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Abstract 
Breast cancer is a systemic disease, yet the impact of tumor molecular subtype and disease 
stage on the systemic immune landscape, remains poorly understood. In this study, we 
comprehensively analyzed  the systemic immune landscape in a large cohort of breast 
cancer patients, encompassing all molecular subtypes and disease stages, alongside a 
control group of healthy donors. Using multi-parameter flow cytometry, we assessed the 
abundance, phenotype, and activation status of diverse innate and adaptive immune cell 
populations across peripheral blood samples from 355 breast cancer patients and 65 healthy 
donors. Analyzing all blood samples immediately after collection enabled analysis of often 
overlooked, but highly abundant granulocyte populations, including neutrophils and 
eosinophils. Our findings reveal that early-stage breast cancer patients exhibit increased 
cell counts of neutrophils, classical monocytes, and CD1c- DCs compared to healthy donors. 
In late-stage breast cancer patients, we observed elevated counts of neutrophils, classical 
monocytes, and non-classical monocytes compared to healthy donors. Additionally, 
reductions were observed in memory B cells, plasmablast-like cells, conventional CD4 T 
cells, and regulatory T cells. Notably, distinct molecular subtypes were associated with 
specific changes in the immune landscape, with the most significant changes observed in 
the triple-negative subtype. In conclusion, our data indicate that the systemic immune 
landscape undergoes more profound alterations in metastatic breast cancer than non-
metastatic cases, with disease stage exerting a greater influence on systemic immune 
composition than tumor subtype.

Introduction
Breast cancer can be considered a systemic disease, but the influence of breast cancer on 
the systemic immune landscape, especially in relation to tumor molecular subtype and 
disease stage, is not well understood. Breast cancer accounts for nearly a quarter of all 
cancer diagnoses and necessitates complex treatment strategies, which frequently result 
in side effects that cause physical and emotional suffering for those who are affected and 
their loved ones1. Breast cancer is classified into three main subtypes, based on hormone 
receptor (HR) and human epidermal growth factor receptor 2 (HER2) expression: HR+ tumors 
(~70%), HER2+ tumors (15-20%), and triple-negative breast cancer (TNBC, ~15%)2. Each 
subtype exhibits distinct molecular signatures and clinical behaviors3. Despite advancements 
in treatment tailored to molecular subtypes and other clinical parameters, breast cancer 
continues to be the leading cause of cancer-related mortality among women worldwide1, 
underscoring the urgent need for innovative therapeutic approaches.

Although immune checkpoint inhibitors (ICI) have transformed the treatment of various 
cancer types, their efficacy in breast cancer has been relatively modest. TNBC is considered 

the most immunogenic subtype of breast cancer, characterized by higher levels of tumor 
infiltrating lymphocytes (TILs), a higher tumor mutational burden, and increased expression 
of programmed death-ligand 1 (PD-L1) compared to the other breast cancer subtypes4. 
However, even in TNBC, only a minority of patients benefits from current immunotherapeutic 
strategies. This limited response to ICI can be partly attributed to the inherently low 
immunogenicity of many breast tumors. In addition, a significant contributing factor is 
tumor-associated immune suppression, which enables cancer cells to evade local immune 
responses5-10. Tumor-associated immune suppression often extends beyond the tumor 
microenvironment (TME)11-13, leading to an impact on the systemic immune system of the 
host. This systemic effect can manifest as altered immune cell populations and functions 
throughout the body, weakening overall immune defense and contributing to disease 
progression. Most studies have highlighted the impact of breast tumor subtypes on the 
local immune microenvironment, but our understanding of the systemic immune landscape 
across different molecular subtypes and disease stages remains limited. While some studies 
have provided valuable insights into the impact of cancer on peripheral immune cells14,15, 
several questions remain open for exploration. For instance, previous studies rely on PBMCs, 
excluding granulocytes and thereby omitting a significant portion of myeloid cells. The 
complex interplay between tumor stage, molecular subtypes, and systemic immune 
alterations remains poorly understood, yet is of critical importance for guiding the 
development of novel immunotherapeutic approaches tailored to individual patients. 

 Our goal is to study how tumor stage and molecular subtype impact the systemic 
immune landscape in patients with breast cancer. Therefore, we conducted a comprehensive 
characterization of the circulating immune landscape in a large cohort of breast cancer 
patients spanning different molecular subtypes and disease stages, alongside a matched 
healthy donor (HD) control group. Employing multi-parameter flow cytometry analysis, we 
assessed the abundance, phenotype, and activation status of various innate and adaptive 
immune cell populations from over 400 fresh peripheral blood samples. This enabled us to 
generate detailed quantitative and phenotypic data on circulating granulocyte subsets, 
dendritic cells (DCs), monocytes, T cells, B cells, and natural killer (NK) cells, shedding light 
on the intricate interplay between breast cancer  and systemic immune profile. This dataset 
is unique because of its large, well-defined patient cohorts, the inclusion of age- and BMI-
matched healthy controls, and the incorporation of neutrophils, eosinophils, and basophils 
on this large scale, enabling a comprehensive and integrative approach to analysis. 

 We show that changes in the systemic immune landscape are most pronounced in 
patients with late-stage breast cancer and characterized by a general increase in the myeloid 
lineage and a decrease in the lymphoid lineage, especially in the metastatic setting, indicating 
that disease stage is a critical factor influencing the immunological profile of breast cancer 
patients. Furthermore, specific molecular subtypes notably induce distinct alterations in 
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All study protocols were conducted in accordance with the ICH Harmonised Tripartite 
Guideline for Good Clinical Practice and the principles of the Declaration of Helsinki. All 
patients and HDs provided written informed consent before enrolment. 

