Universiteit

w4 Leiden
The Netherlands

Learning in automated negotiation
Renting, B.M.

Citation
Renting, B. M. (2025, December 11). Learning in automated negotiation.
Retrieved from https://hdl.handle.net/1887/4284788

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4284788

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4284788

39

4

CONFIGURATION OF STRATEGY _
PORTFOLIOS

This chapter has been published at the Cooperative Al workshop at NeurIPS 2021 [122] and AAMAS
2022 [123].

40 4 CONFIGURATION OF STRATEGY PORTFOLIOS

4.1 INTRODUCTION

The strategies of negotiation agents almost always remain monolithic, i.e. single
strategy with fixed behaviour for every setting, the exceptions we found are, e.g., [76,
137]. It has been observed that no single strategy is optimal for all negotiation in-
stances [76, 99] and that the success of a negotiator also depends on the strategy of
the opponent [10]. In Chapter 3, we successfully showed that we can use automated
configuration techniques to optimise negotiation strategies. However, the obtained
strategy is also fixed in that it does not adapt to various opponent types or negoti-
ation scenarios. A good way to further improve pay-off would be to select from a
portfolio of strategies based on the negotiation game. This introduces the problem
of algorithm selection [127] into negotiation. An early attempt to apply algorithm
selection in automated negotiation was made by Ilany and Gal [77, 76], but they
only selected a strategy based on the negotiation scenario, without considering the
opponent, which we know to be an essential factor [10]. Furthermore, they relied on
a portfolio of existing strategies to select from, which potentially limits robustness.

Our contributions in this chapter are as follows: (i) we apply automated al-
gorithm configuration techniques to not only create a single negotiation strategy,
but a portfolio of complementary negotiation strategies; and (ii) we introduce a
procedure to learn and exploit opponent and scenario characteristics during a
simulated Automated Negotiating Agents Competition (ANAC) tournament. Our
method uses the approach from Chapter 3 to automatically configure negotiation
strategies, which we extend by implementing HYDRA [162] for portfolio construc-
tion and AutoFolio [100] to create a portfolio selector. Empirical results on a variety
of negotiation instances show that our method beats the runner-up agent by a
(comfortable) margin of 5.6%.

4.2 RELATED WORK

Thanks to ANAC, new negotiation strategies are developed every year and collected
in the General Environment for Negotiation with Intelligent multi-purpose Usage
Simulation (GENIUS) test-bed [99], to support future research; they are categorised
and empirically evaluated [10, 8] to provide a basis for new strategies.

As there is no single best strategy for all negotiation instances [76, 99], we should
be able to improve pay-off by exploiting differences in instances by selecting differ-
ent strategies per negotiation instance. We see this as a variation of the algorithm
selection problem [127]. While algorithm selection methods have been successfully
applied to other problems, only few attempts have been made to apply them in the
area of automated negotiation. Ilany and Gal [77, 76] and Giines et al. [64] used a set
of past ANAC strategies and predicted which strategy would perform best on a given
negotiation instance; they then entered that strategy into the negotiation session.
Although they managed to improve the pay-off of the agent in this manner, they
were unable to win ANAC. Kawata and Fujita [84] used a portfolio of 7 strategies that
previously competed in ANAC. They applied a multi-armed bandit approach to find
the best-performing strategy for every combination of an opponent and scenario
while repeating precisely the same negotiation setting 100 times. Unfortunately,

4.3 PRELIMINARIES 41

this strategy does not generalise to unseen negotiation instances. Sengupta et al.
[137] trained both a set of strategies and a selection mechanism. Strategy selection
on a more fine-grained level by selecting modular components of a negotiation
strategy using reinforcement learning has also been attempted [18].

4.3 PRELIMINARIES

This chapter requires background knowledge in automated negotiation (Section 2.1),
algorithm configuration (Section 2.2), and algorithm selection (Section 2.3).

