
Learning in automated negotiation
Renting, B.M.

Citation
Renting, B. M. (2025, December 11). Learning in automated negotiation.
Retrieved from https://hdl.handle.net/1887/4284788

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4284788

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4284788

2

9

2
BACKGROUND

2

10 2 BACKGROUND

This chapter contains background knowledge for readers who are less familiar with
some of the topics discussed in this dissertation. We start with an introduction
to automated negotiation (Section 2.1) and further discuss algorithm configura-
tion (Section 2.2), algorithm selection (Section 2.3), and reinforcement learning
(Section 2.4).

2.1 AUTOMATED NEGOTIATION
The research topic of automated negotiation studies autonomous agents that par-
ticipate in a negotiation game [50]. Here, negotiation can be seen as a distributed
search through a space of potential outcomes [79]. The software agents used in this
context can negotiate with other agents in multi-agent systems or with humans
in human-agent negotiations. Automated negotiation combines concepts and in-
sights from multiple disciplines, such as artificial intelligence, game theory, and
social psychology [79].

In this dissertation, we focus exclusively on bilateral negotiation between two
autonomous agents. We define a negotiation game as a tuple N = 〈I ,Ω,UI〉, where
I denotes the set of agents, Ω denotes the set of potential outcomes the agents
negotiate over, also known as the domain or outcome space, and UI is the set of
utility functions for agents I such that UI = {ui |i ∈ I}. ui :Ω→ [0,1] is the utility
function of agent i over the outcome space where higher utilities indicate more
desirable outcomes. From the perspective of an agent, we often refer to its own
utility function with u and to the opponent’s utility function with uo . How agents
communicate to agree is specified through a negotiation protocol that dictates the
rules of encounter and permissible actions.

2.1.1 NEGOTIATION PROTOCOL
Communication between agents is required to enable a negotiation. Humans pri-
marily negotiate using natural language. This is also possible for negotiation agents,
but adds additional challenges in generating and interpreting natural language [128,
95, 67, 90, 98]. Most of the work in automated negotiation uses a negotiation pro-
tocol that dictates what actions agents can perform and when. A few examples of
protocols are:

• The Ultimatum Game [24]: One agent makes an offer and the other agent
may only accept or refuse it, after which the negotiation is ended.

• Alternating Offers Protocol (AOP) [132]: Two agents take turns in making
offers. An extended version of this protocol that supports more than two
agents is the Stacked Alternating Offers Protocol (SAOP) [7].

• Monotonic Concession Protocol [129]: Requires agents to make progressively
more attractive offers to their opponents.

• Multiple Offers Protocol for multilateral negotiations with Partial Consensus
(MOPaC) [110]: Allows for multilateral negotiations where only a subset of ne-
gotiating agents can reach an agreement, enabling partial consensus through
bidding, voting, and opt-in phases.

2.1 AUTOMATED NEGOTIATION

2

11

(Counter) OfferW
al

k
Aw

ay
A

cc
ep

t

Agent 1

(Counter) Offer

A
cc

ep
t

W
al

k
Aw

ay

Agent 2

Agreement

No
Agreement

Figure 2.1: Visualisation of the Alternating Offers Protocol (AOP). Agent 1 starts the negotiation by
making an offer. Note that the action “Accept” is inaccessible in the first step.

• Simulated Annealing Protocol [87]: A negotiation approach where agents
or a mediator use simulated annealing techniques to explore the outcome
space, allowing temporary concessions to escape local optima and ultimately
achieve near-optimal agreements.

The choice of protocol can significantly impact negotiation dynamics and outcomes.
For instance, the Alternating Offers Protocol (AOP) allows for more complex strate-
gies and learning during negotiation, while one-shot protocols may encourage
more truthful revelation of preferences.

In this dissertation, we exclusively use the AOP, due to its simplicity and its
wide use in the automated negotiation literature. Here, agents take turns making a
(counter) offer, accepting the opponent’s offer, or walking away from the negotiation.
The protocol is visualised in Figure 2.1. A (counter) offer is made by selecting one
of the potential outcomes ω ∈Ω and sending it to the opponent. A deadline T is
imposed on the negotiation to prevent agents from negotiating indefinitely. Such
a deadline is defined either in a maximum number of rounds that the agents can
negotiate for or in seconds of wall-clock time or a combination of the two. The
wall-clock time limit is often used as searching large (often combinatorial) outcome
spaces for suitable candidate offers can take a long time.

