 
as LDL in isolation could therefore disregard the intricate interdependence of plasma 
lipoproteins. For this reason, the availability of the 1H-NMR metabolomic measures provides 
an opportunity to gain more insights into the pathophysiology of CVD by simultaneously 
considering all correlated metabolomic measures and inferring the metabolic processes 
underlying CVD. 

Genomics 

Genome-wide Association/Interaction studies 

Genomics refers to the study of deoxyribonucleic acid (DNA) sequences across the entire 
genome of an organism, and is one of the earliest and most mature types of contemporary 
omics (17). Unlike rare monogenic disorders caused by pathogenic variants in a single gene, 
multifactorial diseases such as CVD are affected by a large number of common genetic 
variants with low-to-modest effect sizes, which might interact with each other as well as with 
lifestyle and the environment (18). With the increasing availability of genotyped and high-
quality phenotypic data in large study samples, genome-wide association studies (GWAS) 
that aim to investigate associations between genome-wide genetic variants and phenotypes 
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have become increasingly popular. Evidence from GWASs have provided insight into the 
underlying biological mechanisms of CVD and its risk factors (19, 20). For example, the 
Global Lipids Genetics Consortium has identified many (ancestry-specific) loci for 
dyslipidaemia, resulting in improved insight in the underlying biology and fine-mapping of 
functional variants (21, 22).   

Notably, it has been found that genetic and environmental factors, including sex and age, can 
contribute to a disease or phenotype in a non-additive manner, interacting to either 
disproportionally increase or decrease the effect size (23).  Ageing is an inevitable 
consequence of living and a strong non-modifiable risk factor for CVD (24, 25). Other CVD 
risk factors, including obesity, dyslipidaemia and diabetes, and progressive defects in heart 
function are also closely associated with increased age (24, 26). Therefore, the prevalence, 
incidence and mortality of CVD is high in older adults (27). However, the role of age in the 
genetic architecture of CVD or its risk factors has not been widely explored yet (24), which 
may limit the application of genetic evidence in the elderly. Given that the number of people 
reaching advanced ages is increasing, it is critically important to investigate the interactions 
between genetic variants and age in disease risk. 

Mendelian randomization 

In recent years, facilitated by the availability of large-scale GWAS and high-quality data from 
mega biobanks, Mendelian randomization (MR) has emerged as a powerful research design 
for inferring causal associations in the field of observational studies. MR uses genetic variants 
associated with the exposure of interest, typically single nucleotide polymorphisms (SNPs) 
identified in GWAS, as instrumental variables (IV) to estimate the potential causal effects 
between exposures and outcomes (28). Based on the Mendel's First and Second Laws of 
Inheritance, the assortment of genetic variants from parents to offspring that occurs during 
gamete formation and conception is random. As a result, people are naturally randomized at 
conception into carrier and non-carrier groups based on their genetic carrier status, which 
could lead to higher or lower levels of the exposure of interest. Consequently, analogous to a 
randomized clinical trial (RCT) design, the MR design is considered a ‘natural experiment’, 
in which individuals are randomized to carry a genetic variant associated with the exposure 
of interest, and could be used to approximate a causal relationship between the exposure of 
interest and the outcome. Whereas RCTs typically investigate the  effects of a specific 
intervention for a limited time in affected individuals, MR evaluates the causal impact of 
lifelong exposure to a particular factor on an outcome.   

The statistical methodology for MR analysis is generally based on IV analysis to make causal 
effect estimates in the presence of unobserved confounding between the exposure and the 
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outcome (29, 30). Consistent with IV analysis, a valid MR analysis needs to satisfy three core 
assumptions (Figure 1): 1) genetic variants are associated with the exposure; 2) genetic 
variants are not associated with confounders that are related to the exposure and the outcome; 
3) genetic variants exclusively affect the outcome through the exposure (30, 31).  

 
Figure 1. A directed acyclic graph for mendelian randomization analyses. G, genetic variants; X, the exposure of 
interest; Y, the outcome of interest; U, confounders. The solid line from G to X indicates the assumption 1). The 
dotted lines with crosses indicate the assumptions 2) and 3).  