We continue the work of the previous chapter and extend it with portfolio-
building methods and algorithm selection techniques. The dynamic agent D A(6)
with parameter configuration space ® from Section 3.2.1 is used as a basis. We also
use the same scenario features and opponent features as described in Section 3.4.
A deadline of 60 seconds is used for the Alternating Offers Protocol (AOP) [132] in
this chapter, normalised to ¢ € [0, 1], after which negotiation is aborted without
agreement. The performance metric m (0, p) of a configuration on negotiation
instance p is the obtained utility, where the performance on a set of negotiation
instances is:

M@®,P) = Y m@,p), (4.1)

Pl S

4.3.1 PROBLEM DEFINITION

Note that in this chapter, we consider algorithm selection to be performed on
portfolios of parameter configurations of the same algorithm, thus replacing y in
Section 2.3 with 6.

Strategy portfolio creation. We have an agent with a dynamic strategy D A(0)
based on configuration space ©. Can we create a portfolio of configurations 8 c ©
using a training set of negotiation instances P consisting of configurations that
outperform each other on specific subsets of a test set of negotiation instances
Piest © Pres: that have never been encountered before?

Algorithm selection. We have an agent with a dynamic strategy DA(f), and a
portfolio of configurations @ = {61,6-,...,0,}, where 0, is the single best-performing
configuration (Equation 4.3). Can we apply an algorithm selection method 6, =
AS(8, p) that selects a configuration), from 6 based on negotiation setting p, such
that M(AS(0, p), Prest) > M(01, Presr). The real goal here is to let M(AS(, p), Prest)
approach the performance of the oracle selector (Equation 4.2) M(OR(0, p), Pres:)
as closely as possible.

OR(8, p) € argmaxm(0, p) 4.2)
el
0; € argmax M (60, P) 4.3)

6e0

42 4 CONFIGURATION OF STRATEGY PORTFOLIOS

4.4 PORTFOLIO CREATION

As a basis for algorithm selection, we need a portfolio of negotiation strategies
to select from. A simple approach is to build a portfolio of negotiation strategies
that already exist within the GENIUS environment, which is the approach used
by Ilany and Gal [76]. However, for several reasons, we consider this a less-than-ideal
approach:

1. Itrelies on strategies that already exist, thus limiting our choices for a portfolio
to strategies that have been previously implemented and are available to be
re-used.

2. The strategies might not be optimised or optimised for a different objective,
resulting in a low-performance portfolio.

3. There might be dominated strategies in the portfolio, which are outperformed
in all cases by some other strategy in the portfolio, needlessly complicating
the selection problem.

4. The portfolio might not be robust. There can be negotiation settings for which
all the negotiation strategies fail to achieve decent performance, causing
“weak spots” in our portfolio.

4.4.1 PORTFOLIO CREATION

We aim to expand upon the work of Chapter 3, by not only automatically config-
uring a single negotiation strategy, but by building a portfolio of complementary
strategies to better exploit differences between negotiation instances. The portfolio
of strategies @ we create is thus a portfolio of configurations for our DA(6). In our
method we will therefore enforce that every strategy must add value to the portfolio:

v0e€0,IpeP, v0 € (0\0) : m©,p)>m@,p) (4.4)

The portfolio can be viewed as a set of strategies that each specialise on a
region within the negotiation instance space. Similarities in this space are found
by mapping the space to the feature space. One could obtain such a portfolio
by automatically configuring strategies on sets of negotiation instances that are
separated in feature space by dividing the feature space either manually or using
clustering techniques. However, both methods rely on human input without clear
insight into the effects. The quality of the sets is disputable, as they are created
based on similarities in the given feature space without regard for the performance
gains thus achieved. Therefore, instead, we chose to automate the portfolio creation
method by using HYDRA [162], removing the requirement of human input in feature
space separation.

