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Chapter VI

The cross-talk between the gut microbiome and the human host has been increasingly
recognized as an important factor influencing human health and disease,! including
cow’s milk allergy (CMA), which is the most common type of food allergy in early life.?
Although advancements in omics techniques have significantly improved our
understanding of this interplay, uncovering the complex mechanisms by which the gut
microbiome affects the host remains a challenge. In recent decades, growing evidence
suggests that the gut microbiome-derived metabolites serve as important mediators in
this interaction.? This highlights metabolomics as a key technique for elucidating the gut
microbiome’s role in human health and disease by providing insights at the molecular
level. In metabolomics studies, approaches can be broadly categorized into targeted and
untargeted metabolomics, based on hypothesis-driven and hypothesis-generating
strategies, respectively.* Targeted metabolomics focuses on quantifying a limited
number of known metabolites, while untargeted metabolomics aims to profile both
known and unknown metabolic features.* One of the primary challenges for metabolite
quantification in targeted and untargeted metabolomics is matrix effect.® Matrix effect
is primarily caused by co-eluting matrix components, which can impact the accuracy
and reliability of signals detected with liquid chromatography-mass spectrometry (LC-
MS), particularly when using an electrospray ionization (ESI) source.’ In this thesis two
hypotheses were investigated. The first hypothesis was that the matric effect in
untargeted metabolomics can be monitored and corrected by implementing the PCIS
technique with LC-MS methods. The second hypothesis was that the fecal metabolome
can provide insights into the cross-talk between the gut microbiome and food allergy in
infants with the most prevalent type of food allergy in early life: cow’s milk allergy

(CMA). life.
Matrix effect in untargeted metabolomics

Untargeted metabolomics, a powerful approach for unbiased metabolome profiling, has
demonstrated potential for biomarker discovery in diverse fields. However, despite its
wide applications, several challenges remain that impact the reliability of untargeted
metabolomics. Among these, matrix effect is a major concern, as it can greatly affect

the reproducibility, selectivity, and accuracy of metabolome profiling. Stable
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isotopically labeled (SIL) standards, the most commonly applied strategy for addressing
the matrix effect, are limited to targeted metabolomics due to the requirement of
standards spiking. This limitation makes another approach, PCIS, the only applicable
method for mitigating matrix effects in untargeted metabolomics, as it is independent of
retention time.® The effectiveness of PCIS in monitoring and correcting matrix effects

0 and it has also been

has been well demonstrated in targeted metabolomics,”!
recommended as a quality control tool for matrix effect evaluation in untargeted
metabolomics.!! However, reports on its actual application in untargeted metabolomics
remain limited.'? Therefore, effective strategies to address the matrix effect with PCIS
in untargeted metabolomics are still lacking. To tackle this, in Chapters 2 and 3 of the
thesis, we outlined strategies using PCIS to overcome matrix effect in LC-ESI-MS-

based untargeted metabolomics, covering matrix effect monitoring and matrix effect

compensation.

First, in Chapter 2, an untargeted method was developed and applied to evaluated the
matrix effect in plasma and fecal samples with PCIS. As part of the method
development, the injection amount and reconstitution solvent were first optimized for
both plasma and fecal samples. The results showed that optimizing the reconstitution
solvent was crucial for balancing the trade-off between peak shape distortion and
metabolite solubility, and that proper sample dilution was essential for maximizing
metabolites signal intensity while preventing detector saturation in MS. To assess the
analytical performance of our untargeted method, the method was validated using a
targeted approach with stable isotope-labeled (SIL) standards in plasma and fecal
samples. The method exhibited good precision, accuracy, recovery, and repeatability
with plasma and fecal samples. By evaluating the matrix effect, it was found that high
relative matrix effect (RME) among samples could significantly impact measurement
accuracy and reproducibility. However, the SIL standards can only point out the matrix
effect at specific retention times. To assess the matrix effect across the entire
chromatogram, a PCIS approach was introduced to the developed untargeted
metabolomics method. In this approach, xenobiotic compounds were infused post-

column during the injection of different plasma and fecal samples, enabling overall
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monitoring of absolute matrix effect (AME) and RME by examining the matrix effect

profiles of the infused compounds.

