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1. LEARNING OBJECTIVES

o	 Spatial lipidomics & metabolomics using mass spectrometry imaging.
o	 Isotope tracing in biological tissues.
o	 Visualizing the Warburg effect in cancer tissues.

2. THEORETICAL BACKGROUND

This chapter focuses on the application of stable-isotope tracing in mass spectrometry 
imaging to unravel changes in the metabolic profile of renal cell carcinoma. Using a 
pre-recorded dataset, we will illustrate how to use spatial lipidomics data for spatial 
segmentation of the tissue, and subsequently explain the data analysis strategies for 
dynamic metabolic measurements. Essential insights into the theory of mass spectrometry 
(imaging), stable isotope tracing, as well as the human kidney, its metabolism and expected 
changes upon renal cell carcinoma will be elaborated.

2.1. Spatial metabolomics and lipidomics using mass spectrometry imaging

First, you will find a short introduction into the basic principles underlying spatial 
metabolomics/lipidomics analysis using matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry imaging (MALDI-TOF-MSI). By the end of this section, you will 
understand the concepts behind this technique and its use in metabolomics/lipidomics, 
how samples should be treated for MSI, and some of the pitfalls to avoid when designing 
an experiment.

2.1.1. Mass spectrometry

Many analytical chemistry approaches are based on molecular detection, identification 
and quantification by mass spectrometry (MS). Although MS encompasses a large variety 
of technologies, virtually all commercially available MS instruments share the same basic 
layout, consisting of an ionization source, one or more mass analyzers, a detector, a vacuum 
system and a computer for instrument setup and data acquisition. There is a large variety 
in each of these main components, and different combinations will determine important 
practical and analytical characteristics of specific MS instruments, such as the use of solid 
vs. liquid samples, fragmentation type, resolving power, mass accuracy, and sensitivity. 
These considerations consequently affect the applications for which a specific mass 
spectrometer can be used. It is beyond the scope of this introduction to go in-depth into 
all different MS platforms, but a few essentials will be explained in following sections.

2.1.1.1. Mass spectra

The output of a mass spectrometer is commonly represented as a mass spectrum; the 
value on the horizontal axis of a mass spectrum reflects the mass-to-charge ratio (m/z) 
of the detected gas-phase analyte ions, and the value on the vertical axis represents 
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the intensity which is a measure of the abundance of the analyte ion in the analyzed 
sample. One can make a broad distinction between two types of mass spectra; i) MS1 
spectra and ii) fragmentation spectra, or MSn spectra, in which n represents the number 
of subsequent fragmentations. MS1 spectra provide a broad overview of all detected 
compounds in an analyzed sample and their relative quantity compared to each other. An 
MS1 spectrum can only link an m/z feature to a chemical composition (i.e. C8H15NO6 for 
N-acetylhexosamine). MSn spectra provide structural information on selected, isolated, 
and fragmented compounds, which can be used to identify the molecular structure (e.g. 
the distinction between the isomeric N-acetylgalactosamine and N-acetylglucosamine). 1

2.1.1.2. Mass spectrometer performance

Several important analytical characteristics can be determined from a mass spectrum; i) mass 
accuracy: the difference between the measured mass of a compound and the theoretical 
mass derived from its chemical formula usually expressed in absolute numbers (10-3 u, or 
mDa), or relative numbers (parts per million, or ppm); ii) resolving power: the ability of a 
mass spectrometer to distinguish two peaks of equal height with a slightly different m/z:

𝑹𝑹 =	 𝒎𝒎/𝒛𝒛
𝛅𝛅𝒎𝒎/𝒛𝒛

 =  = resolving power

The smallest peak separation (δm/z) at which the two peaks can be separated is called 
resolution, and is defined as the width of a peak, at 50% of its maximum peak height; 
iii) sensitivity: the response of the recorded signal to a change in concentration of the 
measured analyte. Inherently, mass spectrometers produce and record noise coming from 
both electrical and chemical interferences. The presence of noise calls for a threshold to 
distinguish true signals from background noise, the signal-to-noise ratio (S/N).

Since the chapter focuses on the use of MALDI-TOF-MSI, a brief introduction to the MALDI 
mechanism and TOF mass spectrometry principles will follow. For more details on other 
ionization methods, analyzers, and fragmentation, see the Further reading section.

2.1.2. Matrix-assisted laser desorption/ionization

The main function of the ionization source is to convert the from the solid or liquid molecular 
analytes contained by the sample into gas phase ions; cations in positive ion-mode and 
anions in negative ion-mode. MSI requires an ionization source that can directly probe 
and produce ions from a solid sample. 2 One of the most common ionization methods able 
to directly convert analytes from solid phase molecules to gas phase ions is MALDI. This 
ionization strategy is based on the illumination of a matrix-doped sample with a pulsed UV 
laser (Figure 1A). The chemical matrix used is typically a small organic molecule dissolved 
in organic solvent and has to be a strong absorber of UV light at the wavelength of the 
laser (Figure 1B). During the evaporation of the organic solvent, the matrix crystallizes, and 
molecular analytes are embedded and co-crystallized with the matrix. Upon illumination 
of the matrix with the laser, rapid super heating causes both desorption of single surface 

5



86

Chapter 5

(matrix) ions, as well as an explosive phase transition (ablation) creating larger clusters of 
neutral and charged matrix and analyte molecules, the combination of which is referred to 
as the MALDI plume. In the MALDI plume, charges will be transferred mainly through the 
addition or removal of protons (H+), or the addition metal ions (Na+, K+, Li+, Ag+) or halogens 
(Cl-) resulting in either cations or anions which are accelerated towards the mass analyzer, 
which will be discussed in the next section. It is important to note that the majority of ions 
generated in during the MALDI process only carry single charges. 3
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Figure 1. Schematic of the MALDI process. A: In MALDI-MS the analyte molecules are mixed with a chemical 
matrix and illuminated with a UV laser. In the resulting gas phase ion cloud, the MALDI plume, charge transfer 
and secondary ionization processes take place, creating gas phase analyte ions. B: Common MALDI matrices 
used for negative ion-mode metabolomic MALDI-MSI N-(1-Naphthyl)ethylenediamine dihydrochloride 
(NEDC), and 9-aminoacridine (9-AA), and positive ion-mode 2,5-dihydroxybenzoic acid (2,5-DHB), and 
α-cyano-4-hydroxycinammic acid (αCHCA). C: Schematic of TOF-MS. In a TOF mass analyser, the ions are 
transferred from the ionization source to a vacuum drift tube. At t0 the ions are exposed to an electrostatic 
pulse, accelerating them towards the detector (at distance L). A difference in their resulting velocity 
separates the ions in space and time. The m/z can be calculated for each analyte with a differential ttof.
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2.1.4. Time-of-flight mass spectrometry

One of the simpler mass analyzers to comprehend is the axial time-of-flight, or TOF, mass 
spectrometer (Figure 1C). TOF mass analyzers are pulsed systems, and therefore perfectly 
compatible with MALDI-based ion generation. The ions produced in the MALDI process 
are transferred from the sample target in the ionization source to the ion optics by means 
of a strong electric field between the sample target and the first counter electrode in the 
optics. The ions are accelerated into a drift tube, which they enter all having the same 
kinetic energy. The time-of-flight (ttof) can be defined as the time interval between the 
MALDI laser pulse, and the impact of the ion on the detector. The m/z for each ion can be 
calculated using the following formula:

𝒎𝒎
𝒛𝒛
= $

𝑳𝑳𝟐𝟐

𝟐𝟐𝟐𝟐𝟐𝟐
) 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝟐𝟐  

In which the constants L, the length of the ion flight path, and eV, the electrostatic potential 
of the accelerating pulse are within brackets, and the ttof is the measured time-of-flight. It 
can easily be deduced that the higher the molecular weight of the analyte, the longer its 
time-of-flight. 4

