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Abstract

T cells undergo rapid metabolic reprogramming during activation to support the high 
energy demands of cell growth and proliferation. This metabolic shift is supported by 
the uptake of exogenous nutrients from the cells’ environment. For certain nutrients, 
such as glutamine and glucose, the uptake mechanisms and biological effects of 
high or low uptake are well understood. This is less the case for fatty acids, where 
neither the uptake mechanism nor the precise biological effects of uptake have 
been characterized. Here this problem is addressed using bioorthogonal chemistry: 
by exposing splenocytes to sterculic acid, a bioorthogonal analogue of oleic acid, 
followed by fluorescent-activated cell sorting, a method was developed to multiplex 
nutrient uptake with phenotypic, proteomic, and transcriptomic differences on a 
single-cell level. Cells with a high uptake of exogenous sterculic acid took on a more 
effector-like phenotype and metabolism compared to low-uptake cells. Additionally, 
these cells upregulated the expression of key genes and proteins related to glucose 
metabolism, fatty acid synthesis, and the mevalonate pathway, also indicating a 
more effector-like state. These effects became more pronounced if the T cells were 
activated in vitro with αCD3/αCD28 antibodies prior to sterculic acid uptake. 
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Introduction

Upon activation, T cells undergo a rapid metabolic reprogramming to support their 
increased cell growth and proliferation. During the activation process, quiescent 
T cells, which mainly rely on catabolic metabolism and oxidative phosphorylation 
(OXPHOS) for their energy supply, shift their metabolism towards aerobic glycolysis 
and anabolism to support their high energetic and biosynthetic demands.1–3 

Interestingly, this metabolic shift is heavily supported by an increased uptake of 
exogenous nutrients such as glucose and amino acids.4,5 The uptake of exogenous 
free fatty acids (FFAs) are known to be essential for the activation and survival of 
several T cell subsets.6,7 While fatty acids (FAs) in quiescent T cells are prone to 
degradation via fatty acid oxidation (FAO) to fuel ATP production via OXPHOS, T 
cells upregulate de novo fatty acid synthesis and fatty acid uptake upon activation.6 
Furthermore, activated T cells are known to upregulate other lipid biosynthetic 
pathways such as cholesterol biosynthesis, to support their increased need for 
membrane components.8 A more detailed description of the metabolic reprogramming 
of T cells upon activation can be found in Chapter 1.

Previous work has shown that the exposure of T cells to oleic acid (OA) affects 
their survival, proliferation, activation, and differentiation.9–15 However, since the use 
of the native form of OA in these experiments does not allow for the detection of 
intracellular OA, limited information about the actual cellular OA uptake on a single-
cell level could be gathered. Additionally, it could not be determined if the observed 
effects were a result of extracellular exposure of OA in the culture medium, or cellular 
uptake of OA. 

This thesis has demonstrated the effective manner by which the bioorthogonal OA 
analogue, sterculic acid (StA), can be used to study fatty acid uptake in cells. In 
this Chapter, the uptake of StA in primary cells isolated from mouse spleens was 
explored at a single-cell level. Murine splenocytes are a heterogenous population of 
immune cells, but contain a large portion of T cells (~30-35%).16,17 It was therefore 
envisaged that the detection of StA, using the mild inverse electron-demand Diels-
Alder (IEDDA) reaction, could be used to distinguish cells with a high and low FA 
uptake within the heterogenous splenocyte mixture. The focus was to identify factors 
governing the ability of a cell to take up FAs during activation. Differences between 
populations after short pulses of FA uptake, at times before or after activation, were 
deemed to be the most informative, rather than examining the phenotype of the cells 
long after immune activation to determine the functional effect of FA uptake on later 
phenotypes. 

With these proof-of-principle experiments, the uptake of StA was monitored on 
a single-cell level by fluorescent detection with flow cytometry. Simultaneously, 
proteomic and transcriptomic differences between cells with differential StA uptake 
were explored. The transcriptomic differences were investigated using single-cell 
RNA sequencing (scRNAseq), to gain further insight into how the heterogeneous 
splenocyte population responded to the uptake of exogenous StA. 
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Results & Discussion

As a strategy to multiplex OA uptake with phenotypic and multiomic information, a 
workflow was developed where murine splenocytes were exposed to StA (Figure 1). 
In order to do this, the method described in Chapter 2 of this thesis was re-developed: 
Splenocytes – isolated from fresh mouse spleens by mechanical homogenization18 
– were incubated with a short pulse of StA (Figure 1A) and the cyclopropene group 
was used to perform an inverse electron-demand Diels-Alder (IEDDA) click reaction 
with fluorophore 7 (Figure 1B). 

The cells were analysed by flow cytometry and a variation in fluorescent signal 
spanning one order of magnitude was observed in a single sample (Figure S1A), 
suggesting highly heterologous fatty acid uptake in this complex mixture of immune 
cells. In addition, the same experiment was performed after first activating the T 
cell population within the splenocytes. Incubation with αCD3/αCD28 antibodies19 
overnight, prior to lipid uptake analysis, would allow a comparative exploration of 
the fatty acid uptake in both naïve and activated T cells in comparison – all within 
the complex mixture of other immune cells of the spleen – to investigate potential 
differences in the response upon activation. Upon T cell activation with αCD3/
αCD28, the variation in fluorescent signal during flow cytometry increased to almost 
two orders of magnitude (Figure S1B).

To determine whether any cell-type intrinsic factors were responsible for the differences 
in lipid uptake, the high and low uptake cells were isolated by fluorescence-activated 
cell sorting (FACS, Figure 1C). The fluorescence of 7 was used to separate the 
highest and lowest quartile of cells based on StA uptake for further analysis of their 
metabolism, transcriptomes, and proteomes (Figure 1D).
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Figure 1: Illustration showing an overview of the workflow from A) sterculic acid uptake 
in murine splenocytes, B) inverse electron-demand Diels-Alder (IEDDA) reaction, C) 
fluorescence-activated cell sorting (FACS), and D) the subsequent analysis methods. The 
figure is made with BioRender.

Phenotypic differences between T cells with differential StA-uptake

To focus initially on a smaller subset of cells from the complex splenocyte mixture, 
the highest and lowest quartile of StA uptake in CD3+/CD4+ T cells were sorted by 
FACS according to the gating strategies shown in Figure S1. The well-known T cell 
activation markers CD44 and CD62L20,21 were also included in the antibody panel.

Upon analysis of the cells with differential StA-uptake by flow cytometry, it was 
apparent that the size of the high-uptake cells was larger than the low-uptake cells, 
based on median forward scatter (FSC), for both naïve (Figures 2A & 2B) and 
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activated (Figures 2C & 2D) CD3+/CD4+ T cells. The activated T cells also showed 
increased cellular granularity, as measured by median side scatter (SSC), upon high 
StA-uptake (Figures 2C & 2D). However, no difference in cellular granularity was 
observed for the naïve T cells (Figures 2A & 2B). Increased cell size and granularity 
is known to occur in T cells upon activation22,23, and the increased cell size has 
(partially) been attributed to an increase in activity of mammalian target of rapamycin 
(mTOR), a key regulator of many facets of cellular metabolism.24 Therefore, these 
results could indicate that the high-uptake T cells are in a more effector-like state 
than the low-uptake cells, and that the differentiation of these cells affect their ability 
to take up exogenous FAs. 

Figure 2: CD3+/CD4+ T cells with high StA-uptake are larger and more granulated than low-
uptake cells, especially when activated. A) Forward scatter (FSC) and side scatter (SSC) plots 
of the low- and high-uptake populations of naïve T cells, and subsequent B) quantification of 
the median FSC and SSC (based on 5 biological replicates). C) Forward scatter (FSC) and 
side scatter (SSC) plots of the low- and high-uptake populations of activated T cells, and 
subsequent D) quantification of the median FSC and SSC (based on 3 biological replicates). 
Unpaired, two-way, student’s T test. * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001

Upon further investigation of the FACS data it became clear that there was a shift 
in the expression of the CD44 and CD62L markers in the high-uptake population 
compared to the low-uptake population of naïve T cells, (Figure 3A). Upon 
quantification of the median fluorescence intensity (MFI), a trend of increased CD44 
expression is observed, while CD62L expression was significantly decreased at the 
cell surface in the high-uptake population (Figure 3B). Again, this indicates that the 
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cells in the high-uptake population are in a more activated state than the low-uptake 
population. For the activated T cells, all cells were activated by a αCD3/αCD28 
antibody cocktail prior to StA uptake and FACS. Interestingly, a similar pattern was 
observed for the activated T cells where a trend towards increased expression of 
CD44 and decreased expression of CD62L at the cell surface was observed (Figures 
3C & 3D). This suggests that the T cell population after in vitro activation is still a 
heterogeneous mixture of T cell subsets, and that the high StA-uptake population 
appears to be dominated by more effector-like T cells. This is in accordance with the 
previous observation of increased cell size (and granularity) of high-uptake T cells.