In the field of CVD, MR analyses have been widely used and have provided convincing 
causal evidence (32), especially for lipids and lipoproteins such as LDL cholesterol (33), 
apolipoprotein B (ApoB) (34), and triglycerides (35). However, lipids and lipoproteins are 
biologically interconnected, sharing metabolic pathways and regulatory mechanisms. This 
interrelated nature often results in horizontal pleiotropy, where a genetic variant influences 
multiple traits, leading to biased causal estimates. For example, HDL and triglycerides are 
metabolically linked through key enzymes like lipoprotein lipase (LPL) and cholesteryl ester 
transfer protein (CETP) (36, 37). LPL hydrolyses triglycerides in VLDL, releasing 
components that increase HDL-C, while CETP exchanges triglycerides from VLDL for 
cholesterol esters in HDL, reducing HDL-C. Consequently, genetic variants in LPL and 
CETP genes could affect both triglycerides and HDL cholesterol (38), introducing pleiotropy. 
This confounds the results from MR studies, as it obscures whether CVD risk associations 
are driven by TG, HDL-C, or their combined effects, complicating causal inference (39).  

DNA Repeat Sequences  

Given that approximately 50% of the human genome is comprised of DNA repeat sequences 
and that GWAS does not usually include genetic variation in DNA repeats, some variant-
disease associations may be missed (40, 41). Polyglutamine diseases are one of the so-called 
expanded repeat disorders, and are characterised by the expansion of tandem cytosine-
adenine-guanine (CAG) repeats in the translated regions that are beyond the normal range 
(42). For example, Huntington disease, the most common polyglutamine disease, is caused 
by a CAG repeat expansion in the Huntingtin gene (HTT) (43). Interestingly, studies of 
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patients with polyglutamine diseases have shown that they also suffer from symptoms of 
disrupted sleep (44-46), like sleep apnea, daytime sleepiness and disturbances in their 
circadian rhythm. 

Sleep health was added to the Life’s Essentials by the American Heart Association in 2022 
(47), and sleep disturbances are increasingly recognized as important modifiable risk factors 
for various metabolic diseases including CVD and type 2 diabetes (48, 49). This recognition 
highlights the importance of sleep health for CVD prevention. Notably, recent studies have 
revealed that a CAG repeat size below the pathogenic threshold of polyglutamine diseases is 
associated with other metabolic parameters, such as plasma lipids and body mass index (BMI) 
(50, 51). In addition, CAG repeat sizes within the non-pathogenic threshold were found to 
account for 0.75% of the total variation in BMI (51). Therefore, investigating the effects of 
CAG repeat sizes on sleep traits, which are still unclear, may provide novel insight in sleep 
health and its associated health outcomes, including CVD. 

Cardiovascular Risk Assessment 

The application of omics techniques has provided ample insight into the underlying 
mechanisms of CVD development (7-9). However, a main challenge in CVD prevention 
remains the role of interindividual variations among individuals and populations (e.g., age, 
sex, family history, ethnicity), which could result in heterogenous associations of risk factors 
with disease development and treatment response (52).  

Metabolic syndrome, a cluster of abnormalities consisting of waist circumference, plasma 
triglycerides, HDL cholesterol, blood pressure, and fasting plasma glucose, is defined when 
at least three out of the five components are beyond population- and sex-specific cutoffs (53). 
It has become a major and still escalating public health and clinical challenge worldwide, 
influenced by factors such as urbanization, sedentary lifestyles, dietary changes, and ageing 
(54). Previous evidence has shown that metabolic syndrome is strongly associated with 
(incident) cardiometabolic diseases (55, 56). However, given the intrinsic heterogeneity of 
the metabolic syndrome definition ( ≥ 3 out of 5 symptoms), the dichotomous nature of the 
metabolic syndrome for the purpose of clinical utility has been frequently criticized (57). 
Detailed insight into the heterogeneous presentation of the metabolic syndrome in 
populations and their potential differential risks for cardiometabolic diseases are limited. This 
not only restricts the exploration of the pathophysiology of CVD driven by the metabolic 
syndrome, but also impedes the precise management of CVD risk in individuals with diverse 
clinical manifestations. 
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Various risk factors for CVD could be modified by adjusting environmental and behavioural 
factors, such as stress, nutrition and physical activity. Additional risk factors may be 
controlled by appropriate medication, such as statins to reduce LDL-C and decrease CVD 
risk. However, some risk factors may not be amenable to changes in behaviour and lifestyle 
and cannot be controlled by available medication. Lipoprotein(a) [Lp(a)], is one such risk 
factor. Lp(a) was first identified in 1963 (58) and is an LDL-like particle covalently bound to 
an apolipoprotein(a) molecule. Lp(a) blood levels are predominantly determined by genetic 
factors (59), and thus far no easy preventive strategies (e.g., weight loss, nutrition) have been 
identified. According to current guidelines, Lp(a) levels higher than 50 mg/dL are regarded 
as a cardiovascular risk-increasing factor (60-63). The proportion of individuals with Lp(a) 
≥ 50 mg/dL ranges from 31% for Mexican individuals to 63% for non-Hispanic-Black 
individuals (64). Except for lipoprotein apheresis for individuals with elevated Lp(a) (65), 
there are currently no approved drug therapies for lowering Lp(a). It is thus essential to know 
whether Lp(a) has differential effects in subgroups with different risk levels defined by the 
concomitant presence of other common cardiovascular risk factors. These questions have not 
been fully investigated in previous studies. 

