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The prevalence of food allergy has risen over recent decades, with early life recognized 

as a critical window for its development.1 However, the mechanisms driving the onset 

and resolution of food allergy remain incompletely understood. Increasing evidence 

highlights the gut microbiome, which exerts a dynamic impact on the systematic 

immune system, as an importance player in regulating these processes during early life.2 

The complex interactions between the gut microbiome and host immunity are gradually 

being deciphered along with the advances in molecular technologies, such as 

metagenomics, metatranscriptomics, and metabolomics. Among these tools, 

metabolomics plays a crucial role by capturing microbial activity from a metabolome 

perspective, offering valuable insights into microbiome-host interactions. Continued 

advancement in metabolomics techniques contributes to revealing the cross-talk 

between the gut microbiome and the host, deepening our understanding of how the gut 

microbiome influences food allergy in early life. 

1. LC-ESI-MS based metabolomics  

Along with genomics, transcriptomics, and proteomics, metabolomics is one of the 

omics strategies applied in systems biology, and the combination of these omics 

strategies provides a general view of how genotype is linked to phenotype (Figure 1).3 

Metabolites, which are the end products of cellular regulatory processes, reflect the 

ultimate response of a biological system to genetic or environmental changes.4 The 

complete set of metabolites in a biological system is described as “metabolome”,5 which 

was firstly introduced by Oliver et al. in 1998.6 Metabolomics is an approach to reveal 

the metabolome of a studied biological system.3 This trait makes metabolomics a 

popular and significant strategy for monitoring ongoing biological processes in an 

organism.7 In recent decades, metabolomics has been widely applied in biological 

studies, especially in the diagnosis, treatment, and prognosis of human diseases.8–11 The 

popularity of metabolomics has been greatly enhanced by the emergence of advanced 

analytical techniques, such as nuclear magnetic resonance (NMR) and mass 

spectrometry (MS). NMR can quantify organic compounds and provide unbiased 

metabolite profiles for certain biological samples, but it has rather low sensitivity 

compared to MS.12 The high sensitivity of MS is largely due to the breakthroughs in MS 
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technologies, particularly the development of ionization sources.13  

 

Figure 1. A correlation between the main omics strategies used in systems biology studies. 

From Klassen et.al 2017.3 

MS is often coupled with various chromatographic separation techniques, such as gas 

chromatography (GC), liquid chromatography (LC), and capillary electrophoresis (CE). Before 

the 1980s, coupling GC to MS with an electron ionization (EI) source was the dominant 

technology for metabolome profiling for decades.13 However, EI has limitations due to its 

requirement for high-vacuum and high-temperature conditions, as well as the need for samples 

to be delivered in gas phase.14 These constraints restricts its applicability to couple other 

separation techniques, such as LC and CE, to MS. The exclusive use of EI declined with the 

development of advanced ionization techniques, such as electrospray ionization (ESI), 

atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization 

(APPI).13 These ionization sources not only allow the detection of intact molecules as “soft” 

ionization sources, but are also capable of producing stable, gaseous ionized molecules directly 

from liquid phase, making them perfectly compatible with LC or CE.13 The ESI source, initially 

invented by Dole et al. in 196815 and further developed by Fenn et al.,16–18 is considered a 

turning point in advancing the application of LC-MS in life science, including metabolomics. 

The advantages of the ESI source lie in its versatility, sensitivity, high ionization efficiency, 

and capability of ionizing molecules over a large mass range.13,14 However, due to its ionization 

mechanism, the ESI source is more susceptible to matrix effect, particularly ion 
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suppression.13,19  

1.1 Matrix effect in the ESI source 

The simplified ionization process in an ESI source is as follows: (1) A liquid sample is delivered 

from the LC to the spray needle, where an intense electric field is generated at the tip, with an 

electric potential ranging from hundreds to thousands of volts. (2) The strong electric field at 

the tip of the spray needle forms a Taylor cone, from which a fine spray of charged droplets is 

emitted. (3) Droplets evaporate under dry gas and heat, causing them to shrink and the charge 

density increases on their surface until reaching the Rayleigh limit, where the coulombic 

repulsion counterbalances the surface tension. (4) Ions are ejected from the droplet or released 

through coulombic explosion when the coulombic repulsion overcomes the surface tension. 

Through these steps, the gas-phase ions are generated by the ESI process, allowing for MS 

analysis.13,20,21 During this process, matrix components that interfere with any of these 

ionization steps can impact the ion intensity of analytes.19,22 Figure 2 illustrates the potential 

mechanisms of matrix effect during the ESI process: (1) In the desolvation process, matrix 

components can prevent the analyte from accessing the available charge on the surface of the 

droplets and/or increase the viscosity and surface tension of the droplet, inhibiting further 

coulombic explosion. (2) During the coulombic explosion, matrix components can compete 

with the analytes for charge acquisition. (3) After reaching the gas phase, matrix compounds 

can neutralize or destabilize the charged ions. (4) The analytes can co-precipitate with 

nonvolatile matrix compounds, reducing the likelihood of their transfer to the gas phase. As a 

result, the reproducibility, linearity, selectivity, sensitivity, and accuracy of analyte detection 

can be significantly affected by matrix effect when using LC-ESI-MS-based methods for 

quantification.19,23  
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Figure 2. Mechanisms of how matrix components (M) can affect the ionization of analytes 

(A) in the electrospray ionization (ESI) source. Adapted From Panuwet et al. 2016.19 

1.2 Approaches for addressing matrix effect  

Various strategies are employed to minimize and compensate for matrix effect in LC-

ESI-MS-based metabolomics studies. In general, matrix effect can be reduced through 

extensive sample cleanup procedures, tailored LC separation, matrix dilution, and 

reduced injection volumes.23,24 Beyond reduction strategies, matrix effect can be 

assessed using post-extraction spiking (PES) of stable isotopically labeled (SIL) 

standards and a post-column infusion of standard (PCIS). PES, proposed by 

Matuszewski et al., is a quantitative approach that evaluates matrix effect by comparing 

the responses of standards spiked into matrix samples versus matrix-free samples.25 The 

other approach, PCIS, introduced by Bonfiglio et al. and Choi et al. in 1999,26,27 

provides a qualitative assessment of matrix effect by comparing the signals of a post-

column infused standard observed with the injections of matrix samples to those of 

matrix-free samples. As shown in Figure 3, PCIS involves continuously infusing a 

standard solution via a pump or syringe after separation, then merging it with the LC 

flow using a T-connector before being injected into the MS. Unlike PES, which assesses 
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matrix effect at specific retention times,25 PCIS evaluates it over the entire 

chromatogram.26,27 Therefore, PCIS has been recommended as a quality control tool for 

assessing matrix effect in both targeted and untargeted LC-MS-based metabolomics.28 

The primary objective of matrix effect evaluation is to identify analytes significantly 

affected by matrix effect and implement appropriate compensation strategies. In 

targeted metabolomics, where specific metabolites from known classes are precisely 

identified and quantified,3,29 matrix effect compensation is typically achieved by 

correcting the signal of a target using a surrogate analogue, usually a SIL standard, 

spiked into the same study sample.30 Different from targeted metabolomics, untargeted 

metabolomics aims to profile the metabolome, covering a wide range of metabolites, 

including unknowns.3,29 This characteristic makes compensating for matrix effect 

particularly challenging. Although PCIS, a technique independent of retention time, is 

a feasible approach for correcting matrix effect in untargeted metabolomics, its 

application has been rarely reported.31 Given the importance of untargeted 

metabolomics in biomarker discovery across diverse fields, such as biomedical 

research,32 agriculture,33 food,34 and environmental science,35 addressing the matrix 

effect in untargeted metabolomics can greatly improve data reliability and expand its 

applications. 

 

Figure 3. Setup of post-column infusion of standards (PCIS) with LC-MS (Created in 

https://BioRender.com) 

https://biorender.com/
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2. Metabolomics and the gut microbiome 

The human microbiome was described by Lederberg and McCray in 2001 as “the 

ecological community of commensal, symbiotic, and pathogenic microorganisms that 

literally share our body space”.36 Our understanding of the human microbiome advanced 

significantly following the launch of the Human Microbiome Project (HMP) in 2007, 

an initiative founded by the U.S. National Institutes of Health. The HMP brought 

together international scientific experts to characterize the human microbial 

communities and investigate their roles in health and disease.37 In HMP, biological 

samples were collected from 15 and 18 body sites in male and female, respectively, 

across more than 200 donors.37 Among these sites, the human gut, which harbors the 

majority of microbes in the body,38 was found to have an especially diverse microbiota 

community.39 This community comprises bacteria, fungi, protists, archaea, and viruses, 

with bacteria making up around 60% of the dry mass of feces.40 More than 500 bacterial 

species colonize the gut of a healthy adult,38 primarily belonging to the phyla Firmicutes 

and Bacteroidetes, followed by Proteobacteria, Actinobacteria, Fusobacteria, and 

Verrucomicrobia.41  

The co-evolution of the gut microbiome and its human host was initially described as 

commensal. However, it was later considered more accurate to use the term 

“mutualistic”, which reflects the reciprocal influence and benefits shared between the 

host and the gut microbiome.42 The gut microbe is increasingly recognized as a 

metabolically active “organ” with diverse functions,43 including fermenting undigested 

food components, synthesizing essential vitamins, detoxifying harmful compounds, 

strengthening the intestinal barrier, and regulating the immune system.44 These 

functions are tightly interconnected with the host, making gut microbiome a crucial 

player in human health and disease. Gut microbiota dysbiosis has been observed in many 

diseases, such as irritable bowel syndrome, inflammatory bowel disease, metabolic 

dysfunction-associated steatotic liver disease, obesity, diabetes, cardiovascular diseases, 

colorectal cancer, allergic disease, neurological and psychiatric disorders.40,45,46 

Although the mechanisms underlying the interplay between the gut microbiome and 

human physiology remain complex, gut microbiome-derived metabolites are believed 
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to play a critical role in the development and progression of various health conditions. 

Figure 4 illustrates examples of well-known gut microbiota-derived metabolites 

identified over the past decades. The metabolites are primarily generated through three 

main pathways: (1) digesting dietary compounds (Figure 4a), (2) modifying host-

derived metabolites (Figure 4b), and (3) synthesizing them de novo (Figure 4c).47 One 

major class of gut microbiota-derived metabolites is short chain fatty acids (SCFAs), 

including formate, acetate, propionate, and butyrate, which are produced via microbial 

fermentation of undigested carbohydrates in the colon.48 Another key group involves 

metabolites derived from an essential amino acid, tryptophan. Microbes in the colon can 

convert tryptophan into multiple bioactive compounds, including indole, 

indolepropionic acid (IPA), indole lactic acid (ILA), indoleacetic acid (IAA), indole 

ethanol (IE), indolealdehyde (IAld), indoleacrylic acid (IA), skatole, and 

tryptamine.49Additionally, gut microbes can metabolize dietary choline, betaine, and L-

carnitine to produce trimethylamine (TMA), which can be absorbed in the intestine and 

subsequently oxidized in the liver to form trimethylamine N-oxide (TMAO).50 Gut 

microbiota also play a crucial role in bile acid metabolism. Unconjugated primary bile 

acids, such as cholic acid (CA) and chenodeoxycholic acid (CDCA), are initially 

synthesized in the liver from cholesterol and stored in the gallbladder.51 Upon food 

intake, they are released into the gut, where certain microbes can convert them into 

secondary bile acids, primarily deoxycholic acid (DCA) and lithocholic acid (LCA).51 

Apart from metabolizing dietary and host-derived substances, gut microbes are also 

capable of de novo synthesis of important metabolites, such as branched-chain amino 

acids (BCAAs),52 polyamines,53 and vitamins.54 

Most gut microbiome-derived metabolites play crucial roles in host physiology. For 

instance, SCFAs are reported to have anti-inflammatory and anti-tumor properties,48 

TMAO has been identified as a predictor of cardiovascular disease pathogenesis,50,55 

and certain secondary bile acids are known as signaling molecules that regulate host 

endocrine functions.56 Given the diverse biological functions of these metabolites, 

integrating metabolomics with other omics approaches, such as metagenomics, 

metatranscriptomics, and metaproteomics, is essential for gaining deeper insights into 
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the cross-talk between the gut microbiome and host. 

 

Figure 4. Production of some well-known gut microbiome-derived metabolites. SCFAs: 

short-chain fatty acids, TMAO: trimethylamine-N-oxide, BCAAs: branched-chain 

amino acids. From Yang et al.47 

3. The gut microbiome and food allergy in early life  

Food allergy is defined as “an adverse health effect arising from a specific immune 

response that occurs reproducibly on exposure to a given food”.57 It has become a 

growing global public health concern, particularly in children.58–61 The estimated 

prevalence of food allergy is 1-2% in the general population,62 but rises to 6-8% in 

children.63 Most food allergies develop within the first few years of life1 with major 

allergens including peanut, tree nuts, fish, shellfish, egg, milk, wheat, soy, fruits, and 

seeds.58,61 Among these, cow’s milk is the most common food allergen in early 

childhood.64,65 It is reported that, in the United States, cow’s milk allergy affects 

approximately 50 % of food-allergic children under one year-old, 40 % of those aged 1-

2 years, and 30% of those aged 3-5 years.59,65  

Numerous factors, including genetics, diet, and environmental influences, contribute to 

the development and resolution of food allergy.66,67 Growing evidence also highlights 
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the gut microbiome as a key player in food allergy of early life. The initial recognition 

of the role of gut microbiome in allergic diseases dates back to the late 1980s with the 

proposition of “hygiene hypothesis”. It suggests that reduced exposure to infection 

sources and symbiotic microorganisms may lead to increased rates of allergic diseases.68 

This concept was later extended into the “microflora hypothesis” in 2005, which 

specifically proposed that the disruptions in the gastrointestinal microbiota during early 

life impair microbiota-mediated mechanisms of immunological tolerance, thereby 

increasing the incidence of allergic diseases.69 Multiple clinical studies have reported 

altered gut microbiota composition in children with food allergies. For example, Joseph 

et al. observed that children aged 3–5 years with food allergies had significantly lower 

gut microbiota diversity compared to non-allergic children.70 Similarly, Japanese 

children who developed food allergies within their first two years exhibited lower 

abundances of the bacterial genera Leuconostoc, Weissella, and Veillonella compared 

to their healthy counterparts.71 Additionally, reduced levels of Citrobacter, Oscillospira, 

Dorea, and Lactococcus genera in the fecal samples of infants aged 3–6 months have 

been associated with food allergy development by age three.72 In contrast, a higher 

abundance of bacteria from the Firmicutes phyla in infancy (3-6 months) has been linked 

to the resolution of cow’s milk allergy.73  

As growing evidence supports the role of the gut microbiome in both the development 

and resolution of food allergy in early life, interest has increased in strategies to 

modulate its composition and function as a means of preventing and managing food 

allergy.74 The gut microbiome can be modified through the administration of probiotics, 

prebiotics, synbiotics, and fecal microbiome transplantation (FMT).75 Probiotics, which 

consist of beneficial live bacteria strains primarily from the Lactobacillaceae and 

Bifidobacteriaceae families, aim to directly alter gut microbiota composition and 

potentially restore microbial balance.76,77 Prebiotics, on the other hand, are defined as 

non-digestible food ingredients that can be fermented by gut microbiome, selectively 

stimulating the growth and/or activity of specific beneficial bacteria.78 Common 

prebiotics include fructo-oligosaccharides, galacto-oligosaccharides, and inulin.74 

Synbiotics combine probiotics and prebiotics to enhance the survival and efficacy of 

probiotic strains.79 FMT, a more direct approach, is a procedure that transplants fecal 



General conclusion and scope 

 
 

11 

1 

microbiota from a healthy donor to reshape the recipient’s gut microbiome.80 Compared 

to FMT, probiotics, prebiotics, and synbiotics are more commonly used for food allergy 

intervention.76 However, despite their promising potential, clinical evidence supporting 

the effectiveness of probiotics and/or prebiotics in preventing or treating food allergy 

remains limited.76,81,82 Therefore, further research is needed to deepen our understanding 

of the gut microbiome’s role in food allergy and to explore the therapeutic potential of 

microbiome-targeted interventions. 

4. Scope and outline of this thesis 

As the intricate relationship between the gut microbiome and food allergy in early life 

continues to be deciphered, metabolomics offers a powerful tool to explore this cross-

communication at the molecular level. Among analytical methods applied in 

metabolomics, untargeted methods outperform targeted ones in identifying novel 

metabolites, including those derived from the gut microbiota. One major challenge in 

untargeted metabolomics is the matrix effect, which can vary between samples, 

especially those with complex matrices, such as feces. The first hypothesis of this thesis 

is that the matrix effect in untargeted metabolomics can be monitored and corrected by 

implementing the PCIS technique with LC-MS methods. The second hypothesis is that 

the fecal metabolome can provide insights into the cross-talk between the gut 

microbiome and food allergy in infants with the most prevalent type of food allergy in 

early life: cow’s milk allergy (CMA). 

The first hypothesis is examined and verified in Chapters 2 & 3. In chapter 2, the goal 

is to develop an untargeted LC-ESI-MS method with PCIS to monitor matrix effect in 

plasma and fecal samples. To achieve this goal, the first focus is on developing a reverse-

phase LC-MS untargeted metabolomics method with PCIS to profile polar to semi-polar 

metabolites. The development includes injection parameters optimization and validating 

the method with representative SIL standards. Then, the SIL standards are used to 

evaluated the capability of PCIS in monitoring the matrix effect of plasma and fecal 

samples. 

As a follow-up, Chapter 3 aims to investigate the application of PCIS for matrix effect 
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compensation in untargeted metabolomics. To fulfill this aim, a post-column artificial 

matrix infusion approach is introduced to the developed LC-PCIS-MS method. This 

artificial matrix consists of several compounds that are known to disrupt the ionization 

process of ESI, creating an artificial matrix effect. The artificial matrix effect of a given 

feature can be determined by comparing its signals obtained with and without artificial 

matrix infusion. The hypothesis is that the artificial matrix effect can help identify a 

suitable PCIS for a given feature, and that the selected PCIS can be used to correct the 

matrix effect of that feature in biological samples. This concept is investigated by 

comparing the ideal PCISs selected based on compensating artificial and biological 

matrix effect for diverse SIL standards spiked into plasma, urine, and feces. 

In the following two chapters, the focus is on investigating the relationship between the 

gut microbiome and CMA in early life with the developed untargeted method. To gain 

insights into this problem, a systematic review is conducted in Chapter 4, summarizing 

existing studies on the microbiome, metabolome, and immune response in CMA 

children and animal models, including the impacts of interventions with probiotics, 

prebiotics, and synbiotics. The review highlights a lack of studies on immune responses 

and metabolomics related to CMA in early life, emphasizing the need for further 

research in these fields. 

The aim of Chapter 5 is to help address the research gap identified in Chapter 4 

concerning CMA in early life. A comprehensive exploration of the fecal metabolome is 

performed in infants (3-13 months) with CMA by combining the untargeted 

metabolomics platform developed in Chapter 2 with an additional in-house platform 

focused on non-polar metabolites. The study includes 39 infants with cow’s milk 

allergy, who were randomized into two intervention groups: one group receiving amino 

acid-based formula (AFF) and the other group receiving AAF supplemented with 

synbiotics (inulin, oligofructose, Bifidobacterium breve M-16 V) (AAF-S). Fecal 

samples from all the infants were collected at baseline, as well as six and 12 months 

after the start of the interventions. By categorizing the infants based on their intervention 

strategy and cow’s milk allergy status after 12-month intervention, the aim is to 

investigate: (1) the impact of synbiotic supplementation on the fecal metabolome in 
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infants with cow’s milk allergy, and (2) the effect of tolerance acquisition on the fecal 

metabolome in the infants initially diagnosed with CMA.  

This thesis concludes in Chapter 6 with a general summary and discussion. In this 

chapter, potential improvements in implementing PCIS to address matrix effect in 

untargeted metabolomics is discussed, along with recommendations and perspectives 

on applying metabolomics to investigate the gut microbiome and CMA in early life. 
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Abstract 

Untargeted metabolomics based on RPLC-MS plays a crucial role in biomarker 

discovery across physiological and disease states. Standardizing the development 

process of untargeted methods requires attention to critical factors that are under 

discussed or easily overlooked, such as injection parameters, performance assessment 

and matrix effect evaluation. In this study, we developed an untargeted metabolomics 

method for plasma and fecal samples with the optimization and evaluation of these 

factors. Our results showed that optimizing the reconstitution solvent and sample 

injection amount were critical for achieving the balance between metabolites coverage 

and signal linearity. Method validation with representative stable-isotopically labeled 

standards (SILs) provided insights into the analytical performance evaluation of our 

method. To tackle the issue of matrix effect, we implemented a post-column infusion 

(PCI) approach to monitor the overall absolute matrix effect (AME) and relative matrix 

effect (RME). The monitoring revealed distinct AME and RME profiles in plasma and 

feces. Comparing RME data obtained for SILs through post-extraction spiking with 

those monitored using PCI compounds demonstrated the comparability of these two 

methods for RME assessment. Therefore, we applied the PCI approach to predict the 

RME of 305 target compounds covered in our in-house library and found that targets 

detected in the negative polarity were more vulnerable to RME, regardless of the sample 

matrix. Given the value of this PCI approach in identifying the strengths and weaknesses 

of our method in terms of matrix effect, we recommend implementing a PCI approach 

during method development and applying it routinely in untargeted metabolomics. 
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1. Introduction  

Untargeted metabolomics is a powerful approach that has demonstrated great potential 

in exploring metabolic changes in health and disease conditions1–3. Its application has 

extended beyond biomedical research to fields such as food, agricultural and 

environmental studies4–6, thereby making it a highly valuable tool for diverse scientific 

research. One of the most widely used techniques for untargeted metabolomic analysis 

is ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-

MS)7. Among the different types of UPLC-MS, reverse phase (RP) LC-MS is the most 

popular choice for UPLC-MS due to its versatility, robustness, stability and good 

retention of semi-polar to non-polar metabolites8. As the popularity of untargeted 

metabolomics has increased, researchers have focused on standardizing the 

development process of this method, especially when aiming at semi-quantitative 

analysis beyond qualitative compound discovery and screening. Parameters such as 

sample extraction, LC-MS system selection and setup, quality management, and 

analysis batch design have been extensively studied and advised upon9–11. However, 

some critical factors required to develop a reliable untargeted RPLC-MS platform are 

either easily overlooked or still under discussion for standardization. Those factors 

include the optimization of injection solvent and sample injection amount. In the sample 

preparation process of untargeted methods, an evaporation and reconstitution step is 

typically performed to allow for flexibility in modifying the injection solvent 

composition and the sample loading amount. This step is important to prevent mismatch 

between the mobile phase and injection solvent, and to balance the challenge of 

maximizing the metabolome coverage, minimizing signal saturation and reducing 

matrix effect12,13. Studies have shown that the reconstitution solvent can affect peak 

shape and metabolite coverage in RPLC for untargeted analysis of small molecules14,15, 

which emphasizes the importance of investigating the injection solvent during the 

development of a RPLC-MS method. Another critical parameter is the injection amount, 

which was reported to impact the data quality and repeatability in terms of overloading, 

signal saturation and featuremissingness16. Therefore, a systematic investigation of the 

injection amount is also critical when developing an RPLC-MS method13. 
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The investigation of reconstitution solvents typically involves assessing the peak shape 

and signal intensity of representative metabolites14,15. When investigating the injection 

amount, serially diluted standards or samples are commonly used to evaluate signal 

linearity13,16. In order to maintain signal linearity in high-resolution MS, techniques such 

as Dynamic Ion Transmission Control (ITC) and Automatic Gain Control (AGC) have 

been developed to modulate the ion amounts in various regions of the MS system. The 

ITC technique, implemented in all QTOF systems from SCIEX, modulates the ion 

current scan by scan to ensure it remains within the dynamic range of the detection 

system. For trap-based MS instruments from Thermo Fisher, AGC is employed to 

automatically regulate the ion amount in the ion-trap by adjusting the fill time for every 

scan. These techniques not only extend the dynamic range of the MS system but also 

offer insights into the ion transmission status through the MS system. Recently, they 

have been employed as effective approaches to investigate ion transmission during 

method development with high-resolution MS17, making them promising readouts for 

the optimization of sample injection amount to avoid the risk of signal non-linearity. 

Another challenge in untargeted metabolomics is the method performance assessment 

and validation. Despite the recommendations for addressing quality assurance and 

quality control challenges9,18, there is currently no consensus on the performance 

validation of untargeted methods during the development phase. However, it has been 

recommended that in addition to monitoring signal drift and repeatability with pooled 

quality control (QC) samples, an untargeted method can be validated in a targeted way 

with representative metabolites19. This strategy has been widely applied in untargeted 

metabolomics research to validate the parameters of linearity, precision, recovery, and 

accuracy with selected endogenous metabolites9,20–22. However, in these studies, serially 

diluted pooled QC samples were commonly used to evaluate the linearity, leading to the 

dilution of both the targeted analyte and the matrix, which reduces the reliability of this 

strategy19. Matrix effect has been regarded as one of the most significant challenges of 

LC-MS methods, especially when analyzing complex biological matrices23,24. 

Therefore, matrix effect is another widely discussed factor in untargeted metabolomics 

because of its impact on reproducibility, linearity, selectivity, accuracy and sensitivity25. 
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The phenomenon of matrix effect was first reported in 1993 by Tang and Kebarle, who 

observed that the signal of an analyte ionized by the electrospray ionization (ESI) source 

can be strongly affected by the presence of other electrolytes in the solution26. Although 

the exact mechanism of how the matrix effect occurs is still unclear, it is commonly 

assumed that the co-eluted matrix components can affect the ionization of an analyte by 

preventing or competing with the analyte to gain charge, increasing the surface tension 

of the charged droplet, interfering with the stability of charged analytes in the gas phase 

and/or co-precipitating with the analyte27. To overcome matrix effect in LC-MS, two 

main strategies have been proposed: matrix effect reduction and matrix 

assessment/correction. Matrix effect reduction can be achieved through extensive 

sample cleaning procedures, enhanced LC separation efficiency, sample dilution, or 

adopting alternative MS ionization sources other than ESI25,28–30.  

Matrix effect assessment can mainly be achieved by post-extraction spiking and post-

column infusion (PCI) of compounds24,25. The post-extraction spike method was 

proposed by Matuszewski et al. to quantitatively assess matrix effect by comparing the 

response in neat standard solution samples with that in post-extraction spiked samples. 

They also introduced the terms absolute matrix effect (AME) and relative matrix effect 

(RME) to describe matrix effect, where AME is the response ratio of an analyte at a 

given concentration spiked in post-extraction biological samples compared to neat 

solution samples, and RME is the variability of AME among different lots of biological 

samples30. Following the introduction of the post-extraction spiking method, the term 

matrix factor (MF) was introduced as a quantitative measure of matrix effect and shares 

the same concept with AME31. The MF was later applied in accordance with the 

European Medicine Agency (EMA) guideline released in 2011 for the ME assessment 

in bioanalytical method validation32. According to the guideline, the MF variability 

(RME) should not exceed 15%. In contrast to the post-extraction spiking method which 

assesses the matrix effect at specific time points, the PCI technique was proposed by 

Bonfiglio et al. as a method for matrix effect assessment across the entire LC 

chromatogram33. In PCI, a compound is constantly infused into the MS after joining the 

column effluent using a T-connector. This enables the infusion profile of the compound 
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to be observed across the entire chromatogram with the injection of a matrix sample and 

a blank sample, allowing for real-time monitoring of the matrix effect. Due to this 

advantage, PCI has been utilized in targeted analysis for matrix effect evaluation and 

correction for small molecules and drugs in urine and plasma samples34–37. 

Unfortunately, although multiple strategies have been proposed for reducing and 

assessing matrix effect, few are applicable to untargeted LC-MS methods. In these 

methods, simple and unbiased sample preparation is required to broaden the metabolite 

coverage, and in order to represent a compromise that accommodates most classes, the 

LC separation is typically not tailored for specific compound classes12,38. Therefore, in 

terms of matrix effect reduction, aside from switching to an ionization source other than 

ESI, sample dilution is the only applicable approach in untargeted metabolomics. For 

the matrix effect assessment and correction, the post-extraction spiking method is more 

suitable for targeted metabolomics due to the requirement of authentic standards. Hence, 

PCI is recommended as a more appropriate tool for matrix effect evaluation in 

untargeted metabolomics29,39, but only few studies about its application have been 

reported40,41. Although stable isotope labelling has also been applied to matrix effect 

evaluation in untargeted metabolomics, this technique is limited to specific sample types 

like yeast, cells or plants due to the requirement of globally labeled growth medium42–

44.  

In this study, we developed an RPLC-MS untargeted metabolomics method suitable for 

the measurement of plasma and feces, taking into account both matrix diversity and the 

growing popularity of fecal metabolome studies. Initially, we optimized the injection 

solvent and injection amount for both matrices and validated the optimized platform in 

a targeted manner. To evaluate the matrix effect of plasma and feces alongside other 

performance parameters (precision, accuracy, recovery) and guarantee the reliability of 

the linearity, stable-isotopically labeled standards (SILs), instead of endogenous 

metabolites, were used in the validation. These SILs are well distributed in terms of 

class, retention time, physicochemical properties, and abundance according to their 

endogenous analogues. By validating our method with these SILs, we have gained 

insight into its analytical performance. Additionally, we augmented this untargeted 
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method with a PCI approach for matrix effect monitoring, which offers the advantage 

of overall matrix effect evaluation of plasma and fecal samples. This allows us to 

identify the strengths and weaknesses of our method in terms of matrix effect, ensuring 

better data reliability in untargeted metabolomics. The successful application of PCI for 

matrix effect monitoring in this untargeted metabolomics method strongly suggests that 

this approach can be widely implemented in the development and routine analysis of an 

LC-MS untargeted method.  

2. Methods 

2.1 Chemicals and materials  

LC-MS-grade acetonitrile (ACN) and Methanol (MeOH) were purchased from Actu-all 

chemicals (Randmeer, The Netherlands). Methyl tert-butyl ether (MTBE, ≥99.8%) and 

sodium hydroxide were purchased from Sigma Aldrich (St. Louis, Missouri, United 

States). Formic acid (FA) was purchased from Biosolve B.V. (Valkenswaard, 

Netherlands), and hydrochloric acid (37% solution in water) was purchased from Acros 

organics (Geel, Belgium). Purified water was obtained from a Milli-Q PF Plus system 

(Merck Millipore, Burlington, Massachusetts, United States). Most chemical standards 

and stable isotopic-labelled standards (SILs) were purchased from CDN Isotopes 

(C/D/N Isotopes Inc, Quebec, Canada), Cambridge Isotope Laboratories (Tewksbury, 

MA, USA) and TRC (Toronto Research Chemicals, Toronto, Canada). Table S1 

provides the supplier details of all standards. Pooled EDTA plasma was obtained from 

Innovative Research (Peary Court Novi, MI, USA), pooled male and female ETDA 

plasma were purchased from Sanquin (Sanquin, Amsterdam, The Netherlands), and 

ETDA plasma from individual donors was purchased from BioIVT (Westbury, NY, 

USA). Fecal samples were collected from four healthy adults, including three female 

and one male volunteer (age range: 23-35 years old). 

2.2 Solution Preparation 

2.2.1 Preparation of calibrant solutions 

The stock solutions of 28 authentic SILs were prepared at different concentrations in 

appropriate solvents (Table S1). For certain SILs, ammonium hydroxide or hydrochloric 
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acid was added to improve solubility. Standard mixture solutions were prepared by 

mixing 21 (plasma validation) or 16 (feces validation) SILs. Those mixtures were 

serially diluted with water to obtain working calibration solutions at 9 (plasma) or 11 

(feces) concentration levels (see table S2-S3). Stock solutions and standard mixtures 

were stored at -80 °C until use, and calibration solutions were freshly prepared before 

experiments.  

2.2.2 Preparation of internal standards and reconstitution solution 

Fludrocortisone-d5, glucose-13C6-d7, caffeine-d9 and valine-d8 were added as internal 

standards (IS) for signal drift monitoring. Detailed information of those IS are shown in 

Table S1. Four IS were spiked in plasma validation, while three IS (except glucose-13C6-

d7) were spiked for fecal validation. Cortisone-d8 in water with 0.1% FA was prepared 

as the reconstitution solution. 

2.2.3 Preparation of PCI compounds solutions 

Leucine-enkephalin, fludrocortisone, 5-fluoroisatin, caffeine-13C3 and 3-fluoro-DL-

valine were selected as the PCI compounds considering the physical properties, 

ionization behaviors, availability and cost. All the PCI compounds were prepared with 

water or MeOH or water/MeOH (1:1, v/v) (Table S1). The post-column infusion mixture 

solution was prepared with water/ACN (1:1, v/v). In positive mode, the PCI comprised 

Leucine-enkephalin, fludrocortisone, 5-fluoroisatin, and caffeine-13C3, while in negative 

mode, it included Leucine-enkephalin, fludrocortisone and 3-Fluoro-DL-valine. Table 

S4 provides the final concentrations of each PCI compound in the mixture solutions. 

2.3 Sample preparation  

2.3.1 Plasma sample preparation  

Protein precipitation was used to prepare plasma samples. Aliquots of 25 µL of plasma 

were mixed with 10 µL of IS working solution and quenched with 90 µL of ice-cold 

MeOH. All samples were then vortex mixed (1 min, high speed), incubated on ice (20 

min), and centrifuged (15 min, 15600 g, 4°C). Afterwards, 100 µL of supernatant from 

each sample was transferred to 1.5 mL Eppendorf tubes and evaporated to dryness in a 

SpeedVac (Labcono, Kansas City, MO, USA). The residuals were reconstituted in 75 
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µL of water with 0.1% FA, vortex mixed (1 min, high speed) and centrifuged (5 min, 

2300 g, 4°C). Finally, 70 µL of the supernatant was transferred to autosampler vials, 

and 1 µL was injected into the LC-MS. 

During method development, extracted plasma samples were reconstituted in 50 µL of 

0.1% FA in water with 0%, 10% or 20% of ACN (v/v/v) to optimize reconstitution 

solvent and in 50, 75 or 150 µL of 0.1% FA in water to evaluate sample dilution factors 

(DF) of 1:2, 1:3 and 1:6 (v/v), respectively. Of those samples, 1 and 2 µL was injected 

to compare injection volumes. 

For method validation, calibration lines (n=3) were created using pooled EDTA plasma 

with 10 µL of spiked calibration working solutions. Precision was evaluated at each 

concentration level from the calibration lines. Pooled EDTA plasma, pooled male 

EDTA plasma, pooled female EDTA plasma and one individual EDTA plasma were 

used as four different plasma samples for recovery, accuracy and matrix effect 

evaluation. For recovery, plasma samples were prepared by spiking 10 µL of calibration 

working solutions to get concentrations at low (cal4), medium (cal6) and high (cal8) 

levels before extraction and after drying. The samples spiked before extraction were also 

used for the evaluation of accuracy. Samples for the matrix effect evaluation were 

prepared by spiking 10 µL of calibration working solution at three concentration levels 

in plasma and matrix-free (solvent) samples after drying.  

2.3.2 Fecal sample preparation 

Final sample preparation procedure  

Fecal samples were stored at -20°C immediately after collection. Samples were thawed 

at ambient temperature and homogenized as proposed by Hosseinkhani et al. (involving 

stirring, sonication for 5 min and vortex mixing for 10 min)45, with the adjustment that 

1 mL water per gram of sample was added at the start to improve homogenization. The 

homogenized and aliquoted samples (around 2g per tube) were stored at -80 °C for more 

than 48h before lyophilization. Freeze-drying was conducted overnight (20 h, 4 mBar, 

-110 °C) with a CHRIST Alpha 3-4 LSCbasic freezer-dryer (Martin Christ, Germany) 
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and 20 mg (± 0.3 mg) lyophilized sample aliquots were weighed and stored at -80 °C 

until extraction.  

Liquid-liquid extraction (LLE) was performed as recommended by Hosseinkhani et 

al.45, whereby the starting amount was adapted to 20 mg dried feces, considering the 

added water and limited sample size of clinical samples. Added volumes for extraction 

were changed accordingly. Briefly, 108 µL ice-cold MeOH (5.4 µL mg-1 dried feces) 

and 36 µL ice-cold water (1.8 µL mg-1 dried feces) were added to 1.5 mL Eppendorf 

tubes with 20mg freeze-dried feces, followed by vortex mixing (2 min). Then, 60 µL 

ice-cold MTBE (3 µL mg-1 dried feces) was added, followed by vortex mixing (2 min) 

and centrifugation (15 min, 16000g, 4 °C,). Next, 140 µL of the supernatant was 

transferred to clean tubes. Phase separation was induced by adding 84 µL of ice-cold 

MTBE (4.2 µL mg-1 dried feces) and 100 µL of ice-cold water (5 µL mg-1 dried feces). 

Then samples were remixed for 2 min and kept at 4°C for 10 min to obtain better protein 

precipitation. After centrifugation (20 min, 16000g, 4 °C), 90 µL of the aqueous layer 

was transferred to 1.5 mL Eppendorf tubes and evaporated to dryness. The remainder of 

the aqueous layer was saved for other analyses. The dried residuals were reconstituted 

in 50 µL of reconstitution solution, resulting in the ratio of dried feces to reconstitution 

solvent being around 1:8 (mg/v) (calculation details are provided in table S5). All the 

samples were vortex mixed (5 min) and centrifuged (5 min, 16000g, 4 °C) before 

transfer to autosampler vials, and 1 µL was injected into the LC-MS. 

Sample preparation for reconstitution solvent, dilution factor, and injection 

volume comparison  

Pooled fecal samples from three individuals were used to optimize the reconstitution 

solution, dilution factor, and injection volume for feces. The individual samples were 

homogenized separately, and equal amounts were aliquoted, pooled, mixed and 

homogenized. Freeze-dried feces (50 mg) from the pooled sample were aliquoted and 

extracted with MTBE/MeOH/water (3.6/2.7/3.4, v/v/v). After LLE, the aqueous layer 

was transferred to 1.5 mL Eppendorf tubes and evaporated in the SpeedVac. Dried fecal 

extracts were reconstituted in 300 µL of 0.1% FA in water with 0%, 10% or 20% of 

ACN (v/v/v) to evaluate reconstitution solvent, and in 150 or 300 µL of 0.1% FA in 



Matrix effect in untargeted metabolomics 
 

 
 

29 

2 

water to evaluate sample DF of 1:3 and 1:6 (mg/v), respectively. Of those samples, 1 

and 2 µL were injected to optimize injection volume.  

Sample preparation for validation 

A pooled sample from four donors was used to build the calibration line and assess 

precision and recovery. Samples from each individual were used for accuracy and 

matrix effect evaluation. Calibration lines were constructed by spiking the calibrant 

solution at each level to the samples after LLE extraction. Samples for recovery 

evaluation were prepared by spiking calibrant solution in fecal samples to get 

concentration at low (cal4) and high (cal10) concentration levels before LLE extraction 

and after drying. The samples spiked after drying were also used for the evaluation of 

accuracy. Samples for the matrix effect evaluation were prepared by spiking calibrant 

solutions in fecal and matrix-free (solvent) samples to get concentrations at low (cal4), 

medium (cal7) and high (cal10) levels after drying. Final sample preparation procedure 

for feces was followed for the steps of extraction, reconstitution and injection. 

2.4  Method validation 

Linearity  

The linearity of selected SILs in both plasma and feces was evaluated by calibration 

lines (n = 3). The calibration lines of the SILs applied in plasma and feces were designed 

based on the concentration levels of their endogenous analogues (Figure S1). The 

calibration points and ranges of SILs after spiking in plasma and feces are presented in 

table S2-S3.  

Precision, accuracy and recovery  

Precision was expressed as the relative standard deviation (RSD) of the peak area for 

each calibration point in three calibration lines. Accuracy and recovery were evaluated 

at different concentration levels with four samples. The accuracy was calculated by 

dividing the calibration line back-calculated concentration by the nominal concentration 

at each level. The recovery was calculated as the ratio of the SILs peak area obtained in 

the samples spiked before extraction and after drying at each concentration level. 
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Matrix effect  

Absolute matrix effect (AME) and relative matrix effect (RME) were both evaluated 

with four different plasma samples. The AME was assessed by calculating the ratio of 

peak area obtained in the matrix (post-extraction) and matrix-free sample (solvent 

sample). The RME was expressed as the RSD of the AME. 

2.5 LC-MS conditions and post-column infusion setup  

Analysis was performed on a reverse phase UPLC-MS untargeted platform. The 

platform consisted of a Shimadzu Nexera X2 LC system coupled to a TripleTOF 6600 

mass spectrometer (SCIEX, Foster City, CA, USA) with an electrospray ionization 

source (ESI) that operated at both positive and negative ion modes. The ESI source 

parameters were set as follows: spray voltage ±4.5 kV, capillary temperature 400 ◦C, 

sheath gas 40, auxiliary gas 40, curtain gas 45. Data were acquired under full scan mode 

over the m/z range of 60-800 Da. The LC separation was carried out using a Waters 

Acquity UPLC HSS T3 column (1.8 μm, 2.1 mm × 100 mm) with the oven temperature 

maintained at 40 °C. The mobile phase A was 0.1% FA in water, and the mobile phase 

B was 0.1% FA in ACN. With a flow rate of 0.4 mL min-1, the gradient started at 100% 

A and was held for 0.5 min, then B linearly increased to 20% over 2.5 min and 

continuously increased to 98% from 2.5 to 7.5 min. This condition was maintained for 

4.5 min, then returned to 100% A in 0.1 min, at which the column was equilibrated for 

3 min, resulting in a 15 min run time per analysis. The autosampler temperature was set 

at 10 °C. To decelerate the contamination of the MS, the LC flow was diverted to waste 

at 7 min of the gradient by an external valve (Valco instruments, USA). During the 

analysis, the PCI compounds were continuously pumped by a binary Agilent 1260 

Infinity pump (Agilent Technologies, Santa Clara, USA) at a flow rate of 20 µL min-1 

and combined to the LC flow with a T-piece (IDEX, PEEK Tee, 0.02 Thru hole, F-300) 

before entering the ESI source.  

2.6 Data processing 

The raw data was obtained using Analyst TF software 1.7.1 (SCIEX) and processed 

using SCIEX OS (version 2.1, SCIEX) and PeakView (version 2.2, SCIEX) software. 
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Extracted ion chromatograms (EICs) were obtained for each compound, including PCI 

compounds with an m/z window of 0.02 Da. A maximum mass error of 5 ppm was 

applied for peak integration of all the compounds, and the retention times of endogenous 

compounds were verified using authentic standards. Count conversion factor plots were 

viewed in PeakView. This option can be enabled by closing the PeakView software, 

copying the “Instrument Utilities.dll” file from the “C:\Program Files\AB 

SCIEX\PeakView 2\bin” folder to the “C:\Program Files\AB SCIEX\PeakView 2\Help” 

folder, and restarting the software. Then, when opening a datafile and extracting the 

TOF MS TIC, navigate to the “Help” menu in PeakView software, click on the 

"Instrument Utilities.dll" and select “Plot Count Conversion Factors”. The PCI infusion 

profiles were generated by smoothing the extracted EIC data using the simple moving 

average function (SMA, n = 20) in R (version 4.2.1). To generate matrix effect profiles 

(MEPs), the matrix effect of each time point was calculated as reported in the 

literature41. This calculation involved dividing the EIC response (R) of each PCI 

compound in the matrix sample by that in the blank sample (Eq 1) and smoothing 

accordingly.  

Equation 1: ME (%) =  𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

∗ 100 

Equation 2：ME𝑆𝑆𝑖𝑖 = Mean[ME�𝐶𝐶𝑆𝑆𝑖𝑖
1 �…  ME�𝐶𝐶𝑆𝑆𝑖𝑖

𝑗𝑗 �]  

Equation 3：RME𝑆𝑆 = SD�𝑀𝑀𝑀𝑀𝑆𝑆1… 𝑀𝑀𝑀𝑀𝑆𝑆𝑖𝑖�
Mean�𝑀𝑀𝑀𝑀𝑆𝑆1… 𝑀𝑀𝑀𝑀𝑆𝑆𝑖𝑖�

 ∗ 100  

To evaluate the RME among four individuals, the absolute matrix effect signal of one 

sample (ME𝑆𝑆𝑖𝑖 ) was firstly calculated by averaging the matrix effect of all the PCI 

compounds (C1- Cj) in that sample (Eq 2). Then, the RME among four individual 

samples (RMES) was calculated as the RSD of ME𝑆𝑆𝑖𝑖 (Eq 3). The calculated RME profile 

from certain samples was used to predict RME for targets detected in those samples 

based on their retention times. 

3. Results and discussion  

3.1 Analytical performance evaluation of the developed method 
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Before method validation, we optimized the reconstitution solvent and injection amount 

for both plasma and fecal samples, as detailed in the supplementary section 

“reconstitution solvent and injection amount optimization”. In summary, 0.1% FA in 

water outperformed solutions with 10% and 20% ACN and was chosen as the final 

injection solvent, considering the peak shape for the metabolites of interest. After signal 

intensity comparison and detector saturation checking through Dynamic Ion 

Transmission Control (ITC), dilution factors DF3 (1:3, v/v) and DF8 (1:8, mg/v) were 

selected for plasma and fecal samples, respectively, with an injection volume of 1µL. In 

the analytical performance evaluation, we validated the untargeted method in both 

plasma and fecal samples. The dynamic range, precision, accuracy, recovery and matrix 

effect were evaluated with selected SILs. 

3.1.1 Plasma validation 

The linearity range and precision are summarized in Table S7. We obtained good 

linearity (R2 > 0.98) with a wide range for 19 of 21 SIL targets. The inclusion and 

exclusion criteria for the calibration points were based on the acceptable residual error 

(< 20%) compared to the nominal concentration. At least five consecutive concentration 

levels were required to build a calibration curve. DCA-d4 could not form a calibration 

curve as only three continuous concentration levels were within acceptable criteria, 

probably caused by its solubility issue as described in the “reconstitution solvent and 

injection amount optimization ”supplementary section. Good precision (RSD < 15 %) 

was achieved for most of the acceptable concentration levels. The accuracy, recovery 

and matrix effect were assessed with three concentration levels (Low, Medium, High). 

However, only medium and high concentrations were evaluated for n-methyl-d3-l-

histidine, indole-d5-3-acetic acid and GCA-d4 because the low-level concentration fell 

below the detection limit. None of them was evaluated for DCA-d4 due to unavailability 

of the calibration curve.  

Good recoveries were obtained for 20 SILs (within 80-120%), except for TMAO-d9, 

which exhibited a recovery of around 65% at low and medium concentration levels 

(Figure S5a). The accuracy between the back-calculated and the nominal concentration 

was within 67-122% for all SIL targets, except for citric acid-d4, which had an accuracy 
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close to 200% (Figure S5b). The imprecise accuracy of citric acid-d4 was caused by the 

varying levels of citric acid in the different plasma samples. We observed that the citric 

acid level in the pooled plasma used for creating the calibration curve was much higher 

than the other plasma we used for accuracy evaluation. Therefore, with an identical 

spiked concentration of citric acid-d4, a higher response was observed in the plasma with 

lower endogenous citric acid due to lower rate of ion suppression. When applying the 

calibration line built with suppressed signal to the samples that suffered less ion 

suppression, the back-calculated concentrations will be higher than the spiked ones due 

to the higher observed response, resulting in the inaccuracy of citric acid-d4. The impact 

of ion suppression on accuracy emphasizes the importance of matrix effect evaluation, 

especially the relative matrix effect among samples. 

The results of the matrix effect evaluation are presented in Figure 1. As shown in Figure 

1a, for 45% of the SIL targets, the absolute matrix effects (AME) met the criteria 

acceptable by most bioanalytical laboratories (80%-120% )46 at all the concentration 

levels. Severe AME was observed for some early-eluting targets (L-ornithine-d6, n-

methyl-d3-l-histidine and L-glutamine-d5) with a value below 20%. TMAO-d9, L-

carnitine-d3, betaine-d9 and lactic acid-13C3 had AME lower than 80%. These SIL targets 

eluted in regions with a high intensity of co-eluting ions, as shown in the total ion 

chromatogram (TIC) (see Figure S6); therefore ion suppression could be expected for 

compounds eluting in those regions. The AME of citric acid-d4 and octanoyl-l-carnitine-

d3 were above 120% at low and medium concentrations, while indole-d5-3-acetic acid 

and GCA-d4 had AME larger than 120% at all the detected concentrations. The precision 

of AME was determined by the RSD of the AME, which is also called the relative matrix 

effect (RME). As presented in Figure 1b, L-lactic acid-13C3 and citric acid-d4 had RME 

larger than 15%, and the other targets all had RME less than 15%. 
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Figure 1. Matrix effect and precision of accuracy for spiked SIL targets in plasma. (a) 

Absolute matrix effect (AME), the dashed lines point out the range of 80-120%. (b) 

Relative matrix effect (RME), the dashed line indicates the RME at 15%. (c) The 

precision (RSD%) of the accuracy among four different donors, the dashed line indicates 

the RSD% at 15%. 
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3.1.2  Feces validation 

The linearity range and precision are summarized in Table S8. All the targets, except u-

15N-guanosine, obtained good linearity (R2 > 0.98) with a wide range, and at least six 

consecutive calibration points were included for building the calibration curve. Good 

precision (RSD < 15%) was achieved for most of the calibration points (Table S8). 

Additionally, good accuracy (80-120%) was obtained for almost all the targets (Figure 

S7). Nevertheless, slightly lower accuracy was observed at either low or high 

concentrations for some targets (hippuric acid-d5, L-tyrosine-13C9-15N, DL-leucine-d3, 

phenylalanine-d5, L-tryptophan-d3) because they were close to the boundary of the linear 

range. The accuracies of choline-d4 and DL-proline-d7 at the high level are lower than 

60% due to exceeding the linear range, and the low levels of some targets were excluded 

because they were below the lower detection limit.  

The recovery for fecal LLE extraction was validated at low and high concentration 

levels (Figure S8a). The RSD of recovery among four replicates was calculated to show 

the repeatability of the extraction process (Figure S8b). Overall, although almost all 

targets had a recovery below 80%, good repeatability (RSD < 10%) was obtained. 

However, attention needs to be paid to cytidine-15N3, u-15N-guanosine and citric acid-

d4, which have recoveries below 30%. 

The matrix effect results for spiked SILs in feces are described in Figure 2. Overall, the 

AME for most spiked SILs was around 80%, at least for two concentration levels, except 

cytidine-15N3 and octanoyl-L-carnitine-d3 with AME above 120% for all detectable 

concentrations (Figure 4a). The overall ion suppression for all the SILs spiked in fecal 

sample aligns with the intensity variation of TICs for fecal samples, as presented in 

Figure S6. An RME below 15% was obtained for most of the spiked SILs, with only 

indole-d5-3-acetic acid showing larger variability at three concentration levels (Figure 

2b).  
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Figure 2. Matrix effect and precision of accuracy for spiked SIL targets in feces. (a) 

Absolute matrix effect (AME), the dash lines point out the range of 80-120%. (b) 

Relative matrix effect (RME), the dashed line indicates the RME at 15%. (c) The 

precision (RSD%) of the accuracy among four different donors, the dashed line indicates 

the RSD% at 15%. 
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In conclusion, by validating the method with selected SILs, we explored the linear 

dynamic range of different classes of compounds measured in plasma and feces, and 

also demonstrated that our method has good precision, accuracy and acceptable recovery 

and recovery repeatability. Additionally, the matrix effect of plasma and feces were 

assessed with selected SILs. In our validation, we used the original terms AME and 

RME to describe the matrix effect evaluation to avoid confusion. An AME value above 

100% indicates ion enhancement, and less than 100% indicates ion suppression31. 

Although most of the bioanalytical laboratories use 80%-120% as the criteria for 

AME46, besides the acceptable RME criteria (< 15%), there is no admissible value 

suggested by the EMA guideline. Therefore, it demonstrates that guaranteeing the 

reproducibility of AME is more critical for measurable compounds in bioanalytical 

method validation. Our validation data shows that L-lactic acid-13C3 and citric acid-d4 

in plasma, and indole-d5-3-acetic acid in feces have RME larger than 15%. To elucidate 

the impact of RME on the reproducibility of quantification, the precision (RSD %) of 

accuracy for spiked SILs are plotted for plasma and feces in figure 3C and figure 4C, 

respectively. The RSD accuracy values in both matrices align with the RME trends. The 

three targets with larger RME have accuracy RSD % above 15%, indicating that a high 

RME affects the accuracy and reproducibility of measurements among samples. 

It is worth noting that, as suggested by the EMA guideline, it is possible to compensate 

for both AME and RME with internal standards in targeted metabolomics. In untargeted 

metabolomics, however, this approach is not feasible due to the unknown identity of 

some features and the lack of appropriate internal standards. To ensure the accuracy and 

reliability of data detection and interpretation, it is imperative to obtain information on 

the RME of all detected features in untargeted metabolomics measurements. With 

validation utilizing a wide diversity of SILs, we have highlighted the problem of the 

matrix effect variation in plasma and feces, while a comprehensive analysis of matrix 

effect variation for all detected features is still missing. Hence, how to evaluate or at 

least monitor the overall matrix effect variability in one or different types of matrices in 

untargeted metabolomics is a highly relevant problem to be addressed. 

3.2 Matrix effect monitoring with PCI compounds  
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In order to monitor the overall AME and RME for plasma and fecal samples, we have 

developed a PCI approach using xenobiotic compounds. The infusion profile of each 

PCI compound was acquired with different plasma samples (n = 4), different fecal 

samples (n = 4), and blank samples in both positive and negative ion modes. The matrix 

effect profile (MEP) of each sample assessed with every PCI compound was generated, 

and distinct MEPs were obtained for different samples with all PCI compounds (Figure 

S9). Those MEPs were utilized to assess the AME and RME in plasma and feces, as 

described in the data processing section (2.6). 

3.2.1 AME monitoring with PCI compounds  

To ensure a fair assessment of AME and RME, a PCI compound-independent MEP was 

generated for each individual plasma and fecal sample. The averaged MEP intensity 

(ME𝑆𝑆) was calculated for each sample to form the PCI compounds-independent MEP 

(represented by the solid line in Figure S10-S13). The MEP variation plots with different 

individuals were created in both polarities accordingly, and the variation range among 

different individuals is represented by the shaded area in Figure 3a. Additionally, the 

averaged MEP intensity of the four samples was used to construct a real-time profile of 

AME (represented by the solid line in Figure 3a).  

The AME profile provides a qualitative evaluation of the matrix effect in plasma and 

feces. Ion enhancement was rare in both matrices, while ion suppression was observed 

in specific regions of plasma and almost the entire chromatogram of feces. Severe ion 

suppression occurred before 1 min regardless of matrix and polarity, likely caused by 

unretained nonvolatile solutes such as highly polar metabolites and ionic species (e.g., 

inorganic electrolytes, salts)47,48.  

