Universiteit

w4 Leiden
The Netherlands

Learning in automated negotiation
Renting, B.M.

Citation
Renting, B. M. (2025, December 11). Learning in automated negotiation.
Retrieved from https://hdl.handle.net/1887/4284788

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4284788

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4284788

21

I

LEARNING TO NEGOTIATE

23

3 o

3

AUTOMATED CONFIGURATION OF
NEGOTIATION STRATEGIES

This chapter has been published at AAMAS 2020 [124].

24 3 AUTOMATED CONFIGURATION OF NEGOTIATION STRATEGIES

3.1 INTRODUCTION

In this chapter, we use algorithm configuration techniques to configure negotiating
agents on large and diverse sets of negotiation scenarios and opponent types. We
recreate a negotiation agent from literature [92] that is configured manually, com-
bine it with contemporary opponent learning techniques and create a configuration
space of its strategic behaviour. To automatically configure this conceptually rich
and highly parametric design, we use Sequential Model-based optimization for
general Algorithm Configuration (SMAC), a general-purpose automated algorithm
configuration procedure that has been used previously to optimize the performance
of cutting-edge solvers for Boolean Satisfiability (SAT), Mixed Integer Programming
(MIP) and other NP-hard problems. We note that here, we apply automated algo-
rithm configuration for the first time to a multi-agent problem.

Earlier attempts to solve the automated configuration problem in automated
negotiation mostly used basic approaches, such as random and grid search. More
advanced methods, in the form of genetic algorithms, have also been attempted.
Matos et al. [104] encoded a mix of baseline tactics as a chromosome and deployed
a genetic algorithm to find the best mix. They assumed perfect knowledge of
the opponent’s preferences, and their strategy is only tested against itself in a
single negotiation scenario. Eymann [46] encoded a more complex strategy as a
chromosome with six parameters, again only testing its performance against itself
and using the same scenario. Dworman et al. [43] implement the genetic algorithm
in a coalition game with three players, with a strategy in the form of a hard-coded if-
then-else rule. The parameters of the rule are implemented as a chromosome. The
strategy is tested against itself in a coalition game with varying coalition values. Lau
etal. [92] use a genetic algorithm to explore the outcome space during a negotiation
session but do not use it to change the strategy.

This work aims to automatically configure a negotiation algorithm with no fixed
or pre-defined strategy. This agent can be configured to perform well on a user-
defined set of training problem instances, with little restrictions on the size of the
instances or instance sets. To demonstrate its performance, we configure the agent
in an attempt to win an Automated Negotiating Agents Competition (ANAC)-like
bilateral tournament [10].

We show that we can win such a tournament with a comfortable margin of 5.1%
in increased negotiation payoff compared to the number two. These margins are
not observed in a tournament without our negotiation agent, where the winning
strategy obtains a marginal improvement in negotiation payoff of 0.012%.

3.2 PROBLEM DESCRIPTION

In this section, we discuss the problem that we attempt to solve. We first describe
the parameterised agent that we will configure (Section 3.2.1) and then give a formal
problem definition using this parameterised agent (Section 3.2.2). For background
on automated negotiation and algorithm configuration, we refer the reader to
Section 2.1 and Section 2.2, respectively.

3.2 PROBLEM DESCRIPTION 25

3.2.1 DYNAMIC AGENT
We first create a Dynamic Agent with a flexible strategy equivalent to a configuration
space. We implement a few popular components and add their design choices
to the configuration space, increasing the chances that it contains a successful
strategy. We refer to this configuration space (or strategy space) with ®. We name
the constructed agent Dynamic Agent D A(0), with strategy 0 € ©.

The dynamic agent is constructed on the basis of the BOA-architecture [8]. We
use this structure to give a brief overview of the workings of the dynamic agent and
its configuration space.

BIDDING STRATEGY

The implemented bidding strategy applies a fitness value to the outcome space Q
and selects the outcome with the highest fitness as the offer, which is an approach
used by Lau et al. [92]. This fitness function f(w, f) balances between our utility,
the opponent’s utility and the remaining time towards the deadline. Such a tactic is
also known as a time-dependent tactic, and it generally concedes to the opponent
as time passes.