In today's ageing society, it is particularly important to better understand the effects of ageing, 
especially the effects of ageing on subclinical symptoms that may be unnoticed and might 
develop into serious diseases over time. Thyroid hormones, having vital roles in development, 
growth and metabolism, have also been implicated in ageing, longevity and the development 
of age-related diseases, including cardiovascular disease (66). Subclinical hypothyroidism, 
biochemically characterised by elevated thyroid-stimulating hormone (TSH) concentrations 
in conjunction with thyroid hormone (T4) levels within the population reference range, is a 
common condition among older adults. The prevalence of subclinical hypothyroidism ranges 
from 4% to 20% in the adult population, with a higher prevalence in women and older people 
(67). While severe subclinical hypothyroidism (TSH > 10 mIU/L) has been associated with 
increased risk for cardiovascular events and mortality (68), the cardioprotective effects of 
levothyroxine therapy in older adults with subclinical hypothyroidism remain controversial 
(68, 69), and might vary according to pretreatment TSH concentrations. Moreover, older 
people may be at enhanced risk of levothyroxine overtreatment. Studies utilising biomarkers 
for CVD risk are needed to reveal potential earlier effects of levothyroxine therapy, 
depending on the amount of TSH elevation in older adults, which could be taken into account 
for better CVD prevention and risk management in older adults. 
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Main Study Populations 

UK Biobank 

UK Biobank (UKB) is a prospective cohort study, which recruited approximately 500,000 
individuals aged 40-70 years across the entire United Kingdom during the baseline survey 
between 2006 and 2010. Invitation letters were sent to eligible adults registered to the 
National Health Services (NHS) and living within a 25 miles distance from one of the 
assessment centres. Extensive phenotypic and genotypic details of the participants have been 
collected since the baseline assessment, including sociodemographic data, lifestyle, physical 
measures, biological samples (blood, urine and saliva), genome-wide genotyping, and 
prospective follow-up on a wide range of health-related outcomes, etc. The UKB cohort study 
was approved by the North-West Multicentre Research Ethics Committee (MREC). All 
participants provided electronic written informed consent for the study. A detailed description 
of the UKB cohort study has been presented elsewhere (70). In Chapters 2-4 and Chapters 6-
7, we made use of individual UKB data with large sample sizes to perform solid and robust 
statistical analysis. 

Netherlands Cohorts 

The Netherlands Epidemiology of Obesity (NEO) study 

The NEO study is a population-based prospective cohort study, which includes 6,671 
individuals aged 45-65 years with an oversampling of overweight individuals (71). Men and 
women aged between 45 and 65 years with a self-reported BMI of 27 kg/m2 or higher, living 
in the greater area of Leiden (in the west of the Netherlands) were eligible to participate in 
the NEO study. In addition, all inhabitants aged between 45 and 65 years from one 
municipality (Leiderdorp) were invited irrespective of their BMI, allowing for a reference 
distribution of BMI. The collection of baseline data started in September 2008 and was 
completed at the end of September 2012. Participants were invited to come to the NEO study 
center of the Leiden University Medical Center (LUMC) for a baseline study visit after an 
overnight fast. During this study visit, participants would undergo an extensive physical 
examination, including blood and urine sampling. Prior to this study visit, participants 
completed a general questionnaire at home in terms of their demographic, lifestyle, and 
clinical data in addition to specific questionnaires on diet and physical activity. The NEO 
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study was approved by the medical ethical committee of LUMC, and all participants gave 
written informed consent. Individual data from NEO study is used in Chapter 5. 