2.1.5. Mass spectrometry imaging

MSI is based on the acquisition of spatially correlated mass spectra from discrete positions 
in a Cartesian coordinate system virtually projected on a sample surface. Each recorded 
spectrum is barcoded with an XY-coordinate and placed in a virtual data cube, in which the 
X and Y axes represent the X and Y coordinates, and the Z-axis represents the m/z axis of the 
mass spectrum. Each individual voxel, or 3D pixel, in this data cube contains the intensity 
of a single m/z feature at the given XY-coordinate. Through the selection of a specific m/z 
feature, representing an analyte, one can visualize the intensity distribution of the analyte 
over the sample surface (Figure 2). 5

2.1.6. Sample preparation for in situ metabolomics using MALDI-MSI

Direct molecular imaging by MALDI-MSI is one of the most common tools for in situ 
metabolomics. While there are many applications beyond metabolomics (i.e. proteomics 
and glycomics) and clinical research (i.e. food, insect and plant biochemistry), the majority 
of applications focuses on the analysis of mammalian tissues. Metabolomics by MALDI-
MSI is commonly applied to thin sections obtained from fresh frozen tissue material, 
although analysis of metabolites from formalin-fixed and paraffin-embedded material also 
has been reported6, and this immediately poses the two main challenges in the studying 
the metabolome in its spatial context; i) post-mortem degradation, and ii) molecular 
delocalization through lateral diffusion. 7,8

2.1.6.1. Post-mortem degradation

The metabolome is extremely dynamic and alters rapidly upon changes in the environment. 
Resecting a tissue specimen (i.e. an organ or tumor) from a human or animal body inevitably
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Figure 2. Schematic representation of the mass spectrometry imaging (MSI) principle. A: Registration of the 
prepared sample to a Cartesian grid with predefined raster width. Followed by definition of the measurement 
area and spatially resolved sampling. B: Construction of a data cube from the collection of single mass spectra 
recorded for every pixel coordinate in the defined measurement area. C: Calculation of a representative 
overview spectrum, and visualization of intensity distributions for m/z features of interest. The colour scale 
represents the relative intensity differences of the selected m/z feature between the measured pixels.
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requires the disconnection of that tissue from the blood flow, causing nutrient and oxygen 
depletion which immediately start to affect the metabolome. 9 Especially the intracorporeal 
ischemia time, during which the tissue is still inside the body but disconnected from blood 
flow, is problematic due to the tissue being present at the optimal working temperature 
of all endogenous enzymes. Naturally, for a representative metabolomics study, this time 
should be minimized upon sample collection. Once resected, a tissue should be handled 
swiftly and is typically flash frozen in seconds using liquid nitrogen-cooled isopentane.

2.1.6.2. Molecular delocalization

MSI is used to analyze molecules in the spatial context of the tissue, thus the localization of 
the metabolites is of utmost importance. Most metabolites are polar molecules and easily 
dissolve in water, which makes avoiding condensation one of the primary objectives during 
the entire MALDI-MSI sample preparation. 8 Tissues, stored at -80°C, should be transferred 
on dry ice at all times, and equilibrated to room temperature using a vacuum freeze-drier 
prior to MALDI matrix application. Once at room temperature, the slide-mounted sections 
should be handled swiftly. After taking a pre-MSI optical scan of the glass slide, required 
for setting up the virtual Cartesian coordinate system the spatially correlated analysis will 
be based on, the sample preparation for MALDI-MSI typically only involves applying the 
MALDI matrix.

2.1.6.3. MALDI matrix application

The application of the MALDI matrix is typically done in one of two ways: spray-based 
(Figure 3A), or sublimation-based (Figure 3B) matrix application. For the spray-based 
matrix application, the MALDI matrix should be dissolved. For metabolomics approaches 
this is typically done in a high-organic solvent, minimizing the amount of water to limit 
delocalization. The preparation of the high-organic solvent is a balancing act, since there 
should still be some water present to extract the polar metabolites from the tissue. For 
example, for the measurements described below, the N-(1-naphthyl) ethylenediamine 
dihydrochloride (NEDC) matrix was dissolved in methanol:acetonitrile:water (70:25:5 % v/v/v).  
The dissolved matrix is then homogeneously sprayed over the tissue using a robot. The 
nebulization of the matrix solution into a fine spray is achieved pneumatically, using 
ultrasound or electrospray. The fine matrix droplets that land on the tissue allow analytes to 
extract from the tissue, and upon drying, incorporate into the matrix crystal. It is important 
here that the resulting matrix crystals should not exceed the dimensions of the desired pixel 
size, as it is impossible to determine the exact location of origin from an analyte within 
the confines of a single matrix crystal. 8 The use of solvents makes that the spray-based 
approach comes with the risk of slightly delocalizing the analyte molecules.

In sublimation systems, the solid MALDI matrix and sample are brought into a vacuum 
chamber. The matrix is heated under vacuum, causing it to sublimate. The sample, placed 
above the matrix, is cooled, causing the gas phase matrix to condensate onto the sample 
surface, allowing surface molecules to co-crystalize with the matrix. The sublimation 
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method has some advantages over the spray-based method; i) it is a solvent-free approach, 
limiting analyte delocalization, and ii) during the procedure the sample is cooled and 
stored in vacuum, limiting post-mortem degradation. Naturally, sublimation-based matrix 
application also has its limitations. The most obvious one is the limited extraction of 
analytes into the matrix which affects the measurement sensitivity of certain analytes.

glass
tissue
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analyte extraction

matrix-analyte co-crystal
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Figure 3. Spray-based matrix application of MALDI matrix is commonly performed using a pneumatic or 
ultrasound nebulizer mounted on a X-Y-Z-stage robot. A: The dissolved matrix is sprayed homogeneously 
onto the tissue section, allowing for maximum extraction of analytes, although at the risk of delocalization. B: 
Sublimation-based application of MALDI matrix is a solvent-free matrix application approach performed under 
vacuum conditions. Through heating the matrix, it sublimates into the vacuum chamber. Upon touching the 
cooled sample, the matrix condensates, and forms a fine crystal layer on top of the tissue. Although the cooling 
and vacuum conditions aid in minimizing delocalization and post-mortem degradation, molecular extraction 
using sublimation-based matrix application is compromised leading to lower sensitivity for some analytes.

2.1.7. MALDI-MSI measurement setup

Once the MALDI matrix has been applied, the tissue will be transferred to the MALDI-MS 
system to set up MSI the measurement. Depending on the instrument vendor, the slide 
with sections is usually mounted in a target carrier that is positioned in a XY robotic MALDI 
stage. The laser is focused on a fixed position, and between different pixels the target 
carrier with the sample is moved in the X and Y plane. Upon loading the target in the 
MS system, the first thing to do is to register the pre-MSI optical scan to the acquisition 
software of the MS system, essentially linking the MALDI stage XY motor positions to 
specific pixels in the pre-MSI optical scan image. This should be done as accurately as 
possible. 10 Once the registration of the pre-MSI optical image to the acquisition software 
is performed, the MS method can be optimized. This consists of five steps. i) Setting up the 
desired m/z range; for metabolites and lipids this is typically m/z 80-1500 Th. ii) Setting up 
the desired ablation field size and matching laser focus. Note that the ablation field size 
should not exceed the desired spatial resolution of the MSI analysis, as it leads to undesired 
oversampling. iii) Determining the optimal laser energy; too low of a laser energy results 
in insufficient ionization, and consequently produces poor spectra that will translate into 
“dead pixels”. Too high laser energies result in extensive matrix cluster formation and 
analyte fragmentation, as well as an increase of the effective laser spot diameter which 



91

Investigating the Warburg effect using spatial DYMO

might compromise spatial resolution. iv) Determine the optimal number of laser shots 
per pixel; based on the tradeoff between sensitivity (high number of shots per pixel) and 
throughput (low number of shots per pixel) one can select the optimal number of laser 
shots per pixel for the experiment. v) External mass calibration; using a known compound 
mixture calibrate the instrument mass response.