In plasma, the matrix effect dropped below 60% at around 1.6 min in both polarities and 

at around 4.6 min in positive and 1.2 min in negative polarity. The mass spectrum in 

those regions was inspected and showed a high signal of citric acid (RT at 1.58 min) 

and lactic acid (RT at 1.25 min) in at least one of those plasma samples (Figure S14-

S15). This suggests that citric acid and lactic acid are most likely the causes of the drastic 

signal decrease observed at around 1.6 min and 1.2 min, as a high concentration of co-

eluting compounds has been considered one of the prime factors to induce ion 
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suppression48. Nevertheless, no other feature with a high signal was recorded around 4.6 

min in the plasma samples, presumably due to an undetected compound or compounds 

outside our targeted mass range (60-800 Da).We suspect that compounds with higher 

masses could be suppressing the signal of small molecules we detected during this 

elution time49. Furthermore, a high signal of EDTA was detected in plasma samples at 

approximately 1 min. This suggests that EDTA, a widely used anticoagulant, is a 

contributing factor to the significant ion suppression observed in plasma, which is 

consistent with reviewed literature50,51. Phospholipids, a recognized source of matrix 

effect in plasma52,53, were not observed in our study, since the lipids elute after 7 min, 

when the LC flow was diverted to waste.  

Similar to plasma, lipids are also considered as one of the major sources of matrix effect 

in feces54. However, compared to plasma, the matrix complexity of feces makes it more 

challenging to investigate the sources of ion suppression. We zoomed in on the mass 

spectrum where the most severe ion suppression occurred in feces (around 1 and 3 min) 

(Figure S16-S17), but we only putatively matched the prominent signal observed at 

around 3 min in positive polarity with phenylalanine according to our in-house target 

library. Further efforts would be required to identify the co-eluting compounds that 

induce matrix effect in feces, but this was considered beyond the scope of this study. 
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Figure 3. AME and RME profile in plasma and feces. (a) AME monitoring of plasma 

and feces using samples from four individuals in positive and negative mode. The solid 

line represents the averaged absolute matrix effect profile (MEP), and the shaded area 

shows the MEP variations among different individuals. (b) RME monitoring in plasma 

and feces using samples from four individuals in positive and negative mode. 
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3.2.2 RME monitoring with PCI compounds 

The variation in AME (shaded area in Figure 3A) shows the matrix diversity of plasma 

and feces between different individuals. Accordingly, the RSD% of the AME indicates 

the RME of the entire runs (Figure 3B). In positive ion mode, the monitored RME in 

plasma and feces remains around or below 15% throughout almost the entire 

chromatogram. However, around 1.6 min in plasma, the RME exceeds over 30%, which 

is likely due to a large concentration variability of citric acid in those samples. In 

negative ion mode, there are more regions with high monitored RME in both plasma 

and feces. Three major spikes in the RME plot, up to 60%, are observed in plasma, and 

two of them are probably caused by high concentration variability of lactic acid and 

citric acid. In feces, the RME fluctuates within 45% in most regions. The RME overview 

demonstrates that it is reasonable to compare the detected signals in plasma or feces 

from different donors across most regions of the chromatogram, regardless of severe 

AME. Still, caution should be exercised for certain regions, particularly in negative ion 

mode.  

To validate the accuracy of using PCI compounds to monitor RME, we extracted the 

monitored RME values at specific time points matching the RT of the spiked SILs, and 

compared them to the RME assessed with spiked SILs (Figure 4). The results reveal 

consistency between the RME monitored by PCI compounds and the RME assessed 

using spiked SILs. In plasma, both evaluation methods demonstrated that L-lactic acid-
13C3 and citric acid-d4 had an RSD% around 30%, while the other SILs had acceptable 

RSD% ( < 15%). In feces, both methods indicated that indole-d5-3-acetic acid had high 

variability (RSD > 15%). These results demonstrate that using PCI compounds for RME 

evaluation is comparable to spiking SILs, making it a compelling approach to evaluate 

RME for both known targets and unknown features.  
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Figure 4. Comparison of RME evaluated with spiked SILs and PCI compounds in 

plasma (a) and feces (b). The averaged RME data from different concentrations of the 

spiked SILs were used. For the SILs that are detectable in both polarities, the selected 

polarity is consistent between the two methods. 

3.3 RME monitoring application to targets included in an in-house LC-MS library  

Together with the LC-MS untargeted method, an in-house targeted library containing 

retention time and accurate mass information was established by measuring 

commercially available authentic standards. The library included 305 targets that eluted 

before 6 minutes, and those targets were distributed across various classes, including 

amines, benzenoids, organic acids, indoles, nucleosides and nucleotides, and bile acids. 

In light of the effectiveness of PCI compounds on RME monitoring, we predicted the 

RME of the 305 targets based on their RT and the acquired RME profiles in plasma and 

fecal samples, respectively. Figure 5A provides an overview of the predicted RME for 
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55 targets that are only measurable in positive ion mode and 25 targets that are only 

detectable in negative ion mode (refer to table S9 for more information about the targets 

and predicted RME values). As expected, there were more targets within a caution zone 

(15% < RME <=30%) in feces than in plasma. A higher proportion of targets in negative 

ion mode were predicted to be affected by sample diversity compared to positive ion 

mode. In plasma, only one target (glycolic acid, with an RT of 0.80 min) detected in 

negative ion mode shows RSD > 30%. Figure 5B presents the predicted RME of the 225 

targets that are detectable in both positive and negative modes (refer to table S10 for 

more information about the targets and predicted RME values). In general, we observed 

that more targets are susceptible to the matrix effect diversity in negative ion mode than 

in positive ion mode, regardless of matrix type, and that there are more targets predicted 

with a RME > 15% in feces compared to plasma. For the targets that are detectable in 

both ionization modes, the predicted RME needs to be taken into account when selecting 

the appropriate polarity for quantitation, along with other parameters such as signal-to-

noise ratio. 

 

Although the predicted RME in our study is only based on four individual plasma and 

fecal samples and only the predicted value at the apex of the peak was used (without 

considering the peak width), our results demonstrate the potential of the PCI approach 

in identifying the regions of caution regarding to RME and predicting RME for both 

known and unknown features based on their retention times. Some high-resolution MS 

instruments have the option to continuously infuse a compound after LC separation for 

calibration purposes, which also can be utilized for ME monitoring. However, including 

multiple PCI compounds enhances the possibility of capturing various ME profiles 

compared to using just one, as demonstrated in our study, especially for fecal samples 

in negative mode (Figure S6D). Moreover, ideal PCI compounds should have 

exogenous m/z values that do not interfere with the targets of interest and should not 

induce significant additional ME. Overall we strongly recommend applying a PCI 

approach both during the method development and routine studies. Its application in 

method development aids in identifying cautionary areas in the chromatography that 
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suffer from matrix effect. This information is crucial in guiding the optimization of 

specific LC parameters, such as gradient and injection amount, to minimize matrix 

effect. Additionally, the routine application of PCI is crucial in improving the reliability 

of data interpretation in studies that apply untargeted methods, particularly for cohorts 

with an anticipated range of abnormal or unusually high compound concentrations. For 

instance, plasma samples from individuals with kidney disease may exhibit wider zones 

of ion suppression due to the specific nature of the health condition, which involves the 

accumulation of various compounds in the blood. Likewise, when comparing fecal 

samples from individuals consuming a ketogenic diet with those from vegetarians, it is 

important to examine ion suppression due to the high variation in fat content.  
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Figure 5. RME assessment of targets included in the in-house library. (a) Predicted RME 

by PCI compounds for targets that are only detectable in one polarity mode. Positive (55 

targets) or negative (25 targets). (b) Predicted RME by PCI compounds for targets that 

are detectable in both positive and negative modes (225 targets). 

4. Conclusion 

In this study, we propose a comprehensive framework for the development of untargeted 

metabolomics methods with a PCI approach for matrix effect monitoring. To the best of 

our knowledge, our research is the first study offering practical strategies that combine 
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the optimization of sample injection amount and reconstitution solvent, performance 

validation and matrix effect evaluation in the development of an untargeted 

metabolomics method. 

Our study demonstrates that optimization of sample injection amount, utilizing ion 

transmission monitoring techniques such as ITC in the TripleTOF system, is critical for 

balancing metabolite coverage and signal linearity. Additionally, considering specific 

LC gradients and metabolite classes of interest, it is crucial to optimize reconstitution 

solvents to avoid potential issues of peak shape distortion and poor solubility in 

untargeted methods. Furthermore, validating an untargeted metabolomics method in a 

targeted manner provides valuable insights into the analytical performance of the 

method, including the linear dynamic range, precision, accuracy, recovery and matrix 

effect. 

To address the challenge of matrix effect, we highly recommend implementing a PCI 

approach during the development phase of an untargeted metabolomics method and 

suggest also applying it in routine studies. Our results demonstrate that the PCI approach 

effectively monitors the matrix effect for plasma and fecal samples, allowing the 

identification of regions with high matrix effect variation in the untargeted 

metabolomics method that should be interpreted with caution. More impressively, the 

PCI approach yields comparable RME data when compared to the traditional post-

extraction spiking method, making it a compelling technique for assessing RME for both 

known targets and unknown features detected in untargeted metabolomics. This 

approach shows great promise for generating reliable data from an untargeted method 

and advancing quantitative analysis in untargeted metabolomics. 
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Supplementary Material 
 

Method optimization: reconstitution solvent and injection amount  

In developing the RPLC-MS untargeted method, we first optimized the reconstitution 

solvent for feces and plasma by reconstituting dried extracted samples in 100% water, 

water/ACN (9:1, v/v), and water/ACN (8:2, v/v). The chromatographic peak shape and 

height of representative metabolites were evaluated for reconstitution solvent selection.  
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Figure S2a presents the chromatography of the early eluting endogenous metabolite 

guanine and the late eluter deoxycholic acid (DCA) in both plasma and fecal samples 

with three reconstitution solvents. Peak shape deterioration of guanine was observed 

with the increased ACN in the injection solvent. It has been reported that peak distortion 

of polar metabolites in RPLC is caused by viscosity and elution strength mismatch 

between the injection solvent and the mobile phase, and that a potent injection solvent 

causes peak splitting and fronting due to the migration time differences between the 

analyte, injected solvent and mobile phase1–3. In our gradient, the proportion of mobile 

phase B reaches 20% around 2.5 min, at which the strength and viscosity of the mobile 

phase is equal to the injection solvent. This explains why peak distortion only occurred 

for metabolites eluting before 2.5 min, like guanine, when injected with 20% ACN in 

our method, and the peak shape of metabolites eluting after 2.5 min, like DCA, were 

retained. 

Interestingly, although the peak shape of DCA was not distorted, the peak height 

increased along with the increment of ACN in both feces and plasma. We also observed 

that the signal boost of DCA caused by ACN is much higher in feces than in plasma. 

This phenomenon suggests that adding ACN to the reconstitution solvent facilitates the 

solubility of DCA regardless of sample type. However, the signal improvement is 

sample or concentration related, as the concentration of DCA in feces is higher than in 

plasma. 

 Lindahl et al. reported that when comparing reconstitution with different proportions 

of MeOH in water, using 100% water as a reconstitution solvent increases the response 

of metabolites with logP < 5 4. However, the data we obtained about DCA (logP = 3.5)5 

disagrees with their conclusion and restricts the range to lower logP. To investigate the 

correlation of metabolite polarity and the effect of reconstitution solvent on metabolite 

response in our method, we compared the peak areas of 26 endogenous metabolites in 

feces with three injection solvents (Figure S2b). These 26 metabolites were widely 

distributed in retention time (RT), representing a wide range of polarity. As shown in 

Figure 1b, the peak areas were comparable in three reconstitution solvents for the 

metabolites eluting before 6 min, while after that, the peak areas increased (area 
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percentage higher than 33%) with raised ACN ratio in the reconstitution solvents. 

Together with other studies2,4, it proves that the effect of the injection solvents on the 

peak shape of polar metabolites and on the solubility of less polar metabolites is 

ubiquitous in the RPLC method, and our result suggests that the affected regions are 

dependent on the injection solvent and the LC gradient. Thus, it is necessary to consider 

the peak shape and solubility of metabolites of interest when selecting the injection 

solvent for RPLC untargeted methods. We decided to use 100% water with 0.1% FA as 

the final injection solvent as we are more interested in polar and semi-polar metabolites. 

For metabolites eluting after 6 min, more caution is needed in interpreting the results in 

clinical applications, given their potentially incomplete solubility. This aspect was not 

further examined in plasma, as the peak distortion and solubility are more dependent on 

the LC method and metabolites rather than the sample itself. 

Next, we investigated the effect of the dilution factor (DF) and injection volume on 

metabolome coverage and signal saturation for plasma and fecal samples. In total, we 

compared three DFs (1:6, 1:3, 1:2) in plasma (v/v) and two DFs (1:6, 1:3) in feces 

(mg/v), along with two injection volumes (1µL and 2µL) in both matrices. The 

combination of DF and injection volume is presented as DF_µL.  

To compare the metabolome coverage, we integrated 47 identified metabolites (details 

provided in Table S6) with diverse endogenous abundance, for all the DF and injection 

volume combinations. Figure S3a and Figure S3b present the metabolite distributions 

of different combinations in plasma and feces, respectively. The 47 metabolites are 

detectable in all the combinations, and as expected, the overall signal increased with a 

higher injected concentration in both matrices. Potential signal saturation was evaluated 

by visualizing the count conversion factors (ccf) plots for each combination (Figure 3C-

F). The %ccf value reflects the degree to which the dynamic ion transmission control 

(ITC) has modulated the MS ion current in TOF MS spectrum for that point in the 

chromatogram. This dynamic ITC is a feature of the TripleTOF 6600 system which 

functions to reduce the risk of detector saturation when high amounts of MS ion current 

are present in a particular sample. As ion current reaches a predefined upper TargetTIC 

(total ion chromatogram) signal, the ion current is modulated down by adjusting a lens 
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voltage in the front end of the instrument. This adjustment is done scan-by-scan based 

on feedback from the detection system, the higher the ion current goes above the 

TargetTIC, the higher the modulation applied. The %ccf value shows the % of ion beam 

modulation that was used in each spectrum. ITC considers both the total ion current and 

the ion current of a dominant ion. Although the peak area written to the datafile is 

corrected back to the value it would have been at 100% ion current, ideally, to ensure 

quantitative linearity, an ion load that is causing maximal ion modulation or exceeding 

the ion modulation limit (2%) should be avoided.  

The %ccf plots of injections in plasma show that, in general, the ion current is modulated 

to a greater extent with a higher injected concentration (Figure S3c). It reaches the 

lowest value around 0.85 min, where except DF6_1µL, the other combinations either 

surpass (DF2_2µL, DF2_1µL, DF3_2µL) or stay near (DF3_1µL, DF6_2µL) the limit 

of the ion modulation (Figure S3d). In fecal injections, the %ccf plots show that the ion 

modulation reaches the limit around 4.7 min (Figure S3f). DF6_2µL and DF3_2µL 

reach the limit of ion modulation, and DF3_1µL stays close to the limit (Figure S3e). 

Additionally, to assess the relationship between injection amount and matrix effect, 

post-column infusion (PCI) compounds were used to monitor the matrix effect for all 

the injection combinations in plasma. As expected, a higher-injected sample amount 

resulted in greater ion suppression in the area that suffers from matrix effect. DF2_2 µL 

caused the most pronounced ion suppression and DF6_1 µL experienced the least ion 

suppression (Figure S4a-b). The % ccf plots exhibited similar fluctuation trends to the 

matrix effect profiles in those samples (Figure S4c-d), indicating that both reflect the 

amount of ion current injected into the MS system. When more ions are injected, there 

is increased ionization competition in the source, and the ITC undergoes greater 

modulation to reduce the risk of detector saturation.  

According to the selected 47 metabolites, there is no metabolite coverage difference 

among all the combinations. Hence, DF6_1µL is the optimum injection condition for 

both plasma and feces to avoid potential signal saturation and reduce matrix effect 

throughout the chromatogram. However, in plasma there are more metabolites with low 

abundance, and DF6_1µL results in higher number of peaks with area below 1000 
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(Figure S3a), which may cause repeatability and quantification issues for these 

metabolites. Therefore, to achieve a compromise between the signal sensitivity, detector 

saturation and matrix effect, DF3_1µL and DF6_1µL should be selected as the final 

injection condition for plasma and feces, respectively. Nevertheless, considering the 

limited fecal sample availability in some clinical studies, DF8_1µL was utilized for 

further method validation in feces. The assessment of metabolome coverage was not 

extended with DF8_1µL, as we do not anticipate significant signal reduction with the 

injection volume fold changes less than 1.5 times. 
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Figure S1. Distribution of endogenous compound abundance for selected metabolites. 
(a) metabolites selected for plasma. Abundance levels were determined by referring to 
the reported concentration in HMDB (b) metabolites selected for feces. Abundance lev-
els were determined by standard addition to the collected fecal samples due to the in-
consistency of the reported concentration. 
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Figure S2. Reconstitution solvent comparison in plasma and feces. Plasma (dilution 
factor (DF) 2) and feces (DF6) were injected with 1µL in three reconstitution solvents. 
(a) Chromatogram of guanine and DCA. Guanine as an example of how reconstitution 
solvent affects the peak shape for polar metabolites; DCA (RT at 6.83min, the other 
peak at around 6.73 is chenodeoxycholic acid) as an example of how reconstitution 
solvent affects the signal for less polar metabolites. (b) Peak area comparison of 26 
metabolites (bile acids were analyzed in negative mode) in feces injected with three 
reconstitution solvents. The peak area percentage for each metabolite was calculated by 
dividing the peak area in a specific reconstitution solvent by the sum of the peak area in 
three reconstitution solvents. If there is around 33% area percentage for each condition, 
no obvious solubility issue was observed for that metabolite. To avoid the impact of 
peak shape distortion on integration, only metabolites with acceptable peak shape in 
20% ACN were involved in the comparison (metabolites which eluted around void 
volume or after 2.5 min). Complete names for the abbreviation: taurocholic acid (TCA), 
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glycocholic acid (GCA), cholic acid (CA), glycochenodeoxycholic acid (GCDCA), 
glycodeoxycholic acid (GDCA), chenodeoxycholic acid (CDCA). 

 
Figure S3. Injection concentration optimization for plasma and feces. Plasma and feces 
were reconstituted in 0.1% FA in water. In the metabolite coverage comparison, 47 
metabolites (measured in positive ion mode), all eluting before 6 min to avoid the 
solubility issue of late-eluting compounds, were included. (a) Metabolite coverage 
comparison of different injected concentrations in plasma. (b) Metabolite coverage 
comparison of different injected concentrations in feces. (c) %Ccf plots for different 
injected concentrations in plasma. (d) Zoom in on the %ccf plots in the region of highest 
ion current modulation in plasma. (e) Zoom in on the %ccf plots in the region of highest 
ion current modulation in feces. (f) %Ccf plots for different injected concentrations in 
feces. 
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Figure S4. Matrix effect profile and ion transmission control (ITC) plot for all the 
injection combinations of plasma in positive mode.(a) matrix effect profile presented 
with the averaged signal of 4 PCI; (b) Zoom in on the plot of (a) in the region of highest 
ion suppression ; (c) ITC plots of all the injection combination;(d) Zoom in on the plot 
of (c) in the region of highest ion current modulation. 
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Figure S5. Recovery (a) and accuracy (b) of the spiked SILs in plasma 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Averaged AME of spiked SILs and TIC intensity in plasma and feces. The 
averaged AME was calculated from different concentrations of spiked SILs.  
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Figure S7. Accuracy of spiked SILs in feces 

 

 
Figure S8. Recovery (a) and RSD of recovery (b) of the spiked SILs in feces 
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Figure S9. Matrix effect profile (MEP) of each sample with all the PCI compounds. (a) 
plasma in positive mode. (b) plasma in negative mode. (c) feces in positive mode. (d) 
feces in negative mode. 

 

 
Figure S10. Overlapped MEPs of four PCI compounds for each plasma sample in 
positive mode. 

 

 

a 

c 

b 
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Figure S11. Overlapped MEPs of four PCI compounds for each plasma sample in 
negative mode. 

 
Figure S12. Overlapped MEPs of four PCI compounds for each fecal sample in positive 
mode. 
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Figure S13. Overlapped MEPs of four PCI compounds for each fecal sample in negative 
mode. 
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Figure S14. Mass spectrum inspection of the suppressed areas in plasma samples with 5-fluoroisatin in positive mode 
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Figure S15. Mass spectrum inspection of the suppressed areas in plasma samples with fludrocortisone in negative mod
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Figure S16. Mass spectrum inspection of the suppressed areas in fecal samples with 5-fluoroisatin in positive mode
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Figure S17. Mass spectrum inspection of the suppressed areas in fecal samples with fludrocortisone in negative mod
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Table S1: general information and stock solution preparation for all the authentic standards 
Compound Name Compound  

Formula Da sub_class CAS num-
ber supplier product num-

ber 
stock 
mM Solvent RT/m

in usage 

L-ornithine-d6 C3D9NO 84.124
9 

Amino acids, peptides, and ana-
logues 

347841-
40-1 CDN D-3759 250.0 H2O 0.57 plasma validation 

n-methyl-d3-l-his-
tidine C7D3H9N3O2 172.10

40 
Amino acids, peptides, and ana-
logues 

91037-48-
8 CDN D-2493 25.0 H2O 0.59 plasma validation 

Betaine-d9 C5H2D9NO2 126.13
55 

Amino acids, peptides, and ana-
logues 

285979-
85-3 CDN D-3352 250.0 H2O 0.62 plasma validation 

L-glutamine-d5 C5H5D5N2O3 151.10
05 

Amino acids, peptides, and ana-
logues 

14341-78-
7 

cambridge Isotope labor-
atories 

DLM-1826-
0.1 250.0 H2O (1% NH3.H2O) 0.65 plasma validation 

TMAO-d9 C3D9NO 84.124
9 Aminoxides 1161070-

49-0 
cambridge Isotope labor-
atories DLM-4779-1 500.0 H2O 0.69 plasma validation 

L-carnitine-d3 C7H12D3NO3 164.12
40 carnitine and Acetylcarnitines 350818-

62-1 CDN D-5069 125.0 H2O 0.69 plasma validation 

L-lactic acid-13C3 13C3H6O3 93.041
8 organic acids and derivatives 201595-

71-3 TRC L113507 170.0 H2O 1.25 plasma validation 

acety-L-carnitine-
d3 

C9H14D3NO4 206.13
46 carnitine and Acetylcarnitines 1334532-

17-0 CDN D-6534 50.0 H2O 1.40 plasma validation 

citric acid-d4 C6H4D4O7 196.05
21 organic acids and derivatives 147664-

83-3 
cambridge Isotope labor-
atories 

DLM-3487-
0.5 

1250.
0 H2O 1.57 plasma and feces vali-

dation 

hypoxanthine-d3 C5D3HN4O 140.06
36 Purines and purine derivatives NA cambridge Isotope labor-

atories 
DLM-2923-
0.1 62.5 10% MeOH (0.2M 

HCL) 1.83 plasma and feces vali-
dation 

DL-leucine-d3 C6H10D3NO2 134.11
35 

Amino acids, peptides, and ana-
logues 

87828-86-
2 CDN D-2400 62.5 10% MeOH (1% 

NH3.H2O) 2.42 plasma and feces vali-
dation 

uridine-2-13C-1,3-
15N2 

C8[13C]1H12[15N
]2O6 

247.06
70 Pyrimidine nucleosides 369656-

75-7 TRC U829907 31.3 H2O 2.72 plasma validation 

phenylalanine-d5 C9H6D5NO2 170.11
04 

Amino acids, peptides, and ana-
logues 

28466-89-
7 CDN D-1597 50.0 15% MeOH 3.06 plasma and feces vali-

dation 

L-tryptophan-d3 C11H9D3N2O2 207.10
87 

Indolyl carboxylic acids and deriva-
tives 

133519-
78-5 CDN D-7419 50.0 H2O (0.5% NH3.H2O ) 3.32 plasma and feces vali-

dation 
4-hydroxy-
phenylactic acid-
d6 

C8H2D6O3 158.08
50 Benzoic acids and derivatives 100287-

06-7 TRC H949062 125.0 H2O (1.5% NH3.H2O ) 3.79 plasma and feces vali-
dation 

hippuric acid-d5 C9H4D5NO3 184.08
96 Benzoic acids and derivatives 53518-98-

2 chem Cruz sc-490158 12.5 H2O 3.86 plasma and feces vali-
dation 

indole-d5-3-acetic 
acid C10H4D5NO2 180.09

47 
Indolyl carboxylic acids and deriva-
tives 

76937-78-
5 TRC I577344 1.3 MeOH 4.73 plasma and feces vali-

dation 

daidzein-d6 C15H4D6O4 260.09
56 Isoflavonoids 291759-

05-2 TRC D103502 0.1 MeOH 4.80 plasma validation 

octanoyl-l-car-
nitine-d3 

C15H26D3NO4 290.22
85 carnitine and Acetylcarnitines 1334532-

24-9 CDN D-6651 2.5 H2O 4.86 plasma and feces vali-
dation 

glycocholic acid-
d4 

C26H39D4NO6 469.33
41 Bile acids_conjugated 1201918-

15-1 CDN D-3878 62.5 MeOH 5.46 plasma validation 

deoxycholic acid-
d4 

C24H36D4O4 396.31
78 Bile acids_unconjugated 112076-

61-6 CDN D-2941 62.5 MeOH 6.87 plasma validation 

choline-d4 C5H9D4NO 107.12
48 Quaternary ammonium salts 285979-

70-6 CDN D-2464 475.0 H2O 0.64 feces validation 
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DL-proline-d7 C5H2D7NO2 122.10
73 

Amino acids, peptides, and ana-
logues 

65807-21-
8 

cambridge Isotope labor-
atories DLM-2657-0 310.0 H2O 0.79 feces validation 

cytidine-15N3 C9H13[15N]3O5 246.07
66 Pyrimidine nucleosides NA cambridge Isotope labor-

atories NLM-3797-50 100.0 H2O 1.40 feces validation 

L-tyrosine-13C9-
15N 

[13C]9H11[15N]O
3 

191.10
11 

Amino acids, peptides, and ana-
logues 

129077-
96-9 

cambridge Isotope labor-
atories 

CNLM-439-
H-0.1 47.7 H2O (0.2M HCL) 2.41 feces validation 

u-15N-guanosine C10H13[15N]5O5 288.07
68 Purine nucleosides NA Silantes 125303603 10.0 H2O (0.1M HCL) 2.95 feces validation 

propionyl-L-car-
nitine- 
(n-methyl-d3) 

C10H16D3NO4 220.15
02 Fatty Acyls 1334532-

24-9 CDN D-6651 50.0 H2O 2.96 feces validation 

quinaldic acid-d6 C10HD6NO2 179.08
53 Quinoline carboxylic acids 1219802-

18-2 CDN D-6514 50.0 H2O 3.63 feces validation 

leucine-enkepha-
lin C28H37N5O7 555.26

93 
Amino acids, peptides, and ana-
logues 

81678-16-
2 Sigma-Aldrich L9133 1.8 H2O / PCI compound 

fludrocortisone C21H29FO5 380.19
99 Hydroxysteroids 127-31-1 TRC F428100 1.3 MeOH / PCI compound 

5-fluoroisatin C8H4FNO2 165.02
26 Indolines 443-69-6 Sigma-Aldrich 366978 6.1 50% MeOH / PCI compound 

caffeine-13C3 
C5[13C]3H10N4O
2 

197.09
04 Purines and purine derivatives 78072-66-

9 TRC C080101 2.5 50% MeOH / PCI compound 

3-fluoro-DL-va-
line C5H10FNO2 135.06

96 
Amino acids, peptides, and ana-
logues 

43163-94-
6 Sigma-Aldrich 47581 14.8 50% MeOH / PCI compound 

fludrocortisone-d5 C21H24D5FO5 385.23
13 Hydroxysteroids NA TRC F428102 2.6 MeOH 5.04 internal standard 

D-glucose-13C6, d7 [13C]6H5D7O6 193.12
75 

Carbohydrates and carbohydrate 
conjugates 

201417-
01-8 TRC G595001 15.5 50% MeOH 0.69 internal standard 

5-chloroisatin C8H4ClNO2 180.99
31 Indolines 17630-76-

1 chem Cruz sc-254819 5.5 MeoH 4.95 internal standard 

caffeine-d9 C8HD9N4O2 203.13
69 Purines and purine derivatives 722358-

85-8 TRC C080102 4.9 50% MeOH 3.64 internal standard 

valine-d8 C5H3D8NO2 125.12
92 

Amino acids, peptides, and ana-
logues 

203784-
63-8 

cambridge Isotope labor-
atories DLM-488 24.0 MeOH 1.08 internal standard 

cortisone-d8 C21H20D8O5 368.24
39 Hydroxysteroids NA TRC C696502 6.8 MeOH 5.06 external standard 

 

Table S2: calibration line of the SILs in plasma validation 
Compound  concentration of each calibration point (μM) 

Cal1 Cal2 Cal3  Cal4  Cal5  Cal6  Cal7 Cal8  Cal9  
L-ornithine-d6 0.600 1.200 3.000 6.000 30.00 60 300 600 1500 
n-methyl-d3-l-histidine 0.030 0.060 0.150 0.300 1.50 3 15 30 75 
betaine-d9 0.500 1.000 2.500 5.000 25.00 50 250 500 1250 
L-glutamine-d5 6.000 12.000 30.000 60.000 300.00 600 3000 6000 15000 
TMAO-d9 0.400 0.800 2.000 4.000 20.00 40 200 400 1000 
L-carnitine-d3 0.300 0.600 1.500 3.000 15.00 30 150 300 750 
L-lactic acid-13C3 0.050 0.100 0.250 0.500 2.50 5 25 50 125 
acety-L-carnitine-d3 1.500 3.000 7.500 15.000 75.00 150 750 1500 3750 
citric acid-d4 1.000 2.000 5.000 10.000 50.00 100 500 1000 2500 
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hypoxanthine-d3 0.050 0.100 0.250 0.500 2.50 5 25 50 125 
DL-leucine-d3 0.800 1.600 4.000 8.000 40.00 80 400 800 2000 
uridine-2-13C-1,3-15N2 0.050 0.100 0.250 0.500 2.50 5 25 50 125 
phenylalanine-d5 0.800 1.600 4.000 8.000 40.00 80 400 800 2000 
L-tryptophan-d3 0.800 1.600 4.000 8.000 40.00 80 400 800 2000 
4-hydroxyphenylactic acid-d6 0.010 0.020 0.050 0.100 0.50 1 5 10 25 
hippuric acid-d5 0.050 0.100 0.250 0.500 2.50 5 25 50 125 
indole-d5-3-acetic acid 0.010 0.020 0.050 0.100 0.50 1 5 10 25 
daidzein-d6 0.005 0.010 0.025 0.050 0.250 0.5 2.5 5 12.5 
octanoyl-l-carnitine-d3 0.002 0.004 0.010 0.020 0.10 0.2 1 2 5 
glycocholic acid-d4 0.050 0.100 0.250 0.500 2.50 5 25 50 125 
deoxycholic acid-d4 0.050 0.100 0.250 0.500 2.50 5 25 50 125 

 

Table S3: calibration line of the SILs in feces validation 
Compound  concentration of each calibration point (μM) 

cal1 cal2 cal3 cal4 cal5 cal6 cal7 cal8 cal9 cal10 cal11 
choline-d4 0.190 0.380 0.950 1.900 3.800 9.500 19.000 38.000 95.000 190.000 475.000 
DL-proline-d7 2.480 4.960 12.400 24.800 49.600 124.000 248.000 496.000 1240.000 2480.000 6200.000 
cytidine-15N3 0.010 0.020 0.050 0.100 0.200 0.500 1.000 2.000 5.000 10.000 25.000 
citric acid-d4 0.020 0.040 0.100 0.200 0.400 1.000 2.000 4.000 10.000 20.000 50.000 
hypoxanthine-d3 0.460 0.920 2.300 4.600 9.200 23.000 46.000 92.000 230.000 460.000 1150.000 
L-tyrosine-13C9-15N 0.750 1.500 3.750 7.500 15.000 37.500 75.000 150.000 375.000 750.000 1875.000 
DL-leucine-d3 0.350 0.700 1.750 3.500 7.000 17.500 35.000 70.000 175.000 350.000 875.000 
u-15N-guanosine 0.004 0.008 0.020 0.040 0.080 0.200 0.400 0.800 2.000 4.000 10.000 
propionyl-L-carnitine-(n-methyl-d3) 0.010 0.020 0.050 0.100 0.200 0.500 1.000 2.000 5.000 10.000 25.000 
phenylalanine-d5 0.652 1.304 3.260 6.520 13.040 32.600 65.200 130.400 326.000 652.000 1630.000 
L-tryptophan-d3 0.500 1.000 2.500 5.000 10.000 25.000 50.000 100.000 250.000 500.000 1250.000 
quinaldic acid-d6  0.001 0.002 0.005 0.010 0.020 0.050 0.100 0.200 0.500 1.000 2.500 
4-hydroxyphenylactic acid-d6 1.760 3.520 8.800 17.600 35.200 88.000 176.000 352.000 880.000 1760.000 4400.000 
hippuric acid-d5 0.004 0.008 0.020 0.040 0.080 0.200 0.400 0.800 2.000 4.000 10.000 
indole-d5-3-acetic acid 0.030 0.060 0.150 0.300 0.600 1.500 3.000 6.000 15.000 30.000 75.000 
octanoyl-L-carnitine-d3 0.000 0.000 0.000 0.001 0.001 0.004 0.007 0.014 0.035 0.070 0.175 

Table S4: final concentration of each PCIS compound in the infused mixture solutions 
PCI compound concentration (ng/mL) applied polarity  
included Leucine-enkephalin  212.4 positive mode  
fludrocortisone  154.0 positive mode  
5-fluoroisatin  1069.2 positive mode  
caffeine-13C3  219.2 positive mode  
Leucine-enkephalin  344.9 negative mode 
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fludrocortisone  371.0 negative mode 
3-Fluoro-DL-valine  4264.3 negative mode 

 
Table S5: dilution ratio calculation of feces 

V_reconstitution 50 mL 
m_dry feces 20 mg 
     

LLE extraction steps 
Step1     
V_MeOH (µL) 108   
V_MilliQ(µL) 36   
V_MTBE(µL) 60   
V_total (µL) 204 no layer seperation between aqueous(aq) and organic layer 
V_taken(µL) 140 all the liquid can be taken from the sample 
% of taken(µL) 68.6% assuming MeOH is 100% miscible with MilliQ water 
V_aq_taken(µL) 98.8   
mg/feces_taken 13.7   
Step2     
V_MTBE (µL) 84   
V_MilliQ(µL) 100   
Final     
V_aq(µL) 198.8   
V_taken(µL) 90   

Ratio calculation 
Feces_conc. in aq (mg/µL) 0.069   
feces(in 90µL of Aq) 6.21   
V_reconstitute(µL) 50   
ratio (mg:µL) "6.12": 50 ~ 1:8 

 
Table S6: general information of metabolites applied for injection volume and dilution factor (DF) optimization 

Index HMDB_ID Metabolite Name Compound Formula Monoisotopic Mass/Da Retention time/min 
1 HMDB0000214 Ornithine C5H12N2O2 132.0899 0.57 
2 HMDB0000123 Glycine C2H5NO2 75.0320 0.62 
3 HMDB0000251 Taurine C2H7NO3S 125.0147 0.64 
4 HMDB0000097 Choline C5H13NO 103.0997 0.64 
5 HMDB0000001 1-Methylhistidine C7H11N3O2 169.0851 0.65 
6 HMDB0000641 Glutamine C5H10N2O3 146.0691 0.65 
7 HMDB0000906 Trimethylamine C3H9N 59.0735 0.65 
8 HMDB0000925 TMAO C3H9NO 75.0684 0.69 
9 HMDB0000062 L-Carnitine C7H15NO3 161.1052 0.69 



Matrix effect in untargeted metabolomics 
 

 
 

71 

10 HMDB0000043 Betaine C5H11NO2 117.0790 0.70 
11 HMDB0000562 Creatinine C4H7N3O 113.0589 0.74 
12 HMDB0000162 Proline C5H9NO2 115.0633 0.79 
13 HMDB0013222 3-Guanidinopropanoate C4H9N3O2 131.0695 0.83 
14 HMDB0000883 Valine C5H11NO2 117.0790 1.08 
15 HMDB0000190 Lactic acid C3H6O3 90.0317 1.25 
16 HMDB0000767 Pseudouridine C9H12N2O6 244.0695 1.35 
17 HMDB0000696 Methionine C5H11NO2S 149.0510 1.35 
18 HMDB0000301 Urocanic acid C6H6N2O2 138.0429 1.50 
19 HMDB0000094 Citric acid C6H8O7 192.0270 1.57 
20 HMDB0000289 Uric acid C5H4N4O3 168.0283 1.69 
21 HMDB0000157 Hypoxanthine C5H4N4O 136.0385 1.83 
22 HMDB0000172 Isoleucine C6H13NO2 131.0946 2.25 
23 HMDB0000292 Xanthine C5H4N4O2 152.0334 2.27 
24 HMDB0000158 Tyrosine C9H11NO3 181.0739 2.41 
25 HMDB0000687 Leucine C6H13NO2 131.0946 2.42 
26 HMDB0000296 Uridine C9H12N2O6 244.0695 2.72 
27 HMDB0000050 Adenosine C10H13N5O4 267.0968 2.94 
28 HMDB0000262 Thymine C5H6N2O2 126.0429 2.96 
29 HMDB0001886 3-Methylxanthine C6H6N4O2 166.0491 3.00 
30 HMDB0000684 Kynurenine C10H12N2O3 208.0848 3.06 
31 HMDB0000159 Phenylalanine C9H11NO2 165.0790 3.06 
32 HMDB0002825 Theobromine C7H8N4O2 180.0647 3.11 
33 HMDB0002013 Isobutyryl-L-Carnitine C11H21NO4 231.1471 3.14 
34 HMDB0000929 Tryptophan C11H12N2O2 204.0899 3.32 
35 HMDB0000422 2-Methylglutaricacid C6H10O4 146.0579 3.37 
36 HMDB0000715 Kynurenic acid C10H7NO3 189.0426 3.46 
37 HMDB0000378 2-Methylbutyroylcarnitine C12H23NO4 245.1627 3.57 
38 HMDB0000842 Quinaldic acid C10H7NO2 173.0477 3.63 
39 HMDB0001847 Caffeine C8H10N4O2 194.0804 3.67 
40 HMDB0000714 Hippuric acid C9H9NO3 179.0582 3.86 
41 HMDB0000671 Indolelactic acid C11H11NO3 205.0739 4.42 
42 HMDB0011621 Cinnamoylglycine C11H11NO3 205.0739 4.53 
43 HMDB0000197 Indoleacetic acid C10H9NO2 175.0633 4.73 
44 HMDB0002302 Indolepropionic acid C11H11NO2 189.0790 5.08 
45 HMDB0000138 Glycocholic acid C26H43NO6 465.3090 5.44 
46 HMDB0000951 Taurochenodeoxycholic acid C26H45NO6S 499.2968 5.59 
47 HMDB0000619 Cholic aicd C24H40O5 408.2876 5.98 
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Table S7: validation parameters in plasma: linearity range and precision 

Compound polarity  Weighting 
factor 

Linear range 
(uM) 

cal  
points  r^2 Precision 

Cal01 Cal02 Cal03 Cal04 Cal05 Cal06 Cal07 Cal08 Cal09 
L-ornithine-d6 POS 1/X^2 30-1500 6 0.984 ND ND ND 13.9% 2.3% 4.3% 12.1% 11.0% 2.1% 
n-methyl-d3-l-histidine POS 1/X^2 0.3-75 5 0.985 ND ND ND ND 2.8% 11.5% 7.4% 8.6% 7.6% 
Betaine-d9 POS 1/X^2 0.5-50 6 0.989 15.3% 5.3% 8.9% 8.3% 2.0% 3.6% 10.2% 12.5% 1.4% 
L-glutamine-d5 POS 1/X^2 12-15000 8 0.981 ND 7.0% 17.1% 7.1% 4.8% 3.7% 11.6% 9.3% 2.6% 
TMAO-d9 POS 1/X^2 0.4-200 7 0.977 6.3% 14.5% 3.7% 10.7% 14.1% 6.1% 1.4% 3.3% 4.2% 
L-carnitine-d3 POS 1/X^2 0.3-30 6 0.991 8.9% 1.8% 9.8% 7.6% 6.7% 2.1% 15.2% 15.7% 5.2% 
L-lactic acid-13C3 NEG 1/X^2 15-3750 6 0.982 ND ND ND 8.9% 6.6% 1.3% 8.6% 10.3% 2.5% 
acety-L-carnitine-d3 POS 1/X^2 0.05-125 9 0.991 23.2% 13.9% 7.4% 10.9% 3.1% 2.3% 12.7% 11.4% 0.9% 
citric acid-d4 NEG 1/X^2 1-2500 9 0.987 10.2% 6.7% 14.5% 12.3% 2.7% 7.1% 10.5% 17.4% 1.8% 
hypoxanthine-d3 POS 1/X^2 0.1-125 8 0.990 ND 9.1% 4.1% 6.8% 2.9% 1.5% 13.0% 11.7% 4.2% 
DL-leucine-d3 POS 1/X^2 0.8-2000 9 0.991 21.0% 3.0% 8.9% 9.5% 3.1% 3.0% 14.4% 11.8% 3.1% 
uridine-2-13C-1,3-15N2 NEG 1/X^2 0.25-125 7 0.991 ND ND 14.9% 9.0% 0.9% 1.3% 9.7% 11.0% 1.6% 
phenylalanine-d5 POS 1/X^2 0.8-2000 9 0.992 10.8% 2.4% 6.1% 6.6% 3.2% 2.7% 11.5% 12.1% 1.0% 
L-tryptophan-d3 POS 1/X^2 0.8-2000 9 0.992 7.8% 3.9% 10.5% 11.0% 3.0% 2.2% 11.6% 10.3% 4.4% 
4-hydroxyphenylactic acid-d6 NEG 1/X^2 0.1-25 6 0.986 ND ND ND 17.9% 8.2% 0.4% 11.3% 12.4% 2.4% 
hippuric acid-d5 NEG 1/X^2 0.05-125 9 0.987 14.8% 4.3% 8.7% 9.2% 2.4% 1.0% 12.1% 11.3% 2.3% 
indole-d5-3-acetic acid NEG 1/X^2 0.5-25 5 0.986 ND ND ND ND 4.7% 2.1% 15.5% 13.6% 1.9% 
daidzein-d6 NEG 1/X^2 0.01-12.5 8 0.991 ND 13.3% 2.9% 6.3% 4.3% 5.8% 8.2% 10.7% 2.8% 
octanoyl-l-carnitine-d3 POS 1/X^2 0.004-5 7 0.987 ND ND 19.6% 16.3% 8.0% 13.2% 9.0% 13.5% 5.9% 
glycocholic acid-d4 NEG 1/X^2 2.5-125 5 0.990 ND ND 0.2% 2.8% 5.3% 4.2% 8.8% 10.8% 4.9% 
deoxycholic acid-d4 NEG 1/X^2 25-125 3 0.978 ND ND ND ND 0.3% 0.4% 6.4% 14.4% 2.3% 

* ND: calibration points below the limit of the detection; the number highlighted in red indicates calibration points out of the linear 
range (residual error >20% ), which are excluded in the calibration line. 
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Table S8: validation parameters in feces: linearity range and precision 
Compound polarity Weighting 

 factor 
Linear range 
(uM) 

 Cal 
points r^2 

Precision 
Cal01 Cal02 Cal03 Cal04 Cal05 Cal06 Cal07 Cal08 Cal09 Cal10 Cal11 

choline-d4 POS 1/X^2 0.190-19.0 7 0.989 1.7% 3.3% 2.4% 1.1% 1.0% 2.3% 1.8% 1.5% 4.8% 3.4% 2.2% 
DL-proline-d7 POS 1/X^2 2.480-496.0 8 0.996 1.4% 2.8% 0.8% 0.7% 1.5% 1.5% 0.6% 1.3% 0.8% 1.7% 1.9% 
cytidine-15N3 POS 1/X^2 0.200-25.0 7 0.978 ND ND ND ND 2.8% 13.2% 7.3% 0.7% 1.0% 2.3% 4.6% 
citric acid-d4 NEG 1/X^2 0.100-50.0 9 0.987 ND ND 5.4% 10.7% 12.1% 2.8% 2.7% 5.0% 2.3% 3.4% 2.7% 
hypoxanthine-d3 POS 1/X^2 0.460-460.0 10 0.993 2.7% 5.6% 3.2% 2.7% 0.8% 1.7% 1.4% 0.6% 1.5% 0.9% 2.3% 
L-tyrosine-13C9-15N NEG 1/X^2 0.750-750.0 10 0.988 0.2% 1.4% 2.9% 0.5% 1.4% 2.2% 3.9% 0.8% 1.3% 0.6% 3.2% 
DL-leucine-d3 POS 1/X^2 0.350-350.0 10 0.991 1.8% 2.4% 4.1% 2.3% 2.1% 1.1% 0.6% 0.5% 0.5% 0.9% 0.8% 
u-15N-guanosine POS 1/X^2 0.200-10.0 6 0.958 ND ND ND ND ND 8.1% 15.4% 5.2% 3.0% 6.4% 5.6% 
propionyl-L-carnitine-
(n-methyl-d3) 

POS 1/X^2 0.050-25.0 9 0.984 ND ND 2.3% 1.8% 5.1% 1.7% 2.6% 2.5% 1.3% 1.6% 0.7% 

phenylalanine-d5 POS 1/X^2 0.652-652.0 10 0.985 2.0% 3.1% 1.4% 0.7% 4.7% 0.9% 1.1% 3.2% 2.2% 1.2% 2.8% 
L-tryptophan-d3 POS 1/X^2 0.500-500.0 10 0.993 1.2% 1.6% 2.1% 2.5% 2.1% 2.1% 1.5% 1.6% 0.8% 0.8% 0.1% 
quinaldic acid-d6 POS 1/X^2 0.050-2.5 6 0.983 ND ND ND ND ND 1.9% 20.8% 4.6% 0.8% 3.8% 5.6% 
4-hydroxyphenylactic 
acid-d6 

NEG 1/X^2 1.760-4400.0 11 0.991 2.6% 4.9% 2.5% 0.8% 0.4% 1.5% 1.9% 1.6% 1.1% 0.2% 1.5% 

hippuric acid-d5 NEG 1/X^2 0.040-4.0 7 0.983 ND ND ND 6.1% 9.4% 7.5% 0.7% 0.9% 4.3% 1.2% 1.5% 
indole-d5-3-acetic acid NEG 1/X^2 0.350-75.0 8 0.985 ND ND ND 7.0% 16.2% 8.8% 6.9% 0.6% 0.7% 1.5% 3.4% 
octanoyl-L-carnitine-d3 POS 1/X 0.001-0.2 7 0.998 ND ND ND ND 4.6% 4.8% 13.1% 6.8% 6.3% 2.0% 0.8% 

* ND: calibration points below the limit of the detection; the number highlighted in red indicates calibration points out of the linear 
range (residual error >20%), which are excluded in the calibration line. 

 

Table S9: predicted RME for targets measurable in positive or negative mode 
in-
dex HMDB_ID Compound name Compound For-

mula 
Monoisotopic 
Mass/Da 

detec-
tion_ 
polarity 

Retention 
time/ 
min 

Predicted_ 
RME_plas
ma 

PL_RME_ 
criteria 

Pre-
dicted_RME__ 
feces 

FE_RME_ 
criteria 

1 HMDB0001
256 Spermine C10H26N4 202.2157 POS 0.47 3.40 RME <= 15% 4.57 RME <= 15% 

2 HMDB0001
257 Spermidine C7H19N3 145.1579 POS 0.49 2.97 RME <= 15% 4.45 RME <= 15% 

3 HMDB0001
414 Putrescine C4H12N2 88.1000 POS 0.53 4.02 RME <= 15% 4.86 RME <= 15% 

4 HMDB0002
322 cadaverine C5H14N2 102.1157 POS 0.54 4.03 RME <= 15% 5.33 RME <= 15% 

5 HMDB0001
432 agmatine C5H14N4 130.1218 POS 0.57 5.12 RME <= 15% 8.57 RME <= 15% 

6 HMDB0000
237 propionic acid C3H6O2 74.0368 POS 0.59 5.83 RME <= 15% 10.83 RME <= 15% 
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7 HMDB0001
325 N6,N6,N6-Trimethyl-L-lysine C9H20N2O2 188.1525 POS 0.59 6.21 RME <= 15% 10.93 RME <= 15% 

8 HMDB0000
149 Ethanolamine C2H7NO 61.0527 POS 0.60 7.78 RME <= 15% 11.91 RME <= 15% 

9 HMDB0000
097 Choline C5H13NO 103.0997 POS 0.64 11.73 RME <= 15% 18.83 15% < RME <= 

30% 

10 HMDB0000
906 trimethylamine (TMA) C3H9N 59.0735 POS 0.65 11.57 RME <= 15% 19.15 15% < RME <= 

30% 

11 HMDB0000
143 Galactose C6H12O6 180.0634 NEG 0.67 18.61 15% < RME <= 

30% 21.95 15% < RME <= 
30% 

12 HMDB0000
086 glycerophosphorylcholine (GPC) C8H20NO6P 257.1028 POS 0.68 9.68 RME <= 15% 21.02 15% < RME <= 

30% 

13 HMDB0000
925 TMAO C3H9NO 75.0684 POS 0.69 9.55 RME <= 15% 20.65 15% < RME <= 

30% 

14 HMDB0000
062 L-Carnitine C7H15NO3 161.1052 POS 0.69 9.65 RME <= 15% 20.88 15% < RME <= 

30% 

15 HMDB0000
294 ureaÂ CH4N2O 60.0324 POS 0.69 9.65 RME <= 15% 20.88 15% < RME <= 

30% 

16 HMDB0000
043 Betaine C5H11NO2 117.0790 POS 0.70 9.75 RME <= 15% 19.34 15% < RME <= 

30% 

17 HMDB0003
903 Isethionic acid C2H6O4S 125.9987 NEG 0.70 14.70 RME <= 15% 24.48 15% < RME <= 

30% 

18 HMDB0000
660 Fructose C6H12O6 180.0634 NEG 0.71 14.12 RME <= 15% 24.73 15% < RME <= 

30% 

19 HMDB0001
522 methylguanidine C2H7N3 73.0640 POS 0.73 8.89 RME <= 15% 13.25 RME <= 15% 

20 HMDB0001
644 xylulose C5H10O5 150.0528 NEG 0.74 14.06 RME <= 15% 22.87 15% < RME <= 

30% 

21 HMDB0001
161 Deoxycarnitine C7H15NO2 145.1103 POS 0.75 6.20 RME <= 15% 11.77 RME <= 15% 

22 HMDB0000
131 Glycerol C3H8O3 92.0473 POS 0.75 6.20 RME <= 15% 11.77 RME <= 15% 

23 HMDB0029
878 tartaric acid C4H6O6 150.0164 NEG 0.77 13.91 RME <= 15% 26.41 15% < RME <= 

30% 

24 HMDB0000
115 Glycolic acid C2H4O3 76.0160 NEG 0.80 37.10 RME > 30% 27.77 15% < RME <= 

30% 

25 HMDB0000
895 Acetylcholine' C7H16NO2 146.1181 POS 0.80 10.05 RME <= 15% 14.05 RME <= 15% 

26 HMDB0000
699 1-methylnicotinamide C7H9N2O 137.0715 POS 0.80 10.05 RME <= 15% 14.05 RME <= 15% 

27 HMDB0031
159 Hydroxycitric acid C6H8O8 208.0219 NEG 0.91 29.54 15% < RME <= 

30% 17.67 15% < RME <= 
30% 

28 HMDB0000
243 pyruvate C3H4O3 88.0160 NEG 0.94 18.83 15% < RME <= 

30% 14.02 RME <= 15% 

29 HMDB0002
064 N-acetylputrescine C6H14N2O 130.1106 POS 0.95 3.86 RME <= 15% 11.80 RME <= 15% 

30 HMDB0000
156 L-Malic acid C4H6O5 134.0215 NEG 0.98 10.32 RME <= 15% 11.36 RME <= 15% 

31 HMDB0000
208 ketoglutaric acid C5H6O5 146.0215 NEG 1.17 7.53 RME <= 15% 8.61 RME <= 15% 
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32 HMDB0000
076 5,6-dihydrouracil C4H6N2O2 114.0429 POS 1.17 3.59 RME <= 15% 8.88 RME <= 15% 

33 HMDB0000
201 L-Acetylcarnitine C9H17NO4 203.1158 POS 1.42 2.97 RME <= 15% 6.12 RME <= 15% 

34 HMDB0001
406 Nicotinamideï¼ˆform of vitamin Bï¼‰ C6H6N2O 122.0480 POS 1.62 30.80 RME > 30% 5.18 RME <= 15% 

35 HMDB0000
005 2-Ketobutyric acid' C4H6O3 102.0317 NEG 1.73 19.66 15% < RME <= 

30% 14.83 RME <= 15% 

36 HMDB0000
982 5-Methylcytidine C10H15N3O5 257.1012 POS 2.05 3.76 RME <= 15% 4.76 RME <= 15% 

37 HMDB0010
325 Ethyl glucuronide C8H14O7 222.0740 NEG 2.14 4.60 RME <= 15% 6.31 RME <= 15% 

38 HMDB0000
732 3-Hydroxykynurenine C10H12N2O4 224.0797 POS 2.20 3.36 RME <= 15% 9.34 RME <= 15% 

39 HMDB0240
577 3-Methylcytidine (*methosulfate) C10H15N3O5 257.1012 POS 2.42 3.77 RME <= 15% 9.52 RME <= 15% 

40 HMDB0000
306 tyramineÂ C8H11NO 137.0841 POS 2.63 3.43 RME <= 15% 5.83 RME <= 15% 

41 HMDB0000
008 2-hydroxybutyric acidÂ C4H8O3 104.0473 NEG 2.75 2.69 RME <= 15% 5.87 RME <= 15% 

42 HMDB0001
046 Cotinine C10H12N2O 176.0950 POS 2.94 3.78 RME <= 15% 4.48 RME <= 15% 

43 HMDB0242
132 2-O-Methylcytidine C10H15N3O5 257.1012 POS 2.95 3.57 RME <= 15% 4.61 RME <= 15% 

44 HMDB0010
738 1-methylxanthine C6H6N4O2 166.0491 POS 2.95 3.49 RME <= 15% 5.02 RME <= 15% 

45 HMDB0000
824 Propionylcarnitine C10H19NO4 217.1314 POS 2.96 3.42 RME <= 15% 8.68 RME <= 15% 

46 HMDB0003
331 1-Methyladenosine C11H15N5O4 281.1124 POS 2.98 3.08 RME <= 15% 13.27 RME <= 15% 

47 HMDB0001
107 7-Methylguanosine C11H15N5O5 297.1073 POS 2.98 3.08 RME <= 15% 13.27 RME <= 15% 

48 HMDB0004
044 N6-methyladenosine C11H15N5O4 281.1124 POS 2.98 3.08 RME <= 15% 13.27 RME <= 15% 

49 HMDB0000
022 3-Methoxytyramine C9H13NO2 167.0946 POS 2.99 3.21 RME <= 15% 14.69 RME <= 15% 

50 HMDB0001
886 3-methylxanthine C6H6N4O2 166.0491 POS 3.00 3.21 RME <= 15% 15.85 15% < RME <= 

30% 

51 HMDB0000
707 4-Hydroxyphenylpyruvic acid C9H8O4 180.0423 NEG 3.01 3.67 RME <= 15% 18.29 15% < RME <= 

30% 

52 HMDB0002
825 theobromineÂ C7H8N4O2 180.0647 POS 3.11 5.49 RME <= 15% 11.20 RME <= 15% 

53 HMDB0002
013 Isobutyryl-L-carnitine C11H21NO4 231.1471 POS 3.14 5.13 RME <= 15% 10.41 RME <= 15% 

54 HMDB0001
890 N-acetyl cysteine C5H9NO3S 163.0303 NEG 3.14 3.27 RME <= 15% 15.44 15% < RME <= 

30% 

55 HMDB0000
736 Butyrylcarnitine C11H21NO4 231.1471 POS 3.19 3.42 RME <= 15% 5.28 RME <= 15% 
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56 HMDB0012
275 Phenylethylamine (PEA) C8H11N 121.0891 POS 3.20 3.40 RME <= 15% 5.23 RME <= 15% 

