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SUMMARY

This dissertation investigates the design and evaluation of automated negotiation
agents within the area of multi-agent systems, with an emphasis on the develop-
ment of learning negotiation agents to improve performance and generalisability
across diverse negotiation settings. Traditional approaches to developing negoti-
ation agents rely on manually designed heuristics and strategies. While effective
in specific scenarios, such methods suffer from limitations including human de-
velopment cost, poor generalisation across different negotiation problems and
opponent types, and the introduction of human-induced biases in strategy design.
The first part of this dissertation addresses these limitations by exploring meth-
ods for learning negotiation strategies. We progress through several methods that
enable autonomous agents to learn effective negotiation behaviours.

Chapter 3 presents an automated algorithm configuration technique, specifi-
cally Sequential Model-based Algorithm Configuration (SMAC) [75], for the optimi-
sation of the parameters of a manually defined negotiation strategy. This approach
demonstrates the potential to improve upon manually tuned or literature-based
configurations through computational optimisation, while still relying on a prede-
fined, parametrised strategy structure and manually engineered instance features
to guide the configuration process.

Recognising that a single optimised strategy may not be universally optimal,
Chapter 4 extends this work by exploring portfolio-based approaches. Using meth-
ods such as Hydra [162] for portfolio construction and AutoFolio [100] for per-
instance algorithm selection, a portfolio of complementary negotiation strategies is
automatically generated, and a selector is trained. This allows the agent to dynami-
cally choose the most suitable strategy from its portfolio based on the characteristics
of the current negotiation scenario and opponent, leading to improved adaptive-
ness and overall performance compared to relying on a single best strategy.

To further reduce the reliance on manual design and potentially mitigate human-
induced biases more substantially, Chapter 5 investigates an end-to-end reinforce-
ment learning approach. This method employs Proximal Policy Optimisation (PPO)
[135] and uses Graph Neural Networks (GNNs) [86] to handle the variable dimen-
sionality in the observation and action spaces of diverse negotiation problems. This
allows the negotiation policy to be learned directly from interaction data without
explicit feature engineering or manually designed parametrised strategies. This
facilitates further mitigation of human-induced biases and generalisation across
negotiation problems of varying sizes and complexities, although with remaining
challenges in effective adaptation to opponent types.

In the second part of this dissertation, we move beyond the development of
learning agents by critically examining the methods used for their evaluation. Chap-
ter 6 presents an extensive empirical analysis, using data from the Automated
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Negotiation Agents Competition (ANAC) 2022, which we organised ourselves and
specifically challenged participants to develop learning agents. The analysis shows
limitations in current evaluation methods. It demonstrates that agent rankings
depend on the choice of performance criteria, such as individual utility, social
welfare, or game-theoretic equilibria. It also shows that the commonly used average
utility metric is sensitive to group composition and cannot handle non-transitive
performance relations between agents. The conclusion drawn is that there is no
single, universally robust metric for evaluating negotiation agents, particularly for
learning agents that exhibit non-stationary behaviour.

Addressing the identified need for clear evaluation criteria and research chal-
lenges grounded in negotiation application domains, Chapter 7 proposes multi-
agent calendar scheduling as a rich, relevant, and complex real-world application
area. This task contains many challenges for the automated negotiation commu-
nity, potentially guiding future research efforts to push progress beyond the current
boundaries in the automated negotiation community.

In summary, this dissertation contributes methods for developing negotiation
agents capable of learning and adapting their strategies, pushing towards reduced
human bias and increased generalisability. It also provides a critical analysis of eval-
uation methodologies in automated negotiation, highlighting their shortcomings
and advocating for research into evaluation methods, potentially using application
areas like calendar scheduling.
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Dit proefschrift onderzoekt het ontwerp en de evaluatie van geautomatiseerde
onderhandelingsagenten binnen het domein van multi-agent systemen, met de na-
druk op de ontwikkeling van lerende onderhandelingsagenten om de prestaties en
generaliseerbaarheid van zulke agenten te verbeteren. Traditionele benaderingen
voor het ontwikkelen van onderhandelingsagenten zijn gebaseerd op handma-
tig ontworpen heuristieken en strategieén. Hoewel dergelijke methoden effectief
zijn in specifieke scenario’s, hebben ze te kampen met beperkingen, waaronder
menselijke ontwikkelingskosten, slechte generaliseerbaarheid voor verschillende
onderhandelingsproblemen en soorten tegenstanders, en menselijke voorkeuren
in het ontwerp van strategieén. Het eerste deel van dit proefschrift gaat in op deze
beperkingen door methoden voor het leren van onderhandelingsstrategieén te on-
derzoeken. We behandelen verschillende methoden waarmee autonome agenten
effectief onderhandelingsgedrag kunnen leren.

Hoofdstuk 3 presenteert een geautomatiseerde algoritmeconfiguratietechniek,
specifiek Sequential Model-based Algorithm Configuration (SMAC) [75], voor de
optimalisatie van de parameters van een handmatig gedefinieerde onderhande-
lingsstrategieruimte. Deze aanpak toont een verbetering aan ten opzichte van
handmatig ontworpen strategieén en configuraties die volgen uit literatuur, terwijl
nog steeds wordt vertrouwd op een vooraf gedefinieerde onderhandelingsstrategie-
ruimte en handmatig ontworpen instantiekenmerken om het configuratieproces te
begeleiden.

Omdat we beseffen dat één enkele geoptimaliseerde strategie waarschijnlijk niet
optimaal is voor elke situatie, gaan we in Hoofdstuk 4 verder met het onderzoeken
van portfolio-gebaseerde benaderingen. Met behulp van methoden zoals Hydra
[162] voor het samenstellen van portefeuilles van strategieén en AutoFolio [100]
voor het selecteren van de beste strategie per situatie, wordt automatisch een porte-
feuille van complementaire onderhandelingsstrategieén gegenereerd en wordt een
selector getraind. Hierdoor kan de agent dynamisch de meest geschikte strategie
uit zijn portefeuille kiezen op basis van de kenmerken van het huidige onderhande-
lingssituatie en de tegenstander, wat leidt tot een verbeterde aanpassingsvermogen
en algehele prestaties in vergelijking met het gebruik van één enkele beste strategie.

Om de afhankelijkheid van handmatig ontwerp verder te verminderen en door
mensen ingebouwde voorkeuren mogelijk nog substantiéler te beperken, onder-
zoekt Hoofdstuk 5 een benadering met behulp van reinforcement learning. We
maken gebruik van Proximal Policy Optimisation (PPO) [135] en Graph Neural
Networks (GNN’s) [86] om de variabele dimensionaliteit in de observatie- en actie-
ruimtes van diverse onderhandelingssituateis te kunnen hanteren. Hierdoor kan de
onderhandelingsstrategie rechtstreeks geleerd worden uit historische interacties,
zonder expliciet ontwerp van instantiekenmerken of een handmatig gedefinieerde
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onderhandelingsstrategieruimte. Dit maakt het mogelijk om door mensen inge-
bouwde voorkeuren verder te reduceren en te generaliseren naar onderhandelings-
problemen van verschillende omvang en complexiteit. Er zijn nog wel uitdagingen
wat betreft het effectief aanpassen van de strategie ten opzichte van verschillende
tegenstanders.

In het tweede deel van dit proefschrift gaan we verder dan de ontwikkeling
van lerende agenten door de methoden die worden gebruikt voor hun evaluatie
kritisch te bekijken. Hoofdstuk 6 presenteert een uitgebreide empirische analyse,
waarbij gebruik wordt gemaakt van gegevens van de Automated Negotiation Agents
Competition (ANAC) 2022, die we zelf hebben georganiseerd en waarbij we deelne-
mers specifiek hebben uitgedaagd om lerende agenten te ontwikkelen. De analyse
toont de beperkingen van de huidige evaluatiemethoden aan. Ze laat zien dat de
rangschikking van agenten afhankelijk is van de keuze van prestatiecriteria, zoals
individuele score, gesommeerde groepsscore of speltheoretische evenwichten. Ze
toont ook aan dat de veelgebruikte maatstaf, van gemiddelde individuele score,
gevoelig is voor de samenstelling van de groep en niet geschikt is voor het be-
schrijven van niet-transitieve verhoudingen tussen agenten. De conclusie is dat
er momenteel geen enkele, universeel robuuste maatstaf bestaat voor de evaluatie
van onderhandelingsagenten, met name voor lerende agenten die niet-stationair
gedrag vertonen.

Om tegemoet te komen aan de vastgestelde behoefte aan duidelijke evaluatiecri-
teria en onderzoeksuitdagingen binnen toepassingen, stelt Hoofdstuk 7 multi-agent
kalenderplanning voor als een rijk, relevant en complex toepassingsgebied. Deze
taak bevat veel uitdagingen voor de automatische onderhandelingen onderzoeks-
gemeenschap en kan mogelijk toekomstig onderzoek sturen om vooruitgang te
boeken buiten de huidige grenzen van deze gemeenschap.

Samengevat levert dit proefschrift methoden voor het ontwikkelen van onder-
handelingsagenten die in staat zijn om te leren en hun strategieén aan te passen,
waardoor menselijk ingebouwde voorkeuren worden verminderd en de generali-
seerbaarheid wordt vergroot. Het biedt ook een kritische analyse van evaluatieme-
thodologieén in geautomatiseerde onderhandelingen, waarbij de tekortkomingen
ervan worden benadrukt en wordt gepleit voor onderzoek naar evaluatiemethoden,
mogelijk met behulp van toepassingsgebieden zoals agendabeheer.
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INTRODUCTION

Ants and bees can also work together in huge numbers, but they do so in a very rigid
manner and only with close relatives. Wolves and chimpanzees cooperate far more
flexibly than ants, but they can do so only with small numbers of other individuals
that they know intimately. Sapiens can cooperate in extremely flexible ways with
countless numbers of strangers. That’s why Sapiens rule the world, whereas ants eat
our leftovers and chimps are locked up in zoos and research laboratories.

Yuval Noah Harari, Sapiens (2015)




2 1 INTRODUCTION

We rule the world. In other words, the human species is the most dominant species
on earth (according to us humans). Yuval Harari [65] stated that this could be
attributed to our unique ability to cooperate both flexibly and with very large
numbers. Crucial to our cooperative behaviour is our ability to communicate and, as
a special case of communication, negotiate [36, 105]. Negotiation enables humans
to resolve conflicts over resources, improving collective productivity through task
specialisation. For instance, a hunter can exchange surplus food for a blacksmith’s
traps, allowing each to focus on their expertise. Now, the hunter can keep hunting,
and the smith can keep smithing instead of both having to do both. This mutually
beneficial agreement, facilitated by negotiation, improves the overall efficiency and
productivity of a community. Humans are not the only species that negotiate, as
studies have shown that, e.g., chimpanzees also possess this ability [105]. However,
human communication and negotiation are far more complex and likely play a
crucial role in our dominant position.

Negotiation is an important part of human interaction in modern society, from
interpersonal relationships to international diplomacy. It serves as a critical mecha-
nism for resolving conflicts, allocating resources, and enabling cooperation between
parties with divergent interests. Negotiations are so embedded into our daily lives
that we do not always notice them [117]. Discussing the details of a contract is
clearly a negotiation, but other negotiations are not that explicit. For example,
finding a meeting slot with colleagues, deciding where to go on a city trip with a
friend, or navigating busy bike lanes with non-verbal signals can all be considered
forms of negotiation.

Negotiation has seen interest from the scientific community, for example, by
social scientists [131, 149], economists [118, 115] and by mathmaticians [111, 132].
With the advent of artificial intelligence, it is envisioned that artificial intelligent
agents also have conflicts of interest, which should be studied. This dissertation,
therefore, studies negotiation in computer science, more specifically, in multi-agent
systems.

1.1 NEGOTIATION IN MULTI-AGENT SYSTEMS

As artificial intelligence becomes more embedded into society and daily life, the
question arises of how autonomous or semi-autonomous agents interact. This
is a central focus of Multi-Agent Systems (MAS), a broad research area within Al
concerned with “systems that include multiple autonomous entities with either
diverging information or diverging interests, or both” [140]. MAS research encom-
passes a range of research areas, such as multi-agent learning [151], communication
and consensus [121], organisational structures [72], and distributed constraint sat-
isfaction [164].

In multi-agent interactions, situations arise where agents, whether AI-AI or
Al-human, must cooperate despite (partially) conflicting interests. Such conflicts
of interest should then be resolved to improve payoff or even obtain payoff in
the first place (e.g., surveying drone swarms or transporting goods using multiple
robots). Resolving the conflicting interests can be done in several ways. In some
cases, conflicts are handled through adherence to pre-defined institutions or social
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norms (e.g., traffic rules governing right-of-way). In others, predefined coordination
mechanisms or protocols suffice for enabling coordination.

If there is no predefined method of handling conflicts of interest, then nego-
tiation or bargaining can be used to enable cooperation. As it was important for
humans to develop negotiation skills, Al researchers envisioned that this is also
an important skill for intelligent agents to resolve conflicting interests. This led
to the research field of automated negotiation [79]. Automated negotiation plays
arole in real-world applications, such as traffic light coordination [62], calendar
scheduling [125], or balancing energy demand and production in local power grids,
and also in games, such as Diplomacy [107] and Werewolves.

Automated negotiation is a multidisciplinary area at the intersection of artificial
intelligence, game theory, and decision science. Early work in this field, pioneered
by scholars such as Smith [143], Rosenschein [130], Klein and Lu [88], and Sycara
[147], laid the groundwork for computational approaches to negotiation. The
field saw significant advancements with the development of more sophisticated
negotiation strategies and frameworks. Notably, the work of Faratin et al. [48]
introduced time-dependent and behaviour-dependent tactics, which have become
fundamental components of many negotiation strategies.

Over the years, the research community has developed a wide array of negotia-
tion strategies, protocols, and evaluation frameworks, leading up to initiatives like
the Automated Negotiating Agents Competition (ANAC) [16] and the General Envi-
ronment for Negotiation with Intelligent multi-purpose Usage Simulation (GENIUS)
negotiation platform [99]. The combined effort of GENIUS and ANAC provided
a standardised test bed with more than 100 negotiating agents and negotiation
scenarios that are readily accessible for research on automated negotiation [9].
Both the development of new agents and structured evaluation of these agents are
important, which we will discuss in Sections 1.1.1 and 1.1.2, respectively.

1.1.1 DEVELOPING NEGOTIATION AGENTS
The goal of automated negotiation research is the development of agents that are
capable of negotiating quickly and effectively. The negotiating agents are generally
hard-coded strategy algorithms with parameters that are tuned during design to
optimise their performance. Such agents must navigate large outcome spaces, deal
with incomplete information, and engage in strategic interactions with other parties,
all while attempting to achieve optimal results for themselves or the humans or
organisations they represent. Traditionally, developing negotiation agents relied on
manually designed heuristics and strategies, optimised and tested on constrained
sets of negotiation settings, to make it manageable. This is still a commonly seen
approach in recent editions of ANAC [5]. While such methods have proven effective
in specific scenarios, they struggle to generalise across diverse negotiation scenarios
and opponent types. This limitation becomes problematic as we envision deploying
automated negotiation agents in real-world applications, where they may encounter
a wide variety of negotiation problems and counterparts.

To alleviate the difficulty in designing negotiation agents manually and to obtain
better performance, optimisation methods were later used to (partially) automate
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the design. This allows agents to be reconfigured in various negotiation settings,
improving generalisability. Genetic algorithms have been used, but optimising ne-
gotiation agents is computationally expensive, due to, e.g., searching for potential
agreements in outcome spaces exponential in the objectives for which a decision
must be made. To circumvent the computational complexity issue, agents were
configured on small sets of scenarios and opponent types [104]. For instance, agents
were only tested in one or two scenarios [71] or merely optimised against them-
selves [46, 43]. The resulting agents are highly specialised and have unpredictable
performance when negotiating “out-of-distribution”.

The problem we address is the development of agents capable of learning to
negotiate effectively across large and diverse sets of negotiation settings. Learn-
ing to negotiate involves agents optimising policies for actions, such as making
proposals, accepting offers, or walking away, to maximise their performance. We
adopt a learning-based approach because hand-designed negotiation agents im-
pose human-induced bias, leading to suboptimal performance, limitations we want
to overcome. Furthermore, as traditional hand-crafted negotiation state represen-
tations used for agent input can discard informational value, we also aim to learn
representations directly from (near-) raw observational data.

Part one of this dissertation aims to address the problem oflearning autonomous
agents to negotiate on large and diverse sets of opponent types and negotiation
scenarios. We explore approaches to learn negotiation strategies more efficiently
(Chapter 3). We also explore strategy-switching mechanisms that are learned based
on characteristics of a negotiation setting in an effort to further improve the adap-
tiveness of negotiation strategies (Chapter 4). Finally, we leverage machine learning,
more specifically reinforcement learning, to push the boundaries of what is possi-
ble in automated negotiation (Chapter 5). We discuss all three approaches briefly
below.

ALGORITHM CONFIGURATION

Chapter 3 focuses on enhancing existing negotiation strategies through automated
algorithm configuration. Many negotiation agents in the literature use strategies
with fixed parameters or ones manually tuned by their designers. This approach,
while straightforward, often leads to suboptimal performance and poor generalisa-
tion across different negotiation settings.

We propose to address this limitation by applying general-purpose automated
algorithm configuration techniques, specifically Sequential Model-based Algorithm
Configuration (SMAC) [75], to the task of optimising negotiation strategies. SMAC
is a generally well-performing algorithm that is often used for such tasks. Our
approach automatically configures the parameters of commonly used negotia-
tion strategy components, including those related to bidding strategies, accepting
strategies, and opponent modelling. Our approach employs a set of features that
characterise negotiation scenarios and opponent behaviours, enabling more effi-
cient configuration across diverse negotiation settings. This enhanced efficiency
enables us to optimise performance on larger and more diverse sets of negotiation
simulations than previously achievable in automated negotiation systems. We have
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been the first to pursue this approach, which goes beyond simple application of
algorithm configuration.

ALGORITHM SELECTION

Building on the insights gained from automated configuration, we next explore the
potential of portfolio-based methods in automated negotiation in Chapter 4. This
direction is motivated by the observation that there is often no single best strategy
for all negotiation settings — different strategies may be more or less effective,
depending on the specific negotiation scenario and opponent type[99].

Our portfolio construction method, based on Hydra [162], iteratively generates
complementary strategies that specialise on sub-spaces of the negotiation game
distribution. We build on top of the previous work where we configure a single-
best strategy and, instead, now configure a portfolio of complementary strategies.
We then employ a learned strategy selection model, using AutoFolio [100], that
selects a strategy from the portfolio for a given negotiation game. This portfolio-
based approach offers the advantage of better adaptation to different opponents
and negotiation problems and outperforms the single-best strategy across diverse
settings.

REINFORCEMENT LEARNING
In Chapter 5, we investigate the potential of end-to-end reinforcement learning
approaches for automated negotiation. The previous algorithm configuration and
selection approaches still rely on a high degree of manual design, as the parame-
terised strategies are a prerequisite for both approaches. This introduces bias, which
can help in reducing the search space of negotiation strategies. However, it also
potentially introduces suboptimality to the method. To further mitigate potential
biases introduced by human design, we propose a conceptually straightforward re-
inforcement learning approach, based on Proximal Policy Optimisation (PPO) [135],
in an effort to obtain better performance across a broader set of negotiation settings.
A key challenge in applying reinforcement learning to negotiation is handling
the variability in problem structures. Negotiation outcome spaces are arbitrarily
sized, leading to widely varying observation and action spaces. This variability
poses difficulties for traditional neural network architectures used in reinforcement
learning. To address this challenge, we developed a policy network using Graph
Neural Networks (GNNs) [26] that operates on a custom graph-structured represen-
tation of negotiation game data and trained it through reinforcement learning. Our
policy can process negotiation scenarios of varying sizes and structures, enabling
generalisation across diverse scenarios. This approach opens up avenues for more
sophisticated and adaptable negotiation agents in automated negotiation by lever-
aging reinforcement learning techniques. It significantly reduces human-induced
biases in learned strategies while facilitating the integration of advanced learning
capabilities into policy networks.

1.1.2 EVALUATING NEGOTIATION AGENTS
An essential part of developing negotiation agents is evaluating them empirically.
Negotiation agents are tested by running computational experiments where agents
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compete against each other on sets of negotiation scenarios. Without a good per-
formance measuring method, it is difficult to judge whether a designed strategy is
effective or not. Over the years, multiple such evaluation methods were developed
and tested on selected strategies [9]. Despite the efforts, there is still no clear answer
to the question of what makes a negotiation agent good or not. To make matters
more complex, we see an increase in the deployment of machine learning tech-
niques in recently developed agents, which makes them change their behaviour
over time. This inherent non-stationarity poses a challenge to empirical evaluation,
as evaluation methods often require repeated trials under stable conditions. Eval-
uating learning agents via repetition yields non-stationary performance metrics,
complicating such an evaluation. In part two of this dissertation, we study this in
more depth.

EMPIRICAL ANALYSIS OF NEGOTIATION AGENTS

We organised ANAC 2021 and 2022, and set the challenge explicitly on the design
of negotiation agents that learn and adapt their behaviour over time. The agents
submitted to the 2022 competition are used for an extensive evaluation study of
negotiation agents comparing various evaluation criteria in Chapter 6. We observe
that multiple factors influence the performance of an agent. The evaluation criteria
have an influence, but so does the composition of the group of opponents. We
conclude that there is no single evaluation criterion to evaluate negotiation agents,
and that outperforming a fixed group of opponents is no guarantee that an agent
will perform well in general. However, a common practice in ANAC is to evaluate
agents based on a single evaluation criterion in a fixed group of agents.

PROPOSED APPLICATION DOMAIN

We argue that the lack of a good performance measuring method goes hand in
hand with the lack of a straightforward application domain. Different application
domains likely require different performance criteria. Without a clear application
domain, the community could be running in circles in pursuit of better strategies.
To this extent, in Chapter 7, we propose an application domain for negotiation
agents that we think is rich and useful. We propose the use of negotiation agents in
calendar scheduling problems and map out the necessary steps to achieve this. We
hope this sets an example and a direction for the automated negotiation community.

1.2 RESEARCH QUESTIONS

We formulate two main research questions and several sub-questions for this dis-
sertation. The questions are in line with what was discussed in Section 1.1.1 and
Section 1.1.2:
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Q1 How do we design agents that can learn to negotiate?

SQ1.1 How can we reduce human-induced biases and conceptual com-
plexity in learned negotiation strategies?

SQ1.2 Can we learn to generalise over diverse negotiation instances?

Q2 Is there a uniform way of evaluating negotiation agents?
SQ2.1 Is there a single-best metric?

$Q2.2 What is the value of the average utility metric for evaluating negoti-
ation agents?

J

Investigating these questions will advance machine learning within automated
negotiation, leading to more sophisticated negotiation agents while reducing design
overhead. Furthermore, improved insight into evaluation metrics is essential for
refining research goals and assessment methodologies. Progress in automated
negotiation is important to stimulate the wider adoption of agent-based Al systems.

1.3 DISSERTATION STRUCTURE

The remainder of this dissertation is structured as follows. Chapter 2 provides
background information on commonly used concepts and topics covered in this
dissertation. Chapter 3 presents our work on automated configuration of negotia-
tion strategies. We detail our application of SMAC to strategy optimisation, which is
not straightforward due to the combined nature of negotiation problems consisting
of opponents and scenarios. We introduce our feature representation for negotia-
tion problems and provide empirical results demonstrating the effectiveness of this
approach. Chapter 4 describes our portfolio-based approach for strategy selection
and adaptation. We explain our portfolio construction method, detail the AutoFolio-
based strategy selection process, and present results from ANAC-like tournaments,
showing the advantages of this approach. Chapter 5 introduces our end-to-end re-
inforcement learning method for general negotiation. We describe our graph-based
policy architecture, explain the training process using PPO, and provide extensive
evaluations against both baseline and state-of-the-art negotiation agents. Chap-
ter 6 contains our extensive analysis of negotiation agents that were submitted to
ANAC 2022. The 2022 edition focused specifically on learning negotiation agents.
We compare various performance criteria and study the effect of non-stationary
behaviour. We argue that evaluating negotiation agents is challenging and that
there is no single best method to do so. Chapter 7 resurfaces a realistic real-world
application domain for negotiation agents that has been studied in the past, namely,
agent based calendar scheduling. We thoroughly dissect the complexity of the
domain into manageable sub-problems to solve in the hope of setting the stage for
future work in this application domain. Chapter 8 concludes the dissertation with a
discussion of the broader implications of our work, its limitations, and promising
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directions for future research.
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This chapter contains background knowledge for readers who are less familiar with
some of the topics discussed in this dissertation. We start with an introduction
to automated negotiation (Section 2.1) and further discuss algorithm configura-
tion (Section 2.2), algorithm selection (Section 2.3), and reinforcement learning
(Section 2.4).