Figure 3: CD3+/CD4+ T cells with a high StA-uptake show increased expression of CD44 and 
decreased expression of CD62L, compared to low-uptake cells, indicating T cell activation. A) 
Plots showing CD44 & CD62L expression of low- and high-uptake populations of naïve T cells, 
and subsequent B) quantification of median fluorescence intensity (MFI) of CD44 & CD62L 
expression (based on 3 biological replicates). C) Plots showing CD44 & CD62L expression 
of low- and high-uptake populations of activated T cells, and subsequent D) quantification 
of median fluorescence intensity (MFI) of CD44 & CD62L expression (based on 3 biological 
replicates). Unpaired, two-way, student’s T test. * = P ≤ 0.05.
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Following cell sorting of CD3+/CD4+ T cells by FACS, the metabolic energetics of 
cells with low and high uptake of StA were also examined. The oxygen consumption 
rate (OCR) and extracellular acidification rate (ECAR) were measured using a 
Seahorse analyser25, to assess changes in mitochondrial respiration and glycolysis, 
respectively. From these data, the percentage-wise reliance of these cells on oxidative 
phosphorylation (%OXPHOS) and glycolysis (%Glycolysis) were determined (Figure 
4).

The metabolic energy map (Figure 4A) provides valuable insights into the metabolic 
phenotypes of both naïve and activated splenocytes and their T cell subsets. For 
naïve cells, both low- and high-uptake populations exhibit a quiescent metabolic 
phenotype. However, low-uptake cells appear more quiescent compared to their 
high-uptake counterparts. In contrast, the mixed, unsorted splenocyte population 
displays a more energetic phenotype, characterised by an overall higher metabolic 
capacity. Upon activation, the metabolic energy map reveals notable changes to the 
T cells energy profiles. Low-uptake T cells, while retaining a predominantly quiescent 
phenotype, show an increase in glycolytic capacity. High-uptake T cells exhibit an 
increase in both glycolytic and overall energetic capacities. Similarly, the mixed, 
unsorted splenocyte population demonstrates a more energetic phenotype, while 
maintaining a balance between glycolytic and oxidative pathways. These metabolic 
characteristics of naïve and activated T cells are in line with what is known from 
previous literature.26–29

For naïve cells (Figure 4B), low-uptake T cells show a minimal reliance on glycolysis, 
with approximately 3.3% of their energy resulting from glycolytic pathways. In 
contrast, high-uptake cells present with a significantly greater glycolytic reliance at 
around 66%. This increased glycolytic reliance of high-uptake T cells corresponds 
with the previous observations that these cells exist in an inherently more effector-
like state than the low-uptake T cells. 

In the activated cells (Figure 4C), the low-uptake T cells display a significant increase 
in glycolytic capacity compared to their naïve counterparts, rising to approximately 
46.3%. High-uptake T cells maintain a similar reliance on glycolysis as in their naïve 
state, at around 47.8%, reflecting a metabolic phenotype characterised by an almost 
equal reliance on glycolysis and OXPHOS. Interestingly, no change in the glycolytic 
reliance for the high-uptake cells was observed here, indicating that the in vitro 
activation of these cells somehow overrides the metabolic differences observed in 
the naïve state.

While naïve cells show a more pronounced shift between OXPHOS and glycolysis, 
it’s important to note that their energy maps display smaller differences between 
low and high uptake conditions. This apparent contradiction is due to the overall low 
metabolic output (both mitochondrial and glycolytic ATP) in naïve cells. Although the 
shift seems minor in absolute terms, it represents a significant percentage of the total 
ATP output. In contrast, activated cells present a different scenario. The apparent 
difference in energy maps between low and high uptake conditions primarily reflects 
the lower overall ATP production in low uptake cells, rather than fundamentally 
different metabolic patterns. Both high and low uptake activated cells maintain similar 
levels of OXPHOS and glycolysis. However, high uptake cells generate substantially 
more ATP, indicating higher metabolic activity.
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Figure 4: Metabolic bioenergetics of CD3+/CD4+ T cells following StA uptake and cell sorting 
to high (pink) and low (blue) uptake. A) Energy map, MitoATP versus GlycoATP of the naïve 
and activated cells. B) Naïve T-cell high and low uptake of StA showing % glycolysis reliance, 
and % OXPHOS (Wilcoxons). C) Activated T-cell high and low uptake of StA showing % 
glycolysis reliance, and % OXPHOS (Wilcoxons).
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Proteomic differences between T cells with differential StA-uptake

It has already been suggested that CD4+ T cells with a high StA uptake have a 
more effector-like phenotype compared to low-uptake cells. This is exemplified by 
increased cell size (Figure 2), increased CD44 expression (Figure 3), decreased 
CD62L expression (Figure 3), as well as increased metabolic activity (Figure 4). 
To investigate if these phenotypic differences were rooted in differences at the 
proteomic level, a chemical proteomics approach was applied to study the T cells 
with a differential StA uptake. Similarly to the metabolic energetics, CD4+ T cells with 
differential StA uptake were sorted by FACS (Figure S1). The sorted cells were then 
lysed to isolate the cellular proteins, followed by tryptic digestion of the proteins into 
shorter peptide chains, and LC-MS/MS analysis.30 The processed proteomics data 
were analysed using R Statistical Software.31 Proteins were identified as significantly 
up- or downregulated in the high-uptake population if they had a log2 fold change >1 
or <-1, respectively, as well as a p-value <0.05. To further investigate the metabolic 
bioenergetic shifts that were observed, proteins linked to metabolic alterations were 
focused upon. 

At a first glance, the principal component analysis (PCA) based on the results from 
the naïve CD4+ T cells shows that the four replicates were quite different from each 
other (Figure 5A). Instead of the high- and low-uptake samples clustering together, 
there is a stronger tendency of the replicates clustering together. This indicates 
that most of the variance in the data is between replicates, and not between the 
experimental conditions (low- or high-uptake). Keeping this limitation in mind, the 
samples were assessed further, and a total of 4141 unique proteins were detected 
in the naïve samples. However, only 23 proteins were differentially expressed (22 
upregulated and 1 downregulated in the high-uptake population, Table S1). The 
heatmap (Figure 5B) and volcano plot (Figure 5C) show the expression levels of 
the differentially expressed proteins (DEPs). The low number of DEPs could be 
explained by the discrepancies observed in the PCA. 
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Figure 5: Proteomics results from naïve CD3+/CD4+ T-cells, A) principal component analysis 
(PCA), B) heatmap, C) volcano plot. Red = upregulated, blue = downregulated. Based on 4 
biological replicates.

Among the DEPs, a few of the proteins were known to be involved in the proliferation 
and differentiation of CD4+ T cells. CDK1 and CD74 were upregulated in the high-
uptake population (Figure 6A), where cyclin-dependent kinase 1 (CDK1) is a known 
regulator of the cell cycle, which drives cells through the G2 phase and mitosis.32 
In T cells, the CDK cascade has been proposed as a potential link between cell 
division and T cell differentiation via the phosphorylation of immunologically relevant 
transcription factors.33 The upregulation of this protein in high StA-uptake T cells 
could indicate that the cells were in a more proliferative state than the low-uptake 
cells. While CD74 is mainly known as the invariant chain34, which plays an important 
role in antigen presentation, recent research has also highlighted its role in T cell 
biology.35–37 It has been shown to act as a receptor for the pleiotropic cytokine 
macrophage migration inhibitory factor (MIF), and is upregulated on the surface of 
activated CD4+ T cells supporting their migration.38 CD74 has also been shown to 
be upregulated on tumour-infiltrating Tregs, where it facilitates accumulation and 
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function of these cells via stabilising FOXP3 expression.39 The upregulation of 
CD74 in high-uptake CD4+ T cells could thereby indicate an increased proportion 
of activated cells, and potentially also Tregs, in this population. This is in line with 
previously observations from this Chapter. 

Additionally, F-box only protein 7 (FBXO7), a known cell cycle regulatory protein40, is 
downregulated in the high StA-uptake CD4+ T cells. The downregulation of FBXO7 
has previously been shown to increase glycolysis in CD4+ T cells41, which could help 
explain the observed increase in glycolysis in the high-uptake population (Figure 
4B). 

Looking at the other DEPs, no metabolic proteins related to glycolysis, the tricarboxylic 
acid (TCA) cycle, or lipid metabolism, as annotated by UniProt42 keywords KW-0324, 
KW-0816, and KW-0443, respectively, were detected in the naïve samples. The 
UniProt protein database categorises protein entries into specific subsets based on 
for example biological function or cellular localisation.42 From the pathway analysis 
(Figure 6B), using the clusterProfiler package43 in R, it is clear that the proteins that 
were upregulated in the high-uptake T cells are mainly involved in chromosome 
condensation and segregation. This indicates that the high-uptake cells were in 
a more proliferative state where the chromosomes are duplicated and separated 
during mitosis, compared to the low-uptake cells. 

Figure 6: Proteomics results from naïve CD3+/CD4+ T-cells, A) box plots of differentially 
expressed proteins that are involved in T cell biology, B) pathway analysis of all upregulated 
proteins (using the clusterProfiler package43 in R). Based on 4 biological replicates.