The negotiation ends with an agreement if one of the agents accepts the of-
fer received from the opponent. Both agents then receive a pay-off according to
their (discounted) utility function. The negotiation ends without an agreement
if one of the agents decides to walk away or if the deadline passes. In that case,
agents are awarded their reservation value or 0 if there is no reservation value. The
reservation value can be used to represent a Best Alternative To a Negotiation Agree-
ment (BATNA) [53], e.g. an agreement reached with another negotiation partner, or

2

12 2 BACKGROUND

deciding to build something yourself instead of negotiating with a contractor.

2.1.2 NEGOTIATION SCENARIO
A negotiation scenario is a combination of an outcome space and utility functions
that reflect the preferences of the agents. The outcome space generally consists
of a set of objectives, known as issues B = {1, · · · ,n}, that are being negotiated. For
example, in a GPU compute node purchase negotiation, issues might include price,
support period, GPU type, number of GPUs, and delivery date. Issues can be:

• Categorical (e.g., GPU type: A6000, A100, or H100)

• Continuous (e.g., price of the compute node)

• Integer (e.g., number of GPUs: 2, 4, or 8)

We focus solely on categorical issues in this dissertation, which is the most general
type, as continuous issues can also be discretised. The set of possible values for an
issue b ∈ B is denoted asΩb . The Cartesian product of all the issue values comprises
the total outcome space Ω = Ω1 × ·· ·×Ωn of the negotiation scenario. During a
negotiation, the agents attempt to agree upon an outcomeω= (ω1,ω2, · · · ,ωn) ∈Ω,
where n is the number of issues and ωb ∈ Ωb . Simple scenarios might have 2–3
issues with a small number of categorical values each. Complex scenarios can have
dozens of issues, continuous values, and large numbers of categorical issue values,
increasing the computational complexity of searching for suitable outcomes in the
outcome space.

UTILITY FUNCTION

Utility functions are mathematical representations of an agent’s preferences over
the outcome space. They map potential outcomes to a real number, indicating
the relative desirability of different outcomes. Both agents have a utility function
ui :Ω→ [0,1], where 1 is the best possible utility for an agent. Such utility functions
can be complex non-linear functions that capture interdependencies between
issues, but in this dissertation, we focus on linear additive utility functions like
the one shown in Equation 2.1. Here, weights are assigned to all values and issues
through weight functions w : B 7→ [0,1] and wb :Ωb 7→ [0,1] such that

∑
b∈B w(b) = 1,

maxωb∈Ωb wb(ωb) = 1, and minωb∈Ωb wb(ωb) = 0.

u(ω) = ∑
b∈B

w(b) ·wb(ωb) (2.1)

RESERVATION VALUE & DISCOUNT FACTOR

A negotiation scenario can optionally be extended with a reservation value and a
discount factor. A reservation value is specified per agent and is the utility that an
agent obtains when they fail to reach an agreement. This can be used to simulate
the Best Alternative to a Negotiated Agreement (BATNA) [53], which is a commonly
used concept in negotiation literature. This can be used to, for example, simulate
an alternative agreement that is achieved with another party.

2.1 AUTOMATED NEGOTIATION

2

13

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u1(ω)

u
2
(ω

)

Outcome (ω)

Pareto frontier

Nash bargaining solution

Figure 2.2: Visualisation of example negotiation scenario. The dots represent outcomes, which are
plotted according to their utility value for two agents. The blue line connects the Pareto efficient

possible outcomes, which form the Pareto frontier. The Nash Bargaining solution, the possible outcome
that maximises the product of utilities, is circled in green.

The discount factor can be used to apply time pressure in a negotiation game.
Here, the obtained utility is discounted as follows:

uγ

i (ω) = (γ)t ·ui (ω) (2.2)

where ui is given in Equation 2.1, γ ∈ [0,1] is the discount factor and t is a dis-
crete time step variable. We do not consider reservation values and discount factors
as the increased complexity they cause is outside of the scope of this dissertation.

