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5.1 INTRODUCTION

Traditionally, negotiating agents were manually designed algorithms based on
heuristics, which is still a commonly seen approach in recent editions of the Auto-
mated Negotiation Agents Competition (ANAC) [5]. However, manually designing
such negotiation strategies is time-consuming and results in highly specialised and
fixed negotiation strategies that do not generalise over a broad set of negotiation
settings. In later work, optimisation methods were used to optimise the parameters
of negotiation strategies using evolutionary algorithms [46, 43, 92], or algorithm
configuration techniques [124].

In Chapters 3 and 4, we showed that algorithm configuration and portfolio
selection methods can be used to learn autonomous agents to negotiate. The
proposed approaches allow negotiation strategies to be more easily adaptable to
different negotiation settings. However, they still require a relatively high degree
of manual design to obtain a parameterised negotiation strategy, making them
time-consuming to build, limiting their generalisability by specialisation on specific
negotiation settings, and inducing human bias in strategy design.

With the advent of reinforcement learning (RL) [146], there have been attempts
at using RL-based methods for creating negotiation agents [19]. There is, however,
still an open challenge. In automated negotiation, it is common for agents to deal
with various negotiation scenarios that would cause differently sized observation
and action vectors for default linear layer-based RL policies. Up until now, this
issue has been dealt with by either abstracting the observations and actions into a
fixed-length vector (see, e.g., Bakker et al. [19]) or by fixing the negotiation scenario,
such that the observation and action space remain identical (see, e.g., Higa et al.
[68]). The first approach causes information loss due to feature design, and the
latter renders the obtained policy non-transferable to other negotiation scenarios.

We set out on the idea that a more general RL-based negotiation strategy capable
of dealing with various negotiation scenarios is achievable and that such a strat-
egy can be learned using end-to-end reinforcement learning without using state
abstractions and without the human bias induced in the design of parameterised
agents. Developing such an RL negotiation strategy would open up new avenues for
RL in automated negotiation as policy networks are easily extendable. End-to-end
methods might also be able to learn complex relations between observations and
actions, minimising the risk of information loss that is often imposed by (partially)
manual design strategies.

To this extent, we designed a graph-based representation of a negotiation sce-
nario. We applied graph neural networks in the RL policy to deal with the changing
dimensions of both the observation and action space. We show that our method per-
forms about as well as a recent end-to-end RL-based method designed to deal only
with a fixed negotiation scenario. More importantly, we show that our end-to-end
method can successfully learn to negotiate with other agents and that the obtained
policy also performs well on previously unseen, randomly generated linear-additive
negotiation scenarios.
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5.2 RELATED WORK
Bakker et al. [19] applied RL to decide what utility to demand in the next offer. They
abstracted the state to utility values of the last few offers and time towards the
deadline. Translating utility to an offer, estimating opponent utility, and deciding
when to accept were done without RL. Bagga et al. [18] also abstracted the state
into a fixed representation with utility statistics of historical offers. They used an RL
policy to decide whether to accept and a separate policy that outputs offers based
on a non-RL opponent utility estimation model.

Sengupta et al. [137] encoded the state into a fixed length of past utility values.
The action is the target utility of the next offer, translated to an actual offer through
an exhaustive search of the outcome space. They trained a portfolio of policies
and tried to select effective counterstrategies by classifying the opponent type. Li
et al. [97] also build a portfolio of RL-based negotiation strategies by incrementally
training best responses based on the Nash bargaining solution. During evaluation,
their method searches for the best response in an effort to improve cooperativity.
They only applied their method to fixed negotiation scenarios.

Another line of research on negotiation agents includes natural language. An
environment for this was developed by Lewis et al. [95]. Kwon et al. [90] used this
environment and applied a combination of RL, supervised learning, and expert
annotations (based on a dataset) to iteratively train two agents through self-play.
The negotiation scenarios considered are fixed, except for the preferences.

