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Abstract

Breast cancer is a systemic disease, yet the impact of tumor molecular subtype and disease
stage on the systemic immune landscape, remains poorly understood. In this study, we
comprehensively analyzed the systemic immune landscape in a large cohort of breast
cancer patients, encompassing all molecular subtypes and disease stages, alongside a
control group of healthy donors. Using multi-parameter flow cytometry, we assessed the
abundance, phenotype, and activation status of diverse innate and adaptive immune cell
populations across peripheral blood samples from 355 breast cancer patients and 65 healthy
donors. Analyzing all blood samples immediately after collection enabled analysis of often
overlooked, but highly abundant granulocyte populations, including neutrophils and
eosinophils. Our findings reveal that early-stage breast cancer patients exhibit increased
cell counts of neutrophils, classical monocytes, and CD1c DCs compared to healthy donors.
In late-stage breast cancer patients, we observed elevated counts of neutrophils, classical
monocytes, and non-classical monocytes compared to healthy donors. Additionally,
reductions were observed in memory B cells, plasmablast-like cells, conventional CD4 T
cells, and regulatory T cells. Notably, distinct molecular subtypes were associated with
specific changes in the immune landscape, with the most significant changes observed in
the triple-negative subtype. In conclusion, our data indicate that the systemic immune
landscape undergoes more profound alterations in metastatic breast cancer than non-
metastatic cases, with disease stage exerting a greater influence on systemic immune
composition than tumor subtype.

Introduction
Breast cancer can be considered a systemic disease, but the influence of breast cancer on
the systemic immune landscape, especially in relation to tumor molecular subtype and
disease stage, is not well understood. Breast cancer accounts for nearly a quarter of all
cancer diagnoses and necessitates complex treatment strategies, which frequently result
in side effects that cause physical and emotional suffering for those who are affected and
their loved ones'. Breast cancer is classified into three main subtypes, based on hormone
receptor (HR) and human epidermal growth factor receptor 2 (HER2) expression: HR+ tumors
(~70%), HER2+ tumors (15-20%), and triple-negative breast cancer (TNBC, ~15%)?. Each
subtype exhibits distinct molecular signatures and clinical behaviors3. Despite advancements
in treatment tailored to molecular subtypes and other clinical parameters, breast cancer
continues to be the leading cause of cancer-related mortality among women worldwide,
underscoring the urgent need for innovative therapeutic approaches.

Although immune checkpoint inhibitors (ICl) have transformed the treatment of various
cancer types, their efficacy in breast cancer has been relatively modest. TNBC is considered

52

the most immunogenic subtype of breast cancer, characterized by higher levels of tumor
infiltrating lymphocytes (TILs), a higher tumor mutational burden, and increased expression
of programmed death-ligand 1 (PD-L1) compared to the other breast cancer subtypes®.
However, even in TNBC, only a minority of patients benefits from currentimmunotherapeutic
strategies. This limited response to ICl can be partly attributed to the inherently low
immunogenicity of many breast tumors. In addition, a significant contributing factor is
tumor-associated immune suppression, which enables cancer cells to evade local immune
responses>'. Tumor-associated immune suppression often extends beyond the tumor
microenvironment (TME)"-'3, leading to an impact on the systemic immune system of the
host. This systemic effect can manifest as altered immune cell populations and functions
throughout the body, weakening overall immune defense and contributing to disease
progression. Most studies have highlighted the impact of breast tumor subtypes on the
local immune microenvironment, but our understanding of the systemic immune landscape
across different molecular subtypes and disease stages remains limited. While some studies
have provided valuable insights into the impact of cancer on peripheral immune cells'*'>,
several questions remain open for exploration. For instance, previous studies rely on PBMCs,
excluding granulocytes and thereby omitting a significant portion of myeloid cells. The
complex interplay between tumor stage, molecular subtypes, and systemic immune
alterations remains poorly understood, yet is of critical importance for guiding the
development of novel immunotherapeutic approaches tailored to individual patients.

Our goal is to study how tumor stage and molecular subtype impact the systemic
immune landscape in patients with breast cancer. Therefore, we conducted a comprehensive
characterization of the circulating immune landscape in a large cohort of breast cancer
patients spanning different molecular subtypes and disease stages, alongside a matched
healthy donor (HD) control group. Employing multi-parameter flow cytometry analysis, we
assessed the abundance, phenotype, and activation status of various innate and adaptive
immune cell populations from over 400 fresh peripheral blood samples. This enabled us to
generate detailed quantitative and phenotypic data on circulating granulocyte subsets,
dendritic cells (DCs), monocytes, T cells, B cells, and natural killer (NK) cells, shedding light
on the intricate interplay between breast cancer and systemic immune profile. This dataset
is unique because of its large, well-defined patient cohorts, the inclusion of age- and BMI-
matched healthy controls, and the incorporation of neutrophils, eosinophils, and basophils
on this large scale, enabling a comprehensive and integrative approach to analysis.

