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Chapter 5

1. LEARNING OBJECTIVES

o Spatial lipidomics & metabolomics using mass spectrometry imaging.
o Isotope tracing in biological tissues.
o Visualizing the Warburg effect in cancer tissues.

2. THEORETICAL BACKGROUND

This chapter focuses on the application of stable-isotope tracing in mass spectrometry
imaging to unravel changes in the metabolic profile of renal cell carcinoma. Using a
pre-recorded dataset, we will illustrate how to use spatial lipidomics data for spatial
segmentation of the tissue, and subsequently explain the data analysis strategies for
dynamic metabolic measurements. Essential insights into the theory of mass spectrometry
(imaging), stable isotope tracing, as well as the human kidney, its metabolism and expected
changes upon renal cell carcinoma will be elaborated.

2.1. Spatial metabolomics and lipidomics using mass spectrometry imaging
First, you will find a short introduction into the basic principles underlying spatial
metabolomics/lipidomics analysis using matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry imaging (MALDI-TOF-MSI). By the end of this section, you will
understand the concepts behind this technique and its use in metabolomics/lipidomics,
how samples should be treated for MSI, and some of the pitfalls to avoid when designing
an experiment.

2.1.1. Mass spectrometry

Many analytical chemistry approaches are based on molecular detection, identification
and quantification by mass spectrometry (MS). Although MS encompasses a large variety
of technologies, virtually all commercially available MS instruments share the same basic
layout, consisting of an ionization source, one or more mass analyzers, a detector, a vacuum
system and a computer for instrument setup and data acquisition. There is a large variety
in each of these main components, and different combinations will determine important
practical and analytical characteristics of specific MS instruments, such as the use of solid
vs. liquid samples, fragmentation type, resolving power, mass accuracy, and sensitivity.
These considerations consequently affect the applications for which a specific mass
spectrometer can be used. It is beyond the scope of this introduction to go in-depth into
all different MS platforms, but a few essentials will be explained in following sections.

2.1.1.1. Mass spectra

The output of a mass spectrometer is commonly represented as a mass spectrum; the
value on the horizontal axis of a mass spectrum reflects the mass-to-charge ratio (m/2)
of the detected gas-phase analyte ions, and the value on the vertical axis represents
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the intensity which is a measure of the abundance of the analyte ion in the analyzed
sample. One can make a broad distinction between two types of mass spectra; i) MS1
spectra and ii) fragmentation spectra, or MSn spectra, in which n represents the number
of subsequent fragmentations. MS1 spectra provide a broad overview of all detected
compounds in an analyzed sample and their relative quantity compared to each other. An
MS1 spectrum can only link an m/z feature to a chemical composition (i.e. C;H,,NO, for
N-acetylhexosamine). MSn spectra provide structural information on selected, isolated,
and fragmented compounds, which can be used to identify the molecular structure (e.g.

the distinction between the isomeric N-acetylgalactosamine and N-acetylglucosamine).?

2.1.1.2. Mass spectrometer performance

Several important analytical characteristics can be determined from a mass spectrum; i) mass
accuracy: the difference between the measured mass of a compound and the theoretical
mass derived from its chemical formula usually expressed in absolute numbers (10 u, or
mDa), or relative numbers (parts per million, or ppm); ii) resolving power: the ability of a
mass spectrometer to distinguish two peaks of equal height with a slightly different m/z:

m/z .
= S resolving power

The smallest peak separation (6m/z) at which the two peaks can be separated is called
resolution, and is defined as the width of a peak, at 50% of its maximum peak height;
iii) sensitivity: the response of the recorded signal to a change in concentration of the
measured analyte. Inherently, mass spectrometers produce and record noise coming from
both electrical and chemical interferences. The presence of noise calls for a threshold to
distinguish true signals from background noise, the signal-to-noise ratio (S/N).

Since the chapter focuses on the use of MALDI-TOF-MSI, a brief introduction to the MALDI
mechanism and TOF mass spectrometry principles will follow. For more details on other
ionization methods, analyzers, and fragmentation, see the Further reading section.

2.1.2. Matrix-assisted laser desorption/ionization

The main function of the ionization source is to convert the from the solid or liquid molecular
analytes contained by the sample into gas phase ions; cations in positive ion-mode and
anions in negative ion-mode. MSI requires an ionization source that can directly probe
and produce ions from a solid sample.? One of the most common ionization methods able
to directly convert analytes from solid phase molecules to gas phase ions is MALDI. This
ionization strategy is based on the illumination of a matrix-doped sample with a pulsed UV
laser (Figure 1A). The chemical matrix used is typically a small organic molecule dissolved
in organic solvent and has to be a strong absorber of UV light at the wavelength of the
laser (Figure 1B). During the evaporation of the organic solvent, the matrix crystallizes, and
molecular analytes are embedded and co-crystallized with the matrix. Upon illumination
of the matrix with the laser, rapid super heating causes both desorption of single surface
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(matrix) ions, as well as an explosive phase transition (ablation) creating larger clusters of
neutral and charged matrix and analyte molecules, the combination of which is referred to
as the MALDI plume. In the MALDI plume, charges will be transferred mainly through the
addition or removal of protons (H*), or the addition metal ions (Na*, K*, Li*, Ag*) or halogens
(CL) resulting in either cations or anions which are accelerated towards the mass analyzer,
which will be discussed in the next section. It is important to note that the majority of ions
generated in during the MALDI process only carry single charges.?
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Figure 1. Schematic of the MALDI process. A: In MALDI-MS the analyte molecules are mixed with a chemical
matrix and illuminated with a UV laser. In the resulting gas phase ion cloud, the MALDI plume, charge transfer
and secondary ionization processes take place, creating gas phase analyte ions. B: Common MALDI matrices
used for negative ion-mode metabolomic MALDI-MSI N-(1-Naphthyl)ethylenediamine dihydrochloride
(NEDC), and 9-aminoacridine (9-AA), and positive ion-mode 2,5-dihydroxybenzoic acid (2,5-DHB), and
a-cyano-4-hydroxycinammic acid (aCHCA). C: Schematic of TOF-MS. In a TOF mass analyser, the ions are
transferred from the ionization source to a vacuum drift tube. At t the ions are exposed to an electrostatic
pulse, accelerating them towards the detector (at distance L). A difference in their resulting velocity
separates the ions in space and time. The m/z can be calculated for each analyte with a differential t, .
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2.1.4. Time-of-flight mass spectrometry

One of the simpler mass analyzers to comprehend is the axial time-of-flight, or TOF, mass
spectrometer (Figure 1C). TOF mass analyzers are pulsed systems, and therefore perfectly
compatible with MALDI-based ion generation. The ions produced in the MALDI process
are transferred from the sample target in the ionization source to the ion optics by means
of a strong electric field between the sample target and the first counter electrode in the
optics. The ions are accelerated into a drift tube, which they enter all having the same
kinetic energy. The time-of-flight (tmf) can be defined as the time interval between the
MALDI laser pulse, and the impact of the ion on the detector. The m/z for each ion can be
calculated using the following formula:

In which the constants L, the length of the ion flight path, and eV, the electrostatic potential
of the accelerating pulse are within brackets, and the t__is the measured time-of-flight. It
can easily be deduced that the higher the molecular weight of the analyte, the longer its
time-of-flight.*

2.1.5. Mass spectrometry imaging

MSI is based on the acquisition of spatially correlated mass spectra from discrete positions
in a Cartesian coordinate system virtually projected on a sample surface. Each recorded
spectrum is barcoded with an XY-coordinate and placed in a virtual data cube, in which the
XandY axes represent the X and Y coordinates, and the Z-axis represents the m/z axis of the
mass spectrum. Each individual voxel, or 3D pixel, in this data cube contains the intensity
of a single m/z feature at the given XY-coordinate. Through the selection of a specific m/z
feature, representing an analyte, one can visualize the intensity distribution of the analyte
over the sample surface (Figure 2).°

2.1.6. Sample preparation for in situ metabolomics using MALDI-MSI

Direct molecular imaging by MALDI-MSI is one of the most common tools for in situ
metabolomics. While there are many applications beyond metabolomics (i.e. proteomics
and glycomics) and clinical research (i.e. food, insect and plant biochemistry), the majority
of applications focuses on the analysis of mammalian tissues. Metabolomics by MALDI-
MSI is commonly applied to thin sections obtained from fresh frozen tissue material,
although analysis of metabolites from formalin-fixed and paraffin-embedded material also
has been reported®, and this immediately poses the two main challenges in the studying
the metabolome in its spatial context; i) post-mortem degradation, and ii) molecular
delocalization through lateral diffusion.”®

