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Chapter 1

Introduction

All living cells have an inherent need for exogenous metabolites to cover their
energetic needs, and to provide building block for biosynthesis." The same is true
for immune cells. What has been largely underappreciated over the last decades,
is how the availability of metabolites to immune cells can directly impact their
immunological function, activation, and differentiation.” This growing field, called
immunometabolism, has been gaining popularity in recent years.2?

This thesis focuses on the study of the metabolic requirements of T cells during
their activation. T cell activation is part of the adaptive immune response, which is
mounted by antigens presented on the surface of antigen-presenting cells (APCs)
that in turn are recognised by specific T cell receptors (TCRs) on the surface of T
cells. The binding of the TCR to the presented antigens, in combination with relevant
costimulatory signals, forms the basis of the activation and differentiation of T cells,
from quiescent cells to highly specialised effectors/orchestrators of the anti-pathogen
immune response.*

In response to the TCR binding, a plethora of signalling cascades inside the T
cells are stimulated to mount the appropriate immune response.>® This includes a
substantial metabolic reprogramming to, amongst others, support their increased
growth and proliferation during the clonal expansion phase, and their conversion from
small featureless cells to large effector cells.”® Quiescent, naive T cells maintain low
biosynthetic levels and their cellular energy demands are mostly maintained by the
tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHQOS, Figure 1A).°
Conversely, effector T cells have a large biosynthetic burden where the synthesis of
nucleotides, amino acids, and fatty acids for DNA, proteins, and lipids, respectively,
are needed.'® Therefore, these T cells will upregulate their aerobic glycolysis, which
will dwarf the contribution of OXPHOS to their metabolism (Figure 1B). Aerobic
glycolysis generates energy faster, albeit less efficient, than OXPHOS, and is an
important source for essential biosynthetic building blocks.’

The metabolic reprogramming of T cells is further supported by an increased uptake
of exogenous nutrients such as glucose, amino acids, and fatty acids (FAs, Figure
1B). The local concentration of these nutrients in the cell’s direct microenvironment
is therefore a key factor in the activation of T cells. Low or high availability of these
nutrients can directly modulate T cell activation and thus the immune response.'-'5
The cellular uptake of exogenous glucose and amino acids in T cells is defined
by well-known, distinct membrane transporters, such as GLUT1 for glucose, and
the LAT-family of solute carriers for the amino acids.'®'® The expression of these
transporters is therefore closely linked to the uptake of the nutrients, and thereby
also to T cell activation.™'® It has been demonstrated that the knockout of these
nutrient transporters impairs T cell survival and effector differentiation, highlighting
their importance for proper T cell function.’®'® However, transporter levels are not
the only determining factor in how much nutrient a cell takes up. The competing
transporter activity of its surrounding cells and other factors affecting local nutrient
concentrations also determine the uptake (and hence activation) of T cells.®



A) Quiescent T cell metabolism
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B) Activated T cell metabolism
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Figure 1: Metabolic pathways that support T cells. A) Quiescent T cells break down glucose,
via glycolysis, or fatty acids, via fatty acid B-oxidation (FAO), to acetyl coenzyme A (CoA).
Acetyl-CoA enters the tricarboxylic acid (TCA) cycle in the mitochondria, which generates
reducing equivalents for oxidative phosphorylation (OXPHOS) through several enzymatic
reactions. Complex V in the electron transport chain generates ATP, the molecular currency
of energy in the cell, from OXPHOS. B) Activated T cells undergo metabolic reprogramming,
where aerobic glycolysis becomes increasingly important for ATP production. The uptake
of extracellular nutrients such as glucose, fatty acids, and amino acids are also increased.
Additionally, products of the TCA cycle form important precursors for the synthesis of several
complex biomolecules which are needed for activation and proliferation. For example,
citrate is transported from the mitochondria to the cytoplasm where it is converted to acetyl-
CoA. Acetyl-CoA is the basis of fatty acid synthesis (FAS), leading to the biosynthesis of
cellular lipids. Simultaneously, acetyl-CoA supports the production of farnesyl pyrophosphate
(farnesyl-PP) via the mevalonate pathway, a precursor for cholesterol biosynthesis. The figure
is made with BioRender.