This data suggests two things. Firstly, the biology that underpins the changes in 
FA uptake in the naïve population may be stochastic in nature, rather than being 
fully reliant on pre-existing phenotypic differences between the cells. The second 
observation is that the naïve cells that take up more FA are in higher state of cell 
division, suggesting the presence of background T cell replication even in naïve 
unstimulated populations. 

The same cell sorting and proteomic approach was applied to CD4+ T cells that had 
been activated in vitro using αCD3/αCD28 antibodies prior to StA uptake. The PCA 
following subsequent examination of the activated CD4+ T cells, shows a better 
separation between the low- and high-uptake conditions, and a better clustering 
of the respective replicates (Figure 7A). This is also reflected in the heatmap 
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(Figure 7B) and volcano plot (Figure 7C) where it is apparent that more proteins 
were differentially expressed than for the naïve samples. Of in total 4956 unique 
proteins that were detected, 358 were differentially expressed for the activated cells. 
Of the DEPs 204 were downregulated and 154 were upregulated in the high-uptake 
samples (Table S2). 

Figure 7: Proteomics results from αCD3/αCD28-activated CD3+/CD4+ T-cells, A) principal 
component analysis (PCA), B) heatmap, C) volcano plot. Red = upregulated, blue = 
downregulated. Based on 3 biological replicates.

Several proteins involved in cellular metabolism were identified as differentially 
expressed in the activated CD4+ T cells (Figure 8A). This includes HK2 and IRF4 
which are involved in glucose metabolism. Hexokinase 2 (HK2) is the first rate-limiting 
step of glucose metabolism, phosphorylating glucose to glucose-6-phosphate.44 
Upon T cell activation, HK2 is known to be upregulated to support the increased 
metabolic requirements of these cells.45–47 Interferon regulatory factor 4 (IRF4) has 
been implicated as an important transcription factor involved in the differentiation of 
T cell subsets upon activation, as well as controlling the metabolic shift of activated 
T cells.48–51 It has even been proposed that IRF4 controls the expression of glycolytic 
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enzymes, there among HK2.48 

Several proteins involved in fatty acid synthesis were also upregulated in the high 
StA-uptake, activated T cells (Figure 8A). The three proteins ATP citrate lyase (ACL, 
encoded by the gene ACLY), acetyl-CoA carboxylase (ACC1, encoded by the gene 
ACACA), and fatty acid synthase (FAS, encoded by the gene FASN) catalyse the 
de novo biosynthesis of palmitic acid from citrate, a product of the TCA cycle.52,53 All 
three proteins were upregulated in the high StA-uptake T cells. The genes encoding 
these proteins have previously been reported to be upregulated in activated T 
cells6,8,54, thereby supporting the current observations that the high-uptake CD4+ T 
cells take on a more activated phenotype. 

The high StA-uptake T cells thereby appear to have an increased flux through 
glucose metabolism (as indicated by the upregulation of IRF4 and HK2), potentially 
to fuel the production of citrate and subsequent de novo fatty acid synthesis (via 
ACL, ACC1 and FAS), which fits the observations of the metabolic extracellular flux 
experiments (Figure 4).

Additionally, a number of proteins of the mevalonate pathway, where mevalonate 
is formed from HMG55, were found to be upregulated in the high-uptake CD4+ T 
cells (Figure 8A). In the mevalonate pathway acetyl-CoA is turned into dimethylallyl 
pyrophosphate (DMAPP), which is further metabolised into geranyl pyrophosphate 
(GPP) and farnesyl pyrophosphate (FPP) via the enzyme farnesyl pyrophosphate 
synthase (FDPS).56,57 FPP is a precursor for multiple other biosynthetic pathways 
such as cholesterol58, ubiquinone59, and dolichol60 biosynthesis, as well as protein 
prenylation.61 The proteins hydroxymethylglutaryl (HMG)-CoA synthase 1 (HMGCS1), 
phosphomevalonate kinase (PMVK), and isopentenyl-diphosphate delta isomerase 
1 (IDI1) are all involved in different parts of this pathway. The mevalonate pathway 
is important for T cell activation and differentiation because it leads to increased 
cholesterol biosynthesis62,63, ensuring sufficient production of an indispensable 
membrane component, especially during proliferation. Additionally, cholesterol is 
enriched in the immunological synapse and is essential for its proper function.64–66 
The upregulation of key enzymes in this pathway therefore further supports that 
high-uptake CD4+ T cells are more effector-like cells than the low-uptake cells. 

The pathway analysis of DEPs in activated CD4+ T cells (Figure 8B), using the 
clusterProfiler package43 in R, showed an upregulation of pathways involved in 
ribosomal biogenesis and protein translation in the high-uptake cells. This indicates 
a large general biosynthetic focus of these cells, which also fits with the previously 
described observations that the high-uptake cells were in a more effector-like or 
activated state.
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Figure 8: Proteomics results from αCD3/αCD28-activated CD3+/CD4+ T-cells, A) box plots of 
significantly upregulated proteins that are involved in glucose metabolism, fatty acid synthesis, 
and the mevalonate pathway, B) pathway analysis of the downregulated and upregulated 
proteins separately (using the clusterProfiler package43 in R). Based on 3 biological replicates.
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Single-cell RNA sequencing of splenocytes with differential StA-uptake

To complement the chemical proteomics data, and to gain further insight into how 
different immune cell subsets react to differential StA uptake, a single-cell RNA 
sequencing (scRNAseq) approach was also developed, using the 10x Genomics 
platform.67 scRNAseq was chosen over bulk RNAseq due to the heterogeneity of the 
splenocyte population. However, since the splenocytes had to undergo an IEDDA 
click reaction prior to FACS, it was essential to ensure that the click reaction did not 
impact the integrity of the unstable RNA molecules. 

Therefore, cells were treated with StA (or DMSO vehicle), before IEDDA reaction 
with fluorophore 7 was performed on either live, or fixed and permeabilised cells. 
The total cellular RNA was isolated from these samples and separated on agarose 
gel to visualise RNA integrity. Since cellular RNA consists mainly of ribosomal RNA 
(rRNA, 80-90%), the 28S and 18S rRNA subunits are the two bands that will be 
visible on the agarose gel, in a 2:1 ratio. When isolating RNA from fixed cells, a 
slight shift in the bands were visible compared to live cells, but there was no visible 
change in RNA integrity upon addition of StA, or after the IEDDA click reaction 
(Figure S2A). In contrast, the addition of oleic acid analogues containing alkyne or 
azide modifications (Figure S2D), and subsequent copper-catalysed azide-alkyne 
cycloaddition (CuAAC), showed visible RNA degradation (Figure S2B). To determine 
which component of the CuAAC mixture caused this degradation, each component 
was tested individually (Figure S2C). Only upon addition of the complete CuAAC 
mixture to the cells, RNA degradation occurred, implying that the active copper(I) 
species in the mixture, which is only present after reduction with sodium ascorbate, 
is responsible for the degradation. These results further demonstrate the benefits of 
using the IEDDA click reaction when studying unstable biomolecules such as RNA. 

Taking advantage of the demonstrated RNA integrity after IEDDA click reaction, 
the scRNAseq approach was applied to study the transcriptomic differences on 
a complete splenocyte level, between the sorted high and low StA-uptake cells. 
The gating strategies for sorting naïve and αCD3/αCD28 activated splenocytes are 
shown in Figure S3.

The populations with the lowest and highest quartile of StA uptake, which were 
collected by FACS, were analysed using a 10x Genomics scRNAseq workflow in 
collaboration with the Leiden Genome Technology Center (LGTC). Upon quality 
control of the sequencing data, it was discovered that one sample, the high-uptake 
sample from naïve splenocytes, had significantly higher RNA counts per cell than the 
other samples (Figure S4). In fear of the high RNA counts from this sample skewing 
the data, the high- and low-uptake samples from naïve splenocytes were omitted 
from the remaining analysis. Further analysis was only performed on the high- and 
low-uptake samples from activated splenocytes.

The cells from the samples with activated splenocytes were clustered based on their 
gene expression. The resulting UMAP highlights substantial differences between the 
low- and high-uptake samples (Figure 9), where certain cell clusters are differentially 
present in the different uptake conditions. 
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Figure 9: UMAP showing cell clustering based on gene expression from high- and low-StA 
uptake samples of activated splenocytes. The data is based on scRNAseq results. 

Identification of the immune cell subsets corresponding to each cluster was done 
according to expression of relevant marker genes (Tables 1 & S3). This highlights 
that B cells (clusters 2-4, 6, 10-11) were mainly present in the low-uptake sample, 
whereas certain T, NKT, or NK cell clusters were mostly present in the high-uptake 
samples (clusters 5, 8-9, 12, 14, 18) or equally present in both low- and high-uptake 
samples (clusters 0-1, 13). 

Table 1: Immune cell subsets corresponding to clusters identified from the scRNAseq analysis 
(from Figure 2). Relevant marker genes for the identification can be found in Table S3.