2.1.6.1. Post-mortem degradation

The metabolome is extremely dynamic and alters rapidly upon changes in the environment.
Resecting a tissue specimen (i.e. an organ or tumor) from a human or animal body inevitably
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A Prepared sample Spatially-resolved sampling

-

Registration to XY grid Measurement region
A
»
Q
]
g
k=
o
Q
Q
N
B 2z 2 2 2
@ B 7] 7
c C c c
8 2 g 2
gL [E g el g, |
X,Y, m/z X,Y, m/z XaY, m/z X.Y, m/z
2 2 2 2
k7] 7 @ @
c C C C
g g g g
R R 2] |
X,Y, m/z X,Y, m/z X5Y, m/z X.Y, m/z
= 2 P P
@ i @ 7
c C = C
8 | 8 g 8
£ l £ | = l 1 £ l 1
X,Y, m/z X,Y3 m/z XsYs m/z X.Ys m/z
2 2 2 2
c C C C
] 2 k] 2
: | £ L £ | 2 |
X,Y, m/z X,V m/z XaYn m/z XY, m/z

In situ intensity distributions

Intensity

Overview spectrum m/z

Figure 2. Schematic representation of the mass spectrometry imaging (MSI) principle. A: Registration of the
prepared sample to a Cartesian grid with predefined raster width. Followed by definition of the measurement
area and spatially resolved sampling. B: Construction of a data cube from the collection of single mass spectra
recorded for every pixel coordinate in the defined measurement area. C: Calculation of a representative
overview spectrum, and visualization of intensity distributions for m/z features of interest. The colour scale
represents the relative intensity differences of the selected m/z feature between the measured pixels.
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requires the disconnection of that tissue from the blood flow, causing nutrient and oxygen
depletion which immediately start to affect the metabolome.® Especially the intracorporeal
ischemia time, during which the tissue is still inside the body but disconnected from blood
flow, is problematic due to the tissue being present at the optimal working temperature
of all endogenous enzymes. Naturally, for a representative metabolomics study, this time
should be minimized upon sample collection. Once resected, a tissue should be handled
swiftly and is typically flash frozen in seconds using liquid nitrogen-cooled isopentane.

2.1.6.2. Molecular delocalization

MSI is used to analyze molecules in the spatial context of the tissue, thus the localization of
the metabolites is of utmost importance. Most metabolites are polar molecules and easily
dissolve in water, which makes avoiding condensation one of the primary objectives during
the entire MALDI-MSI sample preparation.® Tissues, stored at -80°C, should be transferred
on dry ice at all times, and equilibrated to room temperature using a vacuum freeze-drier
prior to MALDI matrix application. Once at room temperature, the slide-mounted sections
should be handled swiftly. After taking a pre-MSI optical scan of the glass slide, required
for setting up the virtual Cartesian coordinate system the spatially correlated analysis will
be based on, the sample preparation for MALDI-MSI typically only involves applying the
MALDI matrix.

2.1.6.3. MALDI matrix application

The application of the MALDI matrix is typically done in one of two ways: spray-based
(Figure 3A), or sublimation-based (Figure 3B) matrix application. For the spray-based
matrix application, the MALDI matrix should be dissolved. For metabolomics approaches
this is typically done in a high-organic solvent, minimizing the amount of water to limit
delocalization. The preparation of the high-organic solvent is a balancing act, since there
should still be some water present to extract the polar metabolites from the tissue. For
example, for the measurements described below, the N-(1-naphthyl) ethylenediamine
dihydrochloride (NEDC) matrix was dissolved in methanol:acetonitrile:water (70:25:5 % v/v/v).
The dissolved matrix is then homogeneously sprayed over the tissue using a robot. The
nebulization of the matrix solution into a fine spray is achieved pneumatically, using
ultrasound or electrospray. The fine matrix droplets that land on the tissue allow analytes to
extract from the tissue, and upon drying, incorporate into the matrix crystal. It is important
here that the resulting matrix crystals should not exceed the dimensions of the desired pixel
size, as it is impossible to determine the exact location of origin from an analyte within
the confines of a single matrix crystal.® The use of solvents makes that the spray-based
approach comes with the risk of slightly delocalizing the analyte molecules.

In sublimation systems, the solid MALDI matrix and sample are brought into a vacuum
chamber. The matrix is heated under vacuum, causing it to sublimate. The sample, placed
above the matrix, is cooled, causing the gas phase matrix to condensate onto the sample
surface, allowing surface molecules to co-crystalize with the matrix. The sublimation
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method has some advantages over the spray-based method; i) it is a solvent-free approach,
limiting analyte delocalization, and ii) during the procedure the sample is cooled and
stored in vacuum, limiting post-mortem degradation. Naturally, sublimation-based matrix
application also has its limitations. The most obvious one is the limited extraction of
analytes into the matrix which affects the measurement sensitivity of certain analytes.
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Figure 3. Spray-based matrix application of MALDI matrix is commonly performed using a pneumatic or
ultrasound nebulizer mounted on a X-Y-Z-stage robot. A: The dissolved matrix is sprayed homogeneously
onto the tissue section, allowing for maximum extraction of analytes, although at the risk of delocalization. B:
Sublimation-based application of MALDI matrix is a solvent-free matrix application approach performed under
vacuum conditions. Through heating the matrix, it sublimates into the vacuum chamber. Upon touching the
cooled sample, the matrix condensates, and forms a fine crystal layer on top of the tissue. Although the cooling
and vacuum conditions aid in minimizing delocalization and post-mortem degradation, molecular extraction
using sublimation-based matrix application is compromised leading to lower sensitivity for some analytes.

2.1.7. MALDI-MSI| measurement setup

Once the MALDI matrix has been applied, the tissue will be transferred to the MALDI-MS
system to set up MSI the measurement. Depending on the instrument vendor, the slide
with sections is usually mounted in a target carrier that is positioned in a XY robotic MALDI
stage. The laser is focused on a fixed position, and between different pixels the target
carrier with the sample is moved in the X and Y plane. Upon loading the target in the
MS system, the first thing to do is to register the pre-MSI optical scan to the acquisition
software of the MS system, essentially linking the MALDI stage XY motor positions to
specific pixels in the pre-MSI optical scan image. This should be done as accurately as
possible.* Once the registration of the pre-MSI optical image to the acquisition software
is performed, the MS method can be optimized. This consists of five steps. i) Setting up the
desired m/z range; for metabolites and lipids this is typically m/z 80-1500 Th. ii) Setting up
the desired ablation field size and matching laser focus. Note that the ablation field size
should not exceed the desired spatial resolution of the MSI analysis, as it leads to undesired
oversampling. iii) Determining the optimal laser energy; too low of a laser energy results
in insufficient ionization, and consequently produces poor spectra that will translate into
“dead pixels”. Too high laser energies result in extensive matrix cluster formation and
analyte fragmentation, as well as an increase of the effective laser spot diameter which
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might compromise spatial resolution. iv) Determine the optimal number of laser shots
per pixel; based on the tradeoff between sensitivity (high number of shots per pixel) and
throughput (low number of shots per pixel) one can select the optimal number of laser
shots per pixel for the experiment. v) External mass calibration; using a known compound
mixture calibrate the instrument mass response.

Once the MS method is optimized and calibrated, indicate the measurement areas on the
tissues, and start the spatially correlated data acquisition.

2.1.8. MSI data pre-processing and feature extraction

After the MSI data acquisition the data needs pre-processing prior to data analysis. Typical

steps in pre-processing are:

i) Baseline subtraction. Setting the noise level of the recorded single spectra to zero to
ultimately enhance the signal-to-noise ratio (S/N).

ii) Normalization. Multiplying mass spectra with an intensity-scaling factor to correct for
and minimize the effect of systematic errors introduced during the MALDI-MSI analysis. 2

iii) Feature selection, or peak picking. Defining true m/z features from noise in the representative
(i.e. average, sum, or base peak) spectrum using a pre-defined S/N cutoff value.

iv) Feature extraction. Extracting the intensity information for each m/z feature defined
in the feature selection from each of the single pixel spectra.*

The result of the pre-processing is a workable peak matrix with the per-pixel intensity

information for all selected m/z features. This pre-processed peak matrix is the starting

point for the data analysis procedure described in the Exercises below.

