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The cross-talk between the gut microbiome and the human host has been increasingly 

recognized as an important factor influencing human health and disease,1 including 

cow’s milk allergy (CMA), which is the most common type of food allergy in early life.2 

Although advancements in omics techniques have significantly improved our 

understanding of this interplay, uncovering the complex mechanisms by which the gut 

microbiome affects the host remains a challenge. In recent decades, growing evidence 

suggests that the gut microbiome-derived metabolites serve as important mediators in 

this interaction.3 This highlights metabolomics as a key technique for elucidating the gut 

microbiome’s role in human health and disease by providing insights at the molecular 

level. In metabolomics studies, approaches can be broadly categorized into targeted and 

untargeted metabolomics, based on hypothesis-driven and hypothesis-generating 

strategies, respectively.4 Targeted metabolomics focuses on quantifying a limited 

number of known metabolites, while untargeted metabolomics aims to profile both 

known and unknown metabolic features.4 One of the primary challenges for metabolite 

quantification in targeted and untargeted metabolomics is matrix effect.6 Matrix effect 

is primarily caused by co-eluting matrix components, which can impact the accuracy 

and reliability of signals detected with liquid chromatography-mass spectrometry (LC-

MS), particularly when using an electrospray ionization (ESI) source.5 In this thesis two 

hypotheses were investigated. The first hypothesis was that the matric effect in 

untargeted metabolomics can be monitored and corrected by implementing the PCIS 

technique with LC-MS methods. The second hypothesis was that the fecal metabolome 

can provide insights into the cross-talk between the gut microbiome and food allergy in 

infants with the most prevalent type of food allergy in early life: cow’s milk allergy 

(CMA). life. 

Matrix effect in untargeted metabolomics 

Untargeted metabolomics, a powerful approach for unbiased metabolome profiling, has 

demonstrated potential for biomarker discovery in diverse fields. However, despite its 

wide applications, several challenges remain that impact the reliability of untargeted 

metabolomics. Among these, matrix effect is a major concern, as it can greatly affect 

the reproducibility, selectivity, and accuracy of metabolome profiling.6 Stable 
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isotopically labeled (SIL) standards, the most commonly applied strategy for addressing 

the matrix effect, are limited to targeted metabolomics due to the requirement of 

standards spiking. This limitation makes another approach, PCIS, the only applicable 

method for mitigating matrix effects in untargeted metabolomics, as it is independent of 

retention time.6 The effectiveness of PCIS in monitoring and correcting matrix effects 

has been well demonstrated in targeted metabolomics,7–10 and it has also been 

recommended as a quality control tool for matrix effect evaluation in untargeted 

metabolomics.11 However, reports on its actual application in untargeted metabolomics 

remain limited.12 Therefore, effective strategies to address the matrix effect with PCIS 

in untargeted metabolomics are still lacking. To tackle this, in Chapters 2 and 3 of the 

thesis, we outlined strategies using PCIS to overcome matrix effect in LC-ESI-MS-

based untargeted metabolomics, covering matrix effect monitoring and matrix effect 

compensation.  

First, in Chapter 2, an untargeted method was developed and applied to evaluated the 

matrix effect in plasma and fecal samples with PCIS. As part of the method 

development, the injection amount and reconstitution solvent were first optimized for 

both plasma and fecal samples. The results showed that optimizing the reconstitution 

solvent was crucial for balancing the trade-off between peak shape distortion and 

metabolite solubility, and that proper sample dilution was essential for maximizing 

metabolites signal intensity while preventing detector saturation in MS. To assess the 

analytical performance of our untargeted method, the method was validated using a 

targeted approach with stable isotope-labeled (SIL) standards in plasma and fecal 

samples. The method exhibited good precision, accuracy, recovery, and repeatability 

with plasma and fecal samples. By evaluating the matrix effect, it was found that high 

relative matrix effect (RME) among samples could significantly impact measurement 

accuracy and reproducibility. However, the SIL standards can only point out the matrix 

effect at specific retention times. To assess the matrix effect across the entire 

chromatogram, a PCIS approach was introduced to the developed untargeted 

metabolomics method. In this approach, xenobiotic compounds were infused post-

column during the injection of different plasma and fecal samples, enabling overall 
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monitoring of absolute matrix effect (AME) and RME by examining the matrix effect 

profiles of the infused compounds. 