Flow cytometry
Blood samples were processed and analyzed within 24 hours after blood draw. All samples 
were processed uniformly, by the same team and within the same laboratory. Peripheral 
blood was collected in EDTA vacutainers (BD) and subjected to red blood cell lysis (lysis 
buffer: dH2O, NH4Cl, NaHCCO3, EDTA). Cells were resuspended in PBS containing 0.5% BSA 
and 2mM EDTA and counted using the NucleoCounter NC-200 automated cell counter 
(Chemometec). To obtain white blood cell (WBC) counts per mL of blood, the total amount 
of post lysis cells was divided by the volume (mL) of blood obtained from the patient (~10 
mL). 

For the labeling of surface antigens, cells underwent an initial incubation with human 
FcR Blocking Reagent (diluted 1:100 Miltenyi) for 15 minutes at 4°C, followed by a 30-minute 
incubation with fluorochrome-conjugated antibodies at 4°C, shielded from light. For 
intracellular staining, cells were fixed in Fixation/Permeabilization solution 1X (Foxp3/
Transcription Factor Staining Buffer Set, eBioscience) at 4°C for 30 minutes, then stained 
with fluorochrome-conjugated antibodies in Permeabilization buffer 1X (eBioscience) for 
30 minutes at room temperature. Viability was determined by staining with either 7AAD 
staining solution (diluted 1:10; eBioscience) or Zombie Red Fixable Viability Kit (diluted 1:800, 
BioLegend). 

Data acquisition of all samples was performed on the same LSRII SORP flow cytometer 
(BD Biosciences) operated with Diva software. To make the performance of this machine 
as constant over time as possible, CS&T beads (BD) were used to optimize general 
performance and Sphero 8 peaks Rainbow Calibration particles (BD) were used to adjust 
PMT voltages if necessary. Additionally, single stained compensation controls are taken 
along for each experiment. Flow data analysis was conducted using FlowJo software (version 
10). Flow cytometry antibody details are provided in Supplementary Table 2 and gating 
strategies are illustrated in Supplementary Figures 1a (Myeloid panel gating), 1b (B and NK 
cell panel gating), and 1c (T cell panel gating).

Data analysis and statistics
GraphPad Prism (version 10.1.2) software was used for statistical analysis and graphing of 
the flow cytometry data. Kruskal-Wallis test was applied when comparing multiple groups, 
followed by Dunn’s test to obtain adjusted p-values corrected for the number of groups in 
the graph (not the number of immune cell populations). PCAs and heatmaps were generated 
using Qlucore software (version 3.8). Missing values were imputed by mean values from 

the immune landscape of breast cancer patients. Our findings suggest that the most 
significant differences in the systemic immune landscape between the three subtypes and 
HDs, are observed in the TNBC subtype. These data provide a valuable resource on the 
circulatory immune landscape of breast cancer patients compared to HDs, informing future 
pre-clinical and clinical research and paving the way for innovative, stage- and subtype-
specific immunomodulatory treatment approaches.

Material and Methods
Human blood samples
Fresh blood samples from 53 healthy women (healthy donors, HD) were obtained after 
approval by the local medical ethical committee (NCT03819829). Additionally, fresh blood 
samples from 12 healthy women were obtained anonymously from the Dutch national 
blood transfusion service (Sanquin Blood supply, Amsterdam, The Netherlands). In our 
cohort of patients with breast cancer, blood samples were obtained from patients enrolled 
in either a clinical trial or biobank protocol, after approval by the local medical ethical 
committee and/or institutional review board of the Netherlands Cancer Institute. 185 
patients were enrolled in a biobanking protocol of the Netherlands Cancer Institute 
(CFMPB450); 59 patients were included in the BELLINI trial16 (NCT03815890); 91 patients 
were included in the Triple B trial17 (NCT01898117); 10 patients were included in the MIMOSA 
trial18 (NCT04307329). Where blood was obtained in the context of a clinical trial, only 
baseline blood samples were included in the analysis for this study. Basic clinical parameters 
were retrieved from the electronic patient records by qualified medical staff. 

 We included 121 patients with HR+ breast cancer (ER >10%, PR+/- and HER2 negative), 
of which 33 had stage I disease, 53 had stage II, 15 stage III and 20 patients had stage IV 
disease. Furthermore, we included 67 patients with HER2+ breast cancer (either score 3 for 
HER2 using immunohistochemistry (IHC) or positive at in situ hybridization [CISH or FISH]) 
in case of score 2 on IHC) were included, of which 16 had stage I disease, 17 stage II, 17 
stage III and 17 patients had stage IV disease. Additionally, we included 167 patients with 
TNBC (histologically confirmed ER < 10% of positive tumor cells using IHC; HER2: either score 
0 or 1 for HER2 at IHC with no amplification detected by in situ hybridization [CISH or FISH] 
in case of score 2 on IHC) of which 17 had stage I disease, 40 had stage II, 17 had stage III 
and 93 patients had stage IV disease (Figure 1a). 

 In this study, all patients with early-stage disease (stage I-III) were treatment naïve at 
the time of blood donation. In the late-stage disease (stage IV) setting, blood from patients 
with mTNBC was taken before any treatment for metastatic disease. Patients with HR+ 
tumors and HER2+ tumors did receive prior treatment for metastatic disease (Supplementary 
Table 1). For the treated patients from all subtypes, a washout period of at least 3 weeks 
was maintained between the last drug administration and the blood draw. 
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the sample group. Correlation between neutrophil counts and time of blood draw was 
performed in R (version 4.3.2) using linear modeling function. Corrected p-values <0.05 were 
considered significant and are depicted in the graphs using asterixes: * p<0.05; ** p<0.01; 
*** p<0.001; **** p<0.0001.

