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Understanding the factors underlying brain activity fluctuation is important to understand the flexible nature of the brain and 
cognition. Growing evidence indicates that functional magnetic resonance imaging (fMRI) activity travels as waves around global 
signal peaks following a unimodal–transmodal gradient. This may explain the organization of brain activity into functional networks, 
but why the strength of integration between networks fluctuates is uncertain. Given that arousal-related neuromodulatory systems 
affect network integration and that traveling waves are modulated by arousal, we aimed to assess the hypothesis that an increase 
in neuromodulatory tone can affect network integration by modulating the speed of propagation of traveling waves. We tested 
this hypothesis using pharmacological fMRI/pupil measurements during rest and tasks. Atomoxetine, which increases extracellular 
catecholamine levels, was associated with faster traveling waves, and faster traveling waves correlated with more network integration. 
We also examined temporal variations in pupil size, a signature of transient changes in neuromodulatory activity, and found that the
periods of traveling waves were characterized by larger pupil size. Our results suggest that neuromodulatory tone affects traveling wave
propagation, and that this arousal-modulated propagation shapes integrated functional connectivity features, highlighting specific
effects of prolonged and transient neuromodulatory influences on slow brain dynamics.

Keywords: arousal; fMRI; network integration; pupil size; trav eling waves.

Introduction 
A burning question in neuroscience is how the brain maintains 
high flexibility to deal with varying demands despite a rela-
tively fixed anatomical structure. To answer this question, the 
growing field of br ain dynamics has moved beyond “static” to
more dynamic, time-resolved measures of functional connectivity
(Iraji et al. 2021). An important conclusion from this research is 
that, over the course of an experiment, patterns of functional 
connectivity in functional magnetic resonance imaging (fMRI) 
data fluctuate between periods of network-level integration, char-
acterized by relatively strong interconnections between network 
modules, and periods of network-level segregation, character-
ized by relatively high network modularity (Keilholz et al. 2013; 
Sadaghiani et al. 2015; Betzel et al. 2016; Shine et al. 2016; Shine 
and Poldrack 2018). The dynamic nature of brain integration is 
further evidenced by computational modeling, which also indi-
cates that alterations in network integr ation are tightly related
to the functional distinction between brain regions (Fornito et al. 
2015; Lord et al. 2017; Wei et al. 2022). However, the properties of 
global brain activity that drive these s tate changes remain poorly
understood.

Recent research on whole-brain dynamics has revealed the 
presence of slow “traveling waves” that propagate through the 
brain following a gradient from unimodal to transmodal areas
(Matsui et al. 2016; Gu et al. 2021; Raut et al. 2021; Yousefi and 
Keilholz 2021). Animal studies suggest that these waves reflect 

modulations of neuronal spiking acti vity spanning several sec-
onds (Gu et al. 2021; Yang et al. 2024). Interestingly, it has been sug-
gested that the propagation of activity across this gradient could 
give rise to some of the hallmark f indings in studies of dynamic
functional connectivity using fMRI (Raut et al. 2023; Shahsavarani 
et al. 2023). The identification of correlated networks may be 
influenced by the position of modules along the continuous gradi-
ent underlying observed traveling waves. An untested prediction 
of this hypothesis is that a change in the speed of propaga-
tion must cause variations in the correlation between networks. 
Specifically, if activity propagates faster, it should result in more 
temporal alignment between modular time courses, manifested 
as higher network-level integration. Finding such e vidence would
underscore the importance of the slow propagation of activity
as an organizing principle of brain dynamics, and enhance our
understanding of the flexible nature of the brain.

What can cause changes in the propagation speed of traveling 
waves? One possible factor is the lev el of neural excitability as
set by neuromodulatory systems (Munn et al. 2021; Raut et al. 
2023), which act at fast and slow time scales and influence 
large parts of the brain through their widespread projections
(McCormick et al. 2020). Low levels of neuromodulatory tone are 
related to lower excitability and more neural synchronization, 
while intermediate levels are r elated to higher excitability and an
overall desynchronization (Aston-Jones and Cohen 2005). A com-
putational study has found that larger excitability is associated 
with faster traveling waves (Bhattacharya et al. 2021). Empirical
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studies offer indirect evidence, by showing that stimulation of the
locus coeruleus (Grimm et al. 2024) and spontaneous changes in 
pupil size (Shine et al. 2016; Mäki-Marttunen 2021; Lee et al. 2022) 
are associated with systematic changes in brain integration.