2.2. Stable isotope tracing in (pre)clinical tissue specimens

Cell metabolism is a dynamic process characterized by parameters such as cellular
metabolite levels, metabolic flux and nutrient contributions to different metabolic
pathways. ¥* Mass spectrometry-based metabolomics has a central role in measuring
metabolite levels in both physiological and pathological conditions. Changes in metabolite
levels indicate altered cellular metabolic states and are related to processes such as
biosynthesis, energy metabolism and catabolism. However, metabolite levels per se do
not directly reflect the metabolic rates, or fluxes, of the pathways, nor do they reflect the
origin sources of the measured metabolites. Think of it as a bank account, both a rich and
a poor person can have the same amount of money on the bank. Despite having the same
balance, the rich person likely has a much higher in- and outflow of money and can thus
afford a different lifestyle. Stable isotope tracing is a common tool to get insight in the
fluxes of metabolism, as well as nutrient partitioning. Here, so-called “heavy” nutrients
(e.g. *C,-glucose or *C,-, **N,-glutamine) are introduced into a biological system, and the
incorporation and enrichment of the stable isotopes (**C or *N) into downstream metabolic
compounds is assessed.* Measuring both metabolite levels and metabolic fluxes at a single
timepoint usually requires a metabolic steady or pseudo-steady state. This is characterized
by constant or minimal changes in metabolite levels or metabolic fluxes during the time
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course of the isotope tracing experiment. Sometimes steady state cannot be achieved
in a natural biological system, which emphasizes the need for time course experiments,
and dynamic labeling calculations, as well as non-stationary flux analysis, such as acute
signaling events or nutrient modulations. ** The duration of this time course may vary
depending on the research question, e.g. glycolysis reaches metabolic steady state within
approximately 10 minutes, whereas for the TCA cycle this often takes several hours.

Different stable isotope-labeled nutrients can be used to targeted different metabolic
pathways. For example, uniformly labeled glucose (U-**C,-glucose, also noted as M+6
glucose) is the most commonly used nutrient to trace glycolysis (Figure 4A), the TCA cycle
(Figure 4B), as well as other metabolic pathways related to glucose metabolism. However,
to measure flux of the oxidative pentose phosphate pathway (PPP), 1,2-*C,-glucose is
more common.* Uniformly labeled glutamine (U-*C,-glutamine; M+5 glutamine) is often
used for TCA cycle flux estimation, as it results in highly abundant labeling of TCA cycle
intermediates. Its conversion, through a-ketoglutarate via reductive carboxylation, results
in the production of M+5 labeled citrate, which means U-13C5-glutamine can also be used
to elucidate the contribution of glutamine to lipogenesis via the reductive carboxylation
pathway - which is the reversed direction of the TCA cycle. Alternatively, when labeled
glutamine enters the oxidative TCA cycle it will result in M+4 labeled succinate, and malate,
as well as M+3 labeled a-ketoglutarate for the second cycle through the TCA cycle. ' To
measure the direct contribution of different nutrients to metabolic pathways, it is necessary
to conduct tracer experiments with all circulating nutrients of interest, which can be
determined by a straightforward matrix calculation.

Stable isotope tracing lends itself perfectly for in vitro studies, however in vivo experiments
have been performed and applied in cancer patients to study tumor cell metabolism via
either bolus injection or constant infusion. Nutrient partitioning has proven important for
tumor cell survival and the function of immune cells in the tumor microenvironment. *
Unfortunately, to study nutrient partitioning of tumor cells directly in patients multi-tracer
analyses would be required, and these are not feasible using either both bolus injection
or constant infusion. Ex vivo culturing of human tissue, following vibratome slicing, has
provided a promising strategy that allows multi-tracer experiments using single tissue
samples. 2° This approach can be combined with the parallelized introduction of various
stable isotope labeled nutrients to the incubation medium, which allows for an efficient and
biochemically meaningful labeling of metabolically active cells.?* Given that the metabolic
labeling takes place in situ, makes incubation of vibratome sectioned tissue slices with
stable isotope labeled tracers perfectly compatible with spatial metabolomics tools such
as MALDI-MSI. 2
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Figure 4. Metabolism and the Warburg effect. A: Schematic overview of glycolysis. B: Schematic overview
of the tricarboxylic acid (TCA) cycle. C: Schematic representation of the Warburg effect.
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2.3. The kidney and renal cell carcinoma

The human kidney is a highly complex organ, with up to twenty known cell types contributing
to its main function of filtering our blood. Maintaining the molecular integrity of all these
cell types is a complex process, requiring strict control of the transcriptome, proteome and
metabolome. Disruption of these processes can emerge in a variety of diseases, ranging
from chronic kidney disease to renal cancer. The most common type of kidney cancer in
adults is renal cell carcinoma (RCC), a type of cancer which originates in the proximal
tubule cells, which transport the primary urine after filtration of the blood.?* The 5-year
survival rate of RCC patients is around 50 - 70%, however when the cancer metastasizes
the prognosis is substantially worse, with a median survival time of 13 months and a
5-year survival rate under 10%.2® Giving its severe nature, RCC is heavily studied to better
understand the disease pathogenesis and progression, as well as how effective treatment
can be provided. One common finding amongst these studies is the role of metabolism;
RCC cells display a grade-dependent metabolic reprogramming.?* In this chapter, we will
have a closer look into the metabolism of the healthy human kidney (Figure 5A) as well as
RCC and its surrounding tissue (Figure 5B) using the in situ stable isotope tracing method
and spatial metabolomics by MALDI-MSI described above.

2.3.1. Metabolism of the kidney and RCC

Different renal segments contribute to the role of the kidney as filter of our blood. The
primary functional unit of the kidney, the nephron, consists of a glomerulus and Bowman'’s
capsule, connected serially to a proximal tubule, loop of Henle and distal convoluted tubule.
The various tubules play an important role in the reabsorption of water and salts from the
filtrate originating from the glomerulus. These reabsorption processes are mostly mediated
by active ion transport channels, making the kidney one of the most energy demanding
organs of our body. This makes that the human kidney is highly metabolically active, with an
estimated metabolic rate of >400 kcal/kg tissue/day.?>?¢ To meet this energy demand, the
kidney mostly uses the TCA cycle. To this end, the kidney is able to directly take up citrate,
one of the TCA cycle intermediates, from the blood to fuel the TCA cycle.?” Besides citrate,
also lactate, uric acid and glutamine are reabsorbed in high levels to fuel the TCA cycle
through side branches of the central carbon metabolism. Besides its metabolite burning
character, the kidney also portrays significant gluconeogenetic capabilities. This results
in the organ net-oxidizing lactate into pyruvate, thereby contributing to maintaining the
circulating redox homeostasis.

RCC originates in the high energy demanding proximal tubule cells. As described above,
the healthy kidney relies on the TCA cycle for its energy demand. However, upon the
manifestation of RCC this drastically changes; the TCA cycle and subsequent oxidative
phosphorylation (OxPhos) are downregulated, whereas anaerobic glycolysis and the PPP are
activity are increased. The metabolic switch from OxPhos to anaerobic glycolysis a distinct
feature of cancer cells, and is also known as the Warburg effect (Figure 4C). 2% Even though
there is enough oxygen available for OxPhos, cancer cells preferentially use glycolysis for
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energy production. To still provide sufficient ATP, the cell has to drastically increase its
glycolytic flux since the ATP yield of anaerobic glycolysis (2 mol ATP/mol glucose) is much
lower compared to OxPhos (~38 mol ATP/mol glucose). This results in a net increase of
lactate production, which subsequently can be used for biomass incorporation and cell
proliferation; highly beneficial for the fast-dividing cancer cell. Another phenomenon that
can be attributed to the Warburg effect is the decreased glucose contribution to the TCA
cycle. Of course, these two phenomena go hand in hand, and are both indicative of the
metabolic shift resulting from the Warburg effect.

Figure 5. Kidney and renal cell carcinoma histology. A: Representative image of H&E stained normal human
kidney. B: Representative image of H&E stained human RCC.

3. RESEARCH AIM

Establish an experiment that allows the metabolic differentiation between healthy proximal
tubular cells and RCC cells, by visualizing dynamic differences in glucose metabolism
within the tissue.

4. HYPOTHESIS AND EXPERIMENTAL SETUP

As the healthy human kidney relies predominantly on the TCA cycle for energy production
and RCC relies on glycolysis, an in situ dynamic metabolic tracing experiment of glycolysis
activity will allow the distinction between healthy proximal tubule cells and RCC tumor
cells, and visualization of the Warburg effect.