T cells also require FAs during their activation.'® However, the uptake, intracellular
transport, and function of this class of nutrients is much less defined. While there have
been indications that FAs can enter T cells via passive diffusion?!, the contribution
of transporters such as CD36, fatty-acid binding proteins (FABPs), or fatty acid
transport proteins (FATPs) appears to be significant to control cellular FA uptake.? In
addition to FA uptake, T cells also cover their FA need by de novo fatty acid synthesis
(FAS), complicating the matter further.?
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FAs are important for a number of physiological pathways in cells. They can be
used as energy storage, as energy substrates that are degraded via lipolysis and
fatty acid B-oxidation (FAO), or as structural membrane components in the form
of phospholipids and cholesterol.?* Additionally, they can play important roles in
intracellular signal transduction?®, as messengers between cells®, or as modulators
of gene transcription.?” However, changes in FA homeostasis and lipid storage can
also lead to the accumulation of free FAs (FFAs) in cells, causing lipotoxicity.?® The
complexity and diversity of FA biology, as well as its importance for T cell function
and activation, highlights the relevance of studying this class of biomolecules.

This Chapter will further focus on current knowledge of FA uptake and metabolism
in different T cell subsets, emphasising the importance of the correct function and
regulation of FA-related metabolic pathways for these essential immune cells. Extra
attention will be given to the immunomodulatory FA oleic acid (OA), as this is one
of the better-studied examples of a FA that is key during T cell activation. Lastly, the
molecular tools to study exogenous FA uptake will be discussed.

Fatty acid and lipid metabolism in different T cell subsets

During metabolic reprogramming upon activation, effector T cells upregulate
their FA-related anabolic pathways, including de novo FAS, accompanied by the
aforementioned switch to aerobic glycolysis (Figure 1B). The increase in FAS
supports the production of cellular lipids, such as ceramides and phospholipids, to
sustain increased proliferation and growth.?® The biosynthesis of other cellular lipids
such as isoprenoids, cholesterol, and cholesterol derivatives is also upregulated in
effector T cells.?® The biosynthetic precursors of these lipids are products of the
mevalonate pathway. It is therefore unsurprising that the knockout of the key enzyme
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGCR) from this
pathway ablates proper effector T cell functions.®® At the same time, T cells take up
exogenous lipids and cholesterol, either as FFAs', or from low-density lipoprotein
(LDL) particles via the LDL receptor (LDLR), which is upregulated in early activating T
cells.® The expression of LDLR is essential for the early activation of effector T cells,
highlighting that the endogenous lipid and cholesterol biosynthesis is insufficient to
cover the cell’'s metabolic needs during differentiation.®'

During the early activation of CD4+ effector T cells, FA metabolism is governed by
two distinct signalling pathways' resulting from the activation of mammalian target
of rapamycin complex 1 (mTORCH1). This leads to the activation of the transcription
factors peroxisome proliferator-activated receptor gamma (PPARYy) and that of sterol
regulatory element-binding protein 1 (SREBP1), which upregulate the expression
of genes related to FA uptake and de novo FAS, respectively.” If either of these
two signalling pathways are inhibited, the T cells suffer from reduced activation
and proliferation, indicating that both FA uptake and FAS are essential for proper
activation of effector T cells.'”> SREBPs have also been implicated as essential
for the metabolic reprogramming and activation of CD8+ T cells, by regulating the
lipid biosynthesis program, further supporting the essential role of these metabolic
pathways for effector T cell differentiation.>?