2.1 AUTOMATED NEGOTIATION

The research topic of automated negotiation studies autonomous agents that par-
ticipate in a negotiation game [50]. Here, negotiation can be seen as a distributed
search through a space of potential outcomes [79]. The software agents used in this
context can negotiate with other agents in multi-agent systems or with humans
in human-agent negotiations. Automated negotiation combines concepts and in-
sights from multiple disciplines, such as artificial intelligence, game theory, and
social psychology [79].

In this dissertation, we focus exclusively on bilateral negotiation between two
autonomous agents. We define a negotiation game as a tuple N = (Z,Q,U7), where
7 denotes the set of agents, Q denotes the set of potential outcomes the agents
negotiate over, also known as the domain or outcome space, and U7 is the set of
utility functions for agents Z such that U7 = {u;|i € Z}. u; : Q — [0, 1] is the utility
function of agent i over the outcome space where higher utilities indicate more
desirable outcomes. From the perspective of an agent, we often refer to its own
utility function with u and to the opponent’s utility function with u,. How agents
communicate to agree is specified through a negotiation protocol that dictates the
rules of encounter and permissible actions.

2.1.1 NEGOTIATION PROTOCOL

Communication between agents is required to enable a negotiation. Humans pri-
marily negotiate using natural language. This is also possible for negotiation agents,
but adds additional challenges in generating and interpreting natural language [128,
95, 67, 90, 98]. Most of the work in automated negotiation uses a negotiation pro-
tocol that dictates what actions agents can perform and when. A few examples of
protocols are:

e The Ultimatum Game [24]: One agent makes an offer and the other agent
may only accept or refuse it, after which the negotiation is ended.

e Alternating Offers Protocol (AOP) [132]: Two agents take turns in making
offers. An extended version of this protocol that supports more than two
agents is the Stacked Alternating Offers Protocol (SAOP) [7].

* Monotonic Concession Protocol [129]: Requires agents to make progressively
more attractive offers to their opponents.

* Multiple Offers Protocol for multilateral negotiations with Partial Consensus
(MOPaC) [110]: Allows for multilateral negotiations where only a subset of ne-
gotiating agents can reach an agreement, enabling partial consensus through
bidding, voting, and opt-in phases.
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Figure 2.1: Visualisation of the Alternating Offers Protocol (AOP). Agent 1 starts the negotiation by
making an offer. Note that the action “Accept” is inaccessible in the first step.

¢ Simulated Annealing Protocol [87]: A negotiation approach where agents
or a mediator use simulated annealing techniques to explore the outcome
space, allowing temporary concessions to escape local optima and ultimately
achieve near-optimal agreements.

The choice of protocol can significantly impact negotiation dynamics and outcomes.
For instance, the Alternating Offers Protocol (AOP) allows for more complex strate-
gies and learning during negotiation, while one-shot protocols may encourage
more truthful revelation of preferences.

In this dissertation, we exclusively use the AOP, due to its simplicity and its
wide use in the automated negotiation literature. Here, agents take turns making a
(counter) offer, accepting the opponent’s offer, or walking away from the negotiation.
The protocol is visualised in Figure 2.1. A (counter) offer is made by selecting one
of the potential outcomes w € Q and sending it to the opponent. A deadline T is
imposed on the negotiation to prevent agents from negotiating indefinitely. Such
a deadline is defined either in a maximum number of rounds that the agents can
negotiate for or in seconds of wall-clock time or a combination of the two. The
wall-clock time limit is often used as searching large (often combinatorial) outcome
spaces for suitable candidate offers can take a long time.

The negotiation ends with an agreement if one of the agents accepts the of-
fer received from the opponent. Both agents then receive a pay-off according to
their (discounted) utility function. The negotiation ends without an agreement
if one of the agents decides to walk away or if the deadline passes. In that case,
agents are awarded their reservation value or 0 if there is no reservation value. The
reservation value can be used to represent a Best Alternative To a Negotiation Agree-
ment (BATNA) [53], e.g. an agreement reached with another negotiation partner, or
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deciding to build something yourself instead of negotiating with a contractor.

2.1.2 NEGOTIATION SCENARIO

A negotiation scenario is a combination of an outcome space and utility functions
that reflect the preferences of the agents. The outcome space generally consists
of a set of objectives, known as issues B = {1,---, n}, that are being negotiated. For
example, in a GPU compute node purchase negotiation, issues might include price,
support period, GPU type, number of GPUs, and delivery date. Issues can be:

* Categorical (e.g., GPU type: A6000, A100, or H100)
e Continuous (e.g., price of the compute node)
e Integer (e.g., number of GPUs: 2, 4, or 8)

We focus solely on categorical issues in this dissertation, which is the most general
type, as continuous issues can also be discretised. The set of possible values for an
issue b € B is denoted as Q. The Cartesian product of all the issue values comprises
the total outcome space Q = Q; x --- x Q,, of the negotiation scenario. During a
negotiation, the agents attempt to agree upon an outcome w = (W1, W2, ,Wy) € Q,
where 7 is the number of issues and w;, € Q. Simple scenarios might have 2-3
issues with a small number of categorical values each. Complex scenarios can have
dozens of issues, continuous values, and large numbers of categorical issue values,
increasing the computational complexity of searching for suitable outcomes in the
outcome space.

UTILITY FUNCTION

Utility functions are mathematical representations of an agent’s preferences over
the outcome space. They map potential outcomes to a real number, indicating
the relative desirability of different outcomes. Both agents have a utility function
u; : Q — [0,1], where 1 is the best possible utility for an agent. Such utility functions
can be complex non-linear functions that capture interdependencies between
issues, but in this dissertation, we focus on linear additive utility functions like
the one shown in Equation 2.1. Here, weights are assigned to all values and issues
through weight functions w : B+— [0,1] and wy, : Qp — [0,1] such that }_,cp w(b) =1,
maXy,eq, Wp(wp) =1, and ming,eq, wpwp) =0.

uw) = ) wb)- wy(wp) 2.1)
beB

RESERVATION VALUE & DISCOUNT FACTOR

A negotiation scenario can optionally be extended with a reservation value and a
discount factor. A reservation value is specified per agent and is the utility that an
agent obtains when they fail to reach an agreement. This can be used to simulate
the Best Alternative to a Negotiated Agreement (BATNA) [53], which is a commonly
used concept in negotiation literature. This can be used to, for example, simulate
an alternative agreement that is achieved with another party.
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Figure 2.2: Visualisation of example negotiation scenario. The dots represent outcomes, which are
plotted according to their utility value for two agents. The blue line connects the Pareto efficient
possible outcomes, which form the Pareto frontier. The Nash Bargaining solution, the possible outcome
that maximises the product of utilities, is circled in green.

The discount factor can be used to apply time pressure in a negotiation game.
Here, the obtained utility is discounted as follows:

ul (@) =)' uj(w) 2.2)

where u; is given in Equation 2.1, y € [0, 1] is the discount factor and ¢ is a dis-
crete time step variable. We do not consider reservation values and discount factors
as the increased complexity they cause is outside of the scope of this dissertation.

EXAMPLE SCENARIO

To provide some intuition, we visualise an example negotiation scenario with cate-
gorical issues in Figure 2.2. All possible outcomes of the scenario are plotted based
on their utility value for agent 1 (x-axis) and agent 2 (y-axis). We also visualise the
Pareto frontier, which is the set of possible outcomes that are not strictly dominated
by another possible outcome based on its utility value for both agents. Finally, we vi-
sualise the Nash bargaining solution [111], which is the outcome that maximises the
product of utilities of all involved agents and is often used as a reference outcome
for performance analysis. The Nash bargaining solution is defined as:

WNash € argmax (i (w) - uz (w)) 2.3)
weQ

2.1.3 NEGOTIATION AGENTS

Negotiation strategies determine an agent’s behaviour during the negotiation pro-
cess within the used protocol. They encompass decision-making about which offers
to make, when to accept offers, and how to model the opponent’s behaviour and
respond to it. Strategies are at the core of automated negotiation research, with a
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wide variety of approaches developed over the years. A commonly used framework
to structure components of negotiation strategies is the Bidding, Opponent mod-
elling, and Accepting (BOA) framework [8]. Although we will not always use this
framework in this dissertation, we will use it in this section to provide insights into
negotiation strategies.

BIDDING STRATEGY

The bidding strategy decides which offers to make. This involves balancing between
pursuing the interests of the agent (e.g. maximising utility) and making concessions
to reach an agreement. Common approaches include:

* Time-dependent tactics (see, e.g. [48], [51]): Concession is based on the
remaining time.

— Boulware: Concedes slowly at first, then rapidly as the deadline ap-
proaches.

— Conceder: Makes large concessions early.

— Linear: Concedes at a constant rate.

* Behavior-dependent tactics (see, e.g. [4]): Adapt based on the opponent’s
actions. These might mimic, reciprocate, or exploit the opponent’s concession
pattern.

» Trade-off strategies: Attempt to generate offers of similar utility to the previous
offer but more attractive to the opponent.

ACCEPTANCE STRATEGY
The acceptance strategy determines when to accept an offer. Common criteria
include:

» Threshold-based: Accept if the offer’s utility exceeds a certain threshold.
e Time-dependent: Lower the acceptance threshold as the deadline approaches.

e Aspiration-based: Accept if the offer exceeds the utility of the planned counter-
offer.

Acceptance strategies are often combinations of these criteria or more complex
designed heuristic-based methods. For a comparison of acceptance strategies, we
refer the reader to Baarslag and Hindriks [17].

OPPONENT MODELLING

With opponent modelling, the agent attempts to learn about the opponent’s pref-
erences, which are commonly considered to be private information. Being able to
accurately predict the opponent’s utility function helps in finding mutually benefi-
cial outcomes, i.e., find outcomes that are (close to) Pareto efficient, which generally
improves the pay-off of the agent. Techniques to predict the opponent’s utility
function include:
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* Frequency analysis: Infer the importance of outcomes based on how often
they are offered.

* Regression: Assume the concession behaviour (e.g., Boulware) of the op-
ponent and fit a regression model to the opponent’s offers based on that
concession behaviour.

¢ Bayesian learning: Fit a probability model to the observed offers of the oppo-
nent.

We refer the reader to Baarslag et al. [12] for a more elaborate review and comparison
of opponent modelling techniques.

2.2 ALGORITHM CONFIGURATION

Negotiation agents commonly have parameters that influence the behaviour or
strategy of the agent. Algorithm configuration, also known as parameter tuning or
hyperparameter optimisation, is the task of selecting the best parameters for an
algorithm to optimise its performance on a given set of problem instances. The
need for algorithm configuration arose from the observation that many algorithms,
particularly in areas such as optimisation and machine learning, have parameters
that significantly affect their performance. Traditionally, experts set these parame-
ters manually through a process of trial and error. However, as algorithms became
more complex and included more parameters, manual tuning became increasingly
time-consuming and often suboptimal [74]. Early approaches to configure parame-
ters included simple techniques like grid search and random search [52]. However,
these methods scale poorly with the number of parameters, also known as the
curse of dimensionality [22]. This led to the development of more sophisticated,
automated algorithm configuration approaches, of which we will mention a few.

2.2.1 PROBLEM DEFINITION

The algorithm configuration problem can be formally defined as follows [74]. Given
an algorithm with a configuration space 0, a set of problem instances P, and a
performance metric m(0, p) for 8 € ® and p € P, find 6* € © that maximises (or
minimises depending on m):

0" € argmax ) m(6,p) (2.4)
0€® peP

CONFIGURATION SPACE
The configuration space © represents all possible parameter settings for the algo-
rithm. It can include various types of parameters, such as;

¢ Categorical parameters (e.g., choice of heuristic).
¢ Continuous parameters (e.g., learning rate in neural networks).

* Integer parameters (e.g., population size in genetic algorithms).
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The configuration space can be highly complex, with dependencies between pa-
rameters and varying impacts on algorithm performance.

PERFORMANCE METRICS
The choice of performance metric m (6, p) is crucial and depends on the specific
application. Common metrics include;

e Solution quality: For example, the distance travelled for optimisation prob-
lems like the travelling salesperson problems or the prediction accuracy for
machine learning methods on classification or regression tasks.

* Running time: Time taken to solve a problem or reach a certain quality
threshold.

* Composite measures: e.g., PAR (Penalised Average Running time), which as-
signs a penalty to unsuccessful runs in, e.g., Boolean satisfiability or travelling
salesperson problems.

2.2.2 CONFIGURATION METHODS

Several methods have been developed for automated algorithm configuration. Two
separate parts within these methods can be identified: how new configurations are
selected for evaluation and how a set of configurations is compared. In the follow-
ing, we briefly outline examples of prominent, high-performance configuration
approaches:

ParamlILS uses Iterated Local Search (ILS) to find high-performance parameter
settings for a given target algorithm. It navigates the configuration space by itera-
tively applying a local search phase, typically involving single parameter changes to
find improvements and perturbation steps to escape local optima. Key features in-
clude always accepting better-performing configurations and using random restarts
for diversification.

e ParamlILS [74] uses Iterated Local Search (ILS) to find high-performance pa-
rameter settings for a given target algorithm. It navigates the configuration
space by iteratively applying a local search phase, typically involving single
parameter changes to find improvements and perturbation steps to escape
local optima. Key features include always accepting better-performing con-
figurations and using random restarts for diversification.

» F-Race [25] is a statistical racing algorithm that eliminates suboptimal config-
urations by first using the Friedman test to detect significant overall perfor-
mance differences among remaining candidates across multiple instances.
If such differences exist, it then performs pairwise comparisons against the
best-performing configuration (incumbent) to discard those that are sta-
tistically significantly worse. This saves computational budget, as not all
configurations have to be tested on the full target instance set. The set of
configurations to test can be selected either manually, as a grid search, or
at random. Balaprakash et al. [20] extended upon F-Race by implementing
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it as a model-based search [166], which iteratively models and samples the
configuration space in search of promising candidate configurations.

¢ Sequential Model-based optimisation for general Algorithm Configuration
(SMAC) [75] builds a random forest model to predict algorithm performance
based on parameter settings and instance features. It uses this model to find
promising configurations to evaluate. It also incorporates an early elimination
mechanism for new configurations by comparing them with a dominant
incumbent configuration on individual problem instances.

¢ Gender-based Genetic Algorithm (GGA) [3] uses a genetic algorithm approach.
It maintains a population of configurations, evolves them over generations,
and incorporates gender separation to maintain diversity.

¢ Bayesian Optimisation HyperBand (BOHB) [47] is designed for hyperparam-
eter optimisation of machine learning algorithms. It combines Bayesian
optimisation with hyperband [96], where Bayesian optimisation is used to
find promising configurations and multi-armed bandit strategies are used to
allocate resources to evaluate configurations.

2.2.3 INSTANCE FEATURES

Some model-based configuration methods (e.g., SMAC and BOHB) allow the use
of problem instance features to guide the search process. These features aim to
capture relevant properties of the instances to better model the relation between
parameter settings, problem instances, and performance. Examples of such features
are:

* SAT solving: Number of variables, clause-to-variable ratio, etc.
¢ (Classification tasks: Dataset size, number of features, class distribution, etc.

* Optimisation tasks: Dimensionality, constraint density, objective function
properties, etc.

¢ Negotiation games: Size of the outcome space, average utility of outcomes,
last obtained utility against opponent, etc.

2.3 ALGORITHM SELECTION

It is a common observation that a single negotiation strategy does not necessarily
work well in every negotiation game [99]. This raises the question of whether
selecting between negotiation strategies depending on the negotiation game could
improve performance. Algorithm selection is the problem of choosing the best
algorithm from a set of candidates for a given problem instance. It is based on
the idea that no single algorithm is superior for all problem instances and aims
to exploit the complementary strengths of different algorithms. The algorithm
selection problem was first formally described by Rice [127], who recognised that
for many computational problems, different algorithms performed best on various
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instances and proposed a framework for selecting the best algorithm based on
features of the problem instance.

The research area gained significant traction with the advent of portfolio-based
approaches in areas such as Boolean satisfiability (SAT) solving and Constraint
Programming (CP). Notable early systems include SATzilla [161] for SAT solving and
CPHydra [113] for CP.

2.3.1 PROBLEM DEFINITION

The per-instance algorithm selection problem can be formally defined as follows.
Given a set of algorithms ¥ = {w,v¥2,---,¥,}, a set of problem instances P, a
performance metric m(y, p) for ¢ € ¥ and p € P, and an instance feature mapping
f P — RF (Section 2.2.3) that characterise each problem instance p, find a selection
mapping M : f(P) — ¥ that optimises the performance metric on the set of problem
instances:

min ) m(M(f(p)), p) 2.5)
M
peP

2.4 REINFORCEMENT LEARNING

The negotiation game defined in Section 2.1 can be formulated as a Markov De-
cision Problem (MDP). We discuss the similarities in Section 2.4.2. This enables
the usage of Reinforcement Learning (RL) in negotiation games. RL is a form of
machine learning where an agent learns by interacting with an environment. Unlike
supervised learning, where the agent learns from labelled examples, or unsuper-
vised learning, where the agent finds patterns in unlabeled data, RL agents learn
from the consequences of their actions.

The research area gained significant momentum with the development of al-
gorithms like Q-learning [157] and the publication of a book by Sutton and Barto
[146]. More recently, the combination of RL with deep learning, known as deep
reinforcement learning, has led to breakthroughs in areas such as game playing
(e.g., AlphaGo [141]) and robotics [89].

2.4.1 MARKOV DECISION PROCESS
RL problems are typically formalised as Markov Decision Processes (MDPs). An
MDP is defined as a tuple M = (S, A, 7T, R), where S denotes the set of states, A the
set of actions, 7 : S x A — p(S) denotes the transition function, and R : § x A —
R the reward function. The transition function describes how the environment
transitions to a new state based on the current state the environment is in and the
action taken. The reward function describes the reward that the agent obtains by
taking an action in the state that the environment is in.

The goal in an MDP is to find the optimal policy 7* : S — A that maximises the
expected cumulative discounted reward:

H-1
Z Yt “R(ss,ar)
k=0

Er 7 (2.6)
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Table 2.1: Similarities between a negotiation game and a Markov Decision Process (MDP). Each row
describes a similar concept.

Negotiationgame = MDP

Utility u Reward R
Outcomes Q Actions A
Discount Y Discount Y
Deadline T Horizon H
Time step t Timestep ¢

where H denotes the horizon of the MDP (the number of rounds we select an
action), v € [0, 1] is a discount factor that discounts future reward, and ¢ is the time
step.

2.4.2 MDPS AND AUTOMATED NEGOTIATION

The negotiation game, as defined in Section 2.1, shows similarities with the def-
inition of an MDP. We provide an overview of similarities in Table 2.1. Although
unifying the notation is possible, we intentionally kept them separate to maintain
the relation in this dissertation to the specific literature of the automated negoti-
ation and reinforcement learning communities. We mention this relation here to
make the reader aware of the close resemblance between both research areas.
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AUTOMATED CONFIGURATION OF
NEGOTIATION STRATEGIES

This chapter has been published at AAMAS 2020 [124].
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3.1 INTRODUCTION

In this chapter, we use algorithm configuration techniques to configure negotiating
agents on large and diverse sets of negotiation scenarios and opponent types. We
recreate a negotiation agent from literature [92] that is configured manually, com-
bine it with contemporary opponent learning techniques and create a configuration
space of its strategic behaviour. To automatically configure this conceptually rich
and highly parametric design, we use Sequential Model-based optimization for
general Algorithm Configuration (SMAC), a general-purpose automated algorithm
configuration procedure that has been used previously to optimize the performance
of cutting-edge solvers for Boolean Satisfiability (SAT), Mixed Integer Programming
(MIP) and other NP-hard problems. We note that here, we apply automated algo-
rithm configuration for the first time to a multi-agent problem.

Earlier attempts to solve the automated configuration problem in automated
negotiation mostly used basic approaches, such as random and grid search. More
advanced methods, in the form of genetic algorithms, have also been attempted.
Matos et al. [104] encoded a mix of baseline tactics as a chromosome and deployed
a genetic algorithm to find the best mix. They assumed perfect knowledge of
the opponent’s preferences, and their strategy is only tested against itself in a
single negotiation scenario. Eymann [46] encoded a more complex strategy as a
chromosome with six parameters, again only testing its performance against itself
and using the same scenario. Dworman et al. [43] implement the genetic algorithm
in a coalition game with three players, with a strategy in the form of a hard-coded if-
then-else rule. The parameters of the rule are implemented as a chromosome. The
strategy is tested against itself in a coalition game with varying coalition values. Lau
etal. [92] use a genetic algorithm to explore the outcome space during a negotiation
session but do not use it to change the strategy.

This work aims to automatically configure a negotiation algorithm with no fixed
or pre-defined strategy. This agent can be configured to perform well on a user-
defined set of training problem instances, with little restrictions on the size of the
instances or instance sets. To demonstrate its performance, we configure the agent
in an attempt to win an Automated Negotiating Agents Competition (ANAC)-like
bilateral tournament [10].

We show that we can win such a tournament with a comfortable margin of 5.1%
in increased negotiation payoff compared to the number two. These margins are
not observed in a tournament without our negotiation agent, where the winning
strategy obtains a marginal improvement in negotiation payoff of 0.012%.

3.2 PROBLEM DESCRIPTION

In this section, we discuss the problem that we attempt to solve. We first describe
the parameterised agent that we will configure (Section 3.2.1) and then give a formal
problem definition using this parameterised agent (Section 3.2.2). For background
on automated negotiation and algorithm configuration, we refer the reader to
Section 2.1 and Section 2.2, respectively.
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3.2.1 DYNAMIC AGENT
We first create a Dynamic Agent with a flexible strategy equivalent to a configuration
space. We implement a few popular components and add their design choices
to the configuration space, increasing the chances that it contains a successful
strategy. We refer to this configuration space (or strategy space) with ®. We name
the constructed agent Dynamic Agent D A(0), with strategy 0 € ©.

The dynamic agent is constructed on the basis of the BOA-architecture [8]. We
use this structure to give a brief overview of the workings of the dynamic agent and
its configuration space.

BIDDING STRATEGY

The implemented bidding strategy applies a fitness value to the outcome space Q
and selects the outcome with the highest fitness as the offer, which is an approach
used by Lau et al. [92]. This fitness function f(w, f) balances between our utility,
the opponent’s utility and the remaining time towards the deadline. Such a tactic is
also known as a time-dependent tactic, and it generally concedes to the opponent
as time passes.

The fitness function in Equation 3.1 has three parameters:

* Atrade-off factor 6 that balances between the importance of our own utility
and the importance of reaching an agreement.

» Afactor to control an agent’s eagerness to concede e relative to time, where
the behaviour is Boulware if 0 < e < 1, linear conceder if e = 1, and conceder
ife>1.

A categorical parameter 7 that sets the outcome where the fitness function
concedes towards over time (Equation 3.2). Here, x/4* is the last offer made
by the opponent, and x* is the best offer the opponent made in terms of our
utility.

flw, 1) = F(t) * u(w) + (1 - F(#) * fr(w) G
F(t) =6 (1—1¢) '

A@) =1 =iy (@) = i1 (x5

fol@) = min(1 + @y (@) — 2, (x195%), 1)
f3(@) =1—0p(w) — 0o (x™)] 3.2)
fil@) =min(1 + iy (@) — i1 (x1), 1)

f5(w) =1,(w)

Outcome space exploration The outcome space is potentially large. To reduce
computational time and to ensure a fast response time for our agent, we apply
a genetic algorithm to explore the outcome space in search of the best outcome.
Standard procedures such as elitism, mutation and uniform crossover [109] are
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Table 3.1: Configuration space in bidding strategy

Description Symbol Domain
Trade-off factor 1) [0,1]
Conceding factor e 0,2]
Conceding goal n {1,2,3,4,5}
Population size Np [50,400]
Tournament size Ny [1,10]
Evolutions E [1,5]
Crossover rate R [0.1,0.5]
Mutation rate R [0,0.2]
Elitism rate R, [0,0.2]

Table 3.2: Configuration space in acceptance strategy

Description Symbol Domain
Scale factor a [1,1.1]
Utility gap B (0,0.2]
Accepting time tacc [0.9,1]

Lower boundary utility — y {(MAXY, AvGW}

applied, and the parameters of the genetic algorithm are added to the configuration
space.

Configuration space The configuration space of the bidding strategy is summa-
rized in Table 3.1.

OPPONENT MODEL

The Smith Frequency model [59] is used to estimate the opponent utility function
i, (w). According to an analysis by Baarslag et al. [11], the performance of this
opponent modelling method is already quite close to that of the perfect model. No
parameters are added to the configuration space of the Dynamic Agent.

ACCEPTANCE STRATEGY

The acceptance strategy decides when to accept an offer from the opponent. Baarslag
et al. [14] performed an isolated and empirical research on popular acceptance

conditions. They combined acceptance conditions and showed that a combined ap-
proach outperforms its parts. Baarslag et al. defined four parameters and performed

a grid search in search of the best strategy. We adopt the combined approach and

add its parameters (Table 3.2) to the configuration space of the Dynamic Agent. For

more details on the combined acceptance condition, see Baarslag et al. [14].