The fitness function in Equation 3.1 has three parameters:

* Atrade-off factor 6 that balances between the importance of our own utility
and the importance of reaching an agreement.

» Afactor to control an agent’s eagerness to concede e relative to time, where
the behaviour is Boulware if 0 < e < 1, linear conceder if e = 1, and conceder
ife>1.

A categorical parameter 7 that sets the outcome where the fitness function
concedes towards over time (Equation 3.2). Here, x/4* is the last offer made
by the opponent, and x* is the best offer the opponent made in terms of our
utility.

flw, 1) = F(t) * u(w) + (1 - F(#) * fr(w) G
F(t) =6 (1—1¢) '

A@) =1 =iy (@) = i1 (x5

fol@) = min(1 + @y (@) — 2, (x195%), 1)
f3(@) =1—0p(w) — 0o (x™)] 3.2)
fil@) =min(1 + iy (@) — i1 (x1), 1)

f5(w) =1,(w)

Outcome space exploration The outcome space is potentially large. To reduce
computational time and to ensure a fast response time for our agent, we apply
a genetic algorithm to explore the outcome space in search of the best outcome.
Standard procedures such as elitism, mutation and uniform crossover [109] are

26 3 AUTOMATED CONFIGURATION OF NEGOTIATION STRATEGIES

Table 3.1: Configuration space in bidding strategy

Description Symbol Domain
Trade-off factor 1) [0,1]
Conceding factor e 0,2]
Conceding goal n {1,2,3,4,5}
Population size Np [50,400]
Tournament size Ny [1,10]
Evolutions E [1,5]
Crossover rate R [0.1,0.5]
Mutation rate R [0,0.2]
Elitism rate R, [0,0.2]

Table 3.2: Configuration space in acceptance strategy

Description Symbol Domain
Scale factor a [1,1.1]
Utility gap B (0,0.2]
Accepting time tacc [0.9,1]

Lower boundary utility — y {(MAXY, AvGW}

applied, and the parameters of the genetic algorithm are added to the configuration
space.

Configuration space The configuration space of the bidding strategy is summa-
rized in Table 3.1.

OPPONENT MODEL

The Smith Frequency model [59] is used to estimate the opponent utility function
i, (w). According to an analysis by Baarslag et al. [11], the performance of this
opponent modelling method is already quite close to that of the perfect model. No
parameters are added to the configuration space of the Dynamic Agent.

ACCEPTANCE STRATEGY

The acceptance strategy decides when to accept an offer from the opponent. Baarslag
et al. [14] performed an isolated and empirical research on popular acceptance

conditions. They combined acceptance conditions and showed that a combined ap-
proach outperforms its parts. Baarslag et al. defined four parameters and performed

a grid search in search of the best strategy. We adopt the combined approach and

add its parameters (Table 3.2) to the configuration space of the Dynamic Agent. For

more details on the combined acceptance condition, see Baarslag et al. [14].

3.2.2 PROBLEM DEFINITION
The negotiation agents in the General Environment for Negotiation with Intelligent
multi-purpose Usage Simulation (GENIUS) environment ! [99] are mostly based

1

https://ii.tudelft.nl/genius/

3.3 AUTOMATED CONFIGURATION 27

on manually configured strategies by competitors in ANAC. These agents almost
always contain parameters that are set by trial and error, despite the abundance
of automated algorithm configuration techniques (e.g. Genetic Algorithm [71]).
Manual configuration is a difficult and tedious job due to the dimensionality of
both the configuration and the negotiation instance space.

A few attempts were made to automate this process as discussed in Section 3.1,
but only on very specific negotiation settings with few configuration parameters.
The main reason for this is that many automated configuration algorithms require to
evaluate a challenging configuration on the full training set. To illustrate, evaluating
the performance of a single configuration on the full training set that we use in
this paper would take approximately 18.5 hours, regardless of the hardware due to
the real-time deadline. These methods of algorithm configuration are, therefore,
impractical.

