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The pharmacokinetics of antibiotics in patients with 
obesity: a systematic review and consensus guidelines for 
dose adjustments
Anne-Grete Märtson, Katie E Barber, Ryan L Crass, Maya Hites, Charlotte Kloft, Joseph L Kuti, Elisabet I Nielsen, Manjunath P Pai, 
Markus Zeitlinger, Jason A Roberts, Thomas Tängdén, on behalf of the Pharmacokinetics and Pharmacodynamics of Anti-Infectives Study Group 
of the European Society of Clinical Microbiology and Infectious Diseases, the International Society of Anti-Infective Pharmacology, and the Society 
of Infectious Diseases Pharmacists

Obesity can cause physiological changes resulting in antibiotic pharmacokinetic alterations and suboptimal drug 
exposures. This systematic review aimed to summarise the available evidence on this topic and provide guidance for 
dose adjustment of antibiotics in adult (age ≥18 years) patients with obesity (BMI >30 kg/m²). We searched PubMed, 
Embase, and CENTRAL databases to find relevant studies published between database inception and Dec 30, 2023. 
We initially identified 6113 studies, which became 4654 studies after duplicate removal, and 128 studies were included 
in the final review. β-lactam antibiotics were most commonly studied (57 studies), followed by the group of 
glycopeptides, lipoglycopeptides, and oxazolidinones (45 studies). The certainty of evidence was low or very low for all 
antibiotics and a meta-analysis was not possible due to the heterogeneity of study populations and methods. Obesity 
modestly alters the pharmacokinetics of β-lactam antibiotics, but evidence does not support routine dose adjustments. 
For aminoglycosides and glycopeptides, the impact of obesity on pharmacokinetics is evident and weight-based 
dosing is recommended. Data are sparse for other antibiotic classes and research needs are described. In the absence 
of robust pharmacokinetic data, therapeutic drug monitoring can be used to guide individualised dosing.

Introduction
The adequate dosing of antibiotics to reach therapeutic 
and non-toxic drug concentrations is key to ensuring 
optimal patient outcomes.1,2 Although dose adaptation 
strategies are well established for some patient groups 
(eg, critically ill patients or patients with renal 
impairment),3 there is inadequate guidance for the 
increasingly prevalent group of patients with obesity 
(BMI ≥30 kg/m²) or severe obesity (BMI ≥40 kg/m²). 
In 2022, WHO estimated that 43% of the adult 
population worldwide were overweight (BMI 
≥25 kg/m²) and 16% had obesity, which has doubled in 
prevalence since 1990.4

Obesity can alter antibiotic pharmacokinetics due to 
physiological changes (eg, body composition and organ 
dysfunction) that result in increased or decreased drug 
exposures in plasma or at the site of infection 
(figure 1).5,6 For example, substantial changes can occur 
in the volume of distribution due to increased fat and 
muscle mass, and tissue drug concentrations might be 
lowered by reduced peripheral perfusion. Drug 
clearance can be increased, which is often the case in 
people with obesity who are otherwise healthy, or 
decreased as a result of obesity-related nephropathy or 
liver disease. However, the magnitude of these 
pharmacokinetic changes differs across antibiotic 
classes depending on the characteristics of the 
molecules (eg, molecular size and hydrophilicity). This 
difference determines which weight metric is most 
appropriate to guide dose adjustments. Consequently, 
previous pharmacokinetic studies found that total 
bodyweight, ideal bodyweight (based on height and 
sex), or adjusted bodyweight (normally defined as ideal 

bodyweight + a fraction of the weight difference 
between total and ideal bodyweight) were most useful 
for different antibiotics.7 Moreover, the clinical 
implications of the pharmacokinetic alterations 
occurring in patients with obesity depend on patient 
and pathogen characteristics (eg, whether the patient is 
critically ill or stable, whether the pathogen is highly or 
less susceptible, site of the infection, and function of 
eliminating organs).8,9

In this systematic review, we summarise the available 
literature on pharmacokinetic alterations in patients with 

Key messages

•	 This systematic review was done to extract and compile 
evidence to guide antibiotic dose adjustments in patients 
with obesity

•	 A literature search identified 128 relevant studies, with 
57 focused on β-lactam antibiotics and 45 focused on 
glycopeptides, lipoglycopeptides, and oxazolidinones 

•	 Obesity modestly alters the pharmacokinetics of β-lactam 
antibiotics, but the available evidence does not support 
routine dose adjustments

•	 The impact of obesity on the pharmacokinetics of 
aminoglycosides and glycopeptides is evident; weight-
based dosing is recommended

•	 Data are sparse for other antibiotic classes, and the 
certainty of evidence was considered low or very low for 
all antibiotics

•	 In the absence of robust pharmacokinetic data, 
therapeutic drug monitoring can be used to guide 
individualised dosing
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obesity of antibiotics that are commonly used in 
hospitalised patients, discuss the clinical implications of 
these findings, and provide consensus guidance for dose 
adaptation.