Results
Breast cancer alters the systemic immune landscape
To gain insights into the impact of breast cancer on the circulatory immune compartment 
at early or late disease stages, we conducted high-dimensional flow cytometry on 420 fresh 
peripheral blood samples. We developed an analysis pipeline specifically tailored for fresh 
blood samples19. This pipeline employs a panel of 50 antibodies distributed across a myeloid 
panel, a B- and NK cell panel, and a T cell panel (Supplementary Figure 1a-c). This robust 
approach enables a comprehensive analysis of the systemic immune landscape, including 
granulocytes, which are typically lost in standard peripheral blood mononuclear cell (PBMC)-
based analyses. We profiled samples of patients without distant metastases (stage I-III, 
referred to as early-stage, n=225) and patients with distant metastases (stage IV, referred 
to as late-stage, n=130) (Figure 1a). From the patients with early-stage breast cancer, 101 
patients had HR+ disease, 50 patients had HER2+ disease and 74 patients had TNBC (Figure 
1a). From the patients with late-stage breast cancer, 20 patients had HR+ disease, 17 patients 
had HER2+ disease and 93 patients had TNBC (Figure 1a). As a control group, we profiled 
age-, sex- and BMI-matched healthy donors (HDs, n=65) (Figure 1a). Age and BMI of breast 
cancer patients and HDs are visualized in Supplementary Figure 2 a, b. Given that neutrophil 
release from the bone marrow follows a circadian rhythm20, we tested for correlations 
between neutrophil counts and time of blood draw using a linear model. No statistically 
significant correlations were found, except in the early-stage TNBC group, where a weak 
correlation was observed (r=0.0999, Supplementary Figure 2c). The very low rho-value (<10%) 
suggests minimal variance explained by blood draw time, so we chose not to adjust for it 
in our dataset. 

 To explore the flow cytometry data of the three antibody panels in an unbiased manner, 
we performed a principal component analysis (PCA). By taking the first three principal 
components into account, we could explain 77% of the variance in the data. When plotting 
these three principal components, we observed that the HDs cluster away from all breast 
cancer groups, and that the early-stage breast cancer groups clustered away from the late-
stage breast cancer groups (Figure 1b). Moreover, disease stage seemed to have a dominant 
impact on the systemic immune landscape over tumor subtype (Figure 1c). Hierarchical 
clustering of 18 major immune populations analysed, confirmed our PCA analysis with HDs 
blood profile separating from breast cancer patient blood profiles (Figure 1d). 
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a
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Figure 1. Breast cancer alters the systemic immune landscape. (a) Graphical summary of 
included human blood samples and the systemic immune cell populations that were assessed 
immediately after blood collection using flow cytometry. (b, c) Principal component analysis was 
conducted on the Log2-transformed median cell counts per mL of blood from major immune cell 
populations (see d), measured by flow cytometry in fresh blood samples. The results were colored 
by disease stage discriminating patients with early-stage breast cancer (n=225), late-stage breast 
cancer (n=130), and healthy donors (HD) (n=65) (b), and by tumor subtype in discriminating 
between patients with a HR+ tumor (n=121), a HER2+ tumor (n=67) or a triple negative tumor 
(n=167), and healthy donors (n=65) (c). (d) Heatmap based on the Log2-transformed median cell 
counts per mL blood, visualizing the major immune cell populations, as assessed by flow cytometry 
in fresh blood samples from patients with early-stage breast cancer, late-stage breast cancer, 
across different breast cancer subtypes, and healthy donors. Hierarchical clustering was 
performed on the immune cell populations and on tumor subtype and disease stage. The color 
scale represents row Z-scores, ranging from -2 to 2.
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be increased in patients with TNBC compared to patients with HR+ tumors (Figure 3e). No 
other statistically significant differences between the molecular subtypes were observed, 
suggesting that disease stage had a stronger influence on the systemic immune landscape 
(Figure 2) than the molecular subtype in patients with early-stage breast cancer (Figure 3).

Systemic immune landscape of healthy donors and patients with late-stage breast 
cancer across different molecular subtypes
Next, we investigated which differences in the systemic immune landscape of advanced 
breast cancer patients were associated with a certain molecular subtype. To achieve this, 
we took the immune profiles of patients with late-stage breast cancer and compared the 

Breast cancer associated alterations to the systemic immune landscape are disease 
stage dependent
Next, we investigated which immune cell populations are driving the clustering patterns 
(Figure 1b, d) and how disease stage is impacting the circulating immune composition. We 
found both neutrophils and classical monocytes to be significantly increased in patients 
with early- and late-stage breast cancer compared to HDs (Figure 2a, b). Additionally, we 
observed a statistically significant increase in the number of circulating non-classical 
monocytes in patients with late-stage breast cancer compared to HDs (Figure 2b). Though 
no significant difference was observed between patients with early-stage and patients with 
late-stage breast cancer when all subtypes are grouped together in neutrophil and (non-)
classical monocyte counts, we did observe an increasing trend, suggesting that neutrophil 
and (non-)classical monocyte numbers are being increasingly dysregulated as disease 
progresses (Figure 2a, b). Furthermore, we found CD1c+ DCs to be reduced in the late-stage 
group compared to the early-stage group and an increase in CD1c- DCs in the early-stage 
group compared to the HDs (Figure 2c). 