Takahashi et al. [148] and Higa et al. [68] are closest to our work, as they also
train an end-to-end RL method for negotiation games. Their approach does not
use state abstractions and linearly maps the negotiation scenario and actions in a
policy. The policy obtained can only be used for a fixed scenario. They trained and
tested only against single opponents

Graph Neural Networks (GNNs) [86] have been used to handle graph-structured
input in policy networks, for example, in molecular design [165]. Wang et al. [156]
and Yang et al. [163] applied them to transfer learn over variable action spaces of
various multi-joint robots. However, they aimed to speed up learning on unseen
tasks, while we strive for complete transferability without additional learning.

5.3 METHODS
We formulate the negotiation game as a turn-based Partially Observable Stochastic
Game (POSG), a partially observable extension of a stochastic game [139]. We model
the game as a tuple M= 〈I ,S ,Oi ,Ai ,T ,Ωi ,Ri 〉, where I = {1, · · · ,n} denotes the
set of agents, S the set of states, Oi the set of possible observations for agent i ,
and Ai the set of actions for agent i . For convenience, we write A = Ai , as we
consider a turn-based game where the set of actions is identical for each agents.
Furthermore, T :S×A 7→ p(S) denotes the transition function, Ωi :S×A 7→ p(Oi )
the observation function for agent i , and Ri : S ×A 7→ R the reward function for
agent i .

The game starts in a particular state s. Then, at timestep t , an agent i selects
an action at ,i independently of other agents. Based on this action, the state of the
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POSG changes according to st+1 ∼ T (st+1|st , at ). Subsequently, each agent receives
its own observation ot ,i ∼Ωi (ot ,i |st , at ) and associated reward rt ,i ∼Ri (rt ,i |st , at ).

Each agent i selects actions according to its own policy πi :Oi ×Oi ×·· ·→ p(A).
At timestep t , agent i samples an action at ∼ πi (at |ot ,i ,ot−1,i , · · ·). Note that we
can vary the length of the historical observations by which we condition the policy
for each agent. The more history we include, the more we can overcome partial
observability.

Our goal is to find a policy πi for agent i that maximizes cumulative expected
return:

π⋆i ∈ argmax
πi

Eπ,T

[
H−1∑
k=0

Ri (st+k , at+k )

]
, (5.1)

where H denotes the horizon of the POSG (the number of rounds we select an
action). Crucially, the performance of a particular policy πi depends on the policies
of the other agents.

5.3.1 PROXIMAL POLICY OPTIMISATION
We will use reinforcement learning to optimize the policy πi of our own agent i in
the negotiation scenario. For simplicity, we will drop the subscript i and simply
write π for the policy of our own agent. We also simplify by writing o instead
of 〈ot ,i ,ot−1,i , · · · 〉. To optimize this policy, we use Proximal Policy Optimisation
(PPO) [135] due to its empirical success and stability.

At each update iteration k, PPO optimises π relative to the last policy πk by
maximising the PPO clip objective:

πk+1 ∈ argmax
π

Eo,a∼πk

[
min

(
π(a|o)

πk (a|o)
Aπk (o, a), clip

(
π(a|o)

πk (a|o)
,1±ϵ

)
Aπk (o, a)

)]
(5.2)

where ϵ denotes a clip parameter, and Aπ(a,o) denotes the advantage function
of taking action a in observation o [146]. The ratio gets clipped to ensure that the
new policy does not change too quickly from the policy at the previous step. Our
PPO implementation is based on the CleanRL repository [73].

5.3.2 GRAPH NEURAL NETWORKS
We aim to learn to negotiate across randomly generated scenarios where the number
of objectives and values differ. This forces us to design a policy/value network where
the shape and number of parameters are independent of the number of objectives
and values. Networks of linear layers, often the default in RL, do not fit this criterion,
as they require fixed input dimensions. We chose to represent the input of the policy
network as a graph and make use of Graph Neural Networks (GNN) to deal with
the changing size of the input space, more specifically, Graph Attention Networks
(GAT) [152].