Once the MS method is optimized and calibrated, indicate the measurement areas on the 
tissues, and start the spatially correlated data acquisition.

2.1.8. MSI data pre-processing and feature extraction

After the MSI data acquisition the data needs pre-processing prior to data analysis. Typical 
steps in pre-processing are:
i)	 Baseline subtraction. Setting the noise level of the recorded single spectra to zero to 

ultimately enhance the signal-to-noise ratio (S/N). 11

ii)	 Normalization. Multiplying mass spectra with an intensity-scaling factor to correct for 
and minimize the effect of systematic errors introduced during the MALDI-MSI analysis. 12

iii)	 Feature selection, or peak picking. Defining true m/z features from noise in the representative 
(i.e. average, sum, or base peak) spectrum using a pre-defined S/N cutoff value. 13

iv)	 Feature extraction. Extracting the intensity information for each m/z feature defined 
in the feature selection from each of the single pixel spectra. 14

The result of the pre-processing is a workable peak matrix with the per-pixel intensity 
information for all selected m/z features. This pre-processed peak matrix is the starting 
point for the data analysis procedure described in the Exercises below.

2.2. Stable isotope tracing in (pre)clinical tissue specimens

Cell metabolism is a dynamic process characterized by parameters such as cellular 
metabolite levels, metabolic flux and nutrient contributions to different metabolic 
pathways. 15 Mass spectrometry-based metabolomics has a central role in measuring 
metabolite levels in both physiological and pathological conditions. Changes in metabolite 
levels indicate altered cellular metabolic states and are related to processes such as 
biosynthesis, energy metabolism and catabolism. However, metabolite levels per se do 
not directly reflect the metabolic rates, or fluxes, of the pathways, nor do they reflect the 
origin sources of the measured metabolites. Think of it as a bank account, both a rich and 
a poor person can have the same amount of money on the bank. Despite having the same 
balance, the rich person likely has a much higher in- and outflow of money and can thus 
afford a different lifestyle. Stable isotope tracing is a common tool to get insight in the 
fluxes of metabolism, as well as nutrient partitioning. Here, so-called “heavy” nutrients 
(e.g. 13C6-glucose or 13C5-, 

15N2-glutamine) are introduced into a biological system, and the 
incorporation and enrichment of the stable isotopes (13C or 15N) into downstream metabolic 
compounds is assessed. 16 Measuring both metabolite levels and metabolic fluxes at a single 
timepoint usually requires a metabolic steady or pseudo-steady state. This is characterized 
by constant or minimal changes in metabolite levels or metabolic fluxes during the time 
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course of the isotope tracing experiment. Sometimes steady state cannot be achieved 
in a natural biological system, which emphasizes the need for time course experiments, 
and dynamic labeling calculations, as well as non-stationary flux analysis, such as acute 
signaling events or nutrient modulations. 15 The duration of this time course may vary 
depending on the research question, e.g. glycolysis reaches metabolic steady state within 
approximately 10 minutes, whereas for the TCA cycle this often takes several hours.

Different stable isotope-labeled nutrients can be used to targeted different metabolic 
pathways. For example, uniformly labeled glucose (U-13C6-glucose, also noted as M+6 
glucose) is the most commonly used nutrient to trace glycolysis (Figure 4A), the TCA cycle 
(Figure 4B), as well as other metabolic pathways related to glucose metabolism. However, 
to measure flux of the oxidative pentose phosphate pathway (PPP), 1,2-13C2-glucose is 
more common. 16 Uniformly labeled glutamine (U-13C5-glutamine; M+5 glutamine) is often 
used for TCA cycle flux estimation, as it results in highly abundant labeling of TCA cycle 
intermediates. Its conversion, through a-ketoglutarate via reductive carboxylation, results 
in the production of M+5 labeled citrate, which means U-13C5-glutamine can also be used 
to elucidate the contribution of glutamine to lipogenesis via the reductive carboxylation 
pathway – which is the reversed direction of the TCA cycle. Alternatively, when labeled 
glutamine enters the oxidative TCA cycle it will result in M+4 labeled succinate, and malate, 
as well as M+3 labeled a-ketoglutarate for the second cycle through the TCA cycle. 17 To 
measure the direct contribution of different nutrients to metabolic pathways, it is necessary 
to conduct tracer experiments with all circulating nutrients of interest, which can be 
determined by a straightforward matrix calculation. 18v

Stable isotope tracing lends itself perfectly for in vitro studies, however in vivo experiments 
have been performed and applied in cancer patients to study tumor cell metabolism via 
either bolus injection or constant infusion. Nutrient partitioning has proven important for 
tumor cell survival and the function of immune cells in the tumor microenvironment. 19 
Unfortunately, to study nutrient partitioning of tumor cells directly in patients multi-tracer 
analyses would be required, and these are not feasible using either both bolus injection 
or constant infusion. Ex vivo culturing of human tissue, following vibratome slicing, has 
provided a promising strategy that allows multi-tracer experiments using single tissue 
samples. 20 This approach can be combined with the parallelized introduction of various 
stable isotope labeled nutrients to the incubation medium, which allows for an efficient and 
biochemically meaningful labeling of metabolically active cells. 21 Given that the metabolic 
labeling takes place in situ, makes incubation of vibratome sectioned tissue slices with 
stable isotope labeled tracers perfectly compatible with spatial metabolomics tools such 
as MALDI-MSI. 22
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of the tricarboxylic acid (TCA) cycle. C: Schematic representation of the Warburg effect.
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2.3. The kidney and renal cell carcinoma

The human kidney is a highly complex organ, with up to twenty known cell types contributing 
to its main function of filtering our blood. Maintaining the molecular integrity of all these 
cell types is a complex process, requiring strict control of the transcriptome, proteome and 
metabolome. Disruption of these processes can emerge in a variety of diseases, ranging 
from chronic kidney disease to renal cancer. The most common type of kidney cancer in 
adults is renal cell carcinoma (RCC), a type of cancer which originates in the proximal 
tubule cells, which transport the primary urine after filtration of the blood. 23 The 5-year 
survival rate of RCC patients is around 50 – 70%, however when the cancer metastasizes 
the prognosis is substantially worse, with a median survival time of 13 months and a 
5-year survival rate under 10%.23 Giving its severe nature, RCC is heavily studied to better 
understand the disease pathogenesis and progression, as well as how effective treatment 
can be provided. One common finding amongst these studies is the role of metabolism; 
RCC cells display a grade-dependent metabolic reprogramming. 24 In this chapter, we will 
have a closer look into the metabolism of the healthy human kidney (Figure 5A) as well as 
RCC and its surrounding tissue (Figure 5B) using the in situ stable isotope tracing method 
and spatial metabolomics by MALDI-MSI described above.

2.3.1. Metabolism of the kidney and RCC

Different renal segments contribute to the role of the kidney as filter of our blood. The 
primary functional unit of the kidney, the nephron, consists of a glomerulus and Bowman’s 
capsule, connected serially to a proximal tubule, loop of Henle and distal convoluted tubule. 
The various tubules play an important role in the reabsorption of water and salts from the 
filtrate originating from the glomerulus. These reabsorption processes are mostly mediated 
by active ion transport channels, making the kidney one of the most energy demanding 
organs of our body. This makes that the human kidney is highly metabolically active, with an 
estimated metabolic rate of >400 kcal/kg tissue/day. 25,26 To meet this energy demand, the 
kidney mostly uses the TCA cycle. To this end, the kidney is able to directly take up citrate, 
one of the TCA cycle intermediates, from the blood to fuel the TCA cycle. 27 Besides citrate, 
also lactate, uric acid and glutamine are reabsorbed in high levels to fuel the TCA cycle 
through side branches of the central carbon metabolism. Besides its metabolite burning 
character, the kidney also portrays significant gluconeogenetic capabilities. This results 
in the organ net-oxidizing lactate into pyruvate, thereby contributing to maintaining the 
circulating redox homeostasis.