Automated strategy configuration We have an agent called Dynamic Agent
DA(6), with strategy 8. We want to configure this agent such that it performs
generally well using automated configuration methods. More specifically, we want
the agent to perform generally well in bilateral negotiations with a real-time dead-
line of 60[s]. To do so, we take a diverse and large set of both agents Z;,;, of
size |Zyrqinl = 20 and scenarios St4in Of size |Syr4in| = 56 that we use for training,
making the total amount of training instances [Py, qinl = 1 Z¢rainl * |Strainl = 1120.
Running all negotiation settings in the training set would take 1120 minutes or
~ 18.5 hours, regardless of the hardware, as we use real-time deadlines.

Now suppose we have a setting for the Dynamic Agent based on the litera-
ture 6; and a setting that is hand tuned based on intuition, modern literature and
manual tuning 6, that we consider baselines. Can we automatically configure a
strategy 0, € © that outperforms the baselines and wins an ANAC-like bilateral
tournament on a never before seen test set of negotiation instances Pres:?

3.3 AUTOMATED CONFIGURATION

The goal of our work is to create an agent that can be configured to obtain a negotia-
tion strategy that performs well in a given setting. This requires us to define what it
means for a strategy to perform well. An obvious performance metric m(0, p) is the
utility obtained using strategy 0 in negotiation instance p. As we are interested in
optimizing performance on the full set of training instances rather than for a single
instance, we define the performance of a configuration on an instance set as the
average utility:

1
Pl peP

where:

28 3 AUTOMATED CONFIGURATION OF NEGOTIATION STRATEGIES

m :utility obtained by using strategy 6 in negotiation instance p

M :average utility of configuration 8 on instance set P

0 € © : parameter configuration

: single negotiation instance consisting of opponent agent i € Z and
scenario s € S, where p =(a,s) e P
P :setofnegotiation instances
As stated in Section 3.2.2, automated configuration methods that require eval-

uation on the full training set of instances, thus requiring Equation 3.3 to be cal-
culated, are impractical for our application. A second component that influences
the amount of required evaluations is the mechanism that selects configurations
for evaluation. This is not a straightforward problem, as the configuration space is
large, and simple approaches, such as random search and grid search, suffer from
the curse of dimensionality.

3.3.1 SMAC

To solve the problem defined in Section 3.2.2, we bring SMAC, a prominent, general-
purpose algorithm configuration procedure [75], into the research area of auto-
mated negotiation. We note that SMAC is well suited for tackling the configuration
problem arising in the context of our study:

1. It can handle different types of parameters, including real- and integer-valued
as well as categorical parameters.

2. It can configure on subsets of the training instance set, reducing the compu-
tational expense.

3. It has a mechanism to terminate poorly performing configurations early,
saving computation time. If it detects that a configuration is performing
very poorly on a small set of instances (e.g., a very eager conceder), it stops
evaluating and drops the configuration.

4. It models the relationship between parameter settings, negotiation instance
features and performance, which tends to significantly reduce the effort of
finding good configurations.

5. It permits parallelisation of the configuration process by means of multiple
independent runs, which leads to significant reductions in wall-clock time.

SMAC keeps a run history (Equation 3.4), consisting of a configuration 6; with
its associated utility m; on a negotiation instance that is modelled by a feature set
F(p). Arandom forest regression model is fitted to this run history, mapping the
configuration space and negotiation instance space to a performance estimate
(Equation 3.5). This model is then used to predict promising configurations, which
are subsequently raced against the best configuration found so far, until an overall
time budget is exhausted. We refer the reader to Hutter et al. [75] for further details
on SMAC.