Here, we aimed to directly examine the effect of neuromod-
ulatory tone on global brain activity dynamics and measures of 
integration in a pharmacological fMRI–pupillometry study. We 
first detected traveling waves and characterized them in terms 
of speed, directionality, and ratio of top-do wn (TD) to bottom-
up (BU) propagations. We examined these features during rest
and task performance, in relation to pupil size (a measure of
neuromodulatory tone; Gilzenrat et al. 2010; Joshi and Gold 2020; 
Mäki-Marttunen and Espeseth 2021; Lloyd et al. 2023), and after 
the intake of placebo or atomoxetine. Atomoxetine is a nora-
drenaline transporter blocker that increases extracellular levels
of dopamine and noradrenaline (Swanson et al. 2006; Koda et al. 
2010), two neuromodulators that innervate large parts of the 
forebrain, modulate the slope of neuronal activation functions, 
and tonically increase the overall level of arousal (Aston-Jones 
and Cohen 2005). We then studied the relation between traveling 
waves and the participation coefficient, a graph-based measure 
of br ain integration that is sensitive to fluctuations in neuro-
modulatory inputs (Shine et al. 2016; Shine 2019; Mäki-Marttunen 
2021). Based on the predictions laid out in Mäki-Marttunen (2023), 
we hypothesized that (i) pharmacologically increased levels of 
catecholamines would be associated with faster traveling waves, 
(ii) the faster traveling wave speed would be associated with a 
more integrated network state, and (iii) the presence of traveling 
waves would be associated with larger pupil size. Our results 
provide the first evidence in humans that neuromodulation is
related to global brain activity propagation and that traveling
waves can explain why the level of integration between functional
networks fluctuates over time.

Methods 
Participants 
Thirty-six individuals (average age: 23 years old, range: 18 to 
29 years, 14 male) were recruited and medically screened by a 
physician for physical health and drug contraindications. The 
exclusion criteria included standard contraindications for MRI, 
heart arrhythmia, glaucoma, hypertension, use of antidepres-
sants or psychotropic medication, history of psychiatric illness 
or head trauma, drug or alcohol abuse, learning disabilities, poor 
eyesight, smoking more than five cigarettes a day, consumption 
of more than 24 units of alcohol per week, and pregnancy. All
the participants gave written informed consent before the exper-
iment and were compensated with €110. The study received ethi-
cal approval from the De Medisch-Ethische Toetsingscommissie
Leiden, Den Haag, Delft (METC LDD) (CCMO reference number
NL73193.058.20).

Study design and MRI data acquisition
The study had a double-blind placebo-controlled crossover 
design. In each of two sessions, scheduled 1 week apart at the 
same time of day, participants received either a single oral dose 
of atomoxetine (40 mg) or a placebo (microcrystalline cellulose
PH 102, visually identical to the drug). This dose of atomoxetine
is known to increase pupil size (van den Brink et al. 2016)  and  
salivary alpha amylase levels, a hormonal biomarker of central
noradrenergic activity (Warren et al. 2017). Participants had 
a waiting time after pill ingestion, to allow for atomoxetine 
concentration to reach peak plasma levels. During the waiting 
interval, they either practiced the tasks (first session) or engaged 

in some quiet activity of their choice. Approximately 100 min after 
pill ingestion, participants underwent a resting-state scan, then
performed one of the two tasks, underwent another resting-state
scan, and performed the second task. The order of the two tasks
was counterbalanced across participants.

All the MRI data were collected with a Philips 3T MRI scan-
ner. At the beginning of each of the scanning sessions, we col-
lected a high-resolution anatomical T1 image (echo time 3.5 ms, 
repetition time 7.99 ms, flip angle 8◦, and field of view (FOV) 
250 × 195 × 170 mm with voxel size of 1.1 mm isotropic). Func-
tional scans consisted of T2∗-weighted echo-planar imaging (EPI) 
images (echo time 30 ms, repetition time 2.2 s, flip angle 80◦,  FOV  
220 × 220 × 120 mm with voxel size 2.75 mm isotr opic). Eye-
tracking data were collected during the fMRI scans using an MRI-
compatible EyeLink device. The camera was set to image the right
eye and a calibration was carried out soon after the participant
entered the scanner. The eye-tracking recordings were sampled
at a frequency of 1000 Hz.

Tasks and stim uli
In the scanner, participants underwent two resting-state fMRI 
runs, and performed one run of a continuous performance task 
and one run of a movie-watching task. During the resting-state 
scan, participants were instructed to fixate their eyes on a black 
cross on a gray background. In the continuous performance task, 
they were presented with a stream of images of cities and moun-
tains and had to mentally count the number of pictures with 
mountains. The stimuli consisted of 10 pictures of cities and 
10 pictures of mountain landscapes that were presented multi-
ple times in random order across the run. A key characteristic 
was that the transition between images was softened by making
images fade into the next, which ensured a “continuous” type
of stimulation. The images subtended approximately 6◦ of visual
angle, were isoluminant, grayscaled, and presented on a gray
background. The images linearly and continuously morphed from
one into the next, with an 800-ms interval (van den Brink et al. 
2016). The percentage of mountains in the first session was set to 
10% and on the second session to 40%. After the run, participants 
were asked how many mountains they had counted. The partici-
pants also performed a naturalistic viewing task, which involved 
watching a shortened version of Hitchcock’s episode “Bang.” This
clip has been widely used in fMRI experiments because it includes
moments of suspense associated with specific brain patterns that
can be observed across individuals (Naci et al. 2014). The clip 
included sound and subtitles. The resting-state runs and task 
runs lasted approximately 8 min. T he tasks were coded with
Psychtoolbox running on MATLAB.