57 HMDB0001
392 4-Aminobenzoic acid (PABA) C7H7NO2 137.0477 POS 3.31 3.69 RME <= 15% 5.99 RME <= 15% 

58 HMDB0001
336 3,4-dihydroxyphenylacetic acid (DOPAC) C8H8O4 168.0423 NEG 3.35 3.25 RME <= 15% 11.55 RME <= 15% 

59 HMDB0000
755 Hydroxyphenyllactic acid C9H10O4 182.0579 NEG 3.38 3.22 RME <= 15% 12.87 RME <= 15% 

60 HMDB0002
366 Tiglylcarnitine C12H21NO4 243.1471 POS 3.45 2.85 RME <= 15% 7.08 RME <= 15% 

61 HMDB0000
423 

3,4-Dihydroxyhydrocinnamic acid (Dihydro-
caffeic acid) C9H10O4 182.0579 NEG 3.45 3.65 RME <= 15% 15.92 15% < RME <= 

30% 

62 HMDB0041
993 Pivaloylcarnitine C12H23NO4 245.1627 POS 3.51 3.65 RME <= 15% 6.76 RME <= 15% 

63 HMDB0000
303 tryptamine C10H12N2 160.1000 POS 3.53 3.52 RME <= 15% 6.25 RME <= 15% 

64 HMDB0000
378 2-Methylbutyroylcarnitine C12H23NO4 245.1627 POS 3.57 3.47 RME <= 15% 6.35 RME <= 15% 

65 HMDB0000
688 Isovalerylcarnitine C12H23NO4 245.1627 POS 3.64 3.62 RME <= 15% 7.26 RME <= 15% 

66 HMDB0001
847 caffeine C8H10N4O2 194.0804 POS 3.67 3.66 RME <= 15% 6.40 RME <= 15% 

67 HMDB0013
128 Valerylcarnitine C12H23NO4 245.1627 POS 3.71 3.27 RME <= 15% 5.53 RME <= 15% 

68 HMDB0001
856 3,4-dihydroxybenzoic acid C7H6O4 154.0266 NEG 3.73 11.05 RME <= 15% 11.18 RME <= 15% 

69 HMDB0000
491 3-methyl-2-oxovalerate C6H10O3 130.0630 NEG 3.75 8.49 RME <= 15% 13.10 RME <= 15% 

70 HMDB0000
703 Mandelic acid C8H8O3 152.0473 NEG 3.75 8.49 RME <= 15% 13.10 RME <= 15% 

71 HMDB0000
705 Hexanoylcarnitine C13H25NO4 259.1784 POS 4.17 2.63 RME <= 15% 5.71 RME <= 15% 

72 HMDB0000
375 3-(3-hydroxyphenyl)propionic acid (hMPP) C9H10O3 166.0630 NEG 4.27 3.17 RME <= 15% 17.85 15% < RME <= 

30% 

73 HMDB0000
779 3-Phenyllactic acid C9H10O3 166.0630 NEG 4.29 3.51 RME <= 15% 13.22 RME <= 15% 

74 HMDB0013
324 2-Octenoylcarnitine C15H27NO4 285.1940 POS 4.73 5.62 RME <= 15% 7.81 RME <= 15% 

75 HMDB0000
791 L-Octanoylcarnitine C15H29NO4 287.2097 POS 4.86 4.03 RME <= 15% 5.55 RME <= 15% 

76 HMDB0001
858 p-cresol C7H8O 108.0575 POS 5.05 8.80 RME <= 15% 9.70 RME <= 15% 

77 HMDB0000
651 Decanoylcarnitine C17H33NO4 315.2410 POS 5.39 7.87 RME <= 15% 11.65 RME <= 15% 

78 HMDB0000
874 Tauroursodeoxycholic acid C26H45NO6S 499.2968 NEG 5.59 2.76 RME <= 15% 11.32 RME <= 15% 

79 HMDB0002
250 Lauroylcarnitine C19H37NO4 343.2723 POS 5.89 3.83 RME <= 15% 15.84 15% < RME <= 

30% 

80 HMDB0002
639 Sulfolithocholylglycine C26H43NO7S 513.2760 NEG 5.92 3.33 RME <= 15% 5.65 RME <= 15% 
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Table S10: predicted RME for tagets measurable in positive and negative mode 

Index Compound 
name HMDB_ID 

Com-
pound 
For-
mula 

Monoiso-
topic 
Mass/Da 

detec-
tion_po
larity 

Reten-
tion 
time/mi
n 

Predic-
ted_RME_po
s_plasma 
(PL) 

PL_pos_
RME_cri
teria 

Pre-
dicted_RME
_neg_plasma 
(PL) 

PL_neg_
RME_cri-
teria 

Pre-
dicted_RME
_pos_feces 
(FE) 

FE_pos_
RME_cri
teria 

Pre-
dicted_RME
_neg_feces 
(FE) 

FE_neg_
RME_cri
teria 

1 5-Hydroxylysine HMDB0000450 C6H14N
2O3 162.1004 POS_N

EG 0.56 4.60 RME <= 
15% 9.39 RME <= 

15% 6.26 RME <= 
15% 7.36 RME <= 

15% 

2 Lysine HMDB0000182 C6H14N
2O2 146.1055 POS_N

EG 0.56 4.73 RME <= 
15% 9.23 RME <= 

15% 6.61 RME <= 
15% 7.74 RME <= 

15% 

3 Ornithine HMDB0000214 C5H12N
2O2 132.0899 POS_N

EG 0.56 5.10 RME <= 
15% 9.22 RME <= 

15% 7.03 RME <= 
15% 8.41 RME <= 

15% 

4 Histamine HMDB0000870 C5H9N3 111.0796 POS_N
EG 0.58 5.09 RME <= 

15% 10.03 RME <= 
15% 9.34 RME <= 

15% 10.13 RME <= 
15% 

5 N(omega)-Hy-
droxyarginine HMDB0004224 C6H14N

4O3 190.1066 POS_N
EG 0.59 5.83 RME <= 

15% 10.63 RME <= 
15% 10.83 RME <= 

15% 15.73 
15% < 
RME <= 
30% 

6 Histidine HMDB0000177 C6H9N3
O2 155.0695 POS_N

EG 0.60 6.52 RME <= 
15% 11.03 RME <= 

15% 11.16 RME <= 
15% 18.16 

15% < 
RME <= 
30% 

7 Diaminopimelic 
acid HMDB0001370 C7H14N

2O4 190.0954 POS_N
EG 0.61 8.89 RME <= 

15% 11.71 RME <= 
15% 12.38 RME <= 

15% 19.91 
15% < 
RME <= 
30% 

8 Carnosine HMDB0000033 C9H14N
4O3 226.1066 POS_N

EG 0.61 10.49 RME <= 
15% 11.91 RME <= 

15% 12.56 RME <= 
15% 19.82 

15% < 
RME <= 
30% 

9 
N(6)-Carbox-
ymethyllysine 
(CML) 

HMDB0240347 C8H16N
2O4 204.1110 POS_N

EG 0.61 10.49 RME <= 
15% 11.91 RME <= 

15% 12.56 RME <= 
15% 19.82 

15% < 
RME <= 
30% 

10 Arginine HMDB0000517 C6H14N
4O2 174.1117 POS_N

EG 0.61 10.49 RME <= 
15% 11.91 RME <= 

15% 12.56 RME <= 
15% 19.82 

15% < 
RME <= 
30% 

11 Glycine HMDB0000123 C2H5N
O2 75.0320 POS_N

EG 0.62 11.14 RME <= 
15% 14.29 RME <= 

15% 14.95 RME <= 
15% 21.04 

15% < 
RME <= 
30% 

12 Beta-Alanine HMDB0000056 C3H7N
O2 89.0477 POS_N

EG 0.62 11.27 RME <= 
15% 16.09 

15% < 
RME <= 
30% 

15.84 
15% < 
RME <= 
30% 

21.59 
15% < 
RME <= 
30% 

13 Glycylglycine HMDB0011733 C4H8N2
O3 132.0535 POS_N

EG 0.62 11.27 RME <= 
15% 16.09 

15% < 
RME <= 
30% 

15.84 
15% < 
RME <= 
30% 

21.59 
15% < 
RME <= 
30% 

14 Cystathionine HMDB0000099 C7H14N
2O4S 222.0674 POS_N

EG 0.62 11.27 RME <= 
15% 16.09 

15% < 
RME <= 
30% 

15.84 
15% < 
RME <= 
30% 

21.59 
15% < 
RME <= 
30% 

15 Anserine HMDB0000194 C10H16
N4O3 240.1222 POS_N

EG 0.62 11.27 RME <= 
15% 16.09 

15% < 
RME <= 
30% 

15.84 
15% < 
RME <= 
30% 

21.59 
15% < 
RME <= 
30% 
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16 1-Methylhisti-
dine HMDB0000001 C7H11N

3O2 169.0851 POS_N
EG 0.63 11.27 RME <= 

15% 16.09 
15% < 
RME <= 
30% 

15.84 
15% < 
RME <= 
30% 

21.59 
15% < 
RME <= 
30% 

17 Serine HMDB0000187 C3H7N
O3 105.0426 POS_N

EG 0.63 11.27 RME <= 
15% 16.09 

15% < 
RME <= 
30% 

15.84 
15% < 
RME <= 
30% 

21.59 
15% < 
RME <= 
30% 

18 O-Phosphoeth-
anolamine HMDB0000224 C2H8N

O4P 141.0191 POS_N
EG 0.63 11.27 RME <= 

15% 16.09 
15% < 
RME <= 
30% 

15.84 
15% < 
RME <= 
30% 

21.59 
15% < 
RME <= 
30% 

19 Asparagine HMDB0000168 C4H8N2
O3 132.0535 POS_N

EG 0.63 11.50 RME <= 
15% 17.16 

15% < 
RME <= 
30% 

16.67 
15% < 
RME <= 
30% 

21.55 
15% < 
RME <= 
30% 

20 Homocarnosine HMDB0000745 C10H16
N4O3 240.1222 POS_N

EG 0.63 11.64 RME <= 
15% 18.06 

15% < 
RME <= 
30% 

17.52 
15% < 
RME <= 
30% 

21.38 
15% < 
RME <= 
30% 

21 Taurine HMDB0000251 C2H7N
O3S 125.0147 POS_N

EG 0.64 11.61 RME <= 
15% 19.40 

15% < 
RME <= 
30% 

18.31 
15% < 
RME <= 
30% 

21.45 
15% < 
RME <= 
30% 

22 3-methyl histi-
dine HMDB0000479 C7H11N

3O2 169.0851 POS_N
EG 0.64 11.66 RME <= 

15% 18.89 
15% < 
RME <= 
30% 

18.64 
15% < 
RME <= 
30% 

21.75 
15% < 
RME <= 
30% 

23 myo-inositol HMDB0000211 C6H12O
6 180.0634 POS_N

EG 0.64 11.66 RME <= 
15% 18.89 

15% < 
RME <= 
30% 

18.64 
15% < 
RME <= 
30% 

21.75 
15% < 
RME <= 
30% 

24 Alanine HMDB0000161 C3H7N
O2 89.0477 POS_N

EG 0.64 11.73 RME <= 
15% 18.79 

15% < 
RME <= 
30% 

18.83 
15% < 
RME <= 
30% 

21.90 
15% < 
RME <= 
30% 

25 Aspartic acid HMDB0000191 C4H7N
O4 133.0375 POS_N

EG 0.65 11.44 RME <= 
15% 19.41 

15% < 
RME <= 
30% 

18.93 
15% < 
RME <= 
30% 

21.42 
15% < 
RME <= 
30% 

26 Sarcosine HMDB0000271 C3H7N
O2 89.0477 POS_N

EG 0.65 11.44 RME <= 
15% 19.41 

15% < 
RME <= 
30% 

18.93 
15% < 
RME <= 
30% 

21.42 
15% < 
RME <= 
30% 

27 Phosphoserine HMDB0000272 C3H8N
O6P 185.0089 POS_N

EG 0.65 11.23 RME <= 
15% 19.96 

15% < 
RME <= 
30% 

18.96 
15% < 
RME <= 
30% 

20.94 
15% < 
RME <= 
30% 

28 Glutamine HMDB0000641 C5H10N
2O3 146.0691 POS_N

EG 0.66 11.82 RME <= 
15% 19.38 

15% < 
RME <= 
30% 

19.71 
15% < 
RME <= 
30% 

21.50 
15% < 
RME <= 
30% 

29 Homo-L-argi-
nine HMDB0000670 C7H16N

4O2 188.1273 POS_N
EG 0.66 11.82 RME <= 

15% 19.38 
15% < 
RME <= 
30% 

19.71 
15% < 
RME <= 
30% 

21.50 
15% < 
RME <= 
30% 

30 Homoserine HMDB0000719 C4H9N
O3 119.0582 POS_N

EG 0.66 11.72 RME <= 
15% 18.41 

15% < 
RME <= 
30% 

19.71 
15% < 
RME <= 
30% 

21.53 
15% < 
RME <= 
30% 

31 Threonine HMDB0000167 C4H9N
O3 119.0582 POS_N

EG 0.67 11.60 RME <= 
15% 18.62 

15% < 
RME <= 
30% 

20.34 
15% < 
RME <= 
30% 

21.85 
15% < 
RME <= 
30% 

32 ribose-5-P HMDB0001548 C5H11O
8P 230.0192 POS_N

EG 0.67 11.60 RME <= 
15% 18.62 

15% < 
RME <= 
30% 

20.34 
15% < 
RME <= 
30% 

21.85 
15% < 
RME <= 
30% 
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33 4-Hydroxypro-
line HMDB0000725 C5H9N

O3 131.0582 POS_N
EG 0.67 11.33 RME <= 

15% 18.61 
15% < 
RME <= 
30% 

20.48 
15% < 
RME <= 
30% 

21.95 
15% < 
RME <= 
30% 

34 Saccharopine HMDB0000279 C11H20
N2O6 276.1321 POS_N

EG 0.67 11.33 RME <= 
15% 18.61 

15% < 
RME <= 
30% 

20.48 
15% < 
RME <= 
30% 

21.95 
15% < 
RME <= 
30% 

35 Gamma-Amino-
butyric acid HMDB0000112 C4H9N

O2 103.0633 POS_N
EG 0.68 10.83 RME <= 

15% 18.42 
15% < 
RME <= 
30% 

20.80 
15% < 
RME <= 
30% 

22.97 
15% < 
RME <= 
30% 

36 Galactitol HMDB0000107 C6H14O
6 182.0790 POS_N

EG 0.68 9.68 RME <= 
15% 18.29 

15% < 
RME <= 
30% 

21.02 
15% < 
RME <= 
30% 

23.27 
15% < 
RME <= 
30% 

37 O-Acetylserine HMDB0003011 C5H9N
O4 147.0532 POS_N

EG 0.68 9.68 RME <= 
15% 18.29 

15% < 
RME <= 
30% 

21.02 
15% < 
RME <= 
30% 

23.27 
15% < 
RME <= 
30% 

38 Dimethylglycine HMDB0000092 C4H9N
O2 103.0633 POS_N

EG 0.68 9.68 RME <= 
15% 18.29 

15% < 
RME <= 
30% 

21.02 
15% < 
RME <= 
30% 

23.27 
15% < 
RME <= 
30% 

39 Glycerol 3-phos-
phate HMDB0000126 C3H9O6

P 172.0137 POS_N
EG 0.68 9.68 RME <= 

15% 18.29 
15% < 
RME <= 
30% 

21.02 
15% < 
RME <= 
30% 

23.27 
15% < 
RME <= 
30% 

40 Glutamic acid HMDB0000148 C5H9N
O4 147.0532 POS_N

EG 0.68 9.68 RME <= 
15% 18.29 

15% < 
RME <= 
30% 

21.02 
15% < 
RME <= 
30% 

23.27 
15% < 
RME <= 
30% 

41 
N-
monomethylarg-
inine 

HMDB0029416 C7H16N
4O2 188.1273 POS_N

EG 0.68 9.49 RME <= 
15% 17.74 

15% < 
RME <= 
30% 

21.11 
15% < 
RME <= 
30% 

23.74 
15% < 
RME <= 
30% 

42 5-Ami-
nolevulinic acid HMDB0001149 C5H9N

O3 131.0582 POS_N
EG 0.68 9.49 RME <= 

15% 17.74 
15% < 
RME <= 
30% 

21.11 
15% < 
RME <= 
30% 

23.74 
15% < 
RME <= 
30% 

43 Mannitol HMDB0000765 C6H14O
6 182.0790 POS_N

EG 0.69 9.55 RME <= 
15% 16.79 

15% < 
RME <= 
30% 

20.65 
15% < 
RME <= 
30% 

24.23 
15% < 
RME <= 
30% 

44 Sorbitol HMDB0000247 C6H14O
6 182.0790 POS_N

EG 0.69 9.55 RME <= 
15% 16.79 

15% < 
RME <= 
30% 

20.65 
15% < 
RME <= 
30% 

24.23 
15% < 
RME <= 
30% 

45 Guanidineacetic 
acid HMDB0000128 C3H7N3

O2 117.0538 POS_N
EG 0.69 9.65 RME <= 

15% 16.92 
15% < 
RME <= 
30% 

20.88 
15% < 
RME <= 
30% 

24.17 
15% < 
RME <= 
30% 

46 xylitol HMDB0002917 C5H12O
5 152.0685 POS_N

EG 0.70 9.72 RME <= 
15% 15.34 

15% < 
RME <= 
30% 

20.15 
15% < 
RME <= 
30% 

24.13 
15% < 
RME <= 
30% 

47 Citrulline HMDB0000904 C6H13N
3O3 175.0957 POS_N

EG 0.70 9.75 RME <= 
15% 14.70 RME <= 

15% 19.34 
15% < 
RME <= 
30% 

24.48 
15% < 
RME <= 
30% 

48 D-Gluconate HMDB0000625 C6H12O
7 196.0583 POS_N

EG 0.70 9.75 RME <= 
15% 14.70 RME <= 

15% 19.34 
15% < 
RME <= 
30% 

24.48 
15% < 
RME <= 
30% 
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49 Cysteine HMDB0000574 C3H7N
O2S 121.0198 POS_N

EG 0.70 9.75 RME <= 
15% 14.70 RME <= 

15% 19.34 
15% < 
RME <= 
30% 

24.48 
15% < 
RME <= 
30% 

50 Methionine sul-
foxide HMDB0002005 C5H11N

O3S 165.0460 POS_N
EG 0.71 9.78 RME <= 

15% 13.98 RME <= 
15% 18.38 

15% < 
RME <= 
30% 

24.80 
15% < 
RME <= 
30% 

51 Argininosuccinic 
acid HMDB0000052 C10H18

N4O6 290.1226 POS_N
EG 0.71 9.96 RME <= 

15% 14.12 RME <= 
15% 17.73 

15% < 
RME <= 
30% 

24.73 
15% < 
RME <= 
30% 

52 Guanidinosuc-
cinic acid (GSA) HMDB0003157 C5H9N3

O4 175.0593 POS_N
EG 0.73 8.89 RME <= 

15% 14.15 RME <= 
15% 13.25 RME <= 

15% 22.89 
15% < 
RME <= 
30% 

53 Allantoin HMDB0000462 C4H6N4
O3 158.0440 POS_N

EG 0.73 8.89 RME <= 
15% 14.15 RME <= 

15% 13.25 RME <= 
15% 22.89 

15% < 
RME <= 
30% 

54 taurocyamine HMDB0003584 C3H9N3
O3S 167.0365 POS_N

EG 0.73 8.89 RME <= 
15% 14.15 RME <= 

15% 13.25 RME <= 
15% 22.89 

15% < 
RME <= 
30% 

55 Norepinephrine HMDB0000216 C8H11N
O3 169.0739 POS_N

EG 0.73 8.36 RME <= 
15% 14.38 RME <= 

15% 12.83 RME <= 
15% 23.01 

15% < 
RME <= 
30% 

56 creatinine HMDB0000562 C4H7N3
O 113.0589 POS_N

EG 0.74 7.93 RME <= 
15% 14.06 RME <= 

15% 12.61 RME <= 
15% 22.87 

15% < 
RME <= 
30% 

57 Asymmetric di-
methylarginine HMDB0001539 C8H18N

4O2 202.1430 POS_N
EG 0.75 6.62 RME <= 

15% 13.57 RME <= 
15% 12.05 RME <= 

15% 23.16 
15% < 
RME <= 
30% 

58 Epinephrine HMDB0000068 C9H13N
O3 183.0895 POS_N

EG 0.75 6.20 RME <= 
15% 13.76 RME <= 

15% 11.77 RME <= 
15% 23.51 

15% < 
RME <= 
30% 

59 3-Aminoisobuta-
noic acid HMDB0003911 C4H9N

O2 103.0633 POS_N
EG 0.75 6.20 RME <= 

15% 13.76 RME <= 
15% 11.77 RME <= 

15% 23.51 
15% < 
RME <= 
30% 

60 Aminoadipic 
acid HMDB0000510 C6H11N

O4 161.0688 POS_N
EG 0.75 6.20 RME <= 

15% 13.76 RME <= 
15% 11.77 RME <= 

15% 23.51 
15% < 
RME <= 
30% 

61 Homocysteine HMDB0000742 C4H9N
O2S 135.0354 POS_N

EG 0.75 6.20 RME <= 
15% 13.76 RME <= 

15% 11.77 RME <= 
15% 23.51 

15% < 
RME <= 
30% 

62 Methylcysteine HMDB0002108 C4H9N
O2S 135.0354 POS_N

EG 0.75 6.20 RME <= 
15% 13.76 RME <= 

15% 11.77 RME <= 
15% 23.51 

15% < 
RME <= 
30% 

63 Alpha-aminobu-
tyric acid HMDB0000452 C4H9N

O2 103.0633 POS_N
EG 0.75 5.89 RME <= 

15% 13.36 RME <= 
15% 11.36 RME <= 

15% 23.36 
15% < 
RME <= 
30% 

64 N-Acetylneu-
raminic acid HMDB0000230 C11H19

NO9 309.1060 POS_N
EG 0.76 5.09 RME <= 

15% 13.16 RME <= 
15% 10.50 RME <= 

15% 24.51 
15% < 
RME <= 
30% 

65 Thiamine (vita-
min B1) HMDB0000235 C12H17

N4OS 265.1123 POS_N
EG 0.77 4.97 RME <= 

15% 12.93 RME <= 
15% 10.16 RME <= 

15% 25.56 
15% < 
RME <= 
30% 
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66 L_Pipecolic acid HMDB0000716 C6H11N
O2 129.0790 POS_N

EG 0.77 5.07 RME <= 
15% 13.91 RME <= 

15% 10.24 RME <= 
15% 26.41 

15% < 
RME <= 
30% 

67 creatine HMDB0000064 C4H9N3
O2 131.0695 POS_N

EG 0.78 5.69 RME <= 
15% 16.19 

15% < 
RME <= 
30% 

10.22 RME <= 
15% 26.81 

15% < 
RME <= 
30% 

68 Proline HMDB0000162 C5H9N
O2 115.0633 POS_N

EG 0.78 6.01 RME <= 
15% 22.00 

15% < 
RME <= 
30% 

10.97 RME <= 
15% 27.21 

15% < 
RME <= 
30% 

69 Malonylcarnitine HMDB0002095 C10H17
NO6 247.1056 POS_N

EG 0.80 8.05 RME <= 
15% 29.87 

15% < 
RME <= 
30% 

12.88 RME <= 
15% 27.55 

15% < 
RME <= 
30% 

70 Cytosine HMDB0000630 C4H5N3
O 111.0433 POS_N

EG 0.81 11.12 RME <= 
15% 38.97 RME > 

30% 14.60 RME <= 
15% 27.37 

15% < 
RME <= 
30% 

71 N2-gamma-Glu-
tamylglutamine HMDB0011738 C10H17

N3O6 275.1117 POS_N
EG 0.82 15.28 

15% < 
RME <= 
30% 

53.67 RME > 
30% 16.51 

15% < 
RME <= 
30% 

27.27 
15% < 
RME <= 
30% 

72 Dopamine HMDB0000073 C8H11N
O2 153.0790 POS_N

EG 0.82 15.28 
15% < 
RME <= 
30% 

53.67 RME > 
30% 16.51 

15% < 
RME <= 
30% 

27.27 
15% < 
RME <= 
30% 

73 3-Guanidinopro-
panoate HMDB0013222 C4H9N3

O2 131.0695 POS_N
EG 0.83 15.93 

15% < 
RME <= 
30% 

56.68 RME > 
30% 16.58 

15% < 
RME <= 
30% 

26.73 
15% < 
RME <= 
30% 

74 Homocitrulline HMDB0000679 C7H15N
3O3 189.1113 POS_N

EG 0.84 18.58 
15% < 
RME <= 
30% 

63.45 RME > 
30% 16.52 

15% < 
RME <= 
30% 

25.73 
15% < 
RME <= 
30% 

75 Symmetric di-
methylarginine HMDB0003334 C8H18N

4O2 202.1430 POS_N
EG 0.90 9.46 RME <= 

15% 33.47 RME > 
30% 12.39 RME <= 

15% 19.27 
15% < 
RME <= 
30% 

76 5-Aminovaleric 
acid HMDB0003355 C5H11N

O2 117.0790 POS_N
EG 0.91 7.13 RME <= 

15% 29.54 
15% < 
RME <= 
30% 

11.84 RME <= 
15% 17.67 

15% < 
RME <= 
30% 

77 Dihydroorotic 
acid HMDB0000528 C5H6N2

O4 158.0328 POS_N
EG 1.00 3.38 RME <= 

15% 6.70 RME <= 
15% 11.97 RME <= 

15% 11.13 RME <= 
15% 

78 isocitric acid HMDB0000193 C6H8O7 192.0270 POS_N
EG 1.01 2.90 RME <= 

15% 5.49 RME <= 
15% 11.92 RME <= 

15% 11.25 RME <= 
15% 

79 N-Acetylserine HMDB0002931 C5H9N
O4 147.0532 POS_N

EG 1.05 3.70 RME <= 
15% 4.74 RME <= 

15% 10.47 RME <= 
15% 11.70 RME <= 

15% 

80 Orotic Acid HMDB0000226 C5H4N2
O4 156.0171 POS_N

EG 1.08 3.42 RME <= 
15% 5.37 RME <= 

15% 10.97 RME <= 
15% 12.56 RME <= 

15% 

81 Valine HMDB0000883 C5H11N
O2 117.0790 POS_N

EG 1.08 3.50 RME <= 
15% 5.58 RME <= 

15% 11.00 RME <= 
15% 12.68 RME <= 

15% 

82 Glycylproline HMDB0000721 C7H12N
2O3 172.0848 POS_N

EG 1.18 3.66 RME <= 
15% 17.41 

15% < 
RME <= 
30% 

8.37 RME <= 
15% 13.11 RME <= 

15% 

83 gamma-Glu-
tamylalanine HMDB0006248 C8H14N

2O5 218.0903 POS_N
EG 1.19 3.73 RME <= 

15% 20.46 
15% < 
RME <= 
30% 

8.17 RME <= 
15% 14.92 RME <= 

15% 
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84 Pipecolic acid HMDB0000070 C6H11N
O2 129.0790 POS_N

EG 1.19 4.15 RME <= 
15% 27.12 

15% < 
RME <= 
30% 

7.96 RME <= 
15% 19.42 

15% < 
RME <= 
30% 

85 Picolinic acid HMDB0002243 C6H5N
O2 123.0320 POS_N

EG 1.24 5.15 RME <= 
15% 62.59 RME > 

30% 6.60 RME <= 
15% 47.13 RME > 

30% 

86 lactic acid HMDB0000190 C3H6O3 90.0317 POS_N
EG 1.25 5.24 RME <= 

15% 60.52 RME > 
30% 6.19 RME <= 

15% 46.11 RME > 
30% 

87 4-guanidinobu-
tyric acid HMDB0003464 C5H11N

3O2 145.0851 POS_N
EG 1.25 5.24 RME <= 

15% 60.52 RME > 
30% 6.19 RME <= 

15% 46.11 RME > 
30% 

88 Adenine HMDB0000034 C5H5N5 135.0545 POS_N
EG 1.29 5.53 RME <= 

15% 41.83 RME > 
30% 6.02 RME <= 

15% 29.55 
15% < 
RME <= 
30% 

89 guanine HMDB0000132 C5H5N5
O 151.0494 POS_N

EG 1.31 5.07 RME <= 
15% 29.50 

15% < 
RME <= 
30% 

7.51 RME <= 
15% 22.28 

15% < 
RME <= 
30% 

90 Uracil HMDB0000300 C4H4N2
O2 112.0273 POS_N

EG 1.32 4.64 RME <= 
15% 23.12 

15% < 
RME <= 
30% 

8.47 RME <= 
15% 20.47 

15% < 
RME <= 
30% 

91 cytidine HMDB0000089 C9H13N
3O5 243.0855 POS_N

EG 1.33 4.29 RME <= 
15% 21.63 

15% < 
RME <= 
30% 

8.67 RME <= 
15% 20.37 

15% < 
RME <= 
30% 

92 N-Acetylgluta-
mine HMDB0006029 C7H12N

2O4 188.0797 POS_N
EG 1.33 3.97 RME <= 

15% 18.93 
15% < 
RME <= 
30% 

9.20 RME <= 
15% 19.70 

15% < 
RME <= 
30% 

93 Nicotinic acid HMDB0001488 C6H5N
O2 123.0320 POS_N

EG 1.34 3.35 RME <= 
15% 15.91 

15% < 
RME <= 
30% 

9.66 RME <= 
15% 19.89 

15% < 
RME <= 
30% 

94 Pseudouridine HMDB0000767 C9H12N
2O6 244.0695 POS_N

EG 1.35 3.21 RME <= 
15% 13.23 RME <= 

15% 9.25 RME <= 
15% 19.64 

15% < 
RME <= 
30% 

95 Methionine HMDB0000696 C5H11N
O2S 149.0510 POS_N

EG 1.35 3.21 RME <= 
15% 13.23 RME <= 

15% 9.25 RME <= 
15% 19.64 

15% < 
RME <= 
30% 

96 alpha-N-Acety-
larginine HMDB0004620 C8H16N

4O3 216.1222 POS_N
EG 1.38 2.97 RME <= 

15% 9.03 RME <= 
15% 8.39 RME <= 

15% 16.75 
15% < 
RME <= 
30% 

97 neopterin HMDB0000845 C9H11N
5O4 253.0811 POS_N

EG 1.42 3.02 RME <= 
15% 5.63 RME <= 

15% 6.28 RME <= 
15% 10.98 RME <= 

15% 

98 urocanic acid HMDB0000301 C6H6N2
O2 138.0429 POS_N

EG 1.50 3.68 RME <= 
15% 4.76 RME <= 

15% 4.62 RME <= 
15% 7.59 RME <= 

15% 

99 Quinolinic acid HMDB0000232 C7H5N
O4 167.0219 POS_N

EG 1.52 3.12 RME <= 
15% 4.60 RME <= 

15% 4.69 RME <= 
15% 8.13 RME <= 

15% 

100 Pyridoxal HMDB0001545 C8H9N
O3 167.0582 POS_N

EG 1.52 3.12 RME <= 
15% 4.60 RME <= 

15% 4.69 RME <= 
15% 8.13 RME <= 

15% 

101 Glutathione HMDB0000125 C10H17
N3O6S 307.0838 POS_N

EG 1.52 3.12 RME <= 
15% 4.60 RME <= 

15% 4.69 RME <= 
15% 8.13 RME <= 

15% 

102 Citric acid HMDB0000094 C6H8O7 192.0270 POS_N
EG 1.60 27.28 

15% < 
RME <= 
30% 

66.09 RME > 
30% 6.93 RME <= 

15% 26.57 
15% < 
RME <= 
30% 
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103 uric acid HMDB0000289 C5H4N4
O3 168.0283 POS_N

EG 1.70 8.37 RME <= 
15% 33.43 RME > 

30% 4.47 RME <= 
15% 7.90 RME <= 

15% 

104 hypoxanthine HMDB0000157 C5H4N4
O 136.0385 POS_N

EG 1.83 3.77 RME <= 
15% 13.53 RME <= 

15% 14.60 RME <= 
15% 23.11 

15% < 
RME <= 
30% 

105 5-oxoproline(py-
roglutamic acid) HMDB0000267 C5H7N

O3 129.0426 POS_N
EG 1.85 3.52 RME <= 

15% 12.97 RME <= 
15% 12.46 RME <= 

15% 16.82 
15% < 
RME <= 
30% 

106 cis-Aconitic acid HMDB0000072 C6H6O6 174.0164 POS_N
EG 1.99 3.19 RME <= 

15% 7.81 RME <= 
15% 6.15 RME <= 

15% 13.61 RME <= 
15% 

107 pyridoxine (vita-
min B6) HMDB0000239 C8H11N

O3 169.0739 POS_N
EG 2.11 3.29 RME <= 

15% 4.66 RME <= 
15% 5.66 RME <= 

15% 6.85 RME <= 
15% 

108 Isoleucine HMDB0000172 C6H13N
O2 131.0946 POS_N

EG 2.26 3.04 RME <= 
15% 4.38 RME <= 

15% 6.91 RME <= 
15% 20.57 

15% < 
RME <= 
30% 

109 xanthine HMDB0000292 C5H4N4
O2 152.0334 POS_N

EG 2.27 3.46 RME <= 
15% 4.62 RME <= 

15% 6.80 RME <= 
15% 20.25 

15% < 
RME <= 
30% 

110 3-hydroxy-
butyric acid HMDB0000357 C4H8O3 104.0473 POS_N

EG 2.38 3.95 RME <= 
15% 3.97 RME <= 

15% 13.82 RME <= 
15% 17.64 

15% < 
RME <= 
30% 

111 Tyrosine HMDB0000158 C9H11N
O3 181.0739 POS_N

EG 2.41 3.88 RME <= 
15% 3.57 RME <= 

15% 9.85 RME <= 
15% 13.43 RME <= 

15% 

112 Leucine HMDB0000687 C6H13N
O2 131.0946 POS_N

EG 2.43 3.74 RME <= 
15% 3.29 RME <= 

15% 7.99 RME <= 
15% 9.42 RME <= 

15% 

113 trans-Aconitic 
acid HMDB0000958 C6H6O6 174.0164 POS_N

EG 2.45 3.56 RME <= 
15% 3.39 RME <= 

15% 6.66 RME <= 
15% 7.43 RME <= 

15% 

114 uridine HMDB0000296 C9H12N
2O6 244.0695 POS_N

EG 2.72 3.71 RME <= 
15% 2.69 RME <= 

15% 6.47 RME <= 
15% 5.77 RME <= 

15% 

115 2,5-Furandicar-
boxylic acid HMDB0004812 C6H4O5 156.0059 POS_N

EG 2.80 3.24 RME <= 
15% 3.50 RME <= 

15% 4.37 RME <= 
15% 5.41 RME <= 

15% 

116 p-hydroxyman-
delate HMDB0000822 C8H8O4 168.0423 POS_N

EG 2.88 3.27 RME <= 
15% 3.03 RME <= 

15% 4.13 RME <= 
15% 5.00 RME <= 

15% 

117 hydroquinone HMDB0002434 C6H6O2 110.0368 POS_N
EG 2.90 3.66 RME <= 

15% 2.99 RME <= 
15% 3.85 RME <= 

15% 5.23 RME <= 
15% 

118 2-Deoxyuridine HMDB0000012 C9H12N
2O5 228.0746 POS_N

EG 2.94 3.78 RME <= 
15% 2.98 RME <= 

15% 4.48 RME <= 
15% 5.37 RME <= 

15% 

119 adenosine HMDB0000050 C10H13
N5O4 267.0968 POS_N

EG 2.95 3.57 RME <= 
15% 2.95 RME <= 

15% 4.61 RME <= 
15% 5.40 RME <= 

15% 

120 2-Methylguano-
sine HMDB0005862 C11H15

N5O5 297.1073 POS_N
EG 2.95 3.57 RME <= 

15% 2.95 RME <= 
15% 4.61 RME <= 

15% 5.40 RME <= 
15% 

121 
cAMP (Adeno-
sine 3,5-cyclic 
monophosphate) 

HMDB0000058 C10H12
N5O6P 329.0525 POS_N

EG 2.95 3.57 RME <= 
15% 2.95 RME <= 

15% 4.61 RME <= 
15% 5.40 RME <= 

15% 

122 
S-Adenosylho-
mocysteine 
(SAH) 

HMDB0000939 C14H20
N6O5S 384.1216 POS_N

EG 2.95 3.57 RME <= 
15% 2.95 RME <= 

15% 4.61 RME <= 
15% 5.40 RME <= 

15% 

123 2-deoxyguano-
sine HMDB0000085 C10H13

N5O4 267.0968 POS_N
EG 2.95 3.57 RME <= 

15% 2.95 RME <= 
15% 4.61 RME <= 

15% 5.40 RME <= 
15% 
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124 ketoadipic acid HMDB0000225 C6H8O5 160.0372 POS_N
EG 2.95 3.49 RME <= 

15% 2.91 RME <= 
15% 5.02 RME <= 

15% 5.41 RME <= 
15% 

125 Guanosine HMDB0000133 C10H13
N5O5 283.0917 POS_N

EG 2.95 3.49 RME <= 
15% 2.91 RME <= 

15% 5.02 RME <= 
15% 5.41 RME <= 

15% 

126 inosine HMDB0000195 C10H12
N4O5 268.0808 POS_N

EG 2.95 3.49 RME <= 
15% 2.91 RME <= 

15% 5.02 RME <= 
15% 5.41 RME <= 

15% 

127 2-deoxyinosine HMDB0000071 C10H12
N4O4 252.0859 POS_N

EG 2.95 3.49 RME <= 
15% 2.91 RME <= 

15% 5.02 RME <= 
15% 5.41 RME <= 

15% 

128 Methyldopa HMDB0011754 C10H13
NO4 211.0845 POS_N

EG 2.95 3.49 RME <= 
15% 2.91 RME <= 

15% 5.02 RME <= 
15% 5.41 RME <= 

15% 

129 thymine HMDB0000262 C5H6N2
O2 126.0429 POS_N

EG 2.96 3.47 RME <= 
15% 3.16 RME <= 

15% 7.46 RME <= 
15% 5.97 RME <= 

15% 

130 2-Thiocytidine 
dihydrate 

CHEBI:19780; 
PUBCHEM 
CID:3011746 

C9H13N
3O4S 259.0627 POS_N

EG 2.96 3.47 RME <= 
15% 3.16 RME <= 

15% 7.46 RME <= 
15% 5.97 RME <= 

15% 

131 
N1-Methyl-2-
pyridone-5-car-
boxamide 

HMDB0004193 C7H8N2
O2 152.0586 POS_N

EG 2.96 3.47 RME <= 
15% 3.16 RME <= 

15% 7.46 RME <= 
15% 5.97 RME <= 

15% 

132 Xanthosine HMDB0000299 C10H12
N4O6 284.0757 POS_N

EG 2.96 3.47 RME <= 
15% 3.16 RME <= 

15% 7.46 RME <= 
15% 5.97 RME <= 

15% 

133 
N1-Methyl-4-
pyridone-3-car-
boxamide 

HMDB0004194 C7H8N2
O2 152.0586 POS_N

EG 2.97 3.42 RME <= 
15% 3.22 RME <= 

15% 8.68 RME <= 
15% 6.67 RME <= 

15% 

134 4-Pyridoxic acid HMDB0000017 C8H9N
O4 183.0532 POS_N

EG 2.97 3.42 RME <= 
15% 3.22 RME <= 

15% 8.68 RME <= 
15% 6.67 RME <= 

15% 

135 3-Methoxytyro-
sine HMDB0001434 C10H13

NO4 211.0845 POS_N
EG 2.97 3.09 RME <= 

15% 3.32 RME <= 
15% 11.03 RME <= 

15% 9.10 RME <= 
15% 

136 8-Hydroxy-2-de-
oxyguanosine HMDB0003333 C10H13

N5O5 283.0917 POS_N
EG 2.97 3.09 RME <= 

15% 3.32 RME <= 
15% 11.03 RME <= 

15% 9.10 RME <= 
15% 

137 1-methylurate HMDB0003099 C6H6N4
O3 182.0440 POS_N

EG 2.97 3.09 RME <= 
15% 3.32 RME <= 

15% 11.03 RME <= 
15% 9.10 RME <= 

15% 

138 2-O-Methyl-
adenosine HMDB0004326 C11H15

N5O4 281.1124 POS_N
EG 2.97 3.09 RME <= 

15% 3.32 RME <= 
15% 11.03 RME <= 

15% 9.10 RME <= 
15% 

139 7-methylxan-
thine HMDB0001991 C6H6N4

O2 166.0491 POS_N
EG 2.98 3.18 RME <= 

15% 3.32 RME <= 
15% 12.32 RME <= 

15% 9.92 RME <= 
15% 

140 5-Methyluridine HMDB0000884 C10H14
N2O6 258.0852 POS_N

EG 2.98 3.08 RME <= 
15% 3.50 RME <= 

15% 13.27 RME <= 
15% 11.25 RME <= 

15% 

141 5-Hydroxy-L-
tryptophan HMDB0000472 C11H12

N2O3 220.0848 POS_N
EG 2.98 3.08 RME <= 

15% 3.50 RME <= 
15% 13.27 RME <= 

15% 11.25 RME <= 
15% 

142 Serotonin HMDB0000259 C10H12
N2O 176.0950 POS_N

EG 2.98 3.21 RME <= 
15% 3.57 RME <= 

15% 14.15 RME <= 
15% 12.23 RME <= 

15% 

143 Thymidine HMDB0000273 C10H14
N2O5 242.0903 POS_N

EG 3.02 3.39 RME <= 
15% 3.72 RME <= 

15% 16.62 
15% < 
RME <= 
30% 

21.56 
15% < 
RME <= 
30% 

144 N4-Acetylcyti-
dine HMDB0005923 C11H15

N3O6 285.0961 POS_N
EG 3.02 3.39 RME <= 

15% 3.72 RME <= 
15% 16.62 

15% < 
RME <= 
30% 

21.56 
15% < 
RME <= 
30% 

145 N2,N2-Dime-
thylguanosine HMDB0004824 C12H17

N5O5 311.1230 POS_N
EG 3.05 3.30 RME <= 

15% 3.33 RME <= 
15% 8.29 RME <= 

15% 20.43 
15% < 
RME <= 
30% 
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146 

(3-(3-Hydroxy-
phenyl)-3-hy-
droxypropanoic 
acid) HPHPA 

HMDB0002643 C9H10O
4 182.0579 POS_N

EG 3.05 3.30 RME <= 
15% 3.33 RME <= 

15% 8.29 RME <= 
15% 20.43 

15% < 
RME <= 
30% 

147 Kynurenine HMDB0000684 C10H12
N2O3 208.0848 POS_N

EG 3.05 3.28 RME <= 
15% 3.24 RME <= 

15% 7.60 RME <= 
15% 19.68 

15% < 
RME <= 
30% 

148 Phenylalanine HMDB0000159 C9H11N
O2 165.0790 POS_N

EG 3.06 3.72 RME <= 
15% 3.26 RME <= 

15% 7.10 RME <= 
15% 19.04 

15% < 
RME <= 
30% 

149 1,3-dimethylu-
rate HMDB0001857 C7H8N4

O3 196.0596 POS_N
EG 3.07 3.86 RME <= 

15% 3.10 RME <= 
15% 7.47 RME <= 

15% 18.48 
15% < 
RME <= 
30% 

150 Isobutyrylgly-
cine HMDB0000730 C6H11N

O3 145.0739 POS_N
EG 3.09 4.68 RME <= 

15% 3.12 RME <= 
15% 9.73 RME <= 

15% 14.60 RME <= 
15% 

151 
Pantothenic acid 
ï¼ˆvitamine 
B5ï¼‰ 

HMDB0000210 C9H17N
O5 219.1107 POS_N

EG 3.10 5.14 RME <= 
15% 2.93 RME <= 

15% 10.76 RME <= 
15% 13.22 RME <= 

15% 

152 1,7-dimethylu-
rate HMDB0011103 C7H8N4

O3 196.0596 POS_N
EG 3.16 3.86 RME <= 

15% 3.23 RME <= 
15% 6.50 RME <= 

15% 16.81 
15% < 
RME <= 
30% 

153 n-methylnicotin-
amide HMDB0003152 C7H8N2

O 136.0637 POS_N
EG 3.17 3.70 RME <= 

15% 3.28 RME <= 
15% 6.16 RME <= 

15% 17.41 
15% < 
RME <= 
30% 

154 2-Furoylglycine HMDB0000439 C7H7N
O4 169.0375 POS_N

EG 3.20 3.43 RME <= 
15% 3.18 RME <= 

15% 5.30 RME <= 
15% 17.59 

15% < 
RME <= 
30% 

155 4-hydroxyhippu-
rate HMDB0013678 C9H9N

O4 195.0532 POS_N
EG 3.21 3.17 RME <= 

15% 2.80 RME <= 
15% 5.67 RME <= 

15% 15.21 
15% < 
RME <= 
30% 

156 paraxanthine HMDB0001860 C7H8N4
O2 180.0647 POS_N

EG 3.28 3.03 RME <= 
15% 3.17 RME <= 

15% 5.20 RME <= 
15% 11.14 RME <= 

15% 

157 Xanthurenic acid HMDB0000881 C10H7N
O4 205.0375 POS_N

EG 3.28 3.03 RME <= 
15% 3.17 RME <= 

15% 5.20 RME <= 
15% 11.14 RME <= 

15% 

158 theophylline HMDB0001889 C7H8N4
O2 180.0647 POS_N

EG 3.30 3.41 RME <= 
15% 3.30 RME <= 

15% 5.35 RME <= 
15% 10.93 RME <= 

15% 

159 Tryptophan HMDB0000929 C11H12
N2O2 204.0899 POS_N

EG 3.31 3.86 RME <= 
15% 3.39 RME <= 

15% 5.94 RME <= 
15% 10.03 RME <= 

15% 

160 FAD HMDB0001248 
C27H33
N9O15P
2 

785.1571 POS_N
EG 3.32 3.84 RME <= 

15% 3.55 RME <= 
15% 6.07 RME <= 

15% 9.96 RME <= 
15% 

161 3-Hydroxyan-
thranilic Acid HMDB0001476 C7H7N

O3 153.0426 POS_N
EG 3.33 3.94 RME <= 

15% 3.40 RME <= 
15% 6.32 RME <= 

15% 10.16 RME <= 
15% 

162 3-hydroxyhippu-
rate HMDB0006116 C9H9N

O4 195.0532 POS_N
EG 3.35 3.94 RME <= 

15% 3.25 RME <= 
15% 6.98 RME <= 

15% 11.55 RME <= 
15% 

163 3-Methylglutaric 
Acid HMDB0000752 C6H10O

4 146.0579 POS_N
EG 3.36 4.13 RME <= 

15% 3.27 RME <= 
15% 7.70 RME <= 

15% 11.97 RME <= 
15% 

164 2-Methylglutar-
icacid HMDB0000422 C6H10O

4 146.0579 POS_N
EG 3.37 4.05 RME <= 

15% 3.34 RME <= 
15% 7.60 RME <= 

15% 12.42 RME <= 
15% 
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165 N-Acetyl-L-ty-
rosine HMDB0000866 C11H13

NO4 223.0845 POS_N
EG 3.43 3.14 RME <= 

15% 3.77 RME <= 
15% 6.78 RME <= 

15% 16.71 
15% < 
RME <= 
30% 

166 kynurenic acid HMDB0000715 C10H7N
O3 189.0426 POS_N

EG 3.46 3.09 RME <= 
15% 3.57 RME <= 

15% 7.43 RME <= 
15% 15.53 

15% < 
RME <= 
30% 

167 Vanillactic acid HMDB0000913 C10H12
O5 212.0685 POS_N

EG 3.56 3.48 RME <= 
15% 3.94 RME <= 

15% 6.63 RME <= 
15% 12.43 RME <= 

15% 

168 quinaldic acid HMDB0000842 C10H7N
O2 173.0477 POS_N

EG 3.64 3.41 RME <= 
15% 3.09 RME <= 

15% 7.19 RME <= 
15% 12.56 RME <= 

15% 

169 5-hydroxyin-
doleacetic acid HMDB0000763 C10H9N

O3 191.0582 POS_N
EG 3.70 3.43 RME <= 

15% 10.20 RME <= 
15% 5.80 RME <= 

15% 11.48 RME <= 
15% 

170 indoxyl sulfuric 
acid HMDB0000682 C8H7N

O4S 213.0096 POS_N
EG 3.70 3.43 RME <= 

15% 10.20 RME <= 
15% 5.80 RME <= 

15% 11.48 RME <= 
15% 

171 4-Hydroxyben-
zoic acid HMDB0000500 C7H6O3 138.0317 POS_N

EG 3.70 3.27 RME <= 
15% 10.60 RME <= 

15% 5.83 RME <= 
15% 11.33 RME <= 

15% 

172 indoxyl gluco-
side (Indican) HMDB0061755 C14H17

NO6 295.1056 POS_N
EG 3.71 3.27 RME <= 

15% 10.74 RME <= 
15% 5.53 RME <= 

15% 11.08 RME <= 
15% 

173 riboflavin (vita-
min B2) HMDB0000244 C17H20

N4O6 376.1383 POS_N
EG 3.72 3.07 RME <= 

15% 11.15 RME <= 
15% 4.83 RME <= 

15% 10.82 RME <= 
15% 

174 Pyrocatechol HMDB0000957 C6H6O2 110.0368 POS_N
EG 3.72 2.98 RME <= 

15% 11.08 RME <= 
15% 4.96 RME <= 

15% 10.82 RME <= 
15% 

175 Indoxyl glucu-
ronide HMDB0010319 C14H15

NO7 309.0849 POS_N
EG 3.77 2.88 RME <= 

15% 6.25 RME <= 
15% 4.66 RME <= 

15% 14.55 RME <= 
15% 

176 
4-hydroxy-
phenylacetic 
acid 

HMDB0000020 C8H8O3 152.0473 POS_N
EG 3.80 3.59 RME <= 

15% 3.49 RME <= 
15% 6.50 RME <= 

15% 16.00 
15% < 
RME <= 
30% 

177 
2-AMI-
NOCAPRYLIC 
ACID 

HMDB0000991 C8H17N
O2 159.1259 POS_N

EG 3.81 3.69 RME <= 
15% 3.46 RME <= 

15% 7.39 RME <= 
15% 15.89 

15% < 
RME <= 
30% 

178 Phenylacetylglu-
tamine HMDB0006344 C13H16

N2O4 264.1110 POS_N
EG 3.82 3.64 RME <= 

15% 3.38 RME <= 
15% 7.57 RME <= 

15% 14.72 RME <= 
15% 

179 biotin HMDB0000030 C10H16
N2O3S 244.0882 POS_N

EG 3.85 3.01 RME <= 
15% 3.06 RME <= 

15% 7.38 RME <= 
15% 13.63 RME <= 

15% 

180 Vanillic acid HMDB0000484 C8H8O4 168.0423 POS_N
EG 3.87 2.83 RME <= 

15% 3.07 RME <= 
15% 6.15 RME <= 

15% 13.61 RME <= 
15% 

181 hippuric acid HMDB0000714 C9H9N
O3 179.0582 POS_N

EG 3.87 2.83 RME <= 
15% 3.07 RME <= 

15% 6.15 RME <= 
15% 13.61 RME <= 

15% 

182 Syringic acid HMDB0002085 C9H10O
5 198.0528 POS_N

EG 3.91 2.58 RME <= 
15% 3.08 RME <= 

15% 6.83 RME <= 
15% 20.68 

15% < 
RME <= 
30% 

183 3-hydroxybenzo-
ate HMDB0002466 C7H6O3 138.0317 POS_N

EG 3.93 2.95 RME <= 
15% 3.50 RME <= 

15% 10.23 RME <= 
15% 33.94 RME > 

30% 

184 
3-hydroxy-
phenylacetic 
acid 

HMDB0000440 C8H8O3 152.0473 POS_N
EG 3.97 3.08 RME <= 

15% 3.97 RME <= 
15% 12.28 RME <= 

15% 41.02 RME > 
30% 

185 p-Cresol glucu-
ronide HMDB0011686 C13H16

O7 284.0896 POS_N
EG 4.12 2.53 RME <= 

15% 3.67 RME <= 
15% 5.50 RME <= 

15% 18.06 
15% < 
RME <= 
30% 
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186 
2-Hydroxy-
phenylacetic 
acid 

HMDB0000669 C8H8O3 152.0473 POS_N
EG 4.13 2.31 RME <= 

15% 3.87 RME <= 
15% 5.74 RME <= 

15% 18.16 
15% < 
RME <= 
30% 

187 
4-hydroxy-
phenylpropionic 
acid 

HMDB0002199 C9H10O
3 166.0630 POS_N

EG 4.14 2.13 RME <= 
15% 3.81 RME <= 

15% 5.90 RME <= 
15% 17.71 

15% < 
RME <= 
30% 

188 p-cresol sulfate HMDB0011635 C7H8O4
S 188.0143 POS_N

EG 4.16 2.47 RME <= 
15% 4.51 RME <= 

15% 6.26 RME <= 
15% 16.40 

15% < 
RME <= 
30% 

189 
4-Hy-
droxycinnamic 
acid 

HMDB0002035 C9H8O3 164.0473 POS_N
EG 4.20 3.33 RME <= 

15% 4.17 RME <= 
15% 5.06 RME <= 

15% 13.80 RME <= 
15% 

190 
Anthranilic acid 
( 2-Aminoben-
zoic acid) 

HMDB0001123 C7H7N
O2 137.0477 POS_N

EG 4.26 3.27 RME <= 
15% 3.37 RME <= 

15% 4.40 RME <= 
15% 17.76 

15% < 
RME <= 
30% 

191 trans-Ferulic 
acid HMDB0000954 C10H10

O4 194.0579 POS_N
EG 4.33 2.61 RME <= 

15% 3.17 RME <= 
15% 4.51 RME <= 

15% 12.23 RME <= 
15% 

192 N-acetyltrypto-
phan HMDB0013713 C13H14

N2O3 246.1004 POS_N
EG 4.37 2.34 RME <= 

15% 2.99 RME <= 
15% 5.14 RME <= 

15% 11.65 RME <= 
15% 

193 
2-hydroxyhippu-
ric acid 
(Salicyluric acid) 