The results demonstrated that the PCIS approach effectively identified chromatographic
regions exhibiting large AME and RME. Notably, PCIS yielded comparable RME
results to those obtained using the traditional post-extraction spiking method,
demonstrating its potential as a reliable technique for RME evaluation in untargeted
metabolomics. The PCIS approach was applied to predict the RME of over 300 targets
covered in our in-house library. The predictions revealed that more targets exhibited
RME > 15% in fecal samples compared to plasma. Additionally, for metabolites
detectable in both positive and negative ionization modes, most of them experienced
larger RME in negative mode than in positive mode. Overall, Chapter 2 established a
comprehensive framework for developing an LC-ESI-MS untargeted metabolomics
method using PCIS to monitor the matrix effect in plasma and fecal samples. The
findings demonstrated that PCIS is an effective approach for matrix effect monitoring
in untargeted metabolomics. This approach has strong potential to improve better data
reliability of untargeted metabolomics by identifying regions with severe matrix effect

and high matrix effect variation.

The proposed PCIS approach can be further applied to guide the optimization of specific
LC parameters, such as the gradient and sample injection amount, to mitigate matrix
effects in a reverse-phase (RP) LC-MS untargeted method. A recent study also
demonstrated that PCIS contributed to column selection and mobile phase pH
optimization for an untargeted hydrophilic interaction liquid chromatography (HILIC)-
MS method.!* Moreover, although both our RPLC-MS and their HILIC-MS methods
targeted polar to semi-polar metabolomic features with a mass less than 800 Da, the
application of PCIS is not limited by the polarity or mass range of the metabolites. In
principle, with careful selection of PCIS candidates, PCIS can serve as a valuable
approach for guiding method development to minimize matrix effects in any untargeted

metabolomics method.
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In addition to matrix effect monitoring, PCIS also has potential for compensating matrix
effect in untargeted metabolomics due to its retention time independence. A key
challenge in its implementation lies in selecting multiple PCISs for the wide range of
metabolic features and determining which one is most effective for correcting the matrix
effect specific to each feature. To address this, the application of PCIS from matrix

effect monitoring to compensation was investigated in Chapter 3.

In this chapter, the workflow for developing a PCIS approach for an LC-ESI-MS-based
untargeted metabolomics method was first outlined. Key factors, such as structural
diversity, infusion concentration, and room temperature stability, were thoroughly
evaluated to select suitable PCIS candidates. The results demonstrated that, at the
optimized infusion concentration, the selected PCISs (five standards for positive
ionization mode and four for negative ionization mode) exhibited diverse matrix effect
profiles, stable infusion signals, and no significant matrix effect interference.
Additionally, these compounds remained stable for one week at room temperature,
further supporting their long-term usage along with analysis runs. Next, to match a
specific feature with its suitable PCIS for matrix effect correction, a novel approach was
proposed: post-column infusion of artificial matrices. This matching process was
achieved by comparing the ability of a PCIS to compensate for the artificially created
matrix effect (MEar).

To ensure that the artificial matrices properly mimicked the biological matrix in
inducing matrix effects, multiple artificial matrix compounds were selected based on
their relevance to matrix effects mechanisms in an ESI source. L-homoarginine
hydrochloride, sodium acetate, and tridodecylmethylammonium chloride were selected
as artificial matrix compounds for positive ionization mode, while sodium dodecyl
sulphate and sodium acetate were used for negative mode. These compounds can
interfere with ESI process of analytes by competing for ionization or increasing the
surface tension in droplets, preventing coulombic explosion. Since the presence of MEax
was essential for selecting the suitable PCIS, the infused concentrations of these
artificial matrix compounds were optimized to obtain 70% artificial absolute matrix

effect (AMEar) and more than 15% artificial relative matrix effect (RME.x). By injecting
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samples into the LC-PCIS-MS system with and without artificial matrices infusion, the
ME.:: could be determined across detected features, including both known and unknown
metabolites. The selected PCIS could then be used to compensate for biological matrix

effects (MEbio).

