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Understanding the factors underlying brain activity fluctuation is important to understand the flexible nature of the brain and
cognition. Growing evidence indicates that functional magnetic resonance imaging (fMRI) activity travels as waves around global
signal peaks following a unimodal-transmodal gradient. This may explain the organization of brain activity into functional networks,
but why the strength of integration between networks fluctuates is uncertain. Given that arousal-related neuromodulatory systems
affect network integration and that traveling waves are modulated by arousal, we aimed to assess the hypothesis that an increase
in neuromodulatory tone can affect network integration by modulating the speed of propagation of traveling waves. We tested
this hypothesis using pharmacological fMRI/pupil measurements during rest and tasks. Atomoxetine, which increases extracellular
catecholamine levels, was associated with faster traveling waves, and faster traveling waves correlated with more network integration.
We also examined temporal variations in pupil size, a signature of transient changes in neuromodulatory activity, and found that the
periods of traveling waves were characterized by larger pupil size. Our results suggest that neuromodulatory tone affects traveling wave
propagation, and that this arousal-modulated propagation shapes integrated functional connectivity features, highlighting specific

effects of prolonged and transient neuromodulatory influences on slow brain dynamics.

Keywords: arousal; fMRI; network integration; pupil size; traveling waves.

Introduction

A burning question in neuroscience is how the brain maintains
high flexibility to deal with varying demands despite a rela-
tively fixed anatomical structure. To answer this question, the
growing field of brain dynamics has moved beyond “static” to
more dynamic, time-resolved measures of functional connectivity
(Iraji et al. 2021). An important conclusion from this research is
that, over the course of an experiment, patterns of functional
connectivity in functional magnetic resonance imaging (fMRI)
data fluctuate between periods of network-level integration, char-
acterized by relatively strong interconnections between network
modules, and periods of network-level segregation, character-
ized by relatively high network modularity (Keilholz et al. 2013;
Sadaghiani et al. 2015; Betzel et al. 2016; Shine et al. 2016; Shine
and Poldrack 2018). The dynamic nature of brain integration is
further evidenced by computational modeling, which also indi-
cates that alterations in network integration are tightly related
to the functional distinction between brain regions (Fornito et al.
2015; Lord et al. 2017; Wei et al. 2022). However, the properties of
global brain activity that drive these state changes remain poorly
understood.

Recent research on whole-brain dynamics has revealed the
presence of slow “traveling waves” that propagate through the
brain following a gradient from unimodal to transmodal areas
(Matsul et al. 2016; Gu et al. 2021; Raut et al. 2021; Yousefi and
Keilholz 2021). Animal studies suggest that these waves reflect

modulations of neuronal spiking activity spanning several sec-
onds (Guetal. 2021; Yang et al. 2024). Interestingly, it has been sug-
gested that the propagation of activity across this gradient could
give rise to some of the hallmark findings in studies of dynamic
functional connectivity using fMRI (Raut et al. 2023; Shahsavarani
et al. 2023). The identification of correlated networks may be
influenced by the position of modules along the continuous gradi-
ent underlying observed traveling waves. An untested prediction
of this hypothesis is that a change in the speed of propaga-
tion must cause variations in the correlation between networks.
Specifically, if activity propagates faster, it should result in more
temporal alignment between modular time courses, manifested
as higher network-level integration. Finding such evidence would
underscore the importance of the slow propagation of activity
as an organizing principle of brain dynamics, and enhance our
understanding of the flexible nature of the brain.

What can cause changes in the propagation speed of traveling
waves? One possible factor is the level of neural excitability as
set by neuromodulatory systems (Munn et al. 2021; Raut et al.
2023), which act at fast and slow time scales and influence
large parts of the brain through their widespread projections
(McCormick et al. 2020). Low levels of neuromodulatory tone are
related to lower excitability and more neural synchronization,
while intermediate levels are related to higher excitability and an
overall desynchronization (Aston-jones and Cohen 2005). A com-
putational study has found that larger excitability is associated
with faster traveling waves (Bhattacharya et al. 2021). Empirical
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studies offer indirect evidence, by showing that stimulation of the
locus coeruleus (Grimm et al. 2024) and spontaneous changes in
pupil size (Shine et al. 2016; Maki-Marttunen 2021; Lee et al. 2022)
are associated with systematic changes in brain integration.