The results demonstrated that the PCIS approach effectively identified chromatographic 

regions exhibiting large AME and RME. Notably, PCIS yielded comparable RME 

results to those obtained using the traditional post-extraction spiking method, 

demonstrating its potential as a reliable technique for RME evaluation in untargeted 

metabolomics. The PCIS approach was applied to predict the RME of over 300 targets 

covered in our in-house library. The predictions revealed that more targets exhibited 

RME > 15% in fecal samples compared to plasma. Additionally, for metabolites 

detectable in both positive and negative ionization modes, most of them experienced 

larger RME in negative mode than in positive mode. Overall, Chapter 2 established a 

comprehensive framework for developing an LC-ESI-MS untargeted metabolomics 

method using PCIS to monitor the matrix effect in plasma and fecal samples. The 

findings demonstrated that PCIS is an effective approach for matrix effect monitoring 

in untargeted metabolomics. This approach has strong potential to improve better data 

reliability of untargeted metabolomics by identifying regions with severe matrix effect 

and high matrix effect variation. 

The proposed PCIS approach can be further applied to guide the optimization of specific 

LC parameters, such as the gradient and sample injection amount, to mitigate matrix 

effects in a reverse-phase (RP) LC-MS untargeted method. A recent study also 

demonstrated that PCIS contributed to column selection and mobile phase pH 

optimization for an untargeted hydrophilic interaction liquid chromatography (HILIC)-

MS method.13 Moreover, although both our RPLC-MS and their HILIC-MS methods 

targeted polar to semi-polar metabolomic features with a mass less than 800 Da, the 

application of PCIS is not limited by the polarity or mass range of the metabolites. In 

principle, with careful selection of PCIS candidates, PCIS can serve as a valuable 

approach for guiding method development to minimize matrix effects in any untargeted 

metabolomics method. 
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In addition to matrix effect monitoring, PCIS also has potential for compensating matrix 

effect in untargeted metabolomics due to its retention time independence. A key 

challenge in its implementation lies in selecting multiple PCISs for the wide range of 

metabolic features and determining which one is most effective for correcting the matrix 

effect specific to each feature. To address this, the application of PCIS from matrix 

effect monitoring to compensation was investigated in Chapter 3. 

In this chapter, the workflow for developing a PCIS approach for an LC-ESI-MS-based 

untargeted metabolomics method was first outlined. Key factors, such as structural 

diversity, infusion concentration, and room temperature stability, were thoroughly 

evaluated to select suitable PCIS candidates. The results demonstrated that, at the 

optimized infusion concentration, the selected PCISs (five standards for positive 

ionization mode and four for negative ionization mode) exhibited diverse matrix effect 

profiles, stable infusion signals, and no significant matrix effect interference. 

Additionally, these compounds remained stable for one week at room temperature, 

further supporting their long-term usage along with analysis runs. Next, to match a 

specific feature with its suitable PCIS for matrix effect correction, a novel approach was 

proposed: post-column infusion of artificial matrices. This matching process was 

achieved by comparing the ability of a PCIS to compensate for the artificially created 

matrix effect (MEart). 

To ensure that the artificial matrices properly mimicked the biological matrix in 

inducing matrix effects, multiple artificial matrix compounds were selected based on 

their relevance to matrix effects mechanisms in an ESI source. L-homoarginine 

hydrochloride, sodium acetate, and tridodecylmethylammonium chloride were selected 

as artificial matrix compounds for positive ionization mode, while sodium dodecyl 

sulphate and sodium acetate were used for negative mode. These compounds can 

interfere with ESI process of analytes by competing for ionization or increasing the 

surface tension in droplets, preventing coulombic explosion. Since the presence of MEart 

was essential for selecting the suitable PCIS, the infused concentrations of these 

artificial matrix compounds were optimized to obtain 70% artificial absolute matrix 

effect (AMEart) and more than 15% artificial relative matrix effect (RMEart). By injecting 
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samples into the LC-PCIS-MS system with and without artificial matrices infusion, the 

MEart could be determined across detected features, including both known and unknown 

metabolites. The selected PCIS could then be used to compensate for biological matrix 

effects (MEbio).  