Methods
Expert group and scope of the review
A working group of experts on antibiotic pharma
cokinetics and pharmacodynamics was convened, 
including members assigned by the Pharmacokinetics 
and Pharmacodynamics of Anti-Infectives Study Group 
of the European Society of Clinical Microbiology and 
Infectious Diseases, the International Society of Anti-
Infective Pharmacology, and the Society of Infectious 
Diseases Pharmacists. The group focused on 
pharmacokinetic studies in hospitalised adult patients 
(aged ≥18 years) with obesity (BMI >30 kg/m²) or severe 
obesity (BMI >40 kg/m²). The group agreed on a list of 
intravenously administered antibiotics that are used in 
hospitals (appendix p 1). The scope of the review was 
defined by the PICO framework: adult hospitalised 
patients receiving one of the selected antibiotics 
(population); drug administration in patients with 
obesity or severe obesity (intervention); drug 
administration in patients without obesity (control); and 
differences in pharmacokinetic variables, in the 
probability of reaching relevant pharmacokinetic and 
pharmacodynamic targets, or clinical outcomes in 

patients with obesity versus patients without obesity 
(outcome).

Search strategy and selection criteria
This systematic review was performed in accordance 
with PRISMA guidelines and registered with 
PROSPERO (CRD42021257051).10 Relevant studies were 
identified by a search of PubMed, Embase, and 
CENTRAL databases by two professional librarians at 
Uppsala University, Uppsala, Sweden. Search terms for 
the selected drugs were defined to capture relevant 
literature on pharmacokinetics of the selected antibiotics 
in patients with obesity (appendix pp 2–4). No 
restrictions were applied for language or year of 
publication. The group decided that relevant papers that 
were not identified in the initial search could be added if 
encountered in the reference lists of retrieved full-text 
articles, and that authors of identified papers could be 
approached for missing information. The final search, 
which was done on Jan 16, 2025, included papers 
published from database inception to Dec 30, 2023.

Each study was initially screened based on titles and 
abstracts by two members of the working group. Original 
articles that were likely to provide data on antibiotic 
pharmacokinetics in relation to bodyweight in patients 
with obesity were selected. We also included studies 
with healthy volunteers (ie, people with no known health 
conditions), but these studies were considered less 
relevant when data from patients were available for the 
same drug. All study designs were eligible. We excluded 
conference proceedings and review articles. Publications 
with uncertain relevance (conflicting judgement by the 
two authors who independently assessed the full text 
article) were reviewed by a third person (A-GM or TT) to 
establish whether the paper should be included. In the 
full-text assessment, reasons for exclusion were given in 
a shared online document. Data on pharmacokinetic 
parameters, pharmacokinetic and pharmacodynamic 
target attainment, clinical outcomes, and safety were 
extracted by one person (A-GM) and checked for accuracy 
by at least one other author.

Quality assessment and grading of evidence
We used the ClinPK tool to assess the quality of studies.11 
Items related to titles, abstracts and discussions were 
omitted, as these are not relevant for the interpretation of 
results. Compliance with the checklist (eg, the proportion 
of applicable checklist items reported) was classed as 
low (<50%), moderate (50–75%) or high (>75%). The 
certainty of evidence for each antibiotic class or subclass 
was classified using the GRADE system.12

Definition of pharmacokinetic and pharmacodynamic 
target attainment
Adequate probability of target attainment was defined as 
more than 90% of patients reaching the pharmacokinetic 
and pharmacodynamic target in plasma. Due to 

Figure 1: Physiological changes and their possible impact on antibiotic pharmacokinetics and drug exposure 
in patients with obesity
Figure created with BioRender.com.
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heterogeneity in the presentation of data across studies, 
pharmacokinetic and pharmacodynamic targets could 
not be harmonised but are reported as presented in the 
original studies. The group considered 40–100% time of 
the free drug concentration exceeding the minimum 
inhibitory concentration (40–100% fT>MIC) of 
susceptible pathogens to be appropriate minimum 
targets for β-lactam antibiotics. An area under the plasma 
concentration-time curve over 24 h to MIC ratio 
(AUC0-24h/MIC) of 400 or more was considered the most 
appropriate target for vancomycin.13,14 For other 
antibiotics, specific pharmacokinetic and pharma
codynamic targets are discussed in the Results.

Consensus recommendations
The recommendations for antibiotic dose adjustments 
were drafted by two authors (A-GM and TT) and revised 
in a reiterative process based on input from the other 
authors who individually assessed each recommendation. 
All authors agreed to the final version.

Results
Study selection and overview of included studies
6113 articles were retrieved in the literature search 
(4654 after duplicate studies had been removed) and 
128 studies were included in this systematic review 
(figure 2, table, appendix pp 5–13). Characteristics and 
pharmacokinetic variables for comparator groups are 
also given when available (appendix pp 14–16). Eight 
studies reported on clinical efficacy or safety outcomes 
(appendix p 17). We have summarised the results and 
certainty of evidence for each antibiotic class in this 
section (table), and the suggested dose adjustment 
strategies for patients with obesity (panel).