Within the circulating lymphoid compartment we found a decrease in memory B cells 
and plasmablast-like cells in patients with late-stage disease compared to HDs and patients 
with early-stage disease (Figure 2d). Similarly, we observed that the cell counts of CD8+ T 
cells, conventional CD4+ T cells, Tregs and Vδ2 γδ-T cells were reduced in patients with late-
stage disease when compared to patients with early-stage disease (Figure 2e). Additionally, 
conventional CD4+ T cell and Treg counts were decreased in patients with late-stage disease 
when compared to HDs (Figure 2e). Together these data indicate that breast cancer impacts 
the systemic immune landscape in a disease stage dependent manner. 

 
Systemic immune landscape of healthy donors and patients with early-stage breast 
cancer across different molecular subtypes
Our finding that disease stage is associated with multiple differences in the systemic immune 
landscape (Figure 2) raises the question of whether these alterations differ per breast cancer 
subtype. Therefore,  we first sought to explore the influence of molecular subtype within 
the patients with early-stage disease and HDs. We observed that the increase in neutrophils, 
classical monocytes and CD1c- DCs is restricted to patients with early-stage HR+ tumors 
(Figure 3a-c). Conversely, the increase in non-classical monocytes was only found to be 
statistically significant in patients with early-stage TNBC compared to HDs (Figure 3b). 

When evaluating the influence of molecular subtype in patients with early-stage breast 
on the circulating lymphoid compartment, we found that Vδ2 γδ-T cell counts were 
statistically significantly elevated in patients with TNBC compared to HDs (Figure 3e). 
Furthermore, we observed a reduced plasmablast-like cell count among patients with TNBC 
compared to patients with HR+ tumors (Figure 3d). Conversely, we found NK cell counts to 

Figure 2. Breast cancer stage impacts the circulating immune composition. Log2-transformed 
cell counts per mL blood of major systemic immune cell populations measured by flow cytometry 
in patients with stage I-III breast cancer (Early) (n=225), stage IV breast cancer (Late) (n=130), and 
healthy donors (HD) (n=65), visualizing (a) granulocytes, (b) monocyte populations, (c) DC subsets, 
(d) B cell subpopulations and (e) different conventional and unconventional T cell subpopulations 
and NK cells. P-values for (a-e) were computed with the Kruskal-Wallis test followed by Dunn’s 
multiple comparisons test.

Figure 2: Breast cancer stage impacts the circulating immune composition
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in non-classical monocyte counts in patients with late-stage breast cancer compared to HDs 
(Figure 2) was found to be attributed to patients with a HR+ tumor (Figure 4b). These data 
indicate that the alterations detected in the circulating immune compartment exhibit varying 
degrees of penetration across the three molecular subtypes. Among the myeloid cell 
populations, eosinophils, basophils, CD14+CD16+ monocytes and the DC subsets remained 
unaffected in abundance across the different breast cancer subtypes (Figure 4a-c).

 Within the lymphoid compartment, plasmablast-like cells were profoundly reduced in 
patients with mTNBC and HER2+ tumors compared to HDs (Figure 4d). Similarly, circulating 

three molecular subtypes to each other and to the immune profiles of HDs. When subdividing 
late-stage patients based on the molecular subtype of their tumor, we observed an 
imbalance in the n-number of patients per group (Figure 1a). However, our results confirm 
that the systemic increase in neutrophils observed in patients with late-stage disease 
compared to HDs (Figure 2) is present in both patients with HR+ breast cancer and those 
with TNBC, while this was not observed for HER2+ stage 4 disease (Figure 4a). The systemic 
increase in classical monocytes in late-stage patients compared to HDs (Figure 2) was 
predominantly driven by patients with TNBC (Figure 4b). In contrast, the observed increase 

Figure 3: Systemic immune landscape of patients with early-stage breast cancer 
across different molecular subtypes
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Figure 3. Systemic immune landscape of patients with early-stage breast cancer across 
different molecular subtypes. Log2-transformed cell counts per mL blood of major systemic 
immune cell populations measured by flow cytometry in patients with early-stage breast cancer 
with a HR+ tumor (n=101), a HER2+ tumor (n=50) or a triple negative tumor (n=74), and healthy 
donors (n=65), visualizing (a) granulocytes, (b) monocyte populations, (c) DC subsets, (d) B cell 
subpopulations and (e) different conventional and unconventional T cell subpopulations and NK 
cells. Adjusted p-values for (a-e) were computed with the Kruskal-Wallis test followed by Dunn’s 
multiple comparisons test.

Figure 4. Systemic immune landscape of patients with late-stage breast cancer across 
different molecular subtypes. Log2-transformed cell counts per mL blood of major systemic 
immune cell populations measured by flow cytometry in patients with late-stage breast cancer 
with a HR+ tumor (n=20), a HER2+ tumor (n=17) or a triple negative tumor (n=93), and healthy 
donors (n=65), visualizing (a) granulocytes, (b) monocyte populations, (c) DC subsets, (d) B cell 
subpopulations and (e) different conventional and unconventional T cell subpopulations and NK 
cells. Adjusted p-values for (a-e) were computed with the Kruskal-Wallis test followed by Dunn’s 
multiple comparisons test.