Pupillometry preprocessing and analysis
Raw eye-tracking data were converted to .asc files using the 
EDF2ASC converter. Preprocessing of the pupil signal consisted 
of interpolation of pupil blinks, normalization, detrending, and 
do wnsampling to the scanner frequency. Coding of these steps
was based on code provided by Urai et al. (2017). Cross-correlation 
between pupil size and global signal was calculated with the 
function xcorr (MATLAB) as c = xcorr(global signal, pupil). We also 
identified pseudoevents in the resting-state pupil data, using the
point process approach implemented in the rsHRF toolbox (Wu 
et al. 2021). Briefly, the tool identifies the time points where the 
signal exceeds 1 standard deviation from the mean and fits an 
impulse response function. Thus, the “pupil events” are defined 
as transient pupil changes that resemble an evoked response 
identified around points of high pupil signal. The rsHRF toolbox
allowed us to get the time points at which pupil events were
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detected. We calculated the proportion of pupil pseudoevents 
per time length of the intervals around global signal peaks (see 
below), because slower waves ar e expected to be related to longer
intervals that may include more pupil events.

fMRI preprocessing and analysis
Data were preprocessed using a standard pipeline implemented
in fMRIPrep (Esteban et al. 2019; fmriprep.org), including slice-
time correction, image realignment, deconfounding of movement 
regressors and the mean signal of white matter and cerebrospinal 
fluid, detrending, and normalization to MNI space. Further steps 
included filtering (0.001–0.1 Hz) and z-scoring of the voxels’ time
courses. The analysis of brain activity propagation was done in
surface space.

To study brain activity propagation along the principal gradi-
ent, we followed the procedure by Gu et al. (2021) and adapted 
the code shared by the authors. Briefly, the approach consists of, 
first, identifying the peaks of the global signal and the intervals 
around each of these peaks (i.e. from the trough before to the 
trough after each peak), and second, obtaining the time difference
between peaks in the time courses of the voxels with respect to
the peak in the global signal, that is, the delay values (Fig. 1a and 
b). The vectors of delay values for all the participants and scans 
were entered into a singular value decomposition algorithm. We
then examined the first five main components (Fig. 1c and d) 
and identified the one corresponding to the principal gradient, 
that is, the one where brain regions are organized following a
unimodal–transmodal gradient (Fig. 1f). Figure 1e shows the cor-
relation between the vectors of delay values for all the intervals 
considered and the vector corresponding to the principal gradient 
component. A bimodal distribution with a higher number of 
values in negative and positive correlations as compared to no 
correlation (zer o value) indicates the presence of traveling waves
in BU and TD directions along the gradient, respectively.

To study activity propagation along this gradient, for each 
individual and run, the voxels were ordered according to the 
gradient (i.e. from unimodal to multimodal) and binned in 30 bins 
to reduce the dimensionality of the analysis. The blood oxygen 
level-dependent (BOLD) signal for each bin (i.e. averages over
voxels) was used to study traveling waves (see a participant’s data
example in Fig. 1g). Following Gu et al. (2021), we based the analy-
ses on intervals of global involvement, for example those intervals 
where the global signal (averaged over all gray matter voxels) was 
larger than the peaks identified from a null distribution (i.e. based
on shuffled data). To compute the speed of the waves, we used the
formula as in Gu et al. (2021): 

speed = |c| × geodesic distance (mm)/n bins/TR (s),

where the coefficient c corresponds to the linear fit where the 
position of the peak in the BOLD signal for each bin is regressed 
against the bin number. A positive coefficient corresponded to a 
propagation fr om unimodal to transmodal areas (BU), and a neg-
ative coefficient corresponded to a propagation from transmodal
to unimodal areas (TD). Figure 1h shows the average traveling 
waves in each direction. We set a threshold for the identification 
of traveling waves based on the distribution of coefficients for 
the two other propagation directions (anterior–posterior [A–P] and 
dorsal–ventral [D–V]). The threshold was set at alpha = 0.1 and
corresponded to a coefficient of absolute value 3.8 (Fig. 1i). 