R={(<91r]:(p)>101)»---y(<9n»]:(]9)>»0n)} (34)

3.4 INSTANCE FEATURES 29

Table 3.3: Scenario features

Feature type Description Equation Notes
Domain Number of issues |B|
Domain Average number of ﬁ Y beB 1Qpl
values per issue
Domain Number of possible 1Q|
outcomes
Preference Standard deviation of ﬁ Y pep (w(b) - ‘—él)z
issue weights
Preference Average utility of all ﬁ Y weQ U(w) denoted
possible outcomes by u(®)
Preference Standard deviation utility \/ |T1)\ Y weq (Ulw) — u(@))?

of all possible outcomes

M:(©xP)—im (3.5)

In order for SMAC to be successful in predicting promising configurations, it
requires an accurate feature description of the negotiation instances that captures
differences in complexity between these instances.

Automated algorithm configuration Suppose we have a set of opponent agents
7 and a set of negotiation scenarios S, such that combining a single agent i € Z and
a single scenario s € S creates a new negotiation setting or instance p € P. Can we
derive a set of features for both the opponent and the scenario that characterize the
complexity of the negotiation instance?

We approach this question empirically by analyzing if a candidate feature set
helps the automated algorithm configuration method find better configurations
within the same computational budget.

3.4 INSTANCE FEATURES

The negotiation instances consist of an opponent and a scenario. We will extract
features for both components separately and then combine them as a feature set of
an instance (Equation 3.6). This feature description is used by the configuration
method to predict promising strategies for our Dynamic Agent D A(6).

F P — (Xse x Xopp) (3.6)

3.4.1 SCENARIO FEATURES

A negotiation scenario consists of a shared domain and individual preference pro-
files. Ilany and Gal [76] specified a list of features to model a scenario that they
used for strategy selection in bilateral negotiation. Although the usage differs in
their paper, the goal to model the scenario is the same, so we will follow Ilany et al..
The features are fully independent of the opponent’s behaviour. An overview of the
scenario features is provided in Table 3.3.

30 3 AUTOMATED CONFIGURATION OF NEGOTIATION STRATEGIES

a _ 1-uo(xy,)

b~ 1-up(w™)

1% :
w”* \ —— Opponent offers
B T Outcome (w)
0.8 s ——— Pareto frontier
Nash solution
. 067
3
N
04+ J
BN
0.2 X
: ‘a
b —
0 ‘ —— ~— /
0 0.2 0.4 0.6 0.8 1

Uo(w)

Figure 3.1: Visualisation of Concession Rate (CR)

3.4.2 OPPONENT FEATURES
This section describes the opponent features in detail. For each opponent, we store
both the mean and the Coefficient of Variance (CoV) of all features.

NORMALIZED TIME
The time ¢ € [0, 1] it takes to reach an agreement with the opponent.

CONCESSION RATE

To measure how much an opponent is willing to concede towards our agent, we use
the notion of Concession Rate (CR) introduced by Baarslag et al. [15]. The CRis a
normalized ratio CR € [0, 1], where CR = 1 means that the opponent fully conceded
and CR = 0 means that the opponent did not concede at all. By using a ratio instead
of an absolute value (utility), the feature is disassociated from the scenario.

To calculate the CR, Baarslag et al. [15] used two constants. The minimum utility
an opponent has demanded during the negotiation session u,(x,) and the Full
Yield Utility (FYU), which is the utility that the opponent receives at our maximum
outcome u,(w™).

We present a formal description of the CR in Equation 3.7 and a visualisation in
Figure 3.1.

if up(x) < up(w™),

1
CR(x,)) = _ - (3.7
0 { % otherwise.

AVERAGE RATE

We introduce the Average Rate (AR) that indicates the average utility an opponent
has demanded as a ratio depending on the scenario. The two constants needed are
the FYU (u,(w™)) as described in the previous section and the average utility an

3.4 INSTANCE FEATURES 31

—— Opponent offers
Outcome (w)
0.8 1 —— Pareto frontier
® Average offer
Nash solution
06
3
=
=
04 +
0.2 +
0 ;

0 02 04 06 08 1
Uy (W)

Figure 3.2: Visualisation of Average Rate (AR)

opponent demanded (u,(X)). The AR is a normalized ratio AR € [0, 1], where AR =0
means that the opponent only offered his maximum outcome and AR = 1 means
that the average utility the opponent demanded is less than or equal to the FYU. We
present a definition of the AR in Equation 3.8 and a visualisation in Figure 3.2.