β-lactam antibiotics
A total of 57 studies with β-lactam antibiotics met our 
inclusion and exclusion criteria (table; appendix pp 5–13). 
Cefazolin was the most frequently studied drug 
(16 studies), which was given as surgical antibiotic 
prophylaxis, followed by piperacillin–tazobactam 
(12 studies) and meropenem (10 studies), both of which 
were mainly used to treat infections in hospitalised 
patients with obesity.

Penicillins
For amoxicillin, increased volume of distribution and 
higher drug clearance were reported in patients with 
obesity than in patients without obesity, resulting in 
approximately 20% reductions in drug exposure.15,16 
However, the clinical implication of these findings is 
unclear. One study (n=27, with 24 patients included in 
the oral part of the study) evaluated amoxicillin–
clavulanic acid pharmacokinetics in healthy volunteers 
with obesity.17 The authors concluded that most patients 
would reach a pharmacokinetic and pharmacodynamic 
target of 40% fT>MIC against susceptible pathogens 

(MICs up to 0·5 mg/L [intravenous] or 1 mg/L [oral]) 
with standard dosing regimens of 1000 mg amoxicillin 
and 200 mg clavulanic acid (intravenous) or 1000 mg 
amoxicillin and 125 mg clavulanic acid (oral) 
every 8 h, indicating that routine dose adjustment is 
not needed.17

For piperacillin–tazobactam, approximately 30% 
increases in volume of distribution and drug clearance 
have been reported in patients with obesity compared with 
patients without obesity.18,19 In a study of 14 critically ill 
patients with obesity, adequate probability of target 
attainment was shown for piperacillin (>90% of the 
population reaching 50% fT>MIC against susceptible 
pathogens) with standard 4 g piperacillin and 
0·5 g tazobactam dosing every 8 h administered as 4 h 
infusion, and higher dosing (6 g piperacillin and 
0·75 g tazobactam dosing every 8 h as 4 h infusion) was 
suggested to reach adequate tazobactam exposures.18 
Similarly, another study including 16 hospitalised patients 
with obesity (of which 7 patients were treated in an 
intensive care unit) showed satisfactory probability of 
target attainment for piperacillin with 4 g piperacillin and 
0·5 g tazobactam dosing every 8 h (4 h infusion) against 
susceptible bacteria (MICs 16 mg/L or less).19 In surgical 

6113 potentially eligible studies identified 
            through
            2680 PubMed studies 
            3092 Embase studies 
               341 CENTRAL studies

4654 screened 

  308 full-text articles assessed for eligibility 

   128 studies included in systematic review  

1459 duplicates removed 

4346 articles excluded after title and abstract 
            screening

   180 excluded
            80 conference proceedings 
            29 missing subgroup analysis 
             15 not appropriate study design
             15 full text not accessible
             20 did not study patients with obesity 
               5 post-hoc analysis of included study 
                4 reviews or guidelines
                3 duplicates
               3 publication date after end of search 
                   period
               2 available only in Dutch
                2 model validation studies
                1 animal study
                1 bioassay study

Figure 2: Study selection
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patients with obesity, one study reported that all 
nine patients had 100% fT>MIC and the authors 
considered standard dosing of 4 g piperacillin and 0·5 g 
tazobactam every 6 h (30 min infusion) to be sufficient.20 
Another study of 15 patients with obesity showed adequate 
probability of target attainment with 4 g piperacillin and 
0·5 g tazobactam every 8 h (4 h infusion) or every 6 h (3 h 
infusion) with the pharmacokinetic and pharmacodynamic 
target set to 50% fT>MIC (MIC 16 mg/L or less).21 For 
patients with severe obesity, the same study found a high 

probability of reaching the pharmacokinetic and 
pharmacodynamic target (98% fT>MIC) with a daily dose 
of 24 g piperacillin–tazobactam administered as a 
continuous infusion.21

Cephalosporins
One case–control study evaluating the pharmacokinetics 
of ceftazidime and cefepime in critically ill patients with 
or without obesity (12 patients in each group) showed no 
major differences between the groups and concluded 

Identified studies Summary of results and conclusions Certainty of 

evidence12 

β-lactam antibiotics 57 studies: cefazolin (n=16), piperacillin–
tazobactam (n=9), meropenem (n=7), cefoxitin 
(n=4), ertapenem (n=4), amoxicillin with or 
without clavulanate (n=3), combination of 
β-lactams (n=2), ampicillin (n=1), cefamandole 
(n=1), cefepime (n=1), cefotaxime (n=1), 
cefotetan and cefoxitin (n=1), ceftaroline (n=1), 
doripenem (n=1), phenoxymethylpenicillin (n=1), 
ceftazidime (n=1), ceftazidime, cefepime, 
meropenem, and piperacillin–tazobactam (n=2), 
meropenem and piperacillin–tazobactam (n=1); 
studies included patients within and outside of 
ICUs, patients who received surgical prophylaxis, 
and healthy volunteers

Evidence suggests that the pharmacokinetics of β-lactams are 
frequently altered in patients with obesity (eg, higher volume of 
distribution and lower absorption of oral antibiotics than for 
patients without obesity); despite the observed changes in 
pharmacokinetics resulting in lower drug exposures, standard 
dosing was sufficient in most studies to reach adequate 
probability of target attainment against susceptible pathogens; 
some studies showed lower tissue concentrations of 
cephalosporins used as surgical prophylaxis in patients with 
obesity