For the calculation of brain topological variables, we used the
Gordon 333 parcellation (Gordon et al. 2016; Fig. 4d). In the Gordon 
333 parcellation, each parcel is assigned to 1 of 12 different 
networks: Default, Parieto-Occipital, Fronto-Parietal, Salience, 

Cingulo-Opercular, Medial-Parietal, Dorsal-Attention, Ventral-
Attention, Visual, Somatomotor hand, Somatomotor mouth, and 
Auditory. To account for the fact that the waves were related 
to peaks in global signal, which could inflate the estimation 
of integration measures, the global signal was regressed out 
from each voxel’s time course. Data from all the voxels within 
a parcel were averaged. The temporal segments corresponding 
to the intervals with traveling waves were used to calculate 
the correlation coefficient for each pair of parcels, resulting in 
a connectivity matrix. The 12 networks were used as modules 
for the calculation of the participation coefficient, a measure of
network integration. The participation coefficient was calculated
as the average of the weights of a given parcel to each module
with respect to all the weights of the parcel. The participation
coefficient thus quantifies the extent to which a given parcel
connects with parcels in other modules relative to parcels
in its own module (van den Heuvel and Sporns 2013). A low 
participation coefficient corresponds to most of the connections 
of a parcel being distributed across a single or a small number 
of modules, while a high participation coefficient corresponds to 
connections of a parcel being distributed over a large proportion 
of modules. Therefore, the mean participation coefficient can
be used to estimate the extent of integration of the entire brain
network. For calculating the participation coefficient, we used
the Brain Connectivity Toolbox (Rubinov and Sporns 2010; sites. 
google.com/site/bctnet). 

Experimental design and sta tistical analyses
We were interested in the effects of treatment (atomoxetine vs 
placebo) and behavioral state (rest vs task-engaged) on traveling 
waves, and so we combined the data for the two resting-state 
scans and compared them with the aggregated data from the two 
tasks. Data for all detected traveling waves for each individual 
were used in the analyses. To account for repeated measurements 
of traveling waves across different treatments and behavioral 
states, we utilized linear models in MATLAB using the fitlme func-
tion. We ran two models with the propagation speed or the TD to 
BU ratio as the respective dependent variable and treatment and 
behavioral state as fixed effects. For the analysis of propagation 
speed, we also included the wave direction (TD vs BU) as an 
additional factor. To account for the nonindependence of obser-
vations within individuals, participant was included as a random 
effect. For the analysis of pupil-linked arousal, we employed a 
linear model with mean pupil size in a given time interval as the 
dependent variable and the presence/direction of traveling waves 
(none, BU, TD) as the predictor of interest. We also included the
treatment and behavioral state as fixed effects and participant
as a random effect. To test for a relation between propagation
speed, mean pupil size, number of pupil pseudoevents (underlying
the resting-state pupil signal), and measures of network-level
integration, we ran linear models for each pair of variables. We
included treatment and behavioral state as additional predictors
and participant as a random effect. In these analyses, we included
all the intervals, not only those of significant global involvement,
so the correlations covered the whole range of variation in the
pupil and integration variables. The linear models were coded
using the fitlme function in MATLAB.

Results 
Effects of atomoxetine and behavioral state on 
br ain activity propagation
We first confirmed the presence of activity propagation over the 
whole brain based on activity delays (Gu et al. 2021; Raut et al.
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Fig. 1. Overview of methodology for identification of traveling waves. a) Example of extraction of delay vector from one session. b) The peaks of the 
global signal were identified (left) and the time difference between the peak of activity of each voxel and the global peak were calculated, resulting in 
one vector of delay values per interval (middle). The delay vectors were concatenated for all participants, sessions, and tasks (right), and the matrix 
was submitted to a singular value decomposition analysis. c) Variance explained by each component. d) Brain maps corresponding to the first five 
components. The left map in the middle row (component #3) corresponds to the principal gradient. e) Histogram of correlation values between the 
delay vectors and the main delay component. The histograms corresponding to the anterior–posterior (A–P) and dorsal–ventral (D–V) gradients are also 
plotted. Brain insets indicate A–P and D–V directionality. f) Map of principal delay component, binned into 30 bins according to delay with respect to the 
global signal peak. g) Example of one participant’s scan for which we plotted the BOLD signal of the regions of interest ordered after the principal delay 
(top panel). The traveling waves can be observed in relation to the global signal peaks (bottom panel). The horizontal line indicates the significance 
threshold for global signal peaks obtained from permutation testing. h) Bottom-up and top-down traveling waves averaged across participants and
conditions. i) Distribution of traveling wave coefficients for the two control directions and the principal delay direction. The threshold obtained from
permutation testing is indicated with a vertical dashed line.
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Table 1. Effects of treatment and behavioral state on traveling waves .

Speed TD:BU ra tio 

Effect F P value F P value a 

Behavioral state 1.28 0.257 10.54 0.001 
Treatment 5.61 0.018 3.39 0.068 
Direction 1.96 0.16 
Treatment × behavioral state 0.19 0.661 0.01 0.907 
Behavioral state × direction 0.18 0.670 
Treatment × direction 0.04 0.828 

Abbreviations: BU, bottom-up; TD, top-down. aValues in bold ar e significant at p = 0.05.