) 1 if 1o (%) < up(w™),
AR(x):{ Lty (B) R (3.8)
Ty @™ otherwise.

The AR is another indication of competitiveness of the opponent based on
average utility demanded instead of minimum demanded utility as the CR is.

DEFAULT CONFIGURATION PERFORMANCE

According to Hutter et al. [75], the performance of any default configuration on
a problem works well as a feature for that specific problem. For negotiation, this
translates to the obtained utility of a hand-picked default strategy on a negotiation
instance. The obtained utility is normalized and can be used as a feature for that
negotiation instance.

We implement this concept as an opponent feature by selecting a default strat-
egy and using it to obtain an agreement w4g,¢. With the opponent. We then nor-
malize the obtained utility and use it as the Default Configuration Performance
(DCP) feature. We present the formal definition of this feature in Equation 3.9 and a
visualisation in Figure 3.3.

0 if u(w)< ulw?),
DCP(wagree) = { U agree)—t(@") asree

1-u(w™)

° (3.9)
otherwise.

32 3 AUTOMATED CONFIGURATION OF NEGOTIATION STRATEGIES

_ Ulwagree)—ulw™)

a
b~ 1-u(w™)

—— Opponent offers
Outcome (w)

—— Pareto frontier
Nash solution

u(w)

0.2

0 02 04 06 08 1
Uo(w)

Figure 3.3: Visualisation of Default Configuration Performance (DCP)

Table 3.4: Opponent utility function usage

Training Testing

DA6) ity (W) ilo(w)
SMAC Up (W) N/A

3.4.3 OPPONENT UTILITY FUNCTION
As can be seen in Figure 3.1, Figure 3.2, and Figure 3.3, the actual opponent utility
function u,(w) is used to calculate the opponent features. SMAC is only used to
configure the Dynamic Agent on the training set. As the opponent features are
only used by SMAC, we can safely use the opponent’s utility function to construct
those features (Equation 3.7, Equation 3.8 and Equation 3.9) without giving the
Dynamic Agent an unfair advantage during testing. The Dynamic Agent always
uses the predicted opponent utility i, (w) obtained through the model (Table 3.2.1),
as is conventional in the ANAC.

We provide an overview of when the predicted opponent utility function and
when the actual opponent utility function is used in Table 3.4.

3.5 EMPIRICAL EVALUATION

We must set baseline configurations to compare to the result of the optimisation.
The basis of our Dynamic Agent is derived from a paper by Lau et al. [92]. Though
some functionality is added, it is possible to set our agent’s strategy to resemble
that of the original agent. We refer to this configuration from the literature as 6y, its
parameters can be found in Table 3.5.

Another baseline strategy is added, which is configured manually, as the liter-
ature configuration is outdated. A combination of intuition, past research, and

3.5 EMPIRICAL EVALUATION 33

Table 3.5: Baseline configurations parameters

Accepting Fitness function Space exploration
0 a B tacc Y n o6 e Np Ny E R Ry Re
6; 1 0 1 MAXW 1 0.5 0.5 200 3 3 0.6 0.05 0.1

Op 1 0 098 MAX™W 4 095 005 300 5 4 06 0.05 0.05

manual search is used for this manual configuration, which we consider the de-
fault method for current ANAC competitors. We present the manually configured
parameters 0,, in Table 3.5 and an explanation below:

* Accepting: The acceptance condition parameters of 0; set a pure ACext
strategy with parameters a = 1, § = 0. Baarslag et al. [14] performed empirical
research on a variety of acceptance conditions and showed that there are
better alternatives. We set the accepting parameters of our configuration to
the best-performing condition as found by Baarslag et al. [14].

Fitness function: Preliminary testing showed that the literature configuration
concedes much faster than the average ANAC agent, resulting in a poor-
performing strategy. We set a more competitive parameter configuration for
the fitness function by manual search to match the competitiveness of the
ANAC agents.

* Space exploration: The domain used in the paper has a relatively small set
of outcomes. We increased the population size, added an extra evolution to
the genetic algorithm and made some minor adjustments to cope with larger
outcome spaces.