Here, we aimed to directly examine the effect of neuromod-
ulatory tone on global brain activity dynamics and measures of
integration in a pharmacological fMRI-pupillometry study. We
first detected traveling waves and characterized them in terms
of speed, directionality, and ratio of top-down (TD) to bottom-
up (BU) propagations. We examined these features during rest
and task performance, in relation to pupil size (a measure of
neuromodulatory tone; Gilzenrat et al. 2010; Joshi and Gold 2020;
Maki-Marttunen and Espeseth 2021; Lloyd et al. 2023), and after
the intake of placebo or atomoxetine. Atomoxetine is a nora-
drenaline transporter blocker that increases extracellular levels
of dopamine and noradrenaline (Swanson et al. 2006; Koda et al.
2010), two neuromodulators that innervate large parts of the
forebrain, modulate the slope of neuronal activation functions,
and tonically increase the overall level of arousal (Aston-Jones
and Cohen 2005). We then studied the relation between traveling
waves and the participation coefficient, a graph-based measure
of brain integration that is sensitive to fluctuations in neuro-
modulatory inputs (Shine et al. 2016; Shine 2019; Maki-Marttunen
2021). Based on the predictions laid out in Maki-Marttunen (2023),
we hypothesized that (i) pharmacologically increased levels of
catecholamines would be associated with faster traveling waves,
(ii) the faster traveling wave speed would be associated with a
more integrated network state, and (iii) the presence of traveling
waves would be associated with larger pupil size. Our results
provide the first evidence in humans that neuromodulation is
related to global brain activity propagation and that traveling
waves can explain why the level of integration between functional
networks fluctuates over time.

Methods
Participants

Thirty-six individuals (average age: 23 years old, range: 18 to
29 years, 14 male) were recruited and medically screened by a
physician for physical health and drug contraindications. The
exclusion criteria included standard contraindications for MRI,
heart arrhythmia, glaucoma, hypertension, use of antidepres-
sants or psychotropic medication, history of psychiatric illness
or head trauma, drug or alcohol abuse, learning disabilities, poor
eyesight, smoking more than five cigarettes a day, consumption
of more than 24 units of alcohol per week, and pregnancy. All
the participants gave written informed consent before the exper-
iment and were compensated with €110. The study received ethi-
cal approval from the De Medisch-Ethische Toetsingscommissie
Leiden, Den Haag, Delft (METC LDD) (CCMO reference number
NL73193.058.20).

Study design and MRI data acquisition

The study had a double-blind placebo-controlled crossover
design. In each of two sessions, scheduled 1 week apart at the
same time of day, participants received either a single oral dose
of atomoxetine (40 mg) or a placebo (microcrystalline cellulose
PH 102, visually identical to the drug). This dose of atomoxetine
is known to increase pupil size (van den Brink et al. 2016) and
salivary alpha amylase levels, a hormonal biomarker of central
noradrenergic activity (Warren et al. 2017). Participants had
a waiting time after pill ingestion, to allow for atomoxetine
concentration to reach peak plasma levels. During the waiting
interval, they either practiced the tasks (first session) or engaged

in some quiet activity of their choice. Approximately 100 min after
pill ingestion, participants underwent a resting-state scan, then
performed one of the two tasks, underwent another resting-state
scan, and performed the second task. The order of the two tasks
was counterbalanced across participants.

All the MRI data were collected with a Philips 3T MRI scan-
ner. At the beginning of each of the scanning sessions, we col-
lected a high-resolution anatomical T1 image (echo time 3.5 ms,
repetition time 7.99 ms, flip angle 8°, and field of view (FOV)
250 x 195 x 170 mm with voxel size of 1.1 mm isotropic). Func-
tional scans consisted of T2*-weighted echo-planar imaging (EPI)
images (echo time 30 ms, repetition time 2.2 s, flip angle 80°, FOV
220 x 220 x 120 mm with voxel size 2.75 mm isotropic). Eye-
tracking data were collected during the fMRI scans using an MRI-
compatible EyeLink device. The camera was set to image the right
eye and a calibration was carried out soon after the participant
entered the scanner. The eye-tracking recordings were sampled
at a frequency of 1000 Hz.