The input graph contains nodes that have node features. A layer of GNN encodes
the features xu of node u into a hidden representation hu based on the features of
the set of neighbour nodes Nu and on its own features. The specific case of GATs is
defined in Equation 5.3. Here, neighbour features are encoded by a linear layer ψ
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and then weighted summed through a learned attention coefficient a(xu , xv ). The
weighted sum is concatenated with xu and passed through another linear layer φ to
obtain the embedding of the node hu .

hu =φ
(

xu ,
∑

v∈Nu

a(xu , xv ) ·ψ(xv )

)
(5.3)

5.3.3 IMPLEMENTATION
At each timestep, the agent receives observations that are the actions of the oppo-
nent in the negotiation game. Based on these observations, the agent must select an
action. The action space combines multiple categorical actions: the accept action
and an action per objective to select one of the values in that objective as an offer. If
the policy outputs an accept action, then the offer action becomes irrelevant as the
negotiation will be ended.

A negotiation scenario has objectives B and a set of values to decide on per
objective Ωb . We represent the structure of objectives and values as a graph and
encode the history of observations 〈ot ,i ,ot−1,i , · · · 〉 of a negotiation game in this
structure to a single observation o (see the left side of Figure 5.1). Each objective
and value is represented by a node, where value nodes are connected to the objective
node to which they belong. An additional head node is added that is connected to
all objective nodes. The node features of each node are:

• 5 features for each value node: the weight wb(ωb) of the value, a binary
value to indicate the opponent’s last offer, a binary value to indicate the last
offer of the agent itself, the fraction of times this value was offered by the
opponent, and the fraction of times this value was offered by itself. Note that
it might have been better to implement a recurrent network to condition the
policy on the full history of offers instead of summary statistics. However, the
added computational complexity would have rendered this work much more
difficult. Our approach enables efficient learning, but future work should
explore the use of the raw history of offers.

• 2 features for each objective node: the number of values in the value set of
this objective |Ωb |, and the weight of this objective w(b).

• 2 features for the head node: the number of objectives |B |, and the progress
towards the deadline scaled between 0 and 1.

As illustrated in Figure 5.1, we apply GAT layers to the observation graph to prop-
agate information through the graph and embed the node features (Equation 5.3).
The size of the representation is a hyperparameter. We then take the representation
of the head node and pass it to a linear layer that predicts the state value V . The
head representation is also passed through a linear layer to obtain the two accept
action logits. Finally, we take the representation of every value node and apply a
single linear layer to obtain the offer action logits. These logits are concatenated per
action and used to create the probability distribution over the action space. As we
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head node

objective nodes

value nodes

GNNs

value net
observation

accept netoffer net

action logits

Figure 5.1: Overview of our designed policy network based on GNNs. Observations are encoded in a
graph representation (left) and passed through GNNs. Action distribution logits and state value are

obtained by passing the learned representation of the head node and value nodes through linear layers.

Table 5.1: Description of baseline negotiation agents used for benchmarking.

Name Type Description

BoulwareAgent Time-dependent Utility target decreases concave with time
ConcederAgent Time-dependent Utility target decreases convex with time
LinearAgent Time-dependent Utility target decreases linearly with time
RandomAgent Random Makes random offers, accepts any utility > 0.6

use the same linear layer for all value nodes, the number of output logits is indepen-
dent of the number of parameters in the policy, thus satisfying our requirement. We
also note that although the size of the outcome space suffers heavily from the curse
of dimensionality when the number of objectives increases, our approach does not.
Our code implementation can be found on GitHub1.

5.4 EMPIRICAL EVALUATION
To train our agent, we need negotiation scenarios as well as opponents to negotiate
against. The negotiation scenarios were randomly generated with an outcome
space size |Ω| between 200 and 1000. As opponents, we used baseline agents
and agents developed for the 2022 edition of the Automated Negotiation Agents
Competition (ANAC). The baseline agents are simple negotiation strategies often
used within automated negotiation to evaluate and analyse new agents. We provide
a description of the opponents in Table 5.1. All agents were originally developed for
the GENIUS negotiation software platform [99].