Figure 4: Systemic immune landscape of patients with late-stage breast cancer 
across different molecular subtypes
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which appeared largely unaffected by the subtype of breast cancer at early-stage 
(Supplementary Figure 3a) or late-stage (Supplementary Figure 3b). Next, we investigated 
whether the capacity of T cells to produce cytokines IFNγ and TNFα following ex vivo 
stimulation with PMA-ionomycin for three hours, was altered in a breast cancer subtype 
dependent manner (Supplementary Figure 1c). Due to sample processing limitations, we 
confined this part of our analysis to patients with early-stage disease. The ability to produce 
IFNγ by CD8+ and conventional CD4+ T cells upon stimulation was not affected by the 

memory B cells were also found to be reduced in patients with mTNBC tumors. These data 
suggest that late-stage TNBC tumors, and to a lesser extent late-stage HER2+ tumors have 
a profound effect on the B cell compartment. When comparing the T cell subset abundances 
across molecular subtypes and HDs, we observed that patients with late-stage TNBC had 
reduced counts of CD8 T cells, conventional CD4 T cells and Tregs, patients with HER2+ 
tumors had reduced counts of conventional CD4 T cells and Tregs, and patients with HR+ 
tumors had reduced counts of Tregs (Figure 4e). These data indicate that circulating T cell 
abundances are most affected in patients with TNBC. Beyond the intrinsic effects of this 
tumor subtype on the systemic immune environment, this observation may also be 
attributable to a treatment history in the (neo)adjuvant setting with chemotherapeutic 
agents by a substantial proportion of late-stage TNBC patients. The observation that CD8 
T cell counts are reduced in patients with TNBC compared to HDs was previously masked 
by other molecular subtypes, that did not show this decrease compared to HDs (Figure 4e). 
Apart from memory B cells (Figure 4d), no significant differences between the molecular 
subtypes were observed, suggesting once more that disease stage (Figure 2) has a stronger 
influence on circulating immune composition than the molecular subtype (Figure 4). 

Breast cancer influences T cell phenotype and cytokine production in a tumor subtype- 
and disease stage-specific manner. 
Given the observed decrease in total counts of CD8+, conventional CD4+, and regulatory T 
cells in patients with metastatic disease compared to those with non-metastatic disease 
— and for conventional CD4+ and regulatory T cells also compared to HDs— (Figure 2), we 
sought to investigate the phenotype and differentiation state of circulating T lymphocytes 
by flow cytometry (Supplementary Figure 1c) in relation to tumor subtype and disease stage. 
We observed a lower fraction of PD-1+ CD8+ T cells and PD-1+ conventional CD4+ T cells in 
patients with TNBC compared to HDs (Figure 5a), suggestive of altered systemic T cell 
activation. Furthermore, in patients with early-stage breast cancer, we observed a lower 
proportion of CTLA-4 expressing conventional CD4+ T cells in TNBC patients compared to 
patients with HR+ breast cancer (Figure 5a). When testing for differences in T cell phenotype 
in late-stage patients across molecular subtypes and HDs, we observed that patients with 
advanced HER2+ breast cancer had a lower frequency of CLTA-4+ and PD-1+ CD8+ T cells 
compared to HDs (Figure 5b), which was not yet observed in early disease stage (Figure 5a). 
Additionally, we found the frequency of PD-1+ conventional CD4 T cells to be reduced in 
patients with HER2+ advanced breast cancer compared to TNBC and HDs (Figure 5b).

 Flow cytometry-based analysis of the T cell differentiation state (naïve T cells being 
CCR7+CD45RA+, central memory T cells (CM) being CCR7+CD45RA-, effector memory T cells 
(EM) being CCR7-CD45RA- and effector T cells (T eff) being CCR7-CD45RA+) (Supplementary 
Figure 1c), revealed a notable degree of heterogeneity in the T cell differentiation state, 

Figure 5: T cell phenotype and cytokine production of patients with early- and late-stage 
breast cancer across different molecular subtypes
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Figure 5. T cell phenotype and cytokine production in patients with early- and late-stage 
breast cancer across different molecular subtypes. (a) Phenotypic characterization of 
circulating T cells at early disease stage, visualizing CTLA-4+ and PD-1+ CD8 T cells, conventional 
CD4 and regulatory T cells. Frequencies were determined using flow cytometry on fresh blood 
samples of patients with a HR+ tumor (n=20), a HER2+ tumor (n=17) or a triple negative tumor 
(n=93), and healthy donors (n=65). (b) CTLA-4 and PD-1 expression of CD8 T cells, conventional 
CD4 T cells and regulatory T cells. Frequencies of CTLA-4 and PD-1 positivity were determined 
using flow cytometry on fresh blood samples of patients with a HR+ tumor (n=20), a HER2+ tumor 
(n=17) or a triple negative tumor (n=93), and healthy donors (n=65). (c) Ex vivo production of 
cytokines IFNγ and TNFα by CD8 and conventional CD4 T cells. Stimulated fresh blood samples 
of patients with early-stage disease with a HR+ tumor (n=54), a HER2+ tumor (n=16) or a triple 
negative tumor (n=16) and healthy donors (n=41). Adjusted p-values for (a-c) were computed by 
effectuating the Kruskal-Wallis test followed by Dunn’s multiple comparisons test.



CHAPTER 3

64    65

SYSTEMIC IMMUNE LANDSCAPE IN BREAST CANCER

3

the most profound immune dysregulation was observed in patients with TNBC, highlighting 
the subtype-specific nature of immune cell perturbations in breast cancer. Furthermore, 
we observed that disease stage seems a more dominant factor than molecular subtype in 
shaping the circulating immune landscape in patients with breast cancer.

The precise mechanisms by which breast tumors of different molecular subtypes 
differentially impact the systemic immune landscape are yet to be fully elucidated. Each 
breast cancer subtype is characterized by unique genetic mutations, copy number variations, 
and gene expression profiles, which can directly or indirectly lead to distinct patterns of 
cytokine and chemokine release24-26. These variations in cytokine and chemokine profiles 
may contribute to subtype-specific immune alterations. Additionally, epigenetic 
reprogramming of cancer cells—such as changes in DNA methylation and histone 
modifications—can further influence immune cell function and gene expression, leading to 
systemic immune changes. We hypothesize that these factors are crucial for understanding 
the differential immune responses observed among the various breast cancer subtypes. 