3.2.2 PROBLEM DEFINITION
The negotiation agents in the General Environment for Negotiation with Intelligent
multi-purpose Usage Simulation (GENIUS) environment ! [99] are mostly based

1


https://ii.tudelft.nl/genius/
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on manually configured strategies by competitors in ANAC. These agents almost
always contain parameters that are set by trial and error, despite the abundance
of automated algorithm configuration techniques (e.g. Genetic Algorithm [71]).
Manual configuration is a difficult and tedious job due to the dimensionality of
both the configuration and the negotiation instance space.

A few attempts were made to automate this process as discussed in Section 3.1,
but only on very specific negotiation settings with few configuration parameters.
The main reason for this is that many automated configuration algorithms require to
evaluate a challenging configuration on the full training set. To illustrate, evaluating
the performance of a single configuration on the full training set that we use in
this paper would take approximately 18.5 hours, regardless of the hardware due to
the real-time deadline. These methods of algorithm configuration are, therefore,
impractical.

Automated strategy configuration We have an agent called Dynamic Agent
DA(6), with strategy 8. We want to configure this agent such that it performs
generally well using automated configuration methods. More specifically, we want
the agent to perform generally well in bilateral negotiations with a real-time dead-
line of 60[s]. To do so, we take a diverse and large set of both agents Z;,;, of
size |Zyrqinl = 20 and scenarios St4in Of size |Syr4in| = 56 that we use for training,
making the total amount of training instances [Py, qinl = 1 Z¢rainl * |Strainl = 1120.
Running all negotiation settings in the training set would take 1120 minutes or
~ 18.5 hours, regardless of the hardware, as we use real-time deadlines.

Now suppose we have a setting for the Dynamic Agent based on the litera-
ture 6; and a setting that is hand tuned based on intuition, modern literature and
manual tuning 6, that we consider baselines. Can we automatically configure a
strategy 0, € © that outperforms the baselines and wins an ANAC-like bilateral
tournament on a never before seen test set of negotiation instances Pres:?

3.3 AUTOMATED CONFIGURATION

The goal of our work is to create an agent that can be configured to obtain a negotia-
tion strategy that performs well in a given setting. This requires us to define what it
means for a strategy to perform well. An obvious performance metric m(0, p) is the
utility obtained using strategy 0 in negotiation instance p. As we are interested in
optimizing performance on the full set of training instances rather than for a single
instance, we define the performance of a configuration on an instance set as the
average utility:

1
Pl peP

where:
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m :utility obtained by using strategy 6 in negotiation instance p

M  :average utility of configuration 8 on instance set P

0 € © : parameter configuration

: single negotiation instance consisting of opponent agent i € Z and
scenario s € S, where p =(a,s) e P
P :setofnegotiation instances
As stated in Section 3.2.2, automated configuration methods that require eval-

uation on the full training set of instances, thus requiring Equation 3.3 to be cal-
culated, are impractical for our application. A second component that influences
the amount of required evaluations is the mechanism that selects configurations
for evaluation. This is not a straightforward problem, as the configuration space is
large, and simple approaches, such as random search and grid search, suffer from
the curse of dimensionality.

3.3.1 SMAC

To solve the problem defined in Section 3.2.2, we bring SMAC, a prominent, general-
purpose algorithm configuration procedure [75], into the research area of auto-
mated negotiation. We note that SMAC is well suited for tackling the configuration
problem arising in the context of our study:

1. It can handle different types of parameters, including real- and integer-valued
as well as categorical parameters.

2. It can configure on subsets of the training instance set, reducing the compu-
tational expense.

3. It has a mechanism to terminate poorly performing configurations early,
saving computation time. If it detects that a configuration is performing
very poorly on a small set of instances (e.g., a very eager conceder), it stops
evaluating and drops the configuration.

4. It models the relationship between parameter settings, negotiation instance
features and performance, which tends to significantly reduce the effort of
finding good configurations.

5. It permits parallelisation of the configuration process by means of multiple
independent runs, which leads to significant reductions in wall-clock time.

SMAC keeps a run history (Equation 3.4), consisting of a configuration 6; with
its associated utility m; on a negotiation instance that is modelled by a feature set
F(p). Arandom forest regression model is fitted to this run history, mapping the
configuration space and negotiation instance space to a performance estimate
(Equation 3.5). This model is then used to predict promising configurations, which
are subsequently raced against the best configuration found so far, until an overall
time budget is exhausted. We refer the reader to Hutter et al. [75] for further details
on SMAC.

R={(<91r]:(p)>101)»---y(<9n»]:(]9)>»0n)} (34)
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Table 3.3: Scenario features

Feature type  Description Equation Notes
Domain Number of issues |B|
Domain Average number of ﬁ Y beB 1Qpl
values per issue
Domain Number of possible 1Q|
outcomes
Preference Standard deviation of ﬁ Y pep (w(b) - ‘—él)z
issue weights
Preference Average utility of all ﬁ Y weQ U(w) denoted
possible outcomes by u(®)
Preference Standard deviation utility \/ |T1)\ Y weq (Ulw) — u(@))?

of all possible outcomes

M:(©xP)—im (3.5)

In order for SMAC to be successful in predicting promising configurations, it
requires an accurate feature description of the negotiation instances that captures
differences in complexity between these instances.

Automated algorithm configuration Suppose we have a set of opponent agents
7 and a set of negotiation scenarios S, such that combining a single agent i € Z and
a single scenario s € S creates a new negotiation setting or instance p € P. Can we
derive a set of features for both the opponent and the scenario that characterize the
complexity of the negotiation instance?

We approach this question empirically by analyzing if a candidate feature set
helps the automated algorithm configuration method find better configurations
within the same computational budget.

3.4 INSTANCE FEATURES

The negotiation instances consist of an opponent and a scenario. We will extract
features for both components separately and then combine them as a feature set of
an instance (Equation 3.6). This feature description is used by the configuration
method to predict promising strategies for our Dynamic Agent D A(6).

F P — (Xse x Xopp) (3.6)

3.4.1 SCENARIO FEATURES

A negotiation scenario consists of a shared domain and individual preference pro-
files. Ilany and Gal [76] specified a list of features to model a scenario that they
used for strategy selection in bilateral negotiation. Although the usage differs in
their paper, the goal to model the scenario is the same, so we will follow Ilany et al..
The features are fully independent of the opponent’s behaviour. An overview of the
scenario features is provided in Table 3.3.
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Figure 3.1: Visualisation of Concession Rate (CR)

3.4.2 OPPONENT FEATURES
This section describes the opponent features in detail. For each opponent, we store
both the mean and the Coefficient of Variance (CoV) of all features.

NORMALIZED TIME
The time ¢ € [0, 1] it takes to reach an agreement with the opponent.

CONCESSION RATE

To measure how much an opponent is willing to concede towards our agent, we use
the notion of Concession Rate (CR) introduced by Baarslag et al. [15]. The CRis a
normalized ratio CR € [0, 1], where CR = 1 means that the opponent fully conceded
and CR = 0 means that the opponent did not concede at all. By using a ratio instead
of an absolute value (utility), the feature is disassociated from the scenario.

To calculate the CR, Baarslag et al. [15] used two constants. The minimum utility
an opponent has demanded during the negotiation session u,(x,) and the Full
Yield Utility (FYU), which is the utility that the opponent receives at our maximum
outcome u,(w™).

We present a formal description of the CR in Equation 3.7 and a visualisation in
Figure 3.1.

if up(x) < up(w™),

1
CR(x,)) = _ - (3.7
0 { % otherwise.

AVERAGE RATE

We introduce the Average Rate (AR) that indicates the average utility an opponent
has demanded as a ratio depending on the scenario. The two constants needed are
the FYU (u,(w™)) as described in the previous section and the average utility an
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Figure 3.2: Visualisation of Average Rate (AR)

opponent demanded (u,(X)). The AR is a normalized ratio AR € [0, 1], where AR =0
means that the opponent only offered his maximum outcome and AR = 1 means
that the average utility the opponent demanded is less than or equal to the FYU. We
present a definition of the AR in Equation 3.8 and a visualisation in Figure 3.2.

) 1 if 1o (%) < up(w™),
AR(x):{ Lty (B) R (3.8)
Ty @™ otherwise.

The AR is another indication of competitiveness of the opponent based on
average utility demanded instead of minimum demanded utility as the CR is.

DEFAULT CONFIGURATION PERFORMANCE

According to Hutter et al. [75], the performance of any default configuration on
a problem works well as a feature for that specific problem. For negotiation, this
translates to the obtained utility of a hand-picked default strategy on a negotiation
instance. The obtained utility is normalized and can be used as a feature for that
negotiation instance.

We implement this concept as an opponent feature by selecting a default strat-
egy and using it to obtain an agreement w4g,¢. With the opponent. We then nor-
malize the obtained utility and use it as the Default Configuration Performance
(DCP) feature. We present the formal definition of this feature in Equation 3.9 and a
visualisation in Figure 3.3.

0 if u(w )< ulw?),
DCP(wagree) = { U agree)—t(@") asree

1-u(w™)

° (3.9)
otherwise.
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Figure 3.3: Visualisation of Default Configuration Performance (DCP)

Table 3.4: Opponent utility function usage

Training  Testing

DA6) ity (W) ilo(w)
SMAC Up (W) N/A

3.4.3 OPPONENT UTILITY FUNCTION
As can be seen in Figure 3.1, Figure 3.2, and Figure 3.3, the actual opponent utility
function u,(w) is used to calculate the opponent features. SMAC is only used to
configure the Dynamic Agent on the training set. As the opponent features are
only used by SMAC, we can safely use the opponent’s utility function to construct
those features (Equation 3.7, Equation 3.8 and Equation 3.9) without giving the
Dynamic Agent an unfair advantage during testing. The Dynamic Agent always
uses the predicted opponent utility i, (w) obtained through the model (Table 3.2.1),
as is conventional in the ANAC.

We provide an overview of when the predicted opponent utility function and
when the actual opponent utility function is used in Table 3.4.

3.5 EMPIRICAL EVALUATION

We must set baseline configurations to compare to the result of the optimisation.
The basis of our Dynamic Agent is derived from a paper by Lau et al. [92]. Though
some functionality is added, it is possible to set our agent’s strategy to resemble
that of the original agent. We refer to this configuration from the literature as 6y, its
parameters can be found in Table 3.5.

Another baseline strategy is added, which is configured manually, as the liter-
ature configuration is outdated. A combination of intuition, past research, and
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Table 3.5: Baseline configurations parameters

Accepting Fitness function Space exploration
0 a B tacc Y n o6 e Np Ny E R Ry Re
6; 1 0 1 MAXW 1 0.5 0.5 200 3 3 0.6 0.05 0.1

Op 1 0 098 MAX™W 4 095 005 300 5 4 06 0.05 0.05

manual search is used for this manual configuration, which we consider the de-
fault method for current ANAC competitors. We present the manually configured
parameters 0,, in Table 3.5 and an explanation below:

* Accepting: The acceptance condition parameters of 0; set a pure ACext
strategy with parameters a = 1, § = 0. Baarslag et al. [14] performed empirical
research on a variety of acceptance conditions and showed that there are
better alternatives. We set the accepting parameters of our configuration to
the best-performing condition as found by Baarslag et al. [14].

Fitness function: Preliminary testing showed that the literature configuration
concedes much faster than the average ANAC agent, resulting in a poor-
performing strategy. We set a more competitive parameter configuration for
the fitness function by manual search to match the competitiveness of the
ANAC agents.

* Space exploration: The domain used in the paper has a relatively small set
of outcomes. We increased the population size, added an extra evolution to
the genetic algorithm and made some minor adjustments to cope with larger
outcome spaces.

3.5.1 METHOD

SMAC is run in embarrassingly parallel mode on a computing cluster by starting a
separate SMAC process on chunks of allocated hardware. SMAC selects a negotia-
tion instance and a configuration to evaluate that instance and calls the negotiation
environment GENIUS through a wrapper function.

Input The training instances were created by selecting a diverse set of opponents
and scenarios from the GENIUS environment. The scenarios have non-linear
utility functions and vary in competitiveness and outcome space size (between
9 and 400 000). The scenario features were calculated in advance as described in
Section 3.4.1, and the configuration space is defined in Section 3.2.1.

The opponent features, as defined in Section 3.4.2, can only be gathered by
performing negotiations against the opponents. We gather these features in advance
by negotiating 10 times in every instance with the manual strategy 8,,,.

Hardware & configuration budget We perform 300 independent parallel runs of
SMAC for 4 hours of wall-clock time each, on a computing cluster running Simple
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Table 3.6: Configurations overview

Accepting Fitness function Space exploration

0 a B tacce Y n 6 e Np N; E R R Re

0; 1 0 1 MAXW 1 0.5 0.5 200 3 3 0.6 0.05 0.1
Om 1 0 0.98 MAXY 4 098 0.05 300 5 4 04 0.05 0.05
01 1.001  0.048 0901 AVGW 3 0879 0.00183 345 10 4 0437 0.003 0.176
62 1.041 0.001 0904 AVGW 4 0.913 0.00130 384 5 4 0.431 0.126  0.198
03 1.009 0.026 0910 MAX"W 1 0977 000113 361 2 5 0279 0.181 0.072
04 1.032  0.022 0931 AvGW 3 0914 0.00429 311 8 3 0251 0.082 0.132
05 1.015 0017 0925 AVGW 5 0.961 0.00105 337 5 3 0.192  0.090 0.138
O¢ 1.027  0.022 0943 AVGY 3 0985 0.00227 283 7 4 0294 0.057 0.156

Linux Utility for Resource Management (SLURM). To ensure consistent results, all
runs were performed on Intel® Xeon® CPU, allocating 1 CPU core, with 2 processing
threads and 12 GB RAM to each run of SMAC.

Output Every parallel SMAC process outputs its best configuration 6;,,. after the
time budget is exhausted. As there are 300 parallel processes, a decision must
be made on which of the 300 configurations to use. To do so, the SMAC random
forest regression model conform Equation 3.5 is rebuilt and used to predict the
performance of every 6;,.. The configuration with the best-predicted performance
is selected as the best configuration 8.

3.5.2 RESULTS
The configuration process, as described, is run three times without instance features
and three times with instance features, under identical conditions. There is now
a total of 8 strategies: 2 baselines [0},60,,], 3 optimized without features [0,,0,,0s],
and 3 optimised with features [04,05,085]. An overview of the final configurations is
presented in Table 3.6.

The obtained configurations are now analyzed with an emphasis on the follow-
ing three topics:

1. The influence of the instance features on the convergence of the configuration
process.

2. The performance of the obtained configurations on a never-before-seen set
of instances.

3. The performance of the best configuration in an ANAC-like bilateral tourna-
ment.

INFLUENCE OF INSTANCE FEATURES

To study the influence of the instance features on the configuration process, we com-
pare the strategies obtained by configuring with features and configuring without
features. Only the training set of instances is used for the performance comparison,
as we are purely interested in the convergence towards a higher utility.
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Table 3.7: Performance of configurations on P = P4,

0 M@O,P) 71\/[(91\7/)[252/[52;" P) Description

0; 0.533 -0.307 Literature

Om  0.769 0 Manually configured

61 0.785 0.020 Configured without features
[2/] 0.770 0.000 Configured without features
63 0.792 0.029 Configured without features
64 0.800 0.040 Configured with features

05 0.816 0.060 Configured with features

06 0.803 0.044 Configured with features

Table 3.8: Performance of configurations on P = Prest

0 M@O,P) W Description

0; 0.563 -0.261 Literature

6m 0763 0 Manually configured

01 0.779 0.021 Configured without features
6 0.760 -0.004 Configured without features
03 0.774 0.015 Configured without features
04 0.792 0.038 Configured with features

05 0.795 0.042 Configured with features

06 0.789 0.034 Configured with features

Every configuration is run 10 times on the set of training instances P;4i,, and
the average obtained utility is calculated by Equation 3.3. The results are presented
in Table 3.7, including an improvement ratio over 6,,.

SMAC is capable of improving the performance of the Dynamic Agent above
our capabilities of manual configuration. We observe that configuration without
instance features potentially leads to marginal improvements on the training set.
Finally, we observe that the usage of instance features leads to less variation in final
configuration parameters (Table 3.6) and to a significant improvement of obtained
utility.

PERFORMANCE ON TEST SET

Testing the configurations on a never-before-seen set of opponent agents and
scenarios is needed to rule out potential overfitting. We selected a diverse set of
scenarios and opponents for testing, such that [Pess| = | Arest| * |Stess| = 16 %28 =
448.

Every configuration is once again run 10 times on the set of training instances
P:es: and the average obtained utility is calculated by Equation 3.3. The results are
presented in Table 3.8, including an improvement ratio over 0,,.

It is now clear that strategy configuration without instance features is unde-
sirable as it potentially leads to a worse-performing strategy. Configuration with
instance feature, on the other hand, still leads to a significant performance increase
on a never-before-seen set of negotiation instances.
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ANAC TOURNAMENT PERFORMANCE OF BEST CONFIGURATION

The strategy configuration method is successful in finding improved configurations,
but the results are only compared against the other configurations of our Dynamic
Agent. No comparison is yet made with agents built by ANAC competitors. We now
compare the performance of the best configuration that we found to the ANAC
agents in the test set of opponents.

We select 05 as the best strategy based on performance on the training set and
enter the Dynamic Agent in an ANAC-like a bilateral tournament with a 60-second
deadline. The Dynamic Agent is combined with the test set of opponents and
scenarios. Every combination of 2 agents negotiated 10 times on every scenario, for
a total amount of 38080 negotiation sessions. The averaged results are presented in
Table 3.9. We elaborate on the performance measures found in the table:

e Utility: The utility of the agreement.
e Opp. utility: The opponent’s utility of the agreement.
* Social welfare: The sum of utilities of the agreement.

* Pareto distance: Euclidean distance of the agreement to the nearest outcome
on the Pareto frontier in terms of utility.

» Nash distance: Euclidean distance of the agreement to the Nash solution in
terms of utility (Equation 2.3).

» Agreement ratio: The ratio of negotiation sessions that result in an agree-
ment.

Using the Dynamic Agent with 05 results in a successful negotiation agent that
is capable of winning a ANAC-like bilateral tournament by outperforming all other
agents (two-tailed t-test: p < 0.001). It managed to obtain a % *100% =
5.1% higher utility than SimpleAgent, the number two in the ranking, while also
outperforming it on every other performance measure.

Since the presence of our agent in the tournament also influences the perfor-
mance of other agents, we also ran the full tournament without our Dynamic Agent
as a sanity check. The top 5 performers of this tournament are presented in Ta-
ble 3.10, along with their margins over the respective next lower-ranking agent in
terms of utility.

3.6 CONCLUSION

The two main contributions of this chapter are (1) the success of automated config-
uration of negotiation strategies using a general-purpose configuration procedure
(here: SMAC), and (2) an investigation of the importance of the features of negotia-
tion settings.
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Table 3.9: Bilateral ANAC tournament results using D A(65) (bold = best, underline = worst)

Agent Utility  Opp. Social Pareto Nash Agreement
utility welfare distance distance ratio
RandomCounterOfferParty  0.440 0.957  1.398 0.045 0.415 1.000
HardlinerParty 0.496 0.240 0.735 0.507 0.754 0.496
AgentH 0.518 0.801 1.319 0.118 0.408 0.904
ConcederParty 0.577 0.848 1.425 0.047 0.358 0.964
LinearConcederParty 0.600 0.831 1.431 0.046 0.350 0.964
PhoenixParty 0.625 0.501 1.125 0.263 0.468 0.748
GeneKing 0.637 0.760 1.396 0.061 0.383 0.993
Mamenchis 0.651 0.725 1.377 0.087 0.360 0.927
BoulwareParty 0.662 0.786 1.448 0.043 0.319 0.968
Caduceus 0.677 0.486 1.163 0.241 0.453 0.784
Mosa 0.699 0.640 1.339 0.113 0.385 0.902
ParsCat2 0.716 0.671 1.386 0.108 0.286 0.904
RandomDance 0.737 0.716 1.453 0.024 0.344 0.998
ShahAgent 0.744 0.512 1.256 0.188 0.389 0.821
AgentF 0.751 0.605 1.356 0.100 0.367 0.918
SimpleAgent 0.756 0.437 1.194 0.212 0.470 0.801
DA(65) 0.795 0.566 1.361 0.087 0.407 0.922

Table 3.10: Bilateral ANAC tournament without D A(05)

Agent Utility Margin

Mosa 0.715

ShahAgent 0.736 3.01%
2.43%

RandomDance  0.754 0.65%

AgentF 0.759 pests

SimpleAgent 0.759 0.01%
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3.6.1 CONFIGURATION

Two baseline strategies were selected for our comparison. The first configuration,
0;, is based on publications from which we derived the agent [92, 14]. The second
configuration, 6,,, is configured based on intuition, recent literature and manual
search, which we considered the default approach for current ANAC competitors.
In Section 3.5, we automatically configured our dynamic Agent using SMAC.

The configuration based on earlier work 8; [92] performed poorly compared
to the manually configured configuration 8,,, and achieved 26.1% lower utility
on our test set. The best automatically configured strategy 65 outperformed both
baseline configurations and achieved a 4.2% increase in utility compared to 6,,.
From this, we conclude that the automated configuration method is successful in
outperforming manual configuration.

Our experiments show that the automated configuration method can produce
a strategy that can win an ANAC-like bilateral tournament by a margin of 5.1%
(Table 3.9). This is particularly striking when considering that without our agent,
the winner of the same tournament beats the next-based agent only by a margin of
0.01%.

3.6.2 FEATURES

We consider a set of features that characterizes the negotiation scenario as well
as the opponent. Our empirical results indicate that when using the negotiation
instance features, SMAC is able to find good configurations faster.

Overall, using SMAC in combination with instance features leads to less varia-
tion in the parameter settings between the final configurations obtained in multiple
independent runs (Table 3.6, Table 3.7), as well as significant and consistent perfor-
mance improvement. Furthermore, our results show that automated configuration
without features does not always outperform manual configuration. Therefore,
we conclude that the instance features presented in this chapter are a necessary
ingredient for the successful automated configuration of negotiation strategies.

3.6.3 NEXT STEPS

For this initial step towards automated configuration of negotiation agents, the
negotiation scenarios were simplified by removing the reservation utility and the
discount factor. Now that we have demonstrated that our general approach can
be successful, additional validation should be performed in more complex and
different negotiation environments.

Over the years, it became clear that there is no single best negotiation strategy
for all negotiation settings [99]. In this chapter, we have presented a method to
automatically configure an effective strategy for a specific set of negotiation settings.
However, if this set becomes too diverse, we inherently end up in a situation where
the automatically configured best strategy may not perform too well. In the next
chapter, we exploit the strategy space of the dynamic agent by extracting multi-
ple complementary strategies for specific settings, along with an online selection
mechanism that determines the strategy to be used in a specific instance.
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This chapter has been published at the Cooperative Al workshop at NeurIPS 2021 [122] and AAMAS
2022 [123].
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4.1 INTRODUCTION

The strategies of negotiation agents almost always remain monolithic, i.e. single
strategy with fixed behaviour for every setting, the exceptions we found are, e.g., [76,
137]. It has been observed that no single strategy is optimal for all negotiation in-
stances [76, 99] and that the success of a negotiator also depends on the strategy of
the opponent [10]. In Chapter 3, we successfully showed that we can use automated
configuration techniques to optimise negotiation strategies. However, the obtained
strategy is also fixed in that it does not adapt to various opponent types or negoti-
ation scenarios. A good way to further improve pay-off would be to select from a
portfolio of strategies based on the negotiation game. This introduces the problem
of algorithm selection [127] into negotiation. An early attempt to apply algorithm
selection in automated negotiation was made by Ilany and Gal [77, 76], but they
only selected a strategy based on the negotiation scenario, without considering the
opponent, which we know to be an essential factor [10]. Furthermore, they relied on
a portfolio of existing strategies to select from, which potentially limits robustness.

Our contributions in this chapter are as follows: (i) we apply automated al-
gorithm configuration techniques to not only create a single negotiation strategy,
but a portfolio of complementary negotiation strategies; and (ii) we introduce a
procedure to learn and exploit opponent and scenario characteristics during a
simulated Automated Negotiating Agents Competition (ANAC) tournament. Our
method uses the approach from Chapter 3 to automatically configure negotiation
strategies, which we extend by implementing HYDRA [162] for portfolio construc-
tion and AutoFolio [100] to create a portfolio selector. Empirical results on a variety
of negotiation instances show that our method beats the runner-up agent by a
(comfortable) margin of 5.6%.

4.2 RELATED WORK

Thanks to ANAC, new negotiation strategies are developed every year and collected
in the General Environment for Negotiation with Intelligent multi-purpose Usage
Simulation (GENIUS) test-bed [99], to support future research; they are categorised
and empirically evaluated [10, 8] to provide a basis for new strategies.