4.1. Experimental setup
4.1.1. Tissue preparation, in situ isotope incubation, MALDI-MSI, and staining
A patient with RCC underwent surgical resection to remove the cancer. A biopsy from the

RCC tissue was taken and preserved for metabolomics purposes. Besides the RCC tissue,
the surrounding healthy tissue was sampled serving as control. Tissues were sliced using
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a vibratome (Figure 6A). Since for this particular ex vivo experiment we are interested in
visualizing the dynamics of the Warburg effect, U-**C,-glucose was used as metabolic tracer
of the glycolysis. Tissue slices were incubated for 2 hours after which they were quenched
using liquid nitrogen. Different tissue slices underwent O (control), 15, 30, 60, and 120
minutes of incubation with labeled glucose (Figure 6B). After snap freezing, the tissues were
further prepared for MALDI-MSI analysis. First, 10 um thick tissue sections were sectioned
using a cryotome, and thaw-mounted on indium-tin-oxide (ITO)-coated glass slides.
N-(1-napthylyl)-ethylenediamine dihydrochloride (NEDC) matrix was dissolved at 7 mg/
mL in a mixture of solvents (70:25:5 methanol:acetonitrile:deionized water (% v/v/v)) and
applied to the tissue section using a pneumatic sprayer. Then, negative ion-mode MALDI-
TOF-MSI analysis of the sections was performed using a Bruker Daltonics rapifleX system
at a 5 x 5 ym?spatial resolution. During these analyses, anions within a m/z range of 60-
1000 Th were recorded. After MALDI-MSI data acquisition, the remaining MALDI matrix
was removed from the MSl-analyzed tissue by various organic solvent washing steps. The
remaining tissue was then stained with several immunofluorescence markers (LTL for
proximal tubular cells, ECAD for distal tubular cells and collecting duct, and NPHS1 for
podocytes), which allowed us to identify the different epithelial cell types in the tissue.
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Figure 6. Stable isotope tracing in tissue culture. A: Schematic overview of the vibratome slicing procedure.
B: Overview of the stable isotope tracing tissue culture time course experiment. At the indicated time points
the label with regular glucose was exchanged with medium containing U-**C-glucose. At time point Om the
tissues were quenched using liquid nitrogen. C: Detected metabolites with the number of incorporated
stable isotope labelled carbon atoms in red.
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4.2, MSI data pre-processing

Following the MALDI-MSI data acquisition, the data for every incubation time point was
loaded into a proprietary software package provided by the instrument vendor (SCiLS Lab
PRO, v2023a) with baseline correction using a convolution algorithm. The dataset was
normalized to the total ion count (TIC). Spectral recalibration and a two-step peak picking
on the average spectrum were performed in mMass?’; i) untargeted peak picking (S/N > 3)
was performed on the m/z range between 450-1000 Th), and ii) targeted m/z feature
selection was performed on specific metabolites and isotopologues expected to derive from
the stable isotope tracing experiment and based on the theoretical m/z values (Figure 6C).
The peak list was imported into SCiLS Lab, which was used for per-pixel feature extraction
and data exporting.

Table 1. Overview with datasets containing the per-pixel intensity information for all selected m/z features.

Timepoint Dataset

Control Kidney_RCC_lipids.csv

15 min Kidney_RCC_13C_15min.csv
30 min Kidney_RCC_13C_30min.csv
60 min Kidney_RCC_13C_60min.csv
120 min Kidney_RCC_13C_120min.csv

Additional files

Pixel ID and coordinates Kidney_RCC_coordinate.csv

Table 2. Files needed for the isotope correction package IsoCorrectoR.

File Contains
ElementFile Information on the elements important for the isotope correction process
MoleculeFile Information on the molecules to be corrected for natural isotope abundance/tracer purity

MeasurementFile The measured data that needs to be corrected

Table 3. Overview of datasets containing the isotope corrected values for enrichment visualization.

Timepoint Dataset

15 min CorrectedFractions15.csv
30 min CorrectedFractions30.csv
60 min CorrectedFractions60.csv
120 min CorrectedFractions120.csv

4.3. Necessary software and exemplary dataset

Since the SCiLS Lab software is not freely available, we provide the pre-processed datasets
(Table 1). The associated datasets, IsoCorrectoR file templates and the R scripts (in Rmarkdown)
which are referred to throughout the chapter, are available for downloading from OSF.io.
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The programming language R was used for most data analysis steps, e.g. data transformation,
spatial segmentation, data integration, metabolite intensity imputation and visualization.
A list of required R packages is provided below (Table 4).

Table 4. Overview of R packages required for the data analysis strategies described below.

Package Purpose

ggplot2 Visualization

ggrepel Visualization; repel overlaying labels in ggplot2
ggcorrplot Visualization; easy correlation matrix

pheatmap Visualization; drawing clustered heatmaps
patchwork Visualization; combining plots

viridis Visualization; colors suited for black-white and color
IsoCorrectoR Isotope abundance correction

Seurat Clustering, data integration, metabolite imputation
dplyr Data manipulation

Tidyverse Data manipulation

reshape2 Data manipulation

4.4, Research questions and exercises

Using your newly acquired knowledge from the introduction, as well as the provided code
and the example datasets, you can train yourself to perform the data transformations and
steps to perform in situ metabolic dynamics analysis. In this chapter we aim to answer the
following central research questions:

1. Canwedifferentiate RCC from healthy kidney tissue on the basis of their metabolic histology?
In other words, can we use unsupervised multivariate statistical approaches to isolate
pixels obtained from a cancerous tissue from those obtained from a healthy kidney tissue?

2. Can we differentiate RCC from healthy kidney by visualizing the Warburg effect using in
situ dynamic metabolomics? In other words, can we find differences in the contribution of
U-*C,-glucose to glycolysis and TCA cycle between cancerous tissue and healthy kidney?

5. EXERCISES

Throughout the remainder of the chapter, you will be guided through the workflow outlined
in Figure 7. This will be a good starting point for any in situ dynamic metabolomics study.
Obviously, the options to expand on this analysis pipeline are endless and will not be within
the scope of this chapter.
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5.1. Dimensionality reduction and spatial segmentation of MSI data

The analysis of a tissue section by MSI generates very high dimensional data. At a 5x5 pm?
spatial resolution, a measurement area of 1 mm? contains 40,000 pixels. For each pixel, a
mass spectrum is recorded each consisting of typically 250.000 datapoints, resulting in a
total of 10x10° datapoints per square millimeter analyzed. In order to create interpretable
data, one needs to reduce the data complexity. Following complexity reduction that
is achieved through peak picking and feature selection (section 2.1.8), the next step in
dimensionality reduction is achieved through spatial segmentation of the data. Here,
multivariate statistical tools (i.e. principal component analysis (PCA), t-distributed stochastic
neighbor embedding (tSNE), uniform manifold approximation and projection (UMAP) etc.)
are used to calculate groups of pixels that are highly similar, which in this case means they
have mass spectra with comparable peak intensity profiles. By color coding the clusters,
and plotting the clusters using the pixel XY coordinates, one can construct an image that
shows the spatial distribution of metabolically similar pixels.>3°

Baseline correction, normalization,
RO recalibration and peak picking

. . - - )
| Transformation of the high-dimensionality
PSS ey m/z data to a low-dimensional space

Partitioning of the MSI data into distinct )
W regions sharing a similar metabolic profile/

Replacing the missing 3C-enriched
metabolites in the lipid control dataset )

Data
imputation

Correction of the 3C-enriched metabolite |

lectchel data for naturally present isotopes )
2

Hotspot Quantile thresholding
removal )
- . - . 3

Visualize the dynamic '3C-enrichment

Vaustsnton results in situ )
<

N\ Draw conclusions about the metabolism
e in RCC versus healthy kidney tissue

Figure 7. Schematic of the data analysis workflow used for the in situ spatial metabolomics analysis.

During the first exercise in our dynamic metabolism data analysis pipeline, you will perform
a metabolome-driven spatial segmentation of the healthy kidney control and RCC tissue to
identify groups of pixels with similar metabolic profiles. The clustering algorithm chosen
for the dimensionality reduction is UMAP.3! In the final UMAP plot, pixels that have a similar
metabolic profile will end up in close together and consequently will be assigned to the
same cluster. Subsequently you will reconstruct the cluster image, resulting in a chemically
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segmented visualization of the tissue. This image will be referred to as the “metabolic
histology image” of the tissue.