 
 

Cluster Subset Cluster Subset Cluster Subset 
0 CD4+ T cells 8 CD8+ T cells 16 CD8+ T cells 
1 CD8+ T cells 9 CD8+ T cells 17 Mixed 
2 B cells 10 B cells  18 CD4+ T cells 
3 B cells 11 B cells  19 Monocytes 
4 B cells 12 CD8+ NKT cells 20 Mixed  
5 NK cells 13 CD4+ NKT cells 21 Monocytes  
6 B cells 14 CD4+ Treg 22  NK cells 
7 Mixed 15 Monocytes 23 Monocytes 
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From the FACS data, it was clear that the activated cells, and especially those taking 
up large amounts of StA, were larger (as seen by FSC) and more granulated (as 
seen by SSC), than the naïve and low-uptake cells (Figures 10A & 10B). Since the 
activated high-uptake population consists of a larger portion of NK cells and CD8+ 
T cells, and these cell types are known to match this morphology22,23, this could 
help explain these differences. The low-uptake population consists of more B cells, 
which were not targeted by the αCD3/αCD28 activation, and could therefore explain 
why these cells appear smaller and less granulated. When the splenocytes were 
activated, the BODIPY signal is more widely distributed (Figure 10C), implying that 
there is more spread in the StA-uptake in these cells than for the naïve splenocytes. 

Figure 10: High-uptake cells are bigger and more granulated, especially in activated 
splenocytes. Based on forward scatter (FSC) and side scatter (SSC) of cells after sorting 
them into high- and low-StA uptake populations for scRNAseq of A) naïve splenocytes, B) 
αCD3/αCD28-activated splenocytes, C) Histogram showing the BODIPY signal (indicating 
StA uptake) of naïve or activated splenocytes (according to the gating strategies shown in 
Figure S2).

The focus of this section is on lymphocytes, and more specifically T cells, NKT cells, 
and NK cells. Superimposing the expression of the genes encoding the subunits of T 
cell co-receptor CD3 (CD3E, CD3D, and CD3G) onto the scRNAseq UMAP (Figure 
11A), shows that different T cell subsets (CD4+, CD8+, Treg), as well as NKT cell 
subsets (CD4+, CD8+) express this pan T cell marker. Performing the same overlay 
with the T helper cell marker CD4 (CD4, Figure 11A), highlights the same clusters 
that were identified as CD4+ in Table 1, validating that approach. Focusing on the 
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clusters containing T, NKT, and NK cells (Figure 11B), again emphasises that NK 
cells, regulatory T cells (Tregs), and certain CD8+ T and NKT cell subsets were 
mainly present in the high-uptake population, CD4+ T cells and certain subsets of 
CD8+ T cells were similarly present in both, whereas CD4+ NKT cells were mainly 
present in the low-uptake population.

Figure 11: Subsections of the scRNAseq UMAP showing A) clusters expressing the genes 
encoding CD3 subunits (CD3E, CD3D, CD3G) and CD4, B) zoom-in on clusters of interest 
containing T, NKT, and NK cell (lymphocyte) subsets. 
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All the highlighted lymphocyte subsets can be categorized by their own distinct 
metabolic features to support their immunological functions. Conventional CD4+ or 
CD8+ T cells change their metabolic requirements upon activation.3,68–71 While naïve 
or memory T cells rely heavily on FAO and OXPHOS to support their energetic 
needs, they undergo a switch to a highly glycolytic state, with increased de novo 
fatty acid synthesis, upon activation and differentiation into effector T cells. All these 
T cell subsets were included in the CD4+ and CD8+ clusters in Figures 9 & 11, and 
the wide metabolic range of these T cell subsets can explain the spread in observed 
StA-uptake by these cells. 

NK cells are known to rely heavily on fatty acid uptake and FAO to fuel their effector 
functions72,73, which could explain why they were mainly detected in the high StA-
uptake population. Previous research has also put fatty acid uptake and FAO at 
the centre of Treg differentiation and function.74–76 This is further supported by the 
localisation of Tregs mainly in the high StA-uptake population (Figures 9 & 11). While 
NKT cell development has been reported to require lipids77, and de novo fatty acid 
synthesis is implicated in maintaining NKT cell homeostasis78, not much is known 
about the uptake and metabolism of exogenous fatty acids in this cell type. No 
logical explanation can therefore be given to the observed discrepancy in StA-uptake 
between CD4+ (low uptake) and CD8+ (high uptake) NKT cells (Figures 9 & 11). 

After selecting the clusters containing the lymphocyte subsets of interest, the focus 
was shifted to the expression of key metabolic genes involved in lipid metabolism 
and glycolysis in these clusters. These metabolic pathways were chosen because 
they are known to be differentially expressed, and utilised, by different lymphocyte 
subsets.26–29 The expression of the relevant genes can be seen in Figures S5 & S6 
and Figures S7 & S8, for lipid metabolism and glycolysis, respectively. It became 
clear that the expression of most of the genes were equally distributed across 
clusters, and show little differential expression based on differential StA uptake. 
However, some differentially expressed genes could be detected. For genes involved 
in fatty acid metabolism, FASN, HMGCR, and CCR5 appear to be upregulated in 
the high-uptake cells (Figure 12A). This upregulation occurred across almost all the 
lymphocyte subsets (Figure 12B). 

As previously explained, FASN encodes the enzyme fatty acid synthase (FAS) 
which catalyses the de novo synthesis of palmitic acid (C16:0) from acetyl-CoA and 
malonyl-CoA.79 De novo fatty acid synthesis, and FASN specifically, has been shown 
to be necessary for the metabolic reprogramming of activated T cells.6,8 HMGCR 
encodes HMG-CoA reductase, the enzyme catalysing the rate-limiting step of the 
mevalonate pathway, where mevalonate is formed from HMG.55 HMGCR has been 
shown to be indispensable for T cell survival80 and activation81, and has also been 
shown to play a significant role in the cytotoxic activity of NK cells.82 The upregulation 
of FASN and HMGCR could therefore indicate that the high StA-uptake cells were 
in a more activated state than the low-uptake cells. These results are in line with the 
observations that were made when looking at the proteomic differences between 
high and low StA-uptake populations (Figure 8A).

CCR5 encodes CC chemokine receptor 5, a receptor that can bind a number of 
chemokines such as CCL3, CCL4, and CCL5.83 In NK and NKT cells, where this 
gene is mainly expressed (Figure 12B), CCR5 has been shown to be important for 



121

Phenotypic and Multiomic Differences Between T cells with a Differential Sterculic Acid Uptake

proper trafficking and function of these cells.84,85

Figure 12: Differentially expressed genes related to lipid metabolism from scRNAseq in the 
high- and low-uptake populations of T, NKT, and NK cells (lymphocytes), represented as violin 
plots. A) pooled data from all the relevant lymphocyte clusters, B) showing the data for the 
lymphocyte clusters separately. 

For the scRNAseq data presented here, it is important to note that the high-uptake 
cells were overrepresented in some clusters (e.g. CD8+ T cells, CD8+ NKT cells, 
and NK cells). This results in fewer data points for the low-uptake cells and could 
skew the data in the direction of genes appearing upregulated in the high-uptake 
cells. It can therefore not be said with certainty that the mentioned proteins were 
upregulated. 
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When focusing on genes involved in glycolysis, LDHA, SREBF1, PIK3CA, and AKT2 
appear to be upregulated in the high StA-uptake cells (Figure 13A). The upregulated 
genes were observed in almost all the lymphocyte subsets (Figure 13B). 

LDHA encodes the enzyme lactate dehydrogenase A (LDHA) which is responsible 
for the last step of glycolysis where pyruvate is converted to lactate.86 The deletion 
of LDHA has previously been shown to suppress glycolysis rates, as well as T 
cell proliferation and differentiation.87 Similarly, effector T cells showed increased 
expression of LDHA, as a result of phosphoinositide-3-kinase (PI3K) signalling.86 
Here, the increased expression of LDHA could indicate an increased effector-like 
function of the high StA-uptake cells. This is further supported by the upregulation 
of PIK3CA and AKT2, genes encoding the catalytic PI3Kα subunit, and RAC-
beta serine/threonine-protein kinase (AKT2), respectively. The PI3K-AKT axis has 
been implicated as an important signalling pathway for metabolic reprogramming 
in activating and differentiating T cells88–90, and could explain the upregulation of 
LDHA, as well as indicating that the high-uptake cells have undergone this metabolic 
reprogramming into proliferating, highly glycolytically active cells. Interestingly, it 
appears that PIK3CA is downregulated in high StA-uptake Tregs, in contrast to all 
the other lymphocyte clusters where it is upregulated (Figure 13B). The reliance 
of Treg function and differentiation on PI3K is debated, and PI3K has been shown 
to both inhibit and support the development of this T cell subset.91–94 Therefore, it 
is not clear what the downregulation of PIK3CA in Tregs mean for their function in 
this case. In addition, it is not clear why only PIK3CA, and not PIK3CB and PIK3CD 
encoding the PI3K β and δ subunits, respectively, is differentially expressed in this 
data (Figure S8), especially since PIK3CD is known to be the most prevalent subunit 
class in T cells.95 It is also not clear why AKT2 is differentially expressed, but not 
its isoforms AKT1 and AKT3 (Figure S8).96 Downstream targets of the PI3K/AKT 
pathway, such as MTOR, FOXO1, and MYC97, were also not differentially expressed 
upon StA uptake in this experiment. 