4.4.2 HYDRA
HYDRA automatically generates a portfolio given only a parameterised strategy
(Section 3.2.1) and a set of negotiation instances with features (Section 3.4) while

4.5 STRATEGY SELECTION 43

Algorithm 4.1 HYDRA [162]

Input (€] Configuration space
P Training set of negotiation instances
m Performance metric
Variables Ok Configuration
0 Portfolio of configurations
my Modified performance metric
Output 0 Portfolio of configurations

AS Algorithm selector

00—, mp—m
: fork=1;k=k+1do
0 — SMAC(O,P, my)
TestPerformance(P,0y)
0—0u {Hk}
AS — FitAlgorithmSelector(0,P)
my — GetModifiedPerformanceMetric(m, AS)
if 6 is not contributing to 6 on S then
End for loop

. return AS, 0

ENDT R LD

—
(=1

using an algorithm configurator and an algorithm selector (Section 4.5). We provide
a pseudo-code description of HYDRA in Algorithm 4.1, modified for this work.

The main idea of HYDRA is to perform multiple configurator runs on an identi-
cal set of training instances while only modifying the performance metric. Due to
the modifications to the metric, the configurator produces different strategies. In
Algorithm 4.1, the modified performance metric is computed by “GetModifiedPer-
formanceMetric” and formally defined as:

my(0, p) = max{m(@, p), m(AS(@0, p), p)}. (4.5)

The modified performance is the better of the performance of the strategy that
is assessed and the performance of the strategy that the algorithm selector selects.
By optimising the increase of performance as compared to the current portfolio, the
configurator aims to find a configuration that adds the most value to the portfolio.
In the first configurator run, the default performance metric is used. The resulting
configuration 0, is therefore a locally optimal configuration over the full set of
training settings, also known as the single best strategy in the portfolio.

4.5 STRATEGY SELECTION

The next step in our approach is strategy selection. We now have a portfolio of
strategies @, but still need to decide which of these strategies best fits our current
scenario and opponent. We, therefore, desire a mapping from the feature space X
to a one-hot distribution over the possible strategies. This is an algorithm selection
problem [127] and is illustrated in Figure 4.1, modified for our work. Essentially, it
is a classification problem for which we can train a classifier on examples generated
from our training set. Subsequently, we hope the learned function will generalise to
new negotiation scenarios and unknown opponents in the test set, allowing us to
select the most suitable strategy from our portfolio.

44 4 CONFIGURATION OF STRATEGY PORTFOLIOS

sesS
Bargaining Setting

Space

F(s)
Feature

Extraction
\ 4

z e (X, x X,) : r(9,s) € 0,1]
Feature ; Performance
Space

Selection E Performance
Mapping

R L e e P Performance

Figure 4.1: Algorithm selection schematics [127], modified for this work.

Ilany and Gal [76] also considered this algorithm selection problem and analysed
the performance of multiple classifiers that map feature vectors to algorithms. The
process of selecting a classifier and configuring the accompanying parameters
can again be seen as an algorithm configuration problem. In line with the rest
of this paper, we chose to automate the configuration of an algorithm selector by
using AutoFolio [100], leveraging the power of a broad range of algorithm selection
methods and removing human bias.

4.5.1 AuTtoFoLI1O

The algorithm selection system AutoFolio is used to construct the algorithm selector.
It has a range of regression and classification methods to choose from and uses Se-
quential Model-based optimization for general Algorithm Configuration (SMAC) to
determine both the selection method to use and the settings of its hyperparameters.
The data AutoFolio requires as input is the performance m (0, p) of every strategy
(6 € 0) on every setting (p € P) in the training set and a set of features. Its goal is to
select the best-performing strategy for every negotiation setting.

4.5.2 CROSS VALIDATION.

AutoFolio uses 10-fold cross-validation during optimisation to avoid overfitting by
dividing the negotiation instances in the training set into 10 subsets and leaving
one subset out for performance testing. However, due to the nature of a negotiation
instance being a combination of an opponent and a negotiation scenario, this leads
to overfitting of the algorithm selector. The training set of negotiation instances
is the Cartesian product of the training set of opponents and scenarios, so both
components are included multiple times in the training set.