Tasks and stimuli

In the scanner, participants underwent two resting-state fMRI
runs, and performed one run of a continuous performance task
and one run of a movie-watching task. During the resting-state
scan, participants were instructed to fixate their eyes on a black
cross on a gray background. In the continuous performance task,
they were presented with a stream of images of cities and moun-
tains and had to mentally count the number of pictures with
mountains. The stimuli consisted of 10 pictures of cities and
10 pictures of mountain landscapes that were presented multi-
ple times in random order across the run. A key characteristic
was that the transition between images was softened by making
images fade into the next, which ensured a “continuous” type
of stimulation. The images subtended approximately 6° of visual
angle, were isoluminant, grayscaled, and presented on a gray
background. The images linearly and continuously morphed from
one into the next, with an 800-ms interval (van den Brink et al.
2016). The percentage of mountains in the first session was set to
10% and on the second session to 40%. After the run, participants
were asked how many mountains they had counted. The partici-
pants also performed a naturalistic viewing task, which involved
watching a shortened version of Hitchcock’s episode “Bang.” This
clip has been widely used in fMRI experiments because it includes
moments of suspense associated with specific brain patterns that
can be observed across individuals (Naci et al. 2014). The clip
included sound and subtitles. The resting-state runs and task
runs lasted approximately 8 min. The tasks were coded with
Psychtoolbox running on MATLAB.

Pupillometry preprocessing and analysis

Raw eye-tracking data were converted to .asc files using the
EDF2ASC converter. Preprocessing of the pupil signal consisted
of interpolation of pupil blinks, normalization, detrending, and
downsampling to the scanner frequency. Coding of these steps
was based on code provided by Urai et al. (2017). Cross-correlation
between pupil size and global signal was calculated with the
function xcorr (MATLAB) as c =xcorr(global signal, pupil). We also
identified pseudoevents in the resting-state pupil data, using the
point process approach implemented in the rsHRF toolbox (Wu
et al. 2021). Briefly, the tool identifies the time points where the
signal exceeds 1 standard deviation from the mean and fits an
impulse response function. Thus, the “pupil events” are defined
as transient pupil changes that resemble an evoked response
identified around points of high pupil signal. The rsHRF toolbox
allowed us to get the time points at which pupil events were
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detected. We calculated the proportion of pupil pseudoevents
per time length of the intervals around global signal peaks (see
below), because slower waves are expected to be related to longer
intervals that may include more pupil events.

fMRI preprocessing and analysis

Data were preprocessed using a standard pipeline implemented
in fMRIPrep (Esteban et al. 2019; fmriprep.org), including slice-
time correction, image realignment, deconfounding of movement
regressors and the mean signal of white matter and cerebrospinal
fluid, detrending, and normalization to MNI space. Further steps
included filtering (0.001-0.1 Hz) and z-scoring of the voxels’ time
courses. The analysis of brain activity propagation was done in
surface space.

To study brain activity propagation along the principal gradi-
ent, we followed the procedure by Gu et al. (2021) and adapted
the code shared by the authors. Briefly, the approach consists of,
first, identifying the peaks of the global signal and the intervals
around each of these peaks (i.e. from the trough before to the
trough after each peak), and second, obtaining the time difference
between peaks in the time courses of the voxels with respect to
the peak in the global signal, that is, the delay values (Fig. 1a and
b). The vectors of delay values for all the participants and scans
were entered into a singular value decomposition algorithm. We
then examined the first five main components (Fig. 1c and d)
and identified the one corresponding to the principal gradient,
that is, the one where brain regions are organized following a
unimodal-transmodal gradient (Fig. 1f). Figure le shows the cor-
relation between the vectors of delay values for all the intervals
considered and the vector corresponding to the principal gradient
component. A bimodal distribution with a higher number of
values in negative and positive correlations as compared to no
correlation (zero value) indicates the presence of traveling waves
in BU and TD directions along the gradient, respectively.

To study activity propagation along this gradient, for each
individual and run, the voxels were ordered according to the
gradient (i.e. from unimodal to multimodal) and binned in 30 bins
to reduce the dimensionality of the analysis. The blood oxygen
level-dependent (BOLD) signal for each bin (i.e. averages over
voxels) was used to study traveling waves (see a participant’s data
example in Fig. 1g). Following Gu et al. (2021), we based the analy-
ses on intervals of global involvement, for example those intervals
where the global signal (averaged over all gray matter voxels) was
larger than the peaks identified from a null distribution (i.e. based
on shuffled data). To compute the speed of the waves, we used the
formula as in Gu et al. (2021):

speed = |c| x geodesic distance (mm)/n bins/TR (s),

where the coefficient ¢ corresponds to the linear fit where the
position of the peak in the BOLD signal for each bin is regressed
against the bin number. A positive coefficient corresponded to a
propagation from unimodal to transmodal areas (BU), and a neg-
ative coefficient corresponded to a propagation from transmodal
to unimodal areas (TD). Figure 1h shows the average traveling
waves in each direction. We set a threshold for the identification
of traveling waves based on the distribution of coefficients for
the two other propagation directions (anterior-posterior [A-P] and
dorsal-ventral [D-V]). The threshold was set at alpha=0.1 and
corresponded to a coefficient of absolute value 3.8 (Fig. 1i).