2021). Briefly, we defined intervals around peaks in the global 
signal and calculated the delay values of each v oxel with respect
to the global signal peak (delay profile, Fig. 1a and b). Following 
singular value decomposition, we identified the prinicipal gradi-
ent in these profiles from unimodal to transmodal areas (Fig. 1f; 
Fig. 1e displays the distribution of correlation values between the 
delay profiles and the principal gradient). BU and TD waves of 
activity propagation ove r the main delay profile in those intervals
were then visualized (Fig. 1g and h). 

To test our hypothesis that pharmacologically increased levels 
of catecholamines would be associated with faster traveling 
waves, we compared the propagation speed of BU and TD waves 
in the various conditions by performing a repeated-measures 
ANOVA (RM-ANOVA) with the within-subject factors treatment,
behavioral state, and wave direction (BU and TD). This analysis
yielded a significant treatment effect [F(252) = 5.61, P = 0.018,
Table 1]. Speed was faster under atomoxetine compared to
placebo (Fig. 2a and b, Table 1), confirming our hypothesis. We 
found no effect of behavioral state or wave direction. Next, we 
compared the ratio of TD to BU traveling waves between condi-
tions. Figure 2c shows the correlation of traveling waves with the 
principal delay component: A positive correlation represents a BU 
direction of propagation while a negative correlation represents 
a TD direction. The TD-to-BU ratio significantly differed between 
behavioral states [F(110) = 10.50, P = 0.001], with a smaller TD:BU,
i.e. relatively more BU waves, during task performance than rest
(Fig. 2d). The ratio was numerically lower under atomoxetine 
compared to placebo, but this effect was not significant (Table 1). 

To assess the robustness of our finding that atomoxetine 
speeds up traveling waves, we performed the same analyses in
an independent resting-state fMRI–atomoxetine dataset (N = 26;
van den Brink et al. 2016). The results replicated our finding of the 
higher speed of traveling waves under atomoxetine (Fig. S1 and 
Table S1). 

Relationship between brain activity propagation 
and pupil-linked arousal
To study the relation between pupil size and brain dynamics, 
we investigated the slow fluctuations in the pupil signal filtered 
with the same band-pass filter as the BOLD global signal (0.001
to 0.01 Hz). These pupil-size fluctuations reflect slow changes
in the activity of neuromodulatory nuclei (Joshi and Gold 2020; 
Mäki-Marttunen and Espeseth 2021; Lloyd et al. 2023). Examples 
of temporally aligned traveling waves and the global signal and 
pupil signal for a resting-state session of one participant are
displayed in Fig. 3a. We found that atomoxetine was associated 
with an overall increase in mean pupil size (Fig. 3b), consistent 
with previous studies (van den Brink et al. 2016) and offering an 
indication of the efficacy of the pharmacological manipulation. 

We found that the global signal and the filtered pupil signal
were cross-correlated with a lag of around −5 scans (11 s), with 
fluctuations in the global signal preceding the corresponding
fluctuations in pupil size (Fig. 3c). This direction is consistent 
with previous reports (Bolt et al. 2025).  The  presence  of  several  
significant intervals may show certain periodicity in the signals. 
The cross-correlation was largely consistent across behavioral 
states and treatments. We also inve stigated pupil pseudoevents,
that is large (i.e. seemingly evoked), changes in the resting-
state pupil signal (Fig. 3d;  s  ee Methods). We assumed that these 
were time points associated with phasic bursts of a ctivity in
neuromodulatory nuclei, including the locus coeruleus (Munn 
et al. 2021). The pseudoevents were only obtained in the resting-
state scans to avoid stimulus-related pupil changes. We found 
that the pseudoevents cluster ed around global signal peaks, and
in particular after the peak (Fig. 3e). 

To test our hypothesis that the presence of traveling waves 
would be associated with larger pupil size, we compared intervals 
with (BU or TD) and intervals without traveling waves. We found 
a significant effect, with larger pupil size in intervals with BU or
TD traveling waves [Fig. 4a; presence of waves effect: F(277) = 4.19, 
P = 0.041], confirming our hypothesis. Note that the variability 
of mean pupil size was also larger for intervals with traveling 
waves. W e then tested the relation between our pupil-related
variables (mean pupil size and proportion of pseudoevents;
Fig. 4b and c) and propagation speed. Propagation speed was 
not associated with mean pupil signal [F(1,034) = 0.05, P = 0.822] 
but was significantly associated with proportion of pseudoevents 
[F(471) = 4.40, P = 0.036], whereby intervals with larger propagation 
speed were associated with less pseudoevents. No differences 
between conditions were observed in these analyses (mean pupil, 
treatment effect: F = 0.12, P = 0.723, behavioral state effect: F = 0.02, 
P = 0.877; pseudoevents, F = 0.049, P = 0.484). Taken together, the 
results suggest that time periods with traveling waves were
characterized by larger mean pupil-linked arousal, and that speed
of traveling waves was negatively associated with the proportion
of pseudoevents.