To address this issue, we modified AutoFolio to split the cross-validation folds
based on the set of opponents and scenarios that build the negotiation instances.
The set of opponents and the set of scenarios are each split into 4 subsets, such
that we obtain a total of 4-4 = 16 folds. When selecting a fold (|Pfal = % -1PD,
we must eliminate the part of the remaining training set (|Pe;im| = % -|P)) that
overlaps with the fold based on opponents and scenarios and use the remaining

4.6 EMPIRICAL EVALUATION 45

instances (|Py;;| = % -|P|) to fit the algorithm selector. This cross-validation ap-
proach reduces the workable size of the training set, but it does prevent training on
test opponents/scenarios.

4.5.3 PERFORMANCE BASELINES

The oracle selector (Equation 4.2) always makes the perfect choice for every nego-
tiation setting and is an upper bound on the performance of a selector using the
given portfolio. It is obtained by simply trying every strategy on every setting and
selecting the best strategy. The single best strategy is the strategy in the portfolio
that obtains the highest performance on the full set of negotiation settings (Equa-
tion 4.3). We refer to this strategy as 0, as it is the first strategy in the portfolio
produced by HYDRA. The performance of the single best strategy is considered to
be the baseline.

4.6 EMPIRICAL EVALUATION

We will first describe the method that was used to obtain the results of this work
before we show the results.

4.6.1 METHOD

The first configurator run with the default performance metric results in the single
best strategy 6; on the training set of negotiation settings. We iterated through
HYDRA until k = 4. At that point, the Hydra loop was terminated, as the last strategy
that was added did not contribute to the portfolio based on the training set, which
will be shown in Section 4.6. This also allows us to analyse the performance of
portfolios of sizes 1, 2 and 3, due to the incremental approach of HYDRA. The
configurations thus obtained were tested 10 times on every negotiation setting
in the training set to capture performance variation due to randomness in the
negotiation strategies. Finally, the portfolio and the performance data were used
along with the setting features to configure an algorithm selector using AutoFolio.

INPUT
An overview of the opponents that are used in this work can be found in Table 4.1.
The test set of opponents Zypp, resr consists of the bug-free ANAC 2017 agents. More
recent ANAC agents are not compatible with this work, due to different challenges,
such as partially defined preferences and a change of benchmarking platform since
2020. In line with the competition, we allow ourselves access to the agents of
previous ANAC editions (before 2017) that we use as a training set P for the HYDRA
procedure (Algorithm 4.1). Two additional agents are added to the test set in order
to compare our work to the work of Ilany and Gal [76], which adopted a similar
portfolio selection method. 36 agents from the ANAC are used, split up into 20
training agents and 16 test agents.

The set of scenarios is provided in Table 4.2. A total of 42 scenarios is used, of
which both sides can be played by our agent, resulting in 84 playable scenarios.
The set of negotiation scenarios is selected based on diversity using the features

46 4 CONFIGURATION OF STRATEGY PORTFOLIOS

Table 4.1: Overview of opponent set used in this work. The last column indicates in which year the
opponent participated in ANAC.

Training set Test set

Agent ANAC Agent ANAC
ParsCat 2016 SimpleAgent 2017
YXAgent 2016 Rubick 2017
Terra 2016 PonPokoAgent 2017
MyAgent 2016 ParsCat2 2017
GrandmaAgent 2016 ShahAgent 2017
Farma 2016 Mosa 2017
Caduceus 2016 Mamenchis 2017
Atlas3201 2016 MadAgent 2017
AgentHP2_main 2016 Imitator 2017
RandomDance 2015 GeneKing 2017
PokerFace 2015 Farmal?7 2017
PhoenixParty 2015 CaduceusDC16 2017
ParsAgent 2015 AgentKN 2017
kawaii 2015 AgentF 2017
Atlas3 2015 MetaAgent2013 2013
AgentX 2015 MetaAgent 2012
AgentH 2015

AgentBuyogMain 2015

Gangster 2014

DoNA 2014

as described in Section 3.4, and their discount factor and reservation utility are
removed. The set is split up into 56 training scenarios and 28 test scenarios. The
training set is of size |P| = 20 x 56 = 1120 and the test set is of size [Pes;| = 16 x 28 =
448.