3.5.1 METHOD

SMAC is run in embarrassingly parallel mode on a computing cluster by starting a
separate SMAC process on chunks of allocated hardware. SMAC selects a negotia-
tion instance and a configuration to evaluate that instance and calls the negotiation
environment GENIUS through a wrapper function.

Input The training instances were created by selecting a diverse set of opponents
and scenarios from the GENIUS environment. The scenarios have non-linear
utility functions and vary in competitiveness and outcome space size (between
9 and 400 000). The scenario features were calculated in advance as described in
Section 3.4.1, and the configuration space is defined in Section 3.2.1.

The opponent features, as defined in Section 3.4.2, can only be gathered by
performing negotiations against the opponents. We gather these features in advance
by negotiating 10 times in every instance with the manual strategy 8,,,.

Hardware & configuration budget We perform 300 independent parallel runs of
SMAC for 4 hours of wall-clock time each, on a computing cluster running Simple

34 3 AUTOMATED CONFIGURATION OF NEGOTIATION STRATEGIES

Table 3.6: Configurations overview

Accepting Fitness function Space exploration

0 a B tacce Y n 6 e Np N; E R R Re

0; 1 0 1 MAXW 1 0.5 0.5 200 3 3 0.6 0.05 0.1
Om 1 0 0.98 MAXY 4 098 0.05 300 5 4 04 0.05 0.05
01 1.001 0.048 0901 AVGW 3 0879 0.00183 345 10 4 0437 0.003 0.176
62 1.041 0.001 0904 AVGW 4 0.913 0.00130 384 5 4 0.431 0.126 0.198
03 1.009 0.026 0910 MAX"W 1 0977 000113 361 2 5 0279 0.181 0.072
04 1.032 0.022 0931 AvGW 3 0914 0.00429 311 8 3 0251 0.082 0.132
05 1.015 0017 0925 AVGW 5 0.961 0.00105 337 5 3 0.192 0.090 0.138
O¢ 1.027 0.022 0943 AVGY 3 0985 0.00227 283 7 4 0294 0.057 0.156

Linux Utility for Resource Management (SLURM). To ensure consistent results, all
runs were performed on Intel® Xeon® CPU, allocating 1 CPU core, with 2 processing
threads and 12 GB RAM to each run of SMAC.

Output Every parallel SMAC process outputs its best configuration 6;,,. after the
time budget is exhausted. As there are 300 parallel processes, a decision must
be made on which of the 300 configurations to use. To do so, the SMAC random
forest regression model conform Equation 3.5 is rebuilt and used to predict the
performance of every 6;,.. The configuration with the best-predicted performance
is selected as the best configuration 8.

3.5.2 RESULTS
The configuration process, as described, is run three times without instance features
and three times with instance features, under identical conditions. There is now
a total of 8 strategies: 2 baselines [0},60,,], 3 optimized without features [0,,0,,0s],
and 3 optimised with features [04,05,085]. An overview of the final configurations is
presented in Table 3.6.

The obtained configurations are now analyzed with an emphasis on the follow-
ing three topics:

1. The influence of the instance features on the convergence of the configuration
process.

2. The performance of the obtained configurations on a never-before-seen set
of instances.

3. The performance of the best configuration in an ANAC-like bilateral tourna-
ment.

INFLUENCE OF INSTANCE FEATURES

To study the influence of the instance features on the configuration process, we com-
pare the strategies obtained by configuring with features and configuring without
features. Only the training set of instances is used for the performance comparison,
as we are purely interested in the convergence towards a higher utility.

