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ANALYSIS OF LEARNING AGENTS
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This chapter is under review at the time of writing.
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6.1 INTRODUCTION

The Automated Negotiating Agents Competition (ANAC) was first organised in
2010 to support the development and benchmarking of automated negotiating
agents [10]. Since 2017, ANAC has been extended with a number of additional
leagues that each focus on a more specialised challenge, such as the game of
Diplomacy [81], supply chain environments [6], the game of Werewolves [6] or
negotiations between agents and humans [106]. The main league, which focuses
on more classical agent-based negotiations, has since then been called Automated
Negotiation League (ANL). In ANL, the participating agents are designed to bargain
with other agents over a collective agreement in scenarios with conflicting interests.

Over the years, the main league of ANAC has evolved to incorporate new chal-
lenges, such as multi-lateral negotiation, preference elicitation and large intractable
solution spaces. In most earlier editions, the negotiations were considered largely
single-shot sessions, in which the agents would be re-initialised for every new
negotiation, making it impossible for them to use any knowledge from previous
interactions. However, in some future applications of negotiating agents like the
ones provided before, it is imaginable that agents would encounter opponents
multiple times, making the negotiation a repeated game. In such scenarios, it is
also realistic that agents would use information from previous encounters in order
to optimise their performance. This adds a learning dynamic between negotiation
sessions to the negotiating agents. Agents generally also learn within a single ne-
gotiation session (e.g., for opponent preference estimation), but in this work, we
exclusively mean agents that learn over multiple negotiation sessions when we refer
to “learning agents”. We intended to study such learning behaviour further using
the ANL.

It is beneficial for a negotiating agent to implement a measure of adaptivity
to the environment in which it carries out negotiation. Negotiation strategies can
be adapted depending on the characteristics of the negotiation scenario and the
opponent. For example, a negotiation scenario in which the preferences of agents
are strongly conflicting might require an agent to behave differently than a scenario
in which preferences are largely overlapping. Also, if an opponent drives a hard
bargain, it might not be smart to adopt a cooperative strategy, as this risks being
extorted. We have seen agents that successfully adapt to negotiation scenarios [76]
and opponents [137, 123], but not yet in environments where opponents are also
learning.

We set the challenge of the 2021 and 2022 editions of ANL with the goal to study
learning negotiating agents better. The challenge was to improve performance by
learning and adapting to the behaviour of the other agents submitted to ANL. This
article provides an overview of learning agents in the history of ANL in general and
the submissions and results of the 2022 edition of ANL, held in conjunction with the
International Joint Conference on Artificial Intelligence (IJCAI) 2022, specifically.
We consider the competition and its design part of the novelty of this work, which
we now extend with a thorough analysis. We aim to answer the following questions:

1. Can we design a negotiation competition where participants manage to sub-
mit strategies including learning mechanisms?
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2. Given that the negotiation games are general sum, do agents that perform
well in the social welfare performance criteria also perform well in terms of
individual utility and vice versa?

3. Do learning strategies benefit negotiation agents?

4. What is the effect of the negotiation scenario generator on the performance
of the agents?

5. Does the standard approach of averaging performance, used in earlier edi-
tions of ANL, provide a robust ranking of agents?

We have analysed to which extent the agents are sensitive to the characteristics
of the given negotiation scenarios. We observed that agents perform noticeably
better in scenarios with strong mutually beneficial outcomes or a high variance of
utility over the outcomes for both agents. Furthermore, we have analysed the results
in depth and explored to what extent the learning algorithms positively affected the
agents’ negotiation performance.

We draw three main conclusions. Firstly, we conclude that agents that apply
learning techniques clearly outperform those that do not, which shows that learn-
ing can improve the performance of a negotiating agent. Secondly, however, we
also observe that a naive strategy that does not learn at all outperforms all other
agents when we look at the results from a game-theoretical perspective, forming
an empirical Nash equilibrium. Finally, we conclude that the current approach of
ranking agents through average scores is not sufficiently robust and that there is no
clear alternative to ranking the agents. We hope this work serves as a useful starting
point of this last issue within the automated negotiation agents community.

6.2 RELATED WORK

6.2.1 THE AUTOMATED NEGOTIATING AGENTS COMPETITION

The annual Automated Negotiating Agents Competition (ANAC) was first organized
in 2010. The first three editions of ANAC were focused on the simplest scenario
only, in which two agents negotiate with each other over a domain with linear utility
functions [16]. In these tournaments, each negotiation session was completely
independent of previous sessions, so the agents were not allowed to learn from
previous encounters. This changed in 2013 when the option was added for agents
to store information between sessions and, hence, to learn and evolve over the
course of the tournament [1], but opponents were anonymous. In 2014, this option
was removed again, and the focus shifted to very large domains, where the number
of possible deals was of the order 10%° and in which the utility functions were
non-linear [58]. From 2015 onward, the competition returned to smaller domains
and linear utility but focused on multi-lateral negotiations involving more than
two agents at a time [57]. In the 2017 and 2018 editions, for the second time, the
opportunity was provided to the agents to maintain an internal state and to learn
from previous encounters with opponents. However, this was limited to a single
negotiation setting, which was repeated six times with the same opponent and
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scenario. In 2019 and 2020, the focus was on bilateral negotiations again, but this
time with partially known utility functions simulating an agent estimating human
preferences [6]. Then, in 2021, the preferences of the agents were again represented
by linear utility functions and the option to learn from previous negotiation sessions
was re-introduced, similar to the setting adopted in 2013. The difference between
the 2021 and 2022 editions and the 2013 edition is that in 2013, opponents were
anonymous; this means that they were not able to adapt to specific opponents.

6.2.2 LEARNING AGENTS IN AUTOMATED NEGOTIATION

As mentioned previously, there are multiple opportunities for learning in the con-
text of automated negotiation. Within a single negotiation, the stream of proposals
received from the opponent contains information about the preferences and tactics
of opponents [12]. In repeated encounters, agreements and observations of previ-
ous encounters with the opponent can also be used to reason about the opponent’s
tactics. It is important to note that learning and adapting to opponents can benefit
all agents involved in a negotiation rather than merely improve individual perfor-
mance. Specifically, adapting to opponents can improve the chances of reaching
an agreement and finding mutually beneficial (i.e., Pareto efficient) outcomes in
settings where preferences are partially aligned.

Another option is offline learning, where the performance of an agent is opti-
mised in a controlled environment through training on a given set of agents and
negotiation scenarios. A distinction can be made in the way these agents are trained.
Some take an approach where the behaviour of the agent is parameterised, and
these parameters are optimised either through reinforcement learning (see Chap-
ter 5) or other algorithmic optimisers (see Chapter 3). Others take an algorithm
selection approach as we discussed in Chapter 4.