HMDB0000840 C9H9N
O4 195.0532 POS_N

EG 4.37 2.34 RME <= 
15% 2.99 RME <= 

15% 5.14 RME <= 
15% 11.65 RME <= 

15% 

194 4-methyl cate-
chol sulfate HMDB0000873 C7H8O2 124.0524 POS_N

EG 4.40 2.86 RME <= 
15% 3.02 RME <= 

15% 5.03 RME <= 
15% 11.54 RME <= 

15% 

195 3-methylindole 
(skatol) HMDB0000466 C9H9N 131.0735 POS_N

EG 4.41 3.23 RME <= 
15% 2.95 RME <= 

15% 4.82 RME <= 
15% 11.79 RME <= 

15% 

196 Indolelactic acid HMDB0000671 C11H11
NO3 205.0739 POS_N

EG 4.42 3.37 RME <= 
15% 3.33 RME <= 

15% 5.02 RME <= 
15% 11.70 RME <= 

15% 

197 Phenylpropio-
nylglycine HMDB0000860 C11H13

NO3 207.0895 POS_N
EG 4.43 3.35 RME <= 

15% 3.65 RME <= 
15% 4.74 RME <= 

15% 11.52 RME <= 
15% 

198 Cinnamoylgly-
cine HMDB0011621 C11H11

NO3 205.0739 POS_N
EG 4.53 6.01 RME <= 

15% 2.88 RME <= 
15% 4.43 RME <= 

15% 9.13 RME <= 
15% 

199 Melatonin HMDB0001389 C13H16
N2O2 232.1212 POS_N

EG 4.60 9.60 RME <= 
15% 4.99 RME <= 

15% 5.85 RME <= 
15% 13.09 RME <= 

15% 

200 Benzoic acid HMDB0001870 C7H6O2 122.0368 POS_N
EG 4.68 7.48 RME <= 

15% 4.43 RME <= 
15% 5.04 RME <= 

15% 14.86 RME <= 
15% 

201 Indoleacetic acid HMDB0000197 C10H9N
O2 175.0633 POS_N

EG 4.74 5.88 RME <= 
15% 3.94 RME <= 

15% 9.51 RME <= 
15% 26.41 

15% < 
RME <= 
30% 

202 phenylacetic 
acid HMDB0000209 C8H8O2 136.0524 POS_N

EG 4.74 5.88 RME <= 
15% 3.94 RME <= 

15% 9.51 RME <= 
15% 26.41 

15% < 
RME <= 
30% 

203 3-Indoleacrylic 
acid HMDB0000734 C11H9N

O2 187.0633 POS_N
EG 4.89 5.26 RME <= 

15% 3.70 RME <= 
15% 4.80 RME <= 

15% 9.16 RME <= 
15% 

204 Taurohyocholic 
acid 

PubChem 
CID:11954195 

C26H45
NO7S 515.2917 POS_N

EG 4.90 5.40 RME <= 
15% 3.86 RME <= 

15% 4.72 RME <= 
15% 9.19 RME <= 

15% 

205 cortisol HMDB0000063 C21H30
O5 362.2093 POS_N

EG 5.02 9.65 RME <= 
15% 3.26 RME <= 

15% 7.84 RME <= 
15% 19.36 

15% < 
RME <= 
30% 
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206 Indolepropionic 
acid HMDB0002302 C11H11

NO2 189.0790 POS_N
EG 5.08 9.24 RME <= 

15% 3.51 RME <= 
15% 8.30 RME <= 

15% 15.35 
15% < 
RME <= 
30% 

207 4-Methylvaleric 
acid HMDB0000689 C6H12O

2 116.0837 POS_N
EG 5.08 9.24 RME <= 

15% 3.51 RME <= 
15% 8.30 RME <= 

15% 15.35 
15% < 
RME <= 
30% 

208 Taurocholic acid HMDB0000036 C26H45
NO7S 515.2917 POS_N

EG 5.13 9.13 RME <= 
15% 3.02 RME <= 

15% 7.60 RME <= 
15% 10.21 RME <= 

15% 

209 3-phenylpropa-
noic acid HMDB0000764 C9H10O

2 150.0681 POS_N
EG 5.13 9.14 RME <= 

15% 3.03 RME <= 
15% 7.68 RME <= 

15% 10.01 RME <= 
15% 

210 trans-Cinnamic 
acid HMDB0000930 C9H8O2 148.0524 POS_N

EG 5.16 8.81 RME <= 
15% 3.20 RME <= 

15% 7.59 RME <= 
15% 9.41 RME <= 

15% 

211 2-phenylpropi-
onic acid HMDB0011743 C9H10O

2 150.0681 POS_N
EG 5.16 8.77 RME <= 

15% 3.20 RME <= 
15% 8.09 RME <= 

15% 9.86 RME <= 
15% 

212 Glycohyocholic 
acid 

PubChem 
CID:71361462 

C26H43
NO6 465.3090 POS_N

EG 5.25 11.77 RME <= 
15% 3.52 RME <= 

15% 9.57 RME <= 
15% 7.79 RME <= 

15% 

213 Taurolithocholic 
acid 3-sulfate HMDB0002580 C26H45

NO8S2 563.2587 POS_N
EG 5.29 12.63 RME <= 

15% 2.73 RME <= 
15% 10.50 RME <= 

15% 7.49 RME <= 
15% 

214 Indolebutyric 
acid HMDB0002096 C12H13

NO2 203.0946 POS_N
EG 5.33 10.28 RME <= 

15% 2.76 RME <= 
15% 11.36 RME <= 

15% 7.04 RME <= 
15% 

215 Glycocholic acid HMDB0000138 C26H43
NO6 465.3090 POS_N

EG 5.44 5.63 RME <= 
15% 2.68 RME <= 

15% 12.89 RME <= 
15% 6.09 RME <= 

15% 

216 Glycohyodeoxy-
cholic acid 

PubChem 
CID:114611 

C26H43
NO5 449.3140 POS_N

EG 5.46 5.85 RME <= 
15% 2.65 RME <= 

15% 13.48 RME <= 
15% 7.93 RME <= 

15% 

217 Glycoursodeox-
ycholic acid HMDB0000708 C26H43

NO5 449.3141 POS_N
EG 5.47 5.62 RME <= 

15% 2.75 RME <= 
15% 13.66 RME <= 

15% 10.26 RME <= 
15% 

218 CMPF HMDB0061112 C12H16
O5 240.0998 POS_N

EG 5.50 5.86 RME <= 
15% 2.91 RME <= 

15% 13.08 RME <= 
15% 12.84 RME <= 

15% 

219 indoxyl HMDB0004094 C8H7N
O 133.0528 POS_N

EG 5.53 5.58 RME <= 
15% 2.50 RME <= 

15% 12.52 RME <= 
15% 10.07 RME <= 

15% 

220 

dehydrocholic 
acid (3,7,12-Tri-
oxo-5Î²-cholanic 
acid) 

HMDBnone1 C24H34
O5 402.2406 POS_N

EG 5.56 5.84 RME <= 
15% 2.78 RME <= 

15% 11.92 RME <= 
15% 9.81 RME <= 

15% 

221 
Tau-
rochenodeoxy-
cholic acid 

HMDB0000951 C26H45
NO6S 499.2968 POS_N

EG 5.59 5.71 RME <= 
15% 2.76 RME <= 

15% 11.78 RME <= 
15% 11.32 RME <= 

15% 

222 Taurodeoxy-
cholic acid HMDB0000896 C26H45

NO6S 499.2968 POS_N
EG 5.73 5.80 RME <= 

15% 2.96 RME <= 
15% 14.06 RME <= 

15% 7.43 RME <= 
15% 

223 hyocholic acid HMDB0000760 C24H40
O5 408.2876 POS_N

EG 5.79 3.78 RME <= 
15% 3.21 RME <= 

15% 15.65 
15% < 
RME <= 
30% 

6.69 RME <= 
15% 

224 Pregnenolone 
Sulfate HMDB0000774 C21H32

O5S 396.1970 POS_N
EG 5.97 4.07 RME <= 

15% 3.51 RME <= 
15% 15.56 

15% < 
RME <= 
30% 

4.70 RME <= 
15% 

225 cholic acid  HMDB0000619 C24H40
O5 408.2876 POS_N

EG 5.98 3.85 RME <= 
15% 3.47 RME <= 

15% 15.52 
15% < 
RME <= 
30% 

4.94 RME <= 
15% 
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Abstract   

Matrix effect is a well-known issue affecting accuracy and repeatability in 

metabolomics studies using liquid chromatography-electrospray ionization-mass 

spectrometry (LC-ESI-MS). Post-column infusion of standards (PCIS) is a promising 

strategy to monitor and correct matrix effect but has been rarely reported in untargeted 

metabolomics. The major challenges lie in selecting appropriate PCISs and identifying 

the most suitable PCIS to correct the matrix effect experienced by each feature. In this 

study, we aim to present a method for selecting suitable PCISs for matrix effect 

compensation based on the artificial matrix effect (MEart) created by post-column 

infusion of compounds that disrupt the ESI process. Our hypothesis is that the suitable 

PCIS for a given analyte can be identified by comparing the PCISs’ ability in MEart 

compensation. We evaluated this approach using 19 stable-isotopically labeled (SIL) 

standards spiked in plasma, urine, and feces. PCISs selected based on MEart were 

compared to those selected by biological matrix effect (MEbio), with 17 out of 19 SIL 

standards (89%) showing consistent PCIS selection, demonstrating the effectiveness of 

MEart in identifying suitable PCISs. Applying MEart-selected PCISs to correct for the 

MEbio resulted in improved MEbio for most of the SILs affected by matrix effect and 

maintained MEbio for those experiencing no matrix effect. We demonstrated the efficacy 

of MEart in selecting suitable PCISs for MEbio correction within an LC-PCIS-MS 

method. Importantly, since MEart can be assessed for any detected feature, its application 

holds great potential for identifying suitable PCISs for matrix effect correction in 

untargeted metabolomics. 
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1. Introduction  

Matrix effect (ME), primarily caused by coeluting matrix components, poses a 

significant challenge in liquid chromatography-electrospray ionization-mass 

spectrometry (LC−ESI−MS). It can alter analytes’ ionization efficiency through ion 

suppression or enhancement, affecting the accuracy and reliability of their 

quantification.1,2 ME is categorized as absolute matrix effect (AME) and relative matrix 

effect (RME). AME describes the response differences of an analyte spiked in a 

biological sample vs. a matrix-free sample. RME is defined as the relative standard 

deviation (RSD%) of the AME among biological samples from different sources, 

indicating the sample to sample variation.3 To mitigate ME, strategies such as extensive 

sample preparation, sample dilution, and tailored LC separation have been employed.4 

The most common method for evaluating ME is post-extraction spiking (PES) of an 

analyte or its analogue into biological and matrix-free sample and comparing their 

responses, which is widely applied in targeted metabolomics.2 For ME correction, an 

efficient approach is spiking surrogate analytes or internal standards, typically stable 

isotopically labeled (SIL) standards, into a study sample, then correct the signal of an 

analyte by that of a surrogate or SIL standard.5 Although these approaches are effective 

for ME evaluation and compensation, their application can be limited by high cost and 

limited commercial availability of analyte analogues and SIL standards.4,5 Besides, even 

deuterium-labeled standards can exhibit retention time shifts compared to the analytes 

due to altered physicochemical properties, which reduces the efficiency of ME 

correction.6,7  

The disadvantages of PES and SIL standards spiking can be mitigated by another 

technique used for addressing ME in LC-MS-based metabolomics: post-column 

infusion of standard (PCIS). Unlike PES and SIL standards spiking, which assess and 

correct ME at specific retention times, PCIS allows for ME evaluation and 

compensation across the entire chromatographic profile by constantly infusing one or 

several standards into the LC-MS post-column.1,2 In 1999, PCIS was introduced to 

monitor ME in plasma samples,8 and to correct ME in environmental samples.9 In PCIS, 

ME can be evaluated or monitored by comparing the signals of an infused standard 
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between the injections of matrix and solvent samples.8 Meanwhile, correction can be 

achieved by normalizing the analyte signal to the signal of a PCIS in a matrix sample.9 

PCIS has proven effective for monitoring or correcting ME in various targeted LC-MS 

based studies. Applications include quantifying pharmaceuticals in waste water,10,11 

chicken meat,12 human urine,11,13–15 human plasma,11,16 and dry blood spots samples;17,18 

targeting pesticides in food extracts;19 analyzing steroids,20 amino acids,21–23 

phospholipids,24 and other endogenous metabolites. In most of these studies, a structural 

analogue of the analyte or a single SIL standard is used as the infused standard, which 

significantly reduces costs compared to using multiple SIL standards. Importantly, 

different from PES and SIL standards spiking, which are restricted to targeted 

metabolomics, PCIS is also applicable in untargeted metabolomics due to its 

independence from retention time. 

Although PCIS has been recommended as a quality control tool for ME evaluation in 

untargeted analysis,26 its actual use remains limited. Tisler et al. demonstrated that PCIS 

is a suitable approach for correcting the RME of waste water in untargeted profiling.27 

Our recent study showed that PCIS can efficiently monitor the ME in human plasma 

and fecal samples in untargeted metabolomics.28 One of the primary obstacle limiting 

the implementation of PCIS in untargeted metabolomics probably lies in selecting 

suitable PCIS candidates for diverse metabolome features. The similarity of 

hydrophobicity and ionization ability between the analytes and PCIS are important 

factors for efficient ME correction.13 However, pre-selecting PCIS candidates for all the 

detected features in untargeted metabolomics according to the physical-chemical 

properties is impractical, particularly for the unknown ones. This highlights the 

necessity of physical-chemical diversity in PCIS candidates applied in untargeted 

metabolomics. Tisler et al. evaluated the diversity of six PCISs by examining the 

variation of their monitored ME. They concluded that the ME consists of retention-time 

dependent ME and structural-specific ME.27 Retention-time dependent matrix were 

compensated using the median value of the ME obtained with all PCISs, while structure-

specific ME were addressed with a quantitative structure-property relationships (QSPR) 

model.27 Nevertheless, the QSPR model is target dependent, as it requires the physical-

chemical property of a compound to predict the structure-specific ME.27 Thus, an ideal 
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approach that considers both co-eluting matrix compounds and structure diversities is 

still lacking for applying PCIS to correct ME in untargeted metabolomics. Instead of 

using the median ME obtained from several PCISs, matching each feature to its suitable 

PCIS could help to address the issue of structure diversity. However, this raises another 

challenge for implementing PCIS to compensate for ME in untargeted metabolomics: 

how to match a detected feature to its appropriate PCIS? 

In this study, we aim to develop a novel methodology for PCIS matching in an LC-

PCIS-MS-based untargeted metabolomics method. To achieve this, we first discussed 

key factors, including concentration optimization and diversity evaluation, for selecting 

PCIS candidates. Then, a post-column artificial matrix infusion approach was 

introduced to the developed LC-PCIS-MS method for PCIS matching. The artificial 

matrices consist of compounds that disrupt the ionization process in the ESI source. 

Therefore, by comparing the signals of an analyte with and without artificial matrix 

infusion, its artificial ME (MEart) can be determined. Our hypothesis is that MEart could 

be used to identify the suitable PCIS for the analyte by comparing the PCISs’ ability for 

its correction. We demonstrate the utility of this approach in a proof-of-concept study, 

where 19 diverse SIL standards were spiked into plasma, urine, and feces. Their most 

suitable PCISs, selected based on compensation for biological ME (MEbio) and MEart, 

were then compared. Afterward, the efficiency of the MEart-selected PCISs in correcting 

MEbio was examined for the 19 SIL standards.  
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2. Material and method 

2.1 Chemicals and materials  

LC-MS-grade acetonitrile (ACN) and methanol (MeOH) were purchased from Actu-all 

chemicals (Randmeer, The Netherlands). Methyl tert-butyl ether (MTBE, ≥99.8%) was 

purchased from Sigma Aldrich (St. Louis, Missouri, United States). Formic acid (FA) 

was purchased from Biosolve B.V. (Valkenswaard, Netherlands), and hydrochloric acid 

(37% solution in water) was purchased from Acros organics (Geel, Belgium). Purified 

water was obtained from a Milli-Q PF Plus system (Merck Millipore, Burlington, 

Massachusetts, United States). Table S1 provides the supplier details of all standards, 

including the PCIS candidates, artificial matrix compounds and stable isotopically 

labeled (SIL) standards. EDTA plasma was obtained from Sanquin (Sanquin, 

Amsterdam, The Netherlands) and BioIVT (Westbury, NY, USA). Urine and fecal 

samples were collected from four healthy volunteers (age range: 23-35 years). 

2.2 Solution preparation for PCISs, artificial matrix compounds and SIL stand-

ards. 

Stock solutions of leucine-enkephalin (Leu-enk), fludrocortisone (F-Cor), 5-fluoroisatin 

(F-Isat), caffeine-13C3 (Caff-13C3), 3-fluoro-DL-valine (F-Val), D-glucose-d7 (Glu-d7) 

were prepared as described in Table S1. The stock solutions of all PCISs were diluted 

with 50% ACN in water to 50 µg/mL, 5 µg/mL, and 1 µg/mL for concentration 

optimization. L-homoarginine hydrochloride (hArgHC), sodium dodecyl sulphate 

(SDS), and tridodecylmethylammonium chloride (TDMAC) were dissolved in 50% 

ACN in water, while sodium acetate (NaOAc) was prepared in 20% ACN (Table S1). 

Those standards were used as artificial matrix compounds, and their stock solutions 

were diluted with 50% ACN in water for concentration optimization. The stock solution 

preparation of the 19 SIL standards and their concentrations after spiking in plasma, 

urine, and feces are described in Table S1 and Table S2, respectively.  

2.3 Sample preparation  

Fecal and plasma samples were prepared as previously reported.28 Briefly, 20mg freeze-

dried fecal samples were extracted by liquid-liquid extraction with the mixture of 
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water/MeOH/MTBE (v/v/v), then 90 µL of aqueous layer was dried and reconstituted 

in 50 µL water containing 0.1% FA. Plasma samples were prepared with protein 

precipitation: 100 µL of ice-cold MeOH was added to 25µL of plasma sample, followed 

by drying of the supernatant and reconstitution in 75 µL of water containing 0.1% FA. 

Urine samples were prepared identically to plasma samples. For ME evaluation for SIL 

standards, the mixture of SILs was spiked into biological and matrix-free samples after 

extraction. 

2.4 LC-MS setup with post-column infusion 

Sample measurements were performed using either a Shimadzu Nexera X2 LC system 

coupled to a TripleTOF 6600 mass spectrometer (SCIEX, Foster City, CA, USA) or a 

Waters Acquity UPLC Class II LC system coupled to TripleTOF 5600 mass 

spectrometry (SCIEX, Foster City, CA, USA). For both systems, an ESI source was 

used, and the same LC-MS conditions and the post column setup were applied, as 

detailed in our previous study.28 In short, data were acquired under full scan mode over 

the m/z range of 60-800 Da in both positive and negative modes. The LC separation was 

achieved by using a Waters Acquity UPLC HSS T3 column (1.8 μm, 2.1 mm × 100 

mm) over a 15 min gradient with 0.1% FA in water and 0.1% FA in ACN as mobile 

phases. The LC flow was diverted to waste at 7 min to decelerate contamination of the 

MS. A binary Agilent 1260 Infinity pump (Agilent Technologies, Santa Clara, USA) 

was used for post-column infusion at a flow rate of 20 µL min-1. The post-column flow 

was combined with the LC eluent using a T connector (IDEX, PEEK Tee, 0.02 Thru 

hole, F-300) before injecting to the MS. 

2.5 Data processing 

Raw data were acquired by Analyst TF software 1.7.1 (SCIEX) and processed using 

SCIEX OS (version 2.1, SCIEX) and PeakView (version 2.2, SCIEX). Extracted ion 

chromatograms (EICs) for all PCIS candidates were obtained with an m/z window of 

0.02 Da. A maximum mass error of 5 ppm was applied for peak integration of 

endogenous compounds and SIL standards. The infusion profiles of the PCIS candidates 

were generated by smoothing the extracted EIC data using the simple moving average 
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(SMA, n = 15) function in R (version 4.3.2). The ME profile (MEP) for each PCIS was 

generated as reported previously.28  

Different types of ME were calculated for the SIL standards in plasma, urine, and feces, 

separately. The biological absolute matrix effect (AME𝑏𝑏𝑏𝑏𝑜𝑜𝑖𝑖) and relative matrix effect 

(RME𝑏𝑏𝑏𝑏𝑏𝑏) in each type of biological matrix (plasma, urine, feces) were calculated as 

shown in Equation 1 and 2. The calculation uses the integrated peak area (A) in a 

biological sample (i ) from each biological matrix type (bio) (A𝑏𝑏𝑏𝑏𝑜𝑜𝑖𝑖) and that in a matrix-

free (solvent) sample (A𝑠𝑠𝑠𝑠𝑠𝑠). The artificial absolute matrix effect (AME𝑎𝑎𝑎𝑎𝑡𝑡𝑗𝑗) created by 

artificial matrix was calculated as Equation 3. The artificial matrix includes individual 

artificial matrix compounds as well as their mixture, making different artificial matrix 

combinations (j). For each biological matrix, the integrated peak areas of the SIL 

standards in a pooled biological matrix type (𝑏𝑏𝑏𝑏𝑏𝑏) with (A𝑎𝑎𝑎𝑎𝑡𝑡𝑗𝑗+𝑏𝑏𝑏𝑏𝑏𝑏) and without (A𝑏𝑏𝑏𝑏𝑏𝑏) 

artificial matrix infusion were used for AME𝑎𝑎𝑎𝑎𝑡𝑡𝑗𝑗calculation. The relative artificial matrix 

effect (RME𝑎𝑎𝑎𝑎𝑎𝑎) was calculated as the relative standard deviation (RSD %) among the 

AME𝑎𝑎𝑎𝑎𝑡𝑡𝑗𝑗 obtained from different artificial matrix combinations (Equation 4).  

The PCIS-corrected response of each SIL was generated through integrating the ratio 

obtained from dividing the signal of a SIL standard by that of an individual PCIS at each 

time point with an in-house software. In each sample, the retention time and peak width 

of individual SIL standards before PCIS correction were used to identify the regions for 

ratio integration, and the integration of the PCIS-corrected signal was manually 

examined. The AME𝑏𝑏𝑏𝑏𝑜𝑜𝑖𝑖 , RME𝑏𝑏𝑏𝑏𝑏𝑏 , AME𝑎𝑎𝑎𝑎𝑡𝑡𝑗𝑗 , and RME𝑎𝑎𝑎𝑎𝑎𝑎  after PCIS correction were 

calculated as described in Equation 1-4, but with the replacement of peak area by PCIS-

corrected area. To evaluate the overall ME caused by the biological matrix (MEbio) or 

the artificial matrix (MEart) for each matrix type, a scoring system combining the 

absolute matrix effect (AME) and relative matrix effect (RME) was applied, as shown 

in Table 1. For MEbio score, the averaged AME𝑏𝑏𝑏𝑏𝑜𝑜𝑖𝑖  score from different individuals 

(AME𝑏𝑏𝑏𝑏𝑜𝑜1−𝑖𝑖) was used for the calculation, while the AME𝑎𝑎𝑎𝑎𝑎𝑎  obtained from the artificial 

matrix compounds mixture (AME𝑎𝑎𝑎𝑎𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) was used for MEart scoring. 
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Equation 1: AME𝑏𝑏𝑏𝑏𝑜𝑜𝑖𝑖(%) =  
𝐴𝐴𝑏𝑏𝑏𝑏𝑜𝑜𝑖𝑖
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 

∗ 100  

Equation 2: RME𝑏𝑏𝑏𝑏𝑏𝑏(%) =
SD�𝐴𝐴𝐴𝐴𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏1… 𝐴𝐴𝐴𝐴𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖�

Mean�𝐴𝐴𝐴𝐴𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏1… 𝐴𝐴𝐴𝐴𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖�
 ∗ 100  

Equation 3: AME𝑎𝑎𝑎𝑎𝑡𝑡𝑗𝑗(%) =  
𝐴𝐴𝑎𝑎𝑎𝑎𝑡𝑡𝑗𝑗+𝑏𝑏𝑏𝑏𝑏𝑏

𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏 
∗ 100  

Equation 4: RME𝑎𝑎𝑎𝑎𝑎𝑎(%) =
SD�𝐴𝐴𝐴𝐴𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎1… 𝐴𝐴𝐴𝐴𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗�

Mean�𝐴𝐴𝐴𝐴𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎1… 𝐴𝐴𝐴𝐴𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑗𝑗�
 ∗ 100  

Table 1. The scoring system for absolute matrix effect (AME), relative matrix effect 

(RME), biological matrix effect (MEbio), and artificial matrix effect (MEart) 

Conditions* Scoring Formula 

AME <= 100 AME score = 100 * (AME/100) 

AME > 100 AME score = 100 / (AME/100) 

RME RME score = 100 - RME 

MEbio MEbio score = (AME𝑏𝑏𝑏𝑏𝑜𝑜1−𝑖𝑖 score + RME𝑏𝑏𝑏𝑏𝑏𝑏 score) /2 

MEart MEart score = (AME𝑎𝑎𝑎𝑎𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 score + RME𝑎𝑎𝑎𝑎𝑎𝑎 score) /2 

*AME (%) = 100 indicates no matrix effect; AME (%) < 100 indicates ion suppression; 

AME (%) >100 indicates ion enhancement 

3. Results and discussion  

3.1 PCIS method development  

To develop a suitable PCIS approach for our untargeted metabolomics method, PCIS 

candidates with diverse structures were examined. Important factors such as adduct 

formation, infusion profile diversity, infusion concentration, room temperature stability, 

and matrix effect profile (MEP) diversity were evaluated. Plasma, urine, and feces were 

used in the selection process, ensuring selected PCIS could be effectively applied across 

diverse biological matrices.  
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3.1.1 PCIS selection and infusion concentration optimization 

Ideally, a PCIS should be commercially affordable, measurable with specific signal, 

detectable mainly with protonated [M+H]+ and deprotonated [M-H]- ions, and stable 

during analysis.29 With this in mind, six xenobiotic compounds with different 

physicochemical properties were evaluated as PCIS candidates in our study. All six 

standards were examined in positive ionization mode, and five were assessed in negative 

ionization mode. (Table S3). First, we examined the adduct formation of all the PCIS 

candidates: [M+H]+ and [M-H]- were the ions with highest response for most of the 

candidates, except for Glu-d7 in positive mode and F-cor in negative mode. The former 

showed a higher signal with sodium ([M+Na]+) and ammonium ([M+NH4]+) adducts 

than with [M+H]+, while the latter had a higher signal as the formic acid adduct 

([M+FA-H]-) compared to [M-H]-. In addition to [M-H]-, Glu-d7 also showed good 

intensity with [M+FA-H]-. Considering that the infusion profiles of a PCIS may vary 

with different adducts,30 for Glu-d7, we monitored both [M+Na]+ and [M+NH4]+ in 

positive mode, as well as both [M-H]- and [M+FA-H]- in negative mode. However, only 

[M+FA-H]- was monitored for F-Cor in negative mode, as the signal of [M-H]- was too 

low to generate a stable infusion profile.  

Subsequently, Pearson correlation was applied to evaluate the diversity of the infusion 

profiles among PCIS candidates. The EICs of all PCIS candidates were extracted and 

correlated with each other after the injection of plasma samples. This procedure was 

repeated with four different plasma samples to include sample diversity. As shown in 

Table S4-5, Leu-enk showed a near identical infusion profile to F-Val in positive mode 

(r > 0.95 in three examined plasma samples), and to F-Isat in negative mode (r > 0.99 

in all examined plasma samples). Therefore, five PCIS (Leu-enk, F-Cor, F-Isat, Caff-
13C3, Glu-d7) were selected for positive mode, and four (Leu-enk, F-Cor, F-Val, Glu-d7) 

for negative mode. 
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Table 2. Monitored ions and optimized infusion concentrations for selected PCISs  

PCIS Detected ions Infusion concentration 
(ng/mL) 

full name abbreviation positive negative positive negative 
Leucine-

enkephalin Leu-enk [M+H] + [M-H]- 212.4 344.9 

Fludrocortisone F-Cor [M+H] + [M+FA-H]- 154.0 371.0 

D-glucose-d7 Glu-d7 [M+Na] +, 
[M+NH4] + 

[M-H]-, [M+FA-
H]- 5734.0 6465.7 

5-Fluoroisatin F-Isat [M+H] + / 1069.2 / 
Caffeine-13C3 Caff-13C3 [M+H] + / 219.2 / 
3-Fluoro-DL-

valine F-Val / [M-H]- / 4264.3 

 

After selection, the infused concentrations of the PCISs were optimized to balance the 

trade-off between signal intensity and PCIS-induced ME. Concentration optimization is 

widely discussed in studies applying PCIS,12,17,22,29 and the ubiquitous goal is to achieve 

stable infusion signal without inducing additional ME. Figure 1A presents infusion 

profiles of the PCISs extracted from one plasma sample at the optimized PCIS infusion 

concentrations (Table 2). In both ionization modes, the initial intensities of the main 

monitored ions were above 20,000 cps for all PCISs, which was high enough for clear 

and stable signal monitoring. Stable infusion signals were monitored for all PCISs over 

plasma injections (Figure S1A-B). Although there were regions (0.5-0.8 min, 1.5-1.8 

min) with severe signal suppression, the lowest signals of the PCISs remained above 

100 cps. The exceptions were [Glu-d7+NH4]+ in positive mode, and [Glu-d7+FA-H]- in 

negative mode at 0.5-0.8 min, as shown in the zoomed-in sections at the top left of 

Figure 1A.  

To assess whether the selected PCISs were also applicable in other biological matrices 

at the optimized concentrations, the infusion profiles of the PCISs were inspected in 

three different urine (Figure S1C-D) and fecal samples (Figure S1E-F). The infusion 

profiles of each PCIS were constructed in urine and feces by averaging signals from 

three individuals, as presented in Figure 1B and 1C. Similar to plasma, the initial 

infusion signals were above 20,000 cps and the lowest infusion signals of the PCISs 

were above 100 cps in both urine and fecal samples. This indicated that abundant and 
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stable infusion profiles were also achieved for the selected PCISs at the optimized 

concentrations in plasma and feces. 

Then, we evaluated the impact of PCISs on analyte signals by comparing the peak areas 

of several known metabolites in the same plasma sample, with and without PCIS 

infusion. In total, 60 targets were used for the signal comparison in positive mode, and 

36 in negative mode (Table S6). As shown in Figure 1D, no significant differences in 

peak areas were found for the examined metabolites with and without PCIS infusion in 

both ionization modes. Compared with infusion, the signal changes of most examined 

metabolites with PCIS are within ±30% (Table S6). Additionally, the room temperature 

stability of the selected PCIS was examined over seven days by injecting the PCIS 

mixture solution in positive mode. From day 1 to day 7, the signal variations of all PCISs 

were within 10% compared to the freshly prepared solution on day 0. (Figure S2). 
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Figure 1. Infusion profiles over 0-7 mins and zoomed-in inspections of regions with 

severe suppression for the selected PCISs in plasma (A), urine (B) and feces (C), as well 

as the peak area comparison between plasma injections with and without PCIS infusion 

in positive and negative ionization modes (D). The intensities plotted in (A) and the 

peak area for each examined metabolites used in (D) were the mean values from 

duplicated injections of the same plasma sample; the intensities plotted in (B) and (C) 

are the mean values of three different individuals; A two-side unpaired t test was applied 

for statistical assessment in (D). 

3.1.2 PCIS diversity evaluation with matrix effect profiles  
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To clearly identify ion suppression and enhancement over the entire chromatography, 

the infusion profiles of the PCISs in each biological matrix were normalized against 

those in the solvent samples, creating the MEP.19 The MEPs of each PCIS, generated 

with three different individuals from plasma, urine, and feces, are presented in Figure 

S3. The averaged MEP for each PCIS ( MEP) was calculated from the MEPs of different 

individuals in each biological matrix, and the MEP  variation plots were created by 

overlaying the MEP of all PCISs. As shown in Figure 2A, for each matrix and ionization 

mode, the solid line represents the overall AME monitored with all PCISs, while the 

shaded area shows the variations of the MEP among all PCISs. 

To directly display the MEP variation among the PCISs, the RSD% of the MEP was 

calculated per timepoint and plotted for each biological matrix, as presented in Figure 

2B. The RSD% of the MEP monitored with the same set of PCISs varied among plasma, 

urine and feces. In plasma, high diversity was mainly observed in the early elution 

region (RT < 2 min), with RSD > 15% in both ionization modes. In urine, apart from 

the early elution regions, diverse MEPs were also noted within 2-4 mins, particularly in 

positive mode. In feces, the RSD % of the MEP was above or close to 15 % almost 

throughout the entire chromatogram in both ionization modes. Considering the matrix 

complexity, it is expected that the MEP variation is larger in feces than in urine and 

plasma. This observation is consistent with the study by Stahnke et al., who reported 

that a more complex matrix can induce larger variations among infused pesticides.19 

Tisler et al. also observed that, compared to diluted waste water, the waste water with 

more concentrated matrix varied more in MEP compared to the diluted one.31 In our 

study, the diversity of the three biological matrices is successfully reflected by the MEP 

variation of selected PCISs, making it feasible to apply these PCISs to assess the ME 

from less to more complex biological matrices.  
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Figure 2. MEP variation plots with overlaid averaged MEP (MEP) among all the PCIS 

(A) and RSD of the MEP (B) for all PCISs in plasma, urine, and feces for both ionization 

modes. The dashed line in (B) indicates where RSD is 15%. 

3.2 PCIS matching using post-column artificial matrix effect creation  

With multiple PCISs available, it’s crucial to select one that resembles the analyte in its 

susceptibility to ion suppression or enhancement to effectively correct for its ME. 

Therefore, we introduced an approach, post-column artificial ME creation, to the 

developed LC-PCIS-MS method to match analytes to their suitable PCISs. In this 

approach, along with the PCIS, the artificial matrix, consisting of a set of compounds 

that create ME, was continuously infused to the ESI source after the LC column, 

inducing the MEart. The MEart for a given analyte can be determined by comparing its 

response with and without artificial matrix infusion. Then, the best-match PCIS for that 

feature can be selected based on its ability to compensate for the observed MEart. Our 

hypothesis is that the best-match PCIS selected based on MEart correction should also 

be effective in compensating for MEbio. This hypothesis depends greatly on how well 

the infused artificial matrix can mimic the biological matrix to induce ME in the ESI 

source. Therefore, we selected several compounds according to known ME mechanisms 

in the ESI source and optimized their concentrations to induce certain MEart for the 

metabolites examined. This hypothesis was evaluated by comparing the best-match 
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PCISs selected based on MEart correction with those chosen for MEbio compensation 

using 19 SIL standards (Table S2). 

 

3.2.1 Selection and concentration optimization of post-column infused artificial 

matrix compounds 

In the ESI source, matrix compounds can disturb the ionization by competing with the 

analytes for charge in liquid phase and affecting the analytes’ ability to remain charged 

in gas phase.2 Considering this, four compounds, l-homoarginine hydrochloride 

(hArgHC), sodium dodecyl sulphate (SDS), sodium acetate (NaOAc), and 

tridodecylmethylammonium chloride (TDMAC), were chosen as artificial matrix 

compounds to interrupt the ionization process in the ESI source. These compounds 

contain salts and/or ionic compounds which can easily form charged ions, competing 

with analytes for ionization. Additionally, hArg has a high proton affinity in gas-phase;32 

SDS and TDMAC can prevent the coulombic explosion by increasing the droplet’s 

surface tension as surfactants.33 Based on their ionization properties, hArgHC, NaOAc, 

and TDMAC were infused in positive mode, while SDS and NaOAc in negative mode.  

The concentrations of the artificial matrix compounds were optimized by infusing them 

individually as well as in a mixture with the injection of pooled plasma, urine and fecal 

samples. This allowed us to calculate both AMEart and RMEart with a pooled biological 

sample, as shown in Equation 3-4. To balance the trade-off between MEart and signal 

intensity of endogenous metabolites, the optimization aimed to get around 70% AMEart 

and more than 15% RMEart. During the optimization process, 19 and 24 endogenous 

metabolites were evaluated in positive and negative ionization modes, respectively. The 

average AMEart of all the evaluated metabolites at the optimized concentrations (Table 

3) are plotted in Figure 3A-B, while the individual AMEart are shown in Figure S4. 

Compared to infusion without artificial matrix (PCIS only), infusing the mixtures 

successfully induced AMEart to 60-70% in plasma, urine and feces for both ionization 

modes. For individual artificial matrix compounds, hArgHC and SDS at 1µM barely 

caused signal suppression in positive and negative modes, respectively; NaOAc showed 

a pronounced ion suppression effect, bringing AMEart to 70-75% for both ionization 
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modes, except for urine in negative mode; TDMAC suppressed the signal of the 

examined metabolites in plasma and urine, resulting in around 75% AMEart in positive 

mode. Given that diverse ion suppression effects were observed with different artificial 

matrix combinations, RMEart was calculated with all combinations for each ionization 

mode. As illustrated in Figure 3C-D, the RMEart of most metabolites were above 15 % 

in both ionization modes for all three biological matrices, with several of them 

exceeding 30%.  

Meanwhile, with artificial matrix infusion, the PCISs should experience similar signal 

suppression to ensure their ability to correct MEart, hence, their infusion profiles were 

inspected to determine whether their signals were correspondingly suppressed. The 

PCIS profiles in feces, with and without the mixture, are presented in Figure S5-6 as 

examples. The artificial matrix successfully suppressed the signal of all PCISs in 

positive mode, except for [Glu-d7 + Na] +. Its signal was largely enhanced by the 

artificial matrix infusion, which was likely due to the high sodium content in NaOAc 

(Figure S5A). This resulted in a much lower signal for [Glu-d7 + NH4] +, especially in 

regions with severe ion suppression (Figure S5B). Due to the distorted adduct 

distributions caused by artificial matrix, Glu-d7 was not considered as a suitable PCIS 

for ME correction in positive mode in our study. In negative mode, the artificial matrix 

also suppressed the signal of all PCISs, except for [F-Cor+FA-H]- and [Glu-d7 +FA-H]-

, which had comparable intensity with and without artificial matrix infusion over 1-5 

mins (Figure S6). These results proved that, at the optimized concentration, infusing the 

mixture of artificial matrix compounds could successfully induce ion suppression for 

both metabolites and PCISs.  

Table 3. Information and optimized infusion concentrations of artificial matrix 

compounds  

Artificial matrix compound Infusion concentration (µM) 

full name abbreviation positive negative 

L-homoarginine hydrochloride hArgHC 1.0 / 

sodium dodecyl sulphate  SDS / 1.0 
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sodium acetate  NaOAc 500 375.0 

tridodecylmethylammonium chloride  TDMAC  37.5 / 

 

 
Figure 3. The artificial matrix induced AMEart (A, B) and RMEart (C, D) for metabolites 

examined in plasma, urine, and feces. The mean AMEart was calculated by averaging 

the AMEart for the examined metabolites in each ionization mode with duplicates, and 

PCIS only was used as reference with AMEart = 100%. The dashed lines in (A) and (B) 

indicate 70% AMEart. The RMEart for each metabolite is presented as the RSD % of the 

AMEart among all infusion combinations in positive (C) and negative (D) modes, 

including PCIS only. The dashed lines in (C) and (D) indicate 15% and 30 % RMEart. 

 

3.2.2 PCIS matching: MEart correction vs. MEbio correction  

With the optimized artificial matrix concentration, we compared the best-match PCISs 

selected based on their ability to correct the MEart or the MEbio for 19 SIL standards. 

These standards were widely distributed in class and physical properties, representing 
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diverse endogenous metabolites. The AME and RME of the SIL standards were 

calculated after being spiked into plasma, urine, and fecal samples, as described in 2.5.  

To combine both AME and RME for PCIS selection, they were scored as described in 

Table 1. The final ME scores were calculated by average the AME and RME scores. 

AMEbio and RMEbio were calculated at two concentration levels (Table S2), and the 

averaged areas of two levels were used for MEbio scoring. AMEart and RMEart were 

calculated at one concentration level (Table S2). An AME within 80-120% and a RME 

≤ 30% are commonly accepted in untargeted analysis,34 which results in an AME score 

≥ 80 and a RME score ≥ 70. Therefore, a PCIS is considered suitable for correcting 

MEbio or MEart for a SIL standard if it returns a ME score ≥ 75 after correction. 

Figure S7 shows the MEbio and MEart scores for 19 SIL standards spiked in plasma, 

urine, and feces before and after PCIS correction. To identify the suitable PCISs for ME 

correction, the PCISs were filtered with an ME score ≥ 75. Figure 4 presents the ME 

scores before and after correction with the filtered PCISs. Before PCIS correction, early-

eluting (retention time < 1 min) SIL standards (L-ornithine-d6, L-glutamine-d5, TMAO-

d9, L-carnitine-d3, N-methy-d3-L-histidine, and betaine-d9) in three biological matrices, 

hippuric acid-d5 in urine, and daidzein-d6 in feces suffered from more severe MEbio, with 

scores < 75 (Figure 4A). In contrast to MEbio, most of the early eluting SIL standards 

had MEart above 75, while more later eluters got MEart scores < 75 before PCIS 

correction (Figure 4B). It is likely that with artificial matrix infusion, the biological 

matrix remained as the major source of ionization competition in the early elution 

region, where the MEart was masked by severe MEbio. Some known endogenous ion 

suppressors, such as inorganic electrolytes, salts, and highly polar compounds, are 

poorly retained on the RP column, leading to pronounced ion suppression that 

overwhelms the influence of artificial matrix in the early elution region. This was 

reversed in the late elution regions where the artificial matrix had a greater impact on 

ionization than the biological matrix. The filtered PCISs improved or maintained the 

ME scores for the SIL standards with initial scores ≥ 75 and successfully compensated 

for the ME for most of the SIL standards with MEbio or MEart scores ≤ 75 before PCIS 

correction (Figure 4). For those SIL standards had no PCISs to improve their ME scores 
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to 75, mainly for the MEbio correction of early-eluting ones in urine and feces, most of 

them still obtained improved scores after PCIS correction (Figure S7A).  

Considering that more than one PCISs managed to correct either MEbio or MEart for most 

SIL standards (Figure 4), to obtain an overview of which PCIS was appropriate for 

compensating ME regardless of matrix types, we summed the MEbio or MEart scores of 

the filtered PCISs for individual SIL standards across plasma, urine, and feces. With 75 

as the acceptable ME score, a PCIS score sum between 75 and 100 indicated its 

capability to correct ME in one biological matrix; between 150 and 225 indicated 

effective correction in two biological matrices; a score sum above 225 indicated 

correction in all three biological matrices. Then, the matrix-independent PCIS can be 

identified by selecting the one with the highest score sum for each SIL standard. 
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Figure 4. MEbio (A) and MEart (B) scores of the SIL standards before correction (dots 

and diamonds in black) and after correction with suitable PCISs (dots and diamonds 

with colors) in plasma, urine, and feces. The SIL standards are plotted in increasing 

order of retention times from top to bottom and the dashed lines indicate a score of 75, 

and triplicates were used for MEbio score and MEart score calculation. 

The score sums of the filtered PCISs for the SIL standards are presented in Figure 5A. 

In total, 13 and 12 out of 19 SIL standards had at least one PCIS with an MEbio score 

sum and MEart score sum ≥ 225, respectively. More PCISs returned an MEart score sum 
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≥ 150 compared to MEbio score sum for the early-eluting SIL standards. In contrast, for 

the SIL standards eluting after one minute, all the filtered PCISs returned MEbio score 

sums ≥ 150, except for lactic acid-13C3. More PCISs achieved an MEbio score sum ≥ 225 

for those SIL standards compared to MEart score sum. Given that the early-eluting SIL 

standards experienced more MEbio than MEart, while the later-eluting ones were more 

affected by MEart than MEbio (Figure 4), these results suggest that correcting a severe 

ME is likely to facilitate the selection of the matrix-independent PCIS for a SIL 

standard. This is also evidenced by comparing the filtered PCIS for MEbio correction in 

plasma, urine, and feces (Figure 4A). For instance, lactic acid-13C3 experienced more 

MEbio in plasma and feces. Compared to five PCIS suitable for MEbio correction in urine, 

only one and two were suitable for the correction in plasma and feces, respectively. 

Similarly, hippuric acid-d5 experienced severe MEbio only in urine, with no PCIS 

suitable for correction, whereas multiple PCISs corrected its MEbio in plasma and feces. 

Additionally, since daidzein-d6 had an MEbio score < 75 only in feces before correction, 

three PCISs were ideal for correcting its MEbio in feces, while all PCISs were suitable 

for the correction in urine and plasma.  

Therefore, we assumed that for the SIL standards experiencing more severe MEart than 

MEbio, the PCIS selected based on MEart compensation would also be effective in 

correcting their MEbio. To evaluate this assumption, we compared the best-match PCIS 

identified by the highest MEbio score sum to those selected by the highest MEart score 

sum. Three SIL standards (L-ornithine-d6, N-methyl-d3-L-histidine, acety-L-carnitine-

d3) did not have a suitable PCIS with an MEart score ≥ 75 in any of the examined 

biological matrices. Their MEart-based best-match PCISs were still selected based on 

the highest MEart score sum to include them in the comparison. Figure 5B presents the 

selected best-match PCISs for all SIL standards according to the highest MEbio score 

sum or the highest MEart score sum. Ten SIL standards (connected by solid line) 

obtained identical best-match PCISs based on the selection of MEbio and MEart score 

sums. Seven standards (connected by dashed line) had different best-match PCISs. 

However, their PCISs selected based on the highest MEart score sums returned 

comparable MEbio score sums to those chosen with the highest MEbio score sum, making 

them equally suitable for MEbio correction. Two standards (unconnected), L-ornithine-
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d6 and citric acid-d4, exhibited different best-match PCISs. Consequently, 17 out of 19 

SIL standards (89%) showed consistency in PCIS selection based on MEbio and MEart 

score sums, including some SIL standards experiencing severe MEbio than MEart, such 

as most of the early eluters and L-lactic acid-13C3. This suggests that, although MEart 

may be less effective in identifying the matrix-independent PCISs for the SIL standards 

experiencing a more severe MEbio than MEart, utilizing the MEart score sum across 

diverse matrices may enhance the likelihood of making suitable selections. 

These results demonstrate that MEart compensation obtained comparable PCIS 

selections to the MEbio correction for the examined SIL standards across diverse 

matrices. The MEbio correction, namely matching PCISs to analytes by assessing their 

ability to correct for ME quantified with spiked SIL standards, has been commonly 

applied in targeted metabolomics studies13,14,23 However, this approach is impractical 

for untargeted metabolomics due to the reliance on SIL standards. Another strategy for 

PCIS selection is to evaluate the improvement in linearity and precision across matrix 

dilution series before and after PCIS correction.15,18,29 Although this method is 

applicable for untargeted analysis as it does not require authentic standards spiking, it 

can be problematic for metabolites with rather high or low endogenous abundance due 

to potential solubility and detection limit issues.29 Therefore, the reliability of MEart 

compensation in PCIS selection is supported not only by its consistency with the MEbio 

correction, but also by mitigating the risk of the analyte signals falling beyond their 

limits of detection/quantification. More importantly, since the MEart can be determined 

for any detected feature, the MEart compensation represents an ideal approach for PCIS 

matching in untargeted metabolomics. 
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Figure 5. The MEbio and MEart score sum of all the SIL standards across plasma, urine, 

and feces for the PCISs that returned scores ≥ 75 in at least one biological matrix (A). 

The selected PCISs according to the highest MEbio and MEart score sums across plasma, 

urine, and feces for the SIL standards (B), where the solid line connection indicates 

identical PCIS selection, while the dashed line connection indicates PCIS selection with 

comparable score sums, and no connection indicates different PCIS selection. The SIL 

standards are plotted in increasing order of retention times from left to right. 

3.3 MEbio correction with PCIS selected by MEart  

To assess the effectiveness of MEart-selected PCIS in MEbio correction, we applied the 

PCIS selected with the highest MEart score sum for MEbio correction of the 19 SIL 
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standards spiked in plasma, urine, and feces. The MEbio scores of all the SIL standards 

before and after PCIS correction is plotted in Figure S8. The selected PCIS improved or 

maintained the MEbio score for 19 (100%), 16 (84%), and 18 (95%) SIL standards spiked 

in plasma, urine, and feces, respectively.  

To illustrate the improvement in ME after PCIS correction, the AMEbio and RMEbio 

values of the 19 SIL standards were compared before and after correction in each 

biological matrix. As presented in Figure 6, the dots represent the AMEbio value (left y 

axis), whereas the bars indicate the RMEbio value (right y axis). In plasma (Figure 6A), 

seven SIL standards, namely the six early eluters and lactic acid-13C3, experienced ion 

suppression with AMEbio < 80% before correction. The PCIS improved the AMEbio 

towards 80 -120% for five of them, bringing the AMEbio of N-methyl-d3-L-histidine and 

lactic acid-13C3 within the acceptable range. The RMEbio of all SIL standards were below 

30% after PCIS correction, with significant improvements for L-ornithine-d6, L-

glutamine-d5, and lactic acid-13C3. In urine (Figure 6B), nine SIL standards, including 

the early eluters, 4-hydroxyphenylactic acid-d6, hippuric acid-d5, and octanoyl-L-

carnitine-d3, had AMEbio outside 80 -120%. After PCIS correction, five standards 

showed improved AMEbio, with N-methyl-d3-L-histindine and 4-hydroxyphenylactic 

acid-d6 reaching the range of 80-120%. The RMEbio of all SIL standards were within 

30% after PCIS correction in urine, except for hippuric acid-d5. Significant 

improvements were noted for L-glutamine-d5, L-carnitine-d3, and betanine-d3, which 

had RMEbio greater than 30% before correction. In feces (Figure 6C), 13 SIL standards 

suffered from ion suppression (AMEbio < 80%) or enhancement (AMEbio > 120%) 

before PCIS correction. After correction, 10 of them showed improved AMEbio 

approaching the 80-120% range, with five within the range. Four SIL standards 

exhibited RMEbio close to or exceeding 30% before correction; the PCIS successfully 

reduced the RMEbio of lactic acid-13C3 and daidzein-d6 to below 15%.  

Over-corrected AMEbio or increased RMEbio were observed for TMAO-d9, L-carnitine-

d3, and betaine-d9, in all biological matrices. This seems to be caused by the permanent 

positive charge at the quaternary ammonium group in these early eluters, which makes 

them less susceptible to ion suppression than the PCISs in the region with severe 
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suppression. Considering that their PCIS selections were consistent based on the MEbio 

and MEart score sums (Figure 5B), another PCIS candidate with permanent charge may 

need to be included for ME correction of those standards. In addition, the selected PCIS 

failed to maintain or improve the AMEbio or/and RMEbio for citric acid-d4, hippuric acid-

d5, and indole-d5-acetic acid in urine. These SIL standards showed maintained or 

improved ME in the other two biological matrices, except for citric acid-d4 in plasma. 

This inefficient correction is likely due to specific co-eluting matrix compounds present 

in urine, suggesting that a more acidic PCIS may be needed to mimic the ionization of 

those SIL standards for effective ME correction in urine. Overall, compared with no 

correction, PCISs selected by MEart improved the MEbio for most SILs affected by ME 

in the examined matrices, and maintained the MEbio for those with acceptable ME prior 

to correction, demonstrating the reliability of MEart-selected PCIS for MEbio 

compensation.  
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Figure 6. AMEbio (dots, left y axis) and RMEbio (bars, right y axis) of the 19 SIL 

standards spiked in plasma, urine, and feces before and after correction with the PCISs 

selected by the highest MEart score sum. The SIL standards are plotted in increasing 

order of retention time from left to right. The dashed lines indicated 80-120% of AMEbio. 

The black arrows in (B) indicate the AMEbio higher than 160% and/or RMEbio larger 

than 60%.  

4. Conclusion  

In this study, we presented a strategy in an LC-PCIS-MS method for selecting suitable 

PCISs to compensate for ME in untargeted metabolomics. This is achieved by 

comparing the PCISs’ ability to correct for the MEart created through post-column 
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infusion of compounds that affect the ionization in the ESI source. A ME score system 

was introduced to incorporate AME and RME into the selection. To give equal 

importance to AME and RME, their average score was used as the final ME score in our 

study. Different weights can be assigned to AME and RME if one is considered more 

important than the other in a particular study.  

The feasibility of MEart compensation in identifying suitable PCIS was evaluated using 

19 SIL standards spiked in plasma, urine, and feces. This evaluation was conducted by 

comparing the PCISs selected based on the MEart and MEbio compensation across the 

three matrices. As a result, 89% of the SIL standards showed consistent PCIS selection 

between MEbio and MEart, demonstrating the effectiveness of MEart compensation for 

PCIS selection. Subsequently, we applied the MEart-selected PCISs to correct for the 

MEbio for the SIL standards, resulting in improved MEbio for most of the SIL standards 

experiencing ME and maintaining MEbio for those with acceptable ME before 

correction.  

In conclusion, we demonstrate the concept of applying MEart creation and compensation 

for PCIS matching in an LC-PCIS-MS method to correct for ME across diverse 

biological matrices. Importantly, this strategy is independent of retention time and 

standards spiking, making it universally applicable for any detectable feature in 

untargeted metabolomics. Ideally, based on the MEart -selected PCISs, a feature-PCIS-

matched library could be developed. Depending on the purpose of the study, such a 

library could be constructed with diverse or specific matrices and applied for ME 

correction in future studies. Overall, our study has proposed a novel approach to 

compensate for the ME in untargeted metabolomics with PCIS, which contributes to 

improving data reliability and comparability for untargeted metabolomic studies across 

varied matrices. 
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Figure S1. Infusion profiles for 0-7 minutes all PCISs with injections of plasma (A, B), 
urine (C, D), feces (E,F) and solvent blanks (G, H) in positive and negative modes. 
Three replicates are plotted for solvent blanks; samples from three different individuals 
are plotted for plasma, urine, and feces 

 

 

 

Figure S2. Seven-days room temperature stability test for all the selected PCISs, except 
for 3-fluoro-DL-valine. 
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Figure S3. Matrix effect profiles from 0-7 minutes for all PCISs monitored in plasma 
(A, B), urine (C, D), and fecal samples (E, F) in positive and negative modes. For each 
ionization mode and PCIS, the averaged intensity of the infusion profile from three 
solvent samples was used as the reference (100% matrix effect). 
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Figure S4. MEart induced by individual artificial matrix compounds and the mixture of 
all artificial matrix compounds (Mixture) in positive (A) and negative (B) modes for 
plasma, urine, and feces, across all examined metabolites. "PCIS only" is used as a 
reference with no induced MEart (MEart = 100%), and the dashed line indicates 70% of 
MEart. 