The effectiveness of ME.: was evaluated in selecting PCIS using 19 diverse SIL
standards spiked in plasma, urine, and feces. In this evaluation, MEpi, and ME. were
calculated and used to select the suitable PCIS for each SIL standard in each biological
matrix. To incorporate both absolute matrix effect (AME) and relative matrix effect
(RME) into the comparison, a matrix effect scoring system was introduced that averaged
AME and RME scores as the final ME score. The ME (ME., MEpio) scores across
plasma, urine, and feces were summed to identify the matrix-independent PCIS for each
SIL standard. The PCISs selected based on ME.r score sums were compared with those
identified using MEpi, score sums. As a result, 17 out of 19 (89%) SIL standards
exhibited consistent PCISs selection based on MEart and MEpi, score sums. Considering
that MEypi, correction is the most commonly applied strategy for PCIS selection in

9,14,15

targeted metabolomics, our results highlight the efficacy of ME.r in selecting the

suitable PCISs for MEyi, compensation.

Subsequently, MEa-selected PCISs were applied to correct for the MEpi, in plasma,
urine, and feces for the 19 SIL standards. These PCISs improved or maintained the
matrix effect scores for 19 (100%) standards in plasma, 16 (84%) in urine, and 18 (95%)
in feces. The results demonstrated the efficacy and reliability using MEax to identify
suitable PCISs for MEu, correction across various biological matrices. More
importantly, since MEa can be determined for any measurable feature by comparing
signals acquired with and without artificial matrix infusion, this establishes post-column
ME-. creation as a feasible approach for selecting PCIS to correct matrix effect in LC-
PCIS-MS-based untargeted metabolomics. Ideally, a feature-PCIS-matched library
could be constructed using artificial matrix infusion with one or multiple biological
matrices, and then applied to compensate for matrix effect in untargeted metabolomics

studies.
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Following the successful proof-of-concept demonstration of the matrix effect
compensation method using artificial matrix-based PCIS selection, further efforts
should focus on building the feature-PCIS-matched library to facilitate routine matrix
effect correction in untargeted metabolomics. Additionally, comparing significantly
altered features before and after PCIS correction in applied studied remains of great
interest for further validating this method for matrix effects correction. Although this
study included structurally diverse PCISs, over-corrected matrix effects were observed
in a few examined SIL standards. This highlights the need to further expand the diversity
of PCIS candidates to improve correction those standards and enable more
comprehensive matrix effect correction across the metabolome. Furthermore, with well-
defined PCIS candidates and a robust MEa-based matching strategy, the LC-PCIS-MS
platform can be extended beyond biomedical matrices to applications in food safety,
environment science, and other fields where complex matrix effects are commonly

encountered.
Fecal metabolome exploration in infants with cow’s milk allergy

In Chapters 4 and 5, the aim was to deepen our understanding of the interplay between
the gut microbiome and CMA in early life through the exploration of the fecal
metabolome. To provide a comprehensive overview of current studies on this topic, a
systematic review was conducted in Chapter 4. This review focused on the
modifications and post-treatment alterations in the gut microbiome, metabolome, and
immune response in both CMA children (0-12 years) and CMA animal models. By
conducting thorough searches in MEDLINE, PubMed, Scopus, and Web of Science, 21
articles published before March 2023 were included, consisting of 13 studies on CMA

children and & studies on animal models.

In the reviewed studies, no consistent conclusions were drawn regarding the
modifications of a- and B-diversity in the gut microbiome in CMA. At the taxonomic
level, multiple studies across both CMA children and animal models reported a decrease
in the Bifidobacterium genus and Lactobacillales order, alongside an increase in the

Clostridia class. Regarding CMA management, various intervention approaches,
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including different formulas, prebiotics, probiotics, and synbiotics, were applied across
several studies. These studies consistently showed increased Bifidobacterium levels in
both CMA children and animal models following interventions, particularly with
Bifidobacterium strains-specific treatments. However, the impact of these interventions
on other bacterial populations remained inconclusive. In terms of metabolome
modifications, decreased short-chain fatty acids (SCFAs), as well as altered amino acid
and organic acid profiles, were observed in CMA children. These metabolomic changes
appeared to be restored through interventions, with increased SCFAs and balanced
amino acid levels. For the immune response, only one study involving CMA children
was available, but studies on CMA animal models suggested that interventions could
reduce overall cytokine levels, restore the Tn2/Tnl balance, and induce a regulatory
immune response. Additionally, this review highlighted that no study has investigated
early-life  CMA using multi-omics strategies, such as metagenomics,
metatranscriptomics, and metaproteomics. Although several metabolomics studies have
been reported, they focused on a limited range of metabolites, emphasizing the need for

comprehensive metabolomics studies on CMA in early life.