We show that changes in the systemic immune landscape are most pronounced in
patients with late-stage breast cancer and characterized by a general increase in the myeloid
lineage and a decrease in the lymphoid lineage, especially in the metastatic setting, indicating
that disease stage is a critical factor influencing the immunological profile of breast cancer
patients. Furthermore, specific molecular subtypes notably induce distinct alterations in
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the immune landscape of breast cancer patients. Our findings suggest that the most
significant differences in the systemic immune landscape between the three subtypes and
HDs, are observed in the TNBC subtype. These data provide a valuable resource on the
circulatory immune landscape of breast cancer patients compared to HDs, informing future
pre-clinical and clinical research and paving the way for innovative, stage- and subtype-
specific immunomodulatory treatment approaches.

Material and Methods

Human blood samples

Fresh blood samples from 53 healthy women (healthy donors, HD) were obtained after
approval by the local medical ethical committee (NCT03819829). Additionally, fresh blood
samples from 12 healthy women were obtained anonymously from the Dutch national
blood transfusion service (Sanquin Blood supply, Amsterdam, The Netherlands). In our
cohort of patients with breast cancer, blood samples were obtained from patients enrolled
in either a clinical trial or biobank protocol, after approval by the local medical ethical
committee and/or institutional review board of the Netherlands Cancer Institute. 185
patients were enrolled in a biobanking protocol of the Netherlands Cancer Institute
(CFMPB450); 59 patients were included in the BELLINI trial’® (NCT03815890); 91 patients
were included in the Triple B trial’” (NCT01898117); 10 patients were included in the MIMOSA
trial’® (NCT04307329). Where blood was obtained in the context of a clinical trial, only
baseline blood samples were included in the analysis for this study. Basic clinical parameters
were retrieved from the electronic patient records by qualified medical staff.

We included 121 patients with HR+ breast cancer (ER >10%, PR+/- and HER2 negative),
of which 33 had stage | disease, 53 had stage I, 15 stage Ill and 20 patients had stage IV
disease. Furthermore, we included 67 patients with HER2+ breast cancer (either score 3 for
HER2 using immunohistochemistry (IHC) or positive at in situ hybridization [CISH or FISH])
in case of score 2 on IHC) were included, of which 16 had stage | disease, 17 stage I, 17
stage lll and 17 patients had stage IV disease. Additionally, we included 167 patients with
TNBC (histologically confirmed ER < 10% of positive tumor cells using IHC; HER2: either score
0 or 1 for HER2 at IHC with no amplification detected by in situ hybridization [CISH or FISH]
in case of score 2 on IHC) of which 17 had stage | disease, 40 had stage Il, 17 had stage IlI
and 93 patients had stage IV disease (Figure 1a).

In this study, all patients with early-stage disease (stage I-1ll) were treatment naive at
the time of blood donation. In the late-stage disease (stage IV) setting, blood from patients
with mTNBC was taken before any treatment for metastatic disease. Patients with HR+
tumors and HER2+ tumors did receive prior treatment for metastatic disease (Supplementary
Table 1). For the treated patients from all subtypes, a washout period of at least 3 weeks
was maintained between the last drug administration and the blood draw.
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All study protocols were conducted in accordance with the ICH Harmonised Tripartite
Guideline for Good Clinical Practice and the principles of the Declaration of Helsinki. All
patients and HDs provided written informed consent before enrolment.

Flow cytometry
Blood samples were processed and analyzed within 24 hours after blood draw. All samples
were processed uniformly, by the same team and within the same laboratory. Peripheral
blood was collected in EDTA vacutainers (BD) and subjected to red blood cell lysis (lysis
buffer: dH20, NH4CI, NaHCCO3, EDTA). Cells were resuspended in PBS containing 0.5% BSA
and 2mM EDTA and counted using the NucleoCounter NC-200 automated cell counter
(Chemometec). To obtain white blood cell (WBC) counts per mL of blood, the total amount
of post lysis cells was divided by the volume (mL) of blood obtained from the patient (~10
mL).

For the labeling of surface antigens, cells underwent an initial incubation with human
FcR Blocking Reagent (diluted 1:100 Miltenyi) for 15 minutes at 4°C, followed by a 30-minute
incubation with fluorochrome-conjugated antibodies at 4°C, shielded from light. For
intracellular staining, cells were fixed in Fixation/Permeabilization solution 1X (Foxp3/
Transcription Factor Staining Buffer Set, eBioscience) at 4°C for 30 minutes, then stained
with fluorochrome-conjugated antibodies in Permeabilization buffer 1X (eBioscience) for
30 minutes at room temperature. Viability was determined by staining with either 7AAD
staining solution (diluted 1:10; eBioscience) or Zombie Red Fixable Viability Kit (diluted 1:800,
BioLegend).