As there is no single best strategy for all negotiation instances [76, 99], we should
be able to improve pay-off by exploiting differences in instances by selecting differ-
ent strategies per negotiation instance. We see this as a variation of the algorithm
selection problem [127]. While algorithm selection methods have been successfully
applied to other problems, only few attempts have been made to apply them in the
area of automated negotiation. Ilany and Gal [77, 76] and Giines et al. [64] used a set
of past ANAC strategies and predicted which strategy would perform best on a given
negotiation instance; they then entered that strategy into the negotiation session.
Although they managed to improve the pay-off of the agent in this manner, they
were unable to win ANAC. Kawata and Fujita [84] used a portfolio of 7 strategies that
previously competed in ANAC. They applied a multi-armed bandit approach to find
the best-performing strategy for every combination of an opponent and scenario
while repeating precisely the same negotiation setting 100 times. Unfortunately,
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this strategy does not generalise to unseen negotiation instances. Sengupta et al.
[137] trained both a set of strategies and a selection mechanism. Strategy selection
on a more fine-grained level by selecting modular components of a negotiation
strategy using reinforcement learning has also been attempted [18].

4.3 PRELIMINARIES

This chapter requires background knowledge in automated negotiation (Section 2.1),
algorithm configuration (Section 2.2), and algorithm selection (Section 2.3).

We continue the work of the previous chapter and extend it with portfolio-
building methods and algorithm selection techniques. The dynamic agent D A(6)
with parameter configuration space ® from Section 3.2.1 is used as a basis. We also
use the same scenario features and opponent features as described in Section 3.4.
A deadline of 60 seconds is used for the Alternating Offers Protocol (AOP) [132] in
this chapter, normalised to ¢ € [0, 1], after which negotiation is aborted without
agreement. The performance metric m (0, p) of a configuration  on negotiation
instance p is the obtained utility, where the performance on a set of negotiation
instances is:

M@®,P) = Y m@,p), (4.1)

Pl S

4.3.1 PROBLEM DEFINITION

Note that in this chapter, we consider algorithm selection to be performed on
portfolios of parameter configurations of the same algorithm, thus replacing y in
Section 2.3 with 6.

Strategy portfolio creation. We have an agent with a dynamic strategy D A(0)
based on configuration space ©. Can we create a portfolio of configurations 8 c ©
using a training set of negotiation instances P consisting of configurations that
outperform each other on specific subsets of a test set of negotiation instances
Piest © Pres: that have never been encountered before?

Algorithm selection. We have an agent with a dynamic strategy DA(f), and a
portfolio of configurations @ = {61,6-,...,0,}, where 0, is the single best-performing
configuration (Equation 4.3). Can we apply an algorithm selection method 6, =
AS(8, p) that selects a configuration ), from 6 based on negotiation setting p, such
that M(AS(0, p), Prest) > M(01, Presr). The real goal here is to let M(AS(, p), Prest)
approach the performance of the oracle selector (Equation 4.2) M(OR(0, p), Pres:)
as closely as possible.

OR(8, p) € argmaxm(0, p) 4.2)
el
0; € argmax M (60, P) 4.3)

6e0
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4.4 PORTFOLIO CREATION

As a basis for algorithm selection, we need a portfolio of negotiation strategies
to select from. A simple approach is to build a portfolio of negotiation strategies
that already exist within the GENIUS environment, which is the approach used
by Ilany and Gal [76]. However, for several reasons, we consider this a less-than-ideal
approach:

1. Itrelies on strategies that already exist, thus limiting our choices for a portfolio
to strategies that have been previously implemented and are available to be
re-used.

2. The strategies might not be optimised or optimised for a different objective,
resulting in a low-performance portfolio.

3. There might be dominated strategies in the portfolio, which are outperformed
in all cases by some other strategy in the portfolio, needlessly complicating
the selection problem.

4. The portfolio might not be robust. There can be negotiation settings for which
all the negotiation strategies fail to achieve decent performance, causing
“weak spots” in our portfolio.

4.4.1 PORTFOLIO CREATION

We aim to expand upon the work of Chapter 3, by not only automatically config-
uring a single negotiation strategy, but by building a portfolio of complementary
strategies to better exploit differences between negotiation instances. The portfolio
of strategies @ we create is thus a portfolio of configurations for our DA(6). In our
method we will therefore enforce that every strategy must add value to the portfolio:

v0e€0,IpeP, v0 € (0\0) : m©,p)>m@,p) (4.4)

The portfolio can be viewed as a set of strategies that each specialise on a
region within the negotiation instance space. Similarities in this space are found
by mapping the space to the feature space. One could obtain such a portfolio
by automatically configuring strategies on sets of negotiation instances that are
separated in feature space by dividing the feature space either manually or using
clustering techniques. However, both methods rely on human input without clear
insight into the effects. The quality of the sets is disputable, as they are created
based on similarities in the given feature space without regard for the performance
gains thus achieved. Therefore, instead, we chose to automate the portfolio creation
method by using HYDRA [162], removing the requirement of human input in feature
space separation.

4.4.2 HYDRA
HYDRA automatically generates a portfolio given only a parameterised strategy
(Section 3.2.1) and a set of negotiation instances with features (Section 3.4) while
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Algorithm 4.1 HYDRA [162]

Input (€] Configuration space
P Training set of negotiation instances
m Performance metric
Variables Ok Configuration
0 Portfolio of configurations
my Modified performance metric
Output 0 Portfolio of configurations

AS Algorithm selector

00—, mp—m
: fork=1;k=k+1do
0 — SMAC(O,P, my)
TestPerformance(P,0y)
0—0u {Hk}
AS — FitAlgorithmSelector(0,P)
my — GetModifiedPerformanceMetric(m, AS)
if 6 is not contributing to 6 on S then
End for loop

. return AS, 0

ENDT R LD

—
(=1

using an algorithm configurator and an algorithm selector (Section 4.5). We provide
a pseudo-code description of HYDRA in Algorithm 4.1, modified for this work.

The main idea of HYDRA is to perform multiple configurator runs on an identi-
cal set of training instances while only modifying the performance metric. Due to
the modifications to the metric, the configurator produces different strategies. In
Algorithm 4.1, the modified performance metric is computed by “GetModifiedPer-
formanceMetric” and formally defined as:

my(0, p) = max{m(@, p), m(AS(@0, p), p)}. (4.5)

The modified performance is the better of the performance of the strategy that
is assessed and the performance of the strategy that the algorithm selector selects.
By optimising the increase of performance as compared to the current portfolio, the
configurator aims to find a configuration that adds the most value to the portfolio.
In the first configurator run, the default performance metric is used. The resulting
configuration 0, is therefore a locally optimal configuration over the full set of
training settings, also known as the single best strategy in the portfolio.

4.5 STRATEGY SELECTION

The next step in our approach is strategy selection. We now have a portfolio of
strategies @, but still need to decide which of these strategies best fits our current
scenario and opponent. We, therefore, desire a mapping from the feature space X
to a one-hot distribution over the possible strategies. This is an algorithm selection
problem [127] and is illustrated in Figure 4.1, modified for our work. Essentially, it
is a classification problem for which we can train a classifier on examples generated
from our training set. Subsequently, we hope the learned function will generalise to
new negotiation scenarios and unknown opponents in the test set, allowing us to
select the most suitable strategy from our portfolio.
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Figure 4.1: Algorithm selection schematics [127], modified for this work.

Ilany and Gal [76] also considered this algorithm selection problem and analysed
the performance of multiple classifiers that map feature vectors to algorithms. The
process of selecting a classifier and configuring the accompanying parameters
can again be seen as an algorithm configuration problem. In line with the rest
of this paper, we chose to automate the configuration of an algorithm selector by
using AutoFolio [100], leveraging the power of a broad range of algorithm selection
methods and removing human bias.

4.5.1 AuTtoFoLI1O

The algorithm selection system AutoFolio is used to construct the algorithm selector.
It has a range of regression and classification methods to choose from and uses Se-
quential Model-based optimization for general Algorithm Configuration (SMAC) to
determine both the selection method to use and the settings of its hyperparameters.
The data AutoFolio requires as input is the performance m (0, p) of every strategy
(6 € 0) on every setting (p € P) in the training set and a set of features. Its goal is to
select the best-performing strategy for every negotiation setting.

4.5.2 CROSS VALIDATION.

AutoFolio uses 10-fold cross-validation during optimisation to avoid overfitting by
dividing the negotiation instances in the training set into 10 subsets and leaving
one subset out for performance testing. However, due to the nature of a negotiation
instance being a combination of an opponent and a negotiation scenario, this leads
to overfitting of the algorithm selector. The training set of negotiation instances
is the Cartesian product of the training set of opponents and scenarios, so both
components are included multiple times in the training set.

To address this issue, we modified AutoFolio to split the cross-validation folds
based on the set of opponents and scenarios that build the negotiation instances.
The set of opponents and the set of scenarios are each split into 4 subsets, such
that we obtain a total of 4-4 = 16 folds. When selecting a fold (|Pfal = % -1PD,
we must eliminate the part of the remaining training set (|Pe;im| = % -|P)) that
overlaps with the fold based on opponents and scenarios and use the remaining
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instances (|Py;;| = % -|P|) to fit the algorithm selector. This cross-validation ap-
proach reduces the workable size of the training set, but it does prevent training on
test opponents/scenarios.

4.5.3 PERFORMANCE BASELINES

The oracle selector (Equation 4.2) always makes the perfect choice for every nego-
tiation setting and is an upper bound on the performance of a selector using the
given portfolio. It is obtained by simply trying every strategy on every setting and
selecting the best strategy. The single best strategy is the strategy in the portfolio
that obtains the highest performance on the full set of negotiation settings (Equa-
tion 4.3). We refer to this strategy as 0, as it is the first strategy in the portfolio
produced by HYDRA. The performance of the single best strategy is considered to
be the baseline.

4.6 EMPIRICAL EVALUATION

We will first describe the method that was used to obtain the results of this work
before we show the results.

4.6.1 METHOD

The first configurator run with the default performance metric results in the single
best strategy 6; on the training set of negotiation settings. We iterated through
HYDRA until k = 4. At that point, the Hydra loop was terminated, as the last strategy
that was added did not contribute to the portfolio based on the training set, which
will be shown in Section 4.6. This also allows us to analyse the performance of
portfolios of sizes 1, 2 and 3, due to the incremental approach of HYDRA. The
configurations thus obtained were tested 10 times on every negotiation setting
in the training set to capture performance variation due to randomness in the
negotiation strategies. Finally, the portfolio and the performance data were used
along with the setting features to configure an algorithm selector using AutoFolio.

INPUT
An overview of the opponents that are used in this work can be found in Table 4.1.
The test set of opponents Zypp, resr consists of the bug-free ANAC 2017 agents. More
recent ANAC agents are not compatible with this work, due to different challenges,
such as partially defined preferences and a change of benchmarking platform since
2020. In line with the competition, we allow ourselves access to the agents of
previous ANAC editions (before 2017) that we use as a training set P for the HYDRA
procedure (Algorithm 4.1). Two additional agents are added to the test set in order
to compare our work to the work of Ilany and Gal [76], which adopted a similar
portfolio selection method. 36 agents from the ANAC are used, split up into 20
training agents and 16 test agents.

The set of scenarios is provided in Table 4.2. A total of 42 scenarios is used, of
which both sides can be played by our agent, resulting in 84 playable scenarios.
The set of negotiation scenarios is selected based on diversity using the features
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Table 4.1: Overview of opponent set used in this work. The last column indicates in which year the
opponent participated in ANAC.

Training set Test set

Agent ANAC Agent ANAC
ParsCat 2016 SimpleAgent 2017
YXAgent 2016 Rubick 2017
Terra 2016 PonPokoAgent 2017
MyAgent 2016 ParsCat2 2017
GrandmaAgent 2016 ShahAgent 2017
Farma 2016 Mosa 2017
Caduceus 2016 Mamenchis 2017
Atlas3201 2016 MadAgent 2017
AgentHP2_main 2016 Imitator 2017
RandomDance 2015 GeneKing 2017
PokerFace 2015 Farmal?7 2017
PhoenixParty 2015 CaduceusDC16 2017
ParsAgent 2015 AgentKN 2017
kawaii 2015 AgentF 2017
Atlas3 2015 MetaAgent2013 2013
AgentX 2015 MetaAgent 2012
AgentH 2015

AgentBuyogMain 2015

Gangster 2014

DoNA 2014

as described in Section 3.4, and their discount factor and reservation utility are
removed. The set is split up into 56 training scenarios and 28 test scenarios. The
training set is of size |P| = 20 x 56 = 1120 and the test set is of size [Pes;| = 16 x 28 =
448.

The negotiation scenario features were calculated in advance, as described in
Section 3.4. The opponent features can only be gathered by performing negotiations
against the opponents. We gathered these features in advance for the first configura-
tor run, by negotiating 10 times on every setting with a manually set strategy. After
the first configurator run, opponent features are extracted based on negotiations
with strategies that are already in the portfolio. Note that during training, we use
the actual opponent’s utility function (u,) to calculate the features in Section 3.4 to
reduce estimation noise.

HARDWARE & BUDGET

We followed Renting et al. [124] in terms of computational budget, in order to be
able to compare results. Each run of SMAC was given a 1200-hour budget, divided
over 300 parallel runs. Every run was performed on a single Intel® Xeon® CPU
core with 2 threads and 12 GB of RAM. Running AutoFolio for our problem is not
computationally expensive, so we chose not to run it in parallel for convenience.
We used a single dual-core processor on the same computing cluster, assigned it 4
GB of RAM, and provided it with a budget of 0.5 hours.
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Table 4.2: Overview of the negotiation scenarios sets used in this work. These scenarios are part of the

GENIUS package.
Train/Test  Preference Profile 1 Preference Profile 2
train ItexvsCypress_Cypress.xml ItexvsCypress_Itex.xml
train laptop_buyer_utility.xml laptop_seller_utility.xml
train Grocery_domain_mary.xml Grocery_domain_sam.xml
train Amsterdam_partyl.xml Amsterdam_party2.xml
train camera_buyer_utility.xml camera_seller_utility.xml
train energy_consumer.xml energy_distributor.xml
train EnergySmall-A-profl.xml EnergySmall-A-prof2.xml
train Barter-A-profl.xml Barter-A-prof2.xml
train FlightBooking-A-profl.xml FlightBooking-A-prof2.xml
train HouseKeeping-A-profl.xml HouseKeeping-A-prof2.xml
train MusicCollection-A-profl.xml MusicCollection-A-prof2.xml
train Outfit-A-profl.xml Outfit-A-prof2.xml
train RentalHouse-A-profl.xml RentalHouse-A-prof2.xml
train Supermarket-A-profl.xml Supermarket-A-prof2.xml
train Animal_utill.xml Animal_util2.xml
train DogChoosing_utill.xml DogChoosing_util2.xml
train Icecream_utill.xml Icecream_util2.xml
train Lunch_utill.xml Lunch_util2.xml
train Ultimatum_utill.xml Ultimatum_util2.xml
train DefensiveCharms_utill.xml DefensiveCharms_util2.xml
train SmartEnergyGrid_utill.xml SmartEnergyGrid_util2.xml
train DomainAce_utill.xml DomainAce_util2.xml
train Smart_Grid_utill.xml Smart_Grid_util2.xml
train DomainTwF_utill.xml DomainTwF_util2.xml
train ElectricVehicle_profilel.xml ElectricVehicle_profile2.xml
train PEnergy_utill.xml PEnergy_util2.xml
train JapanTrip_utill.xml JapanTrip_util2.xml
train NewDomain_utill.xml NewDomain_util2.xml
test England.xml Zimbabwe.xml
test travel_chox.xml travel_fanny.xml
test IS_BT_Acquisition_BT_prof.xml IS_BT_Acquisition_IS_prof.xml
test AirportSiteSelection-A-profl.xml  AirportSiteSelection-A-prof2.xml
test Barbecue-A-profl.xml Barbecue-A-prof2.xml
test EnergySmall-A-profl.xml EnergySmall-A-prof2.xml
test FiftyFifty-A-profl.xml FiftyFifty-A-prof2.xml
test Coffee_utill.xml Coffee_util2.xml
test Kitchen-husband.xml Kitchen-wife.xml
test Wholesaler-profl.xml Wholesaler-prof2.xml
test triangularFight_utill.xml triangularFight_util2.xml
test SmartGridDomain_utill.xml SmartGridDomain_util2.xml
test WindFarm_utill.xml WindFarm_util2.xml

test

KDomain_utill.xml

KDomain_util2.xml
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Table 4.3: Final configurations in the portfolio. These are the final parameter settings that make up the
different negotiation strategies in the portfolio.

Accepting Bidding Searching
0 a B tacc Y nfit 8 e Npop Ntour E R Rm Re
01 1.038  0.03201 0942 AVGW 3 0.927  0.00199 262 6 4 0.290 0.140  0.085
0, 1.001  0.00166 0935 AVGW 3 0.998 0.06232 94 2 5 0.168  0.002  0.108
03 1.007  0.01970 0912 AVGYW 4 0.917  0.01093 305 10 1 0.107  0.063 0.184
04 1.056  0.00003 0.900 MAXW 5 0.997  0.02090 139 10 4 0.463 0.176  0.101

Table 4.4: Individual configuration performance on P and Prest. The two left columns show the average
utility of every individual strategy in the portfolio on the training and test set of negotiation settings. The
next four columns show the fraction of the amount settings in the test set for which a single strategy
belongs to a set of best-performing strategies.

M@, Best performing on Py, by ratio
%) P Prest Singlebest Intop2 Intop3 Intop4 Sum
01 0.815 0.742 0.281 0.100 0.016 0.123 0.520
6, 0.788 0.734 0.167 0.022 0.020 0.123 0.333
03 0.789 0.754 0.154 0.065 0.031 0.123 0.373
64 0773 0721 0.118 0.058 0.033 0.123 0.333

Output. The final algorithm selector was saved as a binary file at the final step of
HYDRA, along with the parameter settings of every strategy configuration (Table 4.3).
We use both when faced with a new negotiation setting for which we want to select
a configuration.

4.6.2 RESULTS
We now present the results using a test set of negotiation instances P;es;. More
specifically, we investigated two aspects:

1. the quality of the portfolio;

2. the performance of the algorithm selector.

QUALITY OF THE PORTFOLIO

We assessed the quality of the portfolio by measuring the performance (Equa-
tion 4.1) of every configuration in the portfolio on the training and testing sets of
negotiation settings. The results can be found in Table 4.4. We included ratios
that indicate how often a strategy is part of the set of best strategies per setting
(“Sum” in Table 4.4). As a final quality check, the performance of the oracle selector
(Equation 4.2) is evaluated for varying sizes of the portfolio. We present the results
in Table 4.5.

Table 4.4 shows the results per strategy in the portfolio in the form of individual
performance over a set of settings M (6, P). It is evident that 0, is the single best
strategy over the full training set P. Furthermore, as every strategy is at least once
the single best on individual settings (single best ratio > 0), we can conclude that
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Table 4.5: Algorithm selector performance compared to oracle performance. The two columns on the
left show the upper limit in average utility for various sizes of the portfolio on the training and test set of
negotiation settings. The right two columns show the average utility obtained by applying the trained
algorithm selector on every setting in both sets.

M(OR(, p),-) M(AS@,p),)
0 P Prest P Prest
{61} 0.815 0.742 0.815 0.742
{61,02} 0.870 0.824 0.865 0.785
61,05,03) 0875 0832 0869 0.776

{61,62,03,04) 0.879 0.840 0.868 0.784

every strategy contributes to the portfolio, thus satisfying our requirement from
Section 4.3.1.

Finally, Table 4.5 shows us that, at every iteration of HYDRA, the oracle perfor-
mance of the portfolio increases on both P and Py.s;. The improvement decreases
on P as the number of iterations increases, indicating that HYDRA fills the largest
“weaknesses” in the portfolio first.

PERFORMANCE OF THE ALGORITHM SELECTOR

Table 4.5 shows that there is potential in the portfolio to improve the utility of D A(9)
by M?j# -100% =~ 13.0% on the test set, if we use the oracle selector rather
than 6;. We now replace the oracle selector with the actual selector and test its

performance in two ways.

Performance against known opponents. We test the absolute performance of
the algorithm selector by assuming perfect knowledge of opponent features of the
opponents in the test set of negotiation setting P;.s;. The opponent features are
gathered by running 10 negotiation sessions with configuration 0, on the test set.

We trained and tested multiple algorithm selectors on different portfolio sizes
by extending the portfolio, starting with the single best strategy 8,. We report
the performance in Table 4.5. For the oracle selector, the performance of DA(6)
increases with the size of the portfolio. However, the performance increase plateaus
on Pyes; after adding the fourth strategy to the portfolio. Based on the results on
the training set, we conclude that the fourth strategy in the portfolio is redundant
and needlessly complicates the strategy selection procedure; we therefore omitted
it in the final evaluation step reported in the following.

Performance with unknown opponents. Opponent features, in contrast to the
scenario features, must be learned from previous encounters. Up to this point, we
assumed the opponents to always be known in advance, which is not realistic. We
now simulate a realistic negotiation tournament where this problem occurs. The
agents in Pys; can also learn from their opponents, but we cannot guarantee fair
learning chances due to parallelisation. To address this issue, we negotiate once
against all of them and then clean up and restart our agent, giving every opponent
a head start, favouring a handicap over any advantage for our agent.
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Figure 4.2: Realistic strategy selection of DA(AS(@, p))

The question arises of what strategy to select at first encounters with opponents
when no opponent features are available. If strategy selection is not possible, we
select the single best strategy 8;. Opponent features are influenced by the strategy
that is selected by DA(6), so we simplify the feature extraction process and only
gather features when strategy 0, is selected. This aligns with the decision to select
0, at first opponent encounters. The coefficient of variation of an opponent feature
(Section 3.4) needs at least two samples to be meaningful, so we set a second
condition to select strategy 6; for the first two encounters with an opponent to
“sample” the opponent. We illustrate this behaviour in Figure 4.2.

To obtain the results, we iterate randomly through the test settings Py.s; and use
DA(AS (0, p)) with 8 = {6;,0-,03} to negotiate, following the procedure as described
in Figure 4.2. Additionally, we let every opponent in the test set negotiate with every
other opponent in the test set on every test scenario and combine the results with
the results of the D A(0). This procedure is repeated 10 times to reduce the influence
of variance for a total of 38 080 negotiations. The results averaged per agent show
that we are capable of winning an ANAC-like bilateral tournament with our D A(6)
using the strategy selector, see Table 4.6. We beat the runner-up agent (MetaAgent)
by % -100% = 5.6% (significant at @ = 0.05 according to a one-tailed t-test
p-value of p = 0.0022).

Finally, we compare the performances including error bars of D A(0) with 6, and
with a portfolio of strategies in a realistic ANAC tournament setup, see Figure 4.3.
Notice that our utility improved with 0'7?7# -100% = 6.2% by using a portfolio
instead of a single fixed strategy and that the portfolio approach also improves all

other performance measures.
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Table 4.6: ANAC tournament results using D A(AS(6, p)) where all scores are averaged over all
negotiation instances. The goal of ANAC is to obtain the highest utility. We show the top 5 agents and all
the outliers for every performance measure. Here, social welfare is the summation of utility and
opponent utility, Pareto distance is the smallest distance to a Pareto efficient negotiation outcome, Nash
distance is the distance to the Nash bargaining solution [111] of the scenario, and agreement ratio
represents the fraction of settings that resulted in an agreement. (bold = best, underline = worst)

=5 0B

\())g\gg’“em uﬁ\s'\(t)\lc @ wei\)?{‘; o d"mﬁcaih distanc®

Agent Utility Opponent  Social Pareto Nash
utility welfare  distance distance
Imitator 0.446 0.901 1.347 0.091 0.428
GeneKing 0.612 0.783 1.396 0.065 0.378
Mamenchis 0.636 0.863 1.498 0.016 0.272
ParsCat2 0.642 0.773 1.414 0.090 0.273
MadAgent 0.669  0.536 1.204 0.232 0.383
Farmal7 0.676 0.690 1.366 0.115 0.311
CaduceusDC16  0.688 0.599 1.287 0.181 0.327
AgentKN 0.690 0.757 1.447 0.065 0.252
SimpleAgent 0.699  0.531 1.230 0.204 0.398
Mosa 0.702 0.781 1.483 0.026 0.271
Rubick 0.716 0.715 1.431 0.070 0.282
PonPokoAgent 0.730 0.589 1.320 0.158 0.307
AgentF 0.738 0.679 1.417 0.076 0.301
ShahAgent 0.741 0.554 1.296 0.172 0.342
MetaAgent2013  0.746 0.659 1.405 0.092 0.284
MetaAgent 0.752 0.634 1.386 0.106 0.296
DA(AS(@, p) 0.788 0.627 1.414 0.074 0.314
N
S84
15 Q-
o~ 0o paey
1] 58 gh 010 DA(AS(®, p)
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Figure 4.3: Comparison of two D A(f) strategies in an ANAC tournament setting. Here, DA(01) is
comparable to the agent configured by Renting et al. [124] and DA(AS(O, p)) represents this work. See
Table 4.6 for an explanation of the measures.
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4.7 CONCLUSION

In previous work [124], automatic algorithm configuration was used to obtain a
single best strategy. Here, we have introduced a method to configure and use a
portfolio of strategies for negotiation agents, adding a combination of HYDRA,
AutoFolio, and a procedure to learn opponent behaviour. Our approach is fully
automated and represents a significant step beyond the use of single best strategies
in automated negotiation. In principle, it can be applied to any negotiation agent
with a flexible, parameterised strategy.