In Chapter 5, a comprehensive investigation of the fecal metabolome in CMA infants
undergoing dietary intervention with and without a synbiotic (inulin, oligofructose and
Bifidobacterium breve M-16 V) was conducted using the untargeted metabolomics
method developed in Chapter 2, along with an additional in-house platform.
Considering the broad metabolite coverage, we primarily focused on known features in
this study. By grouping the infants based on CMA status after one year or the type of
intervention they received, we explored the distinct impacts of CMA tolerance
acquisition and of the synbiotic supplementation on the fecal metabolome of CMA
infants. The longitudinal changes in the fecal metabolome across the three time points
were analyzed using linear mixed models (LMMSs) and repeated measures analysis of

variance simultaneous component analysis+ (RM-ASCA+).

By comparing the fecal metabolome of infants with persistent CMA to those who
developed CM-tolerance, more pronounced changes in the fecal metabolome related to

amino acids, bile acids, and SCFAs were observed in the CM-tolerant group. The CM-
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tolerant group exhibited significantly higher levels of lysine and citrulline after one year
of intervention compared to the CM-allergic group. Although no significant group
differences were found for other metabolites, the metabolome trends along with time
indicated a down-regulation of tryptophan-serotonin metabolism, up-regulation of
secondary bile acid production, and an increase in butyrate in the CM-tolerant group
compared to the CM-allergic group. These alterations might suggest a healthier gut with

improved barrier function and a more mature gut microbiome in the CM-tolerant group.

Regarding the impact of the synbiotic, this study demonstrated that the synbiotic
significantly altered the fecal levels of aromatic lactic acids, purine metabolites, fatty
acids, and bile acids, especially after six months of supplementation. Two aromatic
lactic acids (4-hydroxyphenyllactic acid and indolelactic acid), known as infant-type
Bifidobacterium-derived metabolites, showed a significant increase in the synbiotic
group. Moreover, the changes in these metabolites from baseline to later time points
were strongly positively correlated with the changed levels of Bifidobacterium in the
group with synbiotic supplementation. These findings suggested an enhanced
abundance and/or activity of infant-type Bifidobacterium species, indicating the
successful supplementation of the synbiotic. Additionally, the synbiotic
supplementation was found to lower the levels of inosine, guanine, and uridine, increase

adenine level, and enhance the deconjugation of glycine-conjugated bile acids.

The study in Chapter 5 contributed to revealing the linkages between early-life CMA,
the gut microbiome, and synbiotic intervention. We observed several alterations in fecal
metabolomic pathways that may play a role in the outgrowth of CMA in early life.
Additionally, Those findings provided evidence for the impact of synbiotic
supplementation on modifying the fecal metabolome in CMA infants. This impact was
more pronounced after six months of intervention, highlighting the importance of early
intervention to maximize the effects of synbiotics. However, no clear conclusions can
be drawn regarding the clinical benefits of the synbiotic supplementation on CM-
tolerance acquisition, as the tolerance rate observed after one-year synbiotic intervention
was consistent with natural outgrowth for infants involved in our study. Despite this, the

significant enhancement of metabolites with anti-inflammatory properties, such as
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indolelactic acid,'® suggested a potential beneficial effect of synbiotics in promoting
CMA outgrowth. Therefore, it is suggested that further research with larger cohorts is
needed to verify our findings and evaluate the therapeutic potential of synbiotics

supplementation for CMA in early life.

Although over 300 targets were involved in our study, there are still opportunities for
further improvements in metabolomic exploration. First, our study only reported the
relative abundance of these targets. Achieving absolute quantification of the targeted
metabolites would enhance the accuracy and depth of our interpretation. Second, despite
covering a wide range of targets, analyzing the data in an untargeted manner is still
necessary to identify other potential metabolomic changes that may not have been
captured in our targeted analysis. Moreover, integrating multiple analytical platforms
for global profiling, such as HILIC along with RP, could significantly expand the
metabolomic coverage and provide a more comprehensive picture. Lastly, this study
was conducted with the PCIS setup, providing the opportunity to reanalyze the data and
apply matrix effect correction. We believe that matrix effect correction with PCIS holds

substantial potential to further enhance the quality of the data presented in this chapter.
Further perspectives