SREBF1, a gene downstream of the PI3K/AKT signalling pathway98,99, also plays 
an important role in the metabolic reprogramming in the activation phase of T cells.8 
The gene encodes the transcription factor sterol regulatory element-binding protein 
1 (SREBP1), that induces the expression of all genes involved in de novo fatty acid 
and cholesterol synthesis.8,100,101 The upregulation of this gene could help explain the 
observed increase in FASN and HMGCR (Figures 12A & 12B) that was described 
earlier. In addition, SREBF1 has also been shown to influence the expression of 
glycolysis-related genes102,103, and could together with the increase in LDHA, PIK3CA, 
and AKT2 indicate that the high-uptake cells were more glycolytically active, and 
thereby more activated or effector-like, in line with the previous results discussed in 
this Chapter. 

Thereby, the upregulation of the metabolic pathways appeared to be the result of 
increased expression of the PI3K-AKT signalling pathway, which in turn caused an 
upregulation of transcription factor SREBP1, known to modulate both glycolysis and 
lipid biosynthetic pathways.8,104–107
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Figure 13: Differentially expressed genes related to glycolysis from scRNAseq in the high- 
and low-uptake populations of T, NKT, and NK cells (lymphocytes), represented as violin 
plots. A) pooled data from all the relevant lymphocyte clusters, B) showing the data for the 
lymphocyte clusters separately. 

Since the scRNAseq data were based on only one biological replicate, it was not 
possible to do statistics on the expression levels of the relevant genes. To verify 
and strengthen the results, more replicates would be necessary. Due to cost- and 
time-restraints, this was not possible to accomplish within the scope of this project. 
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However, the results from the scRNAseq are in line with what was previously 
observed with proteomics, where glucose metabolism (via HK2), fatty acid synthesis 
(via ACL, ACC1, and FAS), and the mevalonate pathway (via FDPS, HMGCS1, 
PMVK, and IDI1) were also upregulated in the activated, high-uptake CD4+ T cells. 
This strengthens the observations made by the two different methods, increasing the 
reliability of the data. 

While the metabolic energetics, as determined by Seahorse extracellular flux 
analysis, showed a significant increase in glycolytic reliance only in the naïve high 
StA-uptake cells (Figures 4B & 4C), proteomics (Figure 8A) and scRNAseq (Figures 
12 & 13) also indicated an increased flux through glycolysis, as well as fatty acid 
synthesis and the mevalonate pathway, which are derived from side products from 
glucose metabolism. In combination, this could indicate that also the in vitro αCD3/
αCD28 activated cells showed increased glycolytic activity upon high StA-uptake. 

This proof-of-principle Chapter has highlighted a connection between increased 
exogenous FA uptake, and increased metabolic activity and an effector-like 
phenotype. Previously, genes involved in de novo FA synthesis (ACACA, FASN) 
and the mevalonate pathway (HMGCR, HMGCS1, FDPS), as well as their regulator 
SREPF1, have been reported to be upregulated in CD4+ T cells treated with OA.15 
However, a lot is still unclear as to the exact mechanism behind these observations. 
Firstly, no changes in known fatty acid transport proteins such as CD36108 or fatty acid-
binding protein 5 (FABP5)109 were detected in neither the scRNAseq data (Figure S6), 
nor the proteomics data (Tables S1 & S2). It is therefore not clear how exogenous 
StA is taken up by the cells. Additionally, these experiments cannot determine if the 
increased effector-like phenotype of the high-uptake cells is an inherent property, or 
if it is a response to the increased FA availability in the culture medium of the cells. 
Since the cells in most cases are pulsed with StA for only 15 minutes, the former 
is deemed most probable. However, further research is necessary to support this 
hypothesis. 

Conclusion

In this Chapter, a workflow for multiplexing the uptake of bioorthogonal OA analogue, 
StA, with single-cell analytical methods like flow cytometry, and a multiomics 
approach, was developed. Populations of naïve T cells and T cells activated in 
vitro with αCD3/αCD28, with a high uptake of StA, were shown to take on a more 
effector-like phenotype compared to low StA-uptake cells. This was demonstrated 
by increased cell size, increased CD44 expression, decreased CD62L expression, 
increased glycolytic activity, as well as the upregulation of key metabolic pathways 
of effector T cells. Key genes involved in glycolysis, fatty acid synthesis, and the 
mevalonate pathway were upregulated in high StA-uptake splenocytes, as detected 
by scRNAseq. This analysis was focused on T, NKT, and NK cells. In addition, 
proteins in the same pathways were upregulated in CD4+ T cells as determined 
by proteomics, indicating robust results. It is not clear whether certain cells take up 
more exogenous StA because of an inherently more effector-like state, or if the high 
StA-uptake is induced by the increased availability of FAs in the culture medium. 
Further research is necessary to answer these questions. 
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Materials & Methods

General. Sterculic acid was purchased from Cayman Chemical (#26735), and stored 
as 10 mM or 100 mM stock solutions in DMSO at -20°C. Oleic acid-alkyne (#900412E) 
and oleic acid-azide (#900415C) were purchased from Avanti, and stored as 10 mM 
stock solutions in DMSO at -80°C. Oleic acid was purchased from Sigma Aldrich 
(#O1383), and stored as 100 mM stock solution in DMSO at -80°C. AZDye 488 
alkyne (#CCT-1277) and AZDye 488 azide (#CCT-1275) were purchased from Click 
Chemistry Tools (now VectorLabs), and stored as 2 mM stock solutions in DMSO at 
-20°C. Fluorophore 7 was synthesised in-house (see Chapter 2 of this thesis), and 
was stored as 2 mM stock solution in DMSO at -20°C. The murine RNase inhibitor 
was purchased from New England Biolabs (#M0314L), and stored as delivered at 
-20°C. Zombie NIR Fixable Viability kit was purchased from BioLegend (#423105), 
and stored as delivered at -20°C. DNase I was purchased from Thermo Fisher 
Scientific (#90083), and stored as delivered at -20°C. PE/Dazzle 594 anti-mouse 
CD3 antibody was purchased from BioLegend (#100246), and stored as delivered at 
4°C. APC anti-mouse CD4 antibody was purchased from BioLegend (#100516), and 
stored as delivered at 4°C. eFluor450 anti-mouse CD44 antibody was purchased 
from Invitrogen (#48-0441-82), and stored as delivered at 4°C. PE-Cyanine7 anti-
mouse CD62L antibody was purchased from Invitrogen (#25-0621-82), and stored 
as delivered at 4°C.

DC2.4 cell culturing. DC2.4 cells were cultured in RPMI 1640 culture medium 
(Gibco, #31870025) supplemented with 10% FCS, GlutaMAX (2 mM), sodium 
pyruvate (1 mM), 1x non-essential amino acids (NEAA, Thermo Fisher Scientific), 
penicillin (100 I.U./mL), streptomycin (50 µg/mL), and 2-mercaptoethanol (50 µM, 
Thermo Fisher Scientific), and incubated at 37°C, 5% CO2. The cells were grown to 
70-80% confluency and passaged every 2-3 days by trypsinisation. 

Splenocyte isolation, stimulation and culturing. Spleens were harvested from 
naïve C57BL/6 mice. To obtain a single-cell suspension of splenocytes, the spleens 
were minced with the flat end of a syringe plunger over a 70 µm cell strainer. The 
strainer was washed with single-cell suspension buffer (SCSB, 2% FCS and 1 mM 
EDTA in PBS), and the process was repeated until no more red tissue was visible in 
the strainer. The cells were pelleted at 300 rcf and 4°C for 10 min, the supernatant 
was discarded, and the cells were resuspended in 2 mL ACK lysis buffer (Thermo 
Fisher Scientific) per spleen, to remove red blood cells. After 5 min in the lysis 
buffer, cold PBS was added until 40 mL and the cells were pelleted at 500 rcf and 
4°C for 5 min. The supernatant was discarded, and the cells were resuspended in 
SCSB and passed over a 40 µm cell strainer. The cells were pelleted at 300 rcf and 
4°C for 10 min, the supernatant was discarded, and the cells were resuspended 
in splenocyte medium (RPMI 1640 culture medium (Capricorn Scientific, #RPMI-
HXA) supplemented with 10% FCS, GlutaMAX (2 mM), penicillin (100 I.U./mL), 
streptomycin (50 µg/mL), and 2-mercaptoethanol (50 µM)). The cells were counted 
using a haemocytometer before seeding. For experiments using solely unstimulated 
splenocytes, the cells were seeded directly for the respective experiments (see 
below). 