We created a portfolio of 4 strategies 8 and tested the performance of every
strategy on a broad set of negotiation settings. In Table 4.4, we showed that every
configured strategy contributes to the portfolio by specialising on separate sets
of negotiation settings. By adding algorithm selection to the Dynamic Agent to
exploit differences between settings in a realistic tournament, we increased the
performance of Dynamic Agent by 6.2% compared to the single best strategy and
won the tournament by a margin of 5.6%. We note that the single best strategy
is comparable to the agent configured by Renting et al. [124], indicating that a
portfolio-based agent provides another significant boost to negotiation pay-off.

Limitations lie in the required mutual agreement on the norms of how to con-
duct a negotiation. In this work, a predefined protocol is used that is supported by
all used agents. Agents that do not support this protocol cannot participate in the
negotiation. Another important limitation is that this method has no safeguards
to detect whether the strategy portfolio is still performing well and that we are not
being exploited. Finally, due to the train-then-test principle of our method, we
still rely on a training set that is reasonably representative of the actual application.
Ethical concerns arise in the design of negotiation agents for use in real-life applica-
tions. Persons who have more resources to design quality negotiation agents can
gain even more resources in the process, leading to more inequality. There are risks
of exploitation, unfair play, and deception due to a lack of explainability and a high
level of complexity for laypersons.

In future work, we intend to study the influence of the strategies employed by the
Dynamic Agent on the opponent characteristics that we learn during negotiation
to improve opponent learning. Secondly, strategy selection could be improved for
first encounters with opponents, where currently, the single best strategy is selected
without regard to the instance characteristics. We intend to investigate strategy
selection for negotiation instances through neural networks to relax the reliance
on manually designed instance features. Finally, it would be interesting to explore
the use of reinforcement learning for training negotiation strategies instead of the
algorithm configuration approach that we leveraged here.
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This chapter has been published in the Reinforcement Learning Journal (RLJ) [126].
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5.1 INTRODUCTION

Traditionally, negotiating agents were manually designed algorithms based on
heuristics, which is still a commonly seen approach in recent editions of the Auto-
mated Negotiation Agents Competition (ANAC) [5]. However, manually designing
such negotiation strategies is time-consuming and results in highly specialised and
fixed negotiation strategies that do not generalise over a broad set of negotiation
settings. In later work, optimisation methods were used to optimise the parameters
of negotiation strategies using evolutionary algorithms [46, 43, 92], or algorithm
configuration techniques [124].

In Chapters 3 and 4, we showed that algorithm configuration and portfolio
selection methods can be used to learn autonomous agents to negotiate. The
proposed approaches allow negotiation strategies to be more easily adaptable to
different negotiation settings. However, they still require a relatively high degree
of manual design to obtain a parameterised negotiation strategy, making them
time-consuming to build, limiting their generalisability by specialisation on specific
negotiation settings, and inducing human bias in strategy design.

With the advent of reinforcement learning (RL) [146], there have been attempts
at using RL-based methods for creating negotiation agents [19]. There is, however,
still an open challenge. In automated negotiation, it is common for agents to deal
with various negotiation scenarios that would cause differently sized observation
and action vectors for default linear layer-based RL policies. Up until now, this
issue has been dealt with by either abstracting the observations and actions into a
fixed-length vector (see, e.g., Bakker et al. [19]) or by fixing the negotiation scenario,
such that the observation and action space remain identical (see, e.g., Higa et al.
[68]). The first approach causes information loss due to feature design, and the
latter renders the obtained policy non-transferable to other negotiation scenarios.

We set out on the idea that a more general RL-based negotiation strategy capable
of dealing with various negotiation scenarios is achievable and that such a strat-
egy can be learned using end-to-end reinforcement learning without using state
abstractions and without the human bias induced in the design of parameterised
agents. Developing such an RL negotiation strategy would open up new avenues for
RL in automated negotiation as policy networks are easily extendable. End-to-end
methods might also be able to learn complex relations between observations and
actions, minimising the risk of information loss that is often imposed by (partially)
manual design strategies.

To this extent, we designed a graph-based representation of a negotiation sce-
nario. We applied graph neural networks in the RL policy to deal with the changing
dimensions of both the observation and action space. We show that our method per-
forms about as well as a recent end-to-end RL-based method designed to deal only
with a fixed negotiation scenario. More importantly, we show that our end-to-end
method can successfully learn to negotiate with other agents and that the obtained
policy also performs well on previously unseen, randomly generated linear-additive
negotiation scenarios.
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5.2 RELATED WORK

Bakker et al. [19] applied RL to decide what utility to demand in the next offer. They
abstracted the state to utility values of the last few offers and time towards the
deadline. Translating utility to an offer, estimating opponent utility, and deciding
when to accept were done without RL. Bagga et al. [18] also abstracted the state
into a fixed representation with utility statistics of historical offers. They used an RL
policy to decide whether to accept and a separate policy that outputs offers based
on a non-RL opponent utility estimation model.

Sengupta et al. [137] encoded the state into a fixed length of past utility values.
The action is the target utility of the next offer, translated to an actual offer through
an exhaustive search of the outcome space. They trained a portfolio of policies
and tried to select effective counterstrategies by classifying the opponent type. Li
et al. [97] also build a portfolio of RL-based negotiation strategies by incrementally
training best responses based on the Nash bargaining solution. During evaluation,
their method searches for the best response in an effort to improve cooperativity.
They only applied their method to fixed negotiation scenarios.

Another line of research on negotiation agents includes natural language. An
environment for this was developed by Lewis et al. [95]. Kwon et al. [90] used this
environment and applied a combination of RL, supervised learning, and expert
annotations (based on a dataset) to iteratively train two agents through self-play.
The negotiation scenarios considered are fixed, except for the preferences.

Takahashi et al. [148] and Higa et al. [68] are closest to our work, as they also
train an end-to-end RL method for negotiation games. Their approach does not
use state abstractions and linearly maps the negotiation scenario and actions in a
policy. The policy obtained can only be used for a fixed scenario. They trained and
tested only against single opponents

Graph Neural Networks (GNNs) [86] have been used to handle graph-structured
input in policy networks, for example, in molecular design [165]. Wang et al. [156]
and Yang et al. [163] applied them to transfer learn over variable action spaces of
various multi-joint robots. However, they aimed to speed up learning on unseen
tasks, while we strive for complete transferability without additional learning.

5.3 METHODS

We formulate the negotiation game as a turn-based Partially Observable Stochastic
Game (POSG), a partially observable extension of a stochastic game [139]. We model
the game as a tuple M =(Z,S5,0;, A;,T,Q;,R;), where Z ={1,---, n} denotes the
set of agents, S the set of states, O; the set of possible observations for agent i,
and A; the set of actions for agent i. For convenience, we write A = 4;, as we
consider a turn-based game where the set of actions is identical for each agents.
Furthermore, 7 : S x A— p(S) denotes the transition function, Q; : S x A— p(O;)
the observation function for agent i, and R; : S x A — R the reward function for
agent i.

The game starts in a particular state s. Then, at timestep f, an agent i selects
an action a;; independently of other agents. Based on this action, the state of the
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POSG changes according to s;1 ~ 7 (s+11S¢, ar). Subsequently, each agent receives
its own observation o; ; ~ Q;(0;,;15;, a;) and associated reward r,; ~ R;(rs,;15: ar).

Each agent i selects actions according to its own policy 7; : O; x O; x --- — p(A).
At timestep ¢, agent i samples an action a; ~ w;(a|os,;,0:-1,i,--+). Note that we
can vary the length of the historical observations by which we condition the policy
for each agent. The more history we include, the more we can overcome partial
observability.

Our goal is to find a policy 7; for agent i that maximizes cumulative expected

return:

H-1

Z Ri(St+k> Ari)
k=0

n} € argmaxE, 7 , (5.1)

i

where H denotes the horizon of the POSG (the number of rounds we select an
action). Crucially, the performance of a particular policy 7; depends on the policies
of the other agents.

5.3.1 PROXIMAL POLICY OPTIMISATION
We will use reinforcement learning to optimize the policy 7; of our own agent i in
the negotiation scenario. For simplicity, we will drop the subscript i and simply
write 7 for the policy of our own agent. We also simplify by writing o instead
of (0,i,0¢-1,i,---). To optimize this policy, we use Proximal Policy Optimisation
(PPO) [135] due to its empirical success and stability.

At each update iteration k, PPO optimises 7 relative to the last policy 7y by
maximising the PPO clip objective:

7(alo)

i (alo)

) ( 7(alo)
mi

ni(alo) 'lie) A0, a))

(5.2)

where € denotes a clip parameter, and Ay (a, 0) denotes the advantage function

of taking action a in observation o [146]. The ratio gets clipped to ensure that the

new policy does not change too quickly from the policy at the previous step. Our
PPO implementation is based on the CleanRL repository [73].

T+1 € argmaxby qr, Az, (0,a), clip (
T

5.3.2 GRAPH NEURAL NETWORKS

We aim to learn to negotiate across randomly generated scenarios where the number
of objectives and values differ. This forces us to design a policy/value network where
the shape and number of parameters are independent of the number of objectives
and values. Networks of linear layers, often the default in RL, do not fit this criterion,
as they require fixed input dimensions. We chose to represent the input of the policy
network as a graph and make use of Graph Neural Networks (GNN) to deal with
the changing size of the input space, more specifically, Graph Attention Networks
(GAT) [152].

The input graph contains nodes that have node features. A layer of GNN encodes
the features x, of node u into a hidden representation &, based on the features of
the set of neighbour nodes \V;, and on its own features. The specific case of GATs is
defined in Equation 5.3. Here, neighbour features are encoded by a linear layer ¢
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and then weighted summed through a learned attention coefficient a(x,, x,). The
weighted sum is concatenated with x,, and passed through another linear layer ¢ to
obtain the embedding of the node #,,.

hu=¢|xu, Y. alxy,xp) - p(xy) (5.3)

veN,

5.3.3 IMPLEMENTATION

At each timestep, the agent receives observations that are the actions of the oppo-
nent in the negotiation game. Based on these observations, the agent must select an
action. The action space combines multiple categorical actions: the accept action
and an action per objective to select one of the values in that objective as an offer. If
the policy outputs an accept action, then the offer action becomes irrelevant as the
negotiation will be ended.

A negotiation scenario has objectives B and a set of values to decide on per
objective Q;. We represent the structure of objectives and values as a graph and
encode the history of observations (0;,;,0:-1,;,--+) of a negotiation game in this
structure to a single observation o (see the left side of Figure 5.1). Each objective
and value is represented by a node, where value nodes are connected to the objective
node to which they belong. An additional head node is added that is connected to
all objective nodes. The node features of each node are:

* 5 features for each value node: the weight wj(wj) of the value, a binary
value to indicate the opponent’s last offer, a binary value to indicate the last
offer of the agent itself, the fraction of times this value was offered by the
opponent, and the fraction of times this value was offered by itself. Note that
it might have been better to implement a recurrent network to condition the
policy on the full history of offers instead of summary statistics. However, the
added computational complexity would have rendered this work much more
difficult. Our approach enables efficient learning, but future work should
explore the use of the raw history of offers.

» 2 features for each objective node: the number of values in the value set of
this objective |Q|, and the weight of this objective w(b).

e 2 features for the head node: the number of objectives |B|, and the progress
towards the deadline scaled between 0 and 1.

As illustrated in Figure 5.1, we apply GAT layers to the observation graph to prop-
agate information through the graph and embed the node features (Equation 5.3).
The size of the representation is a hyperparameter. We then take the representation
of the head node and pass it to a linear layer that predicts the state value V. The
head representation is also passed through a linear layer to obtain the two accept
action logits. Finally, we take the representation of every value node and apply a
single linear layer to obtain the offer action logits. These logits are concatenated per
action and used to create the probability distribution over the action space. As we
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Figure 5.1: Overview of our designed policy network based on GNNs. Observations are encoded in a

graph representation (left) and passed through GNNs. Action distribution logits and state value are
obtained by passing the learned representation of the head node and value nodes through linear layers.

m Table 5.1: Description of baseline negotiation agents used for benchmarking.

Name Type Description

BoulwareAgent  Time-dependent  Utility target decreases concave with time
ConcederAgent Time-dependent  Utility target decreases convex with time
LinearAgent Time-dependent  Utility target decreases linearly with time
RandomAgent Random Makes random offers, accepts any utility > 0.6

use the same linear layer for all value nodes, the number of output logits is indepen-
dent of the number of parameters in the policy, thus satisfying our requirement. We
also note that although the size of the outcome space suffers heavily from the curse
of dimensionality when the number of objectives increases, our approach does not.
Our code implementation can be found on GitHub!.

5.4 EMPIRICAL EVALUATION

To train our agent, we need negotiation scenarios as well as opponents to negotiate
against. The negotiation scenarios were randomly generated with an outcome
space size |Q2| between 200 and 1000. As opponents, we used baseline agents
and agents developed for the 2022 edition of the Automated Negotiation Agents
Competition (ANAC). The baseline agents are simple negotiation strategies often
used within automated negotiation to evaluate and analyse new agents. We provide
a description of the opponents in Table 5.1. All agents were originally developed for
the GENIUS negotiation software platform [99].

We set a negotiation deadline of 40 rounds. An opponent is randomly selected
during the rollout phase, and a negotiation scenario is randomly generated. The
policy is then used to negotiate until the episode ends, either by finding an agree-

1
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Table 5.2: Hyperparameter settings

Parameter Value
total timesteps 2-108
batch size 6000
mini batch size 300
policy update epochs 30
entropy coefficient 0.001
discount factor y 1
value function coefficient 1
GAE 1 0.95
# GAT layers 4

# GAT attention heads 4
hidden representation size 256
Adam learning rate 3-1074
Learning rate annealing True
activation functions ReLU

ment or reaching the deadline. The episode is added to the experience batch, which
is repeated until the experience batch is full. We apply 4 layers of GATs with a hidden
representation size of 256. A complete overview of the hyperparameter settings can
be found in Table 5.2.

5.4.1 FIXED NEGOTIATION SCENARIO

As a first experiment, we compared our method to a recent end-to-end RL method
by Higa et al. [68] that can only be used on a fixed negotiation scenario. Their
method was originally only trained and evaluated against single opponents. We
chose to train the agent against the set of baseline players instead, as we consider
that a more realistic scenario. The baseline agents show relatively similar behaviour,
making this an acceptable increase in difficulty.

We generated a single negotiation scenario and trained a reproduction of their
and our own method for 2000000 timesteps on 10 different seeds. The training curve
is illustrated in Figure 5.2, where we plot both the mean of the episodic return and
the 99% confidence interval based on the results from 10 training sessions. Every
obtained policy is evaluated in 1000 negotiation games against every opponent
on this fixed negotiation scenario. We report the average obtained utility of the
trained policy and the opponent, including a confidence interval based on the 10
evaluation runs in Figure 5.3.

We can see in Figure 5.3 that our method performs similarly to the method
proposed by Higa et al. [68]. This result is mostly a sanity check that our method
can successfully learn to negotiate in a relatively simple setup despite being more
complex and broadly usable.

5.4.2 RANDOM NEGOTIATION SCENARIOS

We now evaluate the performance of our end-to-end method on randomly gener-
ated negotiation scenarios. Negotiation scenarios will continuously change during
both training and evaluation.
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Figure 5.2: Mean and 99% confidence interval of episodic return during training based on results from
10 random seeds . The results of the policy designed by Higa et al. [68] and our policy are plotted.
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Figure 5.3: Evaluation results of the policy designed by Higa et al. [68] and our GNN-based policy.
Results are obtained by evaluating each trained policy for 1000 negotiation games against the set of
baseline agents. Mean and 99% confidence interval are plotted based on 10 training iterations.
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Figure 5.4: Mean and 99% confidence interval of episodic return during training of our GNN policy
based on results from 10 different random seeds. The results from training against the baseline agents
and training against the competition agents are plotted.
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Figure 5.5: Evaluation results of our GNN-based policy on randomly generated negotiation scenarios
both against the set of baseline opponents (left) and against the full set of opponents (right). Results are
obtained by evaluating each trained policy for 1000 negotiation games against the set of agents. Mean

and 99% confidence interval are plotted based on 10 training iterations.

BASELINE OPPONENTS

We first train and evaluate against the set of baseline agents as described in Table 5.1.
We train our method for 2000000 steps on 10 random seeds. The learning curve
is plotted in Figure 5.4. Results are again obtained by running 1000 negotiation
sessions against the set of baseline opponents, but this time, all negotiation scenar-
ios have been randomly generated and were never seen before. We note that the
observation and action space sizes are constantly changing. Results are plotted in
Figure 5.5a.

As seen in Figure 5.5a, our method performs well against all baseline agents
while negotiating on various structured negotiation scenarios it has never seen
before. It is promising that an end-to-end learned GNN-based policy appears to
generalise over such different scenarios.

COMPETITION OPPONENTS

We now repeat the experiments, but increase the set of agents we negotiate against.
More specifically, we add the agents of the 2022 edition of the Automated Negoti-
ation Agents Competition (ANAC)2. The learning curve and results are plotted in
Figure 5.4 and Figure 5.5b, respectively.

The results show much lower performance against all opponents, including
those previously outperformed. Our current method of encoding the observations
and design of the policy likely leads to limited capabilities of learning opponent
characteristics. Past work has shown that adapting to opponents is important to im-
prove performance [76, 137, 123], which is currently impossible. However, this goes
beyond the core contribution of this work, which is about handling different-sized
negotiation scenarios in end-to-end RL methods. We discuss potential solutions in
Section 5.5.

5.5 CONCLUSION
We developed an end-to-end RL method for training negotiation agents capable of
handling differently structured negotiation scenarios. We showed that our method

2
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performs as well as a recent end-to-end method that is not transferable beyond
a single fixed negotiation scenario. We see the latter as a restriction since, in real-
world applications, it would be unlikely to encounter the exact same negotiation
scenario more than once.

In this chapter, we have demonstrated how the difficulty of dealing with chang-
ing negotiation scenarios in end-to-end RL methods can be overcome. Specifically,
we have shown how an agent can learn to negotiate on diverse negotiation scenar-
ios in such a way that performance generalises to never-before-seen negotiation
scenarios. Our method is conceptually simple compared to previous work on rein-
forcement learning in negotiation agents. Our agent performs well against strong
baseline negotiation strategies, but leaves room for improvement when negotiating
against a broad set of highly competitive agents.

Our approach is based on encoding the stream of observations received by our
agent into a graph whose node features are designed to capture historical statistics
about the episode. This manual feature design likely leads to information loss and
goes against the end-to-end aim of our approach. For example, the expressiveness
of history is limited, as the graph only encodes the last offer and frequency of offers.
This likely also causes limited adaptivity to a broad set of opponent strategies, which
in turn may well cause the low performance observed in Figure 5.4.2.

We note that, due to the competition setup of ANAC, competitive agents often
play a game of chicken. Performing well against such strategies means that a
policy must also learn this game of chicken. This can be challenging for RL, due to
exploration problems, as it must learn a long sequence of relatively meaningless
actions before having a chance to select a good action. We could attempt to improve
upon this, but it might be more beneficial to prioritize mitigating this game of
chicken behaviour, as it is inefficient and (arguably) undesirable.

The negotiation scenarios we generated have additive utility functions and
outcome spaces that are comparable in size and competitiveness to the benchmarks
used in the ANAC competition. Real-world negotiation scenarios, however, can have
huge outcome spaces [82]. Our designed policy can be applied to larger scenarios
without increasing the trainable parameters, and the effects on the performance of
doing this should be investigated in future work.

Further promising avenues for future work include extending end-to-end poli-
cies with additional components that, e.g., learn opponent representations based
on the history of observations in the current or previous encounter. Changing a ne-
gotiation strategy based on the opponent characteristics has been shown previously
to improve performance [76, 137, 123], but is likely difficult to learn through our
current policy design. Furthermore, improving our method to handle continuous
objectives would eliminate the necessity of discretizing them.

Overall, we believe that the work in this chapter is a substantial step towards
the effective use of end-to-end RL for the challenging and important problem of
training negotiation agents whose performance generalises to new negotiation
scenarios and opens numerous exciting avenues for future research in this area.
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This chapter is under review at the time of writing.
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6.1 INTRODUCTION

The Automated Negotiating Agents Competition (ANAC) was first organised in
2010 to support the development and benchmarking of automated negotiating
agents [10]. Since 2017, ANAC has been extended with a number of additional
leagues that each focus on a more specialised challenge, such as the game of
Diplomacy [81], supply chain environments [6], the game of Werewolves [6] or
negotiations between agents and humans [106]. The main league, which focuses
on more classical agent-based negotiations, has since then been called Automated
Negotiation League (ANL). In ANL, the participating agents are designed to bargain
with other agents over a collective agreement in scenarios with conflicting interests.

Over the years, the main league of ANAC has evolved to incorporate new chal-
lenges, such as multi-lateral negotiation, preference elicitation and large intractable
solution spaces. In most earlier editions, the negotiations were considered largely
single-shot sessions, in which the agents would be re-initialised for every new
negotiation, making it impossible for them to use any knowledge from previous
interactions. However, in some future applications of negotiating agents like the
ones provided before, it is imaginable that agents would encounter opponents
multiple times, making the negotiation a repeated game. In such scenarios, it is
also realistic that agents would use information from previous encounters in order
to optimise their performance. This adds a learning dynamic between negotiation
sessions to the negotiating agents. Agents generally also learn within a single ne-
gotiation session (e.g., for opponent preference estimation), but in this work, we
exclusively mean agents that learn over multiple negotiation sessions when we refer
to “learning agents”. We intended to study such learning behaviour further using
the ANL.

It is beneficial for a negotiating agent to implement a measure of adaptivity
to the environment in which it carries out negotiation. Negotiation strategies can
be adapted depending on the characteristics of the negotiation scenario and the
opponent. For example, a negotiation scenario in which the preferences of agents
are strongly conflicting might require an agent to behave differently than a scenario
in which preferences are largely overlapping. Also, if an opponent drives a hard
bargain, it might not be smart to adopt a cooperative strategy, as this risks being
extorted. We have seen agents that successfully adapt to negotiation scenarios [76]
and opponents [137, 123], but not yet in environments where opponents are also
learning.

We set the challenge of the 2021 and 2022 editions of ANL with the goal to study
learning negotiating agents better. The challenge was to improve performance by
learning and adapting to the behaviour of the other agents submitted to ANL. This
article provides an overview of learning agents in the history of ANL in general and
the submissions and results of the 2022 edition of ANL, held in conjunction with the
International Joint Conference on Artificial Intelligence (IJCAI) 2022, specifically.
We consider the competition and its design part of the novelty of this work, which
we now extend with a thorough analysis. We aim to answer the following questions:

1. Can we design a negotiation competition where participants manage to sub-
mit strategies including learning mechanisms?
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2. Given that the negotiation games are general sum, do agents that perform
well in the social welfare performance criteria also perform well in terms of
individual utility and vice versa?

3. Do learning strategies benefit negotiation agents?

4. What is the effect of the negotiation scenario generator on the performance
of the agents?

5. Does the standard approach of averaging performance, used in earlier edi-
tions of ANL, provide a robust ranking of agents?

We have analysed to which extent the agents are sensitive to the characteristics
of the given negotiation scenarios. We observed that agents perform noticeably
better in scenarios with strong mutually beneficial outcomes or a high variance of
utility over the outcomes for both agents. Furthermore, we have analysed the results
in depth and explored to what extent the learning algorithms positively affected the
agents’ negotiation performance.

We draw three main conclusions. Firstly, we conclude that agents that apply
learning techniques clearly outperform those that do not, which shows that learn-
ing can improve the performance of a negotiating agent. Secondly, however, we
also observe that a naive strategy that does not learn at all outperforms all other
agents when we look at the results from a game-theoretical perspective, forming
an empirical Nash equilibrium. Finally, we conclude that the current approach of
ranking agents through average scores is not sufficiently robust and that there is no
clear alternative to ranking the agents. We hope this work serves as a useful starting
point of this last issue within the automated negotiation agents community.

6.2 RELATED WORK

6.2.1 THE AUTOMATED NEGOTIATING AGENTS COMPETITION

The annual Automated Negotiating Agents Competition (ANAC) was first organized
in 2010. The first three editions of ANAC were focused on the simplest scenario
only, in which two agents negotiate with each other over a domain with linear utility
functions [16]. In these tournaments, each negotiation session was completely
independent of previous sessions, so the agents were not allowed to learn from
previous encounters. This changed in 2013 when the option was added for agents
to store information between sessions and, hence, to learn and evolve over the
course of the tournament [1], but opponents were anonymous. In 2014, this option
was removed again, and the focus shifted to very large domains, where the number
of possible deals was of the order 10%° and in which the utility functions were
non-linear [58]. From 2015 onward, the competition returned to smaller domains
and linear utility but focused on multi-lateral negotiations involving more than
two agents at a time [57]. In the 2017 and 2018 editions, for the second time, the
opportunity was provided to the agents to maintain an internal state and to learn
from previous encounters with opponents. However, this was limited to a single
negotiation setting, which was repeated six times with the same opponent and
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scenario. In 2019 and 2020, the focus was on bilateral negotiations again, but this
time with partially known utility functions simulating an agent estimating human
preferences [6]. Then, in 2021, the preferences of the agents were again represented
by linear utility functions and the option to learn from previous negotiation sessions
was re-introduced, similar to the setting adopted in 2013. The difference between
the 2021 and 2022 editions and the 2013 edition is that in 2013, opponents were
anonymous; this means that they were not able to adapt to specific opponents.