EXAMPLE SCENARIO

To provide some intuition, we visualise an example negotiation scenario with cate-
gorical issues in Figure 2.2. All possible outcomes of the scenario are plotted based
on their utility value for agent 1 (x-axis) and agent 2 (y-axis). We also visualise the
Pareto frontier, which is the set of possible outcomes that are not strictly dominated
by another possible outcome based on its utility value for both agents. Finally, we vi-
sualise the Nash bargaining solution [111], which is the outcome that maximises the
product of utilities of all involved agents and is often used as a reference outcome
for performance analysis. The Nash bargaining solution is defined as:

ωN ash ∈ argmax
ω∈Ω

(u1(ω) ·u2(ω)) (2.3)

2.1.3 NEGOTIATION AGENTS
Negotiation strategies determine an agent’s behaviour during the negotiation pro-
cess within the used protocol. They encompass decision-making about which offers
to make, when to accept offers, and how to model the opponent’s behaviour and
respond to it. Strategies are at the core of automated negotiation research, with a

2

14 2 BACKGROUND

wide variety of approaches developed over the years. A commonly used framework
to structure components of negotiation strategies is the Bidding, Opponent mod-
elling, and Accepting (BOA) framework [8]. Although we will not always use this
framework in this dissertation, we will use it in this section to provide insights into
negotiation strategies.

BIDDING STRATEGY

The bidding strategy decides which offers to make. This involves balancing between
pursuing the interests of the agent (e.g. maximising utility) and making concessions
to reach an agreement. Common approaches include:

• Time-dependent tactics (see, e.g. [48], [51]): Concession is based on the
remaining time.

– Boulware: Concedes slowly at first, then rapidly as the deadline ap-
proaches.

– Conceder: Makes large concessions early.

– Linear: Concedes at a constant rate.

• Behavior-dependent tactics (see, e.g. [4]): Adapt based on the opponent’s
actions. These might mimic, reciprocate, or exploit the opponent’s concession
pattern.

• Trade-off strategies: Attempt to generate offers of similar utility to the previous
offer but more attractive to the opponent.

ACCEPTANCE STRATEGY

The acceptance strategy determines when to accept an offer. Common criteria
include:

• Threshold-based: Accept if the offer’s utility exceeds a certain threshold.

• Time-dependent: Lower the acceptance threshold as the deadline approaches.

• Aspiration-based: Accept if the offer exceeds the utility of the planned counter-
offer.

Acceptance strategies are often combinations of these criteria or more complex
designed heuristic-based methods. For a comparison of acceptance strategies, we
refer the reader to Baarslag and Hindriks [17].

OPPONENT MODELLING

With opponent modelling, the agent attempts to learn about the opponent’s pref-
erences, which are commonly considered to be private information. Being able to
accurately predict the opponent’s utility function helps in finding mutually benefi-
cial outcomes, i.e., find outcomes that are (close to) Pareto efficient, which generally
improves the pay-off of the agent. Techniques to predict the opponent’s utility
function include:

2.2 ALGORITHM CONFIGURATION

2

15

• Frequency analysis: Infer the importance of outcomes based on how often
they are offered.

• Regression: Assume the concession behaviour (e.g., Boulware) of the op-
ponent and fit a regression model to the opponent’s offers based on that
concession behaviour.

• Bayesian learning: Fit a probability model to the observed offers of the oppo-
nent.

We refer the reader to Baarslag et al. [12] for a more elaborate review and comparison
of opponent modelling techniques.

2.2 ALGORITHM CONFIGURATION
Negotiation agents commonly have parameters that influence the behaviour or
strategy of the agent. Algorithm configuration, also known as parameter tuning or
hyperparameter optimisation, is the task of selecting the best parameters for an
algorithm to optimise its performance on a given set of problem instances. The
need for algorithm configuration arose from the observation that many algorithms,
particularly in areas such as optimisation and machine learning, have parameters
that significantly affect their performance. Traditionally, experts set these parame-
ters manually through a process of trial and error. However, as algorithms became
more complex and included more parameters, manual tuning became increasingly
time-consuming and often suboptimal [74]. Early approaches to configure parame-
ters included simple techniques like grid search and random search [52]. However,
these methods scale poorly with the number of parameters, also known as the
curse of dimensionality [22]. This led to the development of more sophisticated,
automated algorithm configuration approaches, of which we will mention a few.