We set a negotiation deadline of 40 rounds. An opponent is randomly selected
during the rollout phase, and a negotiation scenario is randomly generated. The
policy is then used to negotiate until the episode ends, either by finding an agree-

1https://github.com/brenting/RL-negotiation/tree/RLC-2024

https://github.com/brenting/RL-negotiation/tree/RLC-2024
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Table 5.2: Hyperparameter settings

Parameter Value

total timesteps 2 ·106

batch size 6000
mini batch size 300
policy update epochs 30
entropy coefficient 0.001
discount factor γ 1
value function coefficient 1
GAE λ 0.95
# GAT layers 4
# GAT attention heads 4
hidden representation size 256
Adam learning rate 3 ·10−4

Learning rate annealing True
activation functions ReLU

ment or reaching the deadline. The episode is added to the experience batch, which
is repeated until the experience batch is full. We apply 4 layers of GATs with a hidden
representation size of 256. A complete overview of the hyperparameter settings can
be found in Table 5.2.

5.4.1 FIXED NEGOTIATION SCENARIO
As a first experiment, we compared our method to a recent end-to-end RL method
by Higa et al. [68] that can only be used on a fixed negotiation scenario. Their
method was originally only trained and evaluated against single opponents. We
chose to train the agent against the set of baseline players instead, as we consider
that a more realistic scenario. The baseline agents show relatively similar behaviour,
making this an acceptable increase in difficulty.

We generated a single negotiation scenario and trained a reproduction of their
and our own method for 2000000 timesteps on 10 different seeds. The training curve
is illustrated in Figure 5.2, where we plot both the mean of the episodic return and
the 99% confidence interval based on the results from 10 training sessions. Every
obtained policy is evaluated in 1000 negotiation games against every opponent
on this fixed negotiation scenario. We report the average obtained utility of the
trained policy and the opponent, including a confidence interval based on the 10
evaluation runs in Figure 5.3.

We can see in Figure 5.3 that our method performs similarly to the method
proposed by Higa et al. [68]. This result is mostly a sanity check that our method
can successfully learn to negotiate in a relatively simple setup despite being more
complex and broadly usable.

5.4.2 RANDOM NEGOTIATION SCENARIOS
We now evaluate the performance of our end-to-end method on randomly gener-
ated negotiation scenarios. Negotiation scenarios will continuously change during
both training and evaluation.
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Figure 5.2: Mean and 99% confidence interval of episodic return during training based on results from
10 random seeds . The results of the policy designed by Higa et al. [68] and our policy are plotted.
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Figure 5.3: Evaluation results of the policy designed by Higa et al. [68] and our GNN-based policy.
Results are obtained by evaluating each trained policy for 1000 negotiation games against the set of

baseline agents. Mean and 99% confidence interval are plotted based on 10 training iterations.
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Figure 5.4: Mean and 99% confidence interval of episodic return during training of our GNN policy
based on results from 10 different random seeds. The results from training against the baseline agents

and training against the competition agents are plotted.



5.5 CONCLUSION

5

61

BoulwareAgent

ConcederAgent

LinearAgent

RandomAgent

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Ours Opponent
U
t
il
it
y

(a)

Agent007

Agent4410

AgentFO2

AgentFish

ChargingBoul

DreamTeam109Agent

LuckyAgent2022

MiCROAgent

RGAgent

SmartAgent

SuperAgent

ThirdAgent

Tjaronchery10Agent

ExploitAgent

BoulwareAgent

ConcederAgent

LinearAgent

RandomAgent

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Ours Opponent

U
t
il
it
y

(b)

Figure 5.5: Evaluation results of our GNN-based policy on randomly generated negotiation scenarios
both against the set of baseline opponents (left) and against the full set of opponents (right). Results are
obtained by evaluating each trained policy for 1000 negotiation games against the set of agents. Mean

and 99% confidence interval are plotted based on 10 training iterations.

BASELINE OPPONENTS

We first train and evaluate against the set of baseline agents as described in Table 5.1.
We train our method for 2000000 steps on 10 random seeds. The learning curve
is plotted in Figure 5.4. Results are again obtained by running 1000 negotiation
sessions against the set of baseline opponents, but this time, all negotiation scenar-
ios have been randomly generated and were never seen before. We note that the
observation and action space sizes are constantly changing. Results are plotted in
Figure 5.5a.