 
Figure S5. Infusion profiles of PCIS (A) and zoomed-in plots of the region with severe 
suppression (B) for a pooled fecal sample with infusion of PCIS (green line) and PCIS 
plus the mixture of artificial matrix compounds (blue line) in positive mode. 
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Figure S6. Infusion profiles of PCISs (A) and zoomed-in plots of the region with severe 
suppression (B) for a pooled fecal sample with infusion of PCIS (green line) and PCIS 
plus the mixture of artificial matrix compounds (blue line) in negative mode. 
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Figure S7. The MEbio (A) and MEart (B) scores of 19 SIL standards spiked in plasma, 
urine and feces before and after PCIS correction. 
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Figure S8. The MEbio score of the 19 SIL standards spiked in plasma, urine and feces 
before and after correction with the PCIS selected with artificial matrix infusion. The 
dashed line indicates an MEbio score of 75. 

Table S1: General information and stock solution preparation for all the authentic 
standards 

Compound Name Compound For-
mula 

Monoiso-
topic 
Mass/Da 

CAS num-
ber 

supplier stock 
/mM Solvent usage 

L-ornithine-d6 C3D9NO 84.1249 
347841-
40-1 CDN 250.0 H2O SIL 

L-glutamine-d5 C5H5D5N2O3 151.1005 
14341-78-
7 

cambridge Iso-
tope laborato-
ries 250.0 

H2O (1% 
NH3.H2O) SIL 

TMAO-d9 C3D9NO 84.1249 
1161070-
49-0 

cambridge Iso-
tope laborato-
ries 500.0 H2O SIL 

L-carnitine-d3 C7H12D3NO3 164.1240 
350818-
62-1 CDN 125.0 H2O SIL 

n-methyl-d3-l-histidine C7D3H9N3O2 172.1040 
91037-48-
8 CDN 25.0 H2O SIL 

Betaine-d9 C5H2D9NO2 126.1355 
285979-
85-3 CDN 250.0 H2O SIL 

L-lactic acid-13C3 13C3H6O3 93.0418 
201595-
71-3 TRC 170.0 H2O SIL 

acety-L-carnitine-d3 C9H14D3NO4 206.1346 
1334532-
17-0 CDN 50.0 H2O SIL 

citric acid-d4 C6H4D4O7  196.0521 
147664-
83-3 

cambridge Iso-
tope laborato-
ries 1250.0 H2O SIL 

hypoxanthine-d2 C5D3HN4O 140.0636 NA 

cambridge Iso-
tope laborato-
ries 62.5 

10% MeOH 
(0.2M HCL) SIL 

DL-leucine-d3 C6H10D3NO2 134.1135 
87828-86-
2 CDN 62.5 

10% MeOH 
(1% 
NH3.H2O) SIL 

uridine-2-13C-1,3-15N2 
C8[13C]1H12[1
5N]2O6 247.0670 

369656-
75-7 TRC 31.3 H2O SIL 
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phenylalanine-d5 C9H6D5NO2 170.1104 
28466-89-
7 CDN 50.0 15% MeOH SIL 

L-tryptophan-d3 C11H9D3N2O2 207.1087 
133519-
78-5 CDN 50.0 

H2O (0.5% 
NH3.H2O ) SIL 

4-hydroxyphenylactic 
acid-d6 C8H2D6O3 158.0850 

100287-
06-7 TRC 125.0 

H2O (1.5% 
NH3.H2O ) SIL 

hippuric acid-d5 C9H4D5NO3 184.0896 
53518-98-
2 chem Cruz 12.5 H2O SIL 

indole-d5-3-acetic acid C10H4D5NO2 180.0947 
76937-78-
5 TRC 1.3 MeOH SIL 

daidzein-d6 C15H4D6O4 260.0956 
291759-
05-2 TRC 0.1 MeOH SIL 

octanoyl-l-carnitine-d3 C15H26D3NO4 290.2285 
1334532-
24-9 CDN 2.5 H2O SIL 

leucine-enkephalin C28H37N5O7 555.2693 
81678-16-
2 Sigma-Aldrich 1.8 H2O PCIS 

fludrocortisone C21H29FO5 380.1999 127-31-1 TRC 1.3 MeOH PCIS 
5-fluoroisatin C8H4FNO2 165.0226 443-69-6 Sigma-Aldrich 6.1 50% MeOH PCIS 

caffeine-13C3 
C5[13C]3H10N
4O2 197.0904 

78072-66-
9 TRC 2.5 50% MeOH PCIS 

3-fluoro-DL-valine  C5H10FNO2 135.0696 
43163-94-
6 Sigma-Aldrich 14.8 50% MeOH PCIS 

L-homoarginine hydro-
chloride C7H17ClN4O2 224.1040 1483-01-8 sigma 3.0 50% ACN 

artificial 
matrix 
com-
pound 

sodium dodecyl sul-
phate  NaSO4C12H25 288.1371 151-21-3 J.T. Baker 1.5 50% ACN 

artificial 
matrix 
com-
pound 

sodium acetate C2H3NaO2 82.0031 127-09-3 Alfa Aesar 100.0 20% ACN 

artificial 
matrix 
com-
pound 

tridodecylme-
thylammonium chlo-
ride  C37H78ClN 571.5823 7173-54-8 Fluka 1.5 50% ACN 

artificial 
matrix 
com-
pound 

 
Table S2: Retention time, detection polarity, and final concentrations in the biologi-

cal samples after post-extration spiking of all the SIL standards  
SIL standards 

MEbio calculation MEart calcula-
tion  
(uM) 

Retention time/min in 
Triple TOF 6600 sys-

tem 

Retention 
time/min in Triple 
TOF 5600 system 

Polarity for 
detection low 

(uM) high (uM) 
L-ornithine-d6 60.0 600.0 300 0.57 0.56 Positive 
L-glutamine-d5 600.0 6000.0 300 0.66 0.66 Positive 

TMAO-d9 40.0 400.0 40 0.69 0.69 Positive 
L-carnitine-d3 30.0 300.0 10 0.69 0.69 Positive 

n-methyl-d3-l-histi-
dine 3.0 30.0 75 0.70 0.70 Positive 

Betaine-d9 50.0 500.0 10 0.71 0.71 Positive 
L-lactic acid-13C3 150.0 1500.0 75 1.25 1.20 Negative 

acety-L-carnitine-d3 5.0 50.0 2.5 1.40 1.27 Positive 
citric acid-d4 100.0 1000.0 50 1.57 1.57 Negative 

hypoxanthine-d2 5.0 50.0 25 1.83 1.75 Positive 
DL-leucine-d3 80.0 800.0 40 2.42 2.19 Positive 

uridine-2-13C-1,3-15N2 5.0 50.0 25 2.72 2.44 Negative 
phenylalanine-d5 80.0 800.0 16 3.06 3.03 Positive 
L-tryptophan-d3 80.0 800.0 40 3.32 3.55 Positive 

4-hydroxyphenylactic 
acid-d6 1.0 10.0 10 3.79 4.07 Negative 

hippuric acid-d5 5.0 50.0 10 3.86 4.13 Negative 
indole-d5-3-acetic acid 1.0 10.0 50 4.73 5.14 Negative 

daidzein-d6 0.5 5.0 2.5 4.80 5.28 Negative 
octanoyl-l-carnitine-d3 0.2 2.0 1 4.86 5.22 Positive 
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Table S3: structures overview of PCIS candidates 
Standards name Molecular structure Polarity assessed 

Leucine-enkephalin 

 

positive and negative  

Fludrocortisone 

 

positive and negative 

D-glucose-d7  positive and negative 

5-Fluoroisatin 

 

positive and negative  

Caffeine-13C3 

 

positive  

3-Fluoro-DL-valine 

 

positive and negative  
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Table S4: Pearson correlation coeffecient (r) of the infusion profiles between PCIS candidates in diverse plasma samples  
( positive ionization mode)  

Sanquine Plasma [D-glucose-d7 + Na]+ [Fludrocortisone +H]+ [Leucine-enkepahlin +H]+ [Caffeine13C3 +H]+ [3-Fluoro-DL-valine+H]+ [5-Fluorosatin+H]+ 
[D-glucose-d7 + Na]+ 1      
[Fludrocortisone +H]+ 0.770804431 1     
[Leucine-enkepahlin +H]+ 0.772241398 0.824544 1    
[Caffeine13C3 +H]+ 0.807158021 0.880798384 0.905081916 1   
[3-Fluoro-DL-valine+H]+ 0.72848998 0.735984463 0.968348889 0.894836281 1  
[5-Fluorosatin+H]+ -0.200570801 -0.01464634 -0.532458303 -0.246552806 -0.575077475 1 

       
Divbiosc Plasma [D-glucose-d7 + Na]+ [Fludrocortisone +H]+ [Leucine-enkepahlin +H]+ [Caffeine13C3 +H]+ [3-Fluoro-DL-valine+H]+ [5-Fluorosatin+H]+ 

[D-glucose-d7 + Na]+ 1      
[Fludrocortisone +H]+ 0.630635012 1     
[Leucine-enkepahlin +H]+ 0.694528207 0.834120488 1    
[Caffeine13C3 +H]+ 0.683401118 0.868356752 0.901571591 1   
[3-Fluoro-DL-valine+H]+ 0.538261395 0.705531452 0.921834288 0.877180876 1  
[5-Fluorosatin+H]+ -0.190154901 -0.031721979 -0.526404679 -0.283939985 -0.606670633 1 

       
Fasting Plasma [D-glucose-d7 + Na]+ [Fludrocortisone +H]+ [Leucine-enkepahlin +H]+ [Caffeine13C3 +H]+ [3-Fluoro-DL-valine+H]+ [5-Fluorosatin+H]+ 

[D-glucose-d7 + Na]+ 1      
[Fludrocortisone +H]+ 0.683430579 1     
[Leucine-enkepahlin +H]+ 0.703838424 0.828812768 1    
[Caffeine13C3 +H]+ 0.740523259 0.867595416 0.899915573 1   
[3-Fluoro-DL-valine+H]+ 0.663754647 0.73810718 0.968591541 0.897303108 1  
[5-Fluorosatin+H]+ -0.256899697 -0.06528373 -0.572740147 -0.304372961 -0.616763643 1 

       
 

Non-fasting Plasma [D-glucose-d7 + Na]+ [Fludrocortisone +H]+ [Leucine-enkepahlin +H]+ [Caffeine13C3 +H]+ [3-Fluoro-DL-valine+H]+ [5-Fluorosatin+H]+ 
[D-glucose-d7 + Na]+ 1      
[Fludrocortisone +H]+ 0.647767404 1     
[Leucine-enkepahlin +H]+ 0.653235124 0.792877554 1    
[Caffeine13C3 +H]+ 0.70200815 0.813079254 0.890842094 1   
[3-Fluoro-DL-valine+H]+ 0.587276227 0.681877501 0.965422476 0.882096272 1  
[5-Fluorosatin+H]+ -0.161839449 -0.019331194 -0.564482804 -0.310651998 -0.626161036 1 
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Table S5: Pearson correlation coeffecient (r) of the infusion profiles between PCIS candidates in diverse plasma samples 
( negative ionization mode) 

Sanquine Plasma [D-glucose-d7 -H]- [Fludrocortisone+FA-H]- [Leucine-enkepahlin -H]- [3-Fluoro-DL-valine-H]- [5-Fluoroisatin-H]- 
[D-glucose-d7 -H]- 1     
[Fludrocortisone+FA-H]- 0.971665897 1    
[Leucine-enkepahlin -H]- 0.913084057 0.877045789 1   
[3-Fluoro-DL-valine-H]- 0.985792414 0.97978939 0.904547957 1  
[5-Fluoroisatin-H]- 0.931715540 0.894316261 0.992686476 0.917705787 1 

      
Divbiosc Plasma [D-glucose-d7 -H]- [Fludrocortisone+FA-H]- [Leucine-enkepahlin -H]- [3-Fluoro-DL-valine-H]- [5-Fluoroisatin-H]- 

[D-glucose-d7 -H]- 1     
[Fludrocortisone+FA-H]- 0.981822481 1    
[Leucine-enkepahlin -H]- 0.962978629 0.952940878 1   
[3-Fluoro-DL-valine-H]- 0.9891261 0.98361744 0.959161467 1  
[5-Fluoroisatin-H]- 0.964913125 0.956276829 0.994226765 0.953515605 1 

      
Fasting Plasma [D-glucose-d7 -H]- [Fludrocortisone+FA-H]- [Leucine-enkepahlin -H]- [3-Fluoro-DL-valine-H]- [5-Fluoroisatin-H]- 

[D-glucose-d7 -H]- 1     
[Fludrocortisone+FA-H]- 0.981660938 1    
[Leucine-enkepahlin -H]- 0.947698008 0.921857285 1   
[3-Fluoro-DL-valine-H]- 0.984958237 0.982635835 0.933553917 1  
[5-Fluoroisatin-H]- 0.960629360 0.940410637 0.99140311 0.941998665 1 

      
Non-fasting Plasma [D-glucose-d7 -H]- [Fludrocortisone+FA-H]- [Leucine-enkepahlin -H]- [3-Fluoro-DL-valine-H]- [5-Fluoroisatin-H]- 

[D-glucose-d7 -H]- 1     
[Fludrocortisone+FA-H]- 0.984870223 1    
[Leucine-enkepahlin -H]- 0.94116293 0.918152598 1   
[3-Fluoro-DL-valine-H]- 0.98722257 0.983336006 0.928348359 1  
[5-Fluoroisatin-H]- 0.957162007 0.93747786 0.991424244 0.937538212 1 
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Table S6: Endogenous metabolites used for peak area comparison in plasam injections 
with and without PCIS infusion 

Index HMDB_I
D Metabolite_Name Formula MS.ready.monoiso-

topic.mass RT Polarity change in per-
centage (%)* 

1 HMDB000
0378 

2-Methyl-
butyroylcarnitine 

C12H23NO
4 245.1627 3.565 Positive -31.2 

2 HMDB001
3324 2-Octenoylcarnitine C15H27NO

4 285.194 4.727 Positive -27.2 

3 HMDB000
0043 Betaine C5H11NO2 117.079 0.699 Positive -1.0 

4 HMDB000
0097 Choline C5H13NO 103.0997 0.643 Positive -0.7 

5 HMDB000
1161 Deoxycarnitine C7H15NO2 145.1103 0.748 Positive 23.6 

6 HMDB000
0705 Hexanoylcarnitine C13H25NO

4 259.1784 4.166 Positive -26.0 

7 HMDB000
2013 Isobutyrylcarnitine C11H21NO

4 231.1471 3.135 Positive -18.4 

8 HMDB000
0201 Acetylcarnitine C9H17NO4 203.1158 1.416 Positive -7.7 

9 HMDB000
2250 Lauroylcarnitine C19H37NO

4 343.2723 5.89 Positive 25.4 

10 HMDB000
0062 Carnitine C7H15NO3 161.1052 0.689 Positive -9.6 

11 HMDB000
0791 Octanoylcarnitine C15H29NO

4 287.2097 4.855 Positive -29.4 

12 HMDB000
5066 Myristoylcarnitine C21H41NO

4 371.3036 6.371 Positive 11.0 

13 HMDB000
0824 Propionylcarnitine C10H19NO

4 217.1314 2.963 Positive -22.8 

14 HMDB000
2366 Tiglylcarnitine C12H21NO

4 243.1471 3.446 Positive -24.0 

15 HMDB000
0925 TMAO C3H9NO 75.06841 0.685 Positive -22.9 

16 HMDB000
0641 Glutamine C5H10N2O

3 146.0691 0.654 Positive -20.5 

17 HMDB000
0172 Isoleucine C6H13NO2 131.0946 2.25 Positive 12.6 

18 HMDB000
0684 Kynurenine C10H12N2

O3 208.0848 3.059 Positive -14.0 

19 HMDB000
0687 Leucine C6H13NO2 131.0946 2.42 Positive 20.3 

20 HMDB000
0696 Methionine C5H11NO2

S 149.051 1.353 Positive 1.8 

21 HMDB000
0214 Ornithine C5H12N2O

2 132.0899 0.568 Positive 3.9 

22 HMDB000
0159 Phenylalanine C9H11NO2 165.079 3.061 Positive -10.7 

23 HMDB000
0162 Proline C5H9NO2 115.0633 0.787 Positive 24.1 

24 HMDB000
0929 Tryptophan C11H12N2

O2 204.0899 3.317 Positive -2.0 

25 HMDB000
0158 Tyrosine C9H11NO3 181.0739 2.41 Positive 29.5 

26 HMDB000
0883 Valine C5H11NO2 117.079 1.082 Positive 9.4 

27 HMDB000
2825 Theobromine C7H8N4O2 180.0647 3.112 Positive -25.7 

28 HMDB000
0357 3-hydroxybutyric acid C4H8O3 104.0473 2.38 Positive 1.3 

29 HMDB000
0619 CA C24H40O5 408.2876 5.98 Positive 20.8 

30 HMDB000
0562 Creatinine C4H7N3O 113.0589 0.737 Positive -8.3 

31 HMDB000
0626 DCA C24H40O4 392.2927 6.867 Positive 21.9 

32 HMDB000
0714 Hippuric acid C9H9NO3 179.0582 3.863 Positive 2.3 

33 HMDB000
0197 Indoleacetic acid C10H9NO2 175.0633 4.733 Positive -2.1 

34 HMDB000
0715 Kynurenic acid C10H7NO3 189.0426 3.457 Positive -16.9 
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35 HMDB000
0036 TCA C26H45NO

7S 515.2917 5.126 Positive -32.8 

36 HMDB000
0289 Uric acid C5H4N4O3 168.0283 1.692 Positive -16.4 

37 HMDB000
0292 Xanthine C5H4N4O2 152.0334 2.268 Positive -25.8 

38 HMDB000
0422 2-MethylglutaricÂ acid C6H10O4 146.0579 3.371 Positive -27.8 

39 HMDB000
0157 Hypoxanthine C5H4N4O 136.0385 1.83 Positive -31.7 

40 HMDB000
2302 Indolepropionic acid C11H11NO

2 189.079 5.08 Positive -1.0 

41 HMDB000
0262 Thymine C5H6N2O2 126.0429 2.96 Positive -22.0 

42 HMDB000
0301 Urocanic acid C6H6N2O2 138.0429 1.5 Positive -14.2 

43 HMDB000
0906 

Trimethylamine 
(TMA) C3H9N 59.0735 0.654 Positive 3.0 

44 HMDB000
1886 3-methylxanthine C6H6N4O2 166.0491 3 Positive -11.8 

45 HMDB001
3222 

3-Guanidinopropano-
ate C4H9N3O2 131.0695 0.825 Positive -3.2 

46 HMDB000
4824 

N2.N2-dimethylguano-
sine 

C12H17N5
O5 311.123 3.05 Positive 27.9 

47 HMDB000
0767 Pseudouridine C9H12N2O

6 244.0695 1.35 Positive -9.8 

48 HMDB000
1847 Caffeine C8H10N4O

2 194.0804 3.67 Positive -25.5 

49 HMDB000
0671 Indolelactic acid C11H11NO

3 205.0739 4.42 Positive -7.2 

50 HMDB000
0842 Quinaldic acid C10H7NO2 173.0477 3.63 Positive 2.2 

51 HMDB000
5862 2-Methylguanosine C11H15N5

O5 297.1073 2.94 Positive 1.4 

52 HMDB001
1621 Cinnamoylglycine C11H11NO

3 205.0739 4.53 Positive -7.2 

53 HMDB000
0631 GDCA C26H43NO

5 449.3141 6.12 Positive -3.8 

54 HMDB000
0698 GLCA C26H43NO

4 433.3192 6.85 Positive -6.5 

55 HMDB000
0896 TDCA C26H45NO

6S 499.2968 5.72 Positive -22.1 

56 HMDB000
0637 GCDCA C26H43NO

5 449.3141 6.01 Positive -6.5 

57 HMDB000
0138 GCA C26H43NO

6 465.309 5.44 Positive -21.0 

58 HMDB000
0951 TCDCA C26H45NO

6S 499.2968 5.59 Positive -28.2 

59 HMDB000
0708 GUDCA C26H43NO

5 449.3141 5.47 Positive -19.1 

60 HMDB000
0518 CDCA C24H40O4 392.2927 6.73 Positive 23.2 

61 HMDB000
0641 Glutamine C5H10N2O

3 146.0691 0.66 Negative -36.1 

62 HMDB000
0172 Isoleucine C6H13NO2 131.0946 2.26 Negative -38.4 

63 HMDB000
0684 Kynurenine C10H12N2

O3 208.0848 3.05 Negative -7.9 

64 HMDB000
0687 Leucine C6H13NO2 131.0946 2.44 Negative -34.8 

65 HMDB000
0696 Methionine C5H11NO2

S 149.051 1.35 Negative -10.3 

66 HMDB000
0159 Phenylalanine C9H11NO2 165.079 3.06 Negative -52.1 

67 HMDB000
0162 Proline C5H9NO2 115.0633 0.78 Negative -47.2 

68 HMDB000
0251 Taurine C2H7NO3S 125.0147 0.64 Negative -17.2 

69 HMDB000
0158 Tyrosine C9H11NO3 181.0739 2.41 Negative -49.4 

70 HMDB000
0883 Valine C5H11NO2 117.079 1.08 Negative -44.6 
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71 HMDB000
2825 Theobromine C7H8N4O2 180.0647 3.15 Negative -26.8 

72 HMDB000
0357 3-hydroxybutyric acid C4H8O3 104.0473 2.38 Negative -16.1 

73 HMDB000
0714 Hippuric acid C9H9NO3 179.0582 3.87 Negative -11.5 

74 HMDB000
0197 Indoleacetic acid C10H9NO2 175.0633 4.74 Negative -47.5 

75 HMDB000
0715 Kynurenic acid C10H7NO3 189.0426 3.46 Negative -34.0 

76 HMDB000
0289 Uric acid C5H4N4O3 168.0283 1.7 Negative -19.7 

77 HMDB000
0292 Xanthine C5H4N4O2 152.0334 2.27 Negative -5.1 

78 HMDB000
0422 2-MethylglutaricÂ acid C6H10O4 146.0579 3.371 Negative 4.5 

79 HMDB000
0157 Hypoxanthine C5H4N4O 136.0385 1.83 Negative -22.6 

80 HMDB000
0190 Lactic acid C3H6O3 90.0317 1.25 Negative -11.0 

81 HMDB000
1886 3-methylxanthine C6H6N4O2 166.0491 3.00 Negative 9.0 

82 HMDB001
3222 

3-Guanidinopropano-
ate C4H9N3O2 131.0695 0.83 Negative -48.8 

83 HMDB000
4824 

N2.N2-dimethylguano-
sine 

C12H17N5
O5 311.123 3.05 Negative -45.9 

84 HMDB001
1635 p-cresol sulfate C7H8O4S 188.0143 4.16 Negative -9.0 

85 HMDB000
0767 Pseudouridine C9H12N2O

6 244.0695 1.35 Negative -8.9 

86 HMDB000
0296 Uridine C9H12N2O

6 244.0695 2.72 Negative -30.9 

87 HMDB000
0671 Indolelactic acid C11H11NO

3 205.0739 4.41 Negative -18.4 

88 HMDB001
1686 p-Cresol glucuronide C13H16O7 284.0896 4.12 Negative -36.1 

89 HMDB000
5862 2-Methylguanosine C11H15N5

O5 297.1073 2.95 Negative -50.5 

90 HMDB001
1621 Cinnamoylglycine C11H11NO

3 205.0739 4.53 Negative -18.4 

91 HMDB000
0631 GDCA C26H43NO

5 449.3141 6.12 Negative -20.1 

92 HMDB000
0896 TDCA C26H45NO

6S 499.2968 5.73 Negative -10.9 

93 HMDB000
0637 GCDCA C26H43NO

5 449.3141 6.01 Negative -38.1 

94 HMDB000
0138 GCA C26H43NO

6 465.309 5.43 Negative -38.1 

95 HMDB000
0951 TCDCA C26H45NO

6S 499.2968 5.59 Negative -18.4 

96 HMDB000
0708 GUDCA C26H43NO

5 449.3141 5.46 Negative -38.3 

* change in percentage is calculated as (A_with PCIS - A_without PCIS)/A_without PCIS *100; A 
stands for peak area 
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Abstract 

The increasing prevalence of IgE-mediated cow’s milk allergy (CMA) in childhood is a 

worldwide health concern. There is a growing awareness that the gut microbiome (GM) 

might play an important role in CMA development. Therefore, treatment with probiotics 

and prebiotics has gained popularity. This systematic review provides an overview on 

the alterations of the GM, metabolome and immune response in CMA-children and 

animal models, including post-treatment modifications. MEDLINE, PubMed, Scopus 

and Web of Science were searched for studies on the GM in CMA-diagnosed children, 

published before March 1, 2023. A total of 21 articles (13 on children, 8 on animal 

models) were included. The studies suggest that the GM, characterized by an enrichment 

of the Clostridia class and reductions in the Lactobacillales order and Bifidobacterium 

genus, is associated with CMA in early life. Additionally, reduced levels of short chain 

fatty acids (SCFAs) and altered amino acid metabolism were reported in CMA-children. 

Commonly used probiotic strains belong to the Bifidobacterium and Lactobacillus 

genera. However, only Bifidobacterium levels were consistently upregulated after 

intervention, while alterations of other bacteria taxa remain inconclusive. These 

interventions appear to contribute to the restoration of SCFAs and amino acid 

metabolism balance. Mouse models indicate that these interventions tend to restore the 

Th2/Th1 balance, increase the Treg response, and/or silence the overall pro- and anti-

inflammatory cytokine response. Overall, this systematic review highlights the need for 

multi-omics related research in CMA-children to gain a mechanistic understanding of 

this disease and to develop effective treatments and preventive strategies.
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 Introduction 

One of the most common food allergies in early childhood is cow’s milk allergy 

(CMA).1,2 Allergic reactions can be IgE-mediated, non-IgE-mediated, or a mix of both.3 

Multiple studies have shown that among the children diagnosed with CMA those with 

IgE-mediated reactions to CM tend to have persistent symptoms and acquire tolerance 

slower than those with non–IgE-mediated reactions.4–7 At present, infants diagnosed 

with CMA are placed on an elimination diet consisting of an extensively hydrolyzed 

formula (EHF) or, if symptoms persist, an amino-acid formula (AAF).8 Because of the 

increasing evidence linking food allergies with alterations in gut microbial 

composition,9,10 modifying the gut microbiome (GM) with probiotics, prebiotics or 

synbiotics has emerged as a promising way to prevent and treat allergies.11 However, 

there is still little mechanistic understanding on how the GM influences host immune 

health, leading to allergies, including CMA.12 Recent technological innovations in the 

field of microbiome, proteomics and metabolomics have opened new doors for research 

and provided opportunities to address the gap in understanding the role of GM in CMA. 

The objective of this systematic review is to further the understanding of the relationship 

between the GM and CMA, by reviewing existing studies examining microbiome, 

metabolome, proteome, and immune response data on IgE-mediated CMA in children 

and animal models. 

1. Methods 

This systematic review is registered in PROSPERO (CRD42021290177). 

2.1 Search strategy 

A search in MEDLINE, PubMed, Scopus and Web of Science was performed using the 

queries in Table S1. The search was limited to research articles published in English 

before March 1, 2023. 

2.2 Inclusion and exclusion criteria 

Human case, case-control, and intervention studies were included only if they examined 

children with IgE-mediated CMA aged 0-12 years. The allergy had to be medically 
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diagnosed by either a skin prick test (SPT) or an IgE-specific test combined with a cow’s 

milk food challenge. In studies with fecal transplantation (FT), the IgE-mediated CMA 

status of the donor must be confirmed by the diagnosis criteria used for human studies. 

For studies reporting data on groups of subjects diagnosed with different types of CMA, 

only the group with IgE-mediated CMA was reviewed. For animal studies, only case-

control and intervention studies on models that included both sensitization and challenge 

steps were included. The studies were included only if they contained analytical data 

that examined the GM or metabolome and were excluded when they failed to meet the 

inclusion criteria, had unclear diagnosis, or involved antibiotic treatment. 

2.3 Study selection 

Titles, abstracts, and methods were screened independently by two of the authors MVS, 

PZ, DMH, and by a third author in case of disagreement. Subsequently, the full text of 

the studies marked as potentially eligible was retrieved and independently checked for 

eligibility by at least two of the authors MVS, PZ, DMH, and by a third author in case 

of disagreement or doubts. 

2.4 Data extraction 

For human studies, the extracted data included general study details (author, year), 

participant information (age, sample size), CMA diagnosis, analytical data types, data 

acquisition techniques, measured analytical parameters and significant results. For 

intervention studies, the intervention details were also extracted. If available, the age 

range for each group in the study was reported. When only the mean and standard 

deviation (SD) were available, the age was reported as mean ± sd. The results were split 

in two: increased and decreased variables between the compared groups. For animal 

intervention studies, the extracted data included general study details, model 

information, challenge information, intervention details, data acquisition techniques, 

measured analytical parameters and significant results.  

3 Results 

3.1 Search strategy 
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Our search yielded 733, 479, 512, 897 articles in respectively Scopus, PubMed, 

MEDLINE and Web of Science. Forty-nine studies were eligible for inclusion. Figure 

1 shows the PRISMA13 flow diagram. Of the 49 papers, 28 were excluded after careful 

consideration (Table S2).  
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Figure 1. PRISMA flow chart for this systematic review. 
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3.2 Study findings 

3.2.1 Human studies 

CMA diagnosis criteria and measured parameters in human studies are summarized in 

Table S3. 

3.2.1.1 Case and case-control studies 

Human studies include one case and nine case-control studies (Table 1), among which 

four examined both the microbiome and metabolome,14–17 five the microbiome,18–22 and 

one the metabolome.23 For all case-control studies, healthy controls (HC) were used 

except for one study23 that considered atopic eczema/dermatitis syndrome infants as 

controls.  

GM modifications 

The GM-related studies include four case-control reports,15,19,17,20 four case-control 

findings in intervention studies,14,16,18,21 and one case study.22 Techniques applied for 

GM profile identification included bacteria culture18 and 16S rRNA gene-based 

approaches (DGGE,19 FISH14,15 and gene sequencing16,17,21,20,22). Two studies applied 

specific probes to target certain bacteria groups,14,15 and six used universal probes or 

primers to target the V3 region,19 V4 region16,22 or both.17,20,21 

Six studies compared α- and β-diversity between CMA-group and HC, three of them 

noted increased16,19 or decreased20 Shannon α-diversity difference in the CMA-groups, 

and one reported β-diversity (unweighted UniFrac) difference between CMA-group and 

HC.21 A single study reported a higher total bacteria count in the CMA-group.18 

Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia were 

the primary reported GM phyla. Elevated abundances of the Firmicutes phylum were 

consistently observed in the CMA-groups.14–19,21 These included: total Firmicutes;17,21 

the class Clostridia;17 the families Lachnospiraceae16 and Ruminococcaceae16,17; the 

genera Clostridium,14,19 Faecalibacterium16, Lactobacillus,18 Ruminococcus16 and 

Subdoligranulum19 and the species Clostridium coccoides15 and Clostridium 

celerecrescens.19 Conversely, certain Firmicutes phylum, including the genus 
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Granulicatella21 and the families Streptococcaceae,16 Enterococcaceae,16 and 

Acidaminococcaceae,20 decreased in the CMA-groups. Additionally, enriched bacteria 

of the Firmicutes phylum, including the class Clostridia, were also observed in the 

infants who outgrew CMA.22 

Bacteroidetes phylum members also showed varying changes in the CMA-

groups.14,17,19–21 These included increased levels of the Flavobacteriaceae family,17 the 

Bacteroides14,19 and Prevotella21 genera, along with reduced abundance of the 

Prevotellaceae family20 and the Parabacteroides genus.21 Furthermore, several bacteria 

from the Proteobacteria phylum, including the Haemophilus, Actinobacillus and 

Klebsiella genera,21 and the Escherichia coli species,19 increased in the CMA-groups. 

In contrast, total Proteobacteria,17 the Enterobacteriaceae family,16,18 and the 

Escherichia genus16 decreased. In the Actinobacteria phylum, one study reported 

increased Atopobium cluster (genus) levels,15 while Bifidobacteriaceae family members, 

including Bifidobacterium spp., consistently exhibited decreased abundance in the 

CMA-groups.14,16,18,19 Additionally, the Verrucomicrobia phylum dropped in the CMA-

group.21 

Two studies reported certain bacteria only in the CMA group or the HC. The Clostridium 

celerecrescens species,19 and the Burkholderiaceae, Nannocystaceae, Shewanellaceae, 

Thermomonosporaceae and Flavobacteriaceae families were reported only in the CMA 

group.17 In contrast, the Bifidobacterium bifidum species19 and the Methylophilaceae 

and Dietziaceae families were exclusively detected in the HC.17  

Metabolome modifications  

Decreased total short chain fatty acid (SCFAs),14,17 along with increased butyrate and 

total branched-chain short fatty acids (BCSFAs),15 were reported in CMA-groups. 

Besides, lower pyruvate, lactate, threonine and proline, along with higher total esters, 

ketones, alcohol aldehydes, uridine, histidine, tyrosine, trimethylamine-N-oxide 

(TMAO) and arginine/histidine,14 and elevated organic acids were reported in CMA-

groups.23  

Metabolome-microbiome associations 
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Two studies examined the association between the GM and the metabolome.15,17 

Positive correlations were found between the Clostridium genus and butyrate, the 

Clostridium coccoides species and BCSFAs, and the Bacteroides genus and 

propionate.15 Isocaproate and BCSFAs were negatively related with the Bifidobacterium 

genus.15 Additionally, lactate was found to be negatively correlated with Bacteroides 

genus17 and Clostridium coccoides species,15 but positively correlated with 

Bifidobacterium genus.15 
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Table1. Human case and case-control studies in infants/children. Abbreviations: see Supplementary Excel file. 
Age 

years (y); 
months (m) 

Analytical  
techniques 

Analytical 
data 

Sample size 
(CMA/control) 

Results: 
modifications in case versus control (case-control study), 

modifications in allergic versus tolerant (case study) Reference 

Increase Decrease 

2-12 m 
Bacterial culture 

(CFU) 
Microbiome 46/46 

Baseline: 
Total bacteria count, 
Anaerobic bacteria 
After 6 months: 
Anaerobes count, 

Lactobacilli count and proportion 

Baseline: 
Yeast count 

After 6 months: 
Bifidobacteria count and proportion, 

Enterobacteria proportion, 
Yeast proportion 

Thompson-Chagoyan et 
al.18 

0.55 ± 0.20 y GC-MS Metabolomics 16/16 
beta-hydroxybutyrate, adipate, isocitrate, 

homovanillate, suberate, tartarate, 
3-indoleacetate, 5-hydroxyindoleacetate 

Not reported #Salmi et al.23 

2-12 m 

FISH-FC 
(16S rRNA  

gene specific 
probes); 
GC-FID 

Microbiome, 
Metabolomics 

46/46 
Clostridium coccoides group, 

Atopobium cluster, 
butyrate, BCSFA 

Not reported Thompson-Chagoyan et al. 
15 

6.5-10.4 m 

FISH  
(16S rRNA gene  
specific probes); 

GC-MS; 
NMR; 

Microbiome, 
Metabolomics 

18/18 

Bacteroides, 
Clostridium, 

Total esters, ketones, 
alcohols, aldehydes; 

Uridine, histidine, tyrosine, 
TMAO, arginine/histidine 

Bifidobacteria, 
Total SCFAs (major difference: acetate and butyr-

ate), 
Pyruvate, 

Lactic acid, threonine, proline 

Francavilla et al.14 

 
 

5-8 y 

PCR-DGGE  
(V3 regions + 16S 
rRNA gene- spe-

cific primers) 
Microbiome 12/12 

GM α-diversity 
 (Shannon diversity), 
C.coccoides diversity  
(Shannon diversity), 

Bacteroides, 
Clostridium, 

Escherichia coli’; 
only detected in CMA group: 

C. celerecrescens 

Bifidobacterium (B.) diversity (Shannon diversity), 
B. adolescent, B. longum, B. catenulatum, 

and B. breve 
 

Only detected in control group: 
B. bifidum 

Guo et al.19 
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Table1. Human case and case-control studies in infants/children. Abbreviations: see Supplementary Excel file.(Continued) 

Age 
years (y), 

months (m) 

Analytical  
techniques Analytical data Sample size 

(CMA/control) 

Results: 
modifications in case versus control (case-control study) 

modifications in allergic versus tolerant (case study) Reference 

Increase Decrease 

1-12 m 

qPCR- 
16S rRNA (V4 re-

gion), 
GC-FID 

 

Microbiome 19/20 

 
GM α-diversity (Shannon diversity), 

Gut microbiota evenness  
(Pielou’s evenness), 
    Ruminococcaceae,  

Lachnospiraceae, 
Ruminococcus, Faecalibacterium 

Bifidobacteriaceae, Streptococcaceae, 
 Enterobacteriaceae, Enterococcaceae, 

Bifidobacterium, 
Escherichia 

Canani et al.16 

5-8 y 
PCR-16s rRNA 

(V3-V4 regions), 
HPLC-UV 

Microbiome, 
Metabolomics 6/8 

 
Firmicutes, Clostridia, 

Ruminococcaceae,  
Subdoligranulum 

 
only detected in CMA group: 

Burkholderiaceae, Nannocystaceae, She-
wanellaceae, Thermomonosporaceae, Fla-

vobacteriaceae 

Proteobacteria 
only detected in control group: 
Methylophilaceae, Dietziaceae, 

Total SCFAs 

Dong et al. 
17 

10-15 m 

PCR- 
16S-rRNA (V3-V4 

regions), 
qRT-PCR 

Microbiome 14/14 
Firmicutes, Haemophilus, Actinobacillus, 

Prevotella, 
Klebsiella 

Verrucomicrobia, 
Parabacteroides, 

Granulicatella 
Mennini et al.21 

4-6 m 16S-rRNA (V3-V4 
regions) Microbiome 16/34 

Not reported 
 

GM α-diversity (Shannon diversity), 
Acidaminococcaceae, 

Prevotellaceae 
Mera-Berriatua et al.20 

3-16 m 16S-rRNA (V4 re-
gion) Microbiome 226/- 

(3-6m: 29/-) 

Fecal microbiome at 3-6 month: 
Bacteroidetes, Enterobacter 

Metagenome functional enrichment of 
fatty acid metabolism. 

Fecal microbiome at 3-6 month: 
Clostridia, Firmicutes. 

 
Bunyavanich et al.22 

#AEDS as basic disease for subjects in both case and control group, and the age is calculated by the pooled mean and sd from the age 
groups provided in the article 
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3.2.1.2  Intervention studies 

Eight intervention studies for CMA treatment were included (Table2).14,16,18,21,23–26 Two 

examined the GM and metabolome,14,16 one the GM and immune response,26 four the 

GM,18,21,24,25 and one the metabolome.23 The interventions varied across studies, 

including synbiotics,25 prebiotics,24 probiotics (species of the genus 

Bifidobacterium,21,26 Lactobacillus rhamnosus GG (LGG) species16,23) and different 

formula types.14,18 

GM modifications 

The GM profile was identified with bacteria culture,18 FISH,25 16S rRNA gene 

sequencing with specific primers/probes14,24,26 or targeting the V416 or V3-V4 regions.21 

Alterations of the phylum Firmicutes in CMA-patients were described in five 

intervention studies, involving treatment with EHF,18 lactose-supplemented EHF,14 

LGG,16 species and strains from the Bifidobacterium genus.21,26 These interventions 

raised Firmicutes phylum members, including the Turicibacterales order,48 the 

Lactobacillaceae and Lachnospiraceae families48 and the genera like Lactobacillus,18,48 

Blautia,16,21 Roseburia,16 Coprococcus,16 Anaerofustis,16 Ruminococcus,21,26 

Turicibacter26 and Oscillospira.26 Conversely, some Firmicutes phylum members, 

including the Clostridia class,14 Christensenellaceae family48 and genera like 

Enterococcus, Streptococcus,21 Anaerovibrio, Oscillibacter, Bilophila, Dorea and 

Roseburia26 decreased under treatments. 

The interventions also affected the Proteobacteria phylum21 and its members. The 

Betaproteobacteria class, the Burkholderiales order, the Alcalligenaceae family and the 

Sutterella genus increased in the treated group,26 while some studies reported decreased 

levels of the Deltaproteobacteria class,26 the Enterobacteriaceae family18 and the 

Sutterella genus.21 In the Bacteroidetes phylum, studies reported the interventions 

increased levels of the Porphyromondaceae family26 and the Prevotella genus,21,26 and 

reduced levels of the Bacteroides and Prevotella genera.14 Additionally, the 

Actinobacteria phylum also underwent changes with interventions.14,18,21,25,26 The use of 

probiotic Bifidobacterium strains consistently elevated the Bifidobacterium genus.21,25,26 

Increased Bifidobacterium were also noticed after lactose-supplemented EHF diet.14 In 
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contrast, the Actinobacteria phylum21 and its members, the genera Bifidobacterium,18 

Atopobium,21 and Actinomyces,21,26 were decreased by the treatments. The 

Verrucomicrobia phylum and its Akkermansia genus were found increased in the 

treatment group.21 

In addition to the taxonomy changes, enhanced α-diversity (chao1, observed species),26 

reduced total bacteria24 and a decreased ratio of the Eubacterium rectale/Clostridium 

coccoides species 25 were reported after probiotics, pectin-based thickened AAF and 

synbiotics treatments, respectively.  

Metabolome modifications 

After the LGG-supplemented hydrolyzed whey formula (HWF) diet, CMA-patients 

showed increased kynurenate and decreased 3-indoleacetate.23 Additionally, butyrate 

increased in LGG-supplemented extensively hydrolyzed casein (EHC) formula treated 

CMA-patients.16 Meanwhile, lactose-supplemented EHF raised SCFAs, lactate, 

threonine, uridine, histidine, tyrosine, methionine, TMAO, phenylalanine, 

arginine/histidine and gamma–amino–butyrate/lysine, and lowered the total esters, 

ketones, alcohols, aldehydes and valine/isoleucine in CMA-patients.14  

Immune response 

The single intervention study reporting findings on the immune response showed that 

Bifidobacterium bifidum reduced allergy symptoms, lowered serum IgE and raised IgG2 

levels in CMA-patients.26 The IgG2 and IgE were respectively positively and negatively 

correlated with GM α-diversity (Chao1 index, observed species, community diversity 

index, Shannon index). The intervention decreased the pro-inflammatory cytokines 

TNFα, IL-1β and IL-6 and increased the anti-inflammatory cytokine IL-10 as well.26  

CMA outcome 

Four out of eight intervention studies discussed CMA tolerance or allergic symptoms 

improvement between treatment and control.16,24–26 Two studies noted significant 

improvement in allergic symptoms after treatment,24,26 and one reported five out of 12 

infants in the treated group outgrew CMA after six months, compared to none in the 

control group.16 
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Table 2. Characteristics of studies that compare CMA infants/children before and after intervention (intervention study). Abbreviations: 
see Supplementary Excel file. 

Age 
years (y); 
months 

(m) 

Analytical 
techniques 

Analytical  
data 

sample size 
(treatment/ 

control) 

Intervention detail Results: 
modifications in treatment versus control 

Reference 
Duration 
(months) 

Comparison 
groups 

Control diet 
(Basic for-
mula (BF)) 

Treatment diet 
(BF + interven-

tion) 
Increase Decrease 

0.55 
 ± 0.20 y GC-MS Metabolomics 9/5 1 Treatment vs 

control HWF HWF with 
LGG Kynurenate 3-indoleacetate Salmi et 

al.23 

2-12 m 
Bacteria cul-

ture 
(CFU) 

Microbiome 46/46 6 
CMA sub-

jects 
before inter-

vention 
- EHF Lactobacilli Enterobacteria 

Bifidobacteria 
Thompson-
Chagoyan et 

al.18 

6.5-10.4 
m 

FISH (16S 
rRNA-spe-

cific probes), 
GC-MS, 
NMR; 

Microbiome, 
Metabolomics 16/16 2 

CMA sub-
jects 

before inter-
vention 

 

- EHF with 3.8% 
lactose 

 
Bifidobacteria. 

LAB, 
SCFAs, 

lactate, threonine, 
uridine, histidine, 

tyrosine, methionine, 
TMAO, 

Phenylalanine, arginine/his-
tidine, 

c–amino–butyrate/lysine, 

Atopobium, Bac-
teroides/Prevotella, clos-
tridia and sulfate-reduc-

ing bacteria, 
Total esters, 

ketones, 
alcohols, 

aldehydes, 
Valine/isoleucine 

Francavilla 
et al.14 

 
 

6.2 ± 4.3 
m 

 
qPCR (16S 
rRNA- spe-
cific primers 
and probes) 

Microbiome 23/17 3 Treatment vs 
control RAAF TAAF Not reported 

 
Total bacteria count 

 
Dupont et 

al.24 

 
 
 
 

1-12 m 
 
 
 
 
 
 

qPCR- 
16S rRNA 

(V4 region), 
GC-FID 

Microbiome;  
Metabolomics 12/7 6 

Treatment vs 
control, 

CMA sub-
jects before 
intervention 

EHC formula EHC formula 
with LGG 

 
After vs before intervention: 

Blautia, Roseburia, 
Coprococcus, 

 
Compared to control 
group: Roseburia,An-

aerofustis. 
Butyrate 

 

Not observed Canani et 
al.16 
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Table 2. Characteristics of studies that compare CMA infants/children before and after intervention (intervention study). Abbreviations: 
see Supplementary Excel file. (Continued) 

Age 
years 
(y); 

months 
(m) 

Analytical 
techniques Analytical  

data 
sample size 
(treatment/ 

control) 

Intervention detail Results: 
modifications in treatment versus control Reference 

Duration 
(months) 

Comparison 
groups 

Control diet 
(Basic for-
mula(BF)) 

Treatment diet 
(BF + interven-

tion) 
Increase Decrease 

0.5-12 
m 

ELISA 

qPCR (16S 
rRNA- spe-

cific primers) 

 

Microbiome, 
Immune  
response 

 
123/121 6 Treatment vs 

control 
- 

Bifidobacterium 
bifidum TMC3115 

 

 
 

After 6 months: 
IL-10, total IgG2, 

GM α-diversity (chao1 in-
dex, observed species), 

Bifidobacteriales, 
Bifidobacterium, 

Lactobacillaceae Lactobaci-
llus, Turicibacter, 
Turicibacterales, 

Betaproteobacteria, Suttere-
lla, 

Burkholderiales, 
Alcalligenaceae, 

Porphyromondaceae, 
Parabacteroides, 

Ruminococcus,Oscillospira, 
Lachnospira 

After 6 months: 

TNFα, IL-1, IL-6, IL-10, 
total IgE, 

Anaerovibrio, Christen-
senelaceae, Oscillibacter, 
Bilophila, Dorea Rosebu-

ria) 

Desulfovibrionales, 
Deltaproteobacteria, 

Proteobacteria, Actino-
myces) 

Jing et al.26 

10-15 m 

PCR- 

16S rRNA 
(V3-V4 re-

gions), 

qRT-PCR 

Microbiome 14/14 1 
CMA subjects 
before inter-

vention 
- 

 
probiotic mix: 

Bifidobacterium 
breve M-16V, 

Bifidobacterium 
longum subsp. 

longum BB536, 
Bifidobacterium 
longum subsp. 
Infantis M-63 

 

Verrucomicrobia, 
Proteobacteria, 
Akkermansia, 

Prevotella, 
Ruminococcus, 

Blautia, 
Bifidobacterium longum sub-

species infantis 

Actinobacteria, 
Actinomyces, 
Enterococcus, 

Streptococcus, Sutterella 

Mennini et 
al.21 

<13 m 
FISH (16S 

rRNA s-spe-
cific probes) Microbiome 80/89 12 Treatment VS 

control AAF 

 
synbiotics: 

oligosaccharides 
(oligofructose, in-
ulin), Bifidobacte-

rium breve M-
16V 

 

After 6 and 12 month: 
bifidobacteria 

 

After 6 month: 
ER/CC 

 

Chatchatee 
et al.25 
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3.2.2 Animal studies 

The animal studies include two studies on the GM, metabolome and immune 

response,27,28 four on the GM and immune response29–32 and two on the metabolome and 

immune response33,34 (Table 3). All animal models were on mice, details are provided 

in Tables S4 and S5. 

GM modifications 

Three interventions,28,31,32 two case-controls27,30 and one FT29 study reported GM 

modifications. Bacteria were identified using 16S rRNA gene-targeted primers, which 

targeted group/species-specific bacteria31 or certain hypervariable regions (V3-

V4,27,28,32 V4 29 and eight other regions30). 

 

In two studies comparing GM changes between CMA- and sham mice,27,30 one observed 

increased Simpson α-diversity in CMA-male-C57BL/6J mice but decreased Simpson 

and Shannon α-diversity in CMA-female-BALB/cJ mice.30 Regardless of the strain and 

gender, the β-diversity (Bray-Curtis) was significant different between the two groups.30 

Apart from the gender and strain-specific α-diversity difference, CMA-mice showed 

enrichment in the phyla Bacteroidetes and Patescibacteria (female-C57BL/6J) but 

reduction in the phyla Verrucomicrobia, Proteobacteria (male-C57BL/6J) and 

Actinobacteria (female-C57BL/6J).30 Compared to mice colonized with feces from 

healthy children (healthy-colonized mice), a FT study reported that mice with feces from 

CMA children (CMA-colonized mice) had higher abundances of the Clostridiales order 

and the Clostridiaceae, Ruminococcaaceae and Barnesiellaceae families, along with 

lower levels of the Lachnospiraceae, Erysipelotrichaceae and Enterobacteriaceae 

families.29 At the genus level, the CMA-mice exhibited higher Barnesiella and 

Clostridium_XIVa,27 and CMA-colonized mice had enhanced Enterococcus, 

Ruminococcus, Coprobacillus, Blautia and Parabacteroides.29 In contrast, the 

Lactobacillus, Parvibacter,27 Streptococcus, and Salmonella29 genera, as well as 

Anaerostipes caccae species29 decreased in CMA and CMA-colonized mice. 

Additionally, the Bosea genus was absent in CMA-mice.27 
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Species and strains of the Lactobacillus and Bifidobacterium genera were used as 

probiotic in CMA-mouse models.28,31 One study reported that five out of six probiotic 

strains reduced the total bacteria.31 Another found significant differences in GM β-

diversity (Bray-Curtis, UniFrac) between control and treated groups but only the 

Lactobacillus rhamnosus species increased GM richness.28 At the family level, it was 

reported that Prevotellaceae and Marinifilaceae increased, whereas Helicobacteraceae, 

Lachnospiraceae, Deferribacteraceae, Clostridiaceae, Peptococcaceae and 

Burkholderiaceae decreased after taking at least one probiotic.28 Interestingly, the 

Ruminococcaceae family increased with Lactobacillus rhamnosus treatment but 

decreased with Bifidobacterium longum subsp. infantis treatment.28 Furthermore, one 

study found that probiotic treatments with Lactobacillus rhamnosus and 

Bifidobacterium animalis subspecies lactis increased the Clostridium cluster IVa genus 

and the Clostridium leptum species.31 Conversely, more than three probiotic strains 

decreased the Lactobacillus, Clostridium cluster I/II, Clostridium cluster XI, 

Enterococcus and Prevotella genera, as well as the Clostridium Coccoides and 

Clostridium Leptum species.31 Additionally, it was reported that prebiotic administration 

with partially hydrolyzed whey reduced the Lactobacillus genus and increased the 

Prevotella genus.32  

Metabolome modifications 

Two studies examined fecal SCFAs in CMA-mice with and without synbiotic 

intervention.33,34 They reported enhanced acetate33, butyrate33 and propionate34 with 

synbiotic diet. However, one study only observed reduced kynurenine and N-

acetylkunurenine in probiotic-treated mice.28 Additionally, a FT study compared ileal 

transcription signatures between CMA and healthy-colonized mice.29 They found 

upregulated metabolism of monocarboxylic acid, arachidonic acid, linoleic acid and 

pyruvate in CMA-colonized mice, while increased carbohydrate metabolic process in 

healthy-colonized mice.29 

CMA outcome and immune response 

Among all animal studies only Feehley et al.29 and Kostadinova et al.34 correlated the 

immune response to the GM. Feehley et al.29 reported that growth factor TGF-β receptor 
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and ROR2 genes in CMA-colonized mice was positively correlated with 

Lachnospiraceae family.29 Meanwhile, Kostadinova et al.34 showed that propionate was 

positively correlated with FOXP3+ cell frequency in the colon.34  

All intervention studies reported immune response data which relates to the treatment 

outcome.28,31–34 Unlike post-sensitization,28 pre-sensitization31 intake of Lactobacillus 

salivarius, Lactobacillus rhamnosus and Bifidobacterium longum subspecies infantis 

successfully lowered the mast cells degranulation marker mucosal mast cell protease-1 

(mMCP-1)35 and BLG-specific IgE.31 All strains lowered the IL-4 secretion and the 

BLG-specific sIgG1-to-sIgG2a ratio31 which indicates the overall Th2-to-Th1 response.36 

The rest of the responses were strain-dependent. Lactobacillus rhamnosus and 

Bifidobacterium longum subspecies infantis increased Th1 IFN-γ and Treg IL-10 

secretion in stimulated splenocytes, whereas Lactobacillus salivarius declined IFN-γ 

secretion.31 Post-challenge administration of those probiotic strains predominantly 

induced regulatory response.28 All strains significantly increased TGF-β expression, 

while Lactobacillus rhamnosus and Lactobacillus salivarius interventions also 

increased FOXP3 and IL-10 expression. The post-sensitization intake resulted in overall 

cytokine suppression as well. The reduction in granulocyte-macrophage colony-

stimulating factor (GM-CSF), IFN-γ, IL-2, and IL-4 was common among the strains, 

while IL12p70, IL-10, IL-5 and IL-17A was strain-dependent.28 

Kostadinova et al.33,34 reported that synbiotic intake alone did not alleviate the acute 

allergic skin response but its combination with T cell-epitope-containing BLG peptides 

(PepMix) did.33,34 Notably, the combined diet reestablished the lost Th1/Th2 balance as 

evidenced by the lymphocyte distribution in the small intestine lamina propria33 as well 

as the increased transcription factor (Tbet/GATA3) and cytokine (IFN-γ/IL-13) gene 

expression in the Peyer’s Patches (PP).34 Right after the intervention the immune 

response was predominantly regulatory. It was characterized by an increase in the 

mRNA expression of FOXP3 over the GATA3 and RORγT in the PP, as well as higher 

FOXP3+ over GATA3+ and Treg over Th cell frequencies in mesenteric lymph node.34 

Synbiotic addition had a site-dependent effect on IL-22 mRNA expression and also 

silenced the whey-stimulated splenocyte secretion of cytokines (IL-10, IL-5, IL-13, IL-
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17A, IFN-γ) which were induced by the PepMix intake.33 Kleinjans et al showed that 

the effect of prebiotics on allergic symptoms varied with the composition and treatment 

duration.32 
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Table 3. CMA intervention studies with animal models. Abbreviations: see 
Supplementary Excel file. 