For the calculation of brain topological variables, we used the
Gordon 333 parcellation (Gordon et al. 2016; Fig. 4d). In the Gordon
333 parcellation, each parcel is assigned to 1 of 12 different
networks: Default, Parieto-Occipital, Fronto-Parietal, Salience,

Cerebral Cortex, 2025, Vol. 35,Issue 7 | 3

Cingulo-Opercular, Medial-Parietal, Dorsal-Attention, Ventral-
Attention, Visual, Somatomotor hand, Somatomotor mouth, and
Auditory. To account for the fact that the waves were related
to peaks in global signal, which could inflate the estimation
of integration measures, the global signal was regressed out
from each voxel’s time course. Data from all the voxels within
a parcel were averaged. The temporal segments corresponding
to the intervals with traveling waves were used to calculate
the correlation coefficient for each pair of parcels, resulting in
a connectivity matrix. The 12 networks were used as modules
for the calculation of the participation coefficient, a measure of
network integration. The participation coefficient was calculated
as the average of the weights of a given parcel to each module
with respect to all the weights of the parcel. The participation
coefficient thus quantifies the extent to which a given parcel
connects with parcels in other modules relative to parcels
in its own module (van den Heuvel and Sporns 2013). A low
participation coefficient corresponds to most of the connections
of a parcel being distributed across a single or a small number
of modules, while a high participation coefficient corresponds to
connections of a parcel being distributed over a large proportion
of modules. Therefore, the mean participation coefficient can
be used to estimate the extent of integration of the entire brain
network. For calculating the participation coefficient, we used
the Brain Connectivity Toolbox (Rubinov and Sporns 2010; sites.
google.com/site/bctnet).

Experimental design and statistical analyses

We were interested in the effects of treatment (atomoxetine vs
placebo) and behavioral state (rest vs task-engaged) on traveling
waves, and so we combined the data for the two resting-state
scans and compared them with the aggregated data from the two
tasks. Data for all detected traveling waves for each individual
were used in the analyses. To account for repeated measurements
of traveling waves across different treatments and behavioral
states, we utilized linear models in MATLAB using the fitlme func-
tion. We ran two models with the propagation speed or the TD to
BU ratio as the respective dependent variable and treatment and
behavioral state as fixed effects. For the analysis of propagation
speed, we also included the wave direction (TD vs BU) as an
additional factor. To account for the nonindependence of obser-
vations within individuals, participant was included as a random
effect. For the analysis of pupil-linked arousal, we employed a
linear model with mean pupil size in a given time interval as the
dependent variable and the presence/direction of traveling waves
(none, BU, TD) as the predictor of interest. We also included the
treatment and behavioral state as fixed effects and participant
as a random effect. To test for a relation between propagation
speed, mean pupil size, number of pupil pseudoevents (underlying
the resting-state pupil signal), and measures of network-level
integration, we ran linear models for each pair of variables. We
included treatment and behavioral state as additional predictors
and participant as a random effect. In these analyses, we included
all the intervals, not only those of significant global involvement,
so the correlations covered the whole range of variation in the
pupil and integration variables. The linear models were coded
using the fitlme function in MATLAB.

Results

Effects of atomoxetine and behavioral state on
brain activity propagation

We first confirmed the presence of activity propagation over the
whole brain based on activity delays (Gu et al. 2021; Raut et al.
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Fig. 1. Overview of methodology for identification of traveling waves. a) Example of extraction of delay vector from one session. b) The peaks of the
global signal were identified (left) and the time difference between the peak of activity of each voxel and the global peak were calculated, resulting in
one vector of delay values per interval (middle). The delay vectors were concatenated for all participants, sessions, and tasks (right), and the matrix
was submitted to a singular value decomposition analysis. c) Variance explained by each component. d) Brain maps corresponding to the first five
components. The left map in the middle row (component #3) corresponds to the principal gradient. e) Histogram of correlation values between the
delay vectors and the main delay component. The histograms corresponding to the anterior-posterior (A-P) and dorsal-ventral (D-V) gradients are also
plotted. Brain insets indicate A-P and D-V directionality. f) Map of principal delay component, binned into 30 bins according to delay with respect to the
global signal peak. g) Example of one participant’s scan for which we plotted the BOLD signal of the regions of interest ordered after the principal delay
(top panel). The traveling waves can be observed in relation to the global signal peaks (bottom panel). The horizontal line indicates the significance
threshold for global signal peaks obtained from permutation testing. h) Bottom-up and top-down traveling waves averaged across participants and
conditions. i) Distribution of traveling wave coefficients for the two control directions and the principal delay direction. The threshold obtained from
permutation testing is indicated with a vertical dashed line.
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Table 1. Effects of treatment and behavioral state on traveling waves.