Apart from tumor molecular subtype and disease stage, other factors could influence 
the systemic immune profile. It is important to acknowledge that the patients included in 
this study closely reflect those encountered in clinical practice, meaning that a proportion 
of patients with metastatic disease had received prior treatment for their primary tumor. 
It has previously been shown that treatment with chemotherapeutics impacts the circulating 
immune compartment for longer than the three-week washout period that was used in this 
study27,28. We would therefore like to emphasize that the observed differences regarding 
patients with late-stage disease are not necessarily purely tumor driven, but can be a result 
of multiple combined factors, including treatment history, tumor grade or histological 
subtype. In addition to treatment history, the genetic make-up of the tumors may have a 
strong additive effect on the systemic immune landscape29-31, as described above. Though 
some driver mutations (e.g. mutations in TP53 or PIK3CA) are more prevalent within a specific 
breast cancer subtype, they are not exclusively found in just one subtype24,32,33. If specific 
mutations influence the immune profile in blood and are present across different subtypes 
and stages, these tumor mutations may mask potential differences driven by disease 
subtype and stage. Since we do not have data on tumor mutations, further research is 
needed to investigate the relation between tumor-genotype/immuno-phenotype.

Finally, we would like to discuss the potential clinical significance of our findings. Clinical 
research has demonstrated that an elevated neutrophil-to-lymphocyte ratio (NLR) as well 
as an reduced lymphocyte-to-monocyte ratio (LMR) is associated with worse disease 
prognosis and diminished therapeutic response across various cancer types, including breast 
cancer34-40. Since we did not observe a concordant increase in lymphocyte counts with the 
increased numbers of classical monocytes and neutrophils, our findings suggests that 
patients with breast cancer exhibit a skewed immune profile, characterized by an increased 

presence of a tumor of any subtype (HR+, HER2+ and TNBC) (Figure 5c), suggesting that T 
cells from patients with early-stage breast cancer retained similar potential to produce this 
cytokine ex vivo. However, when analyzing T cells’ ability to produce TNFα upon stimulation, 
we observed that CD4 T cells of breast cancer patients produced more of this cytokine 
compared to HDs. This increase in TNFα was statistically significant in patients with HR+ and 
TNBC subtypes, and showed a trend toward significance in HER2+ patients (Figure 5c). No 
differences were observed in cytokine production between the molecular breast cancer 
subtypes. Together these data indicate that T cell phenotype and functionality is modestly 
altered across the molecular subtypes in early and late stages of disease compared to HDs.

 

Discussion
In recent years, it has become increasingly clear that solid tumors impact the immune system 
in ways that extend far beyond the tumor microenvironment12,13. However, the influence of 
tumors on the systemic immune landscape, particularly in relation to (breast) cancer subtype 
and disease stage, remains poorly understood. This study aimed to investigate the changes 
in the circulating immune landscape across different disease stages and molecular subtypes 
of breast cancer. We utilized multi-parameter flow cytometry to comprehensively assess 
the abundance, phenotype, and activation states of both lymphoid and myeloid immune 
populations from freshly collected peripheral blood samples. Pre-clinical evidence indicates 
a critical role for neutrophils in disease progression21-23; however, these fragile and short-
lived cells are often overlooked due to their inability to be stored. By analyzing fresh blood 
samples, we successfully captured the full complexity of the immune landscape, including 
all granulocyte populations.

Our data indicate that the systemic immune landscape in patients with breast cancer 
differs significantly from that of HDs, with more pronounced immune cell abnormalities in 
late-stage compared to early-stage disease. In metastatic breast cancer, we observed a 
general trend of the innate immune compartment expansion and adaptive immune 
compartment reduction relative to HDs. These findings highlight disease stage as a critical 
determinant of the circulating immunological profile in breast cancer, consistent with the 
expectation that more advanced, disseminated disease exerts a greater impact on the 
immune system. Moreover, we established that certain changes in the systemic immune 
landscape of breast cancer patients within early- and late-stage disease associated with a 
particular molecular subtype. For example, circulating CD8 T cells are specifically decreased 
in patients with mTNBC compared to HDs, but this was not observed in patients with late-
stage HR+ or HER2+ breast cancer. Similarly, the systemic increase in neutrophils observed 
in late-stage breast cancer is seen only in HR+ and triple-negative subtypes, while neutrophil 
levels in late-stage HER2+ breast cancer closely resemble those observed in HDs. Notably, 
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Supplementary Figuresdominance of myeloid over lymphoid cells. This myeloid-skewed systemic immune landscape 
may leave patients less equipped to mount an effective immune response, potentially 
leading to poorer clinical outcomes than they would have experienced with a more balanced 
immune profile. Restoring the NLR and LMR to ratio’s similar to those observed in HDs may 
represent a promising therapeutic strategy, potentially enhancing the efficacy of 
immunotherapy when administered either right after or in combination with it. Turning to 
the clinical implications of lymphoid perturbations, tumor-infiltrating B cells and plasma 
cells have shown considerable predictive and prognostic value in various cancers, particularly 
in the context of both conventional therapies and immune checkpoint inhibitors41,42. Others 
have shown in a small set of matched tumor-blood samples, that the decrease in memory 
B cells in the blood contrasts with an increase in class-switched memory B cells within the 
tumor43. Whether the observed systemic reduction in memory B cells and plasmablast-like 
cells is associated with an aberrant TME and altered patient outcomes remains to be 
determined and warrants further investigation. CD4 T cells, particularly T helper cells, are 
essential for orchestrating a robust immune response, as they facilitate the activation and 
differentiation of various immune cells, including cytotoxic T cells and B cells, which are 
crucial for effective tumor clearance16,44,45. 