The negotiation scenario features were calculated in advance, as described in
Section 3.4. The opponent features can only be gathered by performing negotiations
against the opponents. We gathered these features in advance for the first configura-
tor run, by negotiating 10 times on every setting with a manually set strategy. After
the first configurator run, opponent features are extracted based on negotiations
with strategies that are already in the portfolio. Note that during training, we use
the actual opponent’s utility function (u,) to calculate the features in Section 3.4 to
reduce estimation noise.

HARDWARE & BUDGET

We followed Renting et al. [124] in terms of computational budget, in order to be
able to compare results. Each run of SMAC was given a 1200-hour budget, divided
over 300 parallel runs. Every run was performed on a single Intel® Xeon® CPU
core with 2 threads and 12 GB of RAM. Running AutoFolio for our problem is not
computationally expensive, so we chose not to run it in parallel for convenience.
We used a single dual-core processor on the same computing cluster, assigned it 4
GB of RAM, and provided it with a budget of 0.5 hours.

4.6 EMPIRICAL EVALUATION

47

Table 4.2: Overview of the negotiation scenarios sets used in this work. These scenarios are part of the

GENIUS package.
Train/Test Preference Profile 1 Preference Profile 2
train ItexvsCypress_Cypress.xml ItexvsCypress_Itex.xml
train laptop_buyer_utility.xml laptop_seller_utility.xml
train Grocery_domain_mary.xml Grocery_domain_sam.xml
train Amsterdam_partyl.xml Amsterdam_party2.xml
train camera_buyer_utility.xml camera_seller_utility.xml
train energy_consumer.xml energy_distributor.xml
train EnergySmall-A-profl.xml EnergySmall-A-prof2.xml
train Barter-A-profl.xml Barter-A-prof2.xml
train FlightBooking-A-profl.xml FlightBooking-A-prof2.xml
train HouseKeeping-A-profl.xml HouseKeeping-A-prof2.xml
train MusicCollection-A-profl.xml MusicCollection-A-prof2.xml
train Outfit-A-profl.xml Outfit-A-prof2.xml
train RentalHouse-A-profl.xml RentalHouse-A-prof2.xml
train Supermarket-A-profl.xml Supermarket-A-prof2.xml
train Animal_utill.xml Animal_util2.xml
train DogChoosing_utill.xml DogChoosing_util2.xml
train Icecream_utill.xml Icecream_util2.xml
train Lunch_utill.xml Lunch_util2.xml
train Ultimatum_utill.xml Ultimatum_util2.xml
train DefensiveCharms_utill.xml DefensiveCharms_util2.xml
train SmartEnergyGrid_utill.xml SmartEnergyGrid_util2.xml
train DomainAce_utill.xml DomainAce_util2.xml
train Smart_Grid_utill.xml Smart_Grid_util2.xml
train DomainTwF_utill.xml DomainTwF_util2.xml
train ElectricVehicle_profilel.xml ElectricVehicle_profile2.xml
train PEnergy_utill.xml PEnergy_util2.xml
train JapanTrip_utill.xml JapanTrip_util2.xml
train NewDomain_utill.xml NewDomain_util2.xml
test England.xml Zimbabwe.xml
test travel_chox.xml travel_fanny.xml
test IS_BT_Acquisition_BT_prof.xml IS_BT_Acquisition_IS_prof.xml
test AirportSiteSelection-A-profl.xml AirportSiteSelection-A-prof2.xml
test Barbecue-A-profl.xml Barbecue-A-prof2.xml
test EnergySmall-A-profl.xml EnergySmall-A-prof2.xml
test FiftyFifty-A-profl.xml FiftyFifty-A-prof2.xml
test Coffee_utill.xml Coffee_util2.xml
test Kitchen-husband.xml Kitchen-wife.xml
test Wholesaler-profl.xml Wholesaler-prof2.xml
test triangularFight_utill.xml triangularFight_util2.xml
test SmartGridDomain_utill.xml SmartGridDomain_util2.xml
test WindFarm_utill.xml WindFarm_util2.xml

test

KDomain_utill.xml

KDomain_util2.xml

48 4 CONFIGURATION OF STRATEGY PORTFOLIOS

Table 4.3: Final configurations in the portfolio. These are the final parameter settings that make up the
different negotiation strategies in the portfolio.