Cerebral Cortex, 2025, Vol. 35,Issue 7 | 5

Speed TD:BU ratio
Effect F P value F P value®
Behavioral state 1.28 0.257 10.54 0.001
Treatment 5.61 0.018 3.39 0.068
Direction 1.96 0.16
Treatment x behavioral state 0.19 0.661 0.01 0.907
Behavioral state x direction 0.18 0.670
Treatment x direction 0.04 0.828

Abbreviations: BU, bottom-up; TD, top-down. @Values in bold are significant at p = 0.05.

2021). Briefly, we defined intervals around peaks in the global
signal and calculated the delay values of each voxel with respect
to the global signal peak (delay profile, Fig. 1a and b). Following
singular value decomposition, we identified the prinicipal gradi-
ent in these profiles from unimodal to transmodal areas (Fig. 1f;
Fig. 1e displays the distribution of correlation values between the
delay profiles and the principal gradient). BU and TD waves of
activity propagation over the main delay profile in those intervals
were then visualized (Fig. 1g and h).

To test our hypothesis that pharmacologically increased levels
of catecholamines would be associated with faster traveling
waves, we compared the propagation speed of BU and TD waves
in the various conditions by performing a repeated-measures
ANOVA (RM-ANOVA) with the within-subject factors treatment,
behavioral state, and wave direction (BU and TD). This analysis
yielded a significant treatment effect [F(252)=5.61, P=0.018,
Table 1]. Speed was faster under atomoxetine compared to
placebo (Fig. 2a and b, Table 1), confirming our hypothesis. We
found no effect of behavioral state or wave direction. Next, we
compared the ratio of TD to BU traveling waves between condi-
tions. Figure 2c shows the correlation of traveling waves with the
principal delay component: A positive correlation represents a BU
direction of propagation while a negative correlation represents
a TD direction. The TD-to-BU ratio significantly differed between
behavioral states [F(110)=10.50, P=0.001], with a smaller TD:BU,
i.e. relatively more BU waves, during task performance than rest
(Fig. 2d). The ratio was numerically lower under atomoxetine
compared to placebo, but this effect was not significant (Table 1).

To assess the robustness of our finding that atomoxetine
speeds up traveling waves, we performed the same analyses in
an independent resting-state fMRI-atomoxetine dataset (N=26;
van den Brink et al. 2016). The results replicated our finding of the
higher speed of traveling waves under atomoxetine (Fig. S1 and
Table S1).

Relationship between brain activity propagation
and pupil-linked arousal

To study the relation between pupil size and brain dynamics,
we investigated the slow fluctuations in the pupil signal filtered
with the same band-pass filter as the BOLD global signal (0.001
to 0.01 Hz). These pupil-size fluctuations reflect slow changes
in the activity of neuromodulatory nuclei (Joshi and Gold 2020;
Maki-Marttunen and Espeseth 2021; Lloyd et al. 2023). Examples
of temporally aligned traveling waves and the global signal and
pupil signal for a resting-state session of one participant are
displayed in Fig. 3a. We found that atomoxetine was associated
with an overall increase in mean pupil size (Fig. 3b), consistent
with previous studies (van den Brink et al. 2016) and offering an
indication of the efficacy of the pharmacological manipulation.

We found that the global signal and the filtered pupil signal
were cross-correlated with a lag of around —5 scans (11 s), with
fluctuations in the global signal preceding the corresponding
fluctuations in pupil size (Fig. 3c). This direction is consistent
with previous reports (Bolt et al. 2025). The presence of several
significant intervals may show certain periodicity in the signals.
The cross-correlation was largely consistent across behavioral
states and treatments. We also investigated pupil pseudoevents,
that is large (i.e. seemingly evoked), changes in the resting-
state pupil signal (Fig. 3d; see Methods). We assumed that these
were time points associated with phasic bursts of activity in
neuromodulatory nuclei, including the locus coeruleus (Munn
et al. 2021). The pseudoevents were only obtained in the resting-
state scans to avoid stimulus-related pupil changes. We found
that the pseudoevents clustered around global signal peaks, and
in particular after the peak (Fig. 3e).