5.1.1. R code and explanations

The first goal of this exercise is to perform the UMAP-based dimensionality reduction, you
can use the R Script “Reduction_Segmentation” with corresponding .csv files “Kidney_RCC_
lipids.csv” and “Kidney_RCC_coordinate.csv” for this.

We start by loading the exemplary lipid MSI dataset into our R working environment. Since
the lipid profile is highly cell-type specific and stable throughout the isotope-labelling
experiment, we can use these features for spatial segmentation, cell-type identification,
and anchor-based data integration.?? The file we have provided you with is the combined
data of both the healthy kidney and the RCC tissue. Throughout the exercise it will appear
that these two tissues are metabolically indeed very distinct from one another.

# Load in the Llipidome dataset
MSIref <- read.csv( 'Kidney_RCC_lipids.csv', iy TRUE,

")

# Transform the countmatrix into dataframe suitable for Seurat
MSIref <- MSIref * 100 %>%

round( 0)
MSIref <- as.data.frame(t(MSIref))

After data transformation, the data is now in a suitable format to load it into the Seurat
package using the following code:

MSIdata <- CreateSeuratObject(counts = MSIref, project = "RCC")

To put the dataset to a common scale, without distorting the relative differences in ranges
of intensity values, the data needs to be normalized and scaled. After data transformation,
a PCA will be performed which determines the neighbors of each pixel. The results will
later be used by the UMAP algorithm.

MSIdata <- SCTransform(MSIdata, verbose = F)
MSIdata <- RunPCA(MSIdata, assay = "SCT", verbose = FALSE)

# Perform Elbowplot to assess suitable number of PCs for subsequent
analysis
ElbowPlot(MSIdata)

The elbow plot (Figure 8) shows the standard deviation for each of the calculated principal
components (PCs), and is a useful tool to determine how many PCs should be selected to
represent the majority of the variation held within the dataset. Based on visual inspection
of the plot, you determine the PC at which the change in standard deviation starts to taper
off. Despite being subjective, it is a quick and efficient method for choosing the number
of PCs to use.
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Figure 8. Elbow plot displaying the standard deviation for each calculated principal component.

Based on the elbow plot above, we chose to work with the first eight PCs to run the UMAP
algorithm. There are two important, so-called, hyper parameters that have a significant
effect on the results: resolution and min.dist. You can play around yourself with these
parameters to see how they affect the resulting UMAP embedding.

# Look for pixels that overlap in the PCA space

MSIdata <- FindNeighbors(MSIdata, dims = 1:8)

# Iteratively groups cells together to a certain optimal point
MSIdata <- FindClusters(MSIdata, resolution = 0.5)

# The RunUMAP function learns the underlying manifold of the data in order to place similar
cells together in a low-dimensional space

MSIdata <- RunUMAP(object = MSIdata, dims = 1:8, n.neighbors = 15L,

min.dist = 0.05, check_duplicates = FALSE)

DimPlot(object = MSIdata, reduction = 'umap', label = TRUE, pt.size = 1,
label.size = 5)

DimPlot(object = MSIdata, reduction = 'umap', label = TRUE, pt.size = 1,
label.size = 5, group.by = “orig.ident”)
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Figure 9. Two-dimensional scatterplot visualization of the UMAP embedding. A: UMAP representation with color-
coding based on cluster identities. B: UMAP representation with color-coding based on original pixel identities.
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After the dimensionality reduction, the clusters are named using meaningless integers which
do not give any information about the biological meaning of these clusters (Figure 9A). Since
in our experimental setup we expect to find a mixture of cells, including a variety of healthy
kidney cells as well as cancer cells, we are interested in assigning the different cell types
to the different clusters. To achieve this, we need to compare the spatial representation
of the dimensionality reduction - the “metabolic histology” - with the celltype
information obtained from the immunofluorescence microscopy images. This allows us to
determine which clusters are positive for which cell-type markers.

The second part of the exercise is to reconstruct the segmentation cluster distributions
and generate the metabolic histology image. To recreate the cluster images, we first need
to load the XY coordinates for each of the analyzed MSI pixels in R.

# Create a data frame with the xy coordinates from the imaging run
xycoord <- read.csv(file = 'Kidney RCC_coordinate.csv', row.names = 1,
header = TRUE, sep = ",")

xycoord$yl <- xycoord$y * -1

The next step is to associate the XY coordinates to the clustered pixels in the Seurat object and
visualize the individual cluster images. An example for cluster 1 is shown below (Figure 10).

# Extract the cluster information from the dimensionality reduction
cluster <- as.data.frame(as.matrix(MSIdata@active.ident))

# Select which cluster you want to visualize, by setting this to 1 and all others to @
cluster_int <- "1"

cluster$Vl <- replace(cluster$vl, cluster$vl != cluster_int, 0)

cluster$Vl <- replace(cluster$vl, cluster$vl == cluster_int, 1)

# Merge the cluster information with the xy coordinate system
dataframe <- merge(cluster, xycoord, by = 'row.names')

# Transform data for pheatmap
dataframe$vl <- as.numeric(dataframe$vi)

Cluster 1
@ Other

Figure 10. Visualization of the spatial distribution of cluster 1. The left panel is the healthy kidney tissue,
the right panel represents the RCC tissue.
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a = dcast(dataframe, y~x, value.var = "V1")
row.names(a) <- a[,1]
data <- as.matrix(subset(a, select = -c(y) ))

# Visualize the spatial distribution of cluster of interest

pheatmap(data, scale = "none", cellwidth = 0.6, cellheight = 0.6,

cluster_rows = FALSE, cluster_cols = FALSE, legend = T, show_rownames = F,show_colnames = F
, border_color = FALSE, fontsize = 18,

color = viridis(250), na_col = "WHITE", breaks = NA, main

cluster_int)

LTL
ECAD

@ NPHS1

@ DAPI

Figure 11. Immunofluorescence staining. The left panel represents the healthy kidney tissue, the right panel
represents the RCC tissue - LTL (turquoise) for proximal tubular cells, ECAD (green) for distal tubular cells
and collecting duct, NPHS1 (red) for podocytes, and DAPI (blue) for cell nuclei.

To assign cell type information to the clusters we compare the visualizations of each of the
clusters with the IF images we have of the post-MSl analyzed tissue (Figure 11). From these
IF images it becomes apparent immediately that major histological transformations have
occurred in the RCC sample compared to the healthy kidney tissue. The glomerular and
tubular structures have mostly disappeared, leaving a dedifferentiated and unstructured
tissue which mainly consists of cancer cells and stroma tissue. Although the RCC tissue is
quite heterogeneous, both on the histological level evidenced by the IF staining, as well
as the lipidomic level evidenced by the presence of several RCC clusters in the UMAP
embedding, it is beyond the scope of this chapter to go into the details of intratumor
heterogeneity. Therefore, in further processing steps the RCC tissue as a whole will be
regarded as a single group.

For this chapter, we have provided you with a vector with the cell types of interest
(new.cluster.ids) which you can use to assign the cluster identities.
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# Change the cluster names to the newly identified cell type names
new.cluster.ids <- c("RCC", "LTL_1", "RCC", "Unidentified_1","Glom/Vessel"
, "RCC", "LTL_2", "Unidentified 2", "RCC", "RCC",

"ECAD_1", "ECAD_2", "Unidentified 3")
names(new.cluster.ids) <- levels(MSIdata)
MSIdata <- RenameIdents(MSIdata, new.cluster.ids)

DimPlot(object = MSIdata, reduction = "umap", label = TRUE, pt.size = 1,
label.size = 5)

104
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Figure 12. Two-dimensional scatterplot visualization of the UMAP embedding with annotated cluster identities.

As final part of this exercise, you can now visualize the metabolic histology of the tissue.
Once again, a data transformation step is required to enable the spatial visualization of the
metabolic histology using ggplot.

# Data extraction out of the Seurat object

embeddings <- as.data.frame(MSIdata@reductions[["umap"]]@cell.embeddings)
ident <- as.data.frame(MSIdata@active.ident)

# Data transformation

vector <- row.names(xycoord)

xycoord$pixID <- vector

vector <- row.names(embeddings)
embeddings$pixID <- vector

vector <- row.names(ident)
ident$pixID <- vector
names(ident)[1] <- "Ident"

# Merging everything into 1 dataset
spat_UMAP_Kidney <- merge(xycoord, embeddings, by = 'pixID') %>%
merge(ident, by = 'pixID")

# Using ggplot to visualize the metabolic histology
ggplot(spat_UMAP_Kidney, aes(x = x, vy = y))+
geom_tile(aes(fill = Ident))+
coord_fixed()+
theme_void()
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Figure 13. Metabolic histology visualization of the UMAP embeddings. The color-coding represents the
different cluster identities in the spatial context of the tissue.