6.2.2 LEARNING AGENTS IN AUTOMATED NEGOTIATION

As mentioned previously, there are multiple opportunities for learning in the con-
text of automated negotiation. Within a single negotiation, the stream of proposals
received from the opponent contains information about the preferences and tactics
of opponents [12]. In repeated encounters, agreements and observations of previ-
ous encounters with the opponent can also be used to reason about the opponent’s
tactics. It is important to note that learning and adapting to opponents can benefit
all agents involved in a negotiation rather than merely improve individual perfor-
mance. Specifically, adapting to opponents can improve the chances of reaching
an agreement and finding mutually beneficial (i.e., Pareto efficient) outcomes in
settings where preferences are partially aligned.

Another option is offline learning, where the performance of an agent is opti-
mised in a controlled environment through training on a given set of agents and
negotiation scenarios. A distinction can be made in the way these agents are trained.
Some take an approach where the behaviour of the agent is parameterised, and
these parameters are optimised either through reinforcement learning (see Chap-
ter 5) or other algorithmic optimisers (see Chapter 3). Others take an algorithm
selection approach as we discussed in Chapter 4.

6.2.3 LEARNING AGENTS IN ANL

Many agents in the history of ANL have implemented a form of preference es-
timation, which attempts to learn opponent preferences. Accurate preference
estimation helps find mutually beneficial outcomes and thus potentially improves
performance. The simple frequency model that was part of the SmithAgent [59] sub-
mitted in the 2010 edition of ANAC is often used; this model estimates preferences
based on the frequency an opponent has offered an outcome. Besides frequency
models, Bayesian models based on Bayesian inference are also commonly seen [69,
159]. Baarslag et al. [11] created an overview of preference estimation methods that
have been applied in ANL and demonstrated that frequency models show better
performance than Bayesian models. As frequency models are also performant and
conceptually easy, most agents in the ANL competition implement a frequency
model.

Aside from learning opponent preferences, learning opponent strategy can
also help improve performance. However, few agents in the past of ANL have
implemented such a mechanism, with one notable exception. In the 2012 edition,
an agent adopted an algorithm selection approach using previously submitted
agents called the MetaAgent [77]. An offline-trained classifier was then used to
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Figure 6.1: ANL tournament flow for the 2021 edition. The learning and negotiating phases were strictly
separated. As agents were killed after execution, strategy-specific settings were stored in a persistent
state that was fed to the agent at initialisation. During the negotiation phase, agents were allowed to

store observation data, but not to update their strategy settings. Learning from this data and modifying

the strategy settings of the agent was only allowed during the learning phases.

select an agent based on manually designed features of the negotiation scenario
and the opponent’s first few observations. This agent was also submitted to ANAC
2013.

6.3 ANL 2021

The ANL is intended to stimulate the advance of research in automated negotiation.
Every year, a specific topic on the research agenda is chosen as the basis for the
challenge. As mentioned before, we challenged the participants to learn in repeated
negotiation games, where we tried to restrict the agents as little as possible in their
learning methods. The 2021 and 2022 editions of ANL were organised around this
topic.

In the 2021 edition, we decided to use a fixed set of negotiation scenarios such
that every agent would encounter every other agent on the exact same set. This
makes the competition fair in the sense that the impact on agent performance of
using a different set of scenarios per agent is eliminated. We designed a complex
data-saving structure that participants could use for learning purposes. The com-
plexity was required to prevent potential unfair play caused by repeated use of the
same negotiation scenarios.

All submitted agents would negotiate against each other on identical negotiation
scenarios concurrently. Without restrictions, this could lead to unfair play by agents
saving data on the negotiation scenario that they would face once more against
another agent. The designed competition flow provides us control of the location
where agents could save their data. Only after all negotiation sessions on the same
scenario finished, the agents were given access to their data and a chance to use it
for learning and changing its behaviour. This mechanism made the agents blind to
their history until we allowed them to access it and thus prevented unfair play; it is
visualised in Figure 6.1.

In retrospect, this structure added too much complexity to the competition for
participants, causing a lower-than-expected number of submissions. Moreover,
only few of the submissions implemented a learning mechanism, failing the goal of
the competition. The ANL 2021 edition received 8 submissions, of which 2 imple-
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mented a learning mechanism.! This prevented us from performing a meaningful
analysis of such learning negotiation agents. Our main insight from ANL 2021 was
to keep future editions as simple as possible from the perspective of participants.

In the 2022 ANL edition, we simplified the rules by allowing agents to save and
load data files in a specifically provided directory without any restrictions. This
resulted in more participants. Fair play was ensured by never repeating negotiation
scenarios, while the number of negotiation rounds played was massively scaled up
to minimise the stochastic impact caused by the randomly generated negotiation
scenarios. We also moved from Java to Python as the default implementation
language in order to allow for the use of the plethora of machine learning packages
available in Python.

6.4 COMPETITION SETUP OF ANL 2022

Participants of ANL must design and submit an agent that can perform bilateral
negotiation with other submitted agents following a finite-horizon Alternating
Offers Protocol (AOP) [132]. We used GeniusWeb? as a platform for the negotiations,
which is a software package that was specifically designed as a test-bed for agent-
based negotiation.

This section describes the competition setup and the specifics of the negotiation
games that are played between agents.

6.4.1 NEGOTIATION SCENARIO

The negotiation scenarios used in this competition follow the format described in
Section 2.1. The utility functions are considered private information to the agents,
making the negotiation an imperfect information game and exclusively categorical
issues are used.

RANDOM GENERATION

In editions of ANL prior to 2021, the negotiation scenarios used to be manually
designed. However, the challenge we set this year includes never repeating a negoti-
ation scenario, which requires many such scenarios. The negotiation domains and
utility functions in ANAC 2022 were randomly generated to accommodate this.

Outcome space To generate the negotiation scenarios, a goal outcome space size
between 200 and 10000 is sampled uniformly at random. The number of issues
between 4 and 10 is also randomly sampled uniformly. Finally, the number of values
per issue must be set so that the product of the number of values per issue is close
to the goal size of the outcome space. This is done by distributing the number
of values per issue according to a Dirichlet distribution, which creates a vector of
random values summing up to 1. The probability density function of the Dirichlet
distribution is
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where C is a normalising constant. We set all parameters a; in this distribu-
tionto 1,i.e. (a1, -+, ay) = 1, such that the individual values are sampled from a
uniform distribution. The full generation method is provided as pseudocode in
Algorithm 6.1.

Algorithm 6.1 Outcome space generation

1: g < random integer € [200,10000]
2: while true do

3: m — random integer € (4, 10]
4: x — Dirichlet(1,,)

5 xhx.(%)m > After 5: [I" xp =g
Hb:1xb b=1

6: for b — 1to mdo

7 |Qp| — max{round (xp),2}

8 if [T, 1Qpl —g <0.1- g then

9: break

10: Qp,-++,Q < create_values({|Q1], -+, 1QmI}

11: Q—{Qp x -+ xQp}

12: return Q

Utility functions Only bilateral negotiations are considered in this competition,
so two utility functions that express preferences over the outcome space must be
generated. The utility is obtained through a linear weighted sum of the values per
issue, with weight factors w(b) for every issue. These weights are again sampled
from a Dirichlet distribution parameterized by (a;,: -, @;;) = 1,,. Finally, for each
issue b, the scores of the values wj, within that issue are also sampled from a Dirich-
let distribution and scaled to the range [0, 1]. These scores are expressed through
the value weight function wy,(wp).

6.4.2 ANL 2022 CHALLENGE

In 2022, all submitted agents repeatedly negotiated against each other in one-
on-one negotiation sessions with a deadline of 60 seconds in wall clock time to
ensure a finite horizon. Failing to reach an agreement resulted in 0 utility for
both agents involved in the negotiation. The negotiation scenarios were randomly
generated and are likely always different in terms of size, number of issues, and
utility functions.

The challenge in 2022 was to learn from previous encounters with other agents.
The name of the opponent was made known to the agent. Agents were allowed to
save any data files in a provided directory while encountering every other submitted
agent 50 times throughout the tournament. One challenging part was effectively
using information extracted from previous encounters with the same opponents,
while the negotiation scenarios changed between each negotiation session.

6.4.3 EVALUATION
Agents were ranked based on two performance measures: individual utility and
social welfare, both averaged over all negotiation sessions. Social welfare is the sum
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Table 6.1: Computing hardware and resources per negotiation session.

Description  Type Quantity
CPU Intel® Xeon® CPU E5-2620v4 2 cores
Memory RDIMM DDR4-2400 10GB

oS CentOS 7.9.2009 -

of utilities obtained by both agents involved in the negotiation session and is thus
identical for both agents. Prize money was to be awarded to the two best-performing
agents according to each of these performance measures. This resulted in multiple
optimisation criteria for the participants of this competition. Maximising individual
utility is selfish, and maximising social welfare could be considered social.

6.4.4 SIMULATION SPECIFICS

Every submitted agent encountered every other agent 50 times sequentially. For
each negotiation session, a new negotiation scenario was generated randomly (see
Section 6.4.1). As preferences over the negotiation domains can be unbalanced
and might favour one of the agents, we decided to repeat the full tournament once
more while switching the utility functions. The storage directory of every agent
was completely erased when we restarted the tournament with switched utility
functions to rule out the possibility of foul play. To further reduce the stochastic
influence in the results, we repeated the previously mentioned procedure 5 times
for the competition and 25 times for the analysis provided later in this article. The
19 submissions received required us to run a total of 19-18-50-5 = 85500 and
19-18-50-25 = 427500 negotiation sessions, respectively.

The sessions were run parallelized on a compute node. Details of the hardware
and resources per session can be found in Table 6.1. The speed of the system is
important as negotiation sessions are run with a wall-clock deadline. We ensured
that no agent would ever face the same opponent concurrently so that the sequen-
tial encounter requirement of our challenge was satisfied. The participants were
notified of potential file race issues due to parallel negotiation sessions and were
suggested to save files based on the name of their current opponent to avoid this.

6.5 SUBMISSIONS TO ANL 2022

An overview of the submissions is provided in Table 6.2. The competition received
a total of 20 submissions, of which 1 was invalid, resulting in a total of 19 agents
that participated in the competition. The code of these agents can be found on the
GeniusWeb webpage®.

6.5.1 LEARNING CAPABILITIES
As mentioned earlier, the challenge was designed to encourage participants to
develop learning methods implemented by providing the agents with a directory

3
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Table 6.2: Overview of agents that were submitted to ANL 2022

Name Affiliation Learning
Agent007 Bar Ilan University

Agent4410 College of Management Academic Studies

AgentFish Tokyo University of Agriculture and Technology
AgentFO2 Tokyo University of Agriculture and Technology X
BIUagent Bar Ilan University

ChargingBoul University of Tulsa X
CompromisingAgent Bar Ilan University X
DreamTeam109Agent  College of Management Academic Studies X
GEAAgent College of Management Academic Studies
LearningAgent Bar Ilan University X
LuckyAgent2022 Babol Noshirvani University of Technology X
MiCROAgent IITA-CSIC

PinarAgent Siemens X
ProcrastinAgent University of Tulsa X
RGAgent Bar Ilan University

SmartAgent College of Management Academic Studies X
SuperAgent Bar Ilan University X
ThirdAgent College of Management Academic Studies
Tjaroncheryl0OAgent College of Management Academic Studies X

to save and load data. When we refer to learning, we mean changing behaviour
between sessions based on previously recorded information. Preference estimation
of an opponent within a negotiation session could also be considered learning, but
we do not refer to it as such in this article. As opponents are repeatedly encoun-
tered during the competition, observations about their past behaviour could be
exploited to improve negotiation capabilities. However, not all submitted agents
implemented such a mechanism, making their strategies single-shot-based. Ta-
ble 6.2 indicates which agents implemented a learning mechanism using the storage
location to save data. As can be seen, more than half of the agents actually imple-
mented a learning mechanism. We were successful in designing a competition that
enables participants to actually implement such a mechanism. The effects of the
implemented learning mechanisms are studied in more detail in Table 6.6.2.

6.5.2 SUBMITTED AGENT STRATEGIES

This section describes the strategies of selected agents: AgentFO2, DreamTeam109Agent,
SuperAgent, Tjaroncheryl0Agent, and MiCROAgent. In general, the behaviour of

the submitted agents can be considered a black box due to heavy manual design
and parameter tuning. These agents were selected because they implemented an
intuitively describable mechanism, and the respective participants submitted a
report with their agent code. We summarize the main components based on these
reports, which can be found in the repository of submitted agents®.
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AgentFO2 This agent tries to reason over the opponent based on the Hamming
distance between offers that it received. It classifies opponents as time-dependent
converters, i.e., agents that concede based on the time towards the deadline, ran-
dom agents, or other strategies. It then applies a time-dependent strategy while
changing the minimum utility goal depending on the classified opponent strategy.
This minimal utility to aim for is based on historical observations of the opponent.

DreamTeam109Agent This agent focuses on obtaining high utility first, and if
that does not work, tries to minimize negotiation sessions that end in no agreement.
It keeps track of the speed of the opponent in the past and tries to estimate how
many rounds still can be played. If it is likely that this is the last round, then it
simply accepts the offer. It also maintains a percentage of top outcomes it accepts
per opponent and increases this percentage if past sessions result in low utility.
The reasoning is that a low utility could result from the agent accepting a bad offer
and that utility could be improved if it was more lenient towards the opponent in
accepting offers with higher utility but were out of the top percentage pool.

SuperAgent This agent splits the negotiation session into timeslots and saves the
average self-utility and average estimated opponent utility of all received offers in
this timeslot for future use. It uses these values as utility thresholds for generating
offers in the corresponding timeslot by demanding the average obtained utility as
a minimum threshold and making offers above the opponent’s threshold at the
end of the session. The friendly behaviour at the end of the negotiation session is
randomized to prevent opponents from exploiting it.

Tjaroncheryl0Agent This agent also adopts a time-dependent conceding strategy
but does not concede in the first few encounters with an opponent. It attempts
to force opponents to accept bad offers from them by being a hardliner. However,
if this strategy does not appear fruitful after 3 sessions with an opponent, the
strategy towards this opponent is modified to be slightly more conceding. These
modifications can be repeated.

MiCROAgent MiCROAgent is an implementation of the recently introduced Mi-
CRO strategy [40]. It is a very simple strategy that employs no form of learning or
opponent modelling. It sorts all possible outcomes in order of decreasing individual
utility and then proposes them in this order as long as the opponent also keeps
making new proposals. That is, whenever the opponent makes a new proposal,
MiCRO replies by proposing the next offer from its list. Whenever the opponent
repeats an offer it has already made before, MiCRO replies by also proposing a
(random) offer it has already proposed before. MiCRO accepts an offer from the
opponent when that offer is better than or equal to the next offer that MiCRO will
make. The idea is that it is a tit-for-tat-like strategy that assumes no knowledge
about the utility function of the opponent. The agent always makes the smallest
possible concession whenever it notices that the opponent is making a concession,
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Table 6.3: Top 5 agents of the submitted agents to the ANL. Both prize categories are displayed. Here,
individual utility is the average individual utility that agents obtained over all their negotiation sessions,
and social welfare is the sum of the utilities of agents averaged over all negotiation sessions. Note that
these are the original competition results, which differ from the results in the paper for reasons
described in Section 6.6.1.

Agent Individual Utility ~ Rank Agent Social Welfare ~ Rank
DreamTeam109Agent 0.7247 18t DreamTeam109Agent 1.4605 18t
ChargingBoul 0.7238 2nd Agent007 1.4564 ond
SuperAgent 0.7040 3rd CompromisingAgent 1.4563 3rd
CompromisingAgent 0.6857 4th AgentFish 1.4396 4th
RGAgent 0.6819 5t Agentd410 1.3993 5th

regardless of the magnitude of that concession. A negotiation between two such
agents guarantees a Pareto-efficient agreement.

6.6 RESULTS & ANALYSIS

In this section, the agents are thoroughly empirically evaluated using multiple
approaches. The 2021 edition results of ANL showed that agent scores depend on
the other submitted agents, which we explore further. We answer the question of
the influence of the learning mechanism on the performance of the negotiating
agents, as this was the ANL challenge of the competition. Finally, we perform a
game theoretical analysis of the competition and see how that relates to the official
results of the competition.

6.6.1 DIFFERENCES TO ACTUAL COMPETITION

The results presented in this section are not fully in line with the actual results of the
competition. The “LuckyAgent2022” was underperforming during the competition
because of bugs. We allowed a resubmission of this agent to be included in this
article. As this also affects the performance of other agents, the ranking of agents
differs slightly compared to the official ranking presented after the competition.
Finally, the entire competition was rerun to gather additional results that we use
in our analysis presented in the following. The actual competition winners can be
found in Table 6.3.

6.6.2 TOURNAMENT RESULTS
The top part of Figure 6.2 shows the tournament results. The agents are sorted
based on the average utility obtained during the tournament, where the leftmost
agent is the best-performing agent. A more elaborate results table is provided in
Table 6.4. Notice that there are no large differences between the individual utility
scores, as the difference between the maximum and minimum scores is only 0.2.
The difference in social welfare score is much more apparent, with a maximum
difference of nearly 0.6. We emphasise that most of the top-performing agents
implemented a learning mechanism.

The results also generally show a higher social welfare score for agents with
higher individual utility. Still, it is not evidently true that a higher individual utility
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Figure 6.2: Results of two tournaments where learning is enabled (top) and learning is disabled
(bottom). Both individual utility and social welfare are presented and agents are sorted from highest
individual utility to lowest.

also leads to higher social welfare. Table 6.4 shows that the top-performing agent in
utility fails to reach an agreement in more than 10% of the negotiation session. This
clearly indicates wasted potential, as finding an agreement will always result in a
higher utility than finding no agreement. On the contrary, the two highest-scoring
agents in social welfare have a near 100% success rate in finding agreements yet do
not obtain the highest utility. Being more selfish apparently leads to a higher utility
at the cost of a lower agreement ratio. Paradoxically, a lower agreement ratio also, in
turn, leads to lower utility. In terms of our research question, our empirical results
indicate that agents that perform well in utility also perform well in social welfare,
but that top performance in one of the categories tends to correlate with a lower
score in the other.

IMPACT OF LEARNING

To determine to what extent the ability to learn influences the performance of the
agents, we ran another experiment in which the agents’ learning capability was
disabled. This is achieved by emptying the storage directory of the agents after every
negotiation, returning them to their initial state. The agents have no knowledge
about previous negotiation sessions when initialised for all negotiation sessions.
The results are found in the lower part of Figure 6.2.

The utility and ranking of every agent are different compared to the tourna-
ment where learning is enabled. This is more apparent for some agents, e.g.
DreamTeam109Agent. We visualise this difference in ranking between a tourna-
ment where learning is enabled and a tournament where learning is disabled in
Figure 6.3. We see that the top four highest-ranking agents when learning is enabled
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Figure 6.3: Ranking (left) and individual utility (right) comparison of a tournament where learning was
disabled and one where learning was enabled. Agents in the lower right improved their ranking when
learning was enabled.

are, in fact, agents that learn between sessions. One of them actually made a signifi-
cant jump from 17th position to 3rd. On the contrary, we also see that SmartAgent
performed significantly worse when learning was allowed. Finally, one might expect
the non-learning agents to be on the equal performance line as their behaviour is
agnostic to disabling the learning capabilities. However, their individual utility is
affected by opponents being more capable of finding agreements with them.

PERFORMANCE CONVERGENCE OF LEARNING AGENTS

One problem when evaluating a group of learning agents is that their strategies
continuously change, and their scores may not converge. This makes a given
ranking dependent on the number of iterations a tournament is run, impacting
its robustness. We analyse whether this behaviour can indeed be observed for the
agents that were submitted to the competition. To do so, instead of the competition
tournament of 50 rounds, a tournament of 1,000 rounds was run for a total of
342000 negotiation sessions. We report the moving average of the individual utility
of the agents against the number of rounds played in Figure 6.4. The window size
used is 100 rounds to smooth out the stochastic influence of the random negotiation
scenario generator.

Figure 6.4 shows that the ranking and individual utility of the agents keeps
changing in the later rounds but that the differences are minor and reasonably
stable, but still influence the ranking. Before round 400, differences are more
pronounced. We also clearly see a difference between agents with and without
learning mechanisms, where the latter exhibit more stable behaviour. The learning
mechanisms do not always work out to the benefit of the agents, which we also saw
in Figure 6.3; especially AgentFO2 stands out in terms of worsening performance as
the rounds progress.
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Figure 6.4: Results of a tournament of 1 000 rounds. The moving average of the individual utility with a
window size of 100 rounds is visualised. Agents without a learning mechanism are indicated with a
dotted line.

IMPACT OF GROUP COMPOSITION

We observed during this competition that the composition of the group of agents
also influences the final ranking. To explore this further, we evaluated the per-
formance of the submitted agents in every possible group of minimum size 2.
Out of the 19 submitted agents, we created all possible 524 268 sub-tournaments
(Equation 6.2). Separately running all these tournaments would have been compu-
tationally intractable, so we obtained the results naively by filtering the result from
a full tournament. To the best of our knowledge, none of the participating agents’
behaviour is influenced by this naive approach, as the agents only reason about the
current opponent they are facing and their history with that agent. We counted the
ranking of every agent in all of the sub-tournaments for both individual utility and
social welfare. Both results are plotted in Figure 6.5.

19
> (1_9) =524268 (6.2)
i=2

As we can see in the heatmaps, there was a chance for all submitted agents to
win the tournament, depending on which opponents were also submitted. This
chance was low, but greater than zero, for the agents that obtained a low ranking in
the full tournament. This observation is more pronounced for the higher-ranking
agents, as chances to win a sub-tournament are much more similar. This means
that, at least in part, winning the competition was a matter of chance, depending
on the submitted opponents.
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Figure 6.5: Heatmap of the number of times an agent obtained a certain rank in average individual
utility (top) and social welfare (bottom). Results are counted over a total of 524 267 tournament setups
that could be created with the submitted agents. The agents are sorted based on their ranking in average

individual utility (top) and social welfare (bottom) in Figure 6.2. The top three agents in the other
category are boldfaced.
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In fact, simply averaging the performance of the agents provides a reasonable
ranking under the assumption that all opponents are equally likely to be encoun-
tered. One could argue that this is unlikely to be the case as, especially after obtain-
ing these tournament results, the underperforming agents are not likely to be used.
This degrades the value of the obtained ranking. Therefore, we take a step towards
analysing the performance of the agents beyond average scores in a tournament.

6.6.3 GAME-THEORETICAL ANALYSIS OF THE AGENTS

In the following, we evaluate the agents from a more game-theoretical point of
view through empirical game theory analysis [158]. Specifically, we construct a
meta-game of the underlying negotiation game where agents must select one of the
ANL 2022 competition agents to negotiate on their behalf. This would automatically
mitigate the previously described issue that underperforming agents are unlikely to
be used in practice and could be more in line with a realistic scenario. We analyse
which agents are likely to be picked and whether Nash equilibria can be found in
such a meta-game.

This analysis assumes that agents are perfectly rational, which may be too
strong an assumption for real-world applications. However, our previous evalu-
ation method is also based on an unrealistic assumption that all opponents are
equally likely to be encountered. We argue that tournament evaluation and game-
theoretical evaluation both have their advantages and their disadvantages. For the
same reason, other authors also performed game-theoretical evaluations [160, 10,
28].

We averaged the bilateral result of every agent against every opponent separately
and combined these results into a matrix. This matrix can then be seen as the pay-
off matrix of a symmetric normal-form game in which the two players choose one of
the agents as their strategy. Note that, in order to obtain the full matrix, we also need
to have, for each agent, the score it would obtain when negotiating against itself,
while the ANL 2022 tournament did not involve self-play. We therefore repeated the
tournament, but this time including self-play, to obtain those scores. The payoff
matrix U we obtained is displayed in Table 6.5. For readability, we multiplied the
scores and their standard errors by 1000. Each entry Uy p represents the average
individual utility obtained by agent A when playing against agent B (averaged over
2500 negotiation sessions).

NASH EQUILIBRIA

The meta-game has two pure Nash equilibria: SuperAgent against SuperAgent Uy 4,
and MiCROAgent against MiCROAgent Uy 19. Of these two equilibria, MiCROAgent
against MiCROAgent achieves the highest payoff for both players and is therefore
preferred.