Data acquisition of all samples was performed on the same LSRII SORP flow cytometer
(BD Biosciences) operated with Diva software. To make the performance of this machine
as constant over time as possible, CS&T beads (BD) were used to optimize general
performance and Sphero 8 peaks Rainbow Calibration particles (BD) were used to adjust
PMT voltages if necessary. Additionally, single stained compensation controls are taken
along for each experiment. Flow data analysis was conducted using FlowJo software (version
10). Flow cytometry antibody details are provided in Supplementary Table 2 and gating
strategies are illustrated in Supplementary Figures 1a (Myeloid panel gating), 1b (B and NK
cell panel gating), and 1c (T cell panel gating).

Data analysis and statistics

GraphPad Prism (version 10.1.2) software was used for statistical analysis and graphing of
the flow cytometry data. Kruskal-Wallis test was applied when comparing multiple groups,
followed by Dunn's test to obtain adjusted p-values corrected for the number of groups in
the graph (not the number of immune cell populations). PCAs and heatmaps were generated
using Qlucore software (version 3.8). Missing values were imputed by mean values from
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the sample group. Correlation between neutrophil counts and time of blood draw was
performed in R (version 4.3.2) using linear modeling function. Corrected p-values <0.05 were
considered significant and are depicted in the graphs using asterixes: * p<0.05; ** p<0.01;
**% p<0.001; **** p<0.0001.

Results

Breast cancer alters the systemic immune landscape

To gain insights into the impact of breast cancer on the circulatory immune compartment
at early or late disease stages, we conducted high-dimensional flow cytometry on 420 fresh
peripheral blood samples. We developed an analysis pipeline specifically tailored for fresh
blood samples'. This pipeline employs a panel of 50 antibodies distributed across a myeloid
panel, a B- and NK cell panel, and a T cell panel (Supplementary Figure 1a-c). This robust
approach enables a comprehensive analysis of the systemic immune landscape, including
granulocytes, which are typically lost in standard peripheral blood mononuclear cell (PBMC)-
based analyses. We profiled samples of patients without distant metastases (stage I-llI,
referred to as early-stage, n=225) and patients with distant metastases (stage IV, referred
to as late-stage, n=130) (Figure 1a). From the patients with early-stage breast cancer, 101
patients had HR+ disease, 50 patients had HER2+ disease and 74 patients had TNBC (Figure
1a). From the patients with late-stage breast cancer, 20 patients had HR+ disease, 17 patients
had HER2+ disease and 93 patients had TNBC (Figure 1a). As a control group, we profiled
age-, sex- and BMI-matched healthy donors (HDs, n=65) (Figure 1a). Age and BMI of breast
cancer patients and HDs are visualized in Supplementary Figure 2 a, b. Given that neutrophil
release from the bone marrow follows a circadian rhythm?, we tested for correlations
between neutrophil counts and time of blood draw using a linear model. No statistically
significant correlations were found, except in the early-stage TNBC group, where a weak
correlation was observed (r=0.0999, Supplementary Figure 2c). The very low rho-value (<10%)
suggests minimal variance explained by blood draw time, so we chose not to adjust for it
in our dataset.

To explore the flow cytometry data of the three antibody panels in an unbiased manner,
we performed a principal component analysis (PCA). By taking the first three principal
components into account, we could explain 77% of the variance in the data. When plotting
these three principal components, we observed that the HDs cluster away from all breast
cancer groups, and that the early-stage breast cancer groups clustered away from the late-
stage breast cancer groups (Figure 1b). Moreover, disease stage seemed to have a dominant
impact on the systemic immune landscape over tumor subtype (Figure 1c). Hierarchical
clustering of 18 major immune populations analysed, confirmed our PCA analysis with HDs
blood profile separating from breast cancer patient blood profiles (Figure 1d).
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Figure 1. Breast cancer alters the systemic immune landscape. (a) Graphical summary of
included human blood samples and the systemic immune cell populations that were assessed
immediately after blood collection using flow cytometry. (b, ¢) Principal component analysis was
conducted on the Log,-transformed median cell counts per mL of blood from major immune cell
populations (see d), measured by flow cytometry in fresh blood samples. The results were colored
by disease stage discriminating patients with early-stage breast cancer (n=225), late-stage breast
cancer (n=130), and healthy donors (HD) (n=65) (b), and by tumor subtype in discriminating
between patients with a HR+ tumor (n=121), a HER2+ tumor (n=67) or a triple negative tumor
(n=167), and healthy donors (n=65) (c). (d) Heatmap based on the Log -transformed median cell
counts per mL blood, visualizing the major immune cell populations, as assessed by flow cytometry
in fresh blood samples from patients with early-stage breast cancer, late-stage breast cancer,
across different breast cancer subtypes, and healthy donors. Hierarchical clustering was
performed on the immune cell populations and on tumor subtype and disease stage. The color
scale represents row Z-scores, ranging from -2 to 2.
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Breast cancer associated alterations to the systemic immune landscape are disease
stage dependent