2.2.1 PROBLEM DEFINITION
The algorithm configuration problem can be formally defined as follows [74]. Given
an algorithm with a configuration space Θ, a set of problem instances P , and a
performance metric m(θ, p) for θ ∈ Θ and p ∈ P , find θ∗ ∈ Θ that maximises (or
minimises depending on m):

θ∗ ∈ argmax
θ∈Θ

∑
p∈P

m(θ, p) (2.4)

CONFIGURATION SPACE

The configuration spaceΘ represents all possible parameter settings for the algo-
rithm. It can include various types of parameters, such as;

• Categorical parameters (e.g., choice of heuristic).

• Continuous parameters (e.g., learning rate in neural networks).

• Integer parameters (e.g., population size in genetic algorithms).

2

16 2 BACKGROUND

The configuration space can be highly complex, with dependencies between pa-
rameters and varying impacts on algorithm performance.

PERFORMANCE METRICS

The choice of performance metric m(θ, p) is crucial and depends on the specific
application. Common metrics include;

• Solution quality: For example, the distance travelled for optimisation prob-
lems like the travelling salesperson problems or the prediction accuracy for
machine learning methods on classification or regression tasks.

• Running time: Time taken to solve a problem or reach a certain quality
threshold.

• Composite measures: e.g., PAR (Penalised Average Running time), which as-
signs a penalty to unsuccessful runs in, e.g., Boolean satisfiability or travelling
salesperson problems.

2.2.2 CONFIGURATION METHODS
Several methods have been developed for automated algorithm configuration. Two
separate parts within these methods can be identified: how new configurations are
selected for evaluation and how a set of configurations is compared. In the follow-
ing, we briefly outline examples of prominent, high-performance configuration
approaches:

ParamILS uses Iterated Local Search (ILS) to find high-performance parameter
settings for a given target algorithm. It navigates the configuration space by itera-
tively applying a local search phase, typically involving single parameter changes to
find improvements and perturbation steps to escape local optima. Key features in-
clude always accepting better-performing configurations and using random restarts
for diversification.

• ParamILS [74] uses Iterated Local Search (ILS) to find high-performance pa-
rameter settings for a given target algorithm. It navigates the configuration
space by iteratively applying a local search phase, typically involving single
parameter changes to find improvements and perturbation steps to escape
local optima. Key features include always accepting better-performing con-
figurations and using random restarts for diversification.

• F-Race [25] is a statistical racing algorithm that eliminates suboptimal config-
urations by first using the Friedman test to detect significant overall perfor-
mance differences among remaining candidates across multiple instances.
If such differences exist, it then performs pairwise comparisons against the
best-performing configuration (incumbent) to discard those that are sta-
tistically significantly worse. This saves computational budget, as not all
configurations have to be tested on the full target instance set. The set of
configurations to test can be selected either manually, as a grid search, or
at random. Balaprakash et al. [20] extended upon F-Race by implementing

2.3 ALGORITHM SELECTION

2

17

it as a model-based search [166], which iteratively models and samples the
configuration space in search of promising candidate configurations.

• Sequential Model-based optimisation for general Algorithm Configuration
(SMAC) [75] builds a random forest model to predict algorithm performance
based on parameter settings and instance features. It uses this model to find
promising configurations to evaluate. It also incorporates an early elimination
mechanism for new configurations by comparing them with a dominant
incumbent configuration on individual problem instances.

• Gender-based Genetic Algorithm (GGA) [3] uses a genetic algorithm approach.
It maintains a population of configurations, evolves them over generations,
and incorporates gender separation to maintain diversity.

• Bayesian Optimisation HyperBand (BOHB) [47] is designed for hyperparam-
eter optimisation of machine learning algorithms. It combines Bayesian
optimisation with hyperband [96], where Bayesian optimisation is used to
find promising configurations and multi-armed bandit strategies are used to
allocate resources to evaluate configurations.

2.2.3 INSTANCE FEATURES
Some model-based configuration methods (e.g., SMAC and BOHB) allow the use
of problem instance features to guide the search process. These features aim to
capture relevant properties of the instances to better model the relation between
parameter settings, problem instances, and performance. Examples of such features
are:

• SAT solving: Number of variables, clause-to-variable ratio, etc.