Very low

Aminoglycosides 11 studies: gentamicin (n=6), tobramycin (n=2), 
gentamicin and tobramycin (n=2), gentamicin, 
tobramycin, and amikacin (n=1); studies included 
patients outside of ICUs, patients who received 
surgical prophylaxis, and healthy volunteers 

The studies showed an association between total bodyweight 
and volume of distribution, which is less than linear, but using 
ideal bodyweight results in overcorrection of this trend; adjusted 
bodyweight, with a correction factor (α) typically set to 0·4, 
provided consistent bodyweight-normalised volume of 
distribution values across the full range of body size; bodyweight 
is not a meaningful predictor of drug clearance after accounting 
for renal function

Low

Glycopeptides, 
lipoglycopeptides, 
and oxazolidinones

45 studies: vancomycin (n=26), linezolid (n=11), 
tedizolid (n=3), dalbavancin (n=1), daptomycin 
(n=4); studies included patients within and 
outside of ICUs, patients who received surgical 
prophylaxis, and healthy volunteers

For vancomycin, data show a less than linear association 
between bodyweight and pharmacokinetic alterations (eg, 
higher volume of distribution), but which bodyweight metrics 
should be used has not been determined; sparse data for 
linezolid suggest that bodyweight is a better pharmacokinetic 
determinant than BMI, and a lower probability of target 
attainment was reported for patients with total bodyweight 
>100 kg and full renal function; data from a study with healthy 
volunteers suggest no pharmacokinetic alterations of tedizolid in 
patients with obesity; daptomycin pharmacokinetic alterations 
(increased volume of distribution and drug clearance) have been 
reported in patients with obesity

Low

Quinolones 9 studies: ciprofloxacin (n=5), levofloxacin (n=3), 
moxifloxacin (n=1); studies included patients 
within and outside of ICUs, patients who received 
surgical prophylaxis, and healthy volunteers

Sparse data for ciprofloxacin show conflicting results, as 1 study 
reported higher volume of distribution in patients with obesity, 
and 1 study found no difference for bioavailability, volume of 
distribution, and drug clearance; dosing based on mg/kg of total 
bodyweight resulted in higher plasma maximum concentration 
and trough levels, but soft tissue concentrations were similar; 
plasma pharmacokinetics of moxifloxacin were not altered in 
patients with severe obesity; high variability in levofloxacin AUC 
was observed in patients with obesity, and dosing based on 
creatinine clearance and ideal bodyweight has been 
recommended

Very low

Other antibiotics 6 studies: fosfomycin (n=2), omadacycline (n=1), 
polymyxin B (n=1), tigecycline (n=1), 
metronidazole (n=1); studies included patients 
outside of ICUs and patients who received 
surgical prophylaxis

Fosfomycin AUC was similar in plasma but was lower in soft 
tissue in patients with obesity than in patients without obesity; 
for tigecycline, 1 study reported no pharmacokinetic changes in 
patients with obesity

Very low

AUC=area under the plasma concentration-time curve. ICU=intensive care unit.

Table: Main results and conclusions of the identified articles
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that sepsis had a greater impact on drug exposures than 
bodyweight.22 Another study of non-critically ill patients 
assessed serum drug concentrations in 11 patients with 
obesity who received standard doses of cefepime (4 g 
every 6 h), and identified augmented renal clearance 
(creatinine clearance over 130 mL/min per 1·73m²) as 
the main risk factor for subtherapeutic exposures.23 
Overall, eight (73%) of the 11 patients treated with 
cefepime reached the prespecified pharmacokinetic and 
pharmacodynamic target of 100% fT>MIC, and two (18%) 
of the 11 patients treated with cefepime reached the target 
of 100% fT > 4 × MIC against pathogens with MIC values 
of 8 mg/L.

For ceftaroline, a study that included 24 healthy 
volunteers with obesity showed an increased volume of 
distribution and drug clearance compared with 
eight healthy volunteers without obesity, resulting in lower 
maximum concentration (Cmax) and AUC.24 However, dose 
adjustment based on bodyweight was not suggested, as the 
observed pharmacokinetic alterations did not substantially 
impact the probability of target attainment estimates. 
Similarly, a study of 11 volunteers with obesity and no 
other health conditions concluded that dose adjustment 
based on bodyweight is not warranted for cefotaxime, 
based on the observed modest pharmacokinetic alterations 
compared with 12 participants without obesity.25

Several studies investigated the dosing of cefazolin 
when prescribed as surgical antibiotic prophylaxis, with 
conflicting results. Some studies showed that the 
distribution of cefazolin into subcutaneous adipose 
tissue was reduced in patients with obesity who had 
bariatric surgery or caesarean delivery, although the drug 
pharmacokinetics in serum were not altered. These 
findings suggest that higher doses could be warranted 
for deep-seated surgical site infections in patients with 
obesity.26–28 Other studies have concluded that the 
duration of surgery is an important factor. For example, 
pharmacokinetic assessments in patients with obesity 
indicated that sufficient drug exposures are reached up 
to 2–4 h after a single dose of 2 g or 3 g cefazolin.29–34 