Next, we investigated which immune cell populations are driving the clustering patterns
(Figure 1b, d) and how disease stage is impacting the circulating immune composition. We
found both neutrophils and classical monocytes to be significantly increased in patients
with early- and late-stage breast cancer compared to HDs (Figure 2a, b). Additionally, we
observed a statistically significant increase in the number of circulating non-classical
monocytes in patients with late-stage breast cancer compared to HDs (Figure 2b). Though
no significant difference was observed between patients with early-stage and patients with
late-stage breast cancer when all subtypes are grouped together in neutrophil and (non-)
classical monocyte counts, we did observe an increasing trend, suggesting that neutrophil
and (non-)classical monocyte numbers are being increasingly dysregulated as disease
progresses (Figure 2a, b). Furthermore, we found CD1c* DCs to be reduced in the late-stage
group compared to the early-stage group and an increase in CD1c DCs in the early-stage
group compared to the HDs (Figure 2c).

Within the circulating lymphoid compartment we found a decrease in memory B cells
and plasmablast-like cells in patients with late-stage disease compared to HDs and patients
with early-stage disease (Figure 2d). Similarly, we observed that the cell counts of CD8+ T
cells, conventional CD4+ T cells, Tregs and V&2 y&-T cells were reduced in patients with late-
stage disease when compared to patients with early-stage disease (Figure 2e). Additionally,
conventional CD4+ T cell and Treg counts were decreased in patients with late-stage disease
when compared to HDs (Figure 2e). Together these data indicate that breast cancer impacts
the systemic immune landscape in a disease stage dependent manner.

Systemic immune landscape of healthy donors and patients with early-stage breast
cancer across different molecular subtypes
Our finding that disease stage is associated with multiple differences in the systemic immune
landscape (Figure 2) raises the question of whether these alterations differ per breast cancer
subtype. Therefore, we first sought to explore the influence of molecular subtype within
the patients with early-stage disease and HDs. We observed that the increase in neutrophils,
classical monocytes and CD1c DCs is restricted to patients with early-stage HR+ tumors
(Figure 3a-c). Conversely, the increase in non-classical monocytes was only found to be
statistically significant in patients with early-stage TNBC compared to HDs (Figure 3b).
When evaluating the influence of molecular subtype in patients with early-stage breast
on the circulating lymphoid compartment, we found that V62 y&-T cell counts were
statistically significantly elevated in patients with TNBC compared to HDs (Figure 3e).
Furthermore, we observed a reduced plasmablast-like cell count among patients with TNBC
compared to patients with HR+ tumors (Figure 3d). Conversely, we found NK cell counts to
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Figure 2. Breast cancer stage impacts the circulating immune composition. Log -transformed
cell counts per mL blood of major systemic immune cell populations measured by flow cytometry
in patients with stage I-Ill breast cancer (Early) (n=225), stage IV breast cancer (Late) (n=130), and
healthy donors (HD) (n=65), visualizing (a) granulocytes, (b) monocyte populations, (c) DC subsets,
(d) B cell subpopulations and (e) different conventional and unconventional T cell subpopulations
and NK cells. P-values for (a-e) were computed with the Kruskal-Wallis test followed by Dunn’s
multiple comparisons test.

be increased in patients with TNBC compared to patients with HR+ tumors (Figure 3e). No
other statistically significant differences between the molecular subtypes were observed,
suggesting that disease stage had a stronger influence on the systemic immune landscape
(Figure 2) than the molecular subtype in patients with early-stage breast cancer (Figure 3).

Systemic immune landscape of healthy donors and patients with late-stage breast
cancer across different molecular subtypes

Next, we investigated which differences in the systemic immune landscape of advanced
breast cancer patients were associated with a certain molecular subtype. To achieve this,
we took the immune profiles of patients with late-stage breast cancer and compared the
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Figure 3. Systemic immune landscape of patients with early-stage breast cancer across
different molecular subtypes. Log-transformed cell counts per mL blood of major systemic
immune cell populations measured by flow cytometry in patients with early-stage breast cancer
with a HR+ tumor (n=101), a HER2+ tumor (n=50) or a triple negative tumor (n=74), and healthy
donors (n=65), visualizing (a) granulocytes, (b) monocyte populations, (c) DC subsets, (d) B cell
subpopulations and (e) different conventional and unconventional T cell subpopulations and NK
cells. Adjusted p-values for (a-e) were computed with the Kruskal-Wallis test followed by Dunn’s
multiple comparisons test.