Overall, our data show that patients with late-stage disease have more of the cell types 
that associate with poor clinical outcome like neutrophils and monocytes37,39,40,46-48, and less 
of favorable immune cell types like cytotoxic T cells and T helper cells49-51. Given that the 
systemic immune profile of breast cancer patients appears to become increasingly 
dysregulated as the disease progresses, it is important to consider initiating immune 
modulatory strategies before metastatic spread occurs. Indeed, across cancer types, 
increased response rates are observed with neoadjuvant immune checkpoint blockade, 
when compared to immune checkpoint blockade administered in the more advanced 
disease setting52-54, suggesting that earlier intervention may harness a more functional 
immune system to achieve better therapeutic outcomes. Lastly, we propose that developing 
therapeutic strategies aimed at normalizing the systemic immune landscape may hold 
potential to enhance treatment efficacy and improve overall outcomes for patients.

Supplementary Figure 1a: Myeloid panel
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Supplementary Figure 1b: B and NK cell panel
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Supplementary Figure 1. Gating strategies for flow cytometry analysis of peripheral blood 
immune populations. (a) Myeloid panel gating strategy identifying eosinophils (lineage-, high 
side scatter, CD66b+ CD16-), neutrophils (lineage-, high side scatter, CD66b+ CD16+), basophils 
(lineage-, FcεRIα+, HLA-DR-), plasmacytoid DCs (pDCs) (lineage-, HLA-DR+, CD303+, CD123+), Classical 
monocytes (lineage-, HLA-DR+, CD33+, CD14+, CD16-), Transitional monocytes (lineage-, HLA-DR+, 
CD33+, CD14+, CD16+), Non-classical monocytes (lineage-, HLA-DR+, CD33+, CD14dim, CD16+), CD1c+ 

DCs (lineage-, HLA-DR+, CD33+, CD14-, CD16-, CD1c+, FcεRIα+) and CD1c- DCs (lineage-, HLA-DR+, 
CD33+, CD14-, CD16-, CD1c-, FcεRIα-). (b) Gating strategy to identify B cell subsets identifying naive 
B cells (CD19+, CD27-, IgD+), switched memory B cells (CD19+, CD27+, IgD-, IgM-, CD38-), and 
plasmablasts-like cells (CD19+, CD27+, IgD-, IgM-, CD38+). Gating strategy to identify NK cells (CD19-

, CD3-, NKG2D+, CD56+). (c) T cell panel gating strategy identifying Vδ1 γδ T cells (CD3+, Vδ1+, pan 
γδ TCR+), Vδ2 γδ T cells (CD3+, Vδ2+), CD8 T cells (CD3+, Vδ1-, pan γδ TCR-, Vδ2-, CD8+, CD4-), 
conventional CD4 T cells (CD3+, Vδ1-, pan γδ TCR-, Vδ2-, CD8-, CD4+, FoxP3-), Tregs (CD3+, Vδ1-, pan 
γδ TCR-, Vδ2-, CD8-, CD4+, FoxP3+, CD25hi). Differentiation states were obtained as follows for both 
the conventional CD4 T cells and CD8 T cells: naïve T cells (CD45RA+, CCR7+), central memory (CM) 
T cells (CD45RA-, CCR7+), effector memory (EM) T cells (CD45RA-, CCR7-), effector T cells (CD45RA+, 
CCR7-). Additional phenotypic markers were gated according to the population names. Cytokine 
production was measured after PMA-ionomycin stimulation. Gating strategy identifying IFNγ+ 
CD8 T cells (CD3+, Vδ1-, pan γδ TCR-, Vδ2-, CD8+, CD4-, IFNγ+), TNFα+ CD8 T cells (CD3+, Vδ1-, pan γδ 
TCR-, Vδ2-, CD8+, CD4-, TNFα+), IFNγ+ conventional CD4 T cells (CD3+, Vδ1-, pan γδ TCR-, Vδ2-, CD8-, 
CD4+, FoxP3-, IFNγ+), TNFα+ conventional CD4 T cells (CD3+, Vδ1-, pan γδ TCR-, Vδ2-, CD8-, CD4+, 
FoxP3-, TNFα+). 
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Supplementary figure 2: Clinical parameters and time of blood draw of patients with 
early- and late-stage breast cancer across different molecular subtypes
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Supplementary Figure 3. T cell differentiation state in patients with early- and late-stage 
breast cancer across different molecular subtypes. T cell differentiation state based on surface 
marker expression of CD45RA and CCR7 as determined by flow cytometry (see Supplementary 
Figure 1c), comparing proportions within conventional CD4+ and CD8+ T cells for (a) early-stage 
breast cancer patients with HR+ tumors (n=101), HER2+ tumors (n=50), triple negative tumors 
(n=74) and healthy donors (n=65) and (b) late-stage breast cancer patients with HR+ tumors 
(n=20), HER2+ tumors (n=17), triple negative tumors (n=93) and healthy donors (n=65). CM = 
central memory, EM = effector memory and T eff = effector T cells. Adjusted p-values for were 
computed with the Kruskal-Wallis test followed by Dunn’s multiple comparisons test.