5.1.2. Description of the results

Based on the selected parameters for the dimensionality reduction using the UMAP
algorithm, we find a coarse split of the data into two large clusters, each subdivided in
several smaller subclusters (Figure 9A). Based on the visualization of the origin of the pixel
(orig.ident), it appears that the largest contributor to variation within the tissue is whether
the pixel comes from a healthy or a RCC kidney (Figure 9B). The sub clustering of the healthy
kidney, and comparison of the cluster distributions to the IF images, additionally shows that
the individual cell types within the healthy kidney each have their own metabolic profile.
For example, we were able to assign various clusters to cells which were positive for LTL,
indicating various proximal tubular cells in the healthy kidney tissue (Figure 11,12 & 13).

5.2. Metabolite abundance imputation

To perform the dynamic metabolic measurements, we have performed a time course
of in situ isotope tracing experiments with U-*C-glucose in both the RCC tissue and its
surrounding healthy kidney tissue. Since the different timepoints are represented by
different tissue slices taken from the same tissue following MALDI measurements were
performed on physically different pieces of tissue. This effectively means we now have five
metabolic snapshots of the healthy kidney and the RCC tissue. The control tissues (timepoint
0 min) will not contain any **C-enriched isotopologues, while the other timepoints (15, 30,
60 and 120 min) will contain different levels of the *C-enriched downstream metabolic
intermediates. To efficiently and properly evaluate the dynamics of the cellular metabolism
in the different cell types, we need to impute the 3C-enriched metabolic snapshots in our
control dataset. This allows the direct comparison of the different timepoints using the same
tissue, and consequently the direct comparison of the metabolic dynamics of specific cell
types. For this data imputation, we need to get the intensities of the **C-enriched metabolite
isotopologues into the control dataset which was not incubated with U-**C-glucose.
To achieve this, we make use of a data enhancing strategy. This strategy takes a query
dataset (lipid control dataset) which lacks intensity information on features of interest
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(the *C-enriched metabolite isotopologues and downstream metabolites), and a reference
dataset, that does contain the intensity information of the features of interest (the
13C-datasets of different timepoints). Based on the intensity profiles of so-called common
features, shared between the query and reference datasets (the lipid m/z features), a
k-nearest neighbor (kNN) analysis can determine the most similar pixels between the
query and reference datasets. It then takes the pixel-specific intensity of the features of
interest from the reference dataset and imputes them in the most similar pixel in the query
dataset. By doing this for each time point, we end up with five datasets in which we can
calculate the **C-enrichment in various cell types for different metabolic intermediates.
The differences in metabolic flux of the different cell types will influence the dynamics
of 3C-label incorporation, which we can now visualize over time, and in context of the
morphology of the analyzed tissues.

The exercises below will take you through the process of imputing the different 1*C-labeling
timepoints to the control dataset. Following data imputation, an isotope correction step
is performed. This is necessary since isotopes are not only introduced with the labeling
experiment, but these isotopes are also naturally abundant. This natural abundance of
isotopes leads to convoluted signals in the MSI dataset, which could lead to distorted
biological findings. To correct for the natural abundance of isotopes, we therefore perform
an isotope correction step using the IsoCorrectoR package. Since it takes a significant
amount of time to run this package (for this dataset the isotope correction took over 48
hours) and since it requires manual data transformation in Excel, we will provide the code
for this step of the process as well as the resulting data frame with isotope corrected data
required for the next exercise so you are not required to perform this step yourself.

5.2.1. R code and explanations

The goal of this exercise is to perform data imputation, for which you can use the R Script
“Data_imputation” with corresponding .csv files “Kidney_RCC_13C_15min.csv” and “Kidney _
RCC_lipids.csv” for this. In the chapter, only the example for the 15-minute timepoint will
be shown, you can perform the other timepoints in a similar way yourself.

Start by loading in the **C-enriched processed MALDI-MSI dataset, which will be used to
impute *C isotopologue data to the lipid dataset.
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# Load reference dataset
MSIref <- read.csv(file = 'Kidney RCC_13C_15min.csv', row.names = 1,
header = TRUE, sep = ",")

# Reshape data into suitable format for subsequent analysis
MSIref <- MSIref * 100 %>%

round(digits = @)
MSIref <- as.data.frame(t(MSIref))

# Create Seurat objects

MSIdata_ref <- CreateSeuratObject(counts = MSIref, project = "RCC")
# Data normalization - ref

MSIdata_ref <- SCTransform(MSIdata_ref, verbose = FALSE)
MSIdata_ref <- RunPCA(MSIdata_ref, assay = "SCT", verbose = FALSE)
ElbowPlot(MSIdata_ref)

Standard Deviation

Figure 14. Elbow plot displaying the standard deviation for each calculated principal component.

Based on the elbow plot (Figure 14) the first eight PCs were used to run the UMAP algorithm.

# UMAP analysis - ref
MSIdata_ref <- RunUMAP(MSIdata_ref, dims = 1:8)

Then, the lipid control dataset can be loaded into the R environment and processed in a
similar way as the **C isotoplogue data.

# Load query dataset and reshape accordingly
MSIque <- read.csv(file = 'Kidney RCC_lipids.csv', row.names = 1,
header = TRUE, sep=",")
MSIque <- MSIque * 100 %>%
round(digits = @)
MSIque <- as.data.frame(t(MSIque))

# Create Seurat object
MSIdata_que <- CreateSeuratObject(counts = MSIque, project = "RCC")

# Data normalization - que
MSIdata_que <- SCTransform(MSIdata_que, verbose = FALSE)
MSIdata_que <- RunPCA(MSIdata_que, assay = "SCT", verbose = FALSE)
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After processing of both the reference and query datasets, we can continue with the data
imputation.

# Find the common features between reference and query dataset
anchors <- FindTransferAnchors(reference = MSIdata_ref, query =
MSIdata_que, normalization.method = "SCT")

# Filling in the Llabelling data in the control dataset based on KNN

predictions.assay <- TransferData(anchorset = anchors, refdata =
GetAssayData(MSIdata_ref[['RNA']]), prediction.assay =T,
weight.reduction = MSIdata_que[["pca”]], dims = 1:8)

# Write out csv files for furhter processing in Excel
data_to_write_out <- as.data.frame(as.matrix(predictions.assay@data))
data_to_write_out <- as.data.frame(t(data_to_write_out))

# Select only the 13C enriched metabolites for visualization
data_to_write_out <- data_to_write_out[ ,1:15]
write.csv(x = data_to_write_out, row.names = T, file = "15min.csv")

The resulting .csv file has the following format:

A ] c D E | F G | H | J K L | ™ N o P
X89.05 X92.04  X146.07 X147.06 X148.07 X149.09 X185.01 X188.02 X191.04 X192.04 X193.05 X215.07 X221.06 X265  X268.01

Kidney 1  164.2049 78.60585 3170.251 493.203 349.3059 90.98812 999.3672 688.9032 2601.084 398.3326 614.0775 3958361 3196.907 517.793 571.1652
Kidney 2 = 131.0715 65.20852 3102.507 518.2193 330.5496 154.996 824.6879 745.2096 2528.768 579.7447 775.9839 3999.402 3337.128 566.1404 670.5507
Kidney 3  208.5753  189.01 6768.506 809 428.2251 258.9036 1142.644 1040.014 3750.223 689.4207 946.8252 8188.514 5513.889 648.4032 490.0168
Kidney 4  143.8233 97.82871 3847.535 5614539 272.4467 199.8724 979.172 1048.835 3133.234 635.8555 839.0305 5057.1 3818.871 743.6843 598.5983
Kidney 5 269.3624 127.382 5101.758 956.4896 567.3086 178.4838 1153.071 1115.954 4130.564 801.2893 1136.845 6062.964 5591.37 697.8253 628.7008
Kidney 6  149.8921 133.5138 3759.849 565.6191 310.5893 155.7036 805.2148 872.2529 2883.201 542.5479 750.4825 4174.72 3880.181 667.6901 813.5342
Kidney 7  245.1582 1114794 4346.197 490.9912 333.5009 140.0434 921.652 1091.595 3160.725 545.0753 875.3529 5181107 4460.052 410.5579 649.543
Kidney 8  241.6852 92.76664 4327.685 572.2231 330.8739 201.0429 1006.773 1125.495 3187.372 708.5589 815.7928 4865.497 425121 662.7086 557.124
Kidney 9 176.681 82.74212 4045.127 524.0093 392.7269 128.7123 1062.987 914.3264 3304.156 505.4223 764.0083 5159.441 4274.472 813.3812 608.3343
Kidney 10 192.2751 86.38057 4397.66 529.3585 465.6634 287.0805 964.8196 930.5935 3581.457 710.9646 814.2171 5439.056 4445.235 810.1312 901.0591

© o N A W
3

22

Each row represents a pixel from the lipid control tissue and each of the columns contains
imputed intensities for the *C isotopologues represented here by their m/z value. In this
experiment we only introduced U-*C -glucose, therefore the number of *Cisotoplogues from
the downstream metabolites was limited to the ones represented in the example format.