6.2.3 LEARNING AGENTS IN ANL

Many agents in the history of ANL have implemented a form of preference es-
timation, which attempts to learn opponent preferences. Accurate preference
estimation helps find mutually beneficial outcomes and thus potentially improves
performance. The simple frequency model that was part of the SmithAgent [59] sub-
mitted in the 2010 edition of ANAC is often used; this model estimates preferences
based on the frequency an opponent has offered an outcome. Besides frequency
models, Bayesian models based on Bayesian inference are also commonly seen [69,
159]. Baarslag et al. [11] created an overview of preference estimation methods that
have been applied in ANL and demonstrated that frequency models show better
performance than Bayesian models. As frequency models are also performant and
conceptually easy, most agents in the ANL competition implement a frequency
model.

Aside from learning opponent preferences, learning opponent strategy can
also help improve performance. However, few agents in the past of ANL have
implemented such a mechanism, with one notable exception. In the 2012 edition,
an agent adopted an algorithm selection approach using previously submitted
agents called the MetaAgent [77]. An offline-trained classifier was then used to
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Figure 6.1: ANL tournament flow for the 2021 edition. The learning and negotiating phases were strictly
separated. As agents were killed after execution, strategy-specific settings were stored in a persistent
state that was fed to the agent at initialisation. During the negotiation phase, agents were allowed to

store observation data, but not to update their strategy settings. Learning from this data and modifying

the strategy settings of the agent was only allowed during the learning phases.

select an agent based on manually designed features of the negotiation scenario
and the opponent’s first few observations. This agent was also submitted to ANAC
2013.

6.3 ANL 2021

The ANL is intended to stimulate the advance of research in automated negotiation.
Every year, a specific topic on the research agenda is chosen as the basis for the
challenge. As mentioned before, we challenged the participants to learn in repeated
negotiation games, where we tried to restrict the agents as little as possible in their
learning methods. The 2021 and 2022 editions of ANL were organised around this
topic.

In the 2021 edition, we decided to use a fixed set of negotiation scenarios such
that every agent would encounter every other agent on the exact same set. This
makes the competition fair in the sense that the impact on agent performance of
using a different set of scenarios per agent is eliminated. We designed a complex
data-saving structure that participants could use for learning purposes. The com-
plexity was required to prevent potential unfair play caused by repeated use of the
same negotiation scenarios.

All submitted agents would negotiate against each other on identical negotiation
scenarios concurrently. Without restrictions, this could lead to unfair play by agents
saving data on the negotiation scenario that they would face once more against
another agent. The designed competition flow provides us control of the location
where agents could save their data. Only after all negotiation sessions on the same
scenario finished, the agents were given access to their data and a chance to use it
for learning and changing its behaviour. This mechanism made the agents blind to
their history until we allowed them to access it and thus prevented unfair play; it is
visualised in Figure 6.1.

In retrospect, this structure added too much complexity to the competition for
participants, causing a lower-than-expected number of submissions. Moreover,
only few of the submissions implemented a learning mechanism, failing the goal of
the competition. The ANL 2021 edition received 8 submissions, of which 2 imple-
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mented a learning mechanism.! This prevented us from performing a meaningful
analysis of such learning negotiation agents. Our main insight from ANL 2021 was
to keep future editions as simple as possible from the perspective of participants.

In the 2022 ANL edition, we simplified the rules by allowing agents to save and
load data files in a specifically provided directory without any restrictions. This
resulted in more participants. Fair play was ensured by never repeating negotiation
scenarios, while the number of negotiation rounds played was massively scaled up
to minimise the stochastic impact caused by the randomly generated negotiation
scenarios. We also moved from Java to Python as the default implementation
language in order to allow for the use of the plethora of machine learning packages
available in Python.

6.4 COMPETITION SETUP OF ANL 2022

Participants of ANL must design and submit an agent that can perform bilateral
negotiation with other submitted agents following a finite-horizon Alternating
Offers Protocol (AOP) [132]. We used GeniusWeb? as a platform for the negotiations,
which is a software package that was specifically designed as a test-bed for agent-
based negotiation.

This section describes the competition setup and the specifics of the negotiation
games that are played between agents.

6.4.1 NEGOTIATION SCENARIO

The negotiation scenarios used in this competition follow the format described in
Section 2.1. The utility functions are considered private information to the agents,
making the negotiation an imperfect information game and exclusively categorical
issues are used.

RANDOM GENERATION

In editions of ANL prior to 2021, the negotiation scenarios used to be manually
designed. However, the challenge we set this year includes never repeating a negoti-
ation scenario, which requires many such scenarios. The negotiation domains and
utility functions in ANAC 2022 were randomly generated to accommodate this.

Outcome space To generate the negotiation scenarios, a goal outcome space size
between 200 and 10000 is sampled uniformly at random. The number of issues
between 4 and 10 is also randomly sampled uniformly. Finally, the number of values
per issue must be set so that the product of the number of values per issue is close
to the goal size of the outcome space. This is done by distributing the number
of values per issue according to a Dirichlet distribution, which creates a vector of
random values summing up to 1. The probability density function of the Dirichlet
distribution is

xfi! 6.1)
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where C is a normalising constant. We set all parameters a; in this distribu-
tionto 1,i.e. (a1, -+, ay) = 1, such that the individual values are sampled from a
uniform distribution. The full generation method is provided as pseudocode in
Algorithm 6.1.

Algorithm 6.1 Outcome space generation

1: g < random integer € [200,10000]
2: while true do

3: m — random integer € (4, 10]
4: x — Dirichlet(1,,)

5 xhx.(%)m > After 5: [I" xp =g
Hb:1xb b=1

6: for b — 1to mdo

7 |Qp| — max{round (xp),2}

8 if [T, 1Qpl —g <0.1- g then

9: break

10: Qp,-++,Q < create_values({|Q1], -+, 1QmI}

11: Q—{Qp x -+ xQp}

12: return Q

Utility functions Only bilateral negotiations are considered in this competition,
so two utility functions that express preferences over the outcome space must be
generated. The utility is obtained through a linear weighted sum of the values per
issue, with weight factors w(b) for every issue. These weights are again sampled
from a Dirichlet distribution parameterized by (a;,: -, @;;) = 1,,. Finally, for each
issue b, the scores of the values wj, within that issue are also sampled from a Dirich-
let distribution and scaled to the range [0, 1]. These scores are expressed through
the value weight function wy,(wp).

6.4.2 ANL 2022 CHALLENGE

In 2022, all submitted agents repeatedly negotiated against each other in one-
on-one negotiation sessions with a deadline of 60 seconds in wall clock time to
ensure a finite horizon. Failing to reach an agreement resulted in 0 utility for
both agents involved in the negotiation. The negotiation scenarios were randomly
generated and are likely always different in terms of size, number of issues, and
utility functions.