To test our hypothesis that the presence of traveling waves
would be associated with larger pupil size, we compared intervals
with (BU or TD) and intervals without traveling waves. We found
a significant effect, with larger pupil size in intervals with BU or
TD traveling waves [Fig. 4a; presence of waves effect: F(277)=4.19,
P=0.041], confirming our hypothesis. Note that the variability
of mean pupil size was also larger for intervals with traveling
waves. We then tested the relation between our pupil-related
variables (mean pupil size and proportion of pseudoevents;
Fig. 4b and c) and propagation speed. Propagation speed was
not associated with mean pupil signal [F(1,034)=0.05, P=0.822]
but was significantly associated with proportion of pseudoevents
[F(471)=4.40,P=0.036], whereby intervals with larger propagation
speed were associated with less pseudoevents. No differences
between conditions were observed in these analyses (mean pupil,
treatment effect: F=0.12, P=0.723, behavioral state effect: F=0.02,
P=0.877; pseudoevents, F=0.049, P=0.484). Taken together, the
results suggest that time periods with traveling waves were
characterized by larger mean pupil-linked arousal, and that speed
of traveling waves was negatively associated with the proportion
of pseudoevents.

Relation between brain activity propagation and
network topology

To test the hypothesis that faster traveling wave speed would be
associated with a more integrated network state, we calculated
the participation coefficient, a measure of network integration.
For this, we used the Gordon parcellation that divides up the
cortex into 333 parcels (Fig. 4d), and averaged the data from
all the voxels within each parcel. Each parcel is assigned to a
resting-state network, and this assignment was used to com-
pute the participation coefficient. We found that propagation
speed was positively related to the level of integration [Fig. 4f;
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F(683)=97.79, P <0.001], confirming our hypothesis. There were
no significant effects of treatment (F=0.01, P=0.925) and behav-
ioral state (F=0.74, P=0.387) on the level of integration. We also
tested for a relation between pupil size and integration. We cate-
gorized all the time intervals into four bins on the basis of mean
pupil size and tested for an effect on the participation coeffi-
cient, following the procedure used in Méki-Marttunen (2021).
We found that larger pupil size was related to higher network
integration, with the exception of the largest pupil bin, resulting in
an inverted U shape [Fig. 4e; pupil bin linear effect: F(396) = 14.35,
P <0.001; pupil bin quadratic effect: F(396) =13.83, P < 0.001]. This
is consistent with the frequently observed quadratic relation-
ships between arousal and performance (Beerendonk et al. 2024;
Nieuwenhuis 2024) and between arousal and neural responses
(McGinley et al. 2015). In sum, network integration was positively
related to propagation speed and pupil size, the latter also pre-
senting nonlinear effects.

Discussion

Propagation of brain activity in the form of traveling waves is
a ubiquitous phenomenon of brain activity, but the factors that
modulate traveling waves remain uncertain. The current pharma-
cological fMRI/pupillometry study aimed to investigate whether
neuromodulatory tone has an enabling role in global activity
propagation and corresponding alterations in dynamic network
topology. We found that traveling waves were faster under atom-
oxetine, that faster traveling waves in turn were related to more
network integration, and that traveling waves tended to occur
during periods of relatively large pupil size. Our results support
the hypotheses that traveling waves underlie, at least in part,
the organization of brain activity into functional connectivity
networks, that the relationship between neuromodulatory tone
and network integration is mediated by changes in the speed
of propagation of traveling waves, and that moment-by-moment
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changes in pupil-linked arousal may enable or facilitate the emer-
gence of global propagation of brain activity. This has important
implications for the understanding of the brain mechanisms that
underlie the dynamic properties of the human brain.

We examined the presence of traveling waves by extracting
a main delay component of the BOLD signal based on intervals
determined by global signal peaks and troughs, as has been done
previously (Gu et al. 2021). This method allowed us to obtain the
main component that reproduces the main gradient of the brain,
which separates unimodal from transmodal areas and has been
found across perceptual modalities and using various approaches
(see Huntenburg et al. 2018 for a review). Replicating Gu et al.
(2021), we found both BU and TD propagation of activity. Impor-
tantly, we could detect propagating waves in both behavioral
states studied here: during rest and during task performance. This
is consistent with a previous study that found intrinsic patterns
of activity following the principal gradient in the resting state
and during a variety of tasks (Brown et al. 2022). An important
difference is that in our study none of the tasks required an
active motor response or were paced as in event-related designs.
Instead, the tasks could be considered as inducing a “continuous”
state, which made them comparable with the resting-state runs
in terms of design. We found an effect of behavioral state on the
traveling wave ratio, where under both atomoxetine and placebo,
tasks were associated with a larger proportion of BU traveling
waves compared to the resting state. Since the tasks had a strong
visual component, it is possible that this effect depended in part
on this property of the task (Brown et al. 2022). Other studies found