The effectiveness of MEart was evaluated in selecting PCIS using 19 diverse SIL 

standards spiked in plasma, urine, and feces. In this evaluation, MEbio and MEart were 

calculated and used to select the suitable PCIS for each SIL standard in each biological 

matrix. To incorporate both absolute matrix effect (AME) and relative matrix effect 

(RME) into the comparison, a matrix effect scoring system was introduced that averaged 

AME and RME scores as the final ME score. The ME (MEart, MEbio) scores across 

plasma, urine, and feces were summed to identify the matrix-independent PCIS for each 

SIL standard. The PCISs selected based on MEart score sums were compared with those 

identified using MEbio score sums. As a result, 17 out of 19 (89%) SIL standards 

exhibited consistent PCISs selection based on MEart and MEbio score sums. Considering 

that MEbio correction is the most commonly applied strategy for PCIS selection in 

targeted metabolomics,9,14,15 our results highlight the efficacy of MEart in selecting the 

suitable PCISs for MEbio compensation.  

Subsequently, MEart-selected PCISs were applied to correct for the MEbio in plasma, 

urine, and feces for the 19 SIL standards. These PCISs improved or maintained the 

matrix effect scores for 19 (100%) standards in plasma, 16 (84%) in urine, and 18 (95%) 

in feces. The results demonstrated the efficacy and reliability using MEart to identify 

suitable PCISs for MEbio correction across various biological matrices. More 

importantly, since MEart can be determined for any measurable feature by comparing 

signals acquired with and without artificial matrix infusion, this establishes post-column 

MEart creation as a feasible approach for selecting PCIS to correct matrix effect in LC-

PCIS-MS-based untargeted metabolomics. Ideally, a feature-PCIS-matched library 

could be constructed using artificial matrix infusion with one or multiple biological 

matrices, and then applied to compensate for matrix effect in untargeted metabolomics 

studies. 
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Following the successful proof-of-concept demonstration of the matrix effect 

compensation method using artificial matrix-based PCIS selection, further efforts 

should focus on building the feature-PCIS-matched library to facilitate routine matrix 

effect correction in untargeted metabolomics. Additionally, comparing significantly 

altered features before and after PCIS correction in applied studied remains of great 

interest for further validating this method for matrix effects correction. Although this 

study included structurally diverse PCISs, over-corrected matrix effects were observed 

in a few examined SIL standards. This highlights the need to further expand the diversity 

of PCIS candidates to improve correction those standards and enable more 

comprehensive matrix effect correction across the metabolome. Furthermore, with well-

defined PCIS candidates and a robust MEart-based matching strategy, the LC-PCIS-MS 

platform can be extended beyond biomedical matrices to applications in food safety, 

environment science, and other fields where complex matrix effects are commonly 

encountered. 

Fecal metabolome exploration in infants with cow’s milk allergy  

In Chapters 4 and 5, the aim was to deepen our understanding of the interplay between 

the gut microbiome and CMA in early life through the exploration of the fecal 

metabolome. To provide a comprehensive overview of current studies on this topic, a 

systematic review was conducted in Chapter 4. This review focused on the 

modifications and post-treatment alterations in the gut microbiome, metabolome, and 

immune response in both CMA children (0-12 years) and CMA animal models. By 

conducting thorough searches in MEDLINE, PubMed, Scopus, and Web of Science, 21 

articles published before March 2023 were included, consisting of 13 studies on CMA 

children and 8 studies on animal models. 

In the reviewed studies, no consistent conclusions were drawn regarding the 

modifications of α- and β-diversity in the gut microbiome in CMA. At the taxonomic 

level, multiple studies across both CMA children and animal models reported a decrease 

in the Bifidobacterium genus and Lactobacillales order, alongside an increase in the 

Clostridia class. Regarding CMA management, various intervention approaches, 
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including different formulas, prebiotics, probiotics, and synbiotics, were applied across 

several studies. These studies consistently showed increased Bifidobacterium levels in 

both CMA children and animal models following interventions, particularly with 

Bifidobacterium strains-specific treatments. However, the impact of these interventions 

on other bacterial populations remained inconclusive. In terms of metabolome 

modifications, decreased short-chain fatty acids (SCFAs), as well as altered amino acid 

and organic acid profiles, were observed in CMA children. These metabolomic changes 

appeared to be restored through interventions, with increased SCFAs and balanced 

amino acid levels. For the immune response, only one study involving CMA children 

was available, but studies on CMA animal models suggested that interventions could 

reduce overall cytokine levels, restore the Th2/Th1 balance, and induce a regulatory 

immune response. Additionally, this review highlighted that no study has investigated 

early-life CMA using multi-omics strategies, such as metagenomics, 

metatranscriptomics, and metaproteomics. Although several metabolomics studies have 

been reported, they focused on a limited range of metabolites, emphasizing the need for 

comprehensive metabolomics studies on CMA in early life. 