The picture is further complicated by the differential reliance on FA uptake and FAS
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by the different T cell subsets. After activation, CD4+ effector T cells can turn into
different sub-types, each with their own function in the immune system.* To support
their immunological functions, T helper 1 (Th1), Th2, and Th17 cells show unique
changes in FA metabolism. Th17 cells are heavily dependent on de novo FAS, and
inhibition of the rate-limiting enzyme, acetyl-coenzyme A carboxylase 1 (ACC1)
leads to a decline in the differentiation of this T cell subset.®*% De novo FAS is
also important for Th1 and Th2 differentiation, but to a lesser extent than for Th17
cells.®5% Interestingly, the expression of PPARy has been shown to be important
for the function and proliferation of Th2 cells.?”* This could indicate that the uptake
of exogenous FAs plays a more important role for Th2 cells, contrary to Th17 cells
where de novo FAS plays a bigger role. However, the precise roles of FA uptake and
FAS to the biology of T cell subsets remains to be fully elucidated. Regulatory T cells
(Tregs), which can suppress immune responses in an antigen-specific manner®,
show a particularly intriguing lipid uptake and FAS phenotype.?® Tregs show low
levels of glycolysis.“*#! Yet, they are not metabolically quiescent.®® They show an
increased FA uptake, and use FAO to support their immunosuppressive functions
(Figure 1), distinguishing them other T cell subsets.®%4? The role of this difference
compared to effector T cells is, as of yet, unknown, nor is it known whether this
could be exploited therapeutically, for example in treatments aimed to reactivate the
immune system to fight cancer.*344

After the end of the effector phase, T cells can form long-lasting memory cells that
can reactivate quickly in response to encounters with the same antigen.*® These
memory T cells (both central and peripheral) are different again in their metabolic
behaviour. They are metabolically quiescent, but instead of breaking down glucose
to fuel OXPHOS, memory T cells rely heavily on catabolic FAO (Figure 1A).17946
This utilisation of FAO is believed to support memory T cell persistence and longevity
by providing a stable ATP source®, and increasing mitochondrial spare respiratory
capacity.*” Additionally, it is believed that FAO yields less oxidative damage to the
cells, minimising the damage the cells accumulate over their (long) lifetimes.*®

An example — the myriad of roles of oleic acid in T cell function

Oleic acid (OA) is a monounsaturated non-essential FA (C18:1, w-9, Figure 2).4°
It comprises 13% of the circulating FFAs in the blood stream®, with its serum
concentration being between 30 uM and 3.2 mM in healthy adults.5' Its main dietary
source is olive oil (of which OA constitutes ~70%)%?, and like most other dietary FAs,
OA can be stored in lipid droplets, metabolised by FAO, or used in the biosynthesis
of other lipids.5?

\/\/\/\/:\/\/\/\)J\OH
Figure 2: Structure of the monounsaturated fatty acid oleic acid (C18:1, w-9).
In addition to the purely metabolic properties, OA has been described to have direct
immunomodulatory properties, and it is often described as anti-inflammatory.5+-%¢ OA

treatment has been shown to influence immunological functions in diseases like
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asthma®, sepsis®, and cancer.5°-%4

In an ovalbumin-induced BALB/c asthma mouse model, for example, daily oral
administration of 250 mg/kg OA has been shown to reduce symptoms in vivo by
reducing cytokine secretion, reducing the amount of inflammatory cells presentin the
lung, and alleviating the overall pathological changes in the lung (such as epithelial
cell proliferation, inflammatory cell infiltration, and mucus hypersecretion).5”

In an experimental sepsis mouse model, the daily oral administration of 0.28 mg
OA was also shown to mitigate inflammation by increasing production of the anti-
inflammatory cytokine IL-10, as well as decreasing production of the pro-inflammatory
cytokines IL-13 and TNFa.%® OA also decreased systemic corticosterone levels, as
well as decreasing neutrophil migration and accumulation at the site of infection.
These factors were likely contributing to the increased bacterial clearance observed
upon treatment with OA, and could indicate a beneficial effect of OA on sepsis
outcome.®®

Rather surprisingly, OA has also been implicated in a beneficial reduction in cancer
progression and growth in cancer types such as pancreatic cancer®, esophageal
cancer®, lung carcinomas®'?, tongue squamous cell carcinomas®, and human
hepatocellular carcinoma cells®. The molecular mechanism is not known, but
changes in autophagy and apoptosis have been suggested as possible mechanisms
for the anti-tumour effect of OA.62-54

Since OA appears to impact the immune system in a wide variety of ways, and shows
beneficial effects in its combat of multiple diseases, a more in-depth understanding
of the cellular and molecular basis of these immunomodulatory effects are needed.
Since T cells are important contributors of the immune system, and represent cells
of the adaptive immune system, the uptake and use of OA by T cells is described
below.