The next step of the procedure is the isotope correction using the IsoCorrectoR package. *?
The package requires the input of three files which are necessary for proper isotope
correction: the ElementFile, MeasurementFile and MoleculeFile. These three files all have
a set layout that should be used when importing your own data. For more information about
the package and these files, see the reference listed in Further reading. A short reminder
of the fact that running the isotope correction for these datasets took over 48 hours. The
output files of the isotope correction have been provided for a smooth continuation of the
workflow.
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# Load query dataset and reshape accordingly

MeasurementFile <- read.csv(file = '15min.csv’', row.names = 1, sep = ";")
a = MeasurementFile

a = data.frame(t(a))

b = data.frame(row.names(a))

# Rename file to “Measurements/Samples™

fix(b)

c = cbind(b,a)
write.csv(c, quote = F, row.names = F, file = "File_path.csv")

# Get path of IsoCorrectoR files
path.molecule <- system.file("data", "MoleculeFile.csv",

package = "IsoCorrectoR", mustWork = TRUE);
path.element <- system.file("data"”, "ElementFile.csv",

package = "IsoCorrectoR", mustWork = TRUE);
path.measurement <- system.file("data", "MeasurementFilel5.csv",

package = "IsoCorrectoR”, mustWork = TRUE);

# Run correction algorithm and save results in new variable

correctionResults <- IsoCorrection(MeasurementFile = path.measurement,
ElementFile = path.element,
MoleculeFile = path.molecule)

For the enrichment visualization, we use the “IsoCorrectoR_result_CorrectedFractions” file.
This file contains the corrected measurement data as fractions of the total abundance of a
specific metabolite. The output format is shown in the example below:

A 8 © ) 3 F G H | J K

1 Kidney 1  Kidney 2  Kidney 3  Kidney 4  Kidney S  Kidney 6  Kidney 7  Kidney 8  Kidney 9  Kidney_10
2 |lactate 0 0.683064801 0.67466836 0.532385099 0.602666919 0.685699512 0.536667229 0.694084977 0.728848771 0.687797054 0.696648258
3 |Lactate_1 0 [ 0 ) 0 0 0 0 [ 0
4 |Lactate_2 0 [ 0 ) 0 0 0 0 [ 0
5 |lactate 3 0316935199 0.32533164 0.467614901 0.397333081 0.314300488 0.463332771 0.305915023 0.271151229 0.312202346 0.303351742
6

7

8

Glutamate_0 0.814854513 0.796687867 0.863668963 0.831067397 0.790829455 0.827455296 0.86313783 0.840111403 0.838113844 0.816200256
|Glutamate_1 0.081818866 0.089026013 0.055918456 0.075514291 0.104370744 0.078878757 0.050287717 0.064948208 0.062569222 0.053530309
Glutamate_2 0.083436971 0.078352393 0.050097036 0.053412666 0.080695045 0.062575415 0.061681887 0.05912233 0.076000162 0.081361744
9 |Glutamate_3  0.01988965 0.035933726 0.030315545 0.040005645 0.024104756 0.031090492 0.024892566 0.03581806 0.023316772 0.048907691

10 |Glutamate_4. 0 [ 0 0 [ 0 0 0 0 [
11 |Glutamate_5 0 0 0 0 0 0 0 0 0 [
12|X3PG_0 0.599466781 0.533091921 0.531292374  0.4906127 0.515979805 0.487815273 0.465553126 0.479947787 0.545343138 0.51682877
13 [X3PG_1 0 0 0 0 [ 0 [ 0 0 [
14|X3PG_2 0 0 0 0 [ 0 0 0 0 [
15 |X3PG_3 0.400533219 0.466908079 0.468707626  0.5093873 0.484020195 0.512184727 0.534446874 0.520052213 0.454656862 0.48317123

16 |Citrate_0 0.755579175 0.682700839 0.730686784 0.713450956 0.714060671 0.724461814 0.72373226 0.71002588 0.758396476 0.736427914
17 |Citrate_1 0.074052538  0.1183213  0.09380059 0.10507245 0.098840788 0.096112782 0.084758849 0.118168885 0.074196989 0.105230839
18 |Citrate_2 0.170368287 0.198977861 0.175512626 0.181476595 0.187098541 0.179425404 0.191508891 0.171805235 0.167406535 0.158341248

19 |Citrate_3 0 [ 0 0 [ 0 0 0 0 [
20 [Citrate_4 0 0 0 0 0 0 0 0 0 [
21 Citrate_S 0 0 0 0 [ 0 0 0 0 0
22 |Glucose_0 0.56807141 0.560052411 0.61201798 0.584476828 0.535270067 0.533326963 0.552357064 0.548671807 0.561809231 0.565155709
23 |Glucose_1 0 0 0 0 0 0 0 0 [
24 |Glucose_2 0 0 0 0 0 0 0 0 0 0
25 |Glucose_3 0 [ 0 0 0 0 [ 0 0 [
26 |Glucose_4 0 0 0 0 0 0 0 0 0 [
27 |Glucose_5 0 0 0 0 0 0 0 0 [

0
28 |Glucose_6 0.43192859 0.439947589 0.38798202 0.415523172 0.464729933 0.466673037 0.447642936 0.451328193 0.438190769 0.434844291
29 |X13BPG_0  0.483285929 0.465545798 0.577201429 0.561745202 0.533832269 0.458510079 0.394714295 0.551014282 0.579737899 0.481220583
30 |X138PG_1 0 0 0 0 0 0 0 0 0 0
31 |X138PG_2 0 0 0 0 0 0 [ 0 0 [
32 |X13BPG_3  0.516714071 0.534454202 0.422798571 0.438254798 0.466167731 0.541489921 0.605285705 0.448985718 0.420262101 0.518779417
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5.3. Metabolic dynamics calculations and visualization

As the title of this chapter states, the aim is to perform in situ analysis of the dynamic
metabolism. The datasets resulting from the exercise in section 5.2 contain information
on the ¥*C-enrichment for each of the pixels in the lipid control dataset. This means that
similar to what was done before for constructing the metabolic histology, it is now possible
to create pseudo-images containing *C-enrichment of isotopologues of various metabolites
over the 120 min time course experiment. A first step in creating these pseudo-images, is
to perform hotspot removal on the images. This is merely an image processing step where
for each image the intensity hotspots are removed, which results in higher contrast images.
The hotspot removal is based on a quantile thresholding approach in which for each image,
the intensities of the pixels in the highest quantile (1%) are set to the 99*" quantile. The
data after hotspot removal can be used to reconstruct the tissue morphology using the XY
coordinates, and, since the coordinates were previously also linked to the UMAP clusters,
data can be extracted to directly compare various cell types with one another. The exercises
below will allow you to perform enrichment visualization after hotspot removal. Note that
the graphs for the **C-enrichment over time were not prepared using R, and as such there
will be no code for these figures. The results with corresponding biological interpretation
will however be discussed later in this section.

5.3.1. R code and explanations

This final exercise is focused on the visualization of the *C-enrichment results. These
visualizations show the metabolic dynamics in the context of the tissue. To continue with
this exercise, you can use the provided output .csv files from the IsotopeCorrectoR package
“CorrectedFractions15.csv”, “CorrectedFractions30.csv”, “CorrectedFractionsé60.csv” and
“CorrectedFractions120.csv” which contain the isotope corrected data as described in
section 5.2. The script you can use for the exercise is “Hotspot_Enrichment”. This exercise
will focus on the 15 minutes timepoint, but the same R code can be used for the other
timepoints.