The challenge in 2022 was to learn from previous encounters with other agents.
The name of the opponent was made known to the agent. Agents were allowed to
save any data files in a provided directory while encountering every other submitted
agent 50 times throughout the tournament. One challenging part was effectively
using information extracted from previous encounters with the same opponents,
while the negotiation scenarios changed between each negotiation session.

6.4.3 EVALUATION
Agents were ranked based on two performance measures: individual utility and
social welfare, both averaged over all negotiation sessions. Social welfare is the sum



72 6 ANALYSIS OF LEARNING AGENTS IN AUTOMATED NEGOTIATION

Table 6.1: Computing hardware and resources per negotiation session.

Description  Type Quantity
CPU Intel® Xeon® CPU E5-2620v4 2 cores
Memory RDIMM DDR4-2400 10GB

oS CentOS 7.9.2009 -

of utilities obtained by both agents involved in the negotiation session and is thus
identical for both agents. Prize money was to be awarded to the two best-performing
agents according to each of these performance measures. This resulted in multiple
optimisation criteria for the participants of this competition. Maximising individual
utility is selfish, and maximising social welfare could be considered social.

6.4.4 SIMULATION SPECIFICS

Every submitted agent encountered every other agent 50 times sequentially. For
each negotiation session, a new negotiation scenario was generated randomly (see
Section 6.4.1). As preferences over the negotiation domains can be unbalanced
and might favour one of the agents, we decided to repeat the full tournament once
more while switching the utility functions. The storage directory of every agent
was completely erased when we restarted the tournament with switched utility
functions to rule out the possibility of foul play. To further reduce the stochastic
influence in the results, we repeated the previously mentioned procedure 5 times
for the competition and 25 times for the analysis provided later in this article. The
19 submissions received required us to run a total of 19-18-50-5 = 85500 and
19-18-50-25 = 427500 negotiation sessions, respectively.

The sessions were run parallelized on a compute node. Details of the hardware
and resources per session can be found in Table 6.1. The speed of the system is
important as negotiation sessions are run with a wall-clock deadline. We ensured
that no agent would ever face the same opponent concurrently so that the sequen-
tial encounter requirement of our challenge was satisfied. The participants were
notified of potential file race issues due to parallel negotiation sessions and were
suggested to save files based on the name of their current opponent to avoid this.

6.5 SUBMISSIONS TO ANL 2022

An overview of the submissions is provided in Table 6.2. The competition received
a total of 20 submissions, of which 1 was invalid, resulting in a total of 19 agents
that participated in the competition. The code of these agents can be found on the
GeniusWeb webpage®.

6.5.1 LEARNING CAPABILITIES
As mentioned earlier, the challenge was designed to encourage participants to
develop learning methods implemented by providing the agents with a directory

3
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Table 6.2: Overview of agents that were submitted to ANL 2022

Name Affiliation Learning
Agent007 Bar Ilan University

Agent4410 College of Management Academic Studies

AgentFish Tokyo University of Agriculture and Technology
AgentFO2 Tokyo University of Agriculture and Technology X
BIUagent Bar Ilan University

ChargingBoul University of Tulsa X
CompromisingAgent Bar Ilan University X
DreamTeam109Agent  College of Management Academic Studies X
GEAAgent College of Management Academic Studies
LearningAgent Bar Ilan University X
LuckyAgent2022 Babol Noshirvani University of Technology X
MiCROAgent IITA-CSIC

PinarAgent Siemens X
ProcrastinAgent University of Tulsa X
RGAgent Bar Ilan University

SmartAgent College of Management Academic Studies X
SuperAgent Bar Ilan University X
ThirdAgent College of Management Academic Studies
Tjaroncheryl0OAgent College of Management Academic Studies X

to save and load data. When we refer to learning, we mean changing behaviour
between sessions based on previously recorded information. Preference estimation
of an opponent within a negotiation session could also be considered learning, but
we do not refer to it as such in this article. As opponents are repeatedly encoun-
tered during the competition, observations about their past behaviour could be
exploited to improve negotiation capabilities. However, not all submitted agents
implemented such a mechanism, making their strategies single-shot-based. Ta-
ble 6.2 indicates which agents implemented a learning mechanism using the storage
location to save data. As can be seen, more than half of the agents actually imple-
mented a learning mechanism. We were successful in designing a competition that
enables participants to actually implement such a mechanism. The effects of the
implemented learning mechanisms are studied in more detail in Table 6.6.2.

6.5.2 SUBMITTED AGENT STRATEGIES

This section describes the strategies of selected agents: AgentFO2, DreamTeam109Agent,
SuperAgent, Tjaroncheryl0Agent, and MiCROAgent. In general, the behaviour of

the submitted agents can be considered a black box due to heavy manual design
and parameter tuning. These agents were selected because they implemented an
intuitively describable mechanism, and the respective participants submitted a
report with their agent code. We summarize the main components based on these
reports, which can be found in the repository of submitted agents®.
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AgentFO2 This agent tries to reason over the opponent based on the Hamming
distance between offers that it received. It classifies opponents as time-dependent
converters, i.e., agents that concede based on the time towards the deadline, ran-
dom agents, or other strategies. It then applies a time-dependent strategy while
changing the minimum utility goal depending on the classified opponent strategy.
This minimal utility to aim for is based on historical observations of the opponent.

DreamTeam109Agent This agent focuses on obtaining high utility first, and if
that does not work, tries to minimize negotiation sessions that end in no agreement.
It keeps track of the speed of the opponent in the past and tries to estimate how
many rounds still can be played. If it is likely that this is the last round, then it
simply accepts the offer. It also maintains a percentage of top outcomes it accepts
per opponent and increases this percentage if past sessions result in low utility.
The reasoning is that a low utility could result from the agent accepting a bad offer
and that utility could be improved if it was more lenient towards the opponent in
accepting offers with higher utility but were out of the top percentage pool.

SuperAgent This agent splits the negotiation session into timeslots and saves the
average self-utility and average estimated opponent utility of all received offers in
this timeslot for future use. It uses these values as utility thresholds for generating
offers in the corresponding timeslot by demanding the average obtained utility as
a minimum threshold and making offers above the opponent’s threshold at the
end of the session. The friendly behaviour at the end of the negotiation session is
randomized to prevent opponents from exploiting it.

Tjaroncheryl0Agent This agent also adopts a time-dependent conceding strategy
but does not concede in the first few encounters with an opponent. It attempts
to force opponents to accept bad offers from them by being a hardliner. However,
if this strategy does not appear fruitful after 3 sessions with an opponent, the
strategy towards this opponent is modified to be slightly more conceding. These
modifications can be repeated.