three molecular subtypes to each other and to the immune profiles of HDs. When subdividing
late-stage patients based on the molecular subtype of their tumor, we observed an
imbalance in the n-number of patients per group (Figure 1a). However, our results confirm
that the systemic increase in neutrophils observed in patients with late-stage disease
compared to HDs (Figure 2) is present in both patients with HR+ breast cancer and those
with TNBC, while this was not observed for HER2+ stage 4 disease (Figure 4a). The systemic
increase in classical monocytes in late-stage patients compared to HDs (Figure 2) was
predominantly driven by patients with TNBC (Figure 4b). In contrast, the observed increase
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Figure 4. Systemic immune landscape of patients with late-stage breast cancer across
different molecular subtypes. Log,-transformed cell counts per mL blood of major systemic
immune cell populations measured by flow cytometry in patients with late-stage breast cancer
with a HR+ tumor (n=20), a HER2+ tumor (n=17) or a triple negative tumor (n=93), and healthy
donors (n=65), visualizing (a) granulocytes, (b) monocyte populations, (c) DC subsets, (d) B cell
subpopulations and (e) different conventional and unconventional T cell subpopulations and NK
cells. Adjusted p-values for (a-e) were computed with the Kruskal-Wallis test followed by Dunn’s
multiple comparisons test.

in non-classical monocyte counts in patients with late-stage breast cancer compared to HDs
(Figure 2) was found to be attributed to patients with a HR+ tumor (Figure 4b). These data
indicate that the alterations detected in the circulating immune compartment exhibit varying
degrees of penetration across the three molecular subtypes. Among the myeloid cell
populations, eosinophils, basophils, CD14*CD16* monocytes and the DC subsets remained
unaffected in abundance across the different breast cancer subtypes (Figure 4a-c).

Within the lymphoid compartment, plasmablast-like cells were profoundly reduced in
patients with mTNBC and HER2+ tumors compared to HDs (Figure 4d). Similarly, circulating
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memory B cells were also found to be reduced in patients with mTNBC tumors. These data
suggest that late-stage TNBC tumors, and to a lesser extent late-stage HER2+ tumors have
a profound effect on the B cell compartment. When comparing the T cell subset abundances
across molecular subtypes and HDs, we observed that patients with late-stage TNBC had
reduced counts of CD8 T cells, conventional CD4 T cells and Tregs, patients with HER2+
tumors had reduced counts of conventional CD4 T cells and Tregs, and patients with HR+
tumors had reduced counts of Tregs (Figure 4e). These data indicate that circulating T cell
abundances are most affected in patients with TNBC. Beyond the intrinsic effects of this
tumor subtype on the systemic immune environment, this observation may also be
attributable to a treatment history in the (neo)adjuvant setting with chemotherapeutic
agents by a substantial proportion of late-stage TNBC patients. The observation that CD8
T cell counts are reduced in patients with TNBC compared to HDs was previously masked
by other molecular subtypes, that did not show this decrease compared to HDs (Figure 4e).
Apart from memory B cells (Figure 4d), no significant differences between the molecular
subtypes were observed, suggesting once more that disease stage (Figure 2) has a stronger
influence on circulating immune composition than the molecular subtype (Figure 4).

Breast cancer influences T cell phenotype and cytokine production in a tumor subtype-
and disease stage-specific manner.
Given the observed decrease in total counts of CD8+, conventional CD4+, and regulatory T
cells in patients with metastatic disease compared to those with non-metastatic disease
— and for conventional CD4+ and regulatory T cells also compared to HDs— (Figure 2), we
sought to investigate the phenotype and differentiation state of circulating T lymphocytes
by flow cytometry (Supplementary Figure 1c) in relation to tumor subtype and disease stage.
We observed a lower fraction of PD-1* CD8+ T cells and PD-1* conventional CD4+ T cells in
patients with TNBC compared to HDs (Figure 5a), suggestive of altered systemic T cell
activation. Furthermore, in patients with early-stage breast cancer, we observed a lower
proportion of CTLA-4 expressing conventional CD4+ T cells in TNBC patients compared to
patients with HR+ breast cancer (Figure 5a). When testing for differences in T cell phenotype
in late-stage patients across molecular subtypes and HDs, we observed that patients with
advanced HER2+ breast cancer had a lower frequency of CLTA-4+ and PD-1+ CD8+ T cells
compared to HDs (Figure 5b), which was not yet observed in early disease stage (Figure 5a).
Additionally, we found the frequency of PD-1+ conventional CD4 T cells to be reduced in
patients with HER2+ advanced breast cancer compared to TNBC and HDs (Figure 5b).
Flow cytometry-based analysis of the T cell differentiation state (naive T cells being
CCR7+CD45RA+, central memory T cells (CM) being CCR7+CD45RA-, effector memory T cells
(EM) being CCR7-CD45RA- and effector T cells (T eff) being CCR7-CD45RA+) (Supplementary
Figure 1c), revealed a notable degree of heterogeneity in the T cell differentiation state,
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Figure 5. T cell phenotype and cytokine production in patients with early- and late-stage
breast cancer across different molecular subtypes. (a) Phenotypic characterization of
circulating T cells at early disease stage, visualizing CTLA-4+ and PD-1+ CD8 T cells, conventional
CD4 and regulatory T cells. Frequencies were determined using flow cytometry on fresh blood
samples of patients with a HR+ tumor (n=20), a HER2+ tumor (n=17) or a triple negative tumor
(n=93), and healthy donors (n=65). (b) CTLA-4 and PD-1 expression of CD8 T cells, conventional
CD4 T cells and regulatory T cells. Frequencies of CTLA-4 and PD-1 positivity were determined
using flow cytometry on fresh blood samples of patients with a HR+ tumor (n=20), a HER2+ tumor
(n=17) or a triple negative tumor (n=93), and healthy donors (n=65). (c) Ex vivo production of
cytokines IFNy and TNFa by CD8 and conventional CD4 T cells. Stimulated fresh blood samples
of patients with early-stage disease with a HR+ tumor (n=54), a HER2+ tumor (n=16) or a triple
negative tumor (n=16) and healthy donors (n=41). Adjusted p-values for (a-c) were computed by
effectuating the Kruskal-Wallis test followed by Dunn’s multiple comparisons test.