Relation between brain activity propagation and
network topology
To test the hypothesis that faster traveling wave speed would be 
associated with a more integrated network state, we calculated 
the participation coefficient, a measure of network i ntegration.
For this, we used the Gordon parcellation that divides up the
cortex into 333 parcels (Fig. 4d), and averaged the data from 
all the voxels within each parcel. Each parcel is assigned to a 
resting-state network, and this assignment was used to com-
pute the participation coeff icient. We found that propagation
speed was positively related to the level of integration [Fig. 4f;
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Fig. 2. Traveling wave speed and ratio across treatment and behavioral state. a) Speed of traveling waves in the two treatment conditions and b) separated 
by treatment, behavioral state, and wave direction. c) Histogram of correlation values between the delay vectors of the individual windows with traveling 
waves and the principal delay vector. d) Ratio of top-down (TD) to bottom-up (BU) waves per treatment and behavioral state. In the box plots, the central 
mark is the median, the edges of the box are the 25th and 75th percentiles, and the whiskers extend to the most extr eme data points. PLCB, Placebo;
ATMX, atomoxetine; RS, resting state.

F(683) = 97.79, P < 0.001], confirming our hypothesis. There were 
no significant effects of treatment (F = 0.01, P = 0.925) and behav-
ioral state (F = 0.74, P = 0.387) on the level of integration. We also 
tested for a relation between pupil size and integration. We cate-
gorized all the time intervals into four bins on the basis of mean
pupil size and tested for an effect on the participation coeffi-
cient, following the procedure used in Mäki-Marttunen (2021). 
We found that larger pupil size was related to higher network 
integration, with the exception of the largest pupil bin, r esulting in
an inverted U shape [Fig. 4e; pupil bin linear effect: F(396) = 14.35, 
P < 0.001; pupil bin quadratic effect: F(396) = 13.83, P < 0.001]. This 
is consistent with the fr equently observed quadratic relation-
ships between arousal and performance (Beerendonk et al. 2024; 
Nieuwenhuis 2024) and between arousal and neur al responses
(McGinley et al. 2015). In sum, network integration was positively 
related to propagation speed and pupil size, the latter also pre-
senting nonlinear effects.

Discussion 

Propagation of brain activity in the form of traveling waves is 
a ubiquitous phenomenon of brain activity, but the factors that 
modulate traveling waves remain uncertain. The current pharma-
cological fMRI/pupillometry study aimed to investigate whether 
neuromodulatory tone has an enabling role in global activity 
propagation and corresponding alterations in dynamic network 
topology. We found that traveling waves were faster under atom-
oxetine, that faster traveling waves in turn were related to more 
network integration, and that traveling waves tended to occur 
during periods of relatively large pupil size. Our results support 
the hypotheses that traveling waves underlie, at least in part,
the organization of brain activity into functional connectivity
networks, that the relationship between neuromodulatory tone
and network integration is mediated by changes in the speed
of propagation of traveling waves, and that moment-by-moment
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Fig. 3. Relation between pupil size and global signal. a) A sample participant’s run. Top panel: brain activity ordered by the principal gradient with 
identified pupil pseudoevents (estimated from the resting-state pupil data) overlaid as red asterisks. Middle panel: global signal. Bottom panel: pupil 
signal resampled to the fMRI sampling rate (black) and the low-passed pupil signal (red). b) Histogram of pupil size values for placebo and atomoxetine 
conditions. c) Average raw cross-correlation between pupil and global signal for the two treatments. PLCB, placebo; ATMX, atomoxetine. d) Average of 
the phasic pupil changes that were identified as pseudoevents. e) Histogram of distribution of fast pupil events around global signal peaks. RS, Resting
state; GS, Global signal.

changes in pupil-linked arousal may enable or facilitate the emer-
gence of global propagation of brain activity. This has important 
implications for the understanding of the brain mechanisms that
underlie the dynamic properties of the human brain.

We examined the presence of traveling waves by extracting 
a main delay component of the BOLD signal based on intervals 
determined by global signal peaks and troughs, as has been done
previously (Gu et al. 2021). This method allowed us to obtain the 
main component that reproduces the main gradient of the brain, 
which separates unimodal from transmodal areas and has been
found across perceptual modalities and using various approaches
(see Huntenburg et al. 2018 for a review). Replicating Gu et al. 
(2021), we found both BU and TD propagation of activity. Impor-
tantly, we could detect propagating waves in both behavioral 
states studied here: during rest and during task performance. This 
is consistent with a previous stud y that found intrinsic patterns
of activity following the principal gradient in the resting state
and during a variety of tasks (Brown et al. 2022). An important 
difference is that in our study none of the tasks required an 
active motor response or were paced as in event-related designs. 
Instead, the tasks could be considered as inducing a “continuous” 
state, which made them comparable with the resting-state runs 
in terms of design. We found an effect of behavioral state on the 
traveling wave ratio, where under both atomoxetine and placebo,
tasks were associated with a larger proportion of BU traveling
waves compared to the resting state. Since the tasks had a strong
visual component, it is possible that this effect depended in part
on this property of the task (Brown et al. 2022). Other studies found 