MiCROAgent MiCROAgent is an implementation of the recently introduced Mi-
CRO strategy [40]. It is a very simple strategy that employs no form of learning or
opponent modelling. It sorts all possible outcomes in order of decreasing individual
utility and then proposes them in this order as long as the opponent also keeps
making new proposals. That is, whenever the opponent makes a new proposal,
MiCRO replies by proposing the next offer from its list. Whenever the opponent
repeats an offer it has already made before, MiCRO replies by also proposing a
(random) offer it has already proposed before. MiCRO accepts an offer from the
opponent when that offer is better than or equal to the next offer that MiCRO will
make. The idea is that it is a tit-for-tat-like strategy that assumes no knowledge
about the utility function of the opponent. The agent always makes the smallest
possible concession whenever it notices that the opponent is making a concession,
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Table 6.3: Top 5 agents of the submitted agents to the ANL. Both prize categories are displayed. Here,
individual utility is the average individual utility that agents obtained over all their negotiation sessions,
and social welfare is the sum of the utilities of agents averaged over all negotiation sessions. Note that
these are the original competition results, which differ from the results in the paper for reasons
described in Section 6.6.1.

Agent Individual Utility ~ Rank Agent Social Welfare ~ Rank
DreamTeam109Agent 0.7247 18t DreamTeam109Agent 1.4605 18t
ChargingBoul 0.7238 2nd Agent007 1.4564 ond
SuperAgent 0.7040 3rd CompromisingAgent 1.4563 3rd
CompromisingAgent 0.6857 4th AgentFish 1.4396 4th
RGAgent 0.6819 5t Agentd410 1.3993 5th

regardless of the magnitude of that concession. A negotiation between two such
agents guarantees a Pareto-efficient agreement.

6.6 RESULTS & ANALYSIS

In this section, the agents are thoroughly empirically evaluated using multiple
approaches. The 2021 edition results of ANL showed that agent scores depend on
the other submitted agents, which we explore further. We answer the question of
the influence of the learning mechanism on the performance of the negotiating
agents, as this was the ANL challenge of the competition. Finally, we perform a
game theoretical analysis of the competition and see how that relates to the official
results of the competition.

6.6.1 DIFFERENCES TO ACTUAL COMPETITION

The results presented in this section are not fully in line with the actual results of the
competition. The “LuckyAgent2022” was underperforming during the competition
because of bugs. We allowed a resubmission of this agent to be included in this
article. As this also affects the performance of other agents, the ranking of agents
differs slightly compared to the official ranking presented after the competition.
Finally, the entire competition was rerun to gather additional results that we use
in our analysis presented in the following. The actual competition winners can be
found in Table 6.3.

6.6.2 TOURNAMENT RESULTS
The top part of Figure 6.2 shows the tournament results. The agents are sorted
based on the average utility obtained during the tournament, where the leftmost
agent is the best-performing agent. A more elaborate results table is provided in
Table 6.4. Notice that there are no large differences between the individual utility
scores, as the difference between the maximum and minimum scores is only 0.2.
The difference in social welfare score is much more apparent, with a maximum
difference of nearly 0.6. We emphasise that most of the top-performing agents
implemented a learning mechanism.

The results also generally show a higher social welfare score for agents with
higher individual utility. Still, it is not evidently true that a higher individual utility
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Figure 6.2: Results of two tournaments where learning is enabled (top) and learning is disabled
(bottom). Both individual utility and social welfare are presented and agents are sorted from highest
individual utility to lowest.

also leads to higher social welfare. Table 6.4 shows that the top-performing agent in
utility fails to reach an agreement in more than 10% of the negotiation session. This
clearly indicates wasted potential, as finding an agreement will always result in a
higher utility than finding no agreement. On the contrary, the two highest-scoring
agents in social welfare have a near 100% success rate in finding agreements yet do
not obtain the highest utility. Being more selfish apparently leads to a higher utility
at the cost of a lower agreement ratio. Paradoxically, a lower agreement ratio also, in
turn, leads to lower utility. In terms of our research question, our empirical results
indicate that agents that perform well in utility also perform well in social welfare,
but that top performance in one of the categories tends to correlate with a lower
score in the other.

IMPACT OF LEARNING

To determine to what extent the ability to learn influences the performance of the
agents, we ran another experiment in which the agents’ learning capability was
disabled. This is achieved by emptying the storage directory of the agents after every
negotiation, returning them to their initial state. The agents have no knowledge
about previous negotiation sessions when initialised for all negotiation sessions.
The results are found in the lower part of Figure 6.2.

The utility and ranking of every agent are different compared to the tourna-
ment where learning is enabled. This is more apparent for some agents, e.g.
DreamTeam109Agent. We visualise this difference in ranking between a tourna-
ment where learning is enabled and a tournament where learning is disabled in
Figure 6.3. We see that the top four highest-ranking agents when learning is enabled
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Figure 6.3: Ranking (left) and individual utility (right) comparison of a tournament where learning was
disabled and one where learning was enabled. Agents in the lower right improved their ranking when
learning was enabled.

are, in fact, agents that learn between sessions. One of them actually made a signifi-
cant jump from 17th position to 3rd. On the contrary, we also see that SmartAgent
performed significantly worse when learning was allowed. Finally, one might expect
the non-learning agents to be on the equal performance line as their behaviour is
agnostic to disabling the learning capabilities. However, their individual utility is
affected by opponents being more capable of finding agreements with them.

PERFORMANCE CONVERGENCE OF LEARNING AGENTS

One problem when evaluating a group of learning agents is that their strategies
continuously change, and their scores may not converge. This makes a given
ranking dependent on the number of iterations a tournament is run, impacting
its robustness. We analyse whether this behaviour can indeed be observed for the
agents that were submitted to the competition. To do so, instead of the competition
tournament of 50 rounds, a tournament of 1,000 rounds was run for a total of
342000 negotiation sessions. We report the moving average of the individual utility
of the agents against the number of rounds played in Figure 6.4. The window size
used is 100 rounds to smooth out the stochastic influence of the random negotiation
scenario generator.

Figure 6.4 shows that the ranking and individual utility of the agents keeps
changing in the later rounds but that the differences are minor and reasonably
stable, but still influence the ranking. Before round 400, differences are more
pronounced. We also clearly see a difference between agents with and without
learning mechanisms, where the latter exhibit more stable behaviour. The learning
mechanisms do not always work out to the benefit of the agents, which we also saw
in Figure 6.3; especially AgentFO2 stands out in terms of worsening performance as
the rounds progress.
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Figure 6.4: Results of a tournament of 1 000 rounds. The moving average of the individual utility with a
window size of 100 rounds is visualised. Agents without a learning mechanism are indicated with a
dotted line.

IMPACT OF GROUP COMPOSITION

We observed during this competition that the composition of the group of agents
also influences the final ranking. To explore this further, we evaluated the per-
formance of the submitted agents in every possible group of minimum size 2.
Out of the 19 submitted agents, we created all possible 524 268 sub-tournaments
(Equation 6.2). Separately running all these tournaments would have been compu-
tationally intractable, so we obtained the results naively by filtering the result from
a full tournament. To the best of our knowledge, none of the participating agents’
behaviour is influenced by this naive approach, as the agents only reason about the
current opponent they are facing and their history with that agent. We counted the
ranking of every agent in all of the sub-tournaments for both individual utility and
social welfare. Both results are plotted in Figure 6.5.