which appeared largely unaffected by the subtype of breast cancer at early-stage
(Supplementary Figure 3a) or late-stage (Supplementary Figure 3b). Next, we investigated
whether the capacity of T cells to produce cytokines IFNy and TNFa following ex vivo
stimulation with PMA-ionomycin for three hours, was altered in a breast cancer subtype
dependent manner (Supplementary Figure 1c). Due to sample processing limitations, we
confined this part of our analysis to patients with early-stage disease. The ability to produce
IFNy by CD8+ and conventional CD4+ T cells upon stimulation was not affected by the
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presence of a tumor of any subtype (HR+, HER2+ and TNBC) (Figure 5c), suggesting that T
cells from patients with early-stage breast cancer retained similar potential to produce this
cytokine ex vivo. However, when analyzing T cells’ ability to produce TNFa upon stimulation,
we observed that CD4 T cells of breast cancer patients produced more of this cytokine
compared to HDs. This increase in TNFa was statistically significant in patients with HR+ and
TNBC subtypes, and showed a trend toward significance in HER2+ patients (Figure 5c¢). No
differences were observed in cytokine production between the molecular breast cancer
subtypes. Together these data indicate that T cell phenotype and functionality is modestly
altered across the molecular subtypes in early and late stages of disease compared to HDs.

Discussion

In recent years, it has become increasingly clear that solid tumors impact the immune system
in ways that extend far beyond the tumor microenvironment'2'3. However, the influence of
tumors on the systemic immune landscape, particularly in relation to (breast) cancer subtype
and disease stage, remains poorly understood. This study aimed to investigate the changes
in the circulating immune landscape across different disease stages and molecular subtypes
of breast cancer. We utilized multi-parameter flow cytometry to comprehensively assess
the abundance, phenotype, and activation states of both lymphoid and myeloid immune
populations from freshly collected peripheral blood samples. Pre-clinical evidence indicates
a critical role for neutrophils in disease progression?'-23; however, these fragile and short-
lived cells are often overlooked due to their inability to be stored. By analyzing fresh blood
samples, we successfully captured the full complexity of the immune landscape, including
all granulocyte populations.

Our data indicate that the systemic immune landscape in patients with breast cancer
differs significantly from that of HDs, with more pronounced immune cell abnormalities in
late-stage compared to early-stage disease. In metastatic breast cancer, we observed a
general trend of the innate immune compartment expansion and adaptive immune
compartment reduction relative to HDs. These findings highlight disease stage as a critical
determinant of the circulating immunological profile in breast cancer, consistent with the
expectation that more advanced, disseminated disease exerts a greater impact on the
immune system. Moreover, we established that certain changes in the systemic immune
landscape of breast cancer patients within early- and late-stage disease associated with a
particular molecular subtype. For example, circulating CD8 T cells are specifically decreased
in patients with mTNBC compared to HDs, but this was not observed in patients with late-
stage HR+ or HER2+ breast cancer. Similarly, the systemic increase in neutrophils observed
in late-stage breast cancer is seen only in HR+ and triple-negative subtypes, while neutrophil
levels in late-stage HER2+ breast cancer closely resemble those observed in HDs. Notably,
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the most profound immune dysregulation was observed in patients with TNBC, highlighting
the subtype-specific nature of immune cell perturbations in breast cancer. Furthermore,
we observed that disease stage seems a more dominant factor than molecular subtype in
shaping the circulating immune landscape in patients with breast cancer.