We performed several statistical tests to verify critical results in Table 6.5. First,
we verified both pure Nash equilibria by checking whether the respective agent
playing against itself actually results in the highest average individual utility. That
is, for each agent B € {MiCROAgent, SuperAgent} we performed a one-sided Welch
t-test against the null hypothesis that U, AB = Up p for each opponent A (with A # B)
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Table 6.5: Results of game-theoretical evaluation. Each cell displays the average score of the agent
indicated in the row header, along with its standard error, obtained against the agent in the
corresponding column. The scores and standard errors are multiplied by 1000 for readability. In each
column, the highest score is indicated in boldface.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 ChargingBoul 809 674 705 684 863 798 602 881 884 764 490 725 918 622 978 943 560 785 427
+3  +5 5 5 £3 3 £7 %2 *3 4 6 5 +3 8 +1 *2 7 6 x7
2 LuckyAgent2022 813 671 828 690 832 929 605 935 808 526 499 593 861 511 966 964 500 777 397
+5 +7 44 +7 5 *2 +8 +1 +6 +8 +8 +8 +5 +9 +2 1  +8 7 +8
3DreamTeaml09Agent 797 698 743 744 852 916 659 955 732 623 435 619 821 478 946 957 569 739 445
5 +5 45 5 4 #3 5 *1 +7 %5 +6 +6 +5 7 +2 1 +6 5 +6
4SuperAgent 816 674 802 767 776 929 598 954 862 607 547 555 766 502 955 966 534 737 402

5 RGAgent 761 679 736 619 817 746 589 864 803 591 515 692 851 663 830 930 573 811 465

6 CompromisingAgent 787 644 610 641 879 790 585 807 892 613 395 640 819 694 791 980 558 792 434

+4 +4 5 &5 3 5 %5 +4 3 5 5 £6 5 &5 £6 +0 +6 6 £6
7 LearningAgent 733 623 885 630 759 957 620 985 808 426 444 506 668 525 645 979 452 734 382
+8 £8 £3 8 +8 £2 £8 1 +7 £8 £8 9 £9 +9  £9  £0 +8 +8 +8
8 Agent007 702 631 529 573 780 797 462 791 821 622 393 651 698 650 907 931 558 760 424
+3 +5 +5 +5 +3 +3 +5 +5 +3 +5 +5 +4 +6 +6 +3 +2 +6 +5 +5
9 AgentFO2 724 631 565 618 726 682 565 746 734 745 474 631 847 557 799 850 549 553 389
£3 +5 6 &5 5 x4 %6 +£2 5 4 +5 +6 3 +8 £6 +2 +7 8 %7
10 MiCROAgent 822 577 865 657 728 935 500 916 847 820 104 497 719 336 894 875 383 655 206
£4  +£9 5 +8 8 2 *9 £1 3 2 +6 £9 7 £9 £2 +2 +9  +9 8
11 ProcrastinAgent 683 587 916 688 747 981 540 995 781 85 377 87 605 322 874 1000 444 733 272
+8 £9 £5 8 +8 £2 %9 1 8 £5 *9 5 £10 *9 £7 £0 +10 +8 8
12 PinarAgent 750 582 830 555 762 744 512 880 784 488 90 384 758 432 857 881 433 704 267
+5 48 +5 +8 6 6 9 %2 %5 +8 +5 +9 47 +9 4 +2 +9  +7 8
13 ThirdAgent 614 569 683 553 739 693 515 595 753 612 363 598 648 671 708 731 524 730 422
£4  +£5 5 +6 4 x5 7 %5 4 7 +7 £6 6 +7 £5 +4 +8 6 %7
14 BlUagent 641 503 744 512 716 851 531 896 627 308 321 416 712 420 798 898 478 703 227
£8 +9 7 %9 7 x4 x9 £3 8 8 *9 £9 7 49 &5 1 +9  x7 £8
15 Agent4410 472 513 541 532 737 670 496 639 595 643 377 602 798 660 766 777 478 752 384
+5 £5 £5 5 +5 +6 £7 %5 6 5 £5 £5 %5 +6  +£4 4 +8 6 7
16 AgentFish 540 532 504 509 644 493 519 646 708 715 389 638 696 614 796 772 543 700 438

17 TjaroncherylOAgent 685 529 898 501 668 811 504 959 723 261 293 322 607 387 548 956 527 652 297

18 GEAAgent 630 548 758 514 682 614 522 669 537 457 525 537 668 563 631 787 511 717 240
+5 +£6 4 6 +5 +£5 6 %5 7 +7 £6 £6 *5 +7  £6 3 +7 5 7
19 SmartAgent 556 477 921 492 611 890 456 994 545 181 281 274 578 232 608 994 452 370 219
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and set a maximum significance level of p = 0.05 to reject the null hypothesis. Note
that we use U to denote the frue expected utility that agent A would obtain against
agent B, whereas U represents the measured average individual utility. We found
that the highest p-value for this hypothesis was 4-1073* for MiCROAgent and 6-10~*
for SuperAgent. Each of these p-values still needs to be multiplied by 18, to take into
account that for only one of the 18 opponents, the null hypothesis needs to be true
to reject our conclusion, but then they still stay well below the threshold of p = 0.05,
so our claims that MiCROAgent and SuperAgent both form a Nash equilibrium
are statistically significant. Furthermore, we inverted this test to verify that none
of the other agents forms a Nash equilibrium when playing against itself. That is,
for each agent B ¢ {MiCROAgent, SuperAgent}, and each agent A (with A # B) we
performed a one-sided Welch t-test against the null hypothesis that Ua p < Ug 5.
Indeed, for each agent B we found at least one opponent A for which the p-value
for this hypothesis was far below 0.05. Therefore, we can reject the hypothesis that
U < Up p for all opponents A.

Apart from pure Nash equilibria, we also found 21 mixed Nash equilibria us-
ing the Gambit software package (v.16.2) [134]. However, for each of these mixed
equilibria, the payoff was lower than for the two pure equilibria. The top mixed
equilibrium found has a probability of 66% for SuperAgent and 34% for MiCROA-
gent. In this mixed equilibrium, both players receive an expected utility of 0.712,
which is significantly lower than the utility they would achieve if they both played
SuperAgent (0.767) or if they both played MiCROAgent (0.820).

We note that MiCROAgent does not perform well in the tournament evaluation
but does perform strongly in the game-theoretical evaluation. A quick analysis
shows that MiCROAgent works particularly well against competitive opponents and
less so against weaker opponents. As the game-theoretical approach depends on
selecting the best possible response, it emphasises results obtained against stronger
opponents. As mentioned earlier, the average scoring used in the tournament
evaluation is based on the assumption that all opponents are equally likely to be
encountered, which could be considered unrealistic. This also suggests that learning
is especially beneficial in the presence of weaker agents that can be exploited. If
only stronger agents are present, the learning agents may lose their advantage over
a simpler approach such as MiCROAgent.

6.6.4 ANALYSIS OF THE NEGOTIATION SCENARIOS

The characteristics of the randomly generated negotiation scenarios can have a
significant influence on the performance of the submitted agents [70]. We analyze
the scenarios based on characteristics often used in the automated negotiation
literature: the opposition, distribution, and balance scores described in the sections
below. The cumulative distribution functions of these metrics for the negotiation
scenarios used in this paper are visualised in Figure 6.6 and Figure 6.7. The maxi-
mum social welfare and maximum Nash product are included in Figure 6.6.
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Figure 6.6: Cumulative distribution functions of the characteristics of the randomly generated
negotiation scenarios used in this paper.
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Figure 6.7: Cumulative distribution functions of the balance scores of the negotiation scenarios of the
ANL 2012-2013 and ANL 2022 editions. The scenarios used for ANAC 2022 are less balanced than those
used for ANAC 2012/2013. For example, we see that 80% of the ANAC 2012/2013 scenarios had a balance

score less than or equal to 0.050, while among the ANAC 2022, this fraction was only 62%
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Table 6.6: Average individual utility and success rate for all agents, compared between negotiation
scenarios with low, medium and high opposition.

low opposition  medium opposition  high opposition

Sopp <020 020<50pp=0.325  0.325<Sgpp
Av. util. all sessions 0.814 0.647 0.471
Av. util. sessions with agreement 0.877 0.784 0.690
Agreement ratio 0.93 0.83 0.68

OPPOSITION

A commonly used measure to quantify the competitiveness of a negotiation scenario
is the opposition value, which indicates how easy it is to find agreements that are
satisfactory to both agents [10]. Before calculating the opposition value, the subset
of Pareto efficient outcomes Q,, must be extracted. An outcome is Pareto efficient
if no other outcome improves the utility of at least one of the agents while not
decreasing the utility for the others (Equation 6.3). From this Pareto-efficient set,
we select the Kalai-Smorodinsky bargaining solution [83] (Equation 6.4) and use it
to calculate the opposition based on Equation 6.5.

(ua(@) > ua(w) A ug @) = ug(w))
Qp={weQ|3w €Q: v (6.3)

(ua(@") = up(w) A up(@) > ug(w))

Wgalai €argmin|uy(w) — ug(w)| (6.4)
weQy
$opp(@) = /(1 = ta@kata))? + (1~ up@ata)’ 6.5)

We split the negotiation scenarios into three roughly equal-sized categories with
low, medium and high opposition values. The results of this analysis are displayed in
Table 6.6. We observe that the lower the opposition values, the better the agents per-
form in terms of agreement rate and utility obtained from the agreement. Another
interesting observation is that the opposition value has a noticeable influence on
the ranking of the agents. Most notably, DreamTeamAgent109 ends in seventh place
on the scenarios with low opposition, while it ends in first place on the scenarios
with high opposition.

DISTRIBUTION

The same analysis was carried out for the distribution value, s;;4;(Q2), which is de-
fined in Equation 6.6; it is the average Euclidian distance in utility of every outcome
to its closest Pareto-efficient outcome. The higher this value, the more difficult it
becomes to find an agreement that is (close to) Pareto efficient. Estimating the
preferences of the opponent accurately is essential in negotiation scenarios with a
high distribution value.

Saist(@ = )

weQ LW

min \/ (ua(@) — ua(@")? + (up (W) - up(w")? (6.6)
'eQp
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Table 6.7: Average individual utility and success rate for all agents, compared between negotiation
scenarios with low, medium and high distribution values.

low distribution =~ medium distribution  high distribution

sdist’0'450 0'45055111'57:50'525 0‘525'5di5t
Av. util. all sessions 0.516 0.656 0.777
Av. util. sessions with agreement 0.720 0.793 0.857
Agreement ratio 0.72 0.83 0.91

The results are displayed in Table 6.7. Again, we clearly observe a difference in
the performance of the agents depending on the distribution value. The higher the
distribution value, the higher the score of the agents, both in terms of the quality of
the deals made and the percentage of negotiations that end with a deal.

These results may initially seem surprising since we argued that finding Pareto-
efficient outcomes in scenarios with high distribution is harder. However, if a
negotiation scenario has a high distribution, the outcomes are also more scattered
throughout the utility space and may, in turn, contain outcomes with high utility for
both agents. A change in the ranking of the agents is also observed. Most notably,
DreamTeamAgent109 ends in second place on scenarios with low distribution,
while it ends in seventh place on scenarios with a high distribution.

BALANCE SCORE

Recent work stated that the negotiation scenarios used for ANAC 2012 and 2013,
also used in many later editions of ANAC, were too simplistic [40]. They showed
that many of these scenarios display a certain type of symmetry, which makes them
easy to tackle by a naive strategy called the MiCRO strategy (which also participated
in ANL 2022, see Section 6.5.2). This was demonstrated by the fact that MiCRO was
able to outperform some of the best agents in these scenarios, even though MiCRO
is a much simpler strategy that does not apply any form of opponent modelling or
learning [40].

To quantify this symmetry, De Jonge [40] defined the notion of the “balance
values” of a negotiation scenario, which are the individual utilities of the outcome
wp, that two agents would agree upon if they both apply the MiCRO strategy. They
showed that many of the ANAC 2012 and 2013 negotiation scenarios are “balanced”,
meaning that the balance values lie very close to the Nash Bargaining Solution [111]
(NBS). De Jonge [40] argued that a more versatile set of negotiation scenarios should
be used to test agents.

We performed the same analysis to see to what extent the scenarios used in
ANAC 2022 are balanced. Similar to De Jonge [40], the balancedness of a negotiation
scenario is measured by comparing the balance values to the utilities associated
with the optimal outcome. However, we do not consider the NBS as the optimal
outcome but rather argue that the optimal solution is the one that maximizes social
welfare.

The motivation for using the Maximum Social Welfare Solution (MSWS) instead
of the NBS as the optimal outcome is twofold. First, maximizing social welfare was
explicitly one of the goals of the competition. Second, even if the goal is to maximize
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individual utility, each scenario has two utility functions, u4 and up, randomly
assigned to the two agents. Maximising the expected individual utility before being
assigned a utility function would equal agreeing to the MSWS in advance (see Jonge
[80] for a more detailed discussion).

Spal(€) = I;lgéi{uA(w) + up(w)} — (ualwp) + ug(wp)) (6.7)

We define the balance score sp4; in Equation 6.7, where wj, is the outcome that would
be obtained by 2 MiCRO strategies. The utilities are assumed to be normalized to
fall within the range [0,1]. The lower the balance score, the closer the balance values
are to the MSWS. If the balance score is exactly 0, the balance values coincide with
the MSWS, which in turn means that in such a negotiation scenario the agreement
made between two MiCRO agents would always be exactly the MSWS.

The result of the analysis is shown in Figure 6.7. We observe that the negotiation
scenarios of ANL 2022 are less balanced than those of ANAC 2012 and 2013 and
should therefore be preferred for research. The fact that we see different values
between the two types of scenarios can be explained by the fact that the ANAC
2012/2013 scenarios were handcrafted by participants, while the scenarios of ANL
2022 were randomly generated.

However, ANL 2022 scenarios still seem to display a high degree of balance.
Around half of the scenarios have a balance score of 0.025 or less, and for around
one-third of the scenarios, the balance score is exactly 0. It remains an open ques-
tion why exactly the randomly generated scenarios are so balanced and how this
compares to real-world negotiation scenarios.

We recalculated the scores of all the agents while only counting negotiation
sessions involving negotiation scenarios with low balance scores (s,4; = 0), with
medium balance scores (0 < sp,; < 0.05) and with high balance scores (0.05 < sp4;).
The balance scores were chosen such that each category contained roughly one-
third of all scenarios.

While we expected that MiCRO would perform better on the balanced scenarios,
we noticed that this was actually the case for all agents. The agents make better
and more agreements on the balanced scenarios, while the opposite is true for the
unbalanced scenarios. The results are summarized in Table 6.8. The differences are
lower than in Table 6.6 and Table 6.7, suggesting that the opposition value and the
distribution value are better indicators of the level of difficulty of a scenario than
the balance score.

Finally, not much difference was observed in the outcome of the tournament.
The final ranking in the tournament evaluation remains more or less the same, with
a few agents moving one or two positions up or down the ranking.

6.7 DISCUSSION

The extensive analysis we performed using the agents that were submitted to ANL
2022 led to insights into their behaviour that we will now discuss. We will discuss
some general observations first, and after that, we will discuss two core topics more
in-depth.
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Table 6.8: Average individual utility and success rate for all agents, compared between negotiation
scenarios with low, medium, and high balance scores.

low balance score  medium balance score  high balance score

Spal =0 0 < spq7 =0.050 0.050 < sp47
Av. util. all sessions 0.689 0.652 0.611
Av. util. sessions with agreement 0.817 0.796 0.774
Agreement ratio 0.84 0.82 0.79

Regarding the negotiation scenarios used, we observed that the randomly gen-
erated scenarios from ANL 2022 are slightly less balanced than the handcrafted
scenarios used in many of the earlier editions of ANL. This indicates that the ran-
domly generated scenarios are slightly more challenging than the handcrafted ones.
We also showed that the agents performed better on the balanced scenarios, but this
did not significantly influence the outcome of the tournament. On the other hand,
the more classical notions, such as opposition and distribution of the outcome
space, correlated more strongly with the performance of the agents.

We can calculate from Table 6.4 that 18.4% of the negotiation sessions ended
without agreement. This is undesirable, as it lowers the social welfare obtainable by
the group, which is to no one’s benefit. However, competitive strategies that cause
these failures to reach an agreement are beneficial for individual utility, which we
observed more often in the history of ANL, and which is also a general observation
in partially cooperative (general-sum) games, such as the Prisoner’s Dilemma. It
would, therefore, seem useful to investigate the design of mechanisms that push
agents towards cooperating strategies [112].

6.7.1 LEARNING IN NEGOTIATION AGENTS

We have outlined and analysed agents that learn from repeated encounters with
opponents and presented the results of a competition between such learning agents.
The main focus of the competition was to assess the strength of algorithms that
can learn from previous encounters in groups with other learning agents and use
this knowledge to adapt their strategies to individual opponents. Since not every
participant submitted an agent that implemented such a learning approach, we
were able to compare the results of learning and non-learning agents and showed
that the learning agents indeed performed better than the non-learning agents for
the challenge set in the competition.

When the learning capabilities are disabled, some learning agents drop sub-
stantially in performance. While this suggests that learning is beneficial, it could
also indicate that these agents became dependent on their learning mechanism.
Ideally, agents should be more robust and perform well in single-shot and repeated
encounters with opponents. This could have been achieved by evaluating agents
in the competition based on their single-shot performance, which we believe is an
interesting idea for future competitions.

A notable observation from this competition was that the agent that scored
highest in the tournament, ChargingBoul, did not produce the best response against
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itself. If one is to select one of the agents that participated in the competition,
choosing the winner may not be the best option. Instead, we observed that two
agents formed a pure Nash equilibrium when playing against themselves (MiCRO
and SuperAgent), of which MiCRO scored the highest. This is remarkable, as MiCRO
is a naive strategy that does not use any form of learning or opponent modelling.
However, while MiCRO was the strongest participant in the game-theoretical sense,
it only ended in 10th place in the tournament evaluation. We can explain this
based on the fact that MiCRO fails to exploit weaker opponents and/or fails to make
agreements with them.

To our knowledge, none of the agents let the group composition influence their
strategy. Still, it greatly impacts overall performance within a competition setting,
and we believe that this could be an interesting topic for future research.

6.7.2 RANKING NEGOTIATION AGENTS

Our analysis of the competition results used various methods to analyse the per-
formance of negotiation agents. One is based on average performance, the default
method in the automated negotiation community, and one is based on Nash equi-
libria found using empirical game theory in a meta-game.

The ranking based on average performance strongly depends on the submitted
agents, as shown in Figure 6.6.2. Surely, this is the case in any Al competition, but it
is even more apparent in agent-versus-agent competitions. In such competitions,
a single added agent influences the score of all the other agents instead of merely
contributing another score that is added to the ranking. Intuitively, in a group of
defecting strategies, a conceding strategy is needed to win a tournament, as some
utility is better than no utility, and the defecting opponents will also not obtain
agreements with each other. Conversely, a hardheaded strategy is needed to win
in a group of conceding strategies, as it will exploit all opponents, obtaining the
highest utility.

The game theoretic analysis did not give us a full ranking but a selection of
strategies that form Nash equilibria in the meta-game. Such equilibria rely on flaw-
less rational agents that all know the full structure of the game, which is a disputable
assumption. The equilibria also depend on the strategy set included, but many
more strategies will likely exist than were submitted to this competition. There
can be more than one pure equilibrium, which makes it unclear which equilib-
rium is played. Equilibria can be unfair to one of the agents involved. The last
two points apply, for example, to the game of chicken. All in all, there are many
counterarguments for analysing agent performance based on Nash equilibria.

We attempted to find a ranking method that would be a natural fit for this
competition but were unsuccessful. We considered Elo ranking, which assumes
that relative skill is transitive and is sensitive to copies of the same strategy [21];
unfortunately, both of these assumptions are problematic for ranking negotiation
agents. Nash Averaging [21] is also a popular ranking method but can only deal
with zero-sum games and is sensitive to the set of included agents [91]. In contrast,
our setting is a general sum game, and we attempt to avoid methods sensitive to
the set of included agents. On the other hand, a-rank [114] is suitable for general
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sum games. It uses replicator dynamics to find a dynamical solution concept and
extracts a ranking based on that. However, the main motivation behind this method
was computational tractability, which is not an issue in our case, and the obtained
ranking depends on the a parameter setting. We attempted to obtain a stable
ranking using this method but were unhappy with the sensitivity to the a parameter.
We checked ranking methods based on social choice theory and voting [91], but
these methods consider ordinal pairwise comparisons, where our meta-game is
cardinal. Finally, the ranking method that we believe comes closest to our needs has
been proposed by Marris et al. [103] and was developed to rank N-player general
sum games. However, it proposes a ranking based on the (Coarse) Correlated
Equilibrium obtained through the maximum entropy objective. Agents require
an external correlation device to be able to optimise for a correlated equilibrium,
which is a requirement that might not be realistic for negotiation games.

This leaves us without a convincing ranking method for negotiation agents in
competitions like ANL 2022. We see the development of such a ranking method as a
worthwhile yet highly non-trivial undertaking that is beyond the scope of our work
presented here. We hope that our discussion here draws attention to this important
topic and serves as a good starting point for discussion within the negotiation
community, as much of the recently published work is still benchmarked on the
average performance of a given agent.

6.8 CONCLUSION

In this chapter, we discussed learning agents in iterated negotiation games and
provided an in-depth analysis of groups of such agents competing in a tournament.
We utilised ANL to obtain a diverse set of learning negotiating agents by making
learning over repeated games the challenge of the 2021 and 2022 editions. We ran
experiments with these agents and extensively analysed the results. To the best of
our knowledge, this is the first analysis of learning negotiating agents competing in
a tournament.

The agents were designed for the performance metric we set for the competition.
Regarding this metric, we found that the agents equipped with a learning mecha-
nism performed better than those that did not, and we conclude that the challenge
we set was successful. We also observed that complex strategies are sometimes
outperformed by relatively naive strategies, such as the MiCRO strategy, which
managed to outperform every other agent in being a pure Nash equilibrium action
in a strategy selection meta-game.

Agents that performed well in the competition show more competitive (defect-
ing) behaviour, despite this sometimes causing failures to reach an agreement and
thus hurting both their own utility and the social welfare of the group. We should
aim to prevent such behaviour in negotiation games if we care about social welfare.

We showed that the ranking of the agents depends on the submitted opponents
when using simple average performance-based ranking methods. Such ranking
methods assume that opponents are equally likely to be encountered. We attempted
other methods to evaluate agents and showed that the performance of agents does
not transfer across these evaluation methods. All ranking methods in this paper are



6.8 CONCLUSION 91

based on assumptions that can be disputed, and obtained rankings vary depending
on the chosen method. This is not unexpected, but still unsatisfactory; as discussed
in Section 6.7, this suggests room for further improvements in evaluation criteria
and the automated negotiation competition.

To conclude, we designed and analysed a first negotiation competition with
a focus on learning across negotiation sessions. We made significant progress in
setting up a framework for analysing the performance of learning negotiating agents.
Despite this advancement, we note that challenges remain in obtaining a definitive
answer to the question of what a good performing negotiating agent is. There might
not be a single answer to this question, as it also depends on a conscious choice
of which objectives are important and the environment the agent is in. We should
push for more (empirical) research into diverse adaptive and learning negotiating
agents to gain a more robust understanding of the performance of such agents.
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MULTI-AGENT MEETING
SCHEDULING

In multi-agent systems (MAS), applications that directly interface with daily human
activities represent a rich avenue for exploration. This paper dives into a potentially
impactful application of MAS, targeting a well-known real-world challenge: meeting
scheduling. While there have been previous efforts to address this challenge, we
believe that the time is right to revisit this task as a blue-sky challenge for the MAS
community.

Traditional scheduling methodologies rely on static, sub-optimal support tools that
are susceptible to inefficiencies that include repeated rescheduling, and the overhead
for the humans affected per scheduling attempt remains substantial. This opens an
intriguing challenge for the MAS community: What if a collection of autonomous
agents could extend human capabilities, designed to adapt and negotiate, making
scheduling more dynamic and less time-consuming? The potential of collective time
saved is substantial, not only in a reduction of human effort due to fewer rescheduling
attempts, but also in better alignment of schedules. Furthermore, the privacy of
participants can be better preserved.

We argue that the richness of this domain is of interest to the MAS community and
that recent advances in Al open up new ways for tackling this challenge. In this paper,
we set the stage for this research direction, focussed on the use of MAS to support an
age-old, yet fundamental and pervasive task.

This chapter has been published at the Adaptive and Learning Agents (ALA) workshop at AAMAS
2024 [125].
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7.1 INTRODUCTION

Meetings with others, for social and work-related interactions, form a crucial part
of our daily lives. A 2014 survey by Ovum! found that employees meet eight times
per week on average and that this number has been rising over the years. More
specifically, executive management and higher meet on average 12 times a week
and VPs, directors and C-level roles in highly collaborative industries reach an even
higher average of 17 meetings per week.

These business meetings need to be scheduled, which takes an average of 26-30
minutes per meeting per participant according to a blog by Doodle?. This makes
scheduling meetings a major time investment for the average employee, who likely
has to schedule their own meetings. Higher-ranking roles often have assistants
who perform this scheduling task on their behalf and only occasionally ask their
bosses for confirmation. Furthermore, manual scheduling can lead to sub-optimal
schedules, due to the complexity of the problem. Tools that support solving this
problem are popular®, but are often suboptimal as they only solve part of the
problem. There is much to be gained from improving the process of scheduling,
which is also recognised by industry?.