Therefore, although some studies have concluded that 
standard single-dose prophylaxis is sufficient, other 
studies have advocated for repeated dosing in patients 
with obesity who are having surgery for longer than 
2 h or 3 h to increase the likelihood of adequate tissue 
concentrations.35–37

Two studies assessed the pharmacokinetics of cefoxitin 
when used as surgical antibiotic prophylaxis in patients 
with obesity and showed low tissue concentrations, 
which could be insufficient 1 h after administration.38,39 
In a retrospective study with cefoxitin and cefotetan for 
169 patients who each weighed more than 120 kg, there 

Panel: Suggested dose adjustment strategies for patients with obesity

β-lactam antibiotics
•	 Higher than standard dosing is not routinely recommended 

in patients with obesity and mild or moderate infections
•	 In critically ill patients with obesity, extended or continuous 

infusion of β-lactams and therapeutic drug monitoring 
should be considered to increase the likelihood of 
therapeutic drug concentrations

•	 Higher or more frequent doses of cephalosporin surgical 
antibiotic prophylaxis might be considered for surgeries 
longer than 2–3 h to achieve adequate tissue concentrations

Aminoglycosides
•	 When dosing to optimise the maximum concentration, 

weight-based dosing (eg, 5–7 mg/kg) based on adjusted 
bodyweight is recommended

•	 For maintenance dosing, the dose and dosing interval 
determination should be based on estimated renal function 
and therapeutic drug monitoring rather than bodyweight

Glycopeptides: vancomycin
•	 A loading dose of 20–25 mg/kg of total bodyweight 

(maximum 3000 mg) is recommended for patients with 
obesity and severe infection

•	 Maintenance doses should be individualised and guided 
by therapeutic drug monitoring to increase the probability 
of achieving therapeutic yet non-toxic drug exposures

•	 If possible, population pharmacokinetic models should be 
applied to guide dosing

Lipoglycopeptides and oxazolidinones: linezolid, tedizolid, 
and daptomycin
•	 Patients with obesity and full renal function might require 

higher dosing of linezolid, but there are no robust data for 
dose recommendation

•	 No dose adaptation is currently recommended for tedizolid 
in patients with obesity

•	 For daptomycin, no validated strategy for dose adaptation 
in patients with obesity exists, but we suggest using 
alternative metrics such as adjusted bodyweight

Quinolones
•	 A general adaptation of fluoroquinolones dosing based on 

total bodyweight is not recommended; dosing should be 
guided based on estimated renal function

•	 Higher or more frequent dosing resulting in higher systemic 
exposure should be considered for patients with obesity and 
severe deep-seated infections to reach adequate tissue 
concentrations

Other antibiotics
•	 Consider higher or more frequent dosing of intravenous 

fosfomycin in patients with obesity for longer duration 
surgeries or in the treatment of deep-seated infections to 
increase the likelihood of adequate tissue concentrations 

•	 Available data suggest that no dose adaptation is needed 
for tigecycline or other tetracycline antibiotics
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was no difference in the prevalence of postoperative 
surgical site infections in patients with obesity who 
received 2 g versus 3 g of single-dose prophylaxis, 
suggesting that the lower dose is sufficient.40

Carbapenems
Several studies reported an increased volume of 
distribution of meropenem in patients with obesity but 
similar trough concentration values and a high 
probability of target attainment against susceptible 
pathogens, indicating that dose adjustments are not 
required.18,22,41–45 However, one study reported highly 
variable and lower drug exposures in subcutaneous 
tissue than in plasma (AUC in subcutaneous tissue 
divided by plasma AUC was 0·72) in patients with severe 
obesity (n=5).46

One study reported an insufficient probability of target 
attainment for ertapenem in ten patients with obesity who 
received 1 g (30 min infusion); the modest pharmacokinetic 
and pharmacodynamic target of 40% fT>MIC (MIC 
≤0·25 mg/L) was predicted to be reached in 
approximately 70% of patients having bariatric surgery.47 
By contrast, other studies showed adequate probability of 
target attainment (40% fT>MIC, with the MIC cutoffs set 
to ≤0·25 mg/L in one study48 and 1 mg/L in another,49 both 
of surgical patients with obesity. One study assessing the 
pharmacokinetics of ertapenem in plasma and bone tissue 
in ten patients with obesity indicated that standard dosing 
provides sufficient tissue concentrations for treating 
osteomyelitis caused by Enterobacterales, but not 
Staphylococcus spp.50 In a study of 20 hospitalised patients 
with obesity, doripenem standard dosing (500 mg every 
8 h, 1 h infusion) was reported as sufficient to reach 
40% fT>MIC against susceptible pathogens (MIC 
≤2 mg/L), despite an increase in volume of distribution.51

Aminoglycosides
Six studies evaluated gentamicin, two evaluated 
tobramycin, two evaluated gentamicin and tobramycin, 
and one evaluated gentamicin, tobramycin, and amikacin 
(table; appendix pp 5–13). Four studies were 
interventional with rich sampling (≥10 timepoints) 
following a single dose, and seven studies were non-
interventional with sparse sampling (1–4 timepoints) 
following multiple dose administrations (ie, reflecting 
usual clinical care).