Groups 
Platforms 

Results‡ 
Reference Case/Interven-

tion Control Microbiome/Metabolome CMA outcome & 
Immune response 

G1: L. rhamno-
sus 

G2: B. longum 
subsp. Infantis 

G3: L. salivarius 
G4: B. bifidum 
G5: L. gasseri 

G6: B. animalis 
subsp. lactis 

 
 
 

AC: PBS 

Immunoglobulins 
ELISA 

Cytokines 
IA 

(ex-BLG) 
mRNA expression 

q-PCR 
Microbiome qPCR 
(16s rRNA-specific 
primers); bacteria 

culture 

Microbiome 
Total bacteria ↓ G1, G2, G3, G4, 

G5 
Clostridium cluster IVa ↑ G1, G6 

Staphylococci abundance ↑ G1 
C. leptum↑ G1, G6 

Prevotella↑ G6 
C. leptum ↓ G2, G3, G4, G5 

Prevotella↓ G2, G3, G4, 
Lactobacillus ↓ G2, G3, G4, G5 
Clostridium cluster I/II↓ G2, G3, 

G5 
Clostridium cluster XI ↓ G2, G3, 

G4 
C. coccoides↓ G2, G3, G4, G5 

Enterococcus ↓ G2, G3, G4, G5 
Enterococcus ↓ G1 

 

Allergy markers 
mMCP-1 ↓ G1, G2, G3 

Immunoglobulins 
BLG-sIgE ↓ G1, G2, G3 
BLG-sIgG1/sIgG2a↑ G1, 

G2, G3, G4, G6 
Cytokines 

IL-4 ↓ G1, G2, G3, G4 
(spleen, MLN) 

IFN-γ ↑ G1, G2, G6 
(spleen) 

IFN-γ ↓ G3, G4 (spleen) 
IFN-γ ↑ G6 (MLN) 
IL-10 ↑ G1, G2, G6 

(spleen) 
IL-10 ↑ G1, G5, G6 

(MLN) 
mRNA expression 

il-4 ↓ G2 
IL-10, GATA3, RORγT 

↓ G2, G3 
FOXP3 ↑ G2, G3 

IL-17a ↑ G1, G2, G3 

Neau et 
al.31 

G1: L. rhamno-
sus 

G2: B. longum 
subsp. Infantis 

G3: L. salivarius 
 
 

AC: PBS 

Microbiome PCR -
16S rRNA (V3-V4 

regions) 
Metabolome 

GC-FID, 
UPLC-MS/MS 

Immunoglobulins 
ELISA 

Cytokines 
IA (ex-BLG) 

mRNA expression 
qPCR 

 

Metabolome 
Kynurenine, N-acetylkunurenine ↓ 

G1, G2, G3 
Microbiome 

Richness (OTU number) ↑ G1 
Beta diversity ↑ G1, G2, G3 
Prevotellaceae ↑ G1, G2, G3 

Marinifilaceae ↑ G1, G2 
Ruminococcaceae ↑ G1 
Helicobacteraceae ↓ G1 
Ruminococcaceae ↓ G2 

Lachnospiraceae ↓ G1, G2, G3 
Deferribacteraceae ↓ G1, G2 

Clostridiaceae ↓ G1 
Peptococcaceae ↓ G1, G3 

Burkholderiaceae ↓ G1 
Anaeroplasmataceae↓ G2 

Cytokines 
GM-CSF, IL-2, IFN-γ, 

IL-4 ↓ G1, G2, G3 
IL12p70 and IL10 ↓ G1 

IL-5 ↓ G2, G3 
IL17A ↓ G1, G3 

mRNA expression 
FOXP3, IL-10 ↑ for G1 

and G3 
TGFβ ↑ G1, G2, G3 

 

Esber et 
al.28 

 

G1 
pWH 

G2/G3: 
pWH + 

short(G2)/long 
(G3) 

scGOS/lcFOS 
(9:1) 

G4/G5: 
pWH + short 

(G4)/long (G5) 
scGOS/lcFOS 
(9:1) + pAOS 

 

TC: W 
AC: PBS 

Microbiota 
PCR (16S rRNA V3-

V4 regions) 
Immunoglobulins 

ELISA 
 
 
 

Microbiome 
Prevotella ↑ G3, G4, G5 vs G1 

Lactobacillus ↓ G5 vs G1 
 

Allergy markers 
mMCP-1 ↓ G1, G5 vs 

AC 
TSLP ↓ G1 vs AC 

AASR ↓ TC, G1, G2, 
G4, G5 vs AC 

SAS & body-T ↓ TC, G2 
vs AC 

 

Kleinjans 
et al.32 

G1: 
mix of W pep-
tides (PepMix) 

G2: 
scFOS and 

lcFOS (9:1) + B. 
breve M-16V 

(FF/Bb) 
G3: PepMix + 

FF/Bb 

TC: W 
AC: PBS 

Immunoglobulins 
ELISA 

Metabolites 
GC-FID 

Lymphocytes 
FC 

Cytokines 
IA (ex-W) 

Metabolites 
acetate, butyrate ↑ G2 

butyrate ↑ G2 vs G3, TC vs AC 
 
 
 

Allergy markers 
AASR ↓ G3, TC vs AC 

SAS ↓ TC vs AC 
Lymphocytes (SI-LP) 

Th1/Th2 ↑ G3, TC 
Treg, Th17 ↑ AC vs TC 

Cytokines (spleen) 
IFN-γ, IL-17A, IL-13, 
IL-5, IL-10 ↓ G3 vs G1 

& TC vs AC 
IL-10 ↑ G3 

Kostadi-
nova et 

al.33 
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Table 3. CMA intervention studies with animal models. Abbreviations: see 
Supplementary Excel file.(Continued) 

Groups 
Platforms 

Results‡ 
Reference Case/Interven-

tion Cotrol Microbiome/Metabolome CMA outcome & 
Immune response 

G1: 

mix of W pep-
tides (PepMix) 

G2: 

scFOS and 
lcFOS (9:1) + 
B. breve M-

16V (FF/Bb) 

G3: PepMix + 
FF/Bb 

 

TC: 

W 

AC: 

PBS 

Metabolites 

GC-FID 

Lymphocytes 

FC 

mRNA expression 

qPCR 

Immunohisto-
chemistry 

Part 1: Post-oral tolerance 
Metabolites 

butyrate ↑ G3 vs G1 

propionate ↑TC, G2, G3 vs AC 

Positive correlation: propio-
nate and FOXP3+ (colon) 

 

Allergy markers 

AASR ↓ G3, TC vs AC 

AASR ↑ G1, G2 vs G3 

SAS ↓ TC vs AC 

Part 1: Post-oral tolerance 

Lymphocytes 

FOXP3+/GATA3+, Tregs/Teffs ↑ 
G3 vs AC, G3 vs G2, G3 vs G1 

(MLN) 

Tregs ↓ G3 vs AC, G3 vs G2, TC 
vs AC (spleen) 

CD25+ ↓ G3 vs G2 

DC (SI-LP) 

CD8α−CD11b+/CD8α+CD11b-, 
CD11b+CD103- ↑ G3 

CD8α+CD11b-↓ G1 

mRNA expression 

FOXP3/GATA3 ↑ G3 (PP) 

FOXP3/RORγT ↑ G3 vs AC, G3 
vs G2, G3 vs G1 (PP) 

TGF-β ↑ G3 vs G2 (proximal SI) 

TGF-β ↓ G1 (colon) 

IL-22 ↑ G3 vs AC, G3 vs G1 
(PP) 

IL-22 ↑ for G3 vs G1 (middle SI) 

IL-22 ↑ G2 vs AC & G2 vs G3 
(colon) 

Galectin 9 ↓ TC 

Tbet/GATA3 ↓ G1 vs AC, G1 vs 
G3 (colon) 

Part 2: Post-challenge 

Lymphocytes (SI-LP) 

CD25+ Tcells ↑ G3 

CD25+ Tcells ↑ G3 vs G2 

Treg ↑ G1 

mRNA expression (PP) 

Tbet/GATA3 ↑ G3 

IFN-γ/IL-13 ↑ G3 vs AC & G3 
vs G2 

Kostadi-
nova et al.34 
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Table 3. CMA intervention studies with animal models. Abbreviations: see 
Supplementary Excel file.(Continued) 

Groups 
Platforms 

Results‡ 
Reference Case/Interven-

tion Control Microbiome/Metabolome CMA outcome & 
Immune response 

G1: M-
C57BL/6J 

G2: M BALB/cJ 

G3: F-C57BL/6J 

G4: F-BALB/cJ 

 

S: sham 
control 

(sex and 
strain 

matched 
to G1, 

G2, 
G3,G4 
sepa-

rately) 

Immunoglobulins 

ELISA 

Cytokines, chemo-
kines, and acute 
phase proteins: 

IA 

Microbiota 

16S rRNA sequen-
cing (8 regions) 

Microbiome 

α-diversity ↑ G4 (Simpson and 
Shannon indices) 

α-diversity↓ G1(Simpson index) 

Bacteroidetes↑G3 

Patescibacteria↑G3 

Verrucomicrobia↓ G1 

Proteobacteria↓ G1 

Actinobacteria↓G3 

 

 

Allergy markers 

Body-T ↓ G2 vs S, G4 vs 
S, G4 vs G3 

SAS ↑ G2 vs S, G4 vs S, 
G4 vs G3 

Immunoglobulins 

sIgE ↑ G2 vs S, G1 vs S, 
G4 vs S, G4 vs G3 

sIgG1 ↑ G2 vs S, G2 vs 
G1, G4 vs S, G4 vs G3 

sIgG2a ↑ G2 vs S, G2 vs 
G1, G4 vs S, G4 vs G3 

Cytokines, chemokines, 
and acute phase pro-

teins: 

G1 vs S: ↑ in CCL1, 
CSF1, IL-13, 

CCL17, IL-21, FGF2, 
CCL12, IL-10, CCL9 

G2 vs S: ↓ IL-1β, IL-13, 
CSF2, TNFRSF1A 

G4 vs S: ↑ IL-15, 
TNFRSF1B, ICAM-1 

Smith et 
al.30 

G1: CMA S: Sham 
control 

Microbiome PCR-
16S rRNA (V3-V4 

regions) 

Immunoglobulins 

ELISA 

Cytokines 

ELISA 

mRNA expression 

qPCR 

Metabolome 

GC-FID, RP, HILIC-
MS/MS 

 

Microbiome 

Barnesiella↑ 

Clostridium_XIVa↑ 

Lactobacillus↓ 

Parvibacter↓ 

 

Only observed in sham mice: 

Bosea 

 

 

Allergy markers 

Body-T ↓ G1 vs S 

SAS ↑ G1 vs S 

Histamine ↑ G1 vs S 

mMCP-1 ↑ G1 vs S 

Immunoglobulins 

whey-sIgE, sIgG1, sIgG2a 
↑ G1 vs S 

Cytokines 

IL-6, IL-10 ↑ G1 vs S 

mRNA expression 

IL-8, IL-33, mTOR 
mRNA ↑ G1 vs S 

 

 

Cao et al.27 

G1: CMA-FT 

G2: Anaerosti-
pes caccae-FT 

B-HC: 
breast-fed 

HC-FT 

F-HC: 
formula-
fed HC-

FT 

 

Microbiome PCR -
16S rRNA (V4 re-

gion) 

Immunoglobulins 

ELISA 

Transcriptome 

RNA-seq, qPCR 

 

 

After fecal colonization before 
sensitization: 

Microbiome 

G1 vs F-HC: 

Enterococcus↑ 

Barnesiellaceae↑ Ruminococ-
cus↑Ruminococcaceae↑ 

Coprobacillus ↑ 

Allergy markers 

mMCP-1 ↑ G1, G4 vs 
HC 

mMCP-1 ↓ G2 vs G1 

Immunoglobulins 

BLG-specific IgE, IgG1↑ 
G1 vs HC 

Cytokines 

IL-13, IL-4 ↑ G1 vs G2 

Feehley et 
al.29 
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Clostridiaceae ↑ 

 

Clostridiales ↑ 

Blautia ↑ 

Parabacteroides↑ 

Lachnospiraceae↓ 

Erysipelotrichaceae↓ 

Enterobacteriaceae↓ 

Streptococcus↓Enterobacte-
riaceae↓ 

Salmonella↓Anaerostipes cac-
cae ↓ 

Transcriptome 

G1 vs F-HC: 

(Mroh7, Cntn1, Slc9b2, Letm2, 
Acot12, Abcc2, Cyp3a59, 

Cyp2b10, Lrrn1, Me1, Akr1c19, 
Gstm1, Ces1f) ↑ 

(Tgfbr3, Acta1, Ror2, Slc22a13, 
Fbp1, Apcdd1) ↓ 

 

Transcriptome 

Tgfbr3 ↓ G1 vs G2, G1 
vs HC 

 

Ror2 ↓ G1, G2 vs HC 

Ror2, Tgfbr3 positively 
correlated to Lachnospi-

raceae 

 

 

‡All results are vs AC or C or S unless state otherwise  
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4 Discussion and Conclusion 

In general, no clear conclusion can be drawn about the GM diversity modification in 

CMA children, because of limited data on β-diversity21,30 and discordant results 

regarding to α-diversity in both human16,19,20 and animal30 studies.  

Taxonomic findings showed that the Bifidobacteriaceae family, including 

Bifidobacterium spp., were consistently reported lower in CMA-children.14,16,18,19 This 

result aligns with the consensus on the protective function of Bifidobacterium spp. in 

early life.37,38 Another noteworthy observation concerning GM in CMA-children is the 

consistent increase of the Firmicutes phylum,14–19,21 primarily associated with the 

Clostridia class. Conversely, decreased levels of bacteria of the Lactobacillales order 

were observed.16,21 The trends of Firmicutes alterations align with the findings of an 

animal study which reported higher Clostridium cluster XIVa and lower Lactobacillus 

genus in CMA-mice.27 However, CMA and healthy-colonized mice were both 

characterized with bacteria from the Clostridia class, with Anaerostipes caccae, a 

clostridial species, showing protective effects against CMA.29 Additionally, infants who 

resolved CMA were reported to have enriched Clostridia class at 3-6 months.22 

Discordant results have also been reported regarding the protective or detrimental effect 

of the Clostridia class in food allergy.39,40 Therefore, despite the conflicting findings of 

the Clostridia class in this review, we lean towards suggesting that GM with enriched 

Clostridia class, reduced Lactobacillales order and reduced Bifidobacterium genus is 

associated with CMA in early-life. 

Various intervention approaches, including probiotics, prebiotics and synbiotics, were 

applied to restore the balance of GM and the metabolome in CMA-children. Elevated 

Bifidobacterium genus was consistently observed post-treatment with Bifidobacterium 

strains as probiotics21,25,26 or after lactose-supplemented EHF treatment.14 However, the 

impact on the Lactobacillales order in both CMA-children and CMA-mice was less 

clear. Increased levels of the Lactobacillaceae family were reported with 

Bifidobacterium-specific probiotics26 and EHF in CMA-children,18 while decreased 

Enterococcus and Streptococcus genera were noted in Bifidobacterium-treated CMA-
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children.21 Additionally, decreased levels of Lactobacillus genus were reported in 

CMA-mice treated with Bifidobacterium and Lactobacillus-specific probiotics.31,32 

Similarly, the effect on the Clostridia class varied. Higher levels of its members were 

reported in CMA-children and mice treated with probiotics.16,21,26,28,31 Meanwhile, 

reduced Clostridia class members also noted in CMA-children treated with lactose-

supplemented EHF or probiotics,14,26 and in CMA-mice treated with probiotics.28,31 

Therefore, it is clear that the enhancement of Bifidobacterium after Bifidobacterium-

specific treatment was commonly reported, however the treatment effect on other 

bacteria remain inconclusive. Despite the uncertainty of most GM profile modifications, 

there are studies which reported improved allergic symptoms or a high resolution rate 

in CMA-children treated with probiotics or prebiotics.16,24,26 

In addition to GM modifications, CMA-children were reported to have decreased total 

SCFAs14,16 and altered amino acids and nucleotides levels.14,23 These findings are 

consistent with a recent review on the metabolic changes in children with IgE-mediated 

food allergies,41 and these metabolome changes appear to be restored with interventions. 

Increased SCFAs and balanced amino acids were reported after treatment with LGG or 

lactose-supplemented EHF.14,23 Enhanced levels of acetate,33 butyrate,33,34 and 

propionate34 were also reported in synbiotic-treated CMA-mice.  

This systematic review provides an overview of the modifications of the GM, 

metabolome, and immune response in IgE-mediated CMA-children and CMA animal 

models. Comparing microbiome data between studies is challenging due to 

methodological variations, diverse intervention approaches, and the reporting of 

different taxonomic levels. Consequently, only general conclusions can be drawn based 

on family or higher taxonomic levels. Meanwhile, insights into metabolomics are 

restricted by limited scope of studied metabolites. Thus, future work should examine 

broader range of metabolites known to be crucial in the crosstalk between the GM and 

host’s immune system41,42 and use untargeted metabolomics as hypothesis-generating 

strategy. Only a single human study reported microbiome and immune response data 

and their relationship.26 Similarly, only a single animal study correlated transcriptomics 

and GM data,29 including genes related to the immune response. Therefore, there is a 
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need for both human and animal studies on the correlation of the GM to the immune 

response. Future animal studies can build on the general treatment outcome findings in 

the review, namely overall cytokine silencing,28,33 restoration of the Th2/Th1 

balance,31,33,34 and induction of regulatory response.28,31,34 Moreover, future work can 

focus on parameters already connected to allergic tolerance acquisition in human, such 

as induction of Treg response, the production of TGF-β, IgG4, IgA.43 No proteomics 

studies met our inclusion criteria, but a study on the fecal microbiome and metaproteome 

relationships in CMA-children has been published after our inclusion date.44 Overall, 

discussions on multi-omics connections are rare in the reviewed studies, and none of the 

studies reported shotgun meta-genomics, meta-transcriptomics, or meta-proteomics for 

microbiome function information. Therefore, there is a clear need for more 

comprehensive multi-omics studies to gain a better mechanistic understanding of CMA 

in early life. These efforts would eventually lead to the development of better and 

effective treatment and preventive strategies.  
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Supplementary Material 
Table S1. Search queries 

1. MEDLINE 

((((cow*.ti. OR cow*.ab. OR cow*.kw. OR cow*.kf.) AND (milk.ti. OR milk.ab. OR milk.kw. OR milk.kf.))  
AND ((allerg*.ti. OR allerg*.ab. OR allerg*.kw. OR allerg*.kf.) OR (hypersensitiv*.ti.  
OR hypersensitiv*.ab. OR hypersensitiv*.kw. OR hypersensitiv*.kf.))) OR milk hypersensitivity.sh.)  
AND ((microb*.ti. OR microb*.ab. OR microb*.kw. OR microb*.kf.) OR (microflora.ti. OR microflora.ab.  
OR microflora.kw. OR microflora.kf.) OR (16S*.ti. OR 16S*.ab. OR 16S*.kw. OR 16S*.kf.) OR (bifido*.ti.  
OR bifido*.ab. OR bifido*.kw. OR bifido*.kf.) OR (bacter*.ti. OR bacter*.ab. OR bacter*.kw.  
OR bacter*.kf.) OR (lachno*.ti. OR lachno*.ab. OR lachno*.kw. OR lachno*.kf.) OR (rumino*.ti.  
OR rumino*.ab. OR rumino*.kw. OR rumino*.kf.) OR (veillo*.ti. OR veillo*.ab. OR veillo*.kw.  
OR veillo*.kf.) OR (entero*.ti. OR entero*.ab. OR entero*.kw. OR entero*.kf.) OR microbiota.sh.  
OR bifidobacterium.sh. OR bacteroidaceae.sh. OR bacteroides.sh. OR ruminococcus.sh.  
OR veillonellaceae.sh. OR veillonella.sh. OR enterobacteriaceae.sh.) AND  ((child*.ti. OR child*.ab.  
OR child*.kw. OR child*.kf.) OR (infant*.ti. OR infant*.ab. OR infant*.kw. OR infant*.kf.) OR (baby.ti.  
OR baby.ab. OR baby.kw. OR baby.kf.) OR (babies.ti. OR babies.ab. OR babies.kw. OR babies.kf.)  
OR (toddler*.ti. OR toddler*.ab. OR toddler*.kw. OR toddler*.kf.) OR (newborn*.ti. OR newborn*.ab.  
OR newborn*.kw. OR newborn*.kf.) OR infant.sh. OR child.sh. OR child, preschool.sh. 
OR infant, newborn.sh.) 

2. PubMed 
 

(((((cow[Title/Abstract] OR cow's[Title/Abstract]) AND milk[Title/Abstract]) AND (allerg*[Title/Abstract]  
OR hypersensitiv*[Title/Abstract])) OR ((milk hypersensitivity[MeSH Terms])  
OR (milk hypersensitivities[MeSH Terms]))) AND (((microb*[Title/Abstract]) OR (microflora[Title/Abstract])  
OR (16S[Title/Abstract]) OR (bifido*[Title/Abstract]) OR (bacter*[Title/Abstract]) OR (lachno*[Title/Abstract])  
OR (rumino*[Title/Abstract]) OR (veillo*[Title/Abstract]) OR (entero*[Title/Abstract]))  
OR ((microbiota[MeSH Terms]) OR (microbiotas[MeSH Terms]) OR (human microbiome[MeSH Terms])  
OR (human microbiomes[MeSH Terms]) OR (microbiome[MeSH Terms])  
OR (microbiome, human[MeSH Terms]) OR (microbiomes[MeSH Terms]) OR (16s ribosomal rna[MeSH Terms])  
OR (ribosomal rna, 16s[MeSH Terms]) OR (rna, 16s ribosomal[MeSH Terms])  
OR (bifidobacterium[MeSH Terms]) OR (bacteroidaceae[MeSH Terms]) OR (bacteroides[MeSH Terms])  
OR (ruminococcus[MeSH Terms]) OR (veillonellaceae[MeSH Terms]) OR (veillonella[MeSH Terms])  
OR (enterobacteriaceae[MeSH Terms])))) AND (((child*[Title/Abstract]) OR (infant*[Title/Abstract])  
OR (baby[Title/Abstract]) OR (babies[Title/Abstract]) OR (toddler*[Title/Abstract])  
OR (newborn*[Title/Abstract])) OR ((infant[MeSH Terms]) OR (child[MeSH Terms])  
OR (child, preschool[MeSH Terms]) OR (infant, newborn[MeSH Terms]))) 

3. Scopus 
 

( TITLE-ABS-KEY ( cow*  W/6  milk ) )  AND  ( ( TITLE-ABS-KEY ( allergy ) )   
OR  ( TITLE-ABS-KEY ( hypersensitiv* ) ) )  AND  ( ( TITLE-ABS-KEY ( microb* ) )   
OR  ( TITLE-ABS-KEY ( microflora ) )  OR  ( TITLE-ABS-KEY ( 16s* ) )  OR  ( TITLE-ABS-KEY ( bifido* ) )   
OR  ( TITLE-ABS-KEY ( bacter* ) )  OR  ( TITLE-ABS-KEY ( lachno* ) )  OR  ( TITLE-ABS-KEY ( rumino* ) )   
OR  ( TITLE-ABS-KEY ( veillo* ) )  OR  ( TITLE-ABS-KEY ( entero* ) ) )  AND  ( ( TITLE-ABS-KEY ( child ) )   
OR  ( TITLE-ABS-KEY ( infant ) )  OR  ( TITLE-ABS-KEY ( baby ) )  OR  ( TITLE-ABS-KEY ( toddler ) )   
OR  ( TITLE-ABS-KEY ( newborn ) ) )  

4. Web of 
Science 

 

(TI=(cow*  AND  milk) OR AB=(cow*  AND  milk) OR AK=(cow*  AND  milk) OR KP=(cow*  AND  milk))  
AND ((TI=(allergy) OR AB=(allergy) OR AK=(allergy) OR KP=(allergy)) OR (TI=(hypersensitiv*)  
OR AB=(hypersensitiv*) OR AK=(hypersensitiv*) OR KP=(hypersensitiv*))) AND ((TI=(microb* )  
OR AB=(microb* ) OR AK=(microb* ) OR KP=(microb* )) OR (TI=(microflora) OR AB=(microflora)  
OR AK=(microflora) OR KP=(microflora)) OR (TI=( 16s* ) OR AB=( 16s* ) OR AK=( 16s* ) OR KP=( 16s* ))  
OR (TI=( bifido* ) OR AB=( bifido* ) OR AK=( bifido* ) OR KP=( bifido* )) OR (TI=( bacter* )  
OR AB=( bacter* ) OR AK=( bacter* ) OR KP=( bacter* )) OR (TI=( lachno* ) OR AB=( lachno* )  
OR AK=( lachno* ) OR KP=( lachno* )) OR (TI=( rumino* ) OR AB=( rumino* ) OR AK=( rumino* )  
OR KP=( rumino* )) OR (TI=( veillo* ) OR AB=( veillo* ) OR AK=( veillo* ) OR KP=( veillo* ))  
OR (TI=( entero* ) OR AB=( entero* ) OR AK=( entero* ) OR KP=( entero* ))) AND ((TI=(child )  
OR AB=(child ) OR AK=(child ) OR KP=(child )) OR (TI=(infant ) OR AB=(infant ) OR AK=(infant )  
OR KP=(infant )) OR (TI=(baby ) OR AB=(baby ) OR AK=(baby ) OR KP=(baby )) OR (TI=(toddler)  
OR AB=(toddler) OR AK=(toddler) OR KP=(toddler)) OR (TI=(newborn) OR AB=(newborn)  
OR AK=(newborn) OR KP=(newborn))) 
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Table S2. Information and reasons for the 28 papers excluded after careful 
consideration 

Index Author and year Exclusion reason 

1 Pohjavuori et al., 
20041 Diagnosed IgE-mediated CMA based on a CM challenge and skin prick tests or an-

tigen-specific IgE of any antigen tested (including also egg-white, cat, dog and 
birch). 2 Viljanen et al., 2005a2 

3 Barros et al., 20173 
Distinguished between IgE-mediated and non-IgE mediated CMA in the descrip-

tion of the allergic subjects but did not report any specific results for IgE-me-
diated CMA. 

 

4 Viljanen et al., 2005b4 

5 Burks et al., 20155 

6 Dong et al., 20186 

7 Jarvinen et al., 20147 

Reported 29 infants with IgE-mediated CMA in their table with clinical characteris-
tics. However, elevated levels of cow’s milk specific IgE were reported in only 
13 infants. The corresponding author was contacted by email, but was unable 
to supply additional data because the research was done in a previous institu-

tion 

8 Mercer et al., 20098 CMA was diagnosed based on total and CM specific IgE levels and CMA-related 
symptoms, but no oral food challenge was used to confirm CMA. 

9 Taniuchi et al., 20059 Included several subjects whose diagnosis was not confirmed by an oral food chal-
lenge, but by a cow’s milk elimination diet 

10 Kendler et al., 200610 Did not confirm CMA by oral food challenge 

11 Hol et al., 200811 Used a food challenge, but diagnosed children based on their late response, which 
does not point to IgE-mediated CMA 

12 Shek et al., 200512 
Included both children below 12 years old as well as adolescents and/or adults, but 

results for children were not reported separately 13 Yamamoto-Hanada et 
al., 202313 

14 Hill et al., 198914 

Did not include any gut microbiome data or intervention targeting the gut microbi-
ome 

15 Hauer et al., 199715 

16 Szabó and Eigenmann, 
200016 

17 Paparo et al., 201617 
Studied infants that received probiotics in the past, before entering the study, and 

therefore could not be compared to the probiotic intervention studies discussed 
in this review 

18 Gotteland et al., 
199218 Studied CM protein absorption after E. coli infection 

19 Morin et al., 201219 

Animals models were sensitized to CM, but did not receive a food challenge, thus 
focus on CM sensitization rather than CMA 

20 Shandilya et al., 
201620 

21 Wróblewska et al., 
202021 

22 Maiga et al., 201722 

23 Pescuma et al., 201923 Two of the three experiments had no challenge, while in the third one there was no 
comparison between (allergy or treatment) groups 

24 Graversen et al., 
202124 Focused on antibiotics instead of treatment for CMA. 

25 Liu et al., 202325 Studied the effect of pre-treatment with whey or beta-lactoglobulin (BLG) before 
sensitization 

26 Mauras et al., 201926 The CMA donor used for fecal transplantation had multiple food allergy 

27 Schouten et al.,200927 
No GM-related data, do not mention how the treatment changed the GM 

28 Adel-Patient et 
al.,202028 
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Table S3. CMA diagnosis and measured variables for all human studies. 
Abbreviations: see Supplementary Excel file. 

Author and year CMA diag-
nosis 

Measured variables 

Microbiome Metabolomics Immune 
response 

Thompson-Chagoyan et al., 201029 
CM-specific 

IgE, SPT, 
DBPCFC 

Aerobes, Anaerobes, Enterobacteria, Bi-
fidobacteria, Lactobacilli, Clostridia - - 

Salmi et al., 201030 

CM-specific 
IgE, 
SPT, 

DBPCFC 

- 
Urine: 37 organic 

acids, 
Creatinine 

- 

Thompson-Chagoyan et al., 201131 

CM-specific 
IgE, 
SPT, 

DBPCFC 

10 targeted probes: Bifidobacterium, 
Bacteroides, Enterobacteria, Streptococ-
cus, Lactobacillus, Atopobium, Clostrid-

ium coccoides, Clostridium leptum, 
Clostridium perfringens sps., Clostrid-

ium difficile sps. 
 

Feces: Lactate, SCFA 
(acetate, propionate, 
butyrate, isocaproic 

acid), Branched-chain 
short fatty acids 

(BCSFA). 

- 

Francavilla et al., 201232 

CM-specific 
IgE, 
SPT, 

DBPCFC 

13 targeted probes: Domain bacteria, 
negative control, Bifidobacterium, Bac-
teroides/Prevotella, Eubacterium rec-

tale/Clostridium coccoides, Lactobacil-
lus/Enterococcus, Streptococcus/Lacto-

coccus group, 
Escherichia coli, Sulfate–reducing bac-
teria (SRB), Atopobium group, Corio-
bacterium group, Clostridium histolyti-

cum, Clostridium lituseburense 
 

GC-MS (feces): 15 
organic metabolites 
(esters, ketones, Al-
cohols, sulfur com-
pounds, hydrocar-

bons, SCFA); 
NMR (feces): pyru-
vic acid, lactic acid, 
uridine, histidine, ty-
rosine, threonine, me-

thionine, proline, 
TMAO, arginine/his-
tidine, valine / isoleu-
cine, phenylalanine, 
gamma–amino–bu-

tyric acid/lysine 

- 

Guo et al., 201633 

Analysis of 
serum sam-

ples, 
SPT, 

 
DBPCFC 

Dominant bacteria, Bifidobacterium, 
Lactobacillus, C. coccoides, 

Microbiota diversity (Shannon-Weaver 
index, dice similarity coefficient) 

 

- - 

Canani et al., 201634 

Clinical his-
tory, 

CM-specific 
IgE, 

DBPCFC 

Dominant bacteria, 
Microbiota Alpha diversity (Shannon in-

dex) and 
Evenness (Pielou’s evenness index) 

Feces: butyrate - 

Dong et al., 2018 
35 

CM-specific 
IgE, 
SPT, 

DBPCFC 

Dominant bacteria, 
Microbiota Alpha diversity (Chao1, 

ACE, Simpson, Shannon, and coverage 
indices) 

Feces: SCFAs (ace-
tate, butyrate, propio-

nate, isobutyrate), 
lactate 

- 

Mennini et al., 202136 

CM-specific 
IgE, 
SPT, 

DBPCFC 

PCR : Dominant bacteria; 
qRT-PCR; 

B. breve, B. longum subsp. longum, B. 
longum subsp. infantis 

Microbiota Alpha diversity (Observed, 
Chao1 and Shannon indices) and 

beta diversity(unweighted UniFrac) 

- - 
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Mera-Berriatua et al., 202237 

Clinical his-
tory of 

IgE-mediated 
food allergy, 

SPT 

Dominant bacteria 
Microbiota Alpha diversity (Shannon in-

dex) and 
beta diversity (Bray-Curtis distance) 

-- - 

Bunyavanich et al., 201638 

CM-specific 
IgE, 
SPT, 

CM chal-
lenge 

or 
AD with 

CM-specific 
IgE 

 

Microbiome (feces): 
Dominant bacteria; 

Microbiota Alpha diversity (Faith’s phy-
logenetic diversity) and 

beta diversity (unweighted UniFrac) 
 

- - 

Dupont et al., 201539 

CM-specific 
IgE, 
SPT, 

or both posi-
tive cutane-
ous tests and 

IgE, 
DBPCFC 

Total bacteria, Clostridium cluster IV, 
Bacteroides/ Prevotella group, 

Bifidobacterium, Lactobacillus/ Leuco-
nostoc/Pediococcus group, Clostridium 
cluster XIVa, Clostridium cluster XI, 

Clostridium cluster I/II, Staphylococcus, 
Enterococcus, Escherichia coli 

Plasma: 
Amino acids (cyste-
ine, histidine, isoleu-
cine, leucine, lysine, 

methionine, phenylal-
anine, threonine, ty-

rosine, valine) 
Feces: 

butyrate 
 

- 

Chatchatee et al., 202240 

CM-specific 
IgE, 
SPT, 

DBPCFC 

bifidobacteria and ER/CC group   

Jing et al. 202041 

 
SPT, 
IgE, 

DBPCFC 

dominant bacteria 
microbiota Alpha diversity (number of 

OTUs, Chao1, Shannon, Simpson index) 
and 

beta diversity (weighted and unweighted 
UniFrac) 

- 

Immuno-
globulins 
Total IgE, 

IgG2 
(serum) 

Cytokines 
TNFα, IL-
1β, IL-6, 

IL-10 
(serum) 
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Table S4. Model information for all animal studies. Abbreviations: see Supplementary Excel file. 

Sensitization 
Challenge 

Intervention details 
n 

size/group   †† 
Author and 

year 
Intradermal Intragastric 

Animal/Strain 
(gender) 

Allergen: 
Dose(mg) 

Adjuvant: 
Dose (μg) 

Period† 
(wk) 

Administration 
Allergen: 
Dose (ug) 

Allergen: 
Dose(mg) 

Introduction Duration 

C3H/HeOuJ 
mice (F) 

W:20 CT:10 
5 
 

i.g. W:20 W:50 
Pre-S 

 
 

6-8 
 

Kostadinova et 
al.2017a42 

C3H/HeOuJ 
mice (F) 

W:20 CT:10 
5 
 

i.g. W:20 W:50 Pre-S 6-9d‡ 6-8 Kostadinova et 
al 2017b.43 

C3H/HeOuJ 
mice (F) 

W:20 CT:10 5 i.g. W:6 W:50 

Long 
WS 

Short 
Pre-S 

Long 
7.5wk 
Short 

5d 

7-10 
 

Kleinjans et 
al.201944 

BALB/cByJ 
mice (F) 

W:15 CT:10 5 
i.g. 

 
- BLG:60 WS 6wk 30 Neau et 

al.,201645 

BALB/cByJ 
mice (F) 

W:15 CT:10 5 
i.g. 

 
- BLG:60 Post-S 20d 10 -12 

Esber et 
al.202046 

 

Germ-free 
C3H/HeN 
(M and F) 

BLG:20 CT:10 
 

5 
 

i.g. - BLG:2*100 - - 6-42 Feehley et 
al.201947 

C3H/HeN 
mice (M) 

W/W/W: 
10/100/0.5 

CT/CT/Alum: 10/10/2 5/2/2 i.g./i.g./i.p. - W:50 - - 3-7 Cao et al. 202248 

C57BL/6J and 
BALB/cJ 
(M and F) 

BLG:1 CT:10 5 i.g. - W:50 - - 5-10 Smith et al. 
202149 

†All administrations are performed weekly 
†† Intervention group sizes (not control group)  
‡ Synbiotic diet for 9 days, peptide mix intake for 6 days 
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Table S5. Measured variables for all animal studies. Abbreviations: see Supplementary Excel file. 

Author and year 
Measured variables 

Microbiome Metabolomics Immune response 

Neau et al.45 
11 bacteria primers, 

all bacteria 
 

- 
Igs: Total and BLG-s IgE, IgG1, IgG2a (plasma) 

Cytokines: IFN-γ, IL-12p70, IL-4, IL-5, and IL-10 (spleen, MLN) 
mRNA expression: ifn-g, il-4, il-10, tgf-b, il-17a, t-bet, gata3, rorγt, foxp3 (ileum) 

Esber et al.46 
 

α (Shannon index) and β (Bray-
Curtis distance, UniFrac dis-

tance) diversity 

Feces: SCFA, 
Plasma: other metab-

olites 

Igs: BLG- sIgE, sIgG1, sIgG2 (plasma) 
Cytokines: IL-17A, IL-2, GM-CSF, IL-4, IFN-γ, IL-10, IL-5, IL-12p70 (spleen) 
mRNA expression: gata3, tbet, foxp3, rorγt, ifnγ, tnfα, il4, Il10, and tgfβ (ileal) 

Kleinjans et al.44 All bacteria - Igs: W- sIgE, sIgG1, sIgG2a (serum) 

Kostadinova et al.42 - 
Feces: acetic acid, 
propionic acid, bu-

tyric acid 
 

Igs: W- and BLG- sIgE, sIgG1, sIgG2a (serum) 
Lymphocytes: T cells, DC 

(spleen, MLN, SI-LP) 
Cytokines: IL-5, IL-13, IL-10, IL-17A, IFN-γ  (Spleen, MLN, SILP) 

Kostadinova et al.43  

Part 1: Post-oral tol-
erance 

Metabolites 
Feces:  

acetic acid, propionic 
acid, butyric acid, 

valeric acid 

Part 1: Post-oral tolerance 
mRNA expression: Foxp3, Tbet, GATA3, RorγT, IL-10, galectin-9, TGF-β, IL-13, IFN-γ, IL-22 

(PP, SI (proximal, middle), colon) 
Immunohistochemistry: Foxp3+ cells (colon) 

Part 2: Post-challenge 
mRNA expression: Foxp3, Tbet, GATA3, RorγT, IL-10, galectin-9, TGF-β, IL-13, IFN-γ, and IL-22 (PP, 

spleen) 
Lymphocytes: Treg (LP) 

Smith et al.24 α (Shannon, Simpson indices) 
and β(Bray-Curtis) diversity - 

Igs: BLG-sIgE,s sIgG1; sIgG2a (serum) 
Cytokines, chemokines, and acute phase proteins: 

e.g. IL-10, IL-13, IL-15, IL-1β, IL-31, IL-21, CCL1, CCL9, CCL12, CCL17, FGF2, CDF1, CSF2, TNFFSF1A, 
TNFRSF1B, ICAM-1 (plasma) 

Cao et al.23 All bacteria, α and β diversity 
 

- 

Igs: W- sIgE, sIgG1, sIgG2a (serum) 
Cytokines: IL-6, IL-10 (serum) 

mRNA expression: IL-4, IL-8, IL-33, IL-1β, TGF-β, GAPDH, mTOR mRNA 
 

Feehley et al.47 
α (Shannon index) and β 

(weighted UniFrac) 
diversity Pielous’s evenness 

 
Igs: BLG-specific IgE, IgG1 (serum) 

Cytokines: IL-13, IL-4 (spleen) ex-W 
Transcriptome: 32 genes (IEC) 
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Table S6. Abbreviations 
Abbreviation Full name/defination 
16S rRNA  16S ribosomal ribonucleic acid  
AAF amino acid formula 
AASR acute allergic skin response (ear swelling) 
AC allergic control 
AEDS atopic eczema/dermatitis syndrome 
BCSFAs branched-chain short fatty acids 
BLG beta-lactoglobulin 
body-T body temperature 
CFU colony-forming unit 
CM cow’s milk  
CMA cow’s milk allergy 
DC dendritic cells 
DGGE denaturing gradient gel electrophoresis 
DBPCFC Double-blind, placebo-controlled food challenge 
EHF extensively hydrolyzed formula 
ELISA Enzyme-linked immunosorbent assay 
ER/CC Eubacterium rectale/Clostridium coccoides  
ex-BLG ex-vivo res-stimulation with BLG 
ex-W ex-vivo res-stimulation with whey 
F female 
FC flow cytometry 
FF/Bb short and long chain FOS and B. breve M-16V 
FISH fluorescent in situ hybridization  
FOS fructo-oligosaccharides  
FOXP3 forkhead box P3 
FT fecal transplantation 
G group 
GATA3 GATA Binding Protein 3 
GC-FID GC-flame ionization detector 
GC-MS gas-chromatography-mass spectrometry 
GM gut microbiome 
GM-CSF Granulocyte macrophage colony-stimulating factor 
GOS galacto-oligosaccharides  
HC healthy controls 
HILIC Hydrophilic interaction chromatography 
HPLC-UV high-performance liquid chromatography-ultraviolet detector  
HWF hydrolysed whey formula 
IA immunoassay (other than ELISA) 
i.p. intraperitoneal 
i.g. intragastric 
i.d. intradermally 
IEC Intestinal epithelial cell(s) 
IFN-γ Interferon‐gamma 
Ig(s) immunoglobin(s) 
IL interleukin 
LAB lactic acid bacteria  
lcFOS long chain fructo-oligosaccharides  
LGG Lactobacillus rhamnosus GG  
LP lamina propria 
M male 
MLN  mesenteric lymph node 
mMCP-1  mucosal mast cell protease-1 
MS mass spectrometry 
MS/MS Tandem mass spectrometry 
NMR nuclear magnetic resonance 
OTU operational taxonomic unit 
pAOS pectin-derived acidic oligosaccharide  
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PBS phosphate-buffered saline 
PCR polymerase chain reaction 
PP Peyer’s Patches 
qPCR quantitative PCR 
qRT-PCR quantitative real-time PCR 
RAAF reference amino acid formula 
Ror2 Receptor Tyrosine Kinase Like Orphan Receptor 2 
RORγT retinoid-Related Orphan Receptor gamma t 
RP reverse phase 
SAS systematic anaphylaxis scores 
SCFAs Short-chain fatty acids  
scFOS short chain FOS 
scGOS short chain galacto-oligosaccharides  
sd standard deviation 
SI small intestine 
sIg specific Immunoglobulin 
SI-LP small intestine lamina propria 
sp. single unnamed species (of a certain genus) 
spp. multiple species (of a certain genus) 
SPT skin prick test 
TAAF thickener amino acid formula 
Tbet T-box transcription factor 
TC tolerant control 
Tgfbr3 Transforming growth factor beta receptor III  
TGF-β Transforming growth factor beta 
Th T helper cell 
Teff effector T cells 
TMAO trimethylamine-N-oxide 
TNFa tumor necrosis factor alpha 
Treg T regulatory cell 
TSLP thymic stromal lymphopoietin 
UPLC-MS/MS ultra-performance liquid chromatography with tandem mass spectrometry  
W whey 
Pre-S pre-sensitization 
Post-S post-sensitization 
WS whole study 
wk week(s) 
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Abstract  

Scope: Cow’s milk allergy (CMA) is one of the most prevalent food allergies in early 

childhood, often treated via elimination diets including standard amino acid-based 

formula or amino acid-based formula supplemented with synbiotics (AAF or AAF-S). 

This work aimed to assess the effect of cow’s milk (CM) tolerance acquisition and 

synbiotic (inulin, oligofructose, Bifidobacterium breve M-16 V) supplementation on the 

fecal metabolome in infants with IgE-mediated CMA 

Methods and results: The CMA-allergic infants received AAF or AAF-S for a year 

during which fecal samples were collected. The samples were subjected to 

metabolomics analyses covering gut microbial metabolites including SCFAs, 

tryptophan metabolites, and bile acids. Longitudinal data analysis suggested amino 

acids, bile acids, and branched SCFAs alterations in infants who outgrew CMA during 

the intervention. Synbiotic supplementation significantly modified the fecal 

metabolome after six months of intervention, including altered purine, bile acid, and 

unsaturated fatty acid levels, and increased metabolites of infant-type Bifidobacterium 

species: indolelactic acid and 4-hydroxyphenyllactic acid. 

Conclusion: This study offers no clear conclusion on the impact of CM-tolerance 

acquisition on the fecal metabolome. However, our results show that six months of 

synbiotic supplementation successfully altered fecal metabolome and suggest induced 

bifidobacteria activity, which subsequently declined after 12 months of intervention. 
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1. Introduction  

Cow’s milk allergy (CMA), characterized by an immune-mediated response to cow’s 

milk protein(s), is one of the major food allergies in early life.1,2 Over the past decades, 

the estimated CMA prevalence in children of developed countries is approximately 0.5–

3%.3,4 The allergic symptoms typically occur in the first year of life, whereas the 

resolution age varies and is related to the type of CMA.5 Based on symptoms and 

pathophysiology, CMA is categorized into immunoglobin E (IgE)-mediated, non-IgE 

mediated, and mixed IgE CMA.6 Subjects with IgE-mediated CMA, constituting 

approximately 60% of all CMA cases,3 require longer time for tolerance acquisition to 

CM than non-IgE mediated CMA subjects.7,8 In recent decades, the relevance of the gut 

microbiome (GM) in CMA has been highlighted, and studies show that compared to 

healthy counterparts, children with IgE-mediated CMA exhibit a reduction in 

bifidobacteria.9  

Bifidobacteria, the prototypical health-promoting bacteria, are dominant inhabitants in 

a breast-fed infants gut10 and play a pivotal role in GM development in early life.11,12 As 

co-evolved bacteria, bifidobacteria possess unique glycosidases to digest complex host-

derived glycans, particularly the human milk oligosaccharides (HMOs).13,14 The 

oligosaccharide fermentation products not only satisfy the energy and carbon demands 

of bifidobacteria but also benefit other bacteria through cross-feeding activities, thereby 

contributing to maintaining the GM homeostasis in early life.10,11  

Thus, bifidobacteria-related probiotics and HMO-mimicked prebiotics have gained 

popularity in the management of CMA in early-life, alongside the conventional 

interventions with extensively hydrolyzed formula or amino acids-based formula 

(AAF).15 Indigestible oligosaccharides, such as fructooligosaccharides (FOS) and 

galactooligosaccharides, are used as prebiotics due to their bifidogenic effect on the 

GM.16 Bifidobacterium species, including B. bifidum,17 B. longum,18 and particularly B. 

breve.18–21 are widely used probiotics for IgE-mediated CMA management in infants. 

These bifidobacteria have key immunomodulatory roles in the cross-talk between GM 

and host immune system: B. bifidum, for example, can induce the expression of FoxP3 
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in the regulatory T (Treg) cells through cell surface polysaccharides,22 while B. longum 

in neonatal microbiota can alleviate the risk of allergy by promoting the Treg 

maturation;23 B. breve, particularly the B. breve M-16V, can trigger the anti-allergic 

process in early infancy by regulating the intestinal microbiota, intestinal epithelial 

barrier, and immune system.24 Overall, bifidobacteria with HMO-utilization genes are 

found to induce intestinal IFN-β and silence Th2 and Th17 cytokines, thereby regulating 

the systemic immune balance in infants.25 Additionally, by breaking down HMOs, 

bifidobacteria can indirectly enhance the production of butyrate26 which is essential for 

the interplay between GM and systemic immunity,27 possibly through epigenetics 

mechanisms.28 Bifidobacteria-derived indolelactic acid also actively engages in the 

immunoregulation during infancy.25,29 However, despite these findings and the wide 

application of bifidobacteria-related interventions for IgE-mediated CMA,17–21 none of 

the studies have reported comprehensive metabolome exploration.  

In this study, we investigated longitudinal fecal metabolome changes of infants with 

IgE-mediated CMA undergoing dietary management with AAF, with and without 

synbiotics (Bifidobacterium breve M-16V; FOS: oligofructose, inulin). By applying 

linear mixed models (LMMs) and repeated measures analysis of variance simultaneous 

component analysis+ (RM-ASCA+), we compared the longitudinal fecal metabolome 

of infants with persistent CMA to those who developed CM-tolerance, and identified 

key metabolic changes associated with the synbiotic intervention. 

2. Experimental section  

2.1 Study design and dosage information 

This study arises from a multicenter, randomized, double-blind, controlled clinical study 

PRESTO (registered as NTR3725 in Netherlands Trial Register). Detailed information 

on ethics committees, institutional review boards, and regulatory authorities that 

approved the study was previously published.30 

PRESTO enrolled infants diagnosed with IgE-mediated CMA who then received either 

amino acid formula (AAF, produced by Nutricia, Liverpool, United Kingdom) or AAF 

with synbiotic (AAF-S) to manage their CMA. The synbiotic blend consisted of chicory-
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derived neutral FOS: oligofructose and inulin in a 9:1 ratio (total concentration of 

0.63g/100 ml formula, BENEO-Orafti SA, Oreye, Belgium) and Bifidobacterium breve 

M-16V (1.47×109 cfu/100 ml formula, Morinaga Milk Industry, Tokyo, Japan). 

Caretakers were instructed to provided subjects with a minimum daily dose of 450mL, 

350mL, and 250mL for infants aged 0 to 8 months, 9 to 18 months, and older than 18 

months, respectively.19 After 12 months of intervention, the allergy status was re-

evaluated through double-blind, placebo-controlled food challenge (DBPCFC) with 

CM. Detailed information on the diagnosis and reassessment was previously 

published.19 Out of the 169 participants enrolled in PRESTO, 40 subjects (aged 3-13 

months) were selected for this study based on sample availability. One subject was 

excluded due to unclear allergy status after 12 months.30 Of the 16 AAF and 23 AAF-S 

participants, 10 and 14 infants, respectively, outgrew CMA within 12 months. Stool 

samples were available at 0 (baseline, TP0), 6 (TP1), and 12 months (TP2) after the start 

of the intervention, resulting in a total of 117 samples.  

2.2 Sample collection and storage 

The sample collection procedure has been described previously.30 In short, fecal samples 

were collected at home and immediately stored in freezers, then transferred on ice to the 

participant hospitals and stored at -80°C until transfer to Danone Research & Innovation 

(Utrecht, the Netherlands) for wet sample aliquoting and SCFAs and lactic acid analysis. 

Sample aliquots for LC-MS metabolomics analysis were transferred on dry-ice to 

Leiden University and stored at -80°C until analysis. 

2.3 Metabolomic analysis 

2.3.1 SCFAs and lactic acid analysis 

Quantitative SCFAs, including branched SCFAs (BSCFAs) analysis was performed 

using GC coupled to flame ionization detector and lactic acid was measured using lactic 

acid assay kit (Megazyme, Wicklow, Ireland) as previously described.31  

2.3.2 LC-MS metabolomics analysis 
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The wet sample aliquots were lyophilized at 4 mbar and -110°C for 20h (Martin Christ 

Gefriertrocknungsanlagen GmbH, Germany), weighed (20±0.2mg), and stored at -80°C 

until extraction. Liquid-liquid extraction was performed as described by Hosseinkhani 

et al.32 with adjusted sample amount and doubled solvent-to-feces ratio. Detailed 

information on the chemicals, the sample preparation, and the quality control (QC) is 

available in supplementary materials.  

Polar to semi-polar metabolites, including acetylcarnitines, amines, benzenoids, organic 

acids, indoles, nucleosides, and nucleotides, were analyzed using reverse phase LC 

coupled with quadrupole (Q)-TOF-MS operated in full-scan positive and negative 

ionization modes, as described previously33 and in the supplementary material. Bile and 

fatty acids were measured using reverse phase LC separation using Q-TOF-MS operated 

in full scan negative ionization mode, as described in the supplementary material.  

Targeted peak integration was performed using SCIEX OS (version 2.1.6., SCIEX) with 

a maximum mass error of 10 ppm. The retention times were verified against authentic 

standards. In case of coelution, the targets were reported using the name or abbreviation 

of one of the targets followed by a “#”. Details on the abbreviations used are listed in 

Table S2. For the polar to semi-polar metabolites, peak area was used for further data 

analysis, whereas for the bile and fatty acids, the area ratio of compounds to stable 

isotopically labelled standards (Table S1) was used. Data quality inspection was 

performed using an in-house quality assurance software performing between batch 

correction and removal of metabolites with high technical variance (RSD of QC>30%).  

2.3.3 Data analysis 

Data handling and statistical analyses were performed in R (version 4.3.2). Metabolites 

with missingness above 20% and with median signal of the samples less than five times 

the mean signal of the procedure blanks were removed, leaving 166 metabolites. To 

identify group bias in missingness, Fisher’s exact test was performed for metabolites 

with missingness above 20% at each time point after grouping the subjects by 

intervention or CM-tolerance status, and the results are summarized in Table S2. Ratios 

of secondary to primary and unconjugated to conjugated bile acids (BAs) were added, 
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resulting in a total of 177 variables. A list of the reported metabolites and their 

abbreviations can be found in Table S3. The raw data were normalized by dry weight 

and subsequently log2-transformed. Missing values were imputed per metabolite using 

the quantile regression imputation of left-censored (QRILC) method.34 Available 

clinical characteristics that potentially associated with CM-tolerance status at TP2 or 

intervention were analyzed with the two-sided Mann-Whitney U-test for numeric 

variables and the Fisher’s exact test for binary variables as reported previously.30,35  

To assess the change from TP0 to TP1 and TP2, LMMs were built using the lme4 

package in R. Prior to building the model, the data was scaled by the standard deviation 

of all baseline samples. The metabolites were modelled as response variables with group 

and time as fixed effects and subject ID as a random effect. After grouping the subject 

by either their CM-tolerance status at TP2 (CM-allergic versus CM-tolerant) or 

intervention (AAF versus AAF-S), two models were built, namely tolerance-allergy and 

intervention. For the tolerance-allergy model (Metabolite ~ time + CM-tolerance_status 

+ time:CM-tolerance_status + (1|ID)), TP0 and the CM-allergic group were used as 

references. Pairwise comparisons between groups at each time point and within a group 

between the time points were performed using the emmeans package in R. For the 

intervention model (Metabolite ~ time + time:intervention + (1|ID)), TP0 and the AAF 

group were used as references. The main effect of the intervention was removed from 

the model but its interaction with time was kept ensuring the groups are equal at 

baseline. The p-values were calculated to assess a change from baseline with the 

Satterthwaite’s degrees of freedom method using the lmerTest package within the 

ALASCA package.36 In this study, the combined CM-tolerance status–intervention 

model was not performed because CM-tolerance acquisition as investigated in the parent 

study did not differ between the interventions at TP2 and aligned with natural rates of 

CMA outgrowth in infants.19 For most metabolites, the addition of age as a covariate to 

models led to no improvement of the performance based on akaike information criterion 

(Tables S4 and S5). Therefore, age was not used as a covariate in the LMMs. Multiple 

testing correction was performed using the Benjamini-Hochberg method where Q<0.1 

was considered as statistically significant. 
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Visualization of the longitudinal metabolomic alterations was achieved using RM-

ASCA+ with ALASCA package,36 as detailed in the supplementary materials. 

Performances of the analysis was validated using nonparametric bootstrapping, and the 

95% confidence intervals (CI) were estimated based on 1000 resampling iterations.  

2.4 16S rRNA gene sequencing and pre-processing 

Extraction of DNA from stool samples and the subsequent gut microbiota profiling by 

16S rRNA gene sequencing was performed as described previously.30 Correlations 

between the changes in metabolites and the relative abundance of Bifidobacterium were 

examined using Spearman’s rank correlation analysis. Relative abundance comparisons 

of Bifidobacterium between and within the AAF and AAF-S groups were evaluated with 

two-side unpaired t-tests. 