RCC originates in the high energy demanding proximal tubule cells. As described above, 
the healthy kidney relies on the TCA cycle for its energy demand. However, upon the 
manifestation of RCC this drastically changes; the TCA cycle and subsequent oxidative 
phosphorylation (OxPhos) are downregulated, whereas anaerobic glycolysis and the PPP are 
activity are increased. The metabolic switch from OxPhos to anaerobic glycolysis a distinct 
feature of cancer cells, and is also known as the Warburg effect (Figure 4C). 28 Even though 
there is enough oxygen available for OxPhos, cancer cells preferentially use glycolysis for 
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energy production. To still provide sufficient ATP, the cell has to drastically increase its 
glycolytic flux since the ATP yield of anaerobic glycolysis (2 mol ATP/mol glucose) is much 
lower compared to OxPhos (~38 mol ATP/mol glucose). This results in a net increase of 
lactate production, which subsequently can be used for biomass incorporation and cell 
proliferation; highly beneficial for the fast-dividing cancer cell. Another phenomenon that 
can be attributed to the Warburg effect is the decreased glucose contribution to the TCA 
cycle. Of course, these two phenomena go hand in hand, and are both indicative of the 
metabolic shift resulting from the Warburg effect.

A B

Figure 5. Kidney and renal cell carcinoma histology. A: Representative image of H&E stained normal human 
kidney. B: Representative image of H&E stained human RCC.

3. RESEARCH AIM

Establish an experiment that allows the metabolic differentiation between healthy proximal 
tubular cells and RCC cells, by visualizing dynamic differences in glucose metabolism 
within the tissue.

4. HYPOTHESIS AND EXPERIMENTAL SETUP

As the healthy human kidney relies predominantly on the TCA cycle for energy production 
and RCC relies on glycolysis, an in situ dynamic metabolic tracing experiment of glycolysis 
activity will allow the distinction between healthy proximal tubule cells and RCC tumor 
cells, and visualization of the Warburg effect.

4.1. Experimental setup

4.1.1. Tissue preparation, in situ isotope incubation, MALDI-MSI, and staining

A patient with RCC underwent surgical resection to remove the cancer. A biopsy from the 
RCC tissue was taken and preserved for metabolomics purposes. Besides the RCC tissue, 
the surrounding healthy tissue was sampled serving as control. Tissues were sliced using 
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a vibratome (Figure 6A). Since for this particular ex vivo experiment we are interested in 
visualizing the dynamics of the Warburg effect, U-13C6-glucose was used as metabolic tracer 
of the glycolysis. Tissue slices were incubated for 2 hours after which they were quenched 
using liquid nitrogen. Different tissue slices underwent 0 (control), 15, 30, 60, and 120 
minutes of incubation with labeled glucose (Figure 6B). After snap freezing, the tissues were 
further prepared for MALDI-MSI analysis. First, 10 µm thick tissue sections were sectioned 
using a cryotome, and thaw-mounted on indium-tin-oxide (ITO)-coated glass slides.  
N-(1-napthylyl)-ethylenediamine dihydrochloride (NEDC) matrix was dissolved at 7 mg/
mL in a mixture of solvents (70:25:5 methanol:acetonitrile:deionized water (% v/v/v)) and 
applied to the tissue section using a pneumatic sprayer. Then, negative ion-mode MALDI-
TOF-MSI analysis of the sections was performed using a Bruker Daltonics rapifleX system 
at a 5 × 5 µm2 spatial resolution. During these analyses, anions within a m/z range of 60-
1000 Th were recorded. After MALDI-MSI data acquisition, the remaining MALDI matrix 
was removed from the MSI-analyzed tissue by various organic solvent washing steps. The 
remaining tissue was then stained with several immunofluorescence markers (LTL for 
proximal tubular cells, ECAD for distal tubular cells and collecting duct, and NPHS1 for 
podocytes), which allowed us to identify the different epithelial cell types in the tissue.

healthy kidney RCC kidney

vibratome slicing

A
incubation time

-120m -60m -30m -15m 0m

12C LN

13C LN

13C LN

13C LN

13C LN

control

U-13C-glucose

B

12C

12C

12C

C
U-13C-glucose

3-phospho-
glycerate

glyceraldehyde-
3-phospate

pyruvate

lactate

acetyl-CoA

Citrate

Figure 6. Stable isotope tracing in tissue culture. A: Schematic overview of the vibratome slicing procedure. 
B: Overview of the stable isotope tracing tissue culture time course experiment. At the indicated time points 
the label with regular glucose was exchanged with medium containing U-13C-glucose. At time point 0m the 
tissues were quenched using liquid nitrogen. C: Detected metabolites with the number of incorporated 
stable isotope labelled carbon atoms in red.
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4.2. MSI data pre-processing

Following the MALDI-MSI data acquisition, the data for every incubation time point was 
loaded into a proprietary software package provided by the instrument vendor (SCiLS Lab 
PRO, v2023a) with baseline correction using a convolution algorithm. The dataset was 
normalized to the total ion count (TIC). Spectral recalibration and a two-step peak picking 
on the average spectrum were performed in mMass29; i) untargeted peak picking (S/N > 3)  
was performed on the m/z range between 450-1000 Th), and ii) targeted m/z feature 
selection was performed on specific metabolites and isotopologues expected to derive from 
the stable isotope tracing experiment and based on the theoretical m/z values (Figure 6C). 
The peak list was imported into SCiLS Lab, which was used for per-pixel feature extraction 
and data exporting.

Table 1. Overview with datasets containing the per-pixel intensity information for all selected m/z features.

Timepoint Dataset

Control Kidney_RCC_lipids.csv

15 min Kidney_RCC_13C_15min.csv

30 min Kidney_RCC_13C_30min.csv

60 min Kidney_RCC_13C_60min.csv

120 min Kidney_RCC_13C_120min.csv

Additional files

Pixel ID and coordinates Kidney_RCC_coordinate.csv

Table 2. Files needed for the isotope correction package IsoCorrectoR.

File Contains

ElementFile Information on the elements important for the isotope correction process

MoleculeFile Information on the molecules to be corrected for natural isotope abundance/tracer purity

MeasurementFile The measured data that needs to be corrected

Table 3. Overview of datasets containing the isotope corrected values for enrichment visualization.

Timepoint Dataset

15 min CorrectedFractions15.csv

30 min CorrectedFractions30.csv

60 min CorrectedFractions60.csv

120 min CorrectedFractions120.csv

4.3. Necessary software and exemplary dataset

Since the SCiLS Lab software is not freely available, we provide the pre-processed datasets 
(Table 1). The associated datasets, IsoCorrectoR file templates and the R scripts (in Rmarkdown) 
which are referred to throughout the chapter, are available for downloading from OSF.io.
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The programming language R was used for most data analysis steps, e.g. data transformation, 
spatial segmentation, data integration, metabolite intensity imputation and visualization. 
A list of required R packages is provided below (Table 4).

Table 4. Overview of R packages required for the data analysis strategies described below.

Package Purpose

ggplot2 Visualization

ggrepel Visualization; repel overlaying labels in ggplot2

ggcorrplot Visualization; easy correlation matrix

pheatmap Visualization; drawing clustered heatmaps

patchwork Visualization; combining plots

viridis Visualization; colors suited for black-white and color

IsoCorrectoR Isotope abundance correction

Seurat Clustering, data integration, metabolite imputation

dplyr Data manipulation

Tidyverse Data manipulation

reshape2 Data manipulation

4.4. Research questions and exercises

Using your newly acquired knowledge from the introduction, as well as the provided code 
and the example datasets, you can train yourself to perform the data transformations and 
steps to perform in situ metabolic dynamics analysis. In this chapter we aim to answer the 
following central research questions:

1.	 Can we differentiate RCC from healthy kidney tissue on the basis of their metabolic histology? 
In other words, can we use unsupervised multivariate statistical approaches to isolate 
pixels obtained from a cancerous tissue from those obtained from a healthy kidney tissue?