For experiments using both stimulated and unstimulated splenocytes, half the wells 
of a Nunc™-treated 6-well plate (Thermo Fisher Scientific) were coated with Ultra-
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LEAF purified anti-mouse CD3ε antibody (BioLegend, 5 µg/mL) in sterile PBS for 2 
h at 37°C. After 2 h the antibody was removed, and 15x106 cells were seeded per 
well in 5 mL complete splenocyte medium supplemented with Ultra-LEAF purified 
anti-mouse CD28 antibody (BioLegend, 3 µg/mL) and recombinant murine IL2 
(PeproTech, 10 U/mL). For unstimulated control cells, 15x106 cells were seeded per 
well in 5 mL complete splenocyte medium supplemented with recombinant murine 
IL2 (PeproTech, 10 U/mL). All cells were incubated at 37°C, 5% CO2 overnight. The 
next day, the activated and naïve cells were scraped, combined in separate tubes 
and centrifuged at 300 rcf for 10 min. The cells were resuspended in fresh splenocyte 
medium before being counted using a haemocytometer and seeded for experiments 
(see below).

Cell sorting of naïve splenocytes for proteomics and Seahorse analysis. Three 
spleens were harvested, and splenocytes were isolated (as described above) to 
yield ~400-500x106 unstimulated cells. These cells were seeded evenly over the 
wells of three Nunc™-treated 6-well plates (Thermo Fisher Scientific) in 2 mL fresh 
splenocyte medium per well. To each well, 2 mL sterculic acid (200 µM) in splenocyte 
medium was added, to give a final sterculic acid-concentration of 100 µM. The cells 
were incubated at 37°C, 5% CO2 for 15 min, to allow for uptake of the fatty acid. All 
wells were harvested, combined in 50 mL tubes, and washed with fresh medium 
(x1) and PBS (x1). Each washing step consisted of spinning down (300 rcf, 5 min), 
aspirating supernatant, and resuspending in wash solution. After the last wash, 
the cells were resuspended in PBS supplemented with fluorophore 7 (1 µM) and 
incubated on ice for 35 min, to allow the fluorophore to react with sterculic acid. 
The cells were washed with cold PBS (x2), where each washing step consisted of 
spinning down (300 rcf, 5 min, 4°C), aspirating supernatant, and resuspending in 
wash solution. To perform a viability staining, the cells were resuspended in 750 µL 
of HBSS (Gibco, #14025092) supplemented with Zombie NIR (BioLegend, #423105, 
1:500) and DNase I (Thermo Fisher Scientific, #90083, 30 U/mL), and incubated 
at RT for 15 min. The rest of the antibody cocktail was diluted in 250 µL HBSS 
and added to the cells to give a final volume of 1 mL. The following antibodies and 
dilutions (calculated with 1 mL final volume) were used: PE/Dazzle 594 anti-mouse 
CD3 (1:800), APC anti-mouse CD4 (1:400), eFluor450 anti-mouse CD44 (1:200), 
and PE-Cyanine7 anti-mouse CD62L (1:1000). The cells were incubated at RT for 
an additional 25 min, before addition of 10 mL FACS buffer (PBS with 0.2% BSA and 
2 mM EDTA) and centrifugation at 300 rcf, 5 min. The cells were then washed with 
FACS buffer (x2), before being resuspended in ~1.5 mL FACS buffer. The samples 
were transported on ice and sorted using a BD FACS Aria III 4L (BD Biosciences, San 
Jose, CA, USA), following the gating strategy shown in Figure S1A. The experiment 
was repeated minimum as biological triplicates.

Cell sorting of activated splenocytes for proteomics and Seahorse analysis. 
Three spleens were harvested, and splenocytes were isolated and activated (as 
described previously). Subsequently, the same protocol as for sorting naïve 
splenocytes (described above) was used, except for the PE/Dazzle 594 anti-mouse 
CD3 antibody which was diluted at 1:200 instead of 1:800. The FACS gating strategy 
is shown in Figure S1B. The experiment was repeated as biological triplicates.

Seahorse analysis. 1-2x106 sorted low- and high-uptake cells were used to perform 
the Seahorse Real-Time ATP Rate Assay. Inhibitors and uncouplers were prepared 
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in XF assay media, supplemented with 5 mM D-(+)-glucose for sequential addition at 
the appropriate final concentrations of oligomycin A (1.8 µM), and antimycin A (2 µM) 
(all Sigma-Aldrich). Cells were placed in a non-CO2 incubator at 37°C for 1 h prior to 
the assay. Basal respiration (OCR) and extracellular acidification rate (ECAR) were 
measured by the Seahorse Biosciences XFe24 Extracellular Flux Analyser (Agilent 
Technologies, Santa Clara, CA, USA). Oxygen consumption rates (OCR) and ECAR 
were measured and analysed using the Agilent online analysis tool. Values recorded 
were normalised to cell numbers seeded. Baseline readings were established, and 
the effects of specific inhibitors and uncouplers on OCR and ECAR were assessed 
using repeated measures ANOVA and plotted as bar charts, and scatter plots. Error 
bars indicating standard deviation were included to illustrate variability within the 
data.

Preparation of sorted samples for proteomics. From the sorted cells (described 
above), 2x105 cells of each population were taken for total-digest proteomics. The 
samples were spun down at 300 rcf, 5 min, 4°C, and the supernatant was aspirated. 
The cell pellets were plunge frozen and stored at -80°C until further processing. 
Upon thawing of the samples, they were resuspended in 15 µL lysis buffer (250 
mM sucrose, 5 mM EDTA, 1x cOmplete™ protease inhibitor (Roche) in PBS). The 
samples were lysed by sonication (Qsonica Q700 Microplate Sonicator, 4x10 s 
pulses, 10% amplitude, 0°C). Protein concentration was measured by Qubit Protein 
assay (Invitrogen) according to the manufacturer’s protocol, and all samples were 
found to contain ~4 µg of protein. The proteins were precipitated by adding 500 µL 
cold (-80°C) acetone, vortexing, and incubating the samples at -80°C for 1 h. The 
samples were spun down at 20 000 rcf, 15 min, 4°C, and the supernatant was poured 
off. To wash, 300 µL acetone was added to each sample, followed by vortexing and 
sonication (2x10 s pulses, 10% amplitude, 0°C). The samples were incubated at 
-80°C overnight, before being spun down at 20 000 rcf, 15 min, 4°C. The supernatant 
was poured off, and the samples were airdried for 2 min to ensure all the acetone had 
evaporated. To redissolve and denature the proteins, 20 µL urea (8 M) in NH4HCO3 
(100 mM), pH 8 was added, and the samples were shaken for 30 min at 37°C, 1000 
rpm. The proteins were then reduced by addition of dithiothreitol (DTT, 5 mM) and 
the samples were shaken for 15 min at 65°C, 800 rpm. The samples were cooled 
down before addition of iodoacetamide (IAA, 10 mM) and incubation for 30 min at RT 
in the dark, to acetylate all proteins. Unreacted IAA was quenched by addition of DTT 
(7 mM). All samples were diluted with 170 µL CaCl2 (1 mM) in NH4HCO3 (20 mM) 
to ensure urea concentrations <1 M. All samples were transferred to Protein LoBind 
tubes (Eppendorf), and sequencing-grade trypsin (Promega, 0.2 µg) was added. 
The trypsin digestion mixture was shaken at 37°C, 1000 rpm overnight, before being 
quenched by addition of 5 µL 50% trifluoroacetic acid (TFA) in MilliQ. Peptides were 
desalted using Empore™ C18 StageTips (CDS Analytical) preconditioned with 50 
µL MeOH, 50 µL of 0.05% (v/v) TFA in 60% (v/v) acetonitrile/MilliQ (solution B) and 
50 µL 0.05% (v/v) TFA in MilliQ (solution A) by centrifugation (600 rcf, 2 min). The 
peptides were washed with solution A (100 µL, 800 rcf, 3 min) and eluted into new 
Protein LoBind tubes using solution B (100 µL, 800 rcf, 3 min). The samples were 
concentrated using an Eppendorf SpeedVac (Eppendorf Concentrator Plus 5301 or 
5305) and stored at -80°C until measurement. Upon measurement, desalted peptide 
samples were reconstituted in 40 µL LC-MS solution (97:3:0.05 MilliQ, acetonitrile, 
TFA).
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LC-MS/MS measurements. Peptides (prepared as described above) were separated 
via nanoflow reversed-phase liquid chromatography using a nanoElute 2 LC system 
(Bruker Daltonics) coupled to a timsTOF HT mass spectrometer (Bruker) with 0.1% 
FA (solution A) and 0.1% FA/99.9% ACN (solution B) as the mobile phases. The 
samples were loaded on a trap column (PepMap C18, 5 mm x 0.3 mm, 5 µm, 100 Å, 
Thermo Scientific) followed by elution and separation on the analytical column 
(PepSep C18, 25 cm x 75 µm, 1.5 µm, 100 Å, Bruker) kept at 50 °C using a gradient 
of 2 - 25% solvent B in 25 min, 25 - 32% B in 5 min, 32 - 95% B in 5 min and 95% B 
for 10 min at a flow rate of 300 nL/min. Peptides were introduced to a TimsTOF HT 
(Bruker Daltonics) using a 20 μm ID fused silica emitter (Bruker Daltonics) installed 
in a nano-electrospray ion source (CaptiveSpray source, Bruker Daltonics)  with 
spray voltage set to 1500 V.