3. Results  

3.1 Patient characteristics 

The statistical results of important clinical characteristics are summarized in Table S6-

S7. When grouping the subjects by the CM-tolerance status at TP2, the father allergy 

occurrence and the SCORing Atopic Dermatitis (SCORAD) at baseline were 

significantly higher in the CM-allergic group than in the CM-tolerant group (Table S6). 

None of the clinical characteristics were significantly different between AAF and AAF-

S groups (Table S7). 

3.2 More pronounced fecal metabolome changes in the CM-tolerant group 

Firstly, RM-ASCA+ was used to examine the longitudinal metabolome alterations 

within and between infants that remained allergic and those that acquired tolerance to 

CM by TP2 (CM-allergic vs CM-tolerant). The PC1 score plot (Figure 1A) describes 

the direction of maximum variance in the modeled data, whereas the loadings plot 

(Figure 1B) highlights the top metabolites contributing to PC1. Metabolites with 

positive loadings follow the trend described by the score, whereas the opposite holds for 

metabolites with negative loadings. Figure 1B shows that almost half of the variation 

(47%) described by the fixed effects of the tolerance-allergy model was explained by 
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PC1 (Figure 1A). The scores and loading for PC1 showed that over time ferulic acid, 

desaminotyrosine, pipecolic acid, 3-hydroxybenzoic acid increased, whereas 

dodecanoylcarnitine, pregnenolone sulfate, betaine, pyruvate decreased (Figure 1). Few 

BAs also showed overall change with time. The primary BAs cholic acid (CA), 

chenodeoxycholic acid (CDCA), and hyocholic acid (HCA) declined over time. In 

contrast, the secondary BAs deoxycholic acid (DCA) and the ratios of secondary to 

primary BAs, including DCA/CA, lithocholic acid (LCA)/CDCA, increased. Although 

with overlapped CIs between the two groups, those changes were more pronounced for 

the CM-tolerant group where the PC1 score declined more sharply than the CM-allergy 

group and for which the CI between the time points were separated, suggesting a 

significant time effect in this group. 

 

Figure 1. RM-ASCA+ combined effect matrix showing the common metabolome 

development throughout the study for the CM-allergic (blue solid line, n=15) and CM-

tolerant (orange dashed line, n=24) groups as scores (A) and loadings (B). Only the 

metabolites with 12 highest and 12 lowest loadings are shown in the plot. Error bars 

representing 95% CI were estimated based nonparametric bootstrapping. 

Univariate marginal means comparison showed that around five times more metabolites 

were significantly altered over time in infants that acquired CM-tolerance versus those 
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that remained CM-allergic (TP0-TP1: 9 metabolites in CM-tolerant vs 2 metabolites in 

CM-allergic; TP0-TP2: 30 metabolites in CM-tolerant and 7 in CM-allergic; Figure S1 

and Table S8). Pregnenolone sulfate, pyroglutamic acid, pyruvate, oxoglutaric acid, and 

ferulic acid were significantly affected by time for both groups and follow comparable 

time-development trends (Figure S1). Similarly, arginine decreased, whereas 3-

hydroxybenzoic acid, hydrocinnamic acid, LCA, DCA increased simultaneously in both 

groups, but significantly only in the CM-tolerant group (Figure S1). Pipecolic acid levels 

increased over time in both groups, but the rise was steeper and significant only in the 

CM-tolerant group. Dodecanoylcarnitine followed the trend described by PC1 of the 

combined effect matrix (Figure 1A) with a decline in time at both TP1 and TP2 

significant only in the CM-tolerant group. The rest of the significantly altered 

metabolites showed dissimilar longitudinal profiles between the groups (Figure S1). 

Butyric acid, PLA#, desaminotyrosine, and phenylacetic acid were significantly 

increased, whereas 5-hydroxytryptophan and the primary BAs CA and CDCA showed 

significant decreases in the CM-tolerant group only. In contrast, threonine#, and 

tryptophan significantly increased over time only in the CM-allergic group.  

Next, the RM-ASCA+ interaction effect matrix was examined to focus on the alterations 

associated with CM-tolerance acquisition. The PC1 scores and loading of the interaction 

matrix, Figure 2, suggest that compared to the CM-allergic group, the CM-tolerant group 

showed overall alterations in amino acid metabolism with an increase in citrulline, 

lysine, N-acetyltyrosine, phenylacetic acid, gamma-aminobutyric acid (GABA#), 

glutamate, orotate, ornithine and a decrease in 5-hydroxytryptophan and serotonin. The 

BAs metabolism was also altered: decline in CDCA, CA, glycochenodeoxycholic acid 

(GCDCA), tauroursodeoxycholic acid (TUDCA), taurochenodeoxycholic acid 

(TCDCA) and increase in LCA/CDCA for the CM-tolerant group. The BSCFAs, 

isobutyrate and isovalerate, also contributed to PC1, showing higher levels in the CM-

tolerant group. However, only citrulline and lysine were found significantly different at 

TP2 between the two groups univariately (Table S6, Figure S2).  
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Figure 2. RM-ASCA+ interaction effect matrix showing the metabolome differences 

between the CM-allergic (blue solid line, n=15) and CM-tolerant group (orange dashed 

line, n=24) over time as scores (A) and loadings (B). Only the metabolites with 12 

highest and 12 lowest loadings are shown in the plot. Error bars representing 95% CI 

were estimated based nonparametric bootstrapping. 

3.3  Synbiotic supplementation altered fecal metabolome after six months of inte-

vention 

The longitudinal alterations of the fecal metabolome between the AAF and AAF-S 

group were studied to understand the effect of the synbiotic supplementation. As shown 

in Figure 3, clear group separation was observed in PC1 of the RM-ASCA+ interaction 

effect matrix, especially at TP1.  
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Figure 3. RM-ASCA+ interaction effect matrix showing the metabolome differences 

between the AAF (purple solid line, n=16) and AAF-S (green dashed line, n=23) group 

over time as scores (A) and loadings (B). Only the metabolites with 12 highest and 12 

lowest loadings are shown in the plot. Error bars representing 95% CI were estimated 

based nonparametric bootstrapping. 

Among all the metabolites, 12 metabolites and three BA ratios were found to be 

statistically different between the AAF and AAF-S groups at TP1, and only inosine at 

TP2 (Figure S3, Table S8). The estimated marginal means plot of those analytes can be 

found in Figure S3. The synbiotic supplementation led to an increase of gut microbial 

metabolites indolelactic acid (ILA) and 4-hydoxyphenyllactic acid (4-OH-PLA#) and a 

decline in the fatty acids linoleic acid (LA), alpha-linolenic acid (ALA#), and oleic acid 

(OA) at TP1 (Figure 4). Amino acid glutamine was also decreased in the AAF-S group 

at TP1. Three purine metabolites inosine, guanine, and adenine as well as the pyrimidine 

uridine were also affected by the intervention. While adenine was higher upon the 

synbiotic addition, the opposite was true for inosine, guanine, and uridine. HCA and 

CDCA/GCDCA, CA/glycocholic acid (GCA), ursodeoxycholic acid 

(UDCA)/glycoursodeoxycholic acid (GUDCA) were all significantly higher in the 

AAF-S than in the AAF group at TP1, whereas GCDCA was significantly lower (Figure 
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4). A few other BAs were found to be among the main contributors to PC1 of the 

interaction matrix (Figure 3) or to have significant interaction coefficient at TP1 prior 

to multiple testing correction (Figure 4), namely, the glyco-conjugated BAs GCA and 

GUDCA and the secondary BAs and their ratio to primary BAs: LCA, DCA, DCA/CA, 

and LCA/CDCA.  

 

Figure 4. Volcano plot showing the resulting p-value of the interaction coefficient for 

TP1 (left) and TP2 (right) in intervention LMM, dashed (p = 0.05), solid line (Q = 0.1) 

for TP1 (A) and TP2 (B). Red symbols indicate metabolites with Q<0.1 after Benjamini-

Hochberg procedure. 

3.4 Association between changes in Bifidobacterium and metabolites significantly 

altered by the synbiotic 

The synbiotic supplementation significantly increased the relative abundance of 

Bifidobacterium in the AAF-S group from baseline to TP1 and TP2 compared to the 

AAF group (Figure S4).35 To determine whether these increases were associated with 

the significantly changed metabolites, Spearman’s rank correlation analysis was 

performed between the changes in metabolite levels and Bifidobacterium’s relative 
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abundance from baseline to TP1 (TP1-TP0) and TP2 (TP2-TP0), respectively (Table 

S9). In the AAF-S group, changes in ILA and 4-OH-PLA# from TP0 to later time points 

were positively correlated with those of Bifidobacterium (r > 0.6, p < 0.005), while 

changes in glutamine were negatively correlated (r ≤ -0.5, p < 0.05) (Figure 5). The 

changes in Bifidobacterium were positively correlated with those of adenine at TP1 and 

TP2 in both groups (r > 0.5, p < 0.05), and with CDCA/GCDCA and CA/GCA only at 

TP1 in the AAF-S group (r > 0.4, p < 0.05). Bifidobacterium also showed negative 

correlations with GCDCA and inosine in changes from TP0 to TP1 only in the AAF-S 

group (r < -0.4, p < 0.05) (Figure S5).  

 

Figure 5. Spearman’s rank correlations between the changes in Bifidobacterium and 

ILA, 4-OH-PLA#, glutamine in AAF (purple solid line, n=16) and AAF-S (green dashed 

line, n=23) groups from baseline to TP1 (TP1-TP0) and TP2 (TP2-TP0). The rank of 

the changes in metabolite response and relative abundance of Bifidobacterium within 

each group were used for plotting. The figure shows p values; the Q values after 

Benjamini-Hochberg procedure are provided in Table S9. 

4. Discussion 
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In this study we followed the fecal metabolome alterations in infants with IgE-mediated 

CMA who received AAF with or without synbiotics for a year. Firstly, we examined the 

effect of CM-tolerance acquisition on the fecal metabolome over time. Time, reflecting 

growth and diet diversification, had a more pronounced impact on the metabolome than 

CM-tolerance acquisition (Figure 1, Figure S1). The diet enrichment was evidenced by 

the overall increase of the phenolic acids which are ubiquitously produced in plants,37 

including ferulic acid, 3-hydroxybenzoic acid, and hydrocinnamic acid. The decrease in 

the steroid hormone (pregnenolone sulfate), energy metabolites (pyruvate, oxoglutaric 

acid, dodecanoylcarnitine), and the altered amino acids and derivatives (pyroglutamic 

acid, arginine, pipecolic acid) suggest metabolome modification associated with somatic 

growth.38,39 

 

The multivariate RM-ASCA+ analysis showed an association of CM-tolerance 

acquisition status with alterations in amino acids, BAs, and (B)SCFAs (Figure 2). 

Compared to infants with persistent CMA, citrulline and lysine were significantly higher 

in the infants who developed CM-tolerance at TP2 (Figure S2). Lower plasma citrulline 

levels are known marker of increased gut permeability,40 which can raise the chance of 

allergen(s) passing the intestinal barrier and triggering the immune system.41 The 

increase in fecal citrulline in the CM-tolerant group in this study might suggest improved 

gut barrier function and gut health. Although not significantly different between the two 

groups, the amino acids GABA#, glutamate#, threonine#, and ornithine were also higher 

in the CM-tolerant group compared to the CM-allergic group (Figure S1-S2). Lower 

fecal threonine levels have previously been reported in infants with IgE-mediated CMA 

compared to healthy controls.42 Interestingly, although not significant, 5-

hydroxytryptophan and serotonin were higher in the CM-allergic group at TP1 and TP2 

(Figure 2), while their precursor tryptophan significantly declined only from TP0 to TP2 

in this group (Figure S1). As serotonin is involved in intestinal epithelial proliferation43 

and plays an essential role in regulating intestinal inflammation,44 the upregulated 

tryptophan-serotonin metabolism in the CM-allergic group may reflect an inflammatory 

state of the intestine in the CMA infants.  
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Children who outgrew CMA showed differences in their BAs profile. The primary BAs 

(CA, CDCA) significantly decreased, while the secondary BAs (DCA, LCA) and the 

secondary/primary BAs ratios (DCA/CA, LCA/CDCA) significantly increased from 

TP0 to TP2 only in the CM-tolerant group (Figure S1). A recent study found that, 

compared to healthy children, children with IgE-mediated CMA had lower ratios of 

fecal secondary/primary BAs from the CA pathway, with DCA and other oxidized keto 

BAs included in the calculation.45 Secondary BAs from the CDCA pathway, including 

LCA, were reported lower in children with food allergy compared to healthy controls as 

well.46 Although the secondary BAs and secondary/primary BAs ratios were not 

significantly different between the two groups in our study, the altered BAs profiles in 

the CMA-tolerant group likely indicate a more mature GM for secondary BAs 

production. This may contribute to improved intestinal functions in infants outgrowing 

CMA, as LCA is known to attenuate disruption in the intestinal barrier.47  

 

(B)SCFAs were also altered during the CMA tolerance acquisition process. Butyrate 

significantly increased from TP0 to TP2 only in the CM-tolerant group (Figure S1). 

Isobutyrate and isovalerate tended to have group separation at TP1, with a continuous 

elevation in the CM-tolerant group over time, and a decrease at TP1 in the CM-allergic 

group (Figure S2). Consistent with our finding, those (B)SCFAs, specifically butyrate, 

are known for their anti-inflammatory effects,27,48 and are generally observed to be lower 

in feces of children with IgE-mediated food allergy.42,48 Additionally, phenylalanine, 

phenyllactic acid (PLA#), and desaminotyrosine, which are GM metabolites from amino 

acids and dietary polyphenols,49–51 were significantly increased from TP0 and TP2 only 

in the CM-tolerant group (Figure S1). The significant elevations of these metabolites 

may promote CM-tolerance acquisition, especially considering the recently recognized 

anti-inflammatory property of desaminotyrosine.52,53 

 

The synbiotic (B. breve M-16V, FOS: inulin, oligofructose) significantly altered the 

levels of aromatic lactic acids, purine metabolites as well as fatty acids and BAs, 

particularly after six months of intervention. The intervention enhanced ILA and 4-OH-
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PLA levels (Figure S3), and their increases from baseline to TP1and TP2 were positively 

correlated with those of bifidobacteria (Figure 5). This finding aligns with reports that 

ILA and 4-OH-PLA are metabolites of tryptophan29,54,55 and tyrosine29 produced by 

infant-type Bifidobacterium species, including B. breve. Earlier published microbiome 

and metaproteomics analysis of stool samples from the same clinical trial revealed that 

the synbiotic raised the level of bifidobacteria,19,35 as well as bifidobacterial 

Carbohydrate-Active enZymes,35 known to metabolize FOS.56 Although the proportion 

of Bifidobacterium was significantly higher in the AAF-S group compared to the AAF 

group at both time points (Figure S4),19,35 the increases in ILA and 4-OH-PLA# were 

significantly higher in the AAF-S group only at TP1. These results suggest that the 

synbiotic promoted the growth and/or the activity of aromatic lactic acids producers, 

e.g., infant-type Bifidobacterium species, especially at TP1. This can be evidenced by 

stronger positive correlations between changes in the two aromatic lactic acids and 

bifidobacteria from baseline to TP1 than to TP2 in the AAF-S group (Figure 5). To 

validate our observations, Bifidobacterium species should be quantified. Alternatively, 

aromatic lactate dehydrogenase reported to convert tryptophan and tyrosine to 

respectively ILA and 4-OH-PLA in infant-type Bifidobacterium species should be 

analyzed.29 The possibility that the ILA and 4-OH-PLA# were produced by some lactic 

acid bacteria should not be ignored neither.57,58 Overall, the increased ILA and 4-OH-

PLA# levels in the AAF-S group suggest enhanced abundance or activity of infant-type 

bifidobacteria, supporting the successful synbiotic supplementation together with the 

microbiome and metaproteomics findings.19,35 Although the parent study found that the 

CM-tolerance acquisition after 12 (TP2) and 24 months of synbiotic intervention aligned 

with natural outgrowth,19 our findings, along with the reported anti-inflammatory effect 

of ILA,25,29,55,59 suggest that the synbiotic intervention may pose beneficial effects on 

infants’ immune system. Further metabolomics studies on larger cohorts are required to 

verify this hypothesis. 

In addition to the increase in ILA and 4-OH-PLA, the synbiotic lowered inosine, 

guanine, and uridine and raised adenine levels. The same purine-pyrimidine trend was 

observed in conventionally raised and core microbiota-colonized mice in comparison to 
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germ-free mice,60 indicating the importance of the GM in purine and pyrimidine 

metabolism.60 A decline of inosine and uridine has also been reported in co-culture of 

B. breve with small intestinal-like epithelial cells.61 Lactobacillus brevis, belonging to 

the Lactobacillaceae family, was found to be elevated in the AAF-S group for the same 

set of samples35 and was also reported to have inosine degradation capabilities.62 To link 

the purine-pyrimidine metabolism to the gut microbiome, and the role of 

Bifidobacterium spp. and Lactobacillaceae spp. herein, more research is required.  

The AAF-S intervention lowered LA, ALA#, and OA levels, suggesting high 

consumption of these fatty acids by gut bacteria. This may be a result of hydration by 

bacteria of the Lactobacillus and Bifidobacterium genera63 or production of conjugated 

fatty acids.64–68 Bifidobacterium strains, especially B. breve, are among the best 

producers of conjugated linoleic acids66,67 and conjugated linolenic acids.66,68  

The synbiotic enhanced the deconjugation of BAs, especially at TP1, where 

significantly decreased GCDCA and increased CDCA/GCDCA, CA/GCA, and 

UDCA/GUDCA were observed in the AAF-S compared to AAF group (Figure 4). 

Bifidobacterium, in general, are active bile salt hydrolase (BSH) producers,69 which 

perform preferred deconjugation activity on glyco-conjugated BAs.70 This aligns with 

our results showing that Bifidobacterium changes from baseline correlated negatively 

with those of GCDCA, and positively with those of CA/GCA and CDCA/GCDCA at 

TP1 in the AAF-S (Figure S5). These correlations in changes disappeared at TP2, 

possibly due to increased GM diversity. Compared to TP0, families from other phyla, 

including Bacteroidetes, Firmicutes, and Proteobacteria, were more abundant at later 

timepoints in both groups, especially at TP2.35 These bacteria have also been identified 

as active BSH producers,71 thus might eliminate the correlation between the activity of 

BAs deconjugation and Bifidobacterium. Unexpectedly, the increased deconjugation 

activity of BAs failed to promote the production DCA and LCA. In contrast, although 

not significant, their levels and ratios to precursors (DCA/CA, LCA/CDCA) were lower 

in the AAF-S than the AAF group (Figure 4). Considering that the conversion of primary 

BAs to secondary ones is highly conserved in bacteria with the bai operon,72 and that 

the host liver can further hydroxylate secondary BAs to tertiary BAs after gut-liver 
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circulation,73 it is likely that more complex mechanisms underlie the host-gut 

metabolism of BAs during the intervention.  

Our study has several limitations, including the wide age range of the participants at 

baseline of 3-13 (9.00 ± 2.90) months. Considering the rapid development of the GM in 

the first two years of life,39 the wide age range may obscure the observation of fecal 

metabolome alterations related to CM-tolerance acquisition and the effect of 

intervention. Another limitation is the lack of information on the CM-tolerance status at 

TP1. Knowing the status at TP1 could have aided in the interpretation of CM-tolerance 

acquisition results. The research carried out for this paper is exploratory due to the small 

samples size (39 subjects). Increasing the sample size is necessary to verify these 

findings and would also allow to build LMM and RM-ASCA+ models following the 

intervention and CM-tolerance acquisition simultaneously. In addition, the parent study 

concluded that the synbiotic supplementation did not significantly affect CMA-

resolution. Thus, in this study we cannot draw any conclusions regarding the clinical 

benefits of the synbiotic supplementation on CM-tolerance acquisition based on fecal 

metabolome alterations. Despite those limitations, our study revealed several fecal 

metabolome pathway alterations which may contribute to CMA outgrowth. Most 

importantly, we found that the AAF-S significantly altered the fecal metabolome after 

six months of the intervention, not after 12 months, suggesting that early intervention is 

required to maximize the effect of synbiotics. These findings aid in understanding the 

link between IgE-mediated CMA-tolerance acquisition, GM, and synbiotics 

intervention. 
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Supplementary Material 

Chemicals 

Methyl tert-butyl ether (MTBE, ≥99.8%) and ammonium formate (≥99.0%) were pur-

chased from Sigma Aldrich (St. Louis, United States). LC-MS-grade methanol (MeOH), 

isopropanol and formic acid (FA) were purchased from Biosolve B.V. (Valkenswaard, 

Netherlands). LC-MS grade acetonitrile was purchased from Actu-all chemicals 

(Randmeer, The Netherlands) and Biosolve B.V. (Valkenswaard, Netherlacnjugnds). 

Purified water was obtained from a Milli-Q PF Plus system (Merck Millipore, Burling-

ton, United States). List of the isotopically labelled standards (SILs), including supplier 

details, can be found in Table S1. 

Sample preparation 

Briefly, 72 µL of water and 216 µL MeOH, containing stable isotopically labelled stand-

ards (SILs) (Table S1), were added to the 20 mg dry-weight fecal sample. After a 3-

minute vortex mixing (Marshall Scientific, Cambridge, UK) 120 µL ice-cold MTBE 

was added, followed by another 3-minute vortex mixing. Following a brief centrifuga-

tion (30s, 100g, 4 °C), 200 µL of water and 168 µL of MTBE were added. The samples 

were vortex mixed for another 3 min, incubated at 4°C for 10 minutes until centrifuga-

tion (20 min, 16 000g, 4°C) inducing aqueous and organic layer separation. All solvents 

used during the LLE were ice-cold and vortex mixing was always at maximum speed. 

Following layer separation, each layer was transferred to an Eppendorf tube, followed 

by 5 and 2.5 minutes of centrifugation (16000g, 4°C) for aqueous and organic layers 

respectively. After extraction, 150 µL of the aqueous layer was aliquoted for polar to 

semi-polar metabolites analysis, while 48.8 μL of aqueous and 28.8 μL of organic layer 

was combined for the bile and fatty acids analysis. The aliquots were dried in a Speedvac 

(Labcono, USA) and stored at -80°C. Prior to LC-MS analysis, the extracts were recon-

stituted in 50 µL of 0.1% FA in water for polar to semi-polar metabolites analysis, and 

200 µL of MeOH for the bile and fatty acids analysis. The reconstitution solvents con-

tained different SILs (Table S1). 

Quality Control  
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Samples were randomized into two batches, with those from the same subject prepared 

and measured in the same batch. For the preparation of the quality control sample, 30 

study samples were weighed and extracted. After the extraction, equal volumes of each 

layer were taken from each sample and pooled, resulting in pooled QC aqueous and 

organic layers. Those pooled layers were used to prepare QC samples for each platform. 

The LLE and aliquoting steps were performed as described in Sample preparation. 

LC-MS analysis of polar to semi polar metabolites 

Analysis of polar to semi-polar metabolites were performed with a Shimadzu Nexera 

X2 LC system coupled to a TripleTOF 6600 mass spectrometer (SCIEX, Foster City, 

CA, USA), as described previously. Briefly, the LC separation was carried out at 40 °C 

using a Waters Acquity UPLC HSS T3 column (1.8 μm, 2.1 mm × 100 mm) with pre-

column in-line stainless steel filter (0.3 μm, Agilent Technologies, Waldbronn, Ger-

many). The mobile phase A was 0.1% FA in water, and the mobile phase B was 0.1% 

FA in ACN (Actu-all chemicals). With a flow rate of 0.4 mL min-1 and 1 μL of injection 

volume, the gradient starts at 100% A; 0–0.5 min 80% A; 0.5–2.5 min 2% A; 2.5–7.5 

min 2% A; 7.5–12 min 2% A; 12 – 15 100% A. The data were acquired under full scan 

mode over the m/z range of 60-800 Da with Analyst TF software 1.7.1 (SCIEX) in neg-

ative and positive ionization modes. The preferred ionization mode for metabolites de-

tectable in both polarities was chosen based on lower RSD% and higher signal-to-noise 

ratio of the QC samples. 

LC-MS analysis of bile acid and fatty acids  

Analysis of bile and fatty acids was performed on an UPLC-TOF/MS system consisting 

of ExionLC™ AC UHPLC system and SCIEX ZenoTOF 7600 system (Darmstadt, Ger-

many) equipped with an IonDrive™ Turbo V Source, operated in negative ESI mode. 

The ion source conditions were as follows: spray voltage of 4.5 kV, capillary tempera-

ture of 550°C, ion source gas 1 50 psi, ion source gas 2 50 psi, curtain gas 35 psi, CAD 

gas 7 psi. The MS data was acquired under full scan mode over the m/z range of 200-

900 Da. Accumulation time was set to 0.25 s, delustering potential to -70V and collision 

energy to -10eV. Chromatographic separation was performed on a Waters Acquity 

UPLC HSS T3 column (1.8 μm, 2.1 mm × 100 mm) with pre-column in-line stainless 
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steel filter (0.3 μm, Agilent Technologies, Waldbronn, Germany). The flow rate was set 

at 0.4 ml min-1, the column was kept at 45 °C, injection volume at 2 μL. Mobile phase 

A consisted of 10 mM ammonium formate in water/ACN (Biosolve B.V) (95:5, v:v), 

while mobile phase B was 10 mM ammonium formate in MeOH/water (99:1, v:v). The 

gradient was as follows: starting at 0% B; 0–0.2 min 70% B; 0.2–7.5 min 100% B; 7.5–

11.5 min 100% B; 11.5–11.6 min 0% B; 11.6 – 15 0% B. Isopropanol was used as an 

external rinsing solution (2 s sip time + rinse port). The flow was directed to waste in 

the first minute of the run. The autosampler temperature was set at 10 °C. Data acquisi-

tion was carried out on SCIEX OS 2.1.6. 

Visualization RM-ASCA+ 

Visualization of the longitudinal metabolomic alterations was achieved using RM-

ASCA+, which is an extension of LMMs for multivariate data. In the first step, LMMs 

are used to decompose the response matrix into effect matrices. The effect matrices are 

then analyzed using principal component analysis (PCA), and the results are 

summarized into PCA scores and loadings. The LMMs used for RM-ASCA+ were the 

LMMs used for the univariate analysis. The visualized effect matrices included the time 

effect matrix (‘time’) which shows time development of the reference group over time. 

The interaction matrix (‘time:group’) and the group-interaction matrix (‘group + 

time:group’) both show the deviations of the study group compared to the reference 

group over time with the latter also displaying the baseline differences. Lastly, the 

combined matrix (‘time + time:group’ or ‘time + group + time:group’) shows the time 

development of both the study and the reference group.  
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Figure S1. Marginal means estimated from the LMMs for participants who acquired 
tolerance (CM-tolerant, orange) and those that remained allergic (CM-allergic, blue). 
Only the metabolites for which pairwise comparison in time was found significant are 
plotted. The q-values are based on the marginal mean comparison to TP0 for each group, 
q < 0.01 (***), q < 0.05 (**), q <0.1 (*). 
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Figure S2. Marginal means estimated from the LMMs for participants who acquired 
tolerance (CM-tolerant) and those that remained allergic (CM-allergic). The metabolites 
with top loadings in PC1 of the RM-ASCA+ interaction matrix are plotted. The q-values 
are based on the marginal mean comparison between the groups at each time point, q 
<0.1 (*). 

Figure S3. Marginal means estimated from the LMMs for AAF and AAF-S group. 
Only the metabolites for which an interaction coefficient was found significant are 
plotted. The response has been scaled. The q-values are based on/denote the significant 
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between-group change in the within-group change from baseline. q < 0.01 (***), q < 
0.05 (**), q <0.1 (*) 
 

 

 
Figure S4. Relative abundance of Bifidobacterium comparisons between AAF and 
AAF-S groups at each time point (A), and between time points in each group (B). 
Statistical significance was evaluated with two-side unpaired t-tests; p > 0.05 (ns), p ≤ 
0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 0.0001 (****). 

 

 

 
Figure S5. Spearman’s rank correlations between the changes in Bifidobacterium and 
adenine, CDCA/GCDCA, CA/GCA. GCDCA, inosine in AAF (purple solid line) and 
AAF-S (green dashed line) groups from baseline to TP1 (TP1-TP0) and TP2 (TP2-TP0). 
The rank of the changes in metabolite response and relative abundance of 
Bifidobacterium within each group were used for plotting.
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Table S1: General information and solution preparation for all the stable isotopically labeled standards (SILs) 
Compound Name Compound For-

mula Supplier product  
number 

Spiked 
concentra-
tion (µM) 

Usage 

choline-d4 C5H9D4NO CDN D-2464 16.00 Polar to semi-polar metabolites platform IS 

cytidine-15N3 C9H13[15N]3O5 cambridge Isotope labor-
atories 

NLM-
3797-50 64.50 Polar to semi-polar metabolites platform IS 

DL-leucine-d3 C6H10D3NO2 CDN D-2400 56.00 Polar to semi-polar metabolites platform IS 

DL-proline-d7 C5H2D7NO2 cambridge Isotope labor-
atories 

DLM-
2657-0 58.00 Polar to semi-polar metabolites platform IS 

hippuric acid-d5 C9H4D5NO3 chem Cruz sc-490158 42.00 Polar to semi-polar metabolites platform IS 

hypoxanthine-d3 C5D3HN4O cambridge Isotope labor-
atories 

DLM-
2923-0.1 12.00 Polar to semi-polar metabolites platform IS 

indole-d5-3-acetic acid C10H4D5NO2 TRC I577344 44.00 Polar to semi-polar metabolites platform IS 
L-tryptophan-d3 C11H9D3N2O2 CDN D-7419 20.00 Polar to semi-polar metabolites platform IS 

L-tyrosine-13C9-15N [13C]9H11[15N]O3 cambridge Isotope labor-
atories 

CNLM-
439-H-0.1 26.00 Polar to semi-polar metabolites platform IS 

octanoyl-l-carnitine-d3 C15H26D3NO4 CDN D-6651 0.40 Polar to semi-polar metabolites platform IS 
propionyl-L-carnitine-(n-methyl-d3) C10H16D3NO4 CDN D-6651 4.00 Polar to semi-polar metabolites platform IS 

quinaldic acid-d6 C10HD6NO2 CDN D-6514 10.00 Polar to semi-polar metabolites platform IS 
u-15N-guanosine C10H13[15N]5O5 Silantes 125303603 114.00 Polar to semi-polar metabolites platform IS 

4-hydroxyphenylactic acid-d6 C8H2D6O3 TRC H949062 97.78 Polar to semi-polar metabolites platform spiked in reconstitution 
solution 

fludrocortisone-d5 C21H24D5FO5 TRC F428102 0.76 Polar to semi-polar metabolites platform spiked in reconstitution 
solution 

caffeine-d9 C8HD9N4O2 TRC C080102 2.77 Polar to semi-polar metabolites platform spiked in reconstitution 
solution 

valine-d8 C5H3D8NO2 cambridge Isotope labor-
atories DLM-488 42.12 Polar to semi-polar metabolites platform spiked in reconstitution 

solution 
Lithocholic acid-d4 LCA-d4 C24H36D4O3 CDN Isotopes u501p49 200 Bile and fatty acids platform 

cholic acid-d4 (CA-d4) C24H36D4O5 CDN Isotopes z75p40 65 Bile and fatty acids platform 
Deoxycholic acid-d4 (DCA-d4) C24H36D4O4 CDN Isotopes w133p40 100 Bile and fatty acids platform 

Ursodeoxycholic acid-d4 (UDCA-d4) C24H36D4O4 CDN Isotopes v275p43 100 Bile and fatty acids platform 
Glycocholic acid-d4 (GCA-d4) C26H39D4NO6 Cayman Chemical 21889 37.5 Bile and fatty acids platform 

Glycoursodeoxycholic Acid-d4 (GUDCA-d4) C26H39D4NO5 Cayman Chemical 21890 37.5 Bile and fatty acids platform 

Tauroursodeoxycholic acid-d5 (TUDCA-d5) C26H40D5NO6S Santa-Cruz Biotechnol-
ogy sc-220192 10 Bile and fatty acids platform 

Arachidonic Acid-d8 (AA-d8) C20H24D8O2 Cayman Chemical 390010 500 Bile and fatty acids platform 
Oleic Acid-d17 (OA-d17) C18H17D17O2 Cayman Chemical 9000432 1 Bile and fatty acids platform spiked in reconstitution solution 

12-[[(cyclohexylamino)carbonyl]amino]-dodecanoic acid 
(CUDA) C19H36N2O3 Cayman Chemical 10007923 0.5 Bile and fatty acids platform spiked in reconstitution solution 
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Table S2: Fisher’s exact test results for the metabolites with missingness above 20% in the tolerant-allergy and the treatment groups 
Compound name Time point CM-Allergic NA(%) CM-Tolerant NA(%) P values model type 
Vanillic acid 6 0.0 33.3 0.01457 CM tolerance-allergy  
Valerate 6 73.3 33.3 0.02248 CM tolerance-allergy  
2-Methylglutaric acid 6 80.0 41.7 0.02441 CM tolerance-allergy  
Vanillactic acid 6 13.3 50.0 0.03785 CM tolerance-allergy  
Agmatine 6 13.3 50.0 0.03785 CM tolerance-allergy  
Creatinine 6 26.7 62.5 0.04837 CM tolerance-allergy  
Agmatine 12 20.0 62.5 0.01950 CM tolerance-allergy  
Asparagine 12 80.0 41.7 0.02441 CM tolerance-allergy  
      
Compound name Time point AAF NA(%) AAF-S NA(%) P values model type 
L-Acetylcarnitine 0 62.5 21.7 0.0184 intervention  
1,7-Dimethyluric acid 6 62.5 8.7 0.0009 intervention  
Xanthosine 6 6.3 52.2 0.0047 intervention  
3-Methylindole 6 50.0 8.7 0.0073 intervention  
3-Methylhistidine 6 50.0 8.7 0.0073 intervention  
GLCA 6 43.8 82.6 0.0172 intervention  
2-Ketobutyric acid 6 0.0 30.4 0.0287 intervention  
Saccharopine 6 31.3 4.3 0.0332 intervention  
Dopamine 6 12.5 47.8 0.0371 intervention  
Guanidinosuccinic acid 12 56.3 17.4 0.0172 intervention  
Xanthosine 12 6.3 39.1 0.0279 intervention  
GLCA 12 20.0 59.1 0.0409 intervention  
TLCA-3S 12 26.7 63.6 0.0448 intervention  
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Table S3: Target list and abbreviations for final data ananlysis 
Platform 

(ionization mode) Compound_name_reported abbreviations 

Polar to semi polar 
(negative) 1-Methyluric acid 1-Methyluric acid 

Polar to semi polar 
(negative) 2,5-Furandicarboxylic acid 2,5-Furandicarboxylic acid 

Polar to semi polar 
(negative) Deoxyinosine Deoxyinosine 

Polar to semi polar 
(negative) Deoxyuridine Deoxyuridine 

Polar to semi polar 
(negative) ortho-Hydroxyphenylacetic acid ortho-Hydroxyphenylacetic acid 

Polar to semi polar 
(negative) Protocatechuic acid Protocatechuic acid 

Polar to semi polar 
(negative) 

Dihydrocaffeic acid/3-hydroxy-3-(3-hydroxyphenyl)propanoic acid/Hy-
droxyphenyllactic acid 4-OH-PLA# 

Polar to semi polar 
(negative) 3-Hydroxybenzoic acid 3-Hydroxybenzoic acid 

Polar to semi polar 
(negative) 3-Hydroxybutyric acid 3-Hydroxybutyric acid 

Polar to semi polar 
(negative) 3-Methyl-2-oxovaleric acid 3-Methyl-2-oxovaleric acid 

Polar to semi polar 
(negative) 3-Methylxanthine/1-Methylxanthine/ 7-Methylxanthine 3-Methylxanthine/1-Methylxanthine/7-

Methylxanthine 
Polar to semi polar 

(negative) Phenyllactic acid/3-(3-Hydroxyphenyl)propanoic acid PLA# 

Polar to semi polar 
(negative) Hydrocinnamic acid Hydrocinnamic acid 

Polar to semi polar 
(negative) 4-Hydroxybenzoic acid 4-Hydroxybenzoic acid 

Polar to semi polar 
(negative) 4-Hydroxycinnamic acid 4-Hydroxycinnamic acid 

Polar to semi polar 
(negative) p-Hydroxyphenylacetic acid/Mandelic acid p-Hydroxyphenylacetic acid# 

Polar to semi polar 
(negative) Desaminotyrosine Desaminotyrosine 

Polar to semi polar 
(negative) 4-Pyridoxic acid 4-Pyridoxic acid 

Polar to semi polar 
(negative) Pyroglutamic acid Pyroglutamic acid 

Polar to semi polar 
(negative) 

alpha-Aminobutyric acid/gamma-Aminobutyric acid/3-Aminoisobutanoic 
acid/Dimethylglycine GABA# 

Polar to semi polar 
(negative) Argininosuccinic acid Argininosuccinic acid 

Polar to semi polar 
(negative) Ascorbic acid Ascorbate 

Polar to semi polar 
(negative) Carnosine Carnosine 

Polar to semi polar 
(negative) Citric acid Citrate 

Polar to semi polar 
(negative) Gluconic acid Gluconate 

Polar to semi polar 
(negative) Flavin adenine dinucleotide FAD 

Polar to semi polar 
(negative) Glutamine Glutamine 

Polar to semi polar 
(negative) Glycine Glycine 

Polar to semi polar 
(negative) Glycolic acid Glycolate 

Polar to semi polar 
(negative) Guanine Guanine 

Polar to semi polar 
(negative) Hippuric acid Hippuric acid 

Polar to semi polar 
(negative) Histidine Histidine 

Polar to semi polar 
(negative) Indolelactic acid ILA 

Polar to semi polar 
(negative) Indoxyl glucoside Indoxyl glucoside 

Polar to semi polar 
(negative) 2-Hydroxyethanesulfonate 2-Hydroxyethanesulfonate 

Polar to semi polar 
(negative) Isobutyrylglycine Isobutyrylglycine 
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Polar to semi polar 
(negative) Oxoglutaric acid Oxoglutaric acid 

Polar to semi polar 
(negative) Lysine Lysine 

Polar to semi polar 
(negative) Malic acid Malate 

Polar to semi polar 
(negative) Methionine.sulfoxide Methionine sulfoxide 

Polar to semi polar 
(negative) myo-Inositol/ Galactose/ Fructose Fructose# 

Polar to semi polar 
(negative) N-alpha-Acetylarginine N-alpha-Acetylarginine 

Polar to semi polar 
(negative) N-Acetylglutamine N-Acetylglutamine 

Polar to semi polar 
(negative) N-Acetylneuraminic acid N-Acetylneuraminic acid 

Polar to semi polar 
(negative) N-Acetylserine N-Acetylserine 

Polar to semi polar 
(negative) N-Acetyltryptophan N-Acetyltryptophan 

Polar to semi polar 
(negative) N2-gamma-Glutamylglutamine N2-gamma-Glutamylglutamine 

Polar to semi polar 
(negative) N6-Carboxymethyllysine N6-Carboxymethyllysine 

Polar to semi polar 
(negative) O-Acetylserine/Glutamic acid Glutamate# 

Polar to semi polar 
(negative) Orotate Orotate 

Polar to semi polar 
(negative) p-Cresol p-Cresol 

Polar to semi polar 
(negative) p-Cresol sulfate p-Cresol sulfate 

Polar to semi polar 
(negative) Pantothenic acid Pantothenic acid 

Polar to semi polar 
(negative) Phenylacetic acid Phenylacetic acid 

Polar to semi polar 
(negative) Phenylacetylglutamine Phenylacetylglutamine 

Polar to semi polar 
(negative) Phenylpropionylglycine Phenylpropionylglycine 

Polar to semi polar 
(negative) Pregnenolone sulfate Pregnenolone sulfate 

Polar to semi polar 
(negative) Pseudouridine Pseudouridine 

Polar to semi polar 
(negative) Pyrocatechol Pyrocatechol 

Polar to semi polar 
(negative) Pyruvate Pyruvate 

Polar to semi polar 
(negative) Serine Serine 

Polar to semi polar 
(negative) Syringic acid Syringic acid 

Polar to semi polar 
(negative) Tartaric acid Tartaric acid 

Polar to semi polar 
(negative) Taurine Taurine 

Polar to semi polar 
(negative) Thymidine Thymidine 

Polar to semi polar 
(negative) trans-Aconitic acid trans-Aconitic acid 

Polar to semi polar 
(negative) Ferulic acid Ferulic acid 

Polar to semi polar 
(negative) Tryptophan Tryptophan 

Polar to semi polar 
(negative) Uric acid Uric acid 

Polar to semi polar 
(negative) Uridine Uridine 

Polar to semi polar 
(negative) Valine Valine 

Polar to semi polar 
(negative) Xanthine Xanthine 

Polar to semi polar 
(negative) Xylulose Xylulose 

Polar to semi polar 
(positive) 1-Methyladenosine/N6-Methyladenosine/2'-O-Methyladenosine 1-Methyladenosine# 



Chapter V 
 

208 
 

        5 

Polar to semi polar 
(positive) 4-Guanidinobutanoic acid 4-Guanidinobutanoic acid 

Polar to semi polar 
(positive) Dihydrouracil Dihydrouracil 

Polar to semi polar 
(positive) 5-Aminolevulinic acid/4-Hydroxyproline 5-Aminolevulinic acid# 

Polar to semi polar 
(positive) 5-Aminopentanoic acid 5-Aminopentanoic acid 

Polar to semi polar 
(positive) 5-Hydroxytryptophan 5-Hydroxytryptophan 

Polar to semi polar 
(positive) Adenine Adenine 

Polar to semi polar 
(positive) Adenosine/Deoxyguanosine Adenosine# 

Polar to semi polar 
(positive) Alanine/beta-Alanine/Sarcosine Alanine# 

Polar to semi polar 
(positive) Aminoadipic acid Aminoadipic acid 

Polar to semi polar 
(positive) Arginine Arginine 

Polar to semi polar 
(positive) Aspartic acid Aspartate 

Polar to semi polar 
(positive) Betaine Betaine 

Polar to semi polar 
(positive) Biotin Biotin 

Polar to semi polar 
(positive) Cadaverine Cadaverine 

Polar to semi polar 
(positive) Carnitine Carnitine 

Polar to semi polar 
(positive) Choline Choline 

Polar to semi polar 
(positive) Citrulline Citrulline 

Polar to semi polar 
(positive) Creatine/Beta-Guanidinopropionic acid Creatine# 

Polar to semi polar 
(positive) Cytidine Cytidine 

Polar to semi polar 
(positive) Cytosine Cytosine 

Polar to semi polar 
(positive) Ethanolamine Ethanolamine 

Polar to semi polar 
(positive) Glycerophosphocholine Glycerophosphocholine 

Polar to semi polar 
(positive) Glycylproline Glycylproline 

Polar to semi polar 
(positive) Guanidoacetic acid Guanidoacetic acid 

Polar to semi polar 
(positive) Hypoxanthine Hypoxanthine 

Polar to semi polar 
(positive) Indoleacetic acid Indoleacetic acid 

Polar to semi polar 
(positive) Inosine Inosine 

Polar to semi polar 
(positive) Isoleucine Isoleucine 

Polar to semi polar 
(positive) Kynurenic acid Kynurenic acid 

Polar to semi polar 
(positive) Feature_mz_130.086 Feature_mz_130.086 

Polar to semi polar 
(positive) Dodecanoylcarnitine Dodecanoylcarnitine 

Polar to semi polar 
(positive) Leucine Leucine 

Polar to semi polar 
(positive) Methionine Methionine 

Polar to semi polar 
(positive) N-Acetylcadaverine N-Acetylcadaverine 

Polar to semi polar 
(positive) N-Acetylputrescine N-Acetylputrescine 

Polar to semi polar 
(positive) N-Acetyltyrosine N-Acetyltyrosine 

Polar to semi polar 
(positive) Targinine/Homoarginine Homoarginine# 

Polar to semi polar 
(positive) N1-Methyl-4-pyridone-3-carboxamide/Nudifloramide Nudifloramide# 
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Polar to semi polar 
(positive) N2,N2-Dimethylguanosine N2,N2-Dimethylguanosine 

Polar to semi polar 
(positive) N6,N6,N6-Trimethyllysine N6,N6,N6-Trimethyllysine 

Polar to semi polar 
(positive) Nicotinic acid Nicotinic acid 

Polar to semi polar 
(positive) Ornithine Ornithine 

Polar to semi polar 
(positive) Phenylalanine Phenylalanine 

Polar to semi polar 
(positive) Phenylethylamine Phenylethylamine 

Polar to semi polar 
(positive) Picolinic acid Picolinic acid 

Polar to semi polar 
(positive) Pipecolic acid Pipecolic acid 

Polar to semi polar 
(positive) Proline Proline 

Polar to semi polar 
(positive) Pyridoxal Pyridoxal 

Polar to semi polar 
(positive) Quinaldic acid Quinaldic acid 

Polar to semi polar 
(positive) Riboflavin Riboflavin 

Polar to semi polar 
(positive) Serotonin Serotonin 

Polar to semi polar 
(positive) Spermidine Spermidine 

Polar to semi polar 
(positive) Sphinganine Sphinganine 

Polar to semi polar 
(positive) Sphingosine Sphingosine 

Polar to semi polar 
(positive) Symmetric dimethylarginine/Asymmetric dimethylarginine SDMA# 

Polar to semi polar 
(positive) Thiamine Thiamine 

Polar to semi polar 
(positive) Threonine/Homoserine Threonine# 

Polar to semi polar 
(positive) Thymine Thymine 

Polar to semi polar 
(positive) Trimethylamine Trimethylamine 

Polar to semi polar 
(positive) Tryptamine Tryptamine 

Polar to semi polar 
(positive) Tyramine Tyramine 

Polar to semi polar 
(positive) Tyrosine Tyrosine 

Polar to semi polar 
(positive) Uracil Uracil 

Polar to semi polar 
(positive) Urocanic acid Urocanic acid 

Polar to semi polar 
(positive) Xanthurenic acid Xanthurenic acid 

Bile and fatty acids Cholic acid CA 
Bile and fatty acids Chenodeoxycholic acid CDCA 
Bile and fatty acids Deoxycholic acid DCA 
Bile and fatty acids Oleic acid OA 
Bile and fatty acids Linoleic acid LA 
Bile and fatty acids alpha-Linolenic acid/gamma-Linolenic acid ALA# 
Bile and fatty acids Dihomo-gamma-linolenic acid/Dihomo-alpha-linolenic acid DGLA 
Bile and fatty acids Arachidonic acid AA 
Bile and fatty acids Eicosapentaenoic acid EPA 
Bile and fatty acids 4,8,12,15,19-Docosapentaenoic acid DPA 
Bile and fatty acids Docosahexaenoic acid DHA 
Bile and fatty acids Glycocholic acid GCA 
Bile and fatty acids Glycochenodeoxycholic acid GCDCA 
Bile and fatty acids Glycoursodeoxycholic acid GUDCA 
Bile and fatty acids Hyocholic acid HCA 
Bile and fatty acids Lithocholic acid LCA 
Bile and fatty acids Taurocholic acid TCA 
Bile and fatty acids Taurochenodesoxycholic acid TCDCA 
Bile and fatty acids Taurodeoxycholic acid TDCA 
Bile and fatty acids Tauroursodeoxycholic acid TUDCA 
Bile and fatty acids Taurolithocholic acid TLCA 
Bile and fatty acids Ursodeoxycholic acid UDCA 
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SCFA Acetate Acetate 
SCFA Butyrate Butyrate 
SCFA Isobutyrate Isobutyrate 
SCFA Isovalerate Isovalerate 
SCFA Propionate Propionate 

 

Table S4: AIC comparison of model fitting with and without age as a covariate 
metabolite CM tolerance-allergy model intervention model 

without age with age without age with age 
1-Methyladenosine# 345 351 345 352 
4-Guanidinobutanoic acid 345 352 343 350 
Dihydrouracil 315 321 314 321 
5-Aminolevulinic acid# 328 334 328 334 
5-Aminopentanoic acid 328 334 325 332 
5-Hydroxytryptophan 324 330 329 335 
Adenine 296 302 286 292 
Adenosine# 306 313 307 314 
Alanine# 319 320 322 323 
Aminoadipic acid 279 286 280 287 
Arginine 381 386 379 384 
Aspartate 314 319 306 310 
Betaine 351 356 353 359 
Biotin 347 353 345 351 
Cadaverine 310 317 313 319 
Carnitine 353 358 352 357 
Choline 300 306 300 306 
Citrulline 322 328 336 340 
Creatine# 336 343 341 348 
Cytidine 326 333 323 330 
Cytosine 340 346 335 341 
Ethanolamine 327 325 325 322 
Glycerophosphocholine 301 308 301 309 
Glycylproline 307 308 305 306 
Guanidoacetic acid 364 364 364 366 
Hypoxanthine 302 308 301 308 
Indoleacetic acid 304 311 304 311 
Inosine 320 326 300 307 
Isoleucine 309 307 309 306 
Kynurenic acid 341 348 340 346 
Dodecanoylcarnitine 334 341 338 344 
Leucine 306 303 305 300 
Methionine 320 319 321 318 
N-Acetylcadaverine 316 323 316 323 
N-Acetylputrescine 368 375 368 375 
N-Acetyltyrosine 407 411 410 413 
Homoarginine# 328 334 329 335 
Nudifloramide# 301 306 303 308 
N2,N2-Dimethylguanosine 330 337 332 339 
N6,N6,N6-Trimethyllysine 325 332 325 332 
Nicotinic acid 305 312 305 312 
Ornithine 329 328 334 332 
Phenylalanine 316 315 314 311 
Phenylethylamine 325 331 327 333 
Picolinic acid 347 348 350 349 
Pipecolic acid 325 332 318 325 
Proline 333 327 334 327 
Pyridoxal 278 285 280 286 
Quinaldic acid 322 329 321 328 
Riboflavin 357 363 355 361 
Serotonin 352 356 359 363 
Spermidine 335 341 333 338 
Sphinganine 312 313 313 313 
Sphingosine 318 324 315 322 
SDMA# 350 352 351 354 
Thiamine 354 359 353 358 
Threonine# 308 309 314 314 
Thymine 299 305 294 300 
Trimethylamine 319 324 324 329 
Tryptamine 308 315 311 318 
Tyramine 334 339 333 339 
Tyrosine 295 299 291 294 
Uracil 332 337 328 333 
Urocanic acid 328 332 327 330 
Xanthurenic acid 336 343 334 341 
1-Methyluric acid 323 329 324 331 
2,5-Furandicarboxylic acid 320 327 318 325 
Deoxyinosine 315 321 310 317 
Deoxyuridine 302 308 296 303 
ortho-Hydroxyphenylacetic acid 293 300 295 302 
Protocatechuic acid 282 286 289 292 
4-OH-PLA# 357 364 348 355 
3-Hydroxybenzoic acid 321 325 322 325 
3-Hydroxybutyric acid 345 350 354 358 
3-Methyl-2-oxovaleric acid 347 347 347 347 
Methylxanthine isomers 289 296 289 295 
PLA# 312 319 320 326 



Fecal metabolome exploration in infants with CMA 
 

211 
 

5 

Hydrocinnamic acid 329 335 329 335 
4-Hydroxybenzoic acid 338 344 343 349 
4-Hydroxycinnamic acid 296 303 291 297 
p-Hydroxyphenylacetic acid# 350 356 351 357 
Desaminotyrosine 300 306 304 310 
4-Pyridoxic acid 318 320 316 317 
Pyroglutamic acid 268 267 270 269 
GABA# 296 300 304 307 
Argininosuccinic acid 303 309 302 307 
Ascorbate 317 323 312 319 
Carnosine 383 389 376 382 
Citrate 291 296 289 293 
Gluconate 333 340 338 345 
FAD 272 271 276 276 
Glutamine 283 289 275 280 
Glycine 321 321 326 324 
Glycolate 359 365 355 361 
Guanine 320 327 310 317 
Hippuric acid 321 328 326 333 
Histidine 282 289 284 291 
ILA 364 370 350 356 
Indoxyl glucoside 366 369 360 364 
2-Hydroxyethanesulfonate 353 360 352 358 
Isobutyrylglycine 318 325 317 324 
Oxoglutaric acid 360 358 362 359 
Lysine 299 303 312 315 
Malate 355 359 357 361 
AGN_mandelic.acid 347 354 348 354 
Methionine sulfoxide 324 329 320 325 
Fructose# 301 307 311 316 
N-alpha-Acetylarginine 296 303 295 302 
N-Acetylglutamine 320 327 317 324 
N-Acetylneuraminic acid 307 314 310 316 
N-Acetylserine 346 348 341 342 
N-Acetyltryptophan 324 331 323 330 
N2-gamma-Glutamylglutamine 327 333 325 332 
N6-Carboxymethyllysine 307 313 309 316 
Glutamate# 303 305 310 311 
Orotate 318 325 322 329 
p-Cresol 315 322 316 323 
p-Cresol.sulfate 322 328 322 329 
Pantothenic acid 303 309 299 305 
Phenylacetic acid 328 335 332 339 
Phenylacetylglutamine 336 340 332 337 
Phenylpropionylglycine 371 377 374 379 
Pregnenolone sulfate 331 328 330 328 
Pseudouridine 313 320 309 316 
Pyrocatechol 283 289 289 295 
Pyruvate 318 319 316 317 
Serine 344 344 344 344 
Syringic acid 297 304 298 305 
Tartaric acid 285 290 288 293 
Taurine 379 384 379 385 
Thymidine 322 328 320 327 
trans-Aconitic acid 304 306 309 312 
Ferulic acid 314 321 312 320 
Tryptophan 343 346 344 348 
Uric acid 321 326 327 331 
Uridine 334 341 319 326 
Valine 309 312 308 310 
Xanthine 285 293 287 295 
Xylulose 330 337 326 333 
CA 379 385 380 387 
CDCA 375 381 379 385 
DCA 338 344 329 336 
OA 328 332 313 315 
LA 341 345 313 315 
ALA# 352 357 334 338 
DGLA# 311 317 315 321 
AA 309 314 315 320 
EPA 331 336 335 340 
DPA 340 346 343 348 
DHA 332 333 339 338 
GCA 306 313 303 310 
GCDCA 309 316 307 314 
GUDCA 281 287 281 287 
HCA 371 375 360 364 
LCA 339 345 333 339 
TCA 304 311 304 311 
TCDCA 307 314 311 318 
TDCA 333 339 329 334 
TUDCA 310 317 316 322 
TLCA 287 290 286 288 
UDCA 310 317 314 320 
Acetate 304 311 305 312 
Butyrate 310 314 315 320 
Isobutyrate 325 332 333 340 
Isovalerate 304 311 312 320 
Propionate 304 311 303 310 
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DCA/CA 352 358 345 351 
UDCA/CDCA 289 294 290 296 
LCA/CDCA 356 362 352 359 
CA/GCA 318 325 299 306 
CDCA/GCDCA 314 320 297 303 
UDCA/GUDCA 291 298 276 283 
CA/TCA 327 334 317 325 
CDCA/TCDCA 321 327 316 323 
DCA/TDCA 343 348 335 341 
UDCA/TUDCA 322 326 320 324 
LCA/TLCA 320 323 313 317 

 