3.5 EMPIRICAL EVALUATION 35

Table 3.7: Performance of configurations on P = P4,

0 M@O,P) 71\/[(91\7/)[252/[52;" P) Description

0; 0.533 -0.307 Literature

Om 0.769 0 Manually configured

61 0.785 0.020 Configured without features
[2/] 0.770 0.000 Configured without features
63 0.792 0.029 Configured without features
64 0.800 0.040 Configured with features

05 0.816 0.060 Configured with features

06 0.803 0.044 Configured with features

Table 3.8: Performance of configurations on P = Prest

0 M@O,P) W Description

0; 0.563 -0.261 Literature

6m 0763 0 Manually configured

01 0.779 0.021 Configured without features
6 0.760 -0.004 Configured without features
03 0.774 0.015 Configured without features
04 0.792 0.038 Configured with features

05 0.795 0.042 Configured with features

06 0.789 0.034 Configured with features

Every configuration is run 10 times on the set of training instances P;4i,, and
the average obtained utility is calculated by Equation 3.3. The results are presented
in Table 3.7, including an improvement ratio over 6,,.

SMAC is capable of improving the performance of the Dynamic Agent above
our capabilities of manual configuration. We observe that configuration without
instance features potentially leads to marginal improvements on the training set.
Finally, we observe that the usage of instance features leads to less variation in final
configuration parameters (Table 3.6) and to a significant improvement of obtained
utility.

PERFORMANCE ON TEST SET

Testing the configurations on a never-before-seen set of opponent agents and
scenarios is needed to rule out potential overfitting. We selected a diverse set of
scenarios and opponents for testing, such that [Pess| = | Arest| * |Stess| = 16 %28 =
448.

Every configuration is once again run 10 times on the set of training instances
P:es: and the average obtained utility is calculated by Equation 3.3. The results are
presented in Table 3.8, including an improvement ratio over 0,,.

It is now clear that strategy configuration without instance features is unde-
sirable as it potentially leads to a worse-performing strategy. Configuration with
instance feature, on the other hand, still leads to a significant performance increase
on a never-before-seen set of negotiation instances.

36 3 AUTOMATED CONFIGURATION OF NEGOTIATION STRATEGIES

ANAC TOURNAMENT PERFORMANCE OF BEST CONFIGURATION

The strategy configuration method is successful in finding improved configurations,
but the results are only compared against the other configurations of our Dynamic
Agent. No comparison is yet made with agents built by ANAC competitors. We now
compare the performance of the best configuration that we found to the ANAC
agents in the test set of opponents.

We select 05 as the best strategy based on performance on the training set and
enter the Dynamic Agent in an ANAC-like a bilateral tournament with a 60-second
deadline. The Dynamic Agent is combined with the test set of opponents and
scenarios. Every combination of 2 agents negotiated 10 times on every scenario, for
a total amount of 38080 negotiation sessions. The averaged results are presented in
Table 3.9. We elaborate on the performance measures found in the table:

e Utility: The utility of the agreement.
e Opp. utility: The opponent’s utility of the agreement.
* Social welfare: The sum of utilities of the agreement.

* Pareto distance: Euclidean distance of the agreement to the nearest outcome
on the Pareto frontier in terms of utility.

» Nash distance: Euclidean distance of the agreement to the Nash solution in
terms of utility (Equation 2.3).

» Agreement ratio: The ratio of negotiation sessions that result in an agree-
ment.

Using the Dynamic Agent with 05 results in a successful negotiation agent that
is capable of winning a ANAC-like bilateral tournament by outperforming all other
agents (two-tailed t-test: p < 0.001). It managed to obtain a % *100% =
5.1% higher utility than SimpleAgent, the number two in the ranking, while also
outperforming it on every other performance measure.

Since the presence of our agent in the tournament also influences the perfor-
mance of other agents, we also ran the full tournament without our Dynamic Agent
as a sanity check. The top 5 performers of this tournament are presented in Ta-
ble 3.10, along with their margins over the respective next lower-ranking agent in
terms of utility.

3.6 CONCLUSION

The two main contributions of this chapter are (1) the success of automated config-
uration of negotiation strategies using a general-purpose configuration procedure
(here: SMAC), and (2) an investigation of the importance of the features of negotia-
tion settings.