Oleic acid affects T cell proliferation, metabolism, and differentiation

OA has been shown to increase the rate of T cell proliferation both in vitro and in
vivo.8% However, at high concentrations, OA decreased both T cell proliferation and
viability via apoptosis®®’°, indicating a dose-dependent effect of the FA. A proposed
mechanism for the increased proliferation of OA-treated T cells is the incorporation
of OA into membrane lipids, such as phosphatidylcholine, which appears to facilitate
an increased calcium flux through the membrane.®” There were no indications of
exogenous OA altering metabolic pathways such as glycolysis and OXPHOS,
suggesting OA is not used as a catabolic energy source. No changes in T cell
receptor (TCR) signalling were detected either.%” However, the exposure of T cells to
OA did significantly increase the expression of several genes related to FAO, as well
as genes related to cholesterol biosynthesis and de novo FAS.” This could indicate
that OA serves as a substrate to generate acetyl-CoA, which can in turn be fed into
biosynthetic pathways generating cholesterol, and long-chain FAs.™

There is further evidence that the metabolic reprogramming of OA-treated T cells
appear to be the driving force of the differentiation into specific T cell subsets after
exposure to OA.”" This is supported by the upregulated production of several key
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cytokines upon treatment of cells with OA. IL-9, the signature cytokine of a Th9
subset, was upregulated in T cells upon treatment with 30 ug/mL of OA in vitro, as
was IL-17A, the cytokine produced by Th17 cells. Treatment of cells in vitro with
exogenous OA also increased production of IL-5, IL-13, and the transcription factor
GATAZ3, which are all associated with the Th2 subset.”" OA-treated T cells were also
shown to significantly increase their production of IL-2, IFN-y, and TNF-q, as well as
IL-4 and IL-10.%657 This could indicate an enrichment of the Th1 and Th2 subsets.”
These results highlight a connection between OA uptake, cellular metabolism, and
the differentiation of T cells into pro-inflammatory subsets. However, the broad
subset of Th-types observed to be upregulated upon OA treatment suggest that it is
a general factor in differentiation.

Regarding the immunosuppressive Treg subset, there is conflicting evidence for
the role of OA in their activation. Both the decrease in Treg population upon OA-
treatment®® 7!, and an increase in Treg differentiation’, have been reported. It was
also shown that OA-treatment resulted in the enhanced suppressive function of
Tregs.” Since Tregs generally rely on FAO-driven OXPHOS to generate energy for
their suppressive functions®475, it could be the case that OA uptake amplified these
metabolic pathways, which in turn increased FOXP3 expression and phosphorylation
of STAT5.7 This in turn enhanced the suppressive function of the OA-treated Tregs.

Although different papers describe different specific outcomes of the differentiation
of T cells exposed to OA, it is clear that this FA has the potential of modulating T cell
differentiation in either a pro- or anti-inflammatory manner. However, determining
the exact outcome is influenced by the experimental setup, and still requires further
research.

Molecular tools to study the uptake of exogenous fatty acids

Although there are substantial indications that OA, and other FAs, have strong
immunomodulatory effects, it is still difficult to study the effect of FA uptake on cellular
phenotype at a single-cell level.