a significantly larger proportion of BU as compared to TD traveling
waves in sleepy individuals, as well as in primates (Gu et al. 2021).
Furthermore, recent studies using a serotoninergic agonist found
that the principal gradient is contracted with increasing levels
of serotonin (Girn et al. 2022; Timmermann et al. 2023). Taken
together, these results suggest that neuromodulatory factors have
an effect on the directionality of propagation of traveling waves
along the principal gradient, reflecting the expression of a variety
of brain states.

A key finding was that in both behavioral states the speed
of traveling waves was significantly higher in the atomoxetine
condition. This result was replicated in an independent resting-
state data set. Computational studies suggest that one mecha-
nism by which neuromodulatory systems influence the speed
of traveling waves is by altering the overall excitability of the
brain (Bhattacharya et al. 2021). The noradrenaline and dopamine
systems, which are directly affected by noradrenaline transporter
blockade with atomoxetine (Bymaster et al. 2002; Swanson et al.
2006; Koda et al. 2010), affect neuronal activity through binding to
a variety of receptors distributed over the cortex (Aston-Jones and
Waterhouse 2016; Avery and Krichmar 2017; Rho et al. 2018). In
particular, atomoxetine increases neuronal excitability (Bymaster
et al. 2002; Koda et al. 2010; Di Miceli and Gronier 2015), but
it has never been directly tested whether it has an effect on
the global, slow propagation of neuronal spiking activity (Liu
et al. 2021). Together, these findings suggest that atomoxetine
speeds up traveling waves through an increase in neuronal
excitability.
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Studies using pupillometry concurrent with fMRI have found
that periods of larger pupil size are related to more integration
(Shine et al. 2016; M&ki-Marttunen 2021). Atomoxetine manipu-
lation has also been found to affect the brain’s integration/seg-
regation balance (Guedj et al. 2016; van den Brink et al. 2016,
2018; Shine et al. 2018). Different measures of brain integration
were used across studies, which may underlie some differences in
the reported directions of the effect. Our approach allowed us to
look at more specific neuromodulatory effects by looking at the
traveling waves over the principal gradient. The results revealed
that periods of more integration may in part follow changes in the
speed of activity propagation across the principal gradient, and
these may relate to fluctuations in neuromodulatory tone. Fluc-
tuations between states of network integration and segregation
have been described within single scan sessions (Keilholz et al.
2013; Betzel et al. 2016; Shine and Poldrack 2018). Furthermore,
several studies have reported that there are specific moments
that contribute the most to the phenomenon of functional

connectivity (Tagliazucchi et al. 2012; Liu and Duyn 2013).
Our results allow tying together these lines of research by
suggesting that (i) the modulation of macroscopic brain activity
by neuromodulatory tone may reflect not only genuine changes in
the overall state of functional connectivity but also the temporal
relation of activity propagation across regions following the uni-
modal-transmodal hierarchy, (ii) the effects of neuromodulatory
activity on brain activity propagation may in turn underlie the
fluctuations in functional network topology through modulation
of propagating waves, and (iii) the single events of traveling waves
may be the ones particularly contributing to the emergence of
brain functional connectivity. While future studies are needed to
provide further support in favor of these hypotheses, our findings
offer a clear picture of task-unrelated neuromodulatory effects
on brain communication at slow time scales.

We also found that larger pupil size was related to more
integration, although integration dropped at the largest pupil size
values, following an inverted-U curve. Thus, at least within a
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certain range of pupil size, we replicated a previously reported
positive relation between pupil size and network integration, as
quantified by the participation coefficient (M&ki-Marttunen 2021,
Lee et al. 2022). The broader inverted-U curve linking global net-
work integration to pupil size is consistent with findings that have
associated both intermediate pupil size (Beerendonk et al. 2024;
Nieuwenhuis 2024) and an increase in network integration (Cohen
and D’Esposito 2016) with optimal cognitive task performance.
These findings, in turn, reflect the positive effects of moderate
tonic locus coeruleus activity on network integration (Wainstein
et al. 2021; Grimm et al. 2024) and cognitive performance (Aston-
Jones and Cohen 2005). We did not find an effect of pupil size
on speed but found a significant negative association between
number of pupil pseudoevents and propagation speed. While we
can only speculate on the meaning of this finding, it is possible
that time intervals of faster traveling waves are related to lower
variability in neuromodulatory activity and thus fewer pupil pseu-
doevents. Although more work is needed to test for a relation
between traveling waves and pupil size in other conditions and
states, our results point toward a timed relation between neuro-
modulatory activity and global patterns of brain activity.