19
> (1_9) =524268 (6.2)
i=2

As we can see in the heatmaps, there was a chance for all submitted agents to
win the tournament, depending on which opponents were also submitted. This
chance was low, but greater than zero, for the agents that obtained a low ranking in
the full tournament. This observation is more pronounced for the higher-ranking
agents, as chances to win a sub-tournament are much more similar. This means
that, at least in part, winning the competition was a matter of chance, depending
on the submitted opponents.
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Figure 6.5: Heatmap of the number of times an agent obtained a certain rank in average individual
utility (top) and social welfare (bottom). Results are counted over a total of 524 267 tournament setups
that could be created with the submitted agents. The agents are sorted based on their ranking in average

individual utility (top) and social welfare (bottom) in Figure 6.2. The top three agents in the other
category are boldfaced.
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In fact, simply averaging the performance of the agents provides a reasonable
ranking under the assumption that all opponents are equally likely to be encoun-
tered. One could argue that this is unlikely to be the case as, especially after obtain-
ing these tournament results, the underperforming agents are not likely to be used.
This degrades the value of the obtained ranking. Therefore, we take a step towards
analysing the performance of the agents beyond average scores in a tournament.

6.6.3 GAME-THEORETICAL ANALYSIS OF THE AGENTS

In the following, we evaluate the agents from a more game-theoretical point of
view through empirical game theory analysis [158]. Specifically, we construct a
meta-game of the underlying negotiation game where agents must select one of the
ANL 2022 competition agents to negotiate on their behalf. This would automatically
mitigate the previously described issue that underperforming agents are unlikely to
be used in practice and could be more in line with a realistic scenario. We analyse
which agents are likely to be picked and whether Nash equilibria can be found in
such a meta-game.

This analysis assumes that agents are perfectly rational, which may be too
strong an assumption for real-world applications. However, our previous evalu-
ation method is also based on an unrealistic assumption that all opponents are
equally likely to be encountered. We argue that tournament evaluation and game-
theoretical evaluation both have their advantages and their disadvantages. For the
same reason, other authors also performed game-theoretical evaluations [160, 10,
28].

We averaged the bilateral result of every agent against every opponent separately
and combined these results into a matrix. This matrix can then be seen as the pay-
off matrix of a symmetric normal-form game in which the two players choose one of
the agents as their strategy. Note that, in order to obtain the full matrix, we also need
to have, for each agent, the score it would obtain when negotiating against itself,
while the ANL 2022 tournament did not involve self-play. We therefore repeated the
tournament, but this time including self-play, to obtain those scores. The payoff
matrix U we obtained is displayed in Table 6.5. For readability, we multiplied the
scores and their standard errors by 1000. Each entry Uy p represents the average
individual utility obtained by agent A when playing against agent B (averaged over
2500 negotiation sessions).

NASH EQUILIBRIA

The meta-game has two pure Nash equilibria: SuperAgent against SuperAgent Uy 4,
and MiCROAgent against MiCROAgent Uy 19. Of these two equilibria, MiCROAgent
against MiCROAgent achieves the highest payoff for both players and is therefore
preferred.

We performed several statistical tests to verify critical results in Table 6.5. First,
we verified both pure Nash equilibria by checking whether the respective agent
playing against itself actually results in the highest average individual utility. That
is, for each agent B € {MiCROAgent, SuperAgent} we performed a one-sided Welch
t-test against the null hypothesis that U, AB = Up p for each opponent A (with A # B)
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Table 6.5: Results of game-theoretical evaluation. Each cell displays the average score of the agent
indicated in the row header, along with its standard error, obtained against the agent in the
corresponding column. The scores and standard errors are multiplied by 1000 for readability. In each
column, the highest score is indicated in boldface.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 ChargingBoul 809 674 705 684 863 798 602 881 884 764 490 725 918 622 978 943 560 785 427
+3  +5 5 5 £3 3 £7 %2 *3 4 6 5 +3 8 +1 *2 7 6 x7
2 LuckyAgent2022 813 671 828 690 832 929 605 935 808 526 499 593 861 511 966 964 500 777 397
+5 +7 44 +7 5 *2 +8 +1 +6 +8 +8 +8 +5 +9 +2 1  +8 7 +8
3DreamTeaml09Agent 797 698 743 744 852 916 659 955 732 623 435 619 821 478 946 957 569 739 445
5 +5 45 5 4 #3 5 *1 +7 %5 +6 +6 +5 7 +2 1 +6 5 +6
4SuperAgent 816 674 802 767 776 929 598 954 862 607 547 555 766 502 955 966 534 737 402

5 RGAgent 761 679 736 619 817 746 589 864 803 591 515 692 851 663 830 930 573 811 465

6 CompromisingAgent 787 644 610 641 879 790 585 807 892 613 395 640 819 694 791 980 558 792 434

+4 +4 5 &5 3 5 %5 +4 3 5 5 £6 5 &5 £6 +0 +6 6 £6
7 LearningAgent 733 623 885 630 759 957 620 985 808 426 444 506 668 525 645 979 452 734 382
+8 £8 £3 8 +8 £2 £8 1 +7 £8 £8 9 £9 +9  £9  £0 +8 +8 +8
8 Agent007 702 631 529 573 780 797 462 791 821 622 393 651 698 650 907 931 558 760 424
+3 +5 +5 +5 +3 +3 +5 +5 +3 +5 +5 +4 +6 +6 +3 +2 +6 +5 +5
9 AgentFO2 724 631 565 618 726 682 565 746 734 745 474 631 847 557 799 850 549 553 389
£3 +5 6 &5 5 x4 %6 +£2 5 4 +5 +6 3 +8 £6 +2 +7 8 %7
10 MiCROAgent 822 577 865 657 728 935 500 916 847 820 104 497 719 336 894 875 383 655 206
£4  +£9 5 +8 8 2 *9 £1 3 2 +6 £9 7 £9 £2 +2 +9  +9 8
11 ProcrastinAgent 683 587 916 688 747 981 540 995 781 85 377 87 605 322 874 1000 444 733 272
+8 £9 £5 8 +8 £2 %9 1 8 £5 *9 5 £10 *9 £7 £0 +10 +8 8
12 PinarAgent 750 582 830 555 762 744 512 880 784 488 90 384 758 432 857 881 433 704 267
+5 48 +5 +8 6 6 9 %2 %5 +8 +5 +9 47 +9 4 +2 +9  +7 8
13 ThirdAgent 614 569 683 553 739 693 515 595 753 612 363 598 648 671 708 731 524 730 422
£4  +£5 5 +6 4 x5 7 %5 4 7 +7 £6 6 +7 £5 +4 +8 6 %7
14 BlUagent 641 503 744 512 716 851 531 896 627 308 321 416 712 420 798 898 478 703 227
£8 +9 7 %9 7 x4 x9 £3 8 8 *9 £9 7 49 &5 1 +9  x7 £8
15 Agent4410 472 513 541 532 737 670 496 639 595 643 377 602 798 660 766 777 478 752 384
+5 £5 £5 5 +5 +6 £7 %5 6 5 £5 £5 %5 +6  +£4 4 +8 6 7
16 AgentFish 540 532 504 509 644 493 519 646 708 715 389 638 696 614 796 772 543 700 438