3.6 CONCLUSION 37

Table 3.9: Bilateral ANAC tournament results using D A(65) (bold = best, underline = worst)

Agent Utility Opp. Social Pareto Nash Agreement
utility welfare distance distance ratio
RandomCounterOfferParty 0.440 0.957 1.398 0.045 0.415 1.000
HardlinerParty 0.496 0.240 0.735 0.507 0.754 0.496
AgentH 0.518 0.801 1.319 0.118 0.408 0.904
ConcederParty 0.577 0.848 1.425 0.047 0.358 0.964
LinearConcederParty 0.600 0.831 1.431 0.046 0.350 0.964
PhoenixParty 0.625 0.501 1.125 0.263 0.468 0.748
GeneKing 0.637 0.760 1.396 0.061 0.383 0.993
Mamenchis 0.651 0.725 1.377 0.087 0.360 0.927
BoulwareParty 0.662 0.786 1.448 0.043 0.319 0.968
Caduceus 0.677 0.486 1.163 0.241 0.453 0.784
Mosa 0.699 0.640 1.339 0.113 0.385 0.902
ParsCat2 0.716 0.671 1.386 0.108 0.286 0.904
RandomDance 0.737 0.716 1.453 0.024 0.344 0.998
ShahAgent 0.744 0.512 1.256 0.188 0.389 0.821
AgentF 0.751 0.605 1.356 0.100 0.367 0.918
SimpleAgent 0.756 0.437 1.194 0.212 0.470 0.801
DA(65) 0.795 0.566 1.361 0.087 0.407 0.922

Table 3.10: Bilateral ANAC tournament without D A(05)

Agent Utility Margin

Mosa 0.715

ShahAgent 0.736 3.01%
2.43%

RandomDance 0.754 0.65%

AgentF 0.759 pests

SimpleAgent 0.759 0.01%

38 3 AUTOMATED CONFIGURATION OF NEGOTIATION STRATEGIES

3.6.1 CONFIGURATION

Two baseline strategies were selected for our comparison. The first configuration,
0;, is based on publications from which we derived the agent [92, 14]. The second
configuration, 6,,, is configured based on intuition, recent literature and manual
search, which we considered the default approach for current ANAC competitors.
In Section 3.5, we automatically configured our dynamic Agent using SMAC.

The configuration based on earlier work 8; [92] performed poorly compared
to the manually configured configuration 8,,, and achieved 26.1% lower utility
on our test set. The best automatically configured strategy 65 outperformed both
baseline configurations and achieved a 4.2% increase in utility compared to 6,,.
From this, we conclude that the automated configuration method is successful in
outperforming manual configuration.

Our experiments show that the automated configuration method can produce
a strategy that can win an ANAC-like bilateral tournament by a margin of 5.1%
(Table 3.9). This is particularly striking when considering that without our agent,
the winner of the same tournament beats the next-based agent only by a margin of
0.01%.

3.6.2 FEATURES

We consider a set of features that characterizes the negotiation scenario as well
as the opponent. Our empirical results indicate that when using the negotiation
instance features, SMAC is able to find good configurations faster.

Overall, using SMAC in combination with instance features leads to less varia-
tion in the parameter settings between the final configurations obtained in multiple
independent runs (Table 3.6, Table 3.7), as well as significant and consistent perfor-
mance improvement. Furthermore, our results show that automated configuration
without features does not always outperform manual configuration. Therefore,
we conclude that the instance features presented in this chapter are a necessary
ingredient for the successful automated configuration of negotiation strategies.

3.6.3 NEXT STEPS

For this initial step towards automated configuration of negotiation agents, the
negotiation scenarios were simplified by removing the reservation utility and the
discount factor. Now that we have demonstrated that our general approach can
be successful, additional validation should be performed in more complex and
different negotiation environments.

Over the years, it became clear that there is no single best negotiation strategy
for all negotiation settings [99]. In this chapter, we have presented a method to
automatically configure an effective strategy for a specific set of negotiation settings.
However, if this set becomes too diverse, we inherently end up in a situation where
the automatically configured best strategy may not perform too well. In the next
chapter, we exploit the strategy space of the dynamic agent by extracting multi-
ple complementary strategies for specific settings, along with an online selection
mechanism that determines the strategy to be used in a specific instance.