a significantly larger proportion of BU as compared to TD traveling 
waves in sleepy individuals, as well as in primates (Gu et al. 2021). 
Furthermore, recent studies using a serotoninergic agonist found 
that the principal gradient is contr acted with increasing levels
of serotonin (Girn et al. 2022; Timmermann et al. 2023). Taken 
together, these results suggest that neuromodulatory factors have 
an effect on the directionality of propagation of traveling waves 
along the principal gradient, reflecting the expression of a variety
of brain states.

A key finding was that in both behavioral states the speed 
of traveling waves was significantly higher in the atomoxetine 
condition. This result was replicated in an independent resting-
state data set. Computational studies suggest that one mecha-
nism by whic h neuromodulatory systems influence the speed
of traveling waves is by altering the overall excitability of the
brain (Bhattacharya et al. 2021). The noradrenaline and dopamine 
systems, which are directly affected by noradr enaline transporter
blockade with atomoxetine (Bymaster et al. 2002; Swanson et al. 
2006; Koda et al. 2010), affect neuronal activity through binding to 
a variety of receptors distributed over the cortex (Aston-Jones and 
Waterhouse 2016; Avery and Krichmar 2017; Rho et al. 2018). In 
particular, atomoxetine increases neuronal excitability (Bymaster 
et al. 2002; Koda et al. 2010; Di Miceli and Gronier 2015), but 
it has never been directly tested whether it has an effect on 
the global, slow propagation of neuronal spiking activity (Liu 
et al. 2021). Together, these findings suggest that atomoxetine 
speeds up traveling waves through an increase in neuronal
excitability.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/35/7/bhaf183/8202947 by guest on 03 Septem

ber 2025



8 | Mäki-Marttunen and Nieuwenhuis

Fig. 4. Links between traveling waves, pupil-linked arousal, and network integration. a) Relation between presence/direction of traveling waves and 
mean pupil size. b) Relations between propagation speed and pupil measures. Each observation represents one interval o f traveling wave. c) Relation 
between propagation speed and network integration. d) A total of 333 parcels (Gordon et al. 2016) were used to calculate the participation coefficient, a 
measure of brain integration. e) Relation between pupil size and network integration.

Studies using pupillometry concurrent with fMRI have found 
that periods of larger pupil size are related to more integration
(Shine et al. 2016; Mäki-Marttunen 2021). Atomoxetine manipu-
lation has also been found to affect the brain’s integration/seg-
regation balance (Guedj et al. 2016; van den Brink et al. 2016, 
2018; Shine et al. 2018). Different measures of brain integration 
were used across studies, which may underlie some differences in 
the reported directions of the effect. Our approach allowed us to 
look at more specific neuromodulatory effects by looking at the 
traveling waves over the principal gradient. The results revealed 
that periods of more integration may in part follow changes in the 
speed of activity propagation across the principal gradient, and
these may relate to fluctuations in neuromodulatory tone. Fluc-
tuations between states of network integration and segregation
have been described within single scan sessions (Keilholz et al. 
2013; Betzel et al. 2016; Shine and Poldrack 2018). Furthermore, 
several studies have reported that there are specific moments 
that contribute the most to the phenomenon of functional

connectivity (Tagliazucchi et al. 2012; Liu and Duyn 2013). 
Our results allow tying together these lines of research by 
suggesting that (i) the modulation of macroscopic brain activity 
by neuromodulatory tone may reflect not only genuine changes in 
the overall state of functional connectivity but also the temporal 
relation of activity propagation across regions following the uni-
modal–transmodal hierarchy, (ii) the effects of neuromodulatory 
activity on brain activity propagation may in turn underlie the 
fluctuations in functional network topology through modulation 
of propagating waves, and (iii) the single events of traveling wav es
may be the ones particularly contributing to the emergence of
brain functional connectivity. While future studies are needed to
provide further support in favor of these hypotheses, our findings
offer a clear picture of task-unrelated neuromodulatory effects
on brain communication at slow time scales.