For DIA acquisition, peptides were analysed with a TimsTOF HT (Bruker Daltonics) 
running in DIA-PASEF mode. The DIA-PASEF method was optimized for the 
specific sample type using the py_diAID tool.110 The method covered an ion mobility 
range from 1.35 to 0.7 Vs cm-2 and an m/z range of 300 to 1300, using 10 DIA-
PASEF scans with two isolation windows per scan, resulting in a cycle time of 1.1 
s. Collision energy was linearly decreased from 59 eV at 1.6 Vs cm-2 to 20 eV at 
0.6 Vs cm-2. For all experiments the ion mobility dimension was calibrated linearly 
using three selected ions of the Agilent ESI LC/MS Tuning Mix [m/z, 1/K0: (322.0481, 
0.7318 Vs cm−2), (622.0289, 0.9848 Vs cm−2), (922.0097, 1.1895 Vs cm−2)]. Mass 
calibration was performed with sodium formate in HPC mode.

Proteomics data analysis. The raw files were analysed using DIA-NN (version 
1.8.1). Searches were performed against a UniProt database of the mouse proteome 
(UPID: UP000000589, downloaded 17th March 2024).42 The output file “report.
unique_genes_matrix.tsv” from DIA-NN was used for further analysis in R Statistical 
Software.31 At most 1 missing value in either the low- or high-uptake samples were 
allowed, and missing values were imputed with the average value of the remaining 
measurements. In cases where all values were missing from either the low- or high-
uptake samples, the missing values were imputed with a negligible small number 
to allow for further processing and statistical calculations. Significantly differentially 
expressed proteins were determined using the empirical Bayes method in the Limma 
package111 (Version 3.58.1) in R, and the significant proteins were determined to 
have a 2-fold difference between the expression levels of low- and high-uptake 
samples with an adjusted p-value of <0.05. Pathway analysis was performed using 
the clusterProfiler package in R.43

Checking integrity of RNA by 1% agarose gel after click reactions. 1x106 DC2.4 
cells were seeded per well in 6-well plates, and incubated at 37°C, 5% CO2 overnight 
to allow the cells to attach. The samples shown in Figures S2A & S2B were treated 
with either sterculic acid (50 µM), oleic acid-alkyne (50 µM), oleic acid-azide (50 µM) 
or DMSO-vehicle (0.5%) in fresh DC2.4 medium for 1 h at 37°C, 5% CO2, followed by 
a wash with DC2.4 medium x1 and PBS x1. The samples shown as “Live” in Figure 
S2A were reacted with fluorophore 7 (5 µM) or DMSO vehicle (0.25%) in fresh DC2.4 
medium for 1 h at 37°C, 5% CO2. The medium was aspirated and the cells were 
resuspended in 500 µL TRIzol reagent (Invitrogen) per well, before being transferred 
to 1.5 mL Eppendorf tubes. The samples were plunge frozen in liquid nitrogen and 
stored at -80°C until further processing. Simultaneously, the samples shown as 
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“Fixed” in Figures S2A & S2B were fixed with 4% PFA in PBS for 15 min at RT. The 
fixed cells were washed with PBS x2, and permeabilised with PBS supplemented 
with saponin (0.1%) and RNase inhibitor (40 U/mL). After permeabilization, the cells 
were again washed with PBS x2, followed by click reaction with complete IEDDA 
cocktail, complete CuAAC cocktail, or DMSO vehicle (0.25%) in PBS for 1 h at 
RT in the dark. The IEDDA cocktail consisted of fluorophore 7 (5 µM) in PBS. The 
complete CuAAC cocktail consisted of CuSO4 (1 mM), sodium ascorbate (10 mM), 
THPTA ligand (1 mM), amino-guanidine (10 mM), HEPES pH 7.2 (100 mM), and 
AZDye 488 alkyne/azide (5 µM). The fixed cells were then washed with PBS x2, 
before addition of 500 µL TRIzol reagent (Invitrogen) per well. The fixed cells were 
scraped to loosen them from the plate and transferred to 1.5 mL Eppendorf tubes. 
To all the fixed samples, proteinase K (40 U/mL, New England Biolabs, #P8197S) 
was added, and the samples were incubated at 56°C for 1 h, followed by 10 min at 
RT and 5 min on ice. All fixed cell samples were plunge frozen in liquid nitrogen and 
stored at -80°C until further processing.

For the samples shown in Figure S2C, a similar protocol was followed as described 
above. The only differences were that there was no oleic acid analogues added to 
these samples, and the separate components of the CuAAC cocktail (diluted in 100 
mM HEPES, pH 7.2) were also added to the cells. 

All the prepared samples were thawed, 100 µL chloroform was added to each, and 
they were vortexed vigorously for 15 s. After centrifugation at 20 000 rcf for 5 min, 
the supernatant (aqueous phase, ~200 µL) was transferred to new tubes. To the new 
tubes, 100 µL chloroform was added, they were vortexed vigorously, and spun down 
at 20 000 rcf for 5 min. The supernatant (~180 µL) was transferred to new tubes, 
180 µL isopropanol was added, and the samples were vortexed. RNA precipitation 
occurred by incubating the samples for 20 min at RT, followed by centrifugation at 20 
000 rcf for 15 min. The pellets were washed twice with ethanol (70%), and airdried 
for 5 min. RNA isolated from live cells was reconstituted in 15 µL MilliQ, whereas 
RNA from fixed cells was reconstituted in 10 µL MilliQ. The RNA concentration 
was measured with a DeNovix DS-11 spectrophotometer, and 1 µg RNA from each 
sample was mixed with RNA loading dye (Thermo Fisher Scientific, #R0641, 1x) 
supplemented with GelRed and loaded on 1% agarose gels in TAE buffer. As a 
reference, RiboRuler High Range RNA ladder (Thermo Fisher Scientific, #SM1821) 
was also added to the gels. The gels were run at 80 V for 45 min and were imaged 
on a Chemidoc MP imaging system (Bio-Rad). 

Cell sorting of splenocytes for single-cell RNA sequencing. One spleen was 
harvested, and the splenocytes were isolated and stimulated as described above. 
The stimulated cells were scraped from the 6-well plate and counted using a 
haemocytometer. 8x106 cells were seeded in 800 µL splenocyte medium in one 
well of an uncoated 12-well plate. To the same well, 800 µL sterculic acid (50 µM) 
in splenocyte medium was added, to give a final sterculic acid-concentration of 
25 µM. The cells were incubated at 37°C, 5% CO2 for 1 h, to allow for uptake of 
the fatty acid. The cells were harvested, transferred to a 15 mL tube, and washed 
with fresh medium (x2). Each washing step consisted of spinning down (300 rcf, 5 
min), aspirating supernatant, and resuspending in wash solution. The cells were 
resuspended in 1.6 mL fresh medium supplemented with fluorophore 7 (1 µM) and 
seeded in a well in an uncoated 12-well plate. The cells were incubated at 37°C, 5% 
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CO2 for 1 h, to allow the fluorophore to react with sterculic acid, followed by being 
harvested, transferred to a 15 mL tube, and washed with fresh medium (x1) and PBS 
(x1). To perform a viability staining, the cells were resuspended in 1 mL Zombie NIR 
(1:1000) in PBS, and incubated at RT for 20 min. After staining, two washing steps 
with fresh medium (x1) and PBS (x1) were performed. The cells were fixed with 2% 
paraformaldehyde (PFA) in PBS for 30 min, before unreacted PFA was quenched 
with PBS supplemented with glycine (20 mM) and RNase inhibitor (40 U/mL). A last 
wash with FACS buffer was performed, before the cells were resuspended in 600 
µL FACS buffer supplemented with RNase inhibitor (40 U/mL). The samples were 
transported on ice and sorted using a BD FACS Aria III 4L (BD Biosciences, San 
Jose, CA, USA), according to the gating strategy shown in Figure S3.

scRNAseq workflow & data analysis. 4x105 cells of the low and high StA-uptake 
populations were collected by FACS (as described above) and were handed over to 
the Leiden Genome Technology Centre (LGTC) for processing, measurement, and 
data analysis. The samples were analysed using the Chromium Fixed RNA Kit (10x 
Genomics). 
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Supplementary Figures & Tables

Figure S1: Example of FACS gating strategy for proteomics and Seahorse analysis of A) 
naïve splenocytes, B) αCD3/αCD28-activated splenocytes.
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Table S1: List of significantly up- and downregulated proteins (in the high-uptake population) 
after proteomics analysis of naïve CD3+/CD4+ T cells upon high or low uptake of StA.

 
 

Upregulated Downregulated 
Cd74 Fbxo7 
Ncapg  
Ncapd2  
Cdk1  

Ncaph  
Kif2c  

Swap70  
Pygm  
Kif4  
Pld4  

Incenp  
Tbc1d4  
Supt20h  

Mafg  
Dut  

Rbfa  
Top2a  

Marcksl1  
Stmn1  
Smc2  
Anxa2  
Dhfr  
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Table S2: List of significantly up- and downregulated proteins (in the high-uptake population) 
after proteomics analysis of αCD3/αCD28-activated CD3+/CD4+ T cells upon high or low 
uptake of StA. The table continues on the next page. 