• Classification tasks: Dataset size, number of features, class distribution, etc.

• Optimisation tasks: Dimensionality, constraint density, objective function
properties, etc.

• Negotiation games: Size of the outcome space, average utility of outcomes,
last obtained utility against opponent, etc.

2.3 ALGORITHM SELECTION
It is a common observation that a single negotiation strategy does not necessarily
work well in every negotiation game [99]. This raises the question of whether
selecting between negotiation strategies depending on the negotiation game could
improve performance. Algorithm selection is the problem of choosing the best
algorithm from a set of candidates for a given problem instance. It is based on
the idea that no single algorithm is superior for all problem instances and aims
to exploit the complementary strengths of different algorithms. The algorithm
selection problem was first formally described by Rice [127], who recognised that
for many computational problems, different algorithms performed best on various

2

18 2 BACKGROUND

instances and proposed a framework for selecting the best algorithm based on
features of the problem instance.

The research area gained significant traction with the advent of portfolio-based
approaches in areas such as Boolean satisfiability (SAT) solving and Constraint
Programming (CP). Notable early systems include SATzilla [161] for SAT solving and
CPHydra [113] for CP.

2.3.1 PROBLEM DEFINITION

The per-instance algorithm selection problem can be formally defined as follows.
Given a set of algorithms Ψ = {ψ1,ψ2, · · · ,ψn}, a set of problem instances P , a
performance metric m(ψ, p) for ψ ∈Ψ and p ∈P , and an instance feature mapping
f :P 7→Rk (Section 2.2.3) that characterise each problem instance p, find a selection
mapping M : f (P) 7→Ψ that optimises the performance metric on the set of problem
instances:

min
M

∑
p∈P

m(M(f (p)), p) (2.5)

2.4 REINFORCEMENT LEARNING
The negotiation game defined in Section 2.1 can be formulated as a Markov De-
cision Problem (MDP). We discuss the similarities in Section 2.4.2. This enables
the usage of Reinforcement Learning (RL) in negotiation games. RL is a form of
machine learning where an agent learns by interacting with an environment. Unlike
supervised learning, where the agent learns from labelled examples, or unsuper-
vised learning, where the agent finds patterns in unlabeled data, RL agents learn
from the consequences of their actions.

The research area gained significant momentum with the development of al-
gorithms like Q-learning [157] and the publication of a book by Sutton and Barto
[146]. More recently, the combination of RL with deep learning, known as deep
reinforcement learning, has led to breakthroughs in areas such as game playing
(e.g., AlphaGo [141]) and robotics [89].

2.4.1 MARKOV DECISION PROCESS

RL problems are typically formalised as Markov Decision Processes (MDPs). An
MDP is defined as a tuple M= 〈S ,A,T ,R〉, where S denotes the set of states, A the
set of actions, T : S ×A 7→ p(S) denotes the transition function, and R : S ×A 7→
R the reward function. The transition function describes how the environment
transitions to a new state based on the current state the environment is in and the
action taken. The reward function describes the reward that the agent obtains by
taking an action in the state that the environment is in.

The goal in an MDP is to find the optimal policy π∗ :S 7→A that maximises the
expected cumulative discounted reward:

Eπ,T

[
H−1∑
k=0

γt ·R(st , at)

]
(2.6)

2.4 REINFORCEMENT LEARNING

2

19

Table 2.1: Similarities between a negotiation game and a Markov Decision Process (MDP). Each row
describes a similar concept.

Negotiation game MDP

Utility u Reward R
Outcomes Ω Actions A
Discount γ Discount γ

Deadline T Horizon H
Time step t Time step t

where H denotes the horizon of the MDP (the number of rounds we select an
action), γ ∈ [0,1] is a discount factor that discounts future reward, and t is the time
step.

2.4.2 MDPS AND AUTOMATED NEGOTIATION
The negotiation game, as defined in Section 2.1, shows similarities with the def-
inition of an MDP. We provide an overview of similarities in Table 2.1. Although
unifying the notation is possible, we intentionally kept them separate to maintain
the relation in this dissertation to the specific literature of the automated negoti-
ation and reinforcement learning communities. We mention this relation here to
make the reader aware of the close resemblance between both research areas.