17 TjaroncherylOAgent 685 529 898 501 668 811 504 959 723 261 293 322 607 387 548 956 527 652 297

18 GEAAgent 630 548 758 514 682 614 522 669 537 457 525 537 668 563 631 787 511 717 240
+5 +£6 4 6 +5 +£5 6 %5 7 +7 £6 £6 *5 +7  £6 3 +7 5 7
19 SmartAgent 556 477 921 492 611 890 456 994 545 181 281 274 578 232 608 994 452 370 219
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and set a maximum significance level of p = 0.05 to reject the null hypothesis. Note
that we use U to denote the frue expected utility that agent A would obtain against
agent B, whereas U represents the measured average individual utility. We found
that the highest p-value for this hypothesis was 4-1073* for MiCROAgent and 6-10~*
for SuperAgent. Each of these p-values still needs to be multiplied by 18, to take into
account that for only one of the 18 opponents, the null hypothesis needs to be true
to reject our conclusion, but then they still stay well below the threshold of p = 0.05,
so our claims that MiCROAgent and SuperAgent both form a Nash equilibrium
are statistically significant. Furthermore, we inverted this test to verify that none
of the other agents forms a Nash equilibrium when playing against itself. That is,
for each agent B ¢ {MiCROAgent, SuperAgent}, and each agent A (with A # B) we
performed a one-sided Welch t-test against the null hypothesis that Ua p < Ug 5.
Indeed, for each agent B we found at least one opponent A for which the p-value
for this hypothesis was far below 0.05. Therefore, we can reject the hypothesis that
U < Up p for all opponents A.

Apart from pure Nash equilibria, we also found 21 mixed Nash equilibria us-
ing the Gambit software package (v.16.2) [134]. However, for each of these mixed
equilibria, the payoff was lower than for the two pure equilibria. The top mixed
equilibrium found has a probability of 66% for SuperAgent and 34% for MiCROA-
gent. In this mixed equilibrium, both players receive an expected utility of 0.712,
which is significantly lower than the utility they would achieve if they both played
SuperAgent (0.767) or if they both played MiCROAgent (0.820).

We note that MiCROAgent does not perform well in the tournament evaluation
but does perform strongly in the game-theoretical evaluation. A quick analysis
shows that MiCROAgent works particularly well against competitive opponents and
less so against weaker opponents. As the game-theoretical approach depends on
selecting the best possible response, it emphasises results obtained against stronger
opponents. As mentioned earlier, the average scoring used in the tournament
evaluation is based on the assumption that all opponents are equally likely to be
encountered, which could be considered unrealistic. This also suggests that learning
is especially beneficial in the presence of weaker agents that can be exploited. If
only stronger agents are present, the learning agents may lose their advantage over
a simpler approach such as MiCROAgent.

6.6.4 ANALYSIS OF THE NEGOTIATION SCENARIOS

The characteristics of the randomly generated negotiation scenarios can have a
significant influence on the performance of the submitted agents [70]. We analyze
the scenarios based on characteristics often used in the automated negotiation
literature: the opposition, distribution, and balance scores described in the sections
below. The cumulative distribution functions of these metrics for the negotiation
scenarios used in this paper are visualised in Figure 6.6 and Figure 6.7. The maxi-
mum social welfare and maximum Nash product are included in Figure 6.6.
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Figure 6.6: Cumulative distribution functions of the characteristics of the randomly generated
negotiation scenarios used in this paper.
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Figure 6.7: Cumulative distribution functions of the balance scores of the negotiation scenarios of the
ANL 2012-2013 and ANL 2022 editions. The scenarios used for ANAC 2022 are less balanced than those
used for ANAC 2012/2013. For example, we see that 80% of the ANAC 2012/2013 scenarios had a balance

score less than or equal to 0.050, while among the ANAC 2022, this fraction was only 62%
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Table 6.6: Average individual utility and success rate for all agents, compared between negotiation
scenarios with low, medium and high opposition.

low opposition  medium opposition  high opposition

Sopp <020 020<50pp=0.325  0.325<Sgpp
Av. util. all sessions 0.814 0.647 0.471
Av. util. sessions with agreement 0.877 0.784 0.690
Agreement ratio 0.93 0.83 0.68

OPPOSITION

A commonly used measure to quantify the competitiveness of a negotiation scenario
is the opposition value, which indicates how easy it is to find agreements that are
satisfactory to both agents [10]. Before calculating the opposition value, the subset
of Pareto efficient outcomes Q,, must be extracted. An outcome is Pareto efficient
if no other outcome improves the utility of at least one of the agents while not
decreasing the utility for the others (Equation 6.3). From this Pareto-efficient set,
we select the Kalai-Smorodinsky bargaining solution [83] (Equation 6.4) and use it
to calculate the opposition based on Equation 6.5.

(ua(@) > ua(w) A ug @) = ug(w))
Qp={weQ|3w €Q: v (6.3)

(ua(@") = up(w) A up(@) > ug(w))

Wgalai €argmin|uy(w) — ug(w)| (6.4)
weQy
$opp(@) = /(1 = ta@kata))? + (1~ up@ata)’ 6.5)

We split the negotiation scenarios into three roughly equal-sized categories with
low, medium and high opposition values. The results of this analysis are displayed in
Table 6.6. We observe that the lower the opposition values, the better the agents per-
form in terms of agreement rate and utility obtained from the agreement. Another
interesting observation is that the opposition value has a noticeable influence on
the ranking of the agents. Most notably, DreamTeamAgent109 ends in seventh place
on the scenarios with low opposition, while it ends in first place on the scenarios
with high opposition.

DISTRIBUTION

The same analysis was carried out for the distribution value, s;;4;(Q2), which is de-
fined in Equation 6.6; it is the average Euclidian distance in utility of every outcome
to its closest Pareto-efficient outcome. The higher this value, the more difficult it
becomes to find an agreement that is (close to) Pareto efficient. Estimating the
preferences of the opponent accurately is essential in negotiation scenarios with a
high distribution value.