Accepting Bidding Searching
0 a B tacc Y nfit 8 e Npop Ntour E R Rm Re
01 1.038 0.03201 0942 AVGW 3 0.927 0.00199 262 6 4 0.290 0.140 0.085
0, 1.001 0.00166 0935 AVGW 3 0.998 0.06232 94 2 5 0.168 0.002 0.108
03 1.007 0.01970 0912 AVGYW 4 0.917 0.01093 305 10 1 0.107 0.063 0.184
04 1.056 0.00003 0.900 MAXW 5 0.997 0.02090 139 10 4 0.463 0.176 0.101

Table 4.4: Individual configuration performance on P and Prest. The two left columns show the average
utility of every individual strategy in the portfolio on the training and test set of negotiation settings. The
next four columns show the fraction of the amount settings in the test set for which a single strategy
belongs to a set of best-performing strategies.

M@, Best performing on Py, by ratio
%) P Prest Singlebest Intop2 Intop3 Intop4 Sum
01 0.815 0.742 0.281 0.100 0.016 0.123 0.520
6, 0.788 0.734 0.167 0.022 0.020 0.123 0.333
03 0.789 0.754 0.154 0.065 0.031 0.123 0.373
64 0773 0721 0.118 0.058 0.033 0.123 0.333

Output. The final algorithm selector was saved as a binary file at the final step of
HYDRA, along with the parameter settings of every strategy configuration (Table 4.3).
We use both when faced with a new negotiation setting for which we want to select
a configuration.

4.6.2 RESULTS
We now present the results using a test set of negotiation instances P;es;. More
specifically, we investigated two aspects:

1. the quality of the portfolio;

2. the performance of the algorithm selector.

QUALITY OF THE PORTFOLIO

We assessed the quality of the portfolio by measuring the performance (Equa-
tion 4.1) of every configuration in the portfolio on the training and testing sets of
negotiation settings. The results can be found in Table 4.4. We included ratios
that indicate how often a strategy is part of the set of best strategies per setting
(“Sum” in Table 4.4). As a final quality check, the performance of the oracle selector
(Equation 4.2) is evaluated for varying sizes of the portfolio. We present the results
in Table 4.5.

Table 4.4 shows the results per strategy in the portfolio in the form of individual
performance over a set of settings M (6, P). It is evident that 0, is the single best
strategy over the full training set P. Furthermore, as every strategy is at least once
the single best on individual settings (single best ratio > 0), we can conclude that

4.6 EMPIRICAL EVALUATION 49

Table 4.5: Algorithm selector performance compared to oracle performance. The two columns on the
left show the upper limit in average utility for various sizes of the portfolio on the training and test set of
negotiation settings. The right two columns show the average utility obtained by applying the trained
algorithm selector on every setting in both sets.

M(OR(, p),-) M(AS@,p),)
0 P Prest P Prest
{61} 0.815 0.742 0.815 0.742
{61,02} 0.870 0.824 0.865 0.785
61,05,03) 0875 0832 0869 0.776

{61,62,03,04) 0.879 0.840 0.868 0.784

every strategy contributes to the portfolio, thus satisfying our requirement from
Section 4.3.1.

Finally, Table 4.5 shows us that, at every iteration of HYDRA, the oracle perfor-
mance of the portfolio increases on both P and Py.s;. The improvement decreases
on P as the number of iterations increases, indicating that HYDRA fills the largest
“weaknesses” in the portfolio first.

PERFORMANCE OF THE ALGORITHM SELECTOR

Table 4.5 shows that there is potential in the portfolio to improve the utility of D A(9)
by M?j# -100% =~ 13.0% on the test set, if we use the oracle selector rather
than 6;. We now replace the oracle selector with the actual selector and test its

performance in two ways.