To measure FA uptake, a FA molecule needs to be modified in a way that allows
its detection and quantification. The most traditional way to achieve this would be
to use C or *H radioactively labelled FAs (Figure 3).7%7° The major advantage of
this method is that the chemical modification of the FA is negligible, as the atomic
composition of the isotope-labelled lipid is identical to that of the unlabelled lipid.”
However, this method not only requires specialised laboratory setups, personnel
training, and protective equipment, there are also no methods by which the uptake
data from these experiments can be correlated to the biology of a single cell.”®

In order to obtain single cell data on FA uptake, several fluorescently labelled FAs
were developed, where the FAs were covalently modified with a fluorophore such as
BODIPY prior to FA uptake (Figure 3).2-%° This allowed for the major breakthrough
of single cell FA studies, as it allowed the study of FA uptake by fluorescent
microscopy®®® and flow cytometry.8'#28 Unfortunately, the modifications used in
these experiments significantly alter FA structure (Figure 3), which in turn impacts
their biochemical properties, uptake, and cellular distribution patterns.® There have
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e.g. been observations of fluorescently labelled universal FA probes accumulating in
specific organelles or cellular compartments.7:8

Several other methods have been developed for measuring the uptake of FAs in vivo
and in vitro. A bioluminescent FA probe was developed, where a long-chain FA was
bound to luciferin via a cleavable linker.2® Upon cellular uptake, the cleavable linker
could be hydrolysed by intracellular glutathione which in turn released luciferin.
By addition of the enzyme luciferase, luciferin emitted detectable light that was
proportional to the FA uptake.®® Another FA probe has been developed were FA
uptake in T cells can be quantified using a FA-quantum dot conjugate (FA-Qdot).®
Although both these FA probes have been demonstrated to be applicable in vivo,
their large sizes could still lead to mismatched uptake and distribution patterns
compared to the native FA molecules.8¢

Bc_ OH

Palmitic acid-13C \g/

BODIPY-palmitic acid

Figure 3: Structures of radioactively (palmitic acid-"*C) and fluorescently (BODIPY-palmitic
acid) labelled fatty acid analogues, using palmitic acid (C16:0) as an example.

Applying bioorthogonal (click) chemistry to explore fatty acid uptake

The aim of this thesis is to combine the favourable properties of radiolabelling
(small labels) with the single-cell compatibility of fluorophore-labelled FAs using
bioorthogonal chemistry. The term bioorthogonal chemistry, sometimes also referred
to as click chemistry, was initially coined for the work started by Bertozzi in 2000
for labelling of cell surface glycans.®® The approach consists of the introduction
of a small, biologically inert group into a biomolecule of interest. Then, after any
biological phenomenon under investigation is complete, this group is reacted using
chemistry that is selective for the introduced group and unreactive with all other
chemistry found in the biological system.®** The biomolecule of interest can thereby
be covalently labelled with a reporter molecule (e.g. a fluorophore, Figure 4). This
approach has been highly successful for studying a wide variety of biomolecules
(such as proteins, DNA, RNA, carbohydrates, and lipids).*®* Many excellent review
articles have been published describing different bioorthogonal click reactions and
their biological applications.®>=8 The approach has also been extensively extended
to the study of FA biology.887.9-10" |n the remainder of this Chapter, the bioorthogonal
investigations of FA biology, which are relevant for this thesis, will be discussed.
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O+ :+>@ — O+ 0

Figure 4: The principles of bioorthogonal (click) chemistry. A small chemical modification
is introduced into the biomolecule of interest (diamond shape), allowing for a selective click
reaction with a reporter molecule (e.g. a fluorophore, F). The figure is made with BioRender.

Bioorthogonal FA probes can be fitted with a bioorthogonal group, either through
labelling of the fatty acid head group, or of the acyl tail. However, the former
approach'®2, will remove the key acid moiety that lends the molecules their name.
Here the focus will therefore lie on those approaches that label the FA acyl tail.
Two bioorthogonal groups have been mainly used for tail-labelling: azides'%*-'%8, and
alkynes®101.105-11" gt the w-position (Figure 5A). Since this renders the carboxylic
acid moiety in its native state, these bioorthogonal FAs can be incorporated into
endogenous biological processes such as phospholipid biosynthesis and protein
lipidation, and the click reaction can be used to detect or visualise them86.100.112