Saist(@ = )

weQ LW

min \/ (ua(@) — ua(@")? + (up (W) - up(w")? (6.6)
'eQp
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Table 6.7: Average individual utility and success rate for all agents, compared between negotiation
scenarios with low, medium and high distribution values.

low distribution =~ medium distribution  high distribution

sdist’0'450 0'45055111'57:50'525 0‘525'5di5t
Av. util. all sessions 0.516 0.656 0.777
Av. util. sessions with agreement 0.720 0.793 0.857
Agreement ratio 0.72 0.83 0.91

The results are displayed in Table 6.7. Again, we clearly observe a difference in
the performance of the agents depending on the distribution value. The higher the
distribution value, the higher the score of the agents, both in terms of the quality of
the deals made and the percentage of negotiations that end with a deal.

These results may initially seem surprising since we argued that finding Pareto-
efficient outcomes in scenarios with high distribution is harder. However, if a
negotiation scenario has a high distribution, the outcomes are also more scattered
throughout the utility space and may, in turn, contain outcomes with high utility for
both agents. A change in the ranking of the agents is also observed. Most notably,
DreamTeamAgent109 ends in second place on scenarios with low distribution,
while it ends in seventh place on scenarios with a high distribution.

BALANCE SCORE

Recent work stated that the negotiation scenarios used for ANAC 2012 and 2013,
also used in many later editions of ANAC, were too simplistic [40]. They showed
that many of these scenarios display a certain type of symmetry, which makes them
easy to tackle by a naive strategy called the MiCRO strategy (which also participated
in ANL 2022, see Section 6.5.2). This was demonstrated by the fact that MiCRO was
able to outperform some of the best agents in these scenarios, even though MiCRO
is a much simpler strategy that does not apply any form of opponent modelling or
learning [40].

To quantify this symmetry, De Jonge [40] defined the notion of the “balance
values” of a negotiation scenario, which are the individual utilities of the outcome
wp, that two agents would agree upon if they both apply the MiCRO strategy. They
showed that many of the ANAC 2012 and 2013 negotiation scenarios are “balanced”,
meaning that the balance values lie very close to the Nash Bargaining Solution [111]
(NBS). De Jonge [40] argued that a more versatile set of negotiation scenarios should
be used to test agents.

We performed the same analysis to see to what extent the scenarios used in
ANAC 2022 are balanced. Similar to De Jonge [40], the balancedness of a negotiation
scenario is measured by comparing the balance values to the utilities associated
with the optimal outcome. However, we do not consider the NBS as the optimal
outcome but rather argue that the optimal solution is the one that maximizes social
welfare.

The motivation for using the Maximum Social Welfare Solution (MSWS) instead
of the NBS as the optimal outcome is twofold. First, maximizing social welfare was
explicitly one of the goals of the competition. Second, even if the goal is to maximize
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individual utility, each scenario has two utility functions, u4 and up, randomly
assigned to the two agents. Maximising the expected individual utility before being
assigned a utility function would equal agreeing to the MSWS in advance (see Jonge
[80] for a more detailed discussion).

Spal(€) = I;lgéi{uA(w) + up(w)} — (ualwp) + ug(wp)) (6.7)

We define the balance score sp4; in Equation 6.7, where wj, is the outcome that would
be obtained by 2 MiCRO strategies. The utilities are assumed to be normalized to
fall within the range [0,1]. The lower the balance score, the closer the balance values
are to the MSWS. If the balance score is exactly 0, the balance values coincide with
the MSWS, which in turn means that in such a negotiation scenario the agreement
made between two MiCRO agents would always be exactly the MSWS.

The result of the analysis is shown in Figure 6.7. We observe that the negotiation
scenarios of ANL 2022 are less balanced than those of ANAC 2012 and 2013 and
should therefore be preferred for research. The fact that we see different values
between the two types of scenarios can be explained by the fact that the ANAC
2012/2013 scenarios were handcrafted by participants, while the scenarios of ANL
2022 were randomly generated.

However, ANL 2022 scenarios still seem to display a high degree of balance.
Around half of the scenarios have a balance score of 0.025 or less, and for around
one-third of the scenarios, the balance score is exactly 0. It remains an open ques-
tion why exactly the randomly generated scenarios are so balanced and how this
compares to real-world negotiation scenarios.

We recalculated the scores of all the agents while only counting negotiation
sessions involving negotiation scenarios with low balance scores (s,4; = 0), with
medium balance scores (0 < sp,; < 0.05) and with high balance scores (0.05 < sp4;).
The balance scores were chosen such that each category contained roughly one-
third of all scenarios.

While we expected that MiCRO would perform better on the balanced scenarios,
we noticed that this was actually the case for all agents. The agents make better
and more agreements on the balanced scenarios, while the opposite is true for the
unbalanced scenarios. The results are summarized in Table 6.8. The differences are
lower than in Table 6.6 and Table 6.7, suggesting that the opposition value and the
distribution value are better indicators of the level of difficulty of a scenario than
the balance score.

Finally, not much difference was observed in the outcome of the tournament.
The final ranking in the tournament evaluation remains more or less the same, with
a few agents moving one or two positions up or down the ranking.

6.7 DISCUSSION

The extensive analysis we performed using the agents that were submitted to ANL
2022 led to insights into their behaviour that we will now discuss. We will discuss
some general observations first, and after that, we will discuss two core topics more
in-depth.
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Table 6.8: Average individual utility and success rate for all agents, compared between negotiation
scenarios with low, medium, and high balance scores.

low balance score  medium balance score  high balance score

Spal =0 0 < spq7 =0.050 0.050 < sp47
Av. util. all sessions 0.689 0.652 0.611
Av. util. sessions with agreement 0.817 0.796 0.774
Agreement ratio 0.84 0.82 0.79

Regarding the negotiation scenarios used, we observed that the randomly gen-
erated scenarios from ANL 2022 are slightly less balanced than the handcrafted
scenarios used in many of the earlier editions of ANL. This indicates that the ran-
domly generated scenarios are slightly more challenging than the handcrafted ones.
We also showed that the agents performed better on the balanced scenarios, but this
did not significantly influence the outcome of the tournament. On the other hand,
the more classical notions, such as opposition and distribution of the outcome
space, correlated more strongly with the performance of the agents.

We can calculate from Table 6.4 that 18.4% of the negotiation sessions ended
without agreement. This is undesirable, as it lowers the social welfare obtainable by
the group, which is to no one’s benefit. However, competitive strategies that cause
these failures to reach an agreement are beneficial for individual utility, which we
observed more often in the history of ANL, and which is also a general observation
in partially cooperative (general-sum) games, such as the Prisoner’s Dilemma. It
would, therefore, seem useful to investigate the design of mechanisms that push
agents towards cooperating strategies [112].