Table S5: Clinical characteristics associated with outgrowth of cow’s milk allergy  
characteristics Allergic (n=15) Tolerant (n=24) 

P_val
ues 

egg_allergy : N 10 (67%) 15 (62%) 1.000 
egg allergy : Y 5 (33%) 9 (38%) 
sibling : N 5 (33%) 6 (25%) 0.718 
sibling : Y 10 (67%) 18 (75%) 
allergy_father : N 6 (40%) 18 (75%) 0.044 
allergy father : Y 9 (60%) 6 (25%) 
allergy_mother : N 5 (33%) 15 (62%) 0.105 
allergy mother : Y 10 (67%) 9 (38%) 
delivery : Caesarean 8 (53%) 18 (75%) 0.185 
delivery : Vaginal 7 (47%) 6 (25%) 
race : Asian 12 (80%) 16 (67%) 

0.617 race : Caucasian / White 3 (20%) 6 (25%) 
race : Combination of above / Other 0 (0%) 2 (8%) 
sex : F 3 (20%) 8 (33%) 0.477 
sex : M 12 (80%) 16 (67%) 
Daily.Formula.Intake.g : TP1 96.6± 34.38 89.75± 31.45 0.664 
Daily.Formula.Intake.g : TP2 85.27± 47.37 85.58± 35.27 
Daily.Formula.Intake.mL : TP1 658± 275.95 601.25± 258.58 0.761 
Daily.Formula.Intake.mL : TP2 577.33± 352.65 586.46± 281.46 
SCORAD.index : TP1 8.13± 9.67 5.46± 8.32 0.338 
SCORAD.index : TP2 10.37± 8.77 6.77± 8.25 0.266 
SCORAD.index : TP0 16.27± 13.24 8.98± 14.41 0.036 
breastfeding duration until study entry (days) 206.87± 116.53 182.33± 107.6 0.453 
age : TP1 15.59± 2.54 14.62± 3.02 0.427 
age : TP2 21.88± 3.01 20.84± 3.05 0.411 
age : TP0 9.68± 2.63 8.57± 3.04 0.254 
AAF 6 (40%) 10 (42%) 1.000 
AAF-S 9 (60%) 14 (58%) 
    

 

bottle.feeding.type until study entry Allergic (n=15) Tolerant (n=24)  

Amino Acid Formula 6 (40%) 4 (18%)  

Hydrolysate 0 (0%) 2 (9%)  
Hydrolysate;Amino Acid Formula 4 (27%) 1 (5%)  
Whole protein (milk / soy) 0 (0%) 1 (5%)  
Whole protein (milk / soy);Amino Acid Formula 1 (7%) 2 (9%)  
Whole protein (milk / soy);Hydrolysate 1 (7%) 5 (23%)  
Whole protein (milk / soy);Hydrolysate;Amino Acid Formula 3 (20%) 7 (32%)  
missing 0 2  
Numeric variables are presented as mean ± standard deviation; categorical var-
iable are presented as number (%)  
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Table S6: Clinical characteristics associated with interventions 

characteristics AAF (n=16) AAF-S (n=23) P_values 
egg_allergy : N 12 (75%) 13 (57%) 0.32 
egg_allergy : Y 4 (25%) 10 (43%) 
sibling : N 5 (31%) 6 (26%) 0.73 
sibling : Y 11 (69%) 17 (74%) 
allergy_father : N 11 (69%) 13 (57%) 0.52 
allergy_father : Y 5 (31%) 10 (43%) 
allergy_mother : N 9 (56%) 11 (48%) 0.75 
allergy_mother : Y 7 (44%) 12 (52%) 
delivery : Caesarean 9 (56%) 17 (74%) 0.31 
delivery : Vaginal 7 (44%) 6 (26%) 
race : Asian 10 (62%) 18 (78%) 

0.62 race : Caucasian / White 5 (31%) 4 (17%) 
race : Combination of above / Other 1 (6%) 1 (4%) 
sex : F 6 (38%) 5 (22%) 0.31 
sex : M 10 (62%) 18 (78%) 
Daily.Formula.Intake.g : TP1 91.44± 32.93 93.04± 32.64 0.86 
Daily.Formula.Intake.g : TP2 72± 30.23 94.83± 43.38 0.07 
Daily.Formula.Intake.mL : TP1 596.25± 285.61 641.74± 251.41 0.68 
Daily.Formula.Intake.mL : TP2 475.62± 254.16 657.61± 322.09 0.07 
SCORAD.index : TP1 8.03± 10.27 5.41± 7.74 0.24 
SCORAD.index : TP2 8.75± 7.9 7.74± 9.08 0.54 
SCORAD.index : TP0 13.34± 16.06 10.7± 13.12 0.69 
breastfeding duration until study entry (days) 217.25± 105.31 174.04± 112.4 0.20 
age : TP1 15.06± 2.88 14.95± 2.89 0.83 
age : TP2 21.24± 2.84 21.24± 3.23 0.99 
age : TP0 9.09± 2.91 8.93± 2.96 0.91 
Allergic: TP2 6 (38%) 9 (39%) 1.00 
Tolerant: TP2 10 (62%) 14 (61%) 

    
bottle.feeding.type until study entry AAF (n=16) AAF-S (n=23)  
Amino Acid Formula 3 (20%) 7 (32%)  
Hydrolysate 0 (0%) 2 (9%)  
Hydrolysate;Amino Acid Formula 2 (13%) 3 (14%)  
Whole protein (milk / soy) 0 (0%) 1 (5%)  
Whole protein (milk / soy);Amino Acid Formula 3 (20%) 0 (0%)  
Whole protein (milk / soy);Hydrolysate 3 (20%) 3 (14%)  
Whole protein (milk / soy);Hydrolysate;Amino Acid Formula 4 (27%) 6 (27%)  
missing 1 1  
Numeric variables are presented as mean ± standard deviation; categorical variable 
are presented as number (%) 
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Table S7: Significantly altered metabolites in CM-allergic and CM-tolerant groups 
from marginal means comparison 

CM-Allergic 
Metabolite TP0 TP1 P value Q value 
Protocatechuic acid 3.727 (3.317, 4.137) 4.607 (4.197, 5.017) 0.0006 0.0674 
Pyrocatechol 3.374 (2.969, 3.778) 4.252 (3.847, 4.656) 0.0008 0.0674 

CM-Allergic 
Metabolite TP0 TP2 P value Q value 
Pyroglutamic acid 5.833 (5.472, 6.194) 4.849 (4.489, 5.21) 0.0002 0.0328 
Threonine# 15.992 (15.544, 16.44) 14.939 (14.491, 15.387) 0.0004 0.0340 
Pyruvic acid 7.365 (6.89, 7.841) 6.322 (5.847, 6.798) 0.0006 0.0347 
Pregnenolone sulfate 7.735 (7.236, 8.234) 6.658 (6.159, 7.157) 0.0011 0.0460 
Tryptophan 13.74 (13.233, 14.247) 12.636 (12.129, 13.142) 0.0030 0.0806 
Oxoglutaric acid 10.624 (10.057, 11.191) 9.508 (8.941, 10.076) 0.0033 0.0806 
Ferulic acid 5.59 (5.151, 6.029) 6.61 (6.171, 7.049) 0.0034 0.0806 

CM-Tolerant  
Metabolite TP0 TP1 P value Q value 
Tartaric acid 2.769 (2.443, 3.094) 3.597 (3.271, 3.922) 0.0001 0.0082 
Pyroglutamic acid 5.977 (5.691, 6.262) 5.178 (4.893, 5.463) 0.0001 0.0082 
Dodecanoylcarnitine 3.411 (3.02, 3.802) 2.383 (1.992, 2.774) 0.0002 0.0082 
TLCA -3.038 (-3.378, -2.698) -3.819 (-4.159, -3.479) 0.0002 0.0082 
Desaminotyrosine 4.112 (3.785, 4.44) 5.017 (4.689, 5.344) 0.0003 0.0095 
Ferulic acid 5.495 (5.148, 5.842) 6.323 (5.976, 6.67) 0.0026 0.0707 
PLA# 8.617 (8.268, 8.965) 9.364 (9.015, 9.712) 0.0042 0.0920 
FAD 5.631 (5.342, 5.92) 6.255 (5.966, 6.544) 0.0044 0.0920 
Pregnenolone sulfate 7.88 (7.486, 8.275) 7.141 (6.746, 7.535) 0.0051 0.0945 

CM-Tolerant  
Metabolite TP0 TP2 P value Q value 
Dodecanoylcarnitine 3.411 (3.02, 3.802) 2.03 (1.639, 2.421) 0.000001 0.0001 
Pregnenolone sulfate 7.88 (7.486, 8.275) 6.675 (6.281, 7.07) 0.000004 0.0003 
Desaminotyrosine 4.112 (3.785, 4.44) 5.204 (4.877, 5.532) 0.000012 0.0007 
LCA/TLCA -0.98 (-1.363, -0.598) 0.054 (-0.335, 0.443) 0.0001 0.0025 
Pyruvate 7.619 (7.243, 7.995) 6.664 (6.288, 7.04) 0.0001 0.0025 
PLA# 8.617 (8.268, 8.965) 9.615 (9.267, 9.963) 0.0001 0.0030 
Protocatechuic acid 3.367 (3.043, 3.691) 4.128 (3.804, 4.452) 0.0002 0.0040 
HCA -0.1 (-0.574, 0.373) -1.354 (-1.836, -0.871) 0.0002 0.0040 
Ferulic acid 5.495 (5.148, 5.842) 6.505 (6.158, 6.852) 0.0002 0.0040 
Pyroglutamic acid 5.977 (5.691, 6.262) 5.21 (4.924, 5.495) 0.0002 0.0043 
FAD 5.631 (5.342, 5.92) 6.396 (6.107, 6.685) 0.0004 0.0064 
TLCA -3.038 (-3.378, -2.698) -3.756 (-4.101, -3.41) 0.0008 0.0113 
Pipecolic acid 10.801 (10.423, 11.178) 11.656 (11.279, 12.034) 0.0010 0.0141 
DCA/CA -1.888 (-2.322, -1.454) -0.899 (-1.341, -0.456) 0.0015 0.0188 
Oxoglutaric acid 10.807 (10.359, 11.256) 9.865 (9.417, 10.314) 0.0016 0.0188 
DCA/TDCA -0.745 (-1.17, -0.321) 0.149 (-0.283, 0.582) 0.0019 0.0209 
3-Hydroxybenzoic acid 5.341 (4.976, 5.706) 6.151 (5.786, 6.516) 0.0023 0.0234 
Betaine 5.159 (4.751, 5.567) 4.16 (3.752, 4.568) 0.0027 0.0262 
TCDCA -0.893 (-1.24, -0.547) -1.681 (-2.035, -1.327) 0.0030 0.0278 
N-Acetylneuraminic acid 10.142 (9.802, 10.483) 9.392 (9.051, 9.732) 0.0032 0.0279 
CA 1.501 (1.022, 1.979) 0.386 (-0.104, 0.875) 0.0040 0.0327 
Hydrocinnamic acid 3.076 (2.698, 3.454) 3.869 (3.491, 4.246) 0.0041 0.0327 
UDCA/CDCA -1.858 (-2.175, -1.542) -1.156 (-1.479, -0.832) 0.0054 0.0392 
LCA/CDCA -1.654 (-2.092, -1.216) -0.744 (-1.191, -0.297) 0.0054 0.0392 
Butyrate 1.522 (1.153, 1.891) 2.255 (1.893, 2.617) 0.0055 0.0392 
Phenylacetylglutamine 3.922 (3.524, 4.321) 3.185 (2.786, 3.583) 0.0073 0.0481 
DCA -0.571 (-0.988, -0.155) 0.192 (-0.232, 0.616) 0.0076 0.0481 
N6-Carboxymethyllysine 5.415 (5.064, 5.767) 6.055 (5.704, 6.406) 0.0076 0.0481 
5-Hydroxytryptophan 7.375 (7.013, 7.737) 6.623 (6.261, 6.985) 0.0131 0.0802 
CDCA -0.131 (-0.601, 0.339) -1.081 (-1.561, -0.601) 0.0139 0.0809 
Quinaldic acid 4.44 (4.08, 4.8) 5.138 (4.777, 5.498) 0.014754102 0.080889787 
Arginine 14.321 (13.842, 14.799) 13.461 (12.983, 13.94) 0.015285229 0.080889787 
Pyrocatechol 3.184 (2.864, 3.504) 3.703 (3.383, 4.023) 0.015426353 0.080889787 
Phenylacetic acid 6.412 (6.044, 6.78) 7.148 (6.78, 7.516) 0.015766331 0.080889787 
LCA -0.995 (-1.408, -0.583) -0.276 (-0.696, 0.145) 0.015995156 0.080889787 

TP2 
Metabolite Allergic Tolerant P value Q value 
Citrulline 11.841 (11.378, 12.303) 12.946 (12.58, 13.311) 0.0003 0.0537 
Lysine 11.371 (10.957, 11.785) 12.273 (11.946, 12.601) 0.0010 0.0823 
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Table S8: Spearman’s rank correlation between the changes of bifidobacterium and 
metabolites/ratios which are significantly altered in the AAF-S group 
Compound Rho P value time points Intervention Q value 
ILA 0.858695652 2.13E-06 TP1-TP0 AAF-S 0 
4-OH-PLA# 0.768774704 2.81E-05 TP1-TP0 AAF-S 2.00E-04 
Adenine 0.637351779 0.001379994 TP1-TP0 AAF-S 0.0069 
Glutamine -0.57312253 0.004939677 TP1-TP0 AAF-S 0.0185 
Adenine 0.720588235 0.002305841 TP1-TP0 AAF 0.0346 
CDCA/GCDCA 0.507905138 0.014441199 TP1-TP0 AAF-S 0.0433 
Inosine -0.462450593 0.027527897 TP1-TP0 AAF-S 0.059 
GCDCA -0.468379447 0.025413081 TP1-TP0 AAF-S 0.059 
CA/GCA 0.43083004 0.041340241 TP1-TP0 AAF-S 0.0775 
Guanine -0.31027668 0.149497361 TP1-TP0 AAF-S 0.2492 
Uridine -0.244071146 0.260522306 TP1-TP0 AAF-S 0.3908 
UDCA/GUDCA -0.185770751 0.394330031 TP1-TP0 AAF-S 0.5377 
Inosine -0.314705882 0.234711639 TP1-TP0 AAF 0.5423 
4-OH-PLA# 0.235294118 0.379021393 TP1-TP0 AAF 0.5423 
Glutamine -0.229411765 0.391370422 TP1-TP0 AAF 0.5423 
Guanine -0.267647059 0.315146037 TP1-TP0 AAF 0.5423 
ILA 0.397058824 0.128882583 TP1-TP0 AAF 0.5423 
OA 0.208823529 0.436322033 TP1-TP0 AAF 0.5423 
ALA 0.247058824 0.354996461 TP1-TP0 AAF 0.5423 
GCDCA -0.197058824 0.463185494 TP1-TP0 AAF 0.5423 
HCA -0.194117647 0.470031308 TP1-TP0 AAF 0.5423 
CA/GCA 0.323529412 0.221281258 TP1-TP0 AAF 0.5423 
CDCA/GCDCA 0.226470588 0.397628203 TP1-TP0 AAF 0.5423 
UDCA/GUDCA -0.294117647 0.268071938 TP1-TP0 AAF 0.5423 
Uridine -0.164705882 0.541223723 TP1-TP0 AAF 0.5799 
ALA 0.136363636 0.533413277 TP1-TP0 AAF-S 0.6668 
HCA 0.12055336 0.582372852 TP1-TP0 AAF-S 0.672 
OA 0.032608696 0.883337839 TP1-TP0 AAF-S 0.9119 
LA 0.024703557 0.911925712 TP1-TP0 AAF-S 0.9119 
LA 0 1 TP1-TP0 AAF 1 
4-OH-PLA# 0.674901186 0.000570581 TP2-TP0 AAF-S 0.0086 
ILA 0.624505929 0.001818976 TP2-TP0 AAF-S 0.0136 
Adenine 0.523715415 0.011326837 TP2-TP0 AAF-S 0.0566 
Glutamine -0.497035573 0.016967834 TP2-TP0 AAF-S 0.0636 
Adenine 0.594117647 0.017246545 TP2-TP0 AAF 0.2147 
Uridine -0.467391304 0.025756077 TP2-TP0 AAF-S 0.0773 
LA -0.571428571 0.028623176 TP2-TP0 AAF 0.2147 
OA -0.521428571 0.048830208 TP2-TP0 AAF 0.2442 
Guanine -0.407114625 0.05494236 TP2-TP0 AAF-S 0.1374 
CDCA/GCDCA 0.453571429 0.091529268 TP2-TP0 AAF 0.2572 
Glutamine -0.426470588 0.101056074 TP2-TP0 AAF 0.2572 
CA/GCA 0.439285714 0.103199216 TP2-TP0 AAF 0.2572 
ILA 0.405882353 0.120020814 TP2-TP0 AAF 0.2572 
4-OH-PLA# 0.373529412 0.154767766 TP2-TP0 AAF 0.2902 
Guanine -0.35 0.184066376 TP2-TP0 AAF 0.3068 
LA -0.29079616 0.188679939 TP2-TP0 AAF-S 0.4043 
GCDCA -0.267080745 0.228602156 TP2-TP0 AAF-S 0.423 
CDCA/GCDCA 0.25352908 0.253790419 TP2-TP0 AAF-S 0.423 
Inosine -0.219367589 0.313053704 TP2-TP0 AAF-S 0.4424 
CA/GCA 0.219649915 0.324461463 TP2-TP0 AAF-S 0.4424 
GCDCA -0.267857143 0.333445517 TP2-TP0 AAF 0.5002 
Inosine -0.241176471 0.366896119 TP2-TP0 AAF 0.5003 
Uridine -0.208823529 0.436322033 TP2-TP0 AAF 0.5454 
UDCA/GUDCA 0.185714286 0.506673971 TP2-TP0 AAF 0.5519 
HCA 0.182142857 0.515060927 TP2-TP0 AAF 0.5519 
UDCA/GUDCA -0.119141728 0.596160223 TP2-TP0 AAF-S 0.7452 
ALA 0.128571429 0.648201799 TP2-TP0 AAF 0.6482 
OA -0.086391869 0.701645989 TP2-TP0 AAF-S 0.7598 
ALA 0.084133258 0.709154443 TP2-TP0 AAF-S 0.7598 
HCA -0.049124788 0.828554014 TP2-TP0 AAF-S 0.8286 
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The cross-talk between the gut microbiome and the human host has been increasingly 

recognized as an important factor influencing human health and disease,1 including 

cow’s milk allergy (CMA), which is the most common type of food allergy in early life.2 

Although advancements in omics techniques have significantly improved our 

understanding of this interplay, uncovering the complex mechanisms by which the gut 

microbiome affects the host remains a challenge. In recent decades, growing evidence 

suggests that the gut microbiome-derived metabolites serve as important mediators in 

this interaction.3 This highlights metabolomics as a key technique for elucidating the gut 

microbiome’s role in human health and disease by providing insights at the molecular 

level. In metabolomics studies, approaches can be broadly categorized into targeted and 

untargeted metabolomics, based on hypothesis-driven and hypothesis-generating 

strategies, respectively.4 Targeted metabolomics focuses on quantifying a limited 

number of known metabolites, while untargeted metabolomics aims to profile both 

known and unknown metabolic features.4 One of the primary challenges for metabolite 

quantification in targeted and untargeted metabolomics is matrix effect.6 Matrix effect 

is primarily caused by co-eluting matrix components, which can impact the accuracy 

and reliability of signals detected with liquid chromatography-mass spectrometry (LC-

MS), particularly when using an electrospray ionization (ESI) source.5 In this thesis two 

hypotheses were investigated. The first hypothesis was that the matric effect in 

untargeted metabolomics can be monitored and corrected by implementing the PCIS 

technique with LC-MS methods. The second hypothesis was that the fecal metabolome 

can provide insights into the cross-talk between the gut microbiome and food allergy in 

infants with the most prevalent type of food allergy in early life: cow’s milk allergy 

(CMA). life. 

Matrix effect in untargeted metabolomics 

Untargeted metabolomics, a powerful approach for unbiased metabolome profiling, has 

demonstrated potential for biomarker discovery in diverse fields. However, despite its 

wide applications, several challenges remain that impact the reliability of untargeted 

metabolomics. Among these, matrix effect is a major concern, as it can greatly affect 

the reproducibility, selectivity, and accuracy of metabolome profiling.6 Stable 
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isotopically labeled (SIL) standards, the most commonly applied strategy for addressing 

the matrix effect, are limited to targeted metabolomics due to the requirement of 

standards spiking. This limitation makes another approach, PCIS, the only applicable 

method for mitigating matrix effects in untargeted metabolomics, as it is independent of 

retention time.6 The effectiveness of PCIS in monitoring and correcting matrix effects 

has been well demonstrated in targeted metabolomics,7–10 and it has also been 

recommended as a quality control tool for matrix effect evaluation in untargeted 

metabolomics.11 However, reports on its actual application in untargeted metabolomics 

remain limited.12 Therefore, effective strategies to address the matrix effect with PCIS 

in untargeted metabolomics are still lacking. To tackle this, in Chapters 2 and 3 of the 

thesis, we outlined strategies using PCIS to overcome matrix effect in LC-ESI-MS-

based untargeted metabolomics, covering matrix effect monitoring and matrix effect 

compensation.  

First, in Chapter 2, an untargeted method was developed and applied to evaluated the 

matrix effect in plasma and fecal samples with PCIS. As part of the method 

development, the injection amount and reconstitution solvent were first optimized for 

both plasma and fecal samples. The results showed that optimizing the reconstitution 

solvent was crucial for balancing the trade-off between peak shape distortion and 

metabolite solubility, and that proper sample dilution was essential for maximizing 

metabolites signal intensity while preventing detector saturation in MS. To assess the 

analytical performance of our untargeted method, the method was validated using a 

targeted approach with stable isotope-labeled (SIL) standards in plasma and fecal 

samples. The method exhibited good precision, accuracy, recovery, and repeatability 

with plasma and fecal samples. By evaluating the matrix effect, it was found that high 

relative matrix effect (RME) among samples could significantly impact measurement 

accuracy and reproducibility. However, the SIL standards can only point out the matrix 

effect at specific retention times. To assess the matrix effect across the entire 

chromatogram, a PCIS approach was introduced to the developed untargeted 

metabolomics method. In this approach, xenobiotic compounds were infused post-

column during the injection of different plasma and fecal samples, enabling overall 
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monitoring of absolute matrix effect (AME) and RME by examining the matrix effect 

profiles of the infused compounds. 

The results demonstrated that the PCIS approach effectively identified chromatographic 

regions exhibiting large AME and RME. Notably, PCIS yielded comparable RME 

results to those obtained using the traditional post-extraction spiking method, 

demonstrating its potential as a reliable technique for RME evaluation in untargeted 

metabolomics. The PCIS approach was applied to predict the RME of over 300 targets 

covered in our in-house library. The predictions revealed that more targets exhibited 

RME > 15% in fecal samples compared to plasma. Additionally, for metabolites 

detectable in both positive and negative ionization modes, most of them experienced 

larger RME in negative mode than in positive mode. Overall, Chapter 2 established a 

comprehensive framework for developing an LC-ESI-MS untargeted metabolomics 

method using PCIS to monitor the matrix effect in plasma and fecal samples. The 

findings demonstrated that PCIS is an effective approach for matrix effect monitoring 

in untargeted metabolomics. This approach has strong potential to improve better data 

reliability of untargeted metabolomics by identifying regions with severe matrix effect 

and high matrix effect variation. 

The proposed PCIS approach can be further applied to guide the optimization of specific 

LC parameters, such as the gradient and sample injection amount, to mitigate matrix 

effects in a reverse-phase (RP) LC-MS untargeted method. A recent study also 

demonstrated that PCIS contributed to column selection and mobile phase pH 

optimization for an untargeted hydrophilic interaction liquid chromatography (HILIC)-

MS method.13 Moreover, although both our RPLC-MS and their HILIC-MS methods 

targeted polar to semi-polar metabolomic features with a mass less than 800 Da, the 

application of PCIS is not limited by the polarity or mass range of the metabolites. In 

principle, with careful selection of PCIS candidates, PCIS can serve as a valuable 

approach for guiding method development to minimize matrix effects in any untargeted 

metabolomics method. 
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In addition to matrix effect monitoring, PCIS also has potential for compensating matrix 

effect in untargeted metabolomics due to its retention time independence. A key 

challenge in its implementation lies in selecting multiple PCISs for the wide range of 

metabolic features and determining which one is most effective for correcting the matrix 

effect specific to each feature. To address this, the application of PCIS from matrix 

effect monitoring to compensation was investigated in Chapter 3. 

In this chapter, the workflow for developing a PCIS approach for an LC-ESI-MS-based 

untargeted metabolomics method was first outlined. Key factors, such as structural 

diversity, infusion concentration, and room temperature stability, were thoroughly 

evaluated to select suitable PCIS candidates. The results demonstrated that, at the 

optimized infusion concentration, the selected PCISs (five standards for positive 

ionization mode and four for negative ionization mode) exhibited diverse matrix effect 

profiles, stable infusion signals, and no significant matrix effect interference. 

Additionally, these compounds remained stable for one week at room temperature, 

further supporting their long-term usage along with analysis runs. Next, to match a 

specific feature with its suitable PCIS for matrix effect correction, a novel approach was 

proposed: post-column infusion of artificial matrices. This matching process was 

achieved by comparing the ability of a PCIS to compensate for the artificially created 

matrix effect (MEart). 

To ensure that the artificial matrices properly mimicked the biological matrix in 

inducing matrix effects, multiple artificial matrix compounds were selected based on 

their relevance to matrix effects mechanisms in an ESI source. L-homoarginine 

hydrochloride, sodium acetate, and tridodecylmethylammonium chloride were selected 

as artificial matrix compounds for positive ionization mode, while sodium dodecyl 

sulphate and sodium acetate were used for negative mode. These compounds can 

interfere with ESI process of analytes by competing for ionization or increasing the 

surface tension in droplets, preventing coulombic explosion. Since the presence of MEart 

was essential for selecting the suitable PCIS, the infused concentrations of these 

artificial matrix compounds were optimized to obtain 70% artificial absolute matrix 

effect (AMEart) and more than 15% artificial relative matrix effect (RMEart). By injecting 
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samples into the LC-PCIS-MS system with and without artificial matrices infusion, the 

MEart could be determined across detected features, including both known and unknown 

metabolites. The selected PCIS could then be used to compensate for biological matrix 

effects (MEbio).  

The effectiveness of MEart was evaluated in selecting PCIS using 19 diverse SIL 

standards spiked in plasma, urine, and feces. In this evaluation, MEbio and MEart were 

calculated and used to select the suitable PCIS for each SIL standard in each biological 

matrix. To incorporate both absolute matrix effect (AME) and relative matrix effect 

(RME) into the comparison, a matrix effect scoring system was introduced that averaged 

AME and RME scores as the final ME score. The ME (MEart, MEbio) scores across 

plasma, urine, and feces were summed to identify the matrix-independent PCIS for each 

SIL standard. The PCISs selected based on MEart score sums were compared with those 

identified using MEbio score sums. As a result, 17 out of 19 (89%) SIL standards 

exhibited consistent PCISs selection based on MEart and MEbio score sums. Considering 

that MEbio correction is the most commonly applied strategy for PCIS selection in 

targeted metabolomics,9,14,15 our results highlight the efficacy of MEart in selecting the 

suitable PCISs for MEbio compensation.  

Subsequently, MEart-selected PCISs were applied to correct for the MEbio in plasma, 

urine, and feces for the 19 SIL standards. These PCISs improved or maintained the 

matrix effect scores for 19 (100%) standards in plasma, 16 (84%) in urine, and 18 (95%) 

in feces. The results demonstrated the efficacy and reliability using MEart to identify 

suitable PCISs for MEbio correction across various biological matrices. More 

importantly, since MEart can be determined for any measurable feature by comparing 

signals acquired with and without artificial matrix infusion, this establishes post-column 

MEart creation as a feasible approach for selecting PCIS to correct matrix effect in LC-

PCIS-MS-based untargeted metabolomics. Ideally, a feature-PCIS-matched library 

could be constructed using artificial matrix infusion with one or multiple biological 

matrices, and then applied to compensate for matrix effect in untargeted metabolomics 

studies. 
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Following the successful proof-of-concept demonstration of the matrix effect 

compensation method using artificial matrix-based PCIS selection, further efforts 

should focus on building the feature-PCIS-matched library to facilitate routine matrix 

effect correction in untargeted metabolomics. Additionally, comparing significantly 

altered features before and after PCIS correction in applied studied remains of great 

interest for further validating this method for matrix effects correction. Although this 

study included structurally diverse PCISs, over-corrected matrix effects were observed 

in a few examined SIL standards. This highlights the need to further expand the diversity 

of PCIS candidates to improve correction those standards and enable more 

comprehensive matrix effect correction across the metabolome. Furthermore, with well-

defined PCIS candidates and a robust MEart-based matching strategy, the LC-PCIS-MS 

platform can be extended beyond biomedical matrices to applications in food safety, 

environment science, and other fields where complex matrix effects are commonly 

encountered. 

Fecal metabolome exploration in infants with cow’s milk allergy  

In Chapters 4 and 5, the aim was to deepen our understanding of the interplay between 

the gut microbiome and CMA in early life through the exploration of the fecal 

metabolome. To provide a comprehensive overview of current studies on this topic, a 

systematic review was conducted in Chapter 4. This review focused on the 

modifications and post-treatment alterations in the gut microbiome, metabolome, and 

immune response in both CMA children (0-12 years) and CMA animal models. By 

conducting thorough searches in MEDLINE, PubMed, Scopus, and Web of Science, 21 

articles published before March 2023 were included, consisting of 13 studies on CMA 

children and 8 studies on animal models. 

In the reviewed studies, no consistent conclusions were drawn regarding the 

modifications of α- and β-diversity in the gut microbiome in CMA. At the taxonomic 

level, multiple studies across both CMA children and animal models reported a decrease 

in the Bifidobacterium genus and Lactobacillales order, alongside an increase in the 

Clostridia class. Regarding CMA management, various intervention approaches, 
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including different formulas, prebiotics, probiotics, and synbiotics, were applied across 

several studies. These studies consistently showed increased Bifidobacterium levels in 

both CMA children and animal models following interventions, particularly with 

Bifidobacterium strains-specific treatments. However, the impact of these interventions 

on other bacterial populations remained inconclusive. In terms of metabolome 

modifications, decreased short-chain fatty acids (SCFAs), as well as altered amino acid 

and organic acid profiles, were observed in CMA children. These metabolomic changes 

appeared to be restored through interventions, with increased SCFAs and balanced 

amino acid levels. For the immune response, only one study involving CMA children 

was available, but studies on CMA animal models suggested that interventions could 

reduce overall cytokine levels, restore the Th2/Th1 balance, and induce a regulatory 

immune response. Additionally, this review highlighted that no study has investigated 

early-life CMA using multi-omics strategies, such as metagenomics, 

metatranscriptomics, and metaproteomics. Although several metabolomics studies have 

been reported, they focused on a limited range of metabolites, emphasizing the need for 

comprehensive metabolomics studies on CMA in early life. 

In Chapter 5, a comprehensive investigation of the fecal metabolome in CMA infants 

undergoing dietary intervention with and without a synbiotic (inulin, oligofructose and 

Bifidobacterium breve M-16 V) was conducted using the untargeted metabolomics 

method developed in Chapter 2, along with an additional in-house platform. 

Considering the broad metabolite coverage, we primarily focused on known features in 

this study. By grouping the infants based on CMA status after one year or the type of 

intervention they received, we explored the distinct impacts of CMA tolerance 

acquisition and of the synbiotic supplementation on the fecal metabolome of CMA 

infants. The longitudinal changes in the fecal metabolome across the three time points 

were analyzed using linear mixed models (LMMs) and repeated measures analysis of 

variance simultaneous component analysis+ (RM-ASCA+). 

By comparing the fecal metabolome of infants with persistent CMA to those who 

developed CM-tolerance, more pronounced changes in the fecal metabolome related to 

amino acids, bile acids, and SCFAs were observed in the CM-tolerant group. The CM-
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tolerant group exhibited significantly higher levels of lysine and citrulline after one year 

of intervention compared to the CM-allergic group. Although no significant group 

differences were found for other metabolites, the metabolome trends along with time 

indicated a down-regulation of tryptophan-serotonin metabolism, up-regulation of 

secondary bile acid production, and an increase in butyrate in the CM-tolerant group 

compared to the CM-allergic group. These alterations might suggest a healthier gut with 

improved barrier function and a more mature gut microbiome in the CM-tolerant group.  

Regarding the impact of the synbiotic, this study demonstrated that the synbiotic 

significantly altered the fecal levels of aromatic lactic acids, purine metabolites, fatty 

acids, and bile acids, especially after six months of supplementation. Two aromatic 

lactic acids (4-hydroxyphenyllactic acid and indolelactic acid), known as infant-type 

Bifidobacterium-derived metabolites, showed a significant increase in the synbiotic 

group. Moreover, the changes in these metabolites from baseline to later time points 

were strongly positively correlated with the changed levels of Bifidobacterium in the 

group with synbiotic supplementation. These findings suggested an enhanced 

abundance and/or activity of infant-type Bifidobacterium species, indicating the 

successful supplementation of the synbiotic. Additionally, the synbiotic 

supplementation was found to lower the levels of inosine, guanine, and uridine, increase 

adenine level, and enhance the deconjugation of glycine-conjugated bile acids. 

The study in Chapter 5 contributed to revealing the linkages between early-life CMA, 

the gut microbiome, and synbiotic intervention. We observed several alterations in fecal 

metabolomic pathways that may play a role in the outgrowth of CMA in early life. 

Additionally, Those findings provided evidence for the impact of synbiotic 

supplementation on modifying the fecal metabolome in CMA infants. This impact was 

more pronounced after six months of intervention, highlighting the importance of early 

intervention to maximize the effects of synbiotics. However, no clear conclusions can 

be drawn regarding the clinical benefits of the synbiotic supplementation on CM-

tolerance acquisition, as the tolerance rate observed after one-year synbiotic intervention 

was consistent with natural outgrowth for infants involved in our study. Despite this, the 

significant enhancement of metabolites with anti-inflammatory properties, such as 
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indolelactic acid,16 suggested a potential beneficial effect of synbiotics in promoting 

CMA outgrowth. Therefore, it is suggested that further research with larger cohorts is 

needed to verify our findings and evaluate the therapeutic potential of synbiotics 

supplementation for CMA in early life.  

Although over 300 targets were involved in our study, there are still opportunities for 

further improvements in metabolomic exploration. First, our study only reported the 

relative abundance of these targets. Achieving absolute quantification of the targeted 

metabolites would enhance the accuracy and depth of our interpretation. Second, despite 

covering a wide range of targets, analyzing the data in an untargeted manner is still 

necessary to identify other potential metabolomic changes that may not have been 

captured in our targeted analysis. Moreover, integrating multiple analytical platforms 

for global profiling, such as HILIC along with RP, could significantly expand the 

metabolomic coverage and provide a more comprehensive picture. Lastly, this study 

was conducted with the PCIS setup, providing the opportunity to reanalyze the data and 

apply matrix effect correction. We believe that matrix effect correction with PCIS holds 

substantial potential to further enhance the quality of the data presented in this chapter. 

Further perspectives  

In this thesis aimed to tackle the issue of matrix effect in untargeted metabolomics 

(Chapter 2-3) and expand the understanding of the relationship between the gut 

microbiome and CMA in early life (Chapter 4-5). From a technical perspective, the 

thesis demonstrated the potential of applying PCIS to address matrix effect in LC-ESI-

MS-based untargeted metabolomics methods. The developed PCIS method enabled two 

primary functions: matrix effect monitoring and matrix effect correction. Matrix effect 

monitoring is particularly useful during the development phase of an untargeted 

metabolomics method to help mitigate matrix effect. Matrix effect correction holds great 

potential to enhance data reliability, advance (semi)quantitative analysis, and ensure 

more accurate data interpretation in untargeted metabolomics. One direct application of 

matrix effect correction is solving the problem of matrix dilution when examining the 

dynamic range using endogenous metabolites with serially diluted quality control (dQC) 



Conclusion and perspectives 
 

227 
 

6 

samples.17 This enables the exploration of linearity with endogenous features by 

correcting matrix effect in a calibration curve constructed using dQC. Additionally, 

leveraging a dQC series with corrected matrix effect in routine untargeted metabolomics 

analysis can also improve the data fidelity via advancing the feature filtering with 

estimated linearity range and response for detected features.18 Overall, the advances in 

addressing matrix effect presented in our study will contribute to the broader application 

of untargeted metabolomics in diverse research fields. However, to expand the 

implementation of matrix effect correction using PCIS, further efforts are required to 

develop an automated pipeline that increases throughput for efficiently selecting 

appropriate PCISs for the hundreds to thousands of features detected in untargeted 

metabolomics. Meanwhile, incorporating the PCIS pre-processing workflow into 

existing untargeted data analysis tools could also further promote its application.  

With the developed method, Chapter 5 uncovered several potential metabolomic 

pathway modifications related to CMA resolution in early life and highlighted 

significant metabolite changes following the synbiotic intervention. This study 

contributed to gaining insights into the interplay between the gut microbiome and early-

life CMA from a metabolomics perspective. To further reveal the underlying 

mechanisms regarding the impact of the gut microbiome on early-life CMA, we 

recommend carrying out more studies with larger-scale cohorts. This will also enable 

researchers to develop more complex data analysis models to explore how synbiotic 

interventions can influence CM-tolerance acquisition in early life. Meanwhile, since the 

fecal metabolome serves as an ideal readout for gut microbial functions,19 the primary 

focus of this chapter was on fecal metabolome profiling In the future, combining the 

fecal metabolome with metabolomes obtained from other biological samples, 

particularly peripheral blood, could significantly enhance our interpretation of the cross-

talk between the gut microbiome and the host. Additionally, comprehensive studies that 

integrate multi-omics research combining metabolomics, metagenomics, 

metatranscriptomics, and metaproteomics are still urgently needed to gain a complete 

understanding of impact of the gut microbiome on the prevention, development, and 

treatment of CMA in early life. Furthermore, as we enter the era of artificial intelligence, 
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incorporating techniques like machine learning with integrated multi-omics data holds 

great promise for advancing our knowledge of the role of the gut microbiome in human 

health and disease, including CMA in early life. 

Final remarks  

The rapid expansion of research on human gut microbiome in recent decades has 

highlighted its role in human metabolism, immune regulation, and behavior.20 Despite 

significant progress in deciphering how the gut microbiome affects human health and 

disease, a long journey lies ahead to fully solve the puzzle. Combining multi-omics 

analyses has become a trend to unravel the intricate relationship between the gut 

microbiome and the human host. Among the omics techniques, as a direct readout of 

phenotypes, metabolomics provides a snapshot reflecting the functional properties of 

the gut microbiome at the molecular level. This emphasizes the crucial role of 

metabolomics in revealing this complex relationship and underscores the needs for 

advances in metabolomics techniques. In this thesis, by proposing strategies to address 

the matrix effect in LC-ESI-MS-based analytical method, we advanced untargeted 

metabolomics towards quantitative analysis. The focus then shifted to deepening our 

understanding of the interactions between the gut microbiome and CMA in early life 

from a metabolomics perspective. Overall, the research in this thesis suggested that 

several gut microbiome-involved metabolic pathways may play a role in the acquisition 

of CM tolerance, and provided evidence that the fecal metabolome can serve as a 

potential readout to reflect the impact of early synbiotic supplementation in infants. 

These findings offered valuable insights into the relationship between the gut 

microbiome and CMA, aiding future research in developing microbiome-targeted 

strategies for the prevention and management of CMA in early life.   
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Summary  
The incidence of food allergy has increased over the last few decades, with cow’s milk 

allergy (CMA) being one of the most prevalent food allergies in early life. In recent 

years, growing research on the gut microbiome has highlighted its crucial role in human 

health and disease, including its potential impact on CMA in early life. The gut 

microbiome is thought to exert a dynamic influence on the immune system, thereby 

potentially regulating the onset and progression of CMA. During this process, gut-

derived metabolites have been increasingly recognized as important mediators of the 

crosstalk between the gut microbiome and the host. This highlights the essential role of 

metabolomics in deciphering the influence of the gut microbiome on CMA in early life.  

In metabolomics, approaches can be broadly categorized into targeted and untargeted 

metabolomics, with targeted metabolomics focusing on accurate quantification of 

known metabolites, whereas untargeted metabolomics aims to discover novel 

biomarkers by performing comprehensive metabolome profiling. Liquid 

chromatography coupled with mass spectrometry using an electrospray ionization 

source (LC-ESI-MS) is one of the most applied techniques in metabolomics due to its 

high sensitivity and robustness. However, because of the ionization mechanism of the 

ESI source, the LC-ESI-MS method is susceptible to matrix effect, which is caused by 

co-eluted matrix components and can significantly impact the accuracy and 

reproducibility of the analysis. The matrix effect remains a major challenge in LC-ESI-

MS-based metabolomics, particularly in untargeted metabolomics, where there is lack 

of effective compensation strategies.  

Therefore, the first aim of this thesis is to address the problem of matrix effect in 

untargeted metabolomics with the technique of post-column infusion of standards 

(PCIS). The second aim is to gain insights into the crosstalk of the gut-microbiome and 

food allergy in early life by exploring the fecal metabolome in CMA infants.  

Chapter 1 outlines current approaches used to address matrix effect in metabolomics 

and presents a summary of the interconnections among metabolomics, gut microbiome, 
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and food allergy in early life. This chapter also provides an overview of the scope of the 

thesis. 

Chapter 2 describes the development of an untargeted metabolomics method 

incorporating PCIS for matrix effect monitoring in plasma and feces. To assess the 

analytical performance of this LC-PCIS-MS-based untargeted method, it was validated 

using diverse stable-isotope labeled (SIL) standards in a targeted manner. The method 

exhibited good precision, accuracy, recovery, and repeatability. The validation 

highlighted the issue of matrix effect in the developed method, as it demonstrated that 

high variation in matrix effect among samples could significantly impact the accuracy 

and reproductivity of the measurements. To evaluate the matrix effect across the entire 

chromatogram, the PCIS approach was implemented. This evaluation was performed by 

post-column infusion of xenobiotic compounds during the injection of blank or diverse 

matrix samples, enabling the overall monitoring of both absolute matrix effect (AME) 

and relative matrix effect (RME). The PCIS approach successfully identified 

chromatographic regions exhibiting severe matrix effect. Moreover, it yielded 

comparable RME results to those obtained using the traditional post-extraction spiking 

method, demonstrating its potential as a reliable technique for evaluating RME in 

untargeted metabolomics. 

Chapter 3 extends the application of PCIS from monitoring to matrix effect correction 

using a novel artificial matrix infusion strategy. The artificial matrix is composed of 

compounds that interfere with the ESI process of analytes by competing for ionization 

or increasing the surface tension in droplets, thereby preventing Coulombic explosion. 

The matrix effect created by the artificial matrix (MEart) for a specific feature can be 

determined by injecting a matrix sample both with and without the artificial matrix, and 

subsequently used to select its ideal PCIS for biological matrix effect (MEbio) correction. 

This approach enabled the matching of metabolic features, including known and 

unknown ones, to their appropriate PCISs. The concept of this method was validated 

using diverse SIL standards spiked into plasma, urine, and feces. To incorporate AME 

and RME into the validation, a matrix effect scoring system was introduced, which 

calculates the AME and RME scores separately and averages them as the final matrix 
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effect score. The PCISs selected based on MEart were compared to those selected by 

biological matrix effect (MEbio), with 17 out of 19 SIL standards (89%) showing 

consistent PCIS selection, demonstrating the effectiveness of MEart in identifying 

suitable PCIS. Applying MEart-selected PCISs to correct the MEbio resulted in improved 

or maintained matrix effect for 100% of SIL standards in plasma, 84% in urine, and 95% 

in feces. Since MEart can be assessed at any retention time, the study in this chapter 

suggests that implementing PCIS with artificial matrix infusion shows great potential in 

identifying suitable PCISs to correct matrix effect for features detected using untargeted 

metabolomics. 

Chapter 4 presents a systematic review of the modifications and post-treatment 

alterations in the gut microbiome, metabolome, and immune response in children with 

CMA aged 0-12 years and in CMA animal models. At the taxonomic level, multiple 

studies consistently reported decreases in Bifidobacterium genus and Lactobacillales 

order, alongside increases in Clostridia class in CMA children. Various intervention 

approaches, such as different formulas, prebiotics, probiotics, and synbiotics, were 

applied to manage CMA across several studies. However, a constant increase in 

Bifidobacterium levels was observed only with Bifidobacterium strains-specific 

treatments. Regarding metabolome modification, altered short-chain fatty acids 

(SCFAs), amino acids, and organic acids were reported in CMA children. These 

metabolomic changes appeared to be partially restored through interventions, with 

increased SCFAs levels and balanced amino acid profiles. Limited data were available 

regarding immune response. Overall, the review highlights that no study has applied  

multi-omics approaches to investigate the relationship between gut microbiome and 

CMA in early life. Although several metabolomics studies have been reported, they 

focused on a limited range of metabolites, emphasizing the need for more 

comprehensive metabolomics research on CMA in early life. 

To fill the gap identified in Chapter 4, Chapter 5 explores the fecal metabolome in 

CMA infants undergoing dietary intervention with and without synbiotic 

supplementation (inulin, oligofructose and Bifidobacterium breve M-16 V). By 

grouping the infants based on their CMA status after one year or the type of intervention 
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they received, the impacts of CM tolerance acquisition and the influence of the synbiotic 

supplementation on the fecal metabolome of CMA infants were investigated. More 

pronounced changes in fecal amino acids, bile acids, and SCFAs were observed the 

infants who acquired tolerance. The tolerant group showed significantly higher levels of 

lysine and citrulline, and potential evidence of downregulated tryptophan-serotonin 

metabolism, upregulated secondary bile acid production, and increased butyrate level. 

These alterations might suggest a healthier gut with improved barrier function and a 

more mature gut microbiome in the CM-tolerant group. Regarding the impact of the 

synbiotic, this study demonstrated that the synbiotic significantly altered the fecal levels 

of aromatic lactic acids, purine metabolites, fatty acids, and bile acids, especially after 

six months of supplementation. The significant increase of the two aromatic lactic acids 

(4-hydroxyphenyllactic acid and indolelactic acid), known as infant-type 

Bifidobacterium-derived metabolites, suggested an enhanced abundance and/or activity 

of infant-type Bifidobacterium species, indicating the successful supplementation of the 

synbiotic. 

Chapter 6 concludes the thesis with a general summary and discussion. It outlines 

potential improvements in the implementation of PCIS for addressing matrix effects in 

untargeted metabolomics and provides recommendations and perspectives on applying 

metabolomics to study the gut microbiome and CMA in early life. 
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Samenvatting 
 
De incidentie van voedselallergie is de afgelopen decennia toegenomen, waarbij 

koemelkallergie (KMA) een van de meest voorkomende voedselallergieën in de vroege 

kindertijd is. In recente jaren heeft groeiend onderzoek naar het darm microbioom de 

cruciale rol ervan in de menselijke gezondheid en ziekte benadrukt, inclusief de 

potentiële impact op KMA in de vroege kindertijd. Men denken dat het darm 

microbioom een dynamische invloed uitoefent op het immuunsysteem, en daarmee 

mogelijk de aanvang en progressie van KMA reguleert. Tijdens dit proces worden in de 

darmen geproduceerde metabolieten in toenemende mate erkend als belangrijke 

mediator van de wisselwerking tussen het darm microbioom en de gastheer. Dit 

onderstreept de essentiële rol van metabolomics in het ontrafelen van de invloed van het 

darm microbioom op KMA bij jonge kinderen. 

In metabolomics kunnen metabolomics methoden grofweg worden ingedeeld in targeted 

(doelgericht) en untargeted (niet specifiek gericht): bij targeted metabolomics ligt de 

nadruk op nauwkeurige kwantificering van bekende metabolieten, terwijl untargeted 

metabolomics streeft naar de ontdekking van nieuwe biomarkers via uitgebreide 

profilering van het metaboloom. Vloeistofchromatografie gekoppeld aan 

massaspectrometrie met electrospray-ionisatie (LC‑ESI‑MS) is een van de meest 

toegepaste technieken binnen metabolomics vanwege zijn hoge sensitiviteit en 

robuustheid. Echter, door het ionisatiemechanisme van de ESI-bron is de LC‑ESI‑MS-

methode gevoelig voor matrixeffecten, die worden veroorzaakt door mee-eluerende 

matrixcomponenten en de nauwkeurigheid en reproduceerbaarheid van de analyse 

aanzienlijk kunnen beïnvloeden. Dit blijft een grote uitdaging, met name in untargeted 

metabolomics, waar effectieve compensatiestrategieën ontbreken. 

Daarom is het eerste doel van dit proefschrift om het probleem van matrixeffecten in 

untargeted metabolomics aan te pakken met de techniek van post-kolom infuseren van 

standaarden (PCIS). Het tweede doel is om inzicht te krijgen in de wisselwerking tussen 

het darmmicrobioom en voedselallergie in de vroege kindertijd door het fecale 

metaboloom te onderzoeken bij zuigelingen met KMA. 
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Hoofdstuk 1 schetst de huidige methodes voor het tegengaan van matrixeffecten in 

metabolomics en biedt een overzicht van de interconnecties tussen metabolomics, het 

darmmicrobioom en voedselallergie in de vroege kindertijd. Tevens wordt de reikwijdte 

van het proefschrift uiteengezet. 

Hoofdstuk 2 beschrijft de ontwikkeling van een untargeted metabolomics-methode met 

PCIS voor het monitoren van matrixeffecten in plasma en feces. De analytische prestatie 

van deze LC‑PCIS‑MS-methode werd beoordeeld met targeted analyse van diverse 

stabiel isotopen-gelabelde (SIL) standaarden. De methode vertoonde goede precisie, 

nauwkeurigheid, opbrengst en reproduceerbaarheid. Validatie toonde aan dat variatie in 

matrixeffecten tussen monsters de meetnauwkeurigheid aanzienlijk kan verminderen. 

Door PCIS te implementeren via post-column infusion van xenobiotische verbindingen 

tijdens injectie van blanco‑ en verschillende matrixmonsters, konden zowel absolute 

(AME) als relatieve (RME) matrixeffecten in kaart worden gebracht. De PCIS-aanpak 

identificeerde succesvol chromatografische gebieden met ernstige matrixeffecten en 

leverde resultaten op die vergelijkbaar waren met traditionele post-extractie 

spike‑methoden, wat de betrouwbaarheid als techniek voor RME-evaluatie in untargeted 

metabolomics bevestigt. 

Hoofdstuk 3 breidt de toepassing van PCIS uit van monitoren naar matrix effect 

correctie door een innovatieve strategie van infusie van artificiële matrix. De artificiële 

matrix bestaat uit verbindingen die het electrospray-ionisatie proces verstoren door te 

concurreren in de ionisatie of de door de oppervlaktespanning van druppels te verhogen, 

waardoor Coulomb explosie wordt tegengegaan. Het matrixeffect gecreëerd door de 

artificiële matrix (MEart) voor een specifieke feature wordt bepaald door monsters zowel 

met als zonder de artificiële matrix te injecteren; dit wordt vervolgens gebruikt om de 

ideale PCIS te selecteren voor correctie van biologische matrixeffecten (MEbio). 

Validatie met diverse SIL-standaarden in plasma, urine en feces liet zien dat PCIS-

selectie op basis van MEart in 89% van de gevallen overeenkwam met MEbio-selectie. 

Correctie met PCIS geselecteerd via MEart resulteerde in vergelijkbare of verbeterde 

matrix effect scores voor respectievelijk 100% (plasma), 84% (urine) en 95% (feces). 

Aangezien MEart op elk retentietijdstip kan worden beoordeeld, suggereert dit hoofdstuk 
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dat PCIS gecombineerd met artificiële matrixinfusie veel potentie heeft om matrix effect 

correctie te realiseren voor features gevonden met untargeted metabolomics. 

Hoofdstuk 4 geeft een systematisch literatuurreview van aanpassingen en 

veranderingen na behandeling in het darm microbioom, metaboloom en immuunrespons 

bij kinderen (0-12 jaar) met KMA en diermodellen met KMA. Op het taxonomische 

niveau meldden meerdere studies afnamen in Bifidobacterium genus en Lactobacillales-

orde, naast toenames in de klasse Clostridia bij kinderen met KMA. 

Interventiebenaderingen zoals verschillende voedingen, prebiotica, probiotica en 

synbiotica werden onderzocht. Echter, een duurzame toename van Bifidobacterium-

niveaus werd alleen gezien bij behandelingen specifiek met Bifidobacterium-strains. 

Veranderingen in het metaboloom betroffen korte keten vetzuren (KKVZ), aminozuren 

en organische zuren; interventies hielpen deze gedeeltelijk te herstellen met verhoogde 

KKVZ-niveaus en genormaliseerde aminozuurprofielen. Er is slechts beperkt bewijs 

over immuunrespons. De review onderstreept dat er nog geen studies zijn die multi-

omics benaderingen hebben toegepast om de relatie tussen darm microbioom en KMA 

in de vroege kindertijd te onderzoeken. De behoefte aan breder metabolomics onderzoek 

bij KMA is daarmee evident. 

Hoofdstuk 5 sluit aan op de lacune beschreven in hoofdstuk 4 en onderzoekt het fecale 

metaboloom van zuigelingen met KMA die een dieet kregen met of zonder synbiotische 

suppletie (inuline, oligofructose en Bifidobacterium breve M‑16V). Door de zuigelingen 

in te delen op basis van KMA-status na één jaar of het type interventie, zijn de effecten 

van zowel KMA-tolerantie-acquisitie als synbiotische suppletie op het fecale 

metaboloom onderzocht. Zuigelingen die tolerant werden, vertoonden significant meer 

veranderingen in fecale aminozuren, galzuren en KKVZ, met hogere niveaus van lysine 

en citrulline, plus aanwijzingen voor verminderde tryptofaan‑serotoninemetabolisme, 

toegenomen secundaire galzuurproductie en verhoogde butyraatspiegels. Dit wijst 

mogelijk op een gezonder darmmilieu met verbeterde barrièrefunctie en meer volwassen 

microbiota bij de tolerante groep. Verder toonde de synbiotische suppletie na zes 

maanden aanzienlijke veranderingen in fecale aromatische melkzuren, 

purinemetabolieten, vetzuren en galzuren. Een significante stijging van de aromatische 
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melkzuren (4-hydroxyphenyllactaat en indolelactaat), typische metabolieten van infant-

type Bifidobacterium, suggereerde een verhoogde aanwezigheid en activiteit van deze 

soorten, wat de effectiviteit van de synbiotische suppletie bevestigt. 

Hoofdstuk 6 sluit het proefschrift af met een algemene samenvatting en discussie. Het 

schetst mogelijkheden voor verbeteringen in de implementatie van PCIS voor matrix 

effect correctie in untargeted metabolomics en biedt aanbevelingen en perspectieven 

voor de toepassing van metabolomics in het bestuderen van het darm microbioom en 

KMA in de vroege kindertijd. 
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