 
 

Upregulated Downregulated 
Mapkapk5 Dut Rps25 Fbxl22 Plp2 Tra2b 

Smad4 Btf3 Ipo5 Irf1 H1-5 Dok2 
Mtg2 Psat1 Pdcd2 Rnf13 Cd3d Atp2a1 

Tsnaxip1 Srm Shmt2 Ifngr1 Pecam1 Kdsr 
Kcna6 Rps17 Ddx3x Depdc1b S100a6 Tmub1 
Heatr9 Cdca7 Acaca Pkp1 Anxa1 Krt17 
Maff Gpatch4 Nudt5 Endod1 Gimap3 Nqo2 

Cops7a Impdh2 Noc2l Ifit1bl1 Phf11b Cap2 
Fem1aa Rpl22 Rps11 Frmd4b Cox6c Fam98c 
Zc3h7b Stard4 Aimp2 Krt4 Ahnak Syne3 
Uqcc6 Ifrd2 Hells Adap1 Trafd1 Tiam1 

Ccdc97 Cyp51a1 Grwd1 Tmem71 Prkab1 Eeig1 
Nexmif Rps3 Gemin8 H2-DMb2 Cnst Cd247 
Akirin2 Smyd5 Surf2 Mbtd1 Hide1 Rasa3 
Zeb1 Znhit3 Aprt Trbv19 Cd48 Slc28a2 
Smg7 Colgalt1 Acly Ifit2 Fgd3 Tgm2 
Klhl9 Nolc1 Dph6 Ecm1 Sp100 Hmgn1 

Ctnna1 Hk2 Rrp15 Cdkn1b Dsp Ets1 
Dhrs11 Fdps  Prss59 Aldh3a2 Dop1b 

Aasdhppt Snrpb  Oasl2 H2bc14 Hsdl2 
Pprc1 Fasn  S100a4 Iigp1 Znf710 
Trim26 Larp4  Vmn2r3 Tmem245 H2bc3 
Pmf1 Spin4  Cep76 Cybc1 Tm9sf3 
Crcp Eif4a1  Ing1 Chdh Cyria 

Sar1b Rpsa  Krt76 Kif1b Vps13c 
Ccdc127 Eif4e2  Cd3e H2-M3 Nfatc2ip 
Polr2d Nob1  Lamtor5 Hist1h2bp Arl6ip4 
Tatdn2 Abcf2  Sell Il4r Itgb3 
Lhpp Psmg4  Cirbp Fbxo6 Trbv1 
Gga2 Hspbp1  Rtp4 Cd47 Elmo2 

Crabp2 Gzmb  Slfn5 Trim14 Tdrp 
Arl1 Dohh  Pdcd4 S100a11 Kctd12 

Snapc1 Heatr3  Hba Ubac2 H2ax 
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Upregulated (cont.) Downregulated (cont.) 

Atf6 Hat1  Dapl1 Krt5 Elf1 
Nedd9 Aven  Try10 Sipa1l1 Dennd1c 
Gal3st4 Mrto4  Krt16 Mdm1 Creb1 
Ogfod1 Cluh  Nucks1 Saraf Sigirr 
Bcat1 Pcna  Dpys Cmc2 Rcsd1 

Hmgcs1 Mtrr  Ifit1 Cytip Cd84 
Kpna2 Ppat  Krt42 Zbtb2 As3mt 
Eif5a Acbd6  H2bc26 Irf7 Map3k3 
Lss Rpap2  S100a13 Ifi203 Sfxn3 

Znhit6 Znrd2  Ighg1 Itm2b Galm 
Znf583 Ltv1  Sun2 Sh3bgrl Zbp1 
Ntmt1 Fam98a  Ltb Amacr Ccdc71 
Ybx3 Mthfd2  Casp1 Tma7 Gvin1 

Psmb5 Rps24  Clec2d Mndal Itgb7 
Rpl22l1 Rps23  H1-2 Cd3g Anxa5 
Cdc45 Dtd2  Trp53i11 Alb Gbp7 
Psmg3 Orc6  Ms4a6b Bles03 Fchsd1 
Slfn2 Nufip1  Epsti1 H1-0 Plgrkt 

Dnajc15 Edrf1  Ifi204 Anxa2 Ddah2 
Eef1akmt4 Acsl4  Inppl1 Znf551 Col4a2 

Fpgs Naa50  Cd74 Cmpk2 Rab22a 
Pmvk Cdc123  H1-1 Cstb Tmx4 
Idi1 Rpl35  Tbc1d8b Vkorc1 Fam3c 

Mak16 Rplp0  Abcg3 Arid5a Coq9 
Etf1 Ipo4  Ephx1 Atp2a3 Myo15a 

Nap1l1 Hypk  Hist2h2bb Cfap20 Zfp512b 
Uck2 Ubap2  Abraxas1 Lmna Smarca2 

Pabpc4 Cks2  Gimap1 Srsf2 Hmgb2 
Ttc27 Irf4  H2bu2 Sting1 Esyt2 
Rpl30 C1d  Adgre5 Gsn Gbp9 
Gxylt1 Pwp1  Stat2 Capg Rnf169 
Mcm10 Rps12  Krt12 Pafah1b3 Arhgef18 

Pla2g12a Serpinb6b  Ctse Msh3 Hsd11b1 
Aen Umps  Ptms Sit1 Igtp 

Cars1 Blm  Srd5a3 Zfp362 Hp1bp3 
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Figure S2: RNA gels showing intact RNA after IEDDA, but not after CuAAC. A) IEDDA in 
live and fixed cells. B) CuAAC in fixed cells. C) IEDDA and CuAAC with each individual click 
mix component. D) Structures of oleic acid analogues with cyclopropene (sterculic acid, StA), 
alkyne (oleic acid alkyne, OAalk) and azide (oleic acid azide, OAaz) click handles. 
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Figure S3: Example of FACS gating strategy for scRNAseq of A) naïve splenocytes, B) αCD3/
αCD28-activated splenocytes.
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Figure S4: Quality control analysis of all samples submitted for scRNAseq showing that the 
high-uptake sample of naïve splenocytes is quite different from the other samples. It contains 
more feature and RNA counts than the other samples. 
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Table S3: Immune cell subsets corresponding to clusters identified from the scRNAseq 
analysis (from Figure 2). The immune cell subsets were determined based on expression of 
relevant marker genes from the scRNAseq data. 

 
 

Cluster Immune subset Relevant marker genes 
0 CD4+ T cells CD3E, CD3D, CD3G, CD3Z, CD4 

1 CD8+ T cells CD3Z, CD8A, CD8B1 

2 B cells CD19, IGHM, IGHD, IGHE 

3 B cells CD19, IGHM, IGHD, IGHE 

4 B cells CD19, IGHM, IGHD, IGHE 

5 NK cells CD16, CD27, CD161, KLRK1, NCR1 

6 B cells CD19, IGHM, IGHD, IGHE, IGHG 

7 Mixed (T & B cells) CD3Z, CD4, CD8B1, CD19, IGHD, IGHE 

8 CD8+ T cells CD3Z, CD8A, CD8B1 

9 CD8+ T cells CD3Z, CD8A, CD8B1 

10 B cells  CD19, IGHM, IGHD, IGHE 

11 B cells  CD19, IGHM, IGHG 

12 CD8+ NKT cells CD3Z, CD8A, CD16, CD161, CD122, KLRK1 

13 CD4+ NKT cells CD3Z, CD4, CD161, CD122, KLRK1, NCR1 

14 CD4+ Treg CD3Z, CD4, FOXP3 

15 Monocytes CD68, CD172A, CD86, CD40, CD80 

16 CD8+ T cells CD8A, CD8B1 

17 Mixed CD8A, CD8B1, CD161, CD122, KLRK1, NCR1 

18 CD4+ T cells CD3Z, CD4 

19 Monocytes CD11B, CD14, CD16, CD68, CD172A, CD40, CD80 

20 Mixed  CD3Z, CD4, CD8A, CD8B1 

21 Monocytes  CD11B, CD14, CD16, CD172A, CD80 

22 NK cells CD56, CD49B 

23 Monocytes CD68, CD172A 
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Figure S5: Gene expression distribution from scRNAseq of genes related to lipid metabolism. 
The expression distribution is highlighted in clusters containing all T, NKT, and NK cells. 
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Figure S6: Expression of genes related to lipid metabolism from scRNAseq in the high- and 
low-uptake populations of T, NKT, and NK cells, represented as violin plots. 
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Figure S7: Gene expression distribution from scRNAseq of genes related to glycolysis and 
glucose metabolism. The expression distribution is highlighted in clusters containing all T, 
NKT, and NK cells.
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Figure S8: Expression of genes related to glycolysis and glucose metabolism from scRNAseq 
in the high- and low-uptake populations of T, NKT, and NK cells, represented as violin plots.
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