6.7.1 LEARNING IN NEGOTIATION AGENTS

We have outlined and analysed agents that learn from repeated encounters with
opponents and presented the results of a competition between such learning agents.
The main focus of the competition was to assess the strength of algorithms that
can learn from previous encounters in groups with other learning agents and use
this knowledge to adapt their strategies to individual opponents. Since not every
participant submitted an agent that implemented such a learning approach, we
were able to compare the results of learning and non-learning agents and showed
that the learning agents indeed performed better than the non-learning agents for
the challenge set in the competition.

When the learning capabilities are disabled, some learning agents drop sub-
stantially in performance. While this suggests that learning is beneficial, it could
also indicate that these agents became dependent on their learning mechanism.
Ideally, agents should be more robust and perform well in single-shot and repeated
encounters with opponents. This could have been achieved by evaluating agents
in the competition based on their single-shot performance, which we believe is an
interesting idea for future competitions.

A notable observation from this competition was that the agent that scored
highest in the tournament, ChargingBoul, did not produce the best response against
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itself. If one is to select one of the agents that participated in the competition,
choosing the winner may not be the best option. Instead, we observed that two
agents formed a pure Nash equilibrium when playing against themselves (MiCRO
and SuperAgent), of which MiCRO scored the highest. This is remarkable, as MiCRO
is a naive strategy that does not use any form of learning or opponent modelling.
However, while MiCRO was the strongest participant in the game-theoretical sense,
it only ended in 10th place in the tournament evaluation. We can explain this
based on the fact that MiCRO fails to exploit weaker opponents and/or fails to make
agreements with them.

To our knowledge, none of the agents let the group composition influence their
strategy. Still, it greatly impacts overall performance within a competition setting,
and we believe that this could be an interesting topic for future research.

6.7.2 RANKING NEGOTIATION AGENTS

Our analysis of the competition results used various methods to analyse the per-
formance of negotiation agents. One is based on average performance, the default
method in the automated negotiation community, and one is based on Nash equi-
libria found using empirical game theory in a meta-game.

The ranking based on average performance strongly depends on the submitted
agents, as shown in Figure 6.6.2. Surely, this is the case in any Al competition, but it
is even more apparent in agent-versus-agent competitions. In such competitions,
a single added agent influences the score of all the other agents instead of merely
contributing another score that is added to the ranking. Intuitively, in a group of
defecting strategies, a conceding strategy is needed to win a tournament, as some
utility is better than no utility, and the defecting opponents will also not obtain
agreements with each other. Conversely, a hardheaded strategy is needed to win
in a group of conceding strategies, as it will exploit all opponents, obtaining the
highest utility.

The game theoretic analysis did not give us a full ranking but a selection of
strategies that form Nash equilibria in the meta-game. Such equilibria rely on flaw-
less rational agents that all know the full structure of the game, which is a disputable
assumption. The equilibria also depend on the strategy set included, but many
more strategies will likely exist than were submitted to this competition. There
can be more than one pure equilibrium, which makes it unclear which equilib-
rium is played. Equilibria can be unfair to one of the agents involved. The last
two points apply, for example, to the game of chicken. All in all, there are many
counterarguments for analysing agent performance based on Nash equilibria.

We attempted to find a ranking method that would be a natural fit for this
competition but were unsuccessful. We considered Elo ranking, which assumes
that relative skill is transitive and is sensitive to copies of the same strategy [21];
unfortunately, both of these assumptions are problematic for ranking negotiation
agents. Nash Averaging [21] is also a popular ranking method but can only deal
with zero-sum games and is sensitive to the set of included agents [91]. In contrast,
our setting is a general sum game, and we attempt to avoid methods sensitive to
the set of included agents. On the other hand, a-rank [114] is suitable for general
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sum games. It uses replicator dynamics to find a dynamical solution concept and
extracts a ranking based on that. However, the main motivation behind this method
was computational tractability, which is not an issue in our case, and the obtained
ranking depends on the a parameter setting. We attempted to obtain a stable
ranking using this method but were unhappy with the sensitivity to the a parameter.
We checked ranking methods based on social choice theory and voting [91], but
these methods consider ordinal pairwise comparisons, where our meta-game is
cardinal. Finally, the ranking method that we believe comes closest to our needs has
been proposed by Marris et al. [103] and was developed to rank N-player general
sum games. However, it proposes a ranking based on the (Coarse) Correlated
Equilibrium obtained through the maximum entropy objective. Agents require
an external correlation device to be able to optimise for a correlated equilibrium,
which is a requirement that might not be realistic for negotiation games.

This leaves us without a convincing ranking method for negotiation agents in
competitions like ANL 2022. We see the development of such a ranking method as a
worthwhile yet highly non-trivial undertaking that is beyond the scope of our work
presented here. We hope that our discussion here draws attention to this important
topic and serves as a good starting point for discussion within the negotiation
community, as much of the recently published work is still benchmarked on the
average performance of a given agent.

6.8 CONCLUSION

In this chapter, we discussed learning agents in iterated negotiation games and
provided an in-depth analysis of groups of such agents competing in a tournament.
We utilised ANL to obtain a diverse set of learning negotiating agents by making
learning over repeated games the challenge of the 2021 and 2022 editions. We ran
experiments with these agents and extensively analysed the results. To the best of
our knowledge, this is the first analysis of learning negotiating agents competing in
a tournament.

The agents were designed for the performance metric we set for the competition.
Regarding this metric, we found that the agents equipped with a learning mecha-
nism performed better than those that did not, and we conclude that the challenge
we set was successful. We also observed that complex strategies are sometimes
outperformed by relatively naive strategies, such as the MiCRO strategy, which
managed to outperform every other agent in being a pure Nash equilibrium action
in a strategy selection meta-game.

Agents that performed well in the competition show more competitive (defect-
ing) behaviour, despite this sometimes causing failures to reach an agreement and
thus hurting both their own utility and the social welfare of the group. We should
aim to prevent such behaviour in negotiation games if we care about social welfare.

We showed that the ranking of the agents depends on the submitted opponents
when using simple average performance-based ranking methods. Such ranking
methods assume that opponents are equally likely to be encountered. We attempted
other methods to evaluate agents and showed that the performance of agents does
not transfer across these evaluation methods. All ranking methods in this paper are
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based on assumptions that can be disputed, and obtained rankings vary depending
on the chosen method. This is not unexpected, but still unsatisfactory; as discussed
in Section 6.7, this suggests room for further improvements in evaluation criteria
and the automated negotiation competition.

To conclude, we designed and analysed a first negotiation competition with
a focus on learning across negotiation sessions. We made significant progress in
setting up a framework for analysing the performance of learning negotiating agents.
Despite this advancement, we note that challenges remain in obtaining a definitive
answer to the question of what a good performing negotiating agent is. There might
not be a single answer to this question, as it also depends on a conscious choice
of which objectives are important and the environment the agent is in. We should
push for more (empirical) research into diverse adaptive and learning negotiating
agents to gain a more robust understanding of the performance of such agents.