The azide and alkyne modifications allow for detection via the copper(l)-catalysed
alkyne-azide cycloaddition (CuAAC), where the reporter molecule contains the
opposite modification, e.g. FA alkyne modification with an azide reporter molecule,
or vice versa (Figure 5B)."® CuAAC is widely used due to its relatively fast
reaction kinetics, low unspecific reactivity, and the synthetic availability of alkyne
and azide modifications to be incorporated into biomolecules.®*** However, the
major disadvantage of this reaction is the employment of cytotoxic copper(l) ions,
which means CuAAC is not live cell nor in vivo compatible.®*-% Of the two groups,
the alkyne is the better bioorthogonal label in FAs, as its lipophilicity is similar to
that of the native, terminal ethyl group. The azide is more polar, thereby reducing
the amphiphilic nature of the bioorthogonal FA analogue compared to the parent
molecule. Interestingly, the alkyne/azide FAs have not yet been used to study FA
uptake by activating immune cells.

A o] . o] P
N=N=N
Ho Ho g
Fatty acid azide Fatty acid alkyne
B

R1—N:IJ\rl:l:l + R2 — >

Cu(l) Fg:/

Figure 5: Structures of A) general bioorthogonal fatty acid analogues with terminal azide
or alkyne modifications, and B) the copper(l)-catalysed azide-alkyne cycloaddition (CuAAC)
reaction.
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One downside of the CuAAC is that the copper catalyst used is toxic to cells,
requiring the fixation of the cells prior to the click reaction."'® The copper catalyst is
also incompatible with many fluorophores used in routine flow cytometry panels.''
These problems were negated by the development of the inverse electron-demand
Diels-Alder (IEDDA) reaction — the reaction between an electron-poor diene, such
as a tetrazine, and a strained or electron-rich dienophile — as a novel click reaction
(Figure 6)."1%"¢ This reaction has opened up a world of live-cell compatible chemistry
with exceptionally fast reaction kinetics.% Since tetrazines absorb light at 500-530 nm,
they have an added benefit of quenching fluorophores with absorbance wavelengths
in a similar range.'” This presents an advantage for live-cell applications, where the
resulting tetrazine-conjugated fluorophores only become fluorescent upon successful
IEDDA ligation (Figure 6). This turn-on effect reduces background fluorescence and
protects live cells from being destroyed by several washing steps.%

R

R@| + XAg\':I:SH . ~ X /:\

Figure 6: The inverse electron-demand Diels-Alder (IEDDA) reaction between an electron-
rich dienophile and an electron-poor diene (here represented by a tetrazine-conjugated
fluorophore).

While the IEDDA reaction has been used to study lipid biology before'®'®, its
application to FA uptake has not been previously explored. This thesis describes
the development of sterculic acid (StA) (Figure 7A) as a bioorthogonal FA analogue
of OA. Contrary to the already established bioorthogonal OA analogues oleic acid
alkyne (OAalk, Figure 7B) and oleic acid azide (OAaz, Figure 7C), StA was shown
to react with tetrazines via an IEDDA reaction, therefore highlighting it as a live-cell
compatible alternative to the azide- and alkyne-modified OA analogues (Chapter 2).

4§ \/\/\/\A/\/\/\)J\
OH

Sterculic acid (StA)
B 0]

= T OH
Z Oleic acid alkyne (OAalk)

C 0]

N /\/\/\/\/;/\/\/\)J\OH

Oleic acid azide (OAaz)

Figure 7: Structures of bioorthogonal oleic acid analogues A) sterculic acid (StA), B) oleic
acid alkyne (OAalk), and C) oleic acid azide (OAaz).
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Furthermore, StA was demonstrated as a versatile bioorthogonal OA analogue
which could be incorporated into a plethora of methods to detect in vitro uptake and
metabolism of OA in dendritic and T cells. This includes methods such as live-cell
confocal imaging (Chapter 2), identification of post-translationally oleoylated proteins
by mass spectrometry (Chapter 3), as well as the connection between phenotypic,
transcriptomic, and proteomic differences, and a differential OA uptake at a single-
cell level (Chapter 4).
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