2.	 Can we differentiate RCC from healthy kidney by visualizing the Warburg effect using in 
situ dynamic metabolomics? In other words, can we find differences in the contribution of 
U-13C6-glucose to glycolysis and TCA cycle between cancerous tissue and healthy kidney?

5. EXERCISES

Throughout the remainder of the chapter, you will be guided through the workflow outlined 
in Figure 7. This will be a good starting point for any in situ dynamic metabolomics study. 
Obviously, the options to expand on this analysis pipeline are endless and will not be within 
the scope of this chapter.
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5.1. Dimensionality reduction and spatial segmentation of MSI data

The analysis of a tissue section by MSI generates very high dimensional data. At a 5×5 µm2 
spatial resolution, a measurement area of 1 mm2 contains 40,000 pixels. For each pixel, a 
mass spectrum is recorded each consisting of typically 250.000 datapoints, resulting in a 
total of 10×109 datapoints per square millimeter analyzed. In order to create interpretable 
data, one needs to reduce the data complexity. Following complexity reduction that 
is achieved through peak picking and feature selection (section 2.1.8), the next step in 
dimensionality reduction is achieved through spatial segmentation of the data. Here, 
multivariate statistical tools (i.e. principal component analysis (PCA), t-distributed stochastic 
neighbor embedding (tSNE), uniform manifold approximation and projection (UMAP) etc.) 
are used to calculate groups of pixels that are highly similar, which in this case means they 
have mass spectra with comparable peak intensity profiles. By color coding the clusters, 
and plotting the clusters using the pixel XY coordinates, one can construct an image that 
shows the spatial distribution of metabolically similar pixels. 30

Spectra pre-
processing

Baseline correction, normalization, 
recalibration and peak picking

Dimensionality 
reduction

Transformation of the high-dimensionality 
m/z data to a low-dimensional space

Spatial 
segmentation

Partitioning of the MSI data into distinct 
regions sharing a similar metabolic profile

Data 
imputation

Replacing the missing 13C-enriched 
metabolites in the lipid control dataset

Isotope 
correction

Correction of the 13C-enriched metabolite 
data for naturally present isotopes

Hotspot 
removal

Quantile thresholding

Enrichment 
visualization

Visualize the dynamic 13C-enrichment 
results in situ

Biological 
interpretation

Draw conclusions about the metabolism 
in RCC versus healthy kidney tissue

Figure 7. Schematic of the data analysis workflow used for the in situ spatial metabolomics analysis.

During the first exercise in our dynamic metabolism data analysis pipeline, you will perform 
a metabolome-driven spatial segmentation of the healthy kidney control and RCC tissue to 
identify groups of pixels with similar metabolic profiles. The clustering algorithm chosen 
for the dimensionality reduction is UMAP. 31 In the final UMAP plot, pixels that have a similar 
metabolic profile will end up in close together and consequently will be assigned to the 
same cluster. Subsequently you will reconstruct the cluster image, resulting in a chemically 
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segmented visualization of the tissue. This image will be referred to as the “metabolic 
histology image” of the tissue.

5.1.1. R code and explanations

The first goal of this exercise is to perform the UMAP-based dimensionality reduction, you 
can use the R Script “Reduction_Segmentation” with corresponding .csv files “Kidney_RCC_
lipids.csv” and “Kidney_RCC_coordinate.csv” for this.

We start by loading the exemplary lipid MSI dataset into our R working environment. Since 
the lipid profile is highly cell-type specific and stable throughout the isotope-labelling 
experiment, we can use these features for spatial segmentation, cell-type identification, 
and anchor-based data integration. 22 The file we have provided you with is the combined 
data of both the healthy kidney and the RCC tissue. Throughout the exercise it will appear 
that these two tissues are metabolically indeed very distinct from one another.

# Load in the lipidome dataset 
 MSIref <- read.csv(file = 'Kidney_RCC_lipids.csv', row.names = 1, header   = TRUE, sep = "
,")  
 
# Transform the countmatrix into dataframe suitable for Seurat 
 MSIref <- MSIref * 100 %>% 
     round(digits = 0) 
 MSIref <-  as.data.frame(t(MSIref)) 

After data transformation, the data is now in a suitable format to load it into the Seurat 
package using the following code:

MSIdata <- CreateSeuratObject(counts = MSIref, project = "RCC") 

To put the dataset to a common scale, without distorting the relative differences in ranges 
of intensity values, the data needs to be normalized and scaled. After data transformation, 
a PCA will be performed which determines the neighbors of each pixel. The results will 
later be used by the UMAP algorithm.

MSIdata <- SCTransform(MSIdata, verbose = F)  
MSIdata <- RunPCA(MSIdata, assay = "SCT", verbose = FALSE) 
 
# Perform Elbowplot to assess suitable number of PCs for subsequent  
analysis 
ElbowPlot(MSIdata) 

The elbow plot (Figure 8) shows the standard deviation for each of the calculated principal 
components (PCs), and is a useful tool to determine how many PCs should be selected to 
represent the majority of the variation held within the dataset. Based on visual inspection 
of the plot, you determine the PC at which the change in standard deviation starts to taper 
off. Despite being subjective, it is a quick and efficient method for choosing the number 
of PCs to use.
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Figure 8. Elbow plot displaying the standard deviation for each calculated principal component.

Based on the elbow plot above, we chose to work with the first eight PCs to run the UMAP 
algorithm. There are two important, so-called, hyper parameters that have a significant 
effect on the results: resolution and min.dist. You can play around yourself with these 
parameters to see how they affect the resulting UMAP embedding.

# Look for pixels that overlap in the PCA space  
MSIdata <- FindNeighbors(MSIdata, dims = 1:8) 
# Iteratively groups cells together to a certain optimal point 
MSIdata <- FindClusters(MSIdata, resolution = 0.5) 

# The RunUMAP function learns the underlying manifold of the data in order to place similar 
cells together in a low-dimensional space 
MSIdata <- RunUMAP(object = MSIdata, dims = 1:8, n.neighbors = 15L,  
min.dist = 0.05, check_duplicates = FALSE)  

DimPlot(object = MSIdata, reduction = 'umap', label = TRUE, pt.size = 1,  
label.size = 5) 

DimPlot(object = MSIdata, reduction = 'umap', label = TRUE, pt.size = 1,  
label.size = 5, group.by = “orig.ident”) 
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Figure 9. Two-dimensional scatterplot visualization of the UMAP embedding. A: UMAP representation with color-
coding based on cluster identities. B: UMAP representation with color-coding based on original pixel identities.
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After the dimensionality reduction, the clusters are named using meaningless integers which 
do not give any information about the biological meaning of these clusters (Figure 9A). Since 
in our experimental setup we expect to find a mixture of cells, including a variety of healthy 
kidney cells as well as cancer cells, we are interested in assigning the different cell types 
to the different clusters. To achieve this, we need to compare the spatial representation 
of the dimensionality reduction – the “metabolic histology” – with the celltype 
information obtained from the immunofluorescence microscopy images. This allows us to 
determine which clusters are positive for which cell-type markers.

The second part of the exercise is to reconstruct the segmentation cluster distributions 
and generate the metabolic histology image. To recreate the cluster images, we first need 
to load the XY coordinates for each of the analyzed MSI pixels in R.

# Create a data frame with the xy coordinates from the imaging run 
xycoord <- read.csv(file = 'Kidney_RCC_coordinate.csv', row.names = 1,  
                    header = TRUE, sep = ",") 

xycoord$y1 <- xycoord$y * -1 

The next step is to associate the XY coordinates to the clustered pixels in the Seurat object and 
visualize the individual cluster images. An example for cluster 1 is shown below (Figure 10).