Published data consistently describe an association 
between aminoglycoside volume of distribution and 
body size, but the comparison of results is complicated 
by differences between studies in pharmacokinetic 
analysis methods and normal weight comparison. 
Studies with rich pharmacokinetic sampling found that 
total bodyweight-normalised volume of distribution was 
lower among healthy volunteers and patients with obesity 
(gentamicin 0·19 L/kg and tobramycin 0·20–0·23 L/kg) 
than among people without obesity (gentamicin 
0·24 L/kg and tobramycin 0·30 L/kg), suggesting a less 

than linear relationship between total bodyweight and 
volume of distribution.52,53 However, use of ideal 
bodyweight consistently results in overcorrection of this 
trend among patients with obesity, leading to larger 
values of bodyweight-normalised volume of distribution 
in patients with obesity (gentamicin 0·23–0·45 L/kg, 
tobramycin 0·44–0·48 L/kg, and amikacin 0·44 L/kg) 
than in patients without obesity (gentamicin 
0·19–0·25 L/kg, tobramycin 0·26–0·35 L/kg, and 
amikacin 0·26 L/kg).52–57

Alternative metrics, such as adjusted bodyweight or lean 
bodyweight, result in body size measures that are 
intermediary to ideal bodyweight and total bodyweight, 
and are better correlated with the aminoglycoside volume 
of distribution across the full range of body sizes.52,53,57 
However, the performance of these metrics is not 
consistent across studies. Adjusted bodyweight is 
calculated by multiplying the difference between total 
bodyweight and ideal bodyweight by a correction factor (α) 
and adding it to ideal bodyweight: adjusted 
bodyweight=ideal bodyweight + α × (total bodyweight − ideal 
bodyweight). The value of α=0·4 is most often used but 
has ranged from 0·14 to 0·98 in different studies.57

Because aminoglycosides have traditionally been dosed 
to target a defined Cmax to MIC ratio (Cmax/MIC), few 
investigations have assessed the impact of body size on 
drug clearance. However, the ratio AUC0–24h to MIC has 
also been shown to be a predictive pharmacokinetic and 
pharmacodynamic index for efficacy.58 Consistent with 
volume of distribution, one study found that total 
bodyweight-normalised gentamicin (1·02 mL/min per kg 
vs 1·31 mL/min per kg), tobramycin (1·11 mL/min per kg 
vs 1·43 mL/min per kg), and amikacin (1·07 mL/min 
per kg vs 1·37 mL/min per kg) clearance was lower in 
30 patients with severe obesity than in 30 patients 
without obesity.54 Similarly, Smit and colleagues found 
that gentamicin clearance scaled less than linearly with 
bodyweight in 20 patients with obesity.59 Other studies 
found that body size is not a meaningful predictor of 
aminoglycoside clearance after accounting for renal 
function.57,60,61

In summary, adjusted bodyweight seems to best 
balance the risks of underexposure and overexposure to 
aminoglycosides and is recommended for dosing on a 
mg/kg basis. A correction factor (α) of 0·4 is reasonable 
to use in the calculation of adjusted bodyweight. 
Decisions on dosing intervals or dosing to optimise the 
AUC/MIC ratio should be based on estimated renal 
function, the main determinant of aminoglycoside 
clearance, rather than bodyweight.

Glycopeptides, lipoglycopeptides, and oxazolidinones
26 vancomycin pharmacokinetic studies of patients with 
obesity met our inclusion and exclusion criteria (table; 
appendix pp 5–13). Only three of these studies were 
published after the 2020 update of the consensus 
guideline on vancomycin therapeutic drug monitoring 
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for serious meticillin-resistant Staphylococcus aureus 
(MRSA) infections.13 The available data show an 
association between vancomycin pharmacokinetics and 
bodyweight in patients with obesity. One study showed 
that patients with obesity had a higher volume of 
distribution (74·4 L) than patients without obesity (50·4 L), 
similar drug clearance between the two groups, and a 
longer drug elimination half-life in patients with obesity 
(11·8 h) versus patients without obesity (8·5 h).62 Weight-
based loading doses have been recommended to rapidly 
reach therapeutic concentrations, but the preferred 
weight metric remains uncertain. Vancomycin volume of 
distributions ranging from 0·3 L/kg to 0·75 L/kg have 
been reported for patients with obesity,63 and although 
volume of distribution increases with bodyweight, this 
does not occur in a linear manner. Higher BMI (in a 
population of patients with obesity) has been associated 
with elevated trough concentrations when applying 
dosing based on mg/kg total bodyweight.62 Crass and 
colleagues reported that AUC-based dosing guided by 
therapeutic drug monitoring enables a lower daily dosage 
compared to dosing based on trough concentrations 
only, and concluded that daily dosages higher than 4·5 g 
are usually not required in patients with obesity.64