In Chapter 5, a comprehensive investigation of the fecal metabolome in CMA infants 

undergoing dietary intervention with and without a synbiotic (inulin, oligofructose and 

Bifidobacterium breve M-16 V) was conducted using the untargeted metabolomics 

method developed in Chapter 2, along with an additional in-house platform. 

Considering the broad metabolite coverage, we primarily focused on known features in 

this study. By grouping the infants based on CMA status after one year or the type of 

intervention they received, we explored the distinct impacts of CMA tolerance 

acquisition and of the synbiotic supplementation on the fecal metabolome of CMA 

infants. The longitudinal changes in the fecal metabolome across the three time points 

were analyzed using linear mixed models (LMMs) and repeated measures analysis of 

variance simultaneous component analysis+ (RM-ASCA+). 

By comparing the fecal metabolome of infants with persistent CMA to those who 

developed CM-tolerance, more pronounced changes in the fecal metabolome related to 

amino acids, bile acids, and SCFAs were observed in the CM-tolerant group. The CM-
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tolerant group exhibited significantly higher levels of lysine and citrulline after one year 

of intervention compared to the CM-allergic group. Although no significant group 

differences were found for other metabolites, the metabolome trends along with time 

indicated a down-regulation of tryptophan-serotonin metabolism, up-regulation of 

secondary bile acid production, and an increase in butyrate in the CM-tolerant group 

compared to the CM-allergic group. These alterations might suggest a healthier gut with 

improved barrier function and a more mature gut microbiome in the CM-tolerant group.  

Regarding the impact of the synbiotic, this study demonstrated that the synbiotic 

significantly altered the fecal levels of aromatic lactic acids, purine metabolites, fatty 

acids, and bile acids, especially after six months of supplementation. Two aromatic 

lactic acids (4-hydroxyphenyllactic acid and indolelactic acid), known as infant-type 

Bifidobacterium-derived metabolites, showed a significant increase in the synbiotic 

group. Moreover, the changes in these metabolites from baseline to later time points 

were strongly positively correlated with the changed levels of Bifidobacterium in the 

group with synbiotic supplementation. These findings suggested an enhanced 

abundance and/or activity of infant-type Bifidobacterium species, indicating the 

successful supplementation of the synbiotic. Additionally, the synbiotic 

supplementation was found to lower the levels of inosine, guanine, and uridine, increase 

adenine level, and enhance the deconjugation of glycine-conjugated bile acids. 

The study in Chapter 5 contributed to revealing the linkages between early-life CMA, 

the gut microbiome, and synbiotic intervention. We observed several alterations in fecal 

metabolomic pathways that may play a role in the outgrowth of CMA in early life. 

Additionally, Those findings provided evidence for the impact of synbiotic 

supplementation on modifying the fecal metabolome in CMA infants. This impact was 

more pronounced after six months of intervention, highlighting the importance of early 

intervention to maximize the effects of synbiotics. However, no clear conclusions can 

be drawn regarding the clinical benefits of the synbiotic supplementation on CM-

tolerance acquisition, as the tolerance rate observed after one-year synbiotic intervention 

was consistent with natural outgrowth for infants involved in our study. Despite this, the 

significant enhancement of metabolites with anti-inflammatory properties, such as 
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indolelactic acid,16 suggested a potential beneficial effect of synbiotics in promoting 

CMA outgrowth. Therefore, it is suggested that further research with larger cohorts is 

needed to verify our findings and evaluate the therapeutic potential of synbiotics 

supplementation for CMA in early life.  

Although over 300 targets were involved in our study, there are still opportunities for 

further improvements in metabolomic exploration. First, our study only reported the 

relative abundance of these targets. Achieving absolute quantification of the targeted 

metabolites would enhance the accuracy and depth of our interpretation. Second, despite 

covering a wide range of targets, analyzing the data in an untargeted manner is still 

necessary to identify other potential metabolomic changes that may not have been 

captured in our targeted analysis. Moreover, integrating multiple analytical platforms 

for global profiling, such as HILIC along with RP, could significantly expand the 

metabolomic coverage and provide a more comprehensive picture. Lastly, this study 

was conducted with the PCIS setup, providing the opportunity to reanalyze the data and 

apply matrix effect correction. We believe that matrix effect correction with PCIS holds 

substantial potential to further enhance the quality of the data presented in this chapter. 