The precise mechanisms by which breast tumors of different molecular subtypes
differentially impact the systemic immune landscape are yet to be fully elucidated. Each
breast cancer subtype is characterized by unique genetic mutations, copy number variations,
and gene expression profiles, which can directly or indirectly lead to distinct patterns of
cytokine and chemokine release?*%. These variations in cytokine and chemokine profiles
may contribute to subtype-specific immune alterations. Additionally, epigenetic
reprogramming of cancer cells—such as changes in DNA methylation and histone
modifications—can further influence immune cell function and gene expression, leading to
systemic immune changes. We hypothesize that these factors are crucial for understanding
the differential immune responses observed among the various breast cancer subtypes.

Apart from tumor molecular subtype and disease stage, other factors could influence
the systemic immune profile. It is important to acknowledge that the patients included in
this study closely reflect those encountered in clinical practice, meaning that a proportion
of patients with metastatic disease had received prior treatment for their primary tumor.
It has previously been shown that treatment with chemotherapeutics impacts the circulating
immune compartment for longer than the three-week washout period that was used in this
study?”?8. We would therefore like to emphasize that the observed differences regarding
patients with late-stage disease are not necessarily purely tumor driven, but can be a result
of multiple combined factors, including treatment history, tumor grade or histological
subtype. In addition to treatment history, the genetic make-up of the tumors may have a
strong additive effect on the systemic immune landscape®, as described above. Though
some driver mutations (e.g. mutations in TP53 or PIK3CA) are more prevalent within a specific
breast cancer subtype, they are not exclusively found in just one subtype?+323, [f specific
mutations influence the immune profile in blood and are present across different subtypes
and stages, these tumor mutations may mask potential differences driven by disease
subtype and stage. Since we do not have data on tumor mutations, further research is
needed to investigate the relation between tumor-genotype/immuno-phenotype.

Finally, we would like to discuss the potential clinical significance of our findings. Clinical
research has demonstrated that an elevated neutrophil-to-lymphocyte ratio (NLR) as well
as an reduced lymphocyte-to-monocyte ratio (LMR) is associated with worse disease
prognosis and diminished therapeutic response across various cancer types, including breast
cancer3+4, Since we did not observe a concordant increase in lymphocyte counts with the
increased numbers of classical monocytes and neutrophils, our findings suggests that
patients with breast cancer exhibit a skewed immune profile, characterized by an increased
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dominance of myeloid over lymphoid cells. This myeloid-skewed systemic immune landscape
may leave patients less equipped to mount an effective immune response, potentially
leading to poorer clinical outcomes than they would have experienced with a more balanced
immune profile. Restoring the NLR and LMR to ratio’s similar to those observed in HDs may
represent a promising therapeutic strategy, potentially enhancing the efficacy of
immunotherapy when administered either right after or in combination with it. Turning to
the clinical implications of lymphoid perturbations, tumor-infiltrating B cells and plasma
cells have shown considerable predictive and prognostic value in various cancers, particularly
in the context of both conventional therapies and immune checkpoint inhibitors*#2. Others
have shown in a small set of matched tumor-blood samples, that the decrease in memory
B cells in the blood contrasts with an increase in class-switched memory B cells within the
tumor®. Whether the observed systemic reduction in memory B cells and plasmablast-like
cells is associated with an aberrant TME and altered patient outcomes remains to be
determined and warrants further investigation. CD4 T cells, particularly T helper cells, are
essential for orchestrating a robust immune response, as they facilitate the activation and
differentiation of various immune cells, including cytotoxic T cells and B cells, which are
crucial for effective tumor clearance'®#4,