11 linezolid pharmacokinetic studies in patients with 
obesity were identified (table). Patient BMIs ranged from 
30 kg/m² to 81·5 kg/m² and most studies analysed 
population pharmacokinetics.65–71 Limitations of the 
studies include small sample sizes (n≤15),65,67–69,72–74 patients 
only receiving a single dose of linezolid,66,68,69,73 uncertain 
estimations of creatinine clearance, and that the 
comparison of pharmacokinetics in patients with obesity 
was made with historical data from patients without 
obesity.65

One study of 112 patients reported an association 
between higher BMI and increased linezolid clearance 
(eg, average 8·24 L/h in patients with BMI ≥40 kg/m² vs 
6·24 L/h in patients with a BMI of 30–34·9 kg/m²).70 
However, most data indicate that linezolid 
pharmacokinetics are influenced by bodyweight to a 
greater extent than BMI.67–69,71,73,74 These data suggest that 
patients with obesity and full renal function might 
require higher dosing, but there are no robust data for 
dose recommendation.

Tedizolid studies with healthy volunteers showed no 
changes in pharmacokinetic variables after the 
administration of 200 mg once daily in 18 patients with 
obesity and nine patients with severe obesity.75,76 
Similarly, a case report of a patient with severe obesity 
(bodyweight 102 kg, BMI 45 kg/m²) found a pharma
cokinetic profile that was consistent with patients 
without obesity.77

One case report described clinical failure of dalbavancin 
for MRSA bacteraemia in a patient with severe obesity,78 
but did not include pharmacokinetic analysis.

Four daptomycin pharmacokinetic studies in patients 
with obesity were identified (table).79–82 A notably higher 

drug exposure (increased Cmax and AUC) following 
administration of daptomycin (4–6 mg/kg of total 
bodyweight) was reported for 13 healthy volunteers 
with obesity than for healthy volunteers without 
obesity.79 Data show that the volume of distribution and 
clearance of daptomycin increases with bodyweight, 
but not in a linear manner. Population pharmacokinetic 
analyses suggested that a fixed maintenance dose of 
500 mg once daily in healthy volunteers with or without 
obesity would result in similar drug exposures.80 A 
retrospective, single-centre study of 101 patients found 
no difference in the rate of clinical failure or 90-day 
mortality in patients with obesity who received 
daptomycin dosing based on adjusted bodyweight 
versus total bodyweight.81

Quinolones
Nine quinolone pharmacokinetic studies (five on 
ciprofloxacin, three on levofloxacin, and one on 
moxifloxacin) met the inclusion and exclusion criteria 
(table; appendix pp 5–13). One study reported an 
increased volume of distribution in 17 healthy 
volunteers with obesity compared with 11 healthy 
volunteers without obesity (269 L vs 219 L) after a single 
intravenous dose of 400 mg ciprofloxacin.83 However, 
the volume of distribution normalised to total 
bodyweight was lower in patients with obesity; the 
authors therefore suggested dosing based on adjusted 
bodyweight (ideal bodyweight + 45% of the exceeding 
bodyweight).83 Another study found no differences for 
bioavailability, volume of distribution, or drug clearance 
of ciprofloxacin in 20 patients with severe obesity 
compared with eight patients without obesity.84 The 
authors suggested that dose adjustment is not necessary 
in patients with obesity unless impaired tissue 
penetration is anticipated. 12 healthy volunteers with 
obesity who received the same dose as 12 age-matched 
and sex-matched controls without obesity based on 
mg/kg of total bodyweight had higher Cmax (9·97 vs 
2·59) and trough concentrations (0·44 vs 0·19) of 
ciprofloxacin in plasma, but similar soft tissue 
concentrations.85 This finding underlines the principle 
that higher concentrations in the central compartment 
can lead to therapeutic drug concentrations at the site 
of infection. One study reported that gastric bypass 
surgery impaired absorption of oral ciprofloxacin.86

We did not find any studies that directly compared the 
pharmacokinetics of moxifloxacin or levofloxacin in 
patients with and without obesity. The plasma 
pharmacokinetics of moxifloxacin in 12 patients with 
severe obesity did not differ from historical data on patients 
without obesity, and volume of distribution correlated with 
ideal bodyweight, lean bodyweight, fat-free mass, and 
height.87 For levofloxacin, high variability in AUC was 
observed in 15 patients with obesity,88 and one study 
recommended to guide dosing based on ideal bodyweight 
and creatinine clearance estimates in patients with severe 
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obesity.89 Dosing based on total bodyweight has been 
discouraged.90

Other antibiotics
Six studies including other antibiotics were assessed: 
two studies of fosfomycin, one of omadacycline, one of 
metronidazole, one of polymyxin B, and one of tigecycline 
(table; appendix pp 5–13). A study of patients who 
received a single dose of intravenous fosfomycin as 
surgical antibiotic prophylaxis showed a higher volume 
of distribution (24·4 L vs 19·0 L) and lower Cmax (468 mg/L 
vs 594 mg/L) in 15 patients with obesity or severe obesity 
than in 15 patients without obesity.91 No difference was 
found for AUC in plasma, but AUC in subcutaneous 
tissue was lower (1052 mg × h/L vs 1929 mg × h/L). A 
study with tigecycline showed no difference in 
pharmacokinetics between eight patients with obesity 
and four patients without obesity.92 Finally, a post-hoc 
analysis of data from two phase 3 trials with fixed dosing 
of omadacycline for skin and soft tissue infections 
showed no difference in clinical outcomes in 210 patients 
with obesity, 221 patients with a BMI of 25–29·9 kg/m², 
or 252 patients with a BMI of 18·5–25 kg/m².93 No 
pharmacokinetic data were presented in the study.