Performance against known opponents. We test the absolute performance of
the algorithm selector by assuming perfect knowledge of opponent features of the
opponents in the test set of negotiation setting P;.s;. The opponent features are
gathered by running 10 negotiation sessions with configuration 0, on the test set.

We trained and tested multiple algorithm selectors on different portfolio sizes
by extending the portfolio, starting with the single best strategy 8,. We report
the performance in Table 4.5. For the oracle selector, the performance of DA(6)
increases with the size of the portfolio. However, the performance increase plateaus
on Pyes; after adding the fourth strategy to the portfolio. Based on the results on
the training set, we conclude that the fourth strategy in the portfolio is redundant
and needlessly complicates the strategy selection procedure; we therefore omitted
it in the final evaluation step reported in the following.

Performance with unknown opponents. Opponent features, in contrast to the
scenario features, must be learned from previous encounters. Up to this point, we
assumed the opponents to always be known in advance, which is not realistic. We
now simulate a realistic negotiation tournament where this problem occurs. The
agents in Pys; can also learn from their opponents, but we cannot guarantee fair
learning chances due to parallelisation. To address this issue, we negotiate once
against all of them and then clean up and restart our agent, giving every opponent
a head start, favouring a handicap over any advantage for our agent.

50 4 CONFIGURATION OF STRATEGY PORTFOLIOS

New negotiation setting
s

Seen opponent
before?

¢—No

Strategy: 0 €No—

Yesj

Samples of opponent
features > 2?

\—l—/

Yes

Yes— AS(0,s) =617

v

No

Log opponent Strategy: AS(6, s)

features

-
N
A

Figure 4.2: Realistic strategy selection of DA(AS(@, p))

The question arises of what strategy to select at first encounters with opponents
when no opponent features are available. If strategy selection is not possible, we
select the single best strategy 8;. Opponent features are influenced by the strategy
that is selected by DA(6), so we simplify the feature extraction process and only
gather features when strategy 0, is selected. This aligns with the decision to select
0, at first opponent encounters. The coefficient of variation of an opponent feature
(Section 3.4) needs at least two samples to be meaningful, so we set a second
condition to select strategy 6; for the first two encounters with an opponent to
“sample” the opponent. We illustrate this behaviour in Figure 4.2.

To obtain the results, we iterate randomly through the test settings Py.s; and use
DA(AS (0, p)) with 8 = {6;,0-,03} to negotiate, following the procedure as described
in Figure 4.2. Additionally, we let every opponent in the test set negotiate with every
other opponent in the test set on every test scenario and combine the results with
the results of the D A(0). This procedure is repeated 10 times to reduce the influence
of variance for a total of 38 080 negotiations. The results averaged per agent show
that we are capable of winning an ANAC-like bilateral tournament with our D A(6)
using the strategy selector, see Table 4.6. We beat the runner-up agent (MetaAgent)
by % -100% = 5.6% (significant at @ = 0.05 according to a one-tailed t-test
p-value of p = 0.0022).

Finally, we compare the performances including error bars of D A(0) with 6, and
with a portfolio of strategies in a realistic ANAC tournament setup, see Figure 4.3.
Notice that our utility improved with 0'7?7# -100% = 6.2% by using a portfolio
instead of a single fixed strategy and that the portfolio approach also improves all

other performance measures.

4.6 EMPIRICAL EVALUATION 51

Table 4.6: ANAC tournament results using D A(AS(6, p)) where all scores are averaged over all
negotiation instances. The goal of ANAC is to obtain the highest utility. We show the top 5 agents and all
the outliers for every performance measure. Here, social welfare is the summation of utility and
opponent utility, Pareto distance is the smallest distance to a Pareto efficient negotiation outcome, Nash
distance is the distance to the Nash bargaining solution [111] of the scenario, and agreement ratio
represents the fraction of settings that resulted in an agreement. (bold = best, underline = worst)