We also examined a possible relation between the global signal
and pupil size. The physiological meaning of the global BOLD
signal is still a matter of debate (Liu et al. 2017). The distinction
between neuronal and artifactual sources of global signal changes
has great relevance for the consideration of global signal removal
as a preprocessing step in functional connectivity studies (Power
et al. 2017). Previous studies suggest that the global signal is at
least in part related to the arousal level (Wong et al. 2013; Liu et al.
2018). We found a relation between pupil size, pupil pseudoevents,
and the global signal. A temporal relation between pupil size and
the global signal is consistent with previous reports (Bolt et al.
2025). The fact that pupil size and pupil pseudoevents peaked
after the global signal may reflect an event of transient arousal
following a drop in arousal (Demiral et al. 2023). Our results
contribute to the understanding of global brain phenomena by
revealing the specific timing between traveling waves associated
with increases in the global BOLD signal and transient changes in
pupil-linked arousal.

A point of consideration regards the effects of our manipu-
lation on brain physiology and behavior in terms of the known
inverted-U curve that represents the effect of neuromodulatory
systems on neural population activity and effortful behavior
(Aston-Jones and Cohen 2005). The atomoxetine manipulation
likely shifted the basal level of neuromodulatory tone toward a
more aroused brain, consistent with increased pupil size (Fig. 3b)
and previously reported increases in exploratory behavior and
larger overall brain interaction under atomoxetine (Pfeffer et al.
2021). We found that the TD:BU ratio of traveling waves was
lower in tasks and also under atomoxetine (although this effect
was not significant, P=0.068). These effects may be linked to
previous findings that atomoxetine is related to a stronger link
between network reorganization and arousal during tasks (Shine
et al. 2018; Pfeffer et al. 2021). Our design only allowed us to
assess a part of the inverted-U curve (i.e. normal to a large
neuromodulatory tone), although our analyses with pupil size
indicated that lower arousal was related to lower integration
and fewer traveling waves. Together, the results underscore the
complex ways in which neuromodulators affect overall brain
communication as well as activity in specific circuits. Future
studies could determine whether infraslow traveling wave activity
is related to shifts in behavior and speed across arousal levels and
tasks to offer a comprehensive view on the effects of arousal on
brain dynamics.

Cerebral Cortex, 2025, Vol. 35,Issue 7 | 9

The specific functions of traveling waves remain to be clarified.
While, by eliminating discrete stimuli and the need for motor
responses, our task design enabled an unconfounded comparison
between resting-state and task runs, it did not permit direct
testing of the behavioral effects of traveling waves or integra-
tion. A recent study found a relation between traveling waves
and memory recall (Yang et al. 2024), suggesting that traveling
waves, rather than external stimulation, may reflect some kind
of internal reorganization. Given their slow and global nature,
they may relate to specific needs of the brain to exert global
updates of information at slower time scales, something that
resonates with global theories of consciousness (Baars et al. 2021;
Luppi et al. 2023). Alternatively, traveling waves may relate to a
global reset of functional circuits, which can be linked to early
theories of neuromodulatory signals as a “network reset” (Bouret
and Sara 2005). Future research should examine the relevance of
traveling waves in terms of behavior and network organization.
For instance, one approach would be to analyze how permanent
and virtual lesions in focal brain areas disrupt normal traveling
wave activity and characterizing ensuing alterations in network
topology and corresponding cognitive and behavioral deficits (Wei
et al. 2022).

Conclusions

The importance of slow activity for brain function and behavior
(Greene et al. 2023) and that of pupil size as a readout of the
general cortical state (Raut et al. 2023) are increasingly recog-
nized. Our study suggests specific mechanisms that mediate
these phenomena by showing that arousal is related to spa-
tiotemporal properties of global activity dynamics. By unveiling a
relation between neuromodulatory tone, brain activity propaga-
tion along the unimodal-transmodal gradient, and measures of
network topology, our study allows linking together several lines
of research on brain dynamics and provides new evidence of the
effects of prolonged and transient variations of neuromodulatory
activity.
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