Discussion
In this paper, we systematically searched the literature 
for antibiotic pharmacokinetic and pharmacodynamic 
data that could be translated to practical recommendations 
for dose adaptation in patients with obesity. Our first 
observation is that evidence is scarce and often based on 
studies with small patient populations and high 
variability between individuals. Compliance with the 
ClinPK tool, which was developed to guide the 
transparent and accurate reporting of pharmacokinetic 
studies, was moderate or high for all studies. The panel 
considered the certainty of evidence according to the 
GRADE approach to be low for aminoglycosides and 
vancomycin, and very low for all other antibiotic classes 
and substances. Yet, when contextualising data and 
considering the basic characteristics of the molecules, 
some general conclusions can be made.

β-lactams are key antibiotics for the management of 
acute infections and are well studied compared with 
other antibiotic classes, although data are still sparse for 
most specific substances and dosing regimens 
(appendix pp 5–13). Although obesity has been shown to 
modestly alter the pharmacokinetics of β-lactam 
antibiotics, adequate drug exposures against susceptible 
bacteria are usually obtained with standard dosing, and 
no robust evidence supports dose adjustment based on 
obesity alone. We conclude that standard dosing is 
sufficient in most cases and that uniformly applying 
higher than standard doses for patients with obesity 
would risk overexposure.

In the data assessment, we considered 40–100% fT>MIC 
to be appropriate pharmacokinetic and pharmacodynamic 

targets for β-lactam antibiotics. Higher pharmacokinetic 
and pharmacodynamic targets (eg, 100% fT>4 × MIC) 
have been suggested for specific patient groups to 
maximise clinical outcomes and suppress the emergence 
of antibiotic resistance,94 and were less frequently 
attained in patients with obesity in a 2024 systematic 
review and meta-analysis.95 However, the more aggressive 
dosing of β-lactams can also result in toxic drug 
concentrations and side-effects, such as neurotoxicity 
and nephrotoxicity.96 Consequently, especially for patients 
with critical illness, augmented renal clearance, or 
infections caused by less susceptible pathogens, extended 
or continuous administration and therapeutic drug 
monitoring-guided individualised dosing should be 
considered to optimise drug exposures.95,97–99

For other antibiotic classes (ie, aminoglycosides and 
glycopeptides), the impact of obesity on pharmacokinetics 
is more evident, resulting in weight-based dose 
recommendations. Adjusted bodyweight is generally 
recommended for aminoglycosides, but the most 
appropriate bodyweight metric to guide vancomycin 
dosing is not established. As the relationship between 
bodyweight and pharmacokinetic variables is typically not 
linear, applying a predefined maximum or reduced mg/kg 
loading dose (instead of mg/kg of total bodyweight) could 
be justified, particularly for patients with severe obesity to 
avoid unnecessarily high and toxic drug exposures. For 
aminoglycosides and vancomycin, therapeutic drug 
monitoring and the monitoring of creatinine clearance are 
highly recommended to guide maintenance dosing.100

This systematic review has several limitations, such as 
the absence of underlying high-quality evidence. To 
capture as much relevant data as possible, we did not 
restrict papers by publication year. Therefore, patient 
populations, approaches to estimate renal function, 
dosing regimens, methods for drug concentration 
determination, pharmacokinetic and pharmacodynamic 
targets, and analyses differed across studies. Differences 
in modes of administration between studies hampered 
the comparison of results, especially for time-dependent 
antibiotics. Consequently, meta-analysis was not possible 
and the recommendations for dose adjustments are 
mainly based on expert opinion. Practical guidance for 
implementation of therapeutic drug monitoring 
(eg, sampling timepoints and interpretation of results) 
was not within the scope of this systematic review.14 To 
our knowledge, this is the most comprehensive review 
on the topic and has been done by a group of experts 
representing several international societies in the field of 
antibiotic pharmacokinetics and pharmacodynamics.

Conclusion
Well designed studies with relevant patient groups or 
healthy volunteers and a preferentially covariate-matched 
control group without obesity are warranted to provide 
high-quality data on pharmacokinetic alterations in 
obesity and assess their clinical importance. Due to the 
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small sample sizes of most studies, pooling of data 
leveraging population pharmacokinetic analyses is 
encouraged. When making decisions on dosing in 
obesity, the severity of illness, site of infection, 
susceptibility of the pathogen, and potential toxicity of 
the antibiotics should be considered. In the absence of 
robust pharmacokinetic data to inform dose adjustments, 
therapeutic drug monitoring can be useful to guide 
individualised dosing.
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