As seen in Figure 5.5a, our method performs well against all baseline agents
while negotiating on various structured negotiation scenarios it has never seen
before. It is promising that an end-to-end learned GNN-based policy appears to
generalise over such different scenarios.

COMPETITION OPPONENTS

We now repeat the experiments, but increase the set of agents we negotiate against.
More specifically, we add the agents of the 2022 edition of the Automated Negoti-
ation Agents Competition (ANAC)2. The learning curve and results are plotted in
Figure 5.4 and Figure 5.5b, respectively.

The results show much lower performance against all opponents, including
those previously outperformed. Our current method of encoding the observations
and design of the policy likely leads to limited capabilities of learning opponent
characteristics. Past work has shown that adapting to opponents is important to im-
prove performance [76, 137, 123], which is currently impossible. However, this goes
beyond the core contribution of this work, which is about handling different-sized
negotiation scenarios in end-to-end RL methods. We discuss potential solutions in
Section 5.5.

5.5 CONCLUSION
We developed an end-to-end RL method for training negotiation agents capable of
handling differently structured negotiation scenarios. We showed that our method

2https://web.tuat.ac.jp/~katfuji/ANAC2022/

https://web.tuat.ac.jp/~katfuji/ANAC2022/
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performs as well as a recent end-to-end method that is not transferable beyond
a single fixed negotiation scenario. We see the latter as a restriction since, in real-
world applications, it would be unlikely to encounter the exact same negotiation
scenario more than once.

In this chapter, we have demonstrated how the difficulty of dealing with chang-
ing negotiation scenarios in end-to-end RL methods can be overcome. Specifically,
we have shown how an agent can learn to negotiate on diverse negotiation scenar-
ios in such a way that performance generalises to never-before-seen negotiation
scenarios. Our method is conceptually simple compared to previous work on rein-
forcement learning in negotiation agents. Our agent performs well against strong
baseline negotiation strategies, but leaves room for improvement when negotiating
against a broad set of highly competitive agents.

Our approach is based on encoding the stream of observations received by our
agent into a graph whose node features are designed to capture historical statistics
about the episode. This manual feature design likely leads to information loss and
goes against the end-to-end aim of our approach. For example, the expressiveness
of history is limited, as the graph only encodes the last offer and frequency of offers.
This likely also causes limited adaptivity to a broad set of opponent strategies, which
in turn may well cause the low performance observed in Figure 5.4.2.

We note that, due to the competition setup of ANAC, competitive agents often
play a game of chicken. Performing well against such strategies means that a
policy must also learn this game of chicken. This can be challenging for RL, due to
exploration problems, as it must learn a long sequence of relatively meaningless
actions before having a chance to select a good action. We could attempt to improve
upon this, but it might be more beneficial to prioritize mitigating this game of
chicken behaviour, as it is inefficient and (arguably) undesirable.

The negotiation scenarios we generated have additive utility functions and
outcome spaces that are comparable in size and competitiveness to the benchmarks
used in the ANAC competition. Real-world negotiation scenarios, however, can have
huge outcome spaces [82]. Our designed policy can be applied to larger scenarios
without increasing the trainable parameters, and the effects on the performance of
doing this should be investigated in future work.

Further promising avenues for future work include extending end-to-end poli-
cies with additional components that, e.g., learn opponent representations based
on the history of observations in the current or previous encounter. Changing a ne-
gotiation strategy based on the opponent characteristics has been shown previously
to improve performance [76, 137, 123], but is likely difficult to learn through our
current policy design. Furthermore, improving our method to handle continuous
objectives would eliminate the necessity of discretizing them.

Overall, we believe that the work in this chapter is a substantial step towards
the effective use of end-to-end RL for the challenging and important problem of
training negotiation agents whose performance generalises to new negotiation
scenarios and opens numerous exciting avenues for future research in this area.