# Extract the cluster information from the dimensionality reduction 
cluster <- as.data.frame(as.matrix(MSIdata@active.ident)) 
 
# Select which cluster you want to visualize, by setting this to 1 and all others to 0  
cluster_int <- "1" 
cluster$V1 <- replace(cluster$V1, cluster$V1 != cluster_int, 0) 
cluster$V1 <- replace(cluster$V1, cluster$V1 == cluster_int, 1) 
 
# Merge the cluster information with the xy coordinate system 
dataframe <- merge(cluster, xycoord, by = 'row.names') 
 
# Transform data for pheatmap 
dataframe$V1 <- as.numeric(dataframe$V1) 

Cluster 1
Other

Figure 10. Visualization of the spatial distribution of cluster 1. The left panel is the healthy kidney tissue, 
the right panel represents the RCC tissue.
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a = dcast(dataframe, y~x, value.var = "V1") 
row.names(a) <- a[,1] 
data <- as.matrix(subset(a, select = -c(y) )) 
 
# Visualize the spatial distribution of cluster of interest 
pheatmap(data, scale = "none", cellwidth = 0.6, cellheight = 0.6,  
cluster_rows = FALSE, cluster_cols = FALSE, legend = T, show_rownames = F,show_colnames = F
, border_color = FALSE, fontsize = 10,  
color = viridis(250), na_col = "WHITE", breaks = NA, main = cluster_int) 

LTL
ECAD
NPHS1
DAPI

Figure 11. Immunofluorescence staining. The left panel represents the healthy kidney tissue, the right panel 
represents the RCC tissue – LTL (turquoise) for proximal tubular cells, ECAD (green) for distal tubular cells 
and collecting duct, NPHS1 (red) for podocytes, and DAPI (blue) for cell nuclei.

To assign cell type information to the clusters we compare the visualizations of each of the 
clusters with the IF images we have of the post-MSI analyzed tissue (Figure 11). From these 
IF images it becomes apparent immediately that major histological transformations have 
occurred in the RCC sample compared to the healthy kidney tissue. The glomerular and 
tubular structures have mostly disappeared, leaving a dedifferentiated and unstructured 
tissue which mainly consists of cancer cells and stroma tissue. Although the RCC tissue is 
quite heterogeneous, both on the histological level evidenced by the IF staining, as well 
as the lipidomic level evidenced by the presence of several RCC clusters in the UMAP 
embedding, it is beyond the scope of this chapter to go into the details of intratumor 
heterogeneity. Therefore, in further processing steps the RCC tissue as a whole will be 
regarded as a single group.

For this chapter, we have provided you with a vector with the cell types of interest  
(new.cluster.ids) which you can use to assign the cluster identities.
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# Change the cluster names to the newly identified cell type names 
new.cluster.ids <- c("RCC", "LTL_1", "RCC", "Unidentified_1","Glom/Vessel"                   
, "RCC", "LTL_2", "Unidentified_2", "RCC", "RCC",  
                     "ECAD_1", "ECAD_2", "Unidentified_3")    
names(new.cluster.ids) <- levels(MSIdata) 
MSIdata <- RenameIdents(MSIdata, new.cluster.ids) 

DimPlot(object = MSIdata, reduction = "umap", label = TRUE, pt.size = 1,  
          label.size = 5) 
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Figure 12. Two-dimensional scatterplot visualization of the UMAP embedding with annotated cluster identities.

As final part of this exercise, you can now visualize the metabolic histology of the tissue. 
Once again, a data transformation step is required to enable the spatial visualization of the 
metabolic histology using ggplot.

# Data extraction out of the Seurat object 
embeddings <- as.data.frame(MSIdata@reductions[["umap"]]@cell.embeddings) 
ident <- as.data.frame(MSIdata@active.ident) 
# Data transformation 
vector <- row.names(xycoord) 

xycoord$pixID <- vector 
 
vector <- row.names(embeddings) 
embeddings$pixID <- vector 
 
vector <- row.names(ident) 
ident$pixID <- vector 
names(ident)[1] <- "Ident" 
 
# Merging everything into 1 dataset 
spat_UMAP_Kidney <- merge(xycoord, embeddings, by = 'pixID') %>% 
  merge(ident, by = 'pixID')  
 
 
# Using ggplot to visualize the metabolic histology  
ggplot(spat_UMAP_Kidney, aes(x = x, y = y))+ 
  geom_tile(aes(fill = Ident))+ 
  coord_fixed()+ 
  theme_void() 
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Figure 13. Metabolic histology visualization of the UMAP embeddings. The color-coding represents the 
different cluster identities in the spatial context of the tissue.

5.1.2. Description of the results

Based on the selected parameters for the dimensionality reduction using the UMAP 
algorithm, we find a coarse split of the data into two large clusters, each subdivided in 
several smaller subclusters (Figure 9A). Based on the visualization of the origin of the pixel 
(orig.ident), it appears that the largest contributor to variation within the tissue is whether 
the pixel comes from a healthy or a RCC kidney (Figure 9B). The sub clustering of the healthy 
kidney, and comparison of the cluster distributions to the IF images, additionally shows that 
the individual cell types within the healthy kidney each have their own metabolic profile. 
For example, we were able to assign various clusters to cells which were positive for LTL, 
indicating various proximal tubular cells in the healthy kidney tissue (Figure 11, 12 & 13).

5.2. Metabolite abundance imputation

To perform the dynamic metabolic measurements, we have performed a time course 
of in situ isotope tracing experiments with U-13C-glucose in both the RCC tissue and its 
surrounding healthy kidney tissue. Since the different timepoints are represented by 
different tissue slices taken from the same tissue following MALDI measurements were 
performed on physically different pieces of tissue. This effectively means we now have five 
metabolic snapshots of the healthy kidney and the RCC tissue. The control tissues (timepoint 
0 min) will not contain any 13C-enriched isotopologues, while the other timepoints (15, 30, 
60 and 120 min) will contain different levels of the 13C-enriched downstream metabolic 
intermediates. To efficiently and properly evaluate the dynamics of the cellular metabolism 
in the different cell types, we need to impute the 13C-enriched metabolic snapshots in our 
control dataset. This allows the direct comparison of the different timepoints using the same 
tissue, and consequently the direct comparison of the metabolic dynamics of specific cell 
types. For this data imputation, we need to get the intensities of the 13C-enriched metabolite 
isotopologues into the control dataset which was not incubated with U-13C-glucose.  
To achieve this, we make use of a data enhancing strategy. This strategy takes a query 
dataset (lipid control dataset) which lacks intensity information on features of interest 
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(the 13C-enriched metabolite isotopologues and downstream metabolites), and a reference 
dataset, that does contain the intensity information of the features of interest (the 
13C-datasets of different timepoints). Based on the intensity profiles of so-called common 
features, shared between the query and reference datasets (the lipid m/z features), a 
k-nearest neighbor (kNN) analysis can determine the most similar pixels between the 
query and reference datasets. It then takes the pixel-specific intensity of the features of 
interest from the reference dataset and imputes them in the most similar pixel in the query 
dataset. By doing this for each time point, we end up with five datasets in which we can 
calculate the 13C-enrichment in various cell types for different metabolic intermediates. 
The differences in metabolic flux of the different cell types will influence the dynamics 
of 13C-label incorporation, which we can now visualize over time, and in context of the 
morphology of the analyzed tissues.

The exercises below will take you through the process of imputing the different 13C-labeling 
timepoints to the control dataset. Following data imputation, an isotope correction step 
is performed. This is necessary since isotopes are not only introduced with the labeling 
experiment, but these isotopes are also naturally abundant. This natural abundance of 
isotopes leads to convoluted signals in the MSI dataset, which could lead to distorted 
biological findings. To correct for the natural abundance of isotopes, we therefore perform 
an isotope correction step using the IsoCorrectoR package. Since it takes a significant 
amount of time to run this package (for this dataset the isotope correction took over 48 
hours) and since it requires manual data transformation in Excel, we will provide the code 
for this step of the process as well as the resulting data frame with isotope corrected data 
required for the next exercise so you are not required to perform this step yourself.