Further perspectives  

In this thesis aimed to tackle the issue of matrix effect in untargeted metabolomics 

(Chapter 2-3) and expand the understanding of the relationship between the gut 

microbiome and CMA in early life (Chapter 4-5). From a technical perspective, the 

thesis demonstrated the potential of applying PCIS to address matrix effect in LC-ESI-

MS-based untargeted metabolomics methods. The developed PCIS method enabled two 

primary functions: matrix effect monitoring and matrix effect correction. Matrix effect 

monitoring is particularly useful during the development phase of an untargeted 

metabolomics method to help mitigate matrix effect. Matrix effect correction holds great 

potential to enhance data reliability, advance (semi)quantitative analysis, and ensure 

more accurate data interpretation in untargeted metabolomics. One direct application of 

matrix effect correction is solving the problem of matrix dilution when examining the 

dynamic range using endogenous metabolites with serially diluted quality control (dQC) 
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samples.17 This enables the exploration of linearity with endogenous features by 

correcting matrix effect in a calibration curve constructed using dQC. Additionally, 

leveraging a dQC series with corrected matrix effect in routine untargeted metabolomics 

analysis can also improve the data fidelity via advancing the feature filtering with 

estimated linearity range and response for detected features.18 Overall, the advances in 

addressing matrix effect presented in our study will contribute to the broader application 

of untargeted metabolomics in diverse research fields. However, to expand the 

implementation of matrix effect correction using PCIS, further efforts are required to 

develop an automated pipeline that increases throughput for efficiently selecting 

appropriate PCISs for the hundreds to thousands of features detected in untargeted 

metabolomics. Meanwhile, incorporating the PCIS pre-processing workflow into 

existing untargeted data analysis tools could also further promote its application.  

With the developed method, Chapter 5 uncovered several potential metabolomic 

pathway modifications related to CMA resolution in early life and highlighted 

significant metabolite changes following the synbiotic intervention. This study 

contributed to gaining insights into the interplay between the gut microbiome and early-

life CMA from a metabolomics perspective. To further reveal the underlying 

mechanisms regarding the impact of the gut microbiome on early-life CMA, we 

recommend carrying out more studies with larger-scale cohorts. This will also enable 

researchers to develop more complex data analysis models to explore how synbiotic 

interventions can influence CM-tolerance acquisition in early life. Meanwhile, since the 

fecal metabolome serves as an ideal readout for gut microbial functions,19 the primary 

focus of this chapter was on fecal metabolome profiling In the future, combining the 

fecal metabolome with metabolomes obtained from other biological samples, 

particularly peripheral blood, could significantly enhance our interpretation of the cross-

talk between the gut microbiome and the host. Additionally, comprehensive studies that 

integrate multi-omics research combining metabolomics, metagenomics, 

metatranscriptomics, and metaproteomics are still urgently needed to gain a complete 

understanding of impact of the gut microbiome on the prevention, development, and 

treatment of CMA in early life. Furthermore, as we enter the era of artificial intelligence, 
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incorporating techniques like machine learning with integrated multi-omics data holds 

great promise for advancing our knowledge of the role of the gut microbiome in human 

health and disease, including CMA in early life. 

Final remarks  

The rapid expansion of research on human gut microbiome in recent decades has 

highlighted its role in human metabolism, immune regulation, and behavior.20 Despite 

significant progress in deciphering how the gut microbiome affects human health and 

disease, a long journey lies ahead to fully solve the puzzle. Combining multi-omics 

analyses has become a trend to unravel the intricate relationship between the gut 

microbiome and the human host. Among the omics techniques, as a direct readout of 

phenotypes, metabolomics provides a snapshot reflecting the functional properties of 

the gut microbiome at the molecular level. This emphasizes the crucial role of 

metabolomics in revealing this complex relationship and underscores the needs for 

advances in metabolomics techniques. In this thesis, by proposing strategies to address 

the matrix effect in LC-ESI-MS-based analytical method, we advanced untargeted 

metabolomics towards quantitative analysis. The focus then shifted to deepening our 

understanding of the interactions between the gut microbiome and CMA in early life 

from a metabolomics perspective. Overall, the research in this thesis suggested that 

several gut microbiome-involved metabolic pathways may play a role in the acquisition 

of CM tolerance, and provided evidence that the fecal metabolome can serve as a 

potential readout to reflect the impact of early synbiotic supplementation in infants. 

These findings offered valuable insights into the relationship between the gut 

microbiome and CMA, aiding future research in developing microbiome-targeted 

strategies for the prevention and management of CMA in early life.   
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