In this thesis aimed to tackle the issue of matrix effect in untargeted metabolomics
(Chapter 2-3) and expand the understanding of the relationship between the gut
microbiome and CMA in early life (Chapter 4-5). From a technical perspective, the
thesis demonstrated the potential of applying PCIS to address matrix effect in LC-ESI-
MS-based untargeted metabolomics methods. The developed PCIS method enabled two
primary functions: matrix effect monitoring and matrix effect correction. Matrix effect
monitoring is particularly useful during the development phase of an untargeted
metabolomics method to help mitigate matrix effect. Matrix effect correction holds great
potential to enhance data reliability, advance (semi)quantitative analysis, and ensure
more accurate data interpretation in untargeted metabolomics. One direct application of
matrix effect correction is solving the problem of matrix dilution when examining the

dynamic range using endogenous metabolites with serially diluted quality control (dQC)
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samples.!” This enables the exploration of linearity with endogenous features by
correcting matrix effect in a calibration curve constructed using dQC. Additionally,
leveraging a dQC series with corrected matrix effect in routine untargeted metabolomics
analysis can also improve the data fidelity via advancing the feature filtering with
estimated linearity range and response for detected features.'® Overall, the advances in
addressing matrix effect presented in our study will contribute to the broader application
of untargeted metabolomics in diverse research fields. However, to expand the
implementation of matrix effect correction using PCIS, further efforts are required to
develop an automated pipeline that increases throughput for efficiently selecting
appropriate PCISs for the hundreds to thousands of features detected in untargeted
metabolomics. Meanwhile, incorporating the PCIS pre-processing workflow into

existing untargeted data analysis tools could also further promote its application.

With the developed method, Chapter 5 uncovered several potential metabolomic
pathway modifications related to CMA resolution in early life and highlighted
significant metabolite changes following the synbiotic intervention. This study
contributed to gaining insights into the interplay between the gut microbiome and early-
life CMA from a metabolomics perspective. To further reveal the underlying
mechanisms regarding the impact of the gut microbiome on early-life CMA, we
recommend carrying out more studies with larger-scale cohorts. This will also enable
researchers to develop more complex data analysis models to explore how synbiotic
interventions can influence CM-tolerance acquisition in early life. Meanwhile, since the
fecal metabolome serves as an ideal readout for gut microbial functions,'® the primary
focus of this chapter was on fecal metabolome profiling In the future, combining the
fecal metabolome with metabolomes obtained from other biological samples,
particularly peripheral blood, could significantly enhance our interpretation of the cross-
talk between the gut microbiome and the host. Additionally, comprehensive studies that
integrate  multi-omics  research  combining metabolomics, metagenomics,
metatranscriptomics, and metaproteomics are still urgently needed to gain a complete
understanding of impact of the gut microbiome on the prevention, development, and

treatment of CMA in early life. Furthermore, as we enter the era of artificial intelligence,
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incorporating techniques like machine learning with integrated multi-omics data holds
great promise for advancing our knowledge of the role of the gut microbiome in human

health and disease, including CMA in early life.
Final remarks

The rapid expansion of research on human gut microbiome in recent decades has
highlighted its role in human metabolism, immune regulation, and behavior.?° Despite
significant progress in deciphering how the gut microbiome affects human health and
disease, a long journey lies ahead to fully solve the puzzle. Combining multi-omics
analyses has become a trend to unravel the intricate relationship between the gut
microbiome and the human host. Among the omics techniques, as a direct readout of
phenotypes, metabolomics provides a snapshot reflecting the functional properties of
the gut microbiome at the molecular level. This emphasizes the crucial role of
metabolomics in revealing this complex relationship and underscores the needs for
advances in metabolomics techniques. In this thesis, by proposing strategies to address
the matrix effect in LC-ESI-MS-based analytical method, we advanced untargeted
metabolomics towards quantitative analysis. The focus then shifted to deepening our
understanding of the interactions between the gut microbiome and CMA in early life
from a metabolomics perspective. Overall, the research in this thesis suggested that
several gut microbiome-involved metabolic pathways may play a role in the acquisition
of CM tolerance, and provided evidence that the fecal metabolome can serve as a
potential readout to reflect the impact of early synbiotic supplementation in infants.
These findings offered valuable insights into the relationship between the gut
microbiome and CMA, aiding future research in developing microbiome-targeted

strategies for the prevention and management of CMA 1n early life.
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