5.2.1. R code and explanations

The goal of this exercise is to perform data imputation, for which you can use the R Script 
“Data_imputation” with corresponding .csv files “Kidney_RCC_13C_15min.csv” and “Kidney_ 
RCC_lipids.csv” for this. In the chapter, only the example for the 15-minute timepoint will 
be shown, you can perform the other timepoints in a similar way yourself.

Start by loading in the 13C-enriched processed MALDI-MSI dataset, which will be used to 
impute 13C isotopologue data to the lipid dataset.
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# Load reference dataset 
MSIref <- read.csv(file = 'Kidney_RCC_13C_15min.csv', row.names = 1,  
header = TRUE, sep = ",")  
 
# Reshape data into suitable format for subsequent analysis 
MSIref <- MSIref * 100 %>% 
  round(digits = 0)  
MSIref <- as.data.frame(t(MSIref)) 
 
# Create Seurat objects    
MSIdata_ref <- CreateSeuratObject(counts = MSIref, project = "RCC") 
# Data normalization - ref 
MSIdata_ref <- SCTransform(MSIdata_ref, verbose = FALSE) 
MSIdata_ref <- RunPCA(MSIdata_ref, assay = "SCT", verbose = FALSE)  
ElbowPlot(MSIdata_ref) 
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Figure 14. Elbow plot displaying the standard deviation for each calculated principal component.

Based on the elbow plot (Figure 14) the first eight PCs were used to run the UMAP algorithm.

# UMAP analysis - ref 
MSIdata_ref <- RunUMAP(MSIdata_ref, dims = 1:8) 

Then, the lipid control dataset can be loaded into the R environment and processed in a 
similar way as the 13C isotoplogue data.

# Load query dataset and reshape accordingly 
MSIque <- read.csv(file = 'Kidney_RCC_lipids.csv', row.names = 1,  
            header = TRUE, sep=",") 
MSIque <- MSIque * 100 %>% 
  round(digits = 0) 
MSIque <- as.data.frame(t(MSIque)) 
 
# Create Seurat object 
MSIdata_que <- CreateSeuratObject(counts = MSIque, project = "RCC") 
 
# Data normalization - que 
MSIdata_que <- SCTransform(MSIdata_que, verbose = FALSE) 
MSIdata_que <- RunPCA(MSIdata_que, assay = "SCT", verbose = FALSE)  
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After processing of both the reference and query datasets, we can continue with the data 
imputation.

# Find the common features between reference and query dataset 
anchors <- FindTransferAnchors(reference = MSIdata_ref, query =  
              MSIdata_que, normalization.method = "SCT") 

 
# Filling in the labelling data in the control dataset based on KNN 
predictions.assay <- TransferData(anchorset = anchors, refdata =  
      GetAssayData(MSIdata_ref[['RNA']]), prediction.assay = T,  
      weight.reduction = MSIdata_que[["pca"]], dims = 1:8) 
 

# Write out csv files for furhter processing in Excel 
data_to_write_out <- as.data.frame(as.matrix(predictions.assay@data)) 
data_to_write_out <- as.data.frame(t(data_to_write_out)) 
 
# Select only the 13C enriched metabolites for visualization 
data_to_write_out <- data_to_write_out[ ,1:15] 
write.csv(x = data_to_write_out, row.names = T, file = "15min.csv")  
 
The resulting .csv file has the following format:

 

Each row represents a pixel from the lipid control tissue and each of the columns contains 
imputed intensities for the 13C isotopologues represented here by their m/z value. In this 
experiment we only introduced U-13C6-glucose, therefore the number of 13C isotoplogues from 
the downstream metabolites was limited to the ones represented in the example format.

The next step of the procedure is the isotope correction using the IsoCorrectoR package. 32  
The package requires the input of three files which are necessary for proper isotope 
correction: the ElementFile, MeasurementFile and MoleculeFile. These three files all have 
a set layout that should be used when importing your own data. For more information about 
the package and these files, see the reference listed in Further reading. A short reminder 
of the fact that running the isotope correction for these datasets took over 48 hours. The 
output files of the isotope correction have been provided for a smooth continuation of the 
workflow.
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# Load query dataset and reshape accordingly 
MeasurementFile <- read.csv(file = '15min.csv', row.names = 1, sep = ";") 
a = MeasurementFile 
a = data.frame(t(a)) 
b = data.frame(row.names(a)) 
# Rename file to “Measurements/Samples” 
fix(b)  

c = cbind(b,a) 
write.csv(c, quote = F, row.names = F, file = "File_path.csv") 
 
# Get path of IsoCorrectoR files 
path.molecule <- system.file("data", "MoleculeFile.csv", 
                             package = "IsoCorrectoR", mustWork = TRUE); 
path.element <- system.file("data", "ElementFile.csv", 
                             package = "IsoCorrectoR", mustWork = TRUE); 
path.measurement <- system.file("data", "MeasurementFile15.csv", 
                             package = "IsoCorrectoR", mustWork = TRUE); 
 
# Run correction algorithm and save results in new variable 
correctionResults <- IsoCorrection(MeasurementFile = path.measurement, 
                                   ElementFile = path.element, 
                                   MoleculeFile = path.molecule) 

 
For the enrichment visualization, we use the “IsoCorrectoR_result_CorrectedFractions” file. 
This file contains the corrected measurement data as fractions of the total abundance of a 
specific metabolite. The output format is shown in the example below:
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5.3. Metabolic dynamics calculations and visualization

As the title of this chapter states, the aim is to perform in situ analysis of the dynamic 
metabolism. The datasets resulting from the exercise in section 5.2 contain information 
on the 13C-enrichment for each of the pixels in the lipid control dataset. This means that 
similar to what was done before for constructing the metabolic histology, it is now possible 
to create pseudo-images containing 13C-enrichment of isotopologues of various metabolites 
over the 120 min time course experiment. A first step in creating these pseudo-images, is 
to perform hotspot removal on the images. This is merely an image processing step where 
for each image the intensity hotspots are removed, which results in higher contrast images. 
The hotspot removal is based on a quantile thresholding approach in which for each image, 
the intensities of the pixels in the highest quantile (1%) are set to the 99th quantile. The 
data after hotspot removal can be used to reconstruct the tissue morphology using the XY 
coordinates, and, since the coordinates were previously also linked to the UMAP clusters, 
data can be extracted to directly compare various cell types with one another. The exercises 
below will allow you to perform enrichment visualization after hotspot removal. Note that 
the graphs for the 13C-enrichment over time were not prepared using R, and as such there 
will be no code for these figures. The results with corresponding biological interpretation 
will however be discussed later in this section.

5.3.1. R code and explanations

This final exercise is focused on the visualization of the 13C-enrichment results. These 
visualizations show the metabolic dynamics in the context of the tissue. To continue with 
this exercise, you can use the provided output .csv files from the IsotopeCorrectoR package 
“CorrectedFractions15.csv”, “CorrectedFractions30.csv”, “CorrectedFractions60.csv” and 
“CorrectedFractions120.csv” which contain the isotope corrected data as described in 
section 5.2. The script you can use for the exercise is “Hotspot_Enrichment”. This exercise 
will focus on the 15 minutes timepoint, but the same R code can be used for the other 
timepoints.

# Loading the results from IsoCorrectoR 
df <- read.csv("CorrectedFractions15.csv", row.names = 1) 

Data transformation is necessary to be able to perform visualization of 13C-enrichment. This 
is similar to what you have seen in a previous exercise.

# Hotspot removal, automatically working through all columns  
for(i in 1:ncol(df)){ 
  q <- quantile(df[,i], c(.25, .50, .75, .90, .99)) 
  max <- q[5] 
  df[,i][which(df[,i]>max)] <- max 
} 

After hotspot removal, we can bring in the XY coordinates again to make a spatial 
representation of the metabolite-specific 13C enrichment onto our tissues of interest. We 
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first have to combine the data frame containing the 13C enrichment information with the 
XY coordinates.