Supplementary Figure 2. Clinical parameters and time of blood draw of patients with 
early- and late-stage breast cancer across different molecular subtypes. (a) Age distribution 
and (b) Body Mass Index (kg/length in m2) distribution in patients with breast cancer separated 
by disease stage and tumor subtype, and in healthy donors. Adjusted p-values for (a) and (b) 
were computed with the Kruskal-Wallis test followed by Dunn’s multiple comparisons test. (c) 
Correlation analysis between neutrophil cell counts per mL blood and the time of day the blood 
was taken. R2 and P values are provided in the top-left corner of each graph. 

Supplementary figure 3: T cell differentiation state of patients with early- and late-stage 
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Supplementary Table 1: Treatment history at the time of blood donation for patients with late-stage disease. 
Chemotherapy for mHER2+ BC: taxane, for 1 pt platinum agent. Dual anti-HER2: trastuzumab and pertuzumab. T-DM1 
is Trastuzumab-Emtansine.

Treatment for metastatic disease

Late-stage HR+
n=20

n = 11 (55%) treatment-naïve for M1-diseaes
n = 7 (35%) aromatase inhibitor
n = 1 (5%) anti-hormonal therapy (e.g. tamoxifen)
n = 1 (5%) oestrogen receptor antagonist (e.g. fulvestrant)

Late-stage HER2+
n=17

n = 6 (30%) chemo-naïve for M1-disease
n = 11 (70%) chemotherapy + dual anti-HER2 blockade
n = 7 (41%) T-DM1 as second line
n = 4 (24%) chemo + trastuzumab as third line
n = 1 (6%) Tyrosine kinase inhibitor

Late-stage TNBC
n=93

Treatment-naïve for M1-disease
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Supplementary Table 2: List of antibodies used for flow cytometry. 

Human flow cytometry antibodies

Antigen Fluorochrome Clone Dilution Company Catalogue 
number

CD3 PE Cy5 UCHT1 1:200 BD Bioscience 555334
CD4 BV421 RPA-T4 1:100 BD Bioscience 562424
CD8 BUV805 SK1 1:200 BD Bioscience 612754
Pan γδ TCR PE 11F2 1:100 BD Bioscience 555717
vδ1 FITC TS8.2 1:100 Thermofisher TCR2730
vδ2 BUV395 B6 1:100 BD Bioscience 748582
FoxP3 PE Cy5.5 FJK-16s 1:50 Thermofisher 35-5773-82
CCR7 APC R700 150503 1:50 BD Bioscience 565868
CD45RA BUV737 HI100 1:400 BD Bioscience 612846
CD25 AF647 BC96 1:100 BioLegend 302618
PD-1 APC Cy7 EH12.2H7 1:100 BioLegend 329922
CTLA-4 PE CF594 BNI3 1:200 BD Bioscience 562742
IL-17 PerCP Cy5.5 N49-653 1:50 BD Bioscience 560799
IFNγ BV785 4S.B3 1:200 BioLegend 502542
TNFα PE Cy7 Mab11 1:400 BioLegend 502930
CD27 BV786 L128 1:100 BD Bioscience 563327
TIGIT PerCP Cy5.5 A151536 1:100 BioLegend 372718
Ki-67 PE Cy7 B56 1:50 BD Bioscience 561283
CTLA-4 PE CF594 PE/Dazzle594 1:200 BioLegend 369616
CD19 PE Cy5 HIB19 1:200 BD Bioscience 555414
CD3 BUV496 UCHT1 1:100 BD Bioscience 612940
CD56 PE Cy5 B159 1:100 BD Bioscience 555517
CD161 PE Cy5 DX12 1:100 BD Bioscience 551138
HLA-DR BUV661 G46-6 1:100 BD Bioscience 612980
CD14 BUV737 M5E2 1:100 BD Bioscience 612763
CD16 BUV496 3G8 1:100 BD Bioscience 612944
CD16 AF700 3G8 1:200 BioLegend 302026
CD11b BV421 ICRF44 1:200 BioLegend 301324
CD11c BV785 3.9 1:100 BioLegend 301644
cKIT/CD117 PE Cy5.5 104D2 1:400 Thermofisher CD11718
CD1c PE Cy7 L161 1:100 BioLegend 331516
CD141 BV711 1A4 1:100 BD Bioscience 563155
CD123 PE 6H6 1:200 BioLegend 396604
CD66b PerCP-Cy5.5 G10F5 1:200 BD Bioscience 562254
CD66b AF647 G10F5 1:200 BD Bioscience 561645
CD33 PerCP Cy5.5 WM53 1:100 BioLegend 303414
CD303 APC vio770 REA693 1:100 Miltenyi Biotech 130-114-178
CD41a BUV395 HIP8 1:400 BD Bioscience 740295
FcεRIα PE Dazzle 594 AER-37(CRA-1) 1:200 BioLegend 334634
CD34 FITC 581 1:100 BD Bioscience 555821
CD19 BUV395 SJ25C1 1:50 BD Bioscience 563549
IgD APC IA6-2 1:100 BD Bioscience 561303
CD20 BUV805 2H7 1:200 BD Bioscience 612905
CD27 PE M-T271 1:200 BD Bioscience 555441
CD10 AF700 HI10a 1:200 BD Bioscience 563509
CD24 BB515 ML5 1:200 BD Bioscience 564521
IgM APC Cy7 MHM-88 1:100 BioLegend 314520
CD38 BUV737 HIT2 1:400 BD Bioscience 741837
CD5 PE Dazzle 594 L17F12 1:400 BioLegend 364012
CD1d BV786 42.1 1:200 BD Bioscience 743608
CD138 BV711 MI15 1:200 BioLegend 563184
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