Overall, our data show that patients with late-stage disease have more of the cell types
that associate with poor clinical outcome like neutrophils and monocytes3”39404648 and less
of favorable immune cell types like cytotoxic T cells and T helper cells**'. Given that the
systemic immune profile of breast cancer patients appears to become increasingly
dysregulated as the disease progresses, it is important to consider initiating immune
modulatory strategies before metastatic spread occurs. Indeed, across cancer types,
increased response rates are observed with neoadjuvant immune checkpoint blockade,
when compared to immune checkpoint blockade administered in the more advanced
disease setting®>4, suggesting that earlier intervention may harness a more functional
immune system to achieve better therapeutic outcomes. Lastly, we propose that developing
therapeutic strategies aimed at normalizing the systemic immune landscape may hold
potential to enhance treatment efficacy and improve overall outcomes for patients.
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Supplementary Figure 1. Gating strategies for flow cytometry analysis of peripheral blood
immune populations. (a) Myeloid panel gating strategy identifying eosinophils (lineage:, high
side scatter, CD66b* CD16), neutrophils (lineage, high side scatter, CD66b* CD16+), basophils
(lineage;, FceRlar, HLA-DR;), plasmacytoid DCs (pDCs) (lineage:, HLA-DR*, CD303, CD123"), Classical
monocytes (lineage, HLA-DR*, CD33*, CD14*, CD16), Transitional monocytes (lineage, HLA-DR,
CD33, CD14*, CD16%), Non-classical monocytes (lineage, HLA-DR*, CD33", CD14™, CD16"), CD1c*
DCs (lineage;, HLA-DR*, CD33*, CD14, CD16, CD1c*, FceRla®) and CD1c DCs (lineage:, HLA-DR,
CD33*, CD14, CD16, CD1c, FceRlar). (b) Gating strategy to identify B cell subsets identifying naive
B cells (CD19*, CD27, IgD*), switched memory B cells (CD19*, CD27*, IgD:, IgM-, CD38), and
plasmablasts-like cells (CD19*, CD27*, IgD:, IgM, CD38"). Gating strategy to identify NK cells (CD19
, CD3, NKG2D*, CD56"). (c) T cell panel gating strategy identifying V&1 yé T cells (CD3*, V61%, pan
yé TCR), V62 yé T cells (CD3*, V62%), CD8 T cells (CD3*, V&1, pan y§ TCR, V62, CD8*, CD4),
conventional CD4 T cells (CD3*, V&1, pan yé TCR, V62, CD8, CD4*, FoxP3), Tregs (CD3*, VST, pan
y6 TCR, V62, CD8&, CD4", FoxP3*, CD25"). Differentiation states were obtained as follows for both
the conventional CD4 T cells and CD8 T cells: naive T cells (CD45RA*, CCR7"), central memory (CM)
T cells (CD45RA;, CCR7*), effector memory (EM) T cells (CD45RA;, CCR7:), effector T cells (CD45RA",
CCR7-). Additional phenotypic markers were gated according to the population names. Cytokine
production was measured after PMA-ionomycin stimulation. Gating strategy identifying IFNy*
CD8 T cells (CD3*, VST, pan yé TCR, V62, CD8*, CD4, IFNy*), TNFa* CD8 T cells (CD3*, VST, pan yé
TCR, V62, CD8*, CD4, TNFa*), IFNy* conventional CD4 T cells (CD3", V&1, pan yé TCR, V62, CDS,
CD4*, FoxP3;, IFNy*), TNFa* conventional CD4 T cells (CD3*, V&1, pan yé TCR, V62, CD8, CD4,
FoxP3, TNFa*).
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Supplementary Figure 2. Clinical parameters and time of blood draw of patients with
early- and late-stage breast cancer across different molecular subtypes. (a) Age distribution
and (b) Body Mass Index (kg/length in m?) distribution in patients with breast cancer separated
by disease stage and tumor subtype, and in healthy donors. Adjusted p-values for (a) and (b)
were computed with the Kruskal-Wallis test followed by Dunn’s multiple comparisons test. (c)
Correlation analysis between neutrophil cell counts per mL blood and the time of day the blood
was taken. R?and P values are provided in the top-left corner of each graph.
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Supplementary Figure 3. T cell differentiation state in patients with early- and late-stage
breast cancer across different molecular subtypes. T cell differentiation state based on surface
marker expression of CD45RA and CCR7 as determined by flow cytometry (see Supplementary
Figure 1c), comparing proportions within conventional CD4+ and CD8+ T cells for (a) early-stage
breast cancer patients with HR+ tumors (n=101), HER2+ tumors (n=50), triple negative tumors
(n=74) and healthy donors (n=65) and (b) late-stage breast cancer patients with HR+ tumors
(n=20), HER2+ tumors (n=17), triple negative tumors (n=93) and healthy donors (n=65). CM =
central memory, EM = effector memory and T eff = effector T cells. Adjusted p-values for were
computed with the Kruskal-Wallis test followed by Dunn’s multiple comparisons test.

Supplementary Tables

Supplementary Table 1: Treatment history at the time of blood donation for patients with late-stage disease.
Chemotherapy for mHER2+ BC: taxane, for 1 pt platinum agent. Dual anti-HER2: trastuzumab and pertuzumab. T-DM1
is Trastuzumab-Emtansine.

Treatment for metastatic disease

Late-stage HR+ n =11 (55%) treatment-naive for M1-diseaes
n=20 n =7 (35%) aromatase inhibitor
n =1 (5%) anti-hormonal therapy (e.g. tamoxifen)
n =1 (5%) oestrogen receptor antagonist (e.g. fulvestrant)

Late-stage HER2+ n =6 (30%) chemo-naive for M1-disease

n=17 n =11 (70%) chemotherapy + dual anti-HER2 blockade
n=7(41%) T-DM1 as second line
n =4 (24%) chemo + trastuzumab as third line
n =1 (6%) Tyrosine kinase inhibitor

Late-stage TNBC
n=93

Treatment-naive for M1-disease
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