=5 0B

\())g\gg’“em uﬁ\s'\(t)\lc @ wei\)?{‘; o d"mﬁcaih distanc®

Agent Utility Opponent Social Pareto Nash
utility welfare distance distance
Imitator 0.446 0.901 1.347 0.091 0.428
GeneKing 0.612 0.783 1.396 0.065 0.378
Mamenchis 0.636 0.863 1.498 0.016 0.272
ParsCat2 0.642 0.773 1.414 0.090 0.273
MadAgent 0.669 0.536 1.204 0.232 0.383
Farmal7 0.676 0.690 1.366 0.115 0.311
CaduceusDC16 0.688 0.599 1.287 0.181 0.327
AgentKN 0.690 0.757 1.447 0.065 0.252
SimpleAgent 0.699 0.531 1.230 0.204 0.398
Mosa 0.702 0.781 1.483 0.026 0.271
Rubick 0.716 0.715 1.431 0.070 0.282
PonPokoAgent 0.730 0.589 1.320 0.158 0.307
AgentF 0.738 0.679 1.417 0.076 0.301
ShahAgent 0.741 0.554 1.296 0.172 0.342
MetaAgent2013 0.746 0.659 1.405 0.092 0.284
MetaAgent 0.752 0.634 1.386 0.106 0.296
DA(AS(@, p) 0.788 0.627 1.414 0.074 0.314
N
S84
15 Q-
o~ 0o paey
1] 58 gh 010 DA(AS(®, p)
s o £« [t}
S S o
0.5 HH H Sy Sg
I
0) i

Figure 4.3: Comparison of two D A(f) strategies in an ANAC tournament setting. Here, DA(01) is
comparable to the agent configured by Renting et al. [124] and DA(AS(O, p)) represents this work. See
Table 4.6 for an explanation of the measures.

52 4 CONFIGURATION OF STRATEGY PORTFOLIOS

4.7 CONCLUSION

In previous work [124], automatic algorithm configuration was used to obtain a
single best strategy. Here, we have introduced a method to configure and use a
portfolio of strategies for negotiation agents, adding a combination of HYDRA,
AutoFolio, and a procedure to learn opponent behaviour. Our approach is fully
automated and represents a significant step beyond the use of single best strategies
in automated negotiation. In principle, it can be applied to any negotiation agent
with a flexible, parameterised strategy.

We created a portfolio of 4 strategies 8 and tested the performance of every
strategy on a broad set of negotiation settings. In Table 4.4, we showed that every
configured strategy contributes to the portfolio by specialising on separate sets
of negotiation settings. By adding algorithm selection to the Dynamic Agent to
exploit differences between settings in a realistic tournament, we increased the
performance of Dynamic Agent by 6.2% compared to the single best strategy and
won the tournament by a margin of 5.6%. We note that the single best strategy
is comparable to the agent configured by Renting et al. [124], indicating that a
portfolio-based agent provides another significant boost to negotiation pay-off.

Limitations lie in the required mutual agreement on the norms of how to con-
duct a negotiation. In this work, a predefined protocol is used that is supported by
all used agents. Agents that do not support this protocol cannot participate in the
negotiation. Another important limitation is that this method has no safeguards
to detect whether the strategy portfolio is still performing well and that we are not
being exploited. Finally, due to the train-then-test principle of our method, we
still rely on a training set that is reasonably representative of the actual application.
Ethical concerns arise in the design of negotiation agents for use in real-life applica-
tions. Persons who have more resources to design quality negotiation agents can
gain even more resources in the process, leading to more inequality. There are risks
of exploitation, unfair play, and deception due to a lack of explainability and a high
level of complexity for laypersons.

In future work, we intend to study the influence of the strategies employed by the
Dynamic Agent on the opponent characteristics that we learn during negotiation
to improve opponent learning. Secondly, strategy selection could be improved for
first encounters with opponents, where currently, the single best strategy is selected
without regard to the instance characteristics. We intend to investigate strategy
selection for negotiation instances through neural networks to relax the reliance
on manually designed instance features. Finally, it would be interesting to explore
the use of reinforcement learning for training negotiation strategies instead of the
algorithm configuration approach that we leveraged here.