# Combine the processed isotope corrected data with XY coordinates 
xy <- read.csv(file = 'Kidney_RCC_coordinate.csv', row.names = 1,  
          header = T, sep = ",") 
merged_df <- merge(xy, df, by = 0) 
rownames(merged_df) <- merged_df$Row.names 
merged_df <- merged_df[,-1 ] 

Since we know which column contains which metabolite, we can generate heatmaps for 
all our metabolites of interest.

# Extract the metabolites of interest 
lactate3   <- merged_df[,c(1,2,6)] 
glutamate2 <- merged_df[,c(1,2,9)] 
x3pg3      <- merged_df[,c(1,2,16)] 
citrate2   <- merged_df[,c(1,2,19)] 
 
# Make a list with all metabolites of interest 
metabolites <- list(lactate3, glutamate2, x3pg3, citrate2) 
 
# Write a pdf file in a desired file path containing all enrichment  
  visualizations 
pdf("File_path.pdf") 
for (n in metabolites) { 
  a = dcast(n, y~x) 
  data <- as.matrix(a) 
  data <- data[,-1] 
  print(pheatmap(data, scale= "none", cellwidth = 0.6, cellheight = 0.6,  
             cluster_rows = F, cluster_cols = F, legend = T,  
             show_rownames = F, show_colnames = F, border_color= F,  
             color=viridis(250),  na_col = "WHITE")) 
} 

In the end, these heatmaps can be put together to get a first insight into the changes in 
metabolic dynamics which occur between the healthy kidney and RCC tissues (Figure 15).

5.3.2. Description of the results

From the 13C-enrichment visualizations in Figure 15 and the graph representations of the 
results in Figure 16, it becomes apparent that there is a substantial decrease of the TCA 
cycle-derived 13C isotopomer enrichments when comparing the RCC tissue to the healthy 
kidney. The decrease of the citrate M+2 and glutamate M+2 fractions indicate a reduced 
contribution of U-13C6-glucose to the synthesis of these metabolites, and therefore allude 
to the finding that the TCA cycle activity is lower in the RCC tissue compared to the healthy 
kidney. Additionally, looking at the fractions of 3PG M+3 and lactate M+3, there does not 
seem to be much difference between the RCC tissue and the proximal tubules in the healthy 
kidney.

5
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Figure 15. Pseudo-images showing 13C-enrichment of various glycolysis and TCA cycle intermediates over a 
120-minute incubation with U-13C6-glucose. The color scale represents the relative 13C-enrichment.
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Figure 16. Metabolite-specific 13C enrichment over a 120-minute incubation with U-13C6-glucose.

6. DISCUSSION

Besides providing the reader with an opportunity to learn the ins and outs of spatial 
dynamic metabolomics, we wanted to test the hypothesis that the combination of in situ 
stable isotope tracing and spatial metabolomics using MALDI-MSI was able to visualize 
the metabolic anomalies introduced by Warburg effect in RCC.

Since RCC is a tumor that derives from the proximal tubuli in the healthy kidney, we wanted 
to perform the metabolic comparison between tumor cells and proximal tubule cells. 
Using a combination of the metabolic histology, based on cell-type specific lipid profiles 
resulting from the MALDI-MSI analysis (Figure 13), and post-MSI IF staining of several 
kidney-specific cell types (Figure 11), we were able to isolate the pixels associated to the 
proximal tubules (PT; pixels positive for LTL staining). Here we performed the IF-based 
cluster identity assignment based on visual inspection, which is effective, but not the most 
accurate approach. Beyond the scope of this book chapter, but to achieve the highest level 
of integration between IF images and MALDI-MSI data one would need to resort to image 
co-registration strategies. 10

The Warburg effect encompasses a metabolic shift from aerobic glycolysis and OxPhos to 
anaerobic glycolysis and loss of OxPhos activity, even in the presence of sufficient oxygen. 28  

5



114

Chapter 5

Based on this, we expected to find a reduced contribution of stable 13C-isotope labeled 
glucose to the intermediates of the TCA cycle, as well as increased levels of glycolysis 
intermediates in the RCC tissues, with an ultimate increase in lactate production. We were 
indeed able to show the reduced contribution of U-13C6-glucose to citrate M+2, which enters 
the TCA cycle through the production of pyruvate M+3. Additionally, we see the reduced 
contribution of labeled glucose to glutamate M+2, which is the glutamate isotopomer 
specific to the first pass through the TCA cycle, originating from pyruvate M+3, without the 
interference of other metabolic pathways. 15 These findings point towards the expected 
decrease of TCA cycle activity in the RCC tissue in comparison to the PTs in the healthy 
kidney tissue. Despite this finding, however, we could not find the expected changes in 
dynamics of the glycolysis. Whereas we expected an RCC-specific increase in lactate M+3 
enrichment, this remained nearly identical to the PTs of the healthy kidney. This could 
have several reasons. First, one of the inevitable effects of excessive lactate production 
upon the Warburg effect is lactic acidosis, which has shown to result in lower glucose 
consumption, and a reduction in lactate production in favor of a more oxidative, and 
sustainable non-glycolytic phenotype. 33 To get a conclusive answer to this, we would 
need to quantify the total lactate pool and show a comparison of the total amount of 
lactate produced in the healthy kidney compared to RCC. The absolute quantification of 
metabolites using MALDIMSI is in theory possible but would require a completely different 
experimental setup than the one presented here and was outside of the scope of this 
chapter. 34 Alternatively, a tissue homogenate-based technique such as nuclear magnetic 
resonance (NMR) spectroscopy could be used, which is capable of measuring absolute 
quantities of lactate. 35 Another contribution to the observation could be related to the 
post-translational modification of proteins, like for example histone lactylation. When 
cells are exposed to high levels of lactate, for example as a consequence of the Warburg 
effect, they will start to utilize lactate as substrate for the post-translational modification 
of histones, and as such use it as an epigenetic modulator of gene transcription. 36 This 
lactate-driven gene regulation has recently shown important in the regulation of immune 
cells and is associated to the modulation of disease-specific immunity status. 37 To exclude 
this contributor would require an additional quantitative epi-proteomics study to quantify 
the differential lactylation in histones originating from RCC compared to healthy kidney, 
this was also deemed beyond the scope of this book chapter.

Ultimately, we have been able to show that the metabolic histology can be used to 
differentiate RCC from healthy kidney, and that it is able to reveal intratumor heterogeneity, 
as well as the cellular heterogeneity in the healthy kidney. Furthermore, using our spatial 
dynamic metabolomics platform we have been able to establish that RCC tissue indeed has 
reduced TCA cycle activity, and that these tumor cells predominantly rely on glycolysis for 
energy production. In the end, mass spectrometry imaging in combination with stable isotope 
tracing provides a powerful platform to show the in situ metabolic dynamics of tissues.
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7. TAKE-HOME MESSAGES

o	 Mass spectrometry imaging can be used to gain molecular insight into complex tissue 
architecture.

o	 Mass spectrometry imaging is able to provide additional and comprehensive 
morphological information to conventional histopathological staining.

o	 The combination of spatial metabolomics and stable isotope tracing provides a powerful 
platform to show cell-type-specific differences in the dynamics of metabolism.

8. FURTHER READING

Mass Spectrometry: Principles and Applications
Edmond de Hoffmann, Vincent Stroobant
2007, John Wiley & Sons, Ltd, West Sussex England

Correcting for natural isotope abundance and tracer impurity in MS-, MS/MS- and high-
resolution-multiple-tracer-data from stable isotope labeling experiments with IsoCorrectoR.
Paul Heinrich, Christian Kohler, Lisa Ellmann, Paul Kuerner, Rainer Spang, Peter Oefner, 
Katja Dettmer.
2018, Scientific Reports 8, 17910

Getting started with Seurat
Satija Lab 2022.

R for Data Science
Hadley Wickham, Garrett Grolemund 2017.
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