The Netherlands Study of Depression and Anxiety (NESDA)  

NESDA is an ongoing longitudinal cohort study, consisting of 2,981 participants aged 18-65 
years. Participants were recruited from the general population, general practices, and 
secondary mental health centres, of whom with depressive/anxiety disorders and healthy 
controls (72). Blood samples were collected after an overnight fast at the baseline visit (2004-
2007). The Ethical Committees of all participating universities approved the NESDA project, 
and all participants provided written informed consent. Individual data from NESDA is used 
in Chapter 5. 

Randomized Clinical Trials: TRUST and IEMO80+ 

TRUST (Thyroid hormone Replacement for Untreated older adults with Subclinical 
hypothyroidism - a randomised placebo-controlled Trial) and IEMO80+ thyroid trial (the 
Institute for Evidence-Based Medicine in Old Age 80-plus thyroid trial) are two clinical trials 
that aimed to investigate the effects of levothyroxine therapy in older population. Detailed 
description and protocols for the two RCT have been published previously (73, 74). In brief, 
both trials recruited community-dwelling participants with subclinical hypothyroidism, 
defined as elevated thyrotropin levels (4.6 to 19.9 mIU/L) measured on at least two occasions 
between 3 months and 3 years apart, and free T4 levels within the reference range. TRUST 
recruited participants aged 65 years and older in the Netherlands, Switzerland, Ireland, and 
the United Kingdom between April 2013 and May 2015, and IEMO80+ recruited participants 
aged 80 years and older in the Netherlands and Switzerland between May 2014 and May 
2017. Both trials shared a near-identical design and recruitment strategy. Trial protocols were 
approved by the relevant ethics committees and regulatory authorities in all countries 
involved in the trials. The trials were conducted in accordance with the principles of the 
Declaration of Helsinki and Good Clinical Practice guidelines. Written informed consent was 
obtained from all participants (trials registrations: ClinicalTrials.gov NCT01660126 [TRUST 
and IEMO], Netherlands Trial Register NTR3851 [IEMO]). 
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Thesis Outline 
This thesis aims to generate deeper insights into the metabolic risk assessment for a more 
precise prevention of cardiovascular disease, through the integration of multiple omics data 
with large-scale biobanks. Chapter 1 describes the general introduction, study populations, 
and thesis outline, respectively.  

The research chapters (2-8) of this thesis are structured in three parts:  

Part I: Lipoprotein metabolism and CVD risk 

Part I aims to investigate the role of 1H-NMR metabolomic measures in CVD risk and to 
provide additional insight into possible underlying mechanisms of atherosclerotic CVD. In 
Chapter 2, we investigated the associations between independent metabolomic profiles, 
derived from the 1H-NMR metabolomic measures, and CVD through several different 
epidemiological approaches. This aligns with the principles of triangulation (75), aiming to 
synthesize evidence from diverse methodologies that are subject to unrelated sources of bias. 
Subsequently, in Chapter 3, building upon our own findings from Chapter 2 and evidence 
from previous studies, we examined the role of phospholipid transfer protein (PLTP) activity, 
determined by genetic predisposition, in lipoprotein metabolism and in the risk of developing 
CVD. 

Part II: Genetic variation and CVD risk 

Part II aims to provide more insights into the risk factors associated with CVD from a genetic 
perspective. In Chapter 4, we performed genome-wide interaction studies on different 
cardiovascular risk factors to identify age-specific genetic risks in a large UKB sample. 
Subsequently, replications were performed in two other independent samples, i.e. the 
Copenhagen General Population Study and the Estonian Biobank. In Chapter 5, embedded 
in two Dutch cohorts, we explored the associations between CAG repeat sizes and sleep 
health, and investigated the extent to which genetic variations could explain the variation of 
sleep traits. 
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Part III: CVD risk assessment  

Part III aims to investigate the risk associated with CVD in different subpopulations with 
specific risk profiles. In Chapter 6, we identified the heterogeneous presentation of the 
metabolic syndrome components and investigated their age- and sex-specific associations 
with CVD. In Chapter 7, we examined whether Lp(a) has differential effects in groups with 
different risk levels defined by the concomitant presence of other common modifiable 
cardiovascular risk factors. In Chapter 8, based on two RCTs in older adults with subclinical 
hypothyroidism, we assessed the levothyroxine treatment response of cardiometabolic 
biomarkers in populations with different pretreatment TSH levels. These preclinical 
biomarkers may be indicative of future cardiovascular risk. 

Chapter 9 summarizes and discusses the main findings of this thesis, and the future outlook. 
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