We also found that larger pupil size was related to more 
integration, although integration dropped at the largest pupil size 
values, following an inverted-U curve. Thus, at least within a
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certain range of pupil size, we replicated a previously reported 
positive relation between pupil size and network integration, as
quantified by the participation coefficient (Mäki-Marttunen 2021; 
Lee et al. 2022). The broader inverted-U curve linking global net-
work integration to pupil size is consistent with findings that have
associated both intermediate pupil size (Beerendonk et al. 2024; 
Nieuwenhuis 2024) and an increase in network integration (Cohen 
and D’Esposito 2016) with optimal cognitive task performance. 
These findings, in turn, reflect the positive effects o f moderate
tonic locus coeruleus activity on network integration (Wainstein 
et al. 2021; Grimm et al. 2024) and cognitive performance (Aston-
Jones and Cohen 2005). We did not find an effect of pupil size 
on speed but found a significant negative association between 
number of pupil pseudoevents and propagation speed. While we 
can only speculate on the meaning of this finding, it is possible 
that time intervals of faster traveling waves are related to lower 
variability in neuromodulatory activity and thus fewer pupil pseu-
doevents. Although more work is n eeded to test for a relation
between traveling waves and pupil size in other conditions and
states, our results point toward a timed relation between neuro-
modulatory activity and global patterns of brain activity.

We also examined a possible relation between the global signal 
and pupil size. The physiological meaning of the global BOLD
signal is still a matter of debate (Liu et al. 2017). The distinction 
between neuronal and artifactual sources of global signal changes 
has great relevance for the consideration of global signal removal 
as a preprocessing step in functional connectivity studies (Power 
et al. 2017). Previous studies suggest that the global signal is at 
least in part related to the arousal level (Wong et al. 2013; Liu et al. 
2018). We found a relation between pupil size, pupil pseudoevents, 
and the global signal. A temporal relation between pupil size and 
the global signal is consistent with previous reports (Bolt et al. 
2025). The fact that pupil size and pupil pseudoevents peaked 
after the global signal may reflect an event of transient arousal
following a drop in arousal (Demiral et al. 2023). Our results 
contribute to the understanding of global brain phenomena by 
revealing the specific timing between traveling waves associated 
with incr eases in the global BOLD signal and transient changes in
pupil-linked arousal.

A point of consideration regards the effects of our manipu-
lation on brain physiology and behavior in terms of the known 
inverted-U curve that repr esents the effect of neuromodulatory
systems on neural population activity and effortful behavior
(Aston-Jones and Cohen 2005). The atomoxetine manipulation 
likely shifted the basal level of neuromodulatory tone toward a 
more aroused brain, consistent with increased pupil size (Fig. 3b) 
and previously reported increases in exploratory behavior and 
larger overall brain interaction under atomoxetine (Pfeffer et a l.
2021). We found that the TD:BU ratio of traveling waves was 
lower in tasks and also under atomoxetine (although this effect 
was not significant, P = 0.068). These effects may be linked to 
pr evious findings that atomoxetine is related to a stronger link
between network reorganization and arousal during tasks (Shine 
et al. 2018; Pfeffer et al. 2021). Our design only allowed us to 
assess a part of the inverted-U curve (i.e. normal to a large 
neuromodulatory tone), although our analyses with pupil size 
indicated that lower arousal was related to lower integration 
and fewer traveling waves. Together, the results underscore the 
complex ways in which neuromodulators affect overall brain 
communication as well as activity in specific circuits. Future 
studies could determine whether infraslo w traveling wave activity
is related to shifts in behavior and speed across arousal levels and
tasks to offer a comprehensive view on the effects of arousal on
brain dynamics.

The specific functions of traveling waves remain to be clarified. 
While, by eliminating discrete stimuli and the need for motor 
responses, our task design enabled an unconfounded comparison 
between resting-state and task runs, it did not permit direct 
testing of the behavioral effects of traveling waves or integra-
tion. A recent study found a relation between traveling waves
and memory recall (Yang et al. 2024), suggesting that traveling 
waves, rather than external stimulation, may reflect some kind 
of internal reorganization. Given their slow and global nature, 
they may relate to specific needs of the brain to exert global
updates of information at slower time scales, something that
resonates with global theories of consciousness (Baars et al. 2021; 
Luppi et al. 2023). Alternatively, traveling waves may relate to a 
global reset of functional circuits, which can be linked to early
theories of neuromodulatory signals as a “network reset” (Bouret 
and Sara 2005). Future research should examine the relevance of 
traveling waves in terms of behavior and network organization. 
For instance, one approach would be to analyze how permanent 
and virtual lesions in focal brain areas disrupt normal trav eling
wave activity and characterizing ensuing alterations in network
topology and corresponding cognitive and behavioral deficits (Wei 
et al. 2022). 

Conclusions 
The importance of slow activity for br ain function and behavior
(Greene et al. 2023) and that of pupil size as a readout of the
general cortical state (Raut et al. 2023) are increasingly recog-
nized. Our study suggests specific mechanisms that mediate 
these phenomena by showing that arousal is related to spa-
tiotemporal properties of global activity dynamics. By unveiling a 
relation between neuromodulatory tone, brain activity propaga-
tion along the unimodal–transmodal gradient, and measures of 
network topology, our study allows linking together several lines
of research on brain dynamics and provides new evidence of the
effects of prolonged and transient variations of neuromodulatory
activity.
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