# Loading the results from IsoCorrectoR
df <- read.csv("CorrectedFractions15.csv", row.names = 1)

Data transformation is necessary to be able to perform visualization of *C-enrichment. This
is similar to what you have seen in a previous exercise.

# Hotspot removal, automatically working through all columns
for(i in 1:ncol(df)){

q <- quantile(df[,i], (.25, .50, .75, .90, .99))

max <- q[5]

df[,i][which(df[,i]>max)] <- max
¥

After hotspot removal, we can bring in the XY coordinates again to make a spatial
representation of the metabolite-specific *C enrichment onto our tissues of interest. We

110



Investigating the Warburg effect using spatial DYMO

first have to combine the data frame containing the **C enrichment information with the
XY coordinates.

# Combine the processed isotope corrected data with XY coordinates

Xy <- read.csv(file = 'Kidney_ RCC_coordinate.csv', row.names = 1,
header = T, sep = ",")

merged_df <- merge(xy, df, by = @)

rownames (merged_df) <- merged_df$Row.names

merged_df <- merged_df[,-1 ]

Since we know which column contains which metabolite, we can generate heatmaps for
all our metabolites of interest.

# Extract the metabolites of interest
lactate3  <- merged_df[,c(1,2,6)]
glutamate2 <- merged_df[,c(1,2,9)]
x3pg3 <- merged_df[,c(1,2,16)]
citrate2  <- merged_df[,c(1,2,19)]

# Make a Llist with all metabolites of interest
metabolites <- list(lactate3, glutamate2, x3pg3, citrate2)

# Write a pdf file in a desired file path containing all enrichment
visualizations
pdf("File_path.pdf")
for (n in metabolites) {
a = dcast(n, y~x)
data <- as.matrix(a)
data <- data[,-1]
print(pheatmap(data, scale= "none", cellwidth = 0.6, cellheight = 0.6,
cluster_rows = F, cluster_cols = F, legend =T,
show_rownames = F, show_colnames = F, border_color= F,
color=viridis(250), na_col = "WHITE"))

In the end, these heatmaps can be put together to get a first insight into the changes in
metabolic dynamics which occur between the healthy kidney and RCC tissues (Figure 15).

5.3.2. Description of the results

From the *C-enrichment visualizations in Figure 15 and the graph representations of the
results in Figure 16, it becomes apparent that there is a substantial decrease of the TCA
cycle-derived **C isotopomer enrichments when comparing the RCC tissue to the healthy
kidney. The decrease of the citrate M+2 and glutamate M+2 fractions indicate a reduced
contribution of U-*C,-glucose to the synthesis of these metabolites, and therefore allude
to the finding that the TCA cycle activity is lower in the RCC tissue compared to the healthy
kidney. Additionally, looking at the fractions of 3PG M+3 and lactate M+3, there does not
seem to be much difference between the RCC tissue and the proximal tubules in the healthy
kidney.
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Figure 15. Pseudo-images showing **C-enrichment of various glycolysis and TCA cycle intermediates over a
120-minute incubation with U-**C -glucose. The color scale represents the relative **C-enrichment.
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Figure 16. Metabolite-specific *C enrichment over a 120-minute incubation with U-"*C -glucose.

6. DISCUSSION

Besides providing the reader with an opportunity to learn the ins and outs of spatial
dynamic metabolomics, we wanted to test the hypothesis that the combination of in situ
stable isotope tracing and spatial metabolomics using MALDI-MSI was able to visualize
the metabolic anomalies introduced by Warburg effect in RCC.

Since RCC is a tumor that derives from the proximal tubuli in the healthy kidney, we wanted
to perform the metabolic comparison between tumor cells and proximal tubule cells.
Using a combination of the metabolic histology, based on cell-type specific lipid profiles
resulting from the MALDI-MSI analysis (Figure 13), and post-MSI IF staining of several
kidney-specific cell types (Figure 11), we were able to isolate the pixels associated to the
proximal tubules (PT; pixels positive for LTL staining). Here we performed the IF-based
cluster identity assignment based on visual inspection, which is effective, but not the most
accurate approach. Beyond the scope of this book chapter, but to achieve the highest level
of integration between IF images and MALDI-MSI data one would need to resort to image
co-registration strategies.

The Warburg effect encompasses a metabolic shift from aerobic glycolysis and OxPhos to
anaerobic glycolysis and loss of OxPhos activity, even in the presence of sufficient oxygen.?®
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Based on this, we expected to find a reduced contribution of stable *C-isotope labeled
glucose to the intermediates of the TCA cycle, as well as increased levels of glycolysis
intermediates in the RCC tissues, with an ultimate increase in lactate production. We were
indeed able to show the reduced contribution of U-13C6-glucose to citrate M+2, which enters
the TCA cycle through the production of pyruvate M+3. Additionally, we see the reduced
contribution of labeled glucose to glutamate M+2, which is the glutamate isotopomer
specific to the first pass through the TCA cycle, originating from pyruvate M+3, without the
interference of other metabolic pathways.** These findings point towards the expected
decrease of TCA cycle activity in the RCC tissue in comparison to the PTs in the healthy
kidney tissue. Despite this finding, however, we could not find the expected changes in
dynamics of the glycolysis. Whereas we expected an RCC-specific increase in lactate M+3
enrichment, this remained nearly identical to the PTs of the healthy kidney. This could
have several reasons. First, one of the inevitable effects of excessive lactate production
upon the Warburg effect is lactic acidosis, which has shown to result in lower glucose
consumption, and a reduction in lactate production in favor of a more oxidative, and
sustainable non-glycolytic phenotype. ** To get a conclusive answer to this, we would
need to quantify the total lactate pool and show a comparison of the total amount of
lactate produced in the healthy kidney compared to RCC. The absolute quantification of
metabolites using MALDIMSI is in theory possible but would require a completely different
experimental setup than the one presented here and was outside of the scope of this
chapter. > Alternatively, a tissue homogenate-based technique such as nuclear magnetic
resonance (NMR) spectroscopy could be used, which is capable of measuring absolute
quantities of lactate. ** Another contribution to the observation could be related to the
post-translational modification of proteins, like for example histone lactylation. When
cells are exposed to high levels of lactate, for example as a consequence of the Warburg
effect, they will start to utilize lactate as substrate for the post-translational modification
of histones, and as such use it as an epigenetic modulator of gene transcription. 3¢ This
lactate-driven gene regulation has recently shown important in the regulation of immune
cells and is associated to the modulation of disease-specific immunity status.?” To exclude
this contributor would require an additional quantitative epi-proteomics study to quantify
the differential lactylation in histones originating from RCC compared to healthy kidney,
this was also deemed beyond the scope of this book chapter.

Ultimately, we have been able to show that the metabolic histology can be used to
differentiate RCC from healthy kidney, and that it is able to reveal intratumor heterogeneity,
as well as the cellular heterogeneity in the healthy kidney. Furthermore, using our spatial
dynamic metabolomics platform we have been able to establish that RCC tissue indeed has
reduced TCA cycle activity, and that these tumor cells predominantly rely on glycolysis for
energy production. In the end, mass spectrometry imaging in combination with stable isotope
tracing provides a powerful platform to show the in situ metabolic dynamics of tissues.
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7. TAKE-HOME MESSAGES

0 Mass spectrometry imaging can be used to gain molecular insight into complex tissue
architecture.

o Mass spectrometry imaging is able to provide additional and comprehensive
morphological information to conventional histopathological staining.

o The combination of spatial metabolomics and stable isotope tracing provides a powerful
platform to show cell-type-specific differences in the dynamics of metabolism.

8. FURTHER READING

Mass Spectrometry: Principles and Applications
Edmond de Hoffmann, Vincent Stroobant
2007, John Wiley & Sons, Ltd, West Sussex England

Correcting for natural isotope abundance and tracer impurity in MS-, MS/MS- and high-
resolution-multiple-tracer-data from stable isotope labeling experiments with IsoCorrectoR.
Paul Heinrich, Christian Kohler, Lisa ElLmann, Paul Kuerner, Rainer Spang, Peter Oefner,
Katja Dettmer.

2018, Scientific Reports 8, 17910

Getting started with Seurat
Satija Lab 2022.

R for Data Science
Hadley Wickham, Garrett Grolemund 2017.
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