We informally define the meeting scheduling problem (MSP) as the problem of
finding a time slot of a desired duration in which the intended set of participants
(or an acceptable subset thereof) commit to attending the meeting at an agreed
location. We note that the location can be on-site, online, or a mixture thereof.
Furthermore, the notion of an “acceptable subset” makes this de facto a family of
problems, as it leaves unspecified who determines what defines the acceptability
of that subset. In terms of complexity, the problem becomes easy; if this is deter-
mined by the one that initiates the scheduling (authority), and most complex if
acceptability is determined by a group process amongst the intended participants.

The meeting scheduling problem, being such a major part of daily human
life, has seen decades of attention from the computer science community, first
appearing in the 80s [63, 102], often modelled as a (form of a) constraint satisfaction
problem (CSP) [150]. Researchers have attempted solving the multi-agent MSP
using market-based approaches [45] and negotiation approaches, where agents,
representing users, negotiate over meeting time slots [136, 78]. In the years after, the
problem consistently continued to receive attention among researchers (e.g., [60,
55, 34, 167, 94, 85, 155]) across several communities.

Despite the MSP being a common and relatable problem that has seen consid-
erable effort from the research community, we are still not close to a system that
alleviates most of the burden. Difficulties in learning human preferences, communi-
cation with humans, and the complexity of decentralized mixed-motive multi-agent
problems render the MSP challenging. Many of these challenges are recognised as
open problems in cooperative Al [36]. With the recent successes in (multi-agent)
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(deep) reinforcement learning [146], large language models (LLM), and reinforce-
ment learning from human feedback (RLHF) [144], we believe that now the time is
right to revisit the MSP as a rich and rewarding real-world challenge for the MAS
community. We also believe that the various communities within computer science
that have studied this problem can come together to meet this challenge and jointly
achieve far better solutions than currently available.

In this paper, we lay out the necessary groundwork for tackling this problem.
We discuss the characteristics of the problem and try to isolate its distinct compo-
nents. We believe that a decentralised negotiation-based solution is the best-fitting
approach to solving the MSP for scalability and practical reasons; this, therefore,
forms the basis of our effort.

7.2 THE MEETING SCHEDULING PROBLEM

The following anecdotical meeting scheduling process illustrates the richness of the
MSP: Alice must schedule a meeting with 4 colleagues, of which 2 are notoriously
busy. In his role as organiser, Alice first asks the 2 busy participants about their
constraints and options. The first slot found is too far in the future, so the organiser
reduces the meeting duration, allowing for two earlier slots. Alice proposes these
slots to the other participants. One of them, Bob, already has other obligations
conflicting with both slots, but might be able to reschedule a meeting and requests
the others to agree on one of the two slots. After the agreement is made, Bob
commits to that slot after rescheduling his previous commitment.

In the introduction, we provided a simple and informal definition of MSP that
nonetheless already introduces complexity by referring to “an acceptable subset”.
Furthermore, under the hood of this definition lurk additional complexities, as
mentioned, e.g, by Berger et al. [23]: Each participant must be able to reach the
meeting location, attend for the entire duration and reach the next meeting location
on time. This refers to travel time between meetings and to means of transportation.
Even in online meetings, one must be in a place where one is allowed to speak, and
that is quiet enough to hear what is being discussed. Aside from such practicalities
that complicate MSPs, there are also numerous human aspects to consider, e.g.,
participants having ulterior motives and/or hidden agendas, strategic voting, pow-
erplay, and incomplete revelations of potential meeting slots. Any and all of these
have an impact on what information they are willing to share and when, how much
importance they attach to the meeting and some of its intended participants, and
how many attempts have to be made to arrive at a feasible solution.

7.2.1 EARLIER FORMALISATIONS

The MSP naturally lends itself to be formalised as a constraint satisfaction problem
(CSP) [150]. Formalised in this manner, all the techniques for solving CSPs are
applicable. This includes centralised and distributed approaches. Centralised
approaches boil down to efficient search strategies in the solution space defined
by means of hard constraints or strategies for optimising the utility when using
soft constraints. In the distributed approaches, solving the CSP is distributed to
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Table 7.1: Characteristics of the Meeting Scheduling Problem

Problem Participant
Description Type Type Values
Substitutability Boolean Set Other participants
Importance of attendance ~ Boolean Continuous 0 - Irrelevant 1 - Crucial
Calendar observability Boolean Categorical ~ None Availability Full
Rescheduling Boolean Boolean
Role Boolean  Categorical  Organiser Participant Observer
Repeated encounters Boolean  Categorical  Yes Maybe No
Multiple rounds Boolean N/A
Preferences Boolean Categorical  Invisible On options Visible
Arguments Boolean  Categorical ~ None Restricted format  Free text

the agents as a local problem [164]. This often scales better than centrally solving
a given CSP instance and is more sensitive to information sharing on a need-to-
know basis. Examples of models of specific MSPs as CSP include the assignment
problem [37], private incremental multi-agent agreement problem (piMAP) [49],
group activity selection problem (GASP) [38, 39], valued constraint satisfaction
optimisation problem (VCSOP) [133], group scheduling problem (GSP) [93], and
stable group scheduling problem (SGSP) [94].

All of the above-mentioned formalisations of the MSP simplify part of the prob-
lem and fail to capture the full richness of the MSP. Such simplifications include
full visibility of other agents’ preferences and assuming that decisions are made
centrally. In the following, we attempt to describe the full richness of the MSP as
a basis for future research on the topic. In doing so, we refrain from fully formal-
ising the problem, as multiple viable approaches exist. Instead, we focus on the
characteristics of the MSP that must be considered when solving this problem.

7.2.2 CHARACTERISTICS

We identified a set of characteristics of the problem of scheduling meetings as well
as of the participants involved in the meetings. An overview of these characteristics
can be found in Table 7.1. We deliberately make a distinction between these two
sets of characteristics. The problem characteristics map the different aspects of
the problem that we can either consider or exclude when scheduling meetings.
The participant characteristics describe the potential differences that participants
have in relation to others within the considered characteristics of the problem.
As soon as at least one participant has a certain characteristic, the problem must
accommodate this.

To give a few examples of participant characteristics; within an MSP, a partici-
pant might have full visibility of the calendar of only part of the group of participants.
Participants might also have different views on the importance of other participants’
attendance and substitutability. For example, Alice might feel that Bob can be sub-
stituted by Carol, whereas Bob feels he cannot be substituted at all. As another
example, Alice might feel that Dan’s attendance is crucial, whereas Dan does not
think the meeting is that important and will only attend if Erin will.
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The characteristics we listed can be used to approach the problem in a system-
atic manner. Due to the richness of the problem, the complexity is also high, and we
might want to approach it in incremental steps of complexity. Our characteristics
form a structure of challenges that can be attempted in isolation. We will describe
the characteristics one by one.

* Substitutability: If included, allows for the substitution of (some or all) par-
ticipants by others. This information is to be observable by the participants.
As a participant characteristic, we consider two cases: Simple; the set of
participants that this participant can be substituted with. This models only
the view of a given participant on who can substitute them. Full; for this
participant, their full view on who (including themselves) can be substituted
by whom. Differences in opinion need to be evaluated by all participants.

¢ Importance of attendance: If included, considers that some participants
are more important for the meeting than others. Per participant, this is a
value in [0, 1] representing the importance of attendance of this or another
participant, according to this participant.

¢ Calendar observability: If included, allows sharing of calendars between
participants. Per participant, there are three possibilities: None if no part of
this participant’s calendar can be directly observed. Availability if only
the availability of this participant can be observed. Full: the participant’s
calendar is fully observable by others.

* Rescheduling: If included, meetings can be rescheduled to clear slots for
other more important meetings. Per participant, whether this participant has
the authority and capability to reschedule existing meeting commitments to
free a slot.

* Roles: Ifincluded, participants can have different roles in the MSP. Per partici-
pant, these are: Organiser if this participant is the organiser. Participant if
this participant is intended to attend the meeting as a participant. Observer
if this participant is intended to attend the meeting as an observer.

* Repeated encounters: If included, allows for multiple encounters between
agents over the course of scheduling different meetings. Per participant,
whether the participant is encountered repeatedly.

e Multiple rounds: If included, allows for multiple rounds of back-and-forth
communication before an agreement is made.

» Preferences: If included, consider preferences over meeting slots instead
of simple ‘yes’ or ‘no’ answers on availability. none if this participant only
answers ‘yes’/‘no’ to offered slots. on options if this participant provides
preferences over offered slots. full if this participant provides access to their
full preference profile.
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e Arguments: if included, permits arguments to be added to answers regarding
availability. Per participant, these are None: the participant neither has the
capability or authority to add arguments to their answers, nor the ability to
interpret arguments made by others. Restricted format: the participant
can only add or interpret arguments of a prespecified restricted format. Free
text: the participant can add and interpret text arguments free of other
restrictions. The arguments characteristic can be used, for example, to model
that a participant provides a conditional answer, e.g., needs consultation with
the human user, or that a ‘yes’ is only valid if an agreement can be found
within a given time.

7.2.3 PERFORMANCE CRITERIA
We argue that the following abstract criteria should be considered when evaluating
the performance of a solution to the MSP:

* Obtained utility: When considering preferences in the MSP, one can measure
properties over the utilities attained by all agents when used as a global per-
formance measure. Examples are average utility, Pareto-optimality, distance
to Nash product or Rawls point, [117, 120]. One can also look at the utility
attained by an individual agent as a local measure.

* Scheduling success: The percentage of the meetings that could be scheduled.
This measures the effectiveness of a meeting scheduling solution in finding
common slots and aligning calendars. It should be easier to obtain a perfect
score when the number of agents involved is lower or when the density of
meetings is low, but becomes an interesting measure when the opposite is
true.

e Privacy preservation [56, 54, 49]: When observability is (partially) enabled,
which is likely true for real-world scenarios, then it becomes important not to
reveal too much information, nor share that information with others.

* Need for rescheduling: This can be considered an efficiency measure. If a
need for rescheduling meetings arises frequently, this could indicate that
the agents are not good at estimating future conflicts and that they schedule
meetings too easily.

e Time investment of humans: As we advocate to approach the MSP via a
human-in-the-loop hybrid intelligent approach, humans must be included in
the scheduling process, e.g., for preference elicitation or permission in excep-
tional situations. However, not bothering the human too much is essential
for any system to achieve advantages over conventional meeting scheduling
methods.

e Trust and acceptance: If humans do not trust that the agent will properly
schedule their meetings, adoption will be compromised. We note that asking
for too little input from humans might be detrimental to trust in the system
and the quality of its solutions.
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¢ Computational cost: Considering the complexity of the many variants of the
MSP it is important to pay attention to the computational cost incurred by
systems for solving this problem.

7.3 NEGOTIATION IN MEETING SCHEDULING

As mentioned in Section 7.1, we can distinguish between market-based and negotiation-
based approaches to solving the MSP from a multi-agent perspective. Market-based
approaches assume that agents are self-interested [45] and are generally based on
the ideal that fairness (e.g., maximum social welfare) can be guaranteed through
mechanism design, where the goal is to design a mechanism that satisfies both the
incentive-compatible (IC) property (i.e., agents are truthful about preferences) and
the individually rational (IR) property (i.e., you cannot receive a negative pay-off
from the mechanism). Some success has been achieved using, for example, Clarke
tax [30, 44] under simplified conditions, which do not hold up in real-world ap-
plications. Designing effective mechanisms for real-world multi-agent systems is
theoretically challenging [34].

We argue that negotiation-based approaches are a good fit for the MSP. Firstly,
a negotiation approach fits naturally with how humans agree on meeting times.
Delegating the legwork to Al agents does not interfere with this and would enable
an effective hybrid intelligent solution to this problem, where human capability is
extended with Al Secondly, negotiation is distributed in nature and does not per se
require a trusted central authority. Thirdly, in negotiation, the practice is only to
reveal information on a need-to-know basis, which promotes privacy and is part of
the responsibility by-design approach we subscribe to [42].

If we do not require participants to reveal all their preferences and constraints
and allow multiple scheduling attempts, then we are basically in a negotiation
setting. This is how humans schedule meetings without tooling, often via email,
which is cumbersome and inefficient. Tools like Doodle and When2meet can
be considered single-shot negotiations [2] as they eliminate the multiple-round
component while lowering participants’ privacy. We believe negotiation methods
make the most sense as we aim for multiple-round, privacy-preserving scheduling.

7.3.1 NEGOTIATION PROTOCOLS

Agents must communicate with each other to find agreements. Open communica-
tion with other agents in the form of “cheap talk” [35] or with humans in the form
of natural language is possible but renders the problem more complex. We deem it
more efficient to use negotiation protocols to aid the negotiation process in finding
cooperative solutions. Such protocols restrict the type of messages and order in
which they are sent [143].

We are not the first to propose negotiation for MSP; examples of proposed
protocols for MSP are the single proposer mechanism (SPM) [93] and the distributed
score-based multi-round (DSM) negotiation mechanism [49].
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7.3.2 HUMAN PREFERENCES

Agents representing humans in negotiations should attempt to optimise outcomes
based on human preferences. We, therefore, consider preference elicitation and es-
timation ([27, 154, 153, 138]) as core components in negotiation-based approaches
for solving the MSP.

In general, a preference model can be bootstrapped based on available histor-
ical data in the form of preference pairs through direct preference optimisation
(DPO) [116]. In the case of MSP, it can be based on historical calendar data [85] and
on the current state of the calendar [33]. Estimating the preferences of other humans
can help in finding mutually beneficial outcomes. Opponent modelling techniques
can be used to estimate these preferences while negotiating, see e.g., [12].

7.3.3 LEARNING TO NEGOTIATE

Given a protocol and preference profile, agents need to learn how to negotiate with
other agents, focusing on maximising individual utility, optimising for cooperative-
ness (e.g., social welfare), or a mixture of those, depending on the characteristics
of the MSP at hand. Such agents can be trained using, e.g., automated algorithm
configuration [124] or reinforcement learning [19, 137, 97].

In MSP one can assume that the environment is highly dynamic. New agents will
be encountered, other agents will change their behaviour, human preferences over
preferred slots will change, etc. Optimising performance means that continuous
adaptation is required. An agent’s policy can be retrained at fixed times based on
historical interactions [95]. After training on a dataset, an agent can be guided by
expert annotations to improve exploration online [90].

7.4 DISCUSSION

The MSP is a challenging problem. Finding optimal Nash equilibrium solutions in
such cooperative Al problems is known to be NP-hard [61, 32, 31]. We therefore
believe emphasis should be placed on finding solutions that are good enough, but
not necessarily optimal, to avoid the need for exponential time solvers. Finding
sufficiently good solutions also avoids problems caused by agents aiming to max-
imise utility deviating or rescheduling for minuscule improvements, which hurts
mutually beneficial cooperation [119].

Another important point concerns interaction with humans that are not repre-
sented by agents. In the adoption of automated meeting scheduling systems, there
will be a transition period during which some humans are represented by agents
and others are not. Communication methods change and humans are likely to be
less responsive, both in terms of the frequency of interaction and response time.
Naturally, agents need to consider this in their scheduling behaviour.

We also have to ensure a degree of fairness in such systems. It cannot be the case
that the calendar of some users will be inefficient or that they are being exploited
by other agents, simply because they are not properly represented by their agent.
Extra care must be taken when a group of agents is dealing with a single participant
who is not represented by an agent. A lack of scheduling capabilities should not
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lead to a drastically less desirable outcome compared to other participants.

If we solve this problem, a societal implication is that humans might change
their view on appointments as being somewhat more fluent than is currently the
case. Whether this is net beneficial remains to be seen, but an effort should be made
to be alert to potential negative side effects.

Finally, we reiterate that, in our view, the time is right to take on this challenge.
Recent interest and advances in dealing with human preferences, aligning Al sys-
tems, cooperative Al and multi-agent systems can all come together within the
domain of meeting scheduling. After a long period of off-and-on attention, the tools
might now be available to tackle this problem in a manner that brings substantial
benefits to the many individuals who have to regularly schedule meetings and to
their organisations.
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This dissertation investigated the design and evaluation of automated negotiation
agents, with a particular focus on learning capabilities and performance across
diverse negotiation settings. In this final chapter, we revisit and answer the research
questions from Section 8.1. We discuss our results in Section 8.2 and discuss its
limitations and suggestions for future work in Section 8.3.

8.1 RESEARCH QUESTIONS & CONTRIBUTIONS

We now address the research questions from Section 1.2 per question. We will
reiterate the questions and their sub-questions on the design of learned negotiation
strategies and the evaluation of such agents, and answer them.

RESEARCH QUESTION 1

Q1 How do we design agents that can learn to negotiate?

SQ1.1 How can we reduce human-induced biases and conceptual com-
plexity in learned negotiation strategies?

$Q1.2 Can we learn to generalise over diverse negotiation instances?

J

Our work has demonstrated significant progress in creating agents that can
learn to negotiate, using a series of approaches, namely automated algorithm con-
figuration (Chapter 3), portfolio selection methods (Chapter 4), and reinforcement
learning (Chapter 5).

This dissertation makes a substantial contribution towards reducing the re-
liance on manual human design in developing negotiation agents. Approaches
involving manual strategy design inherently introduce biases, for example, through
the selection of specific algorithms or the creation of feature representations, which
can limit agent capabilities or lead to information loss. By employing machine
learning and optimisation methods, as explored in this dissertation, substantial
aspects of the strategy design process can be automated, thereby mitigating these
human-imposed biases. This leads to a reduction of human-induced biases in the
negotiation strategies but it does not eliminate them entirely (e.g., the selection of
the learning algorithm itself remains a human decision). Furthermore, integrat-
ing such learning methods into agents can increase the conceptual complexity of
obtaining effective negotiation strategies.

In Table 8.1, we subjectively compare the human-induced bias and conceptual
complexity of the methods proposed in this dissertation relative to each other.
We also added manually designed strategies, which have a high degree of human-
induced bias, as their entire logic is explicitly encoded by developers, limiting the
strategy space explored. Their conceptual complexity is low, as such agents are
generally simple heuristic-based strategies with limited capabilities.

The algorithm configuration approach (Chapter 3) reduces the bias somewhat
but still has a medium-high degree of bias because the parameterised agent and
the instance features guiding configuration remain manually designed. We classify
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Table 8.1: Relative comparison of the design of negotiation agents presented in this dissertation.

Chapter Main method Human-induced bias  Conceptual complexity
- Manual design high low

Chapter3  Algorithm configuration =~ medium-low medium-high
Chapter4  Algorithm selection medium-high high

Chapter5  Reinforcement learning  low medium-low

its conceptual complexity as medium-low, due to the combination of the parame-
terised agent with the SMAC [75] automated configuration algorithm.

In Chapter 4, the portfolio selection method lowers the bias further to medium-
high. While still utilising the parameterised agent, the portfolio construction (using
Hydra [162]) and strategy selection (using AutoFolio [100]) broadens the strategy
space of the agent. However, this layering of methods results in high conceptual
complexity due to the need to manage multiple sophisticated methods.

Finally, the end-to-end reinforcement learning approach (Chapter 5) has a
low degree of human-induced bias. By learning directly from negotiation interac-
tions using GNNs, it avoids the manual design of feature representations, but still
has some bias in the design of the policy architecture. We classify its conceptual
complexity as medium-low, as it operates as a single, unified learning framework
integrating various negotiation strategy challenges within the learned policy. We
further discuss the conceptual complexity and human-induced bias in Section 8.2.

We have shown that it is possible to develop agents capable of learning to nego-
tiate on a diverse set of negotiation scenarios and opponents, thus answering SQ1.2.
This is a substantial improvement over previous attempts at learning negotiation
agents that were trained and tested in strictly scoped settings, which hurts gener-
alisability. We have shown that the performance of learned strategies transfers to
unseen opponents in Chapter 3, Chapter 4, and Chapter 5. We have also shown
that performance transfers to unseen negotiation scenarios both on composed sets
(Chapter 3, Chapter 4) as well as on randomly generated scenarios (Chapter 5).

RESEARCH QUESTION 2

p

Q2 Is there a uniform way of evaluating negotiation agents?

S$Q2.1 Is there a single-best metric?

$Q2.2 What is the value of the average utility metric for evaluating negoti-
ation agents?

Our investigation into evaluation methodologies for negotiation agents, de-
tailed in Chapter 6, revealed the limitations of relying on single-best metrics. We
examined several commonly used metrics and found that agent rankings often
varied depending on the specific criterion chosen (e.g., individual utility versus
social welfare), demonstrating the lack of a single consistent metric. Critically, an-
swering SQ2.2, the commonly used average utility metric in automated negotiation
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literature and competitions is not reliable, as the average utility cannot represent
non-transitive rankings and is influenced by the composition of the group that the
agent is evaluated in (Section 6.7.2). Both are undesirable properties in the context
of automated negotiation.

In answer to SQ2.1, regarding the possibility of discovering a single-best metric,
our work suggests this is improbable. Negotiation is complex, involving trade-offs
between individual utility, social welfare, Pareto efficiency, and other goals. The
observed non-transitivity implies that agent performance cannot always be linearly
ordered, which is required for ranking by a single scalar metric. Therefore, the
challenge might be less about finding the right metric and more about recognising
the complexity of negotiation strategy evaluation.

8.2 DISCUSSION

With the research questions addressed, we now contextualise the findings of this
dissertation, beginning with a discussion. In addition to the results obtained, there
are further insights and lessons learned that are worth discussing. We discuss the
challenges in building learning negotiation agents and the implications of achieving
such agents. We also discuss the difficulty of evaluating negotiation agents.

REDUCING HUMAN-INDUCED BIAS

A central theme of this dissertation has been the progressive reduction of human-
induced biases in negotiation strategy learning. Our trajectory from manually
crafted parameterised negotiation strategies in combination with algorithm con-
figuration (Chapter 3) and portfolio selection (Chapter 4) to end-to-end reinforce-
ment learning (Chapter 5) exemplifies this principle. It is our opinion that human-
induced bias through manual design should be limited. Such biases reduce the
reachable subspace of the total negotiation strategy space that is used for learn-
ing/optimising a strategy. High-performing strategies might not even be part of the
strategy space that is considered.

Chapter 3 and Chapter 4 both present a parameterised agent and negotiation
instance features that were manually designed as prerequisites for the developed
methods. Both were designed based on task-specific knowledge and past research,
which gave them merit. As the findings in Chapter 6 exemplify, negotiation dynam-
ics are so complex that these are not easily understood by human experts. Chapter 3
suffers most of this effect, as only a single fixed strategy is obtained. In contrast,
Chapter 4 improves upon this by allowing for a portfolio of complementary strate-
gies to be used, thus widening broadening the possible strategy space. However, we
think that there is room for improvement in terms of further decreasing the degree
of human-induced bias. We achieve this by removing manual feature design and
using deep learning methods instead.

We can draw a parallel here with the development of the research areas of
computer vision and natural language procession, where, in the early days, there
was a large focus on manually designed features and tools such as SIFT features [101]
and bag-of-words models [66]. With the advent of deep learning, such manually
designed methods have been dominated by deep learning methods, which are
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capable of learning complex relations not captured through manual design. Our
research shows that the automated negotiation research area can also benefit from
making this step by demonstrating that agents can learn to negotiate without relying
on manually designed features. The graph-based reinforcement learning approach
presented in Chapter 5 represents a significant advancement in this direction,
allowing negotiation strategies to emerge with minimal human-induced bias.

CONCEPTUAL COMPLEXITY

In our definition, conceptual complex methods layer several learning methods,
optimisation methods, or manually designed algorithms. Note that we deviate from
the conceptual complexity definition that is used in psychology as a personality
variable reflecting information processing tendencies [145]. Conceptual complex-
ity generally makes methods both difficult to reproduce and hard to understand.
From the perspective of Occam’s razor, layering algorithmic methods increases the
number of entities perhaps beyond necessary, whereas conceptually simpler, more
unified approaches are preferable if they achieve comparable results. Conceptual
simplicity, in line with the principle of parsimony (Occam’s razor), is essential. It im-
proves reproducibility and lowers the barrier for understanding, facilitating critique,
extension, and further research.

The commonly used negotiation framework General Environment for Negotia-
tion with Intelligent multi-purpose Usage Simulation (GENIUS) [99], many of the
developed strategies in the automated negotiation community are hard to repro-
duce, especially the strategies that are learned or optimised. Many strategies entail
various techniques stacked on top of each other (e.g. Sengupta et al. [137], Bagga
et al. [18], and Chen et al. [29]). Part of this originates from the common practice of
designing strategies to be modular (see, e.g., the BOA framework [13]), and part of it
is due to the difficulty of dealing with differently sized scenarios, causing actions to
be abstracted to utility goals commonly. This adds an additional search problem, as
negotiation agents must find outcomes that fit the utility goals (also discussed in
Chapter 5).

In retrospect, we also propose two conceptually complex methods in Chap-
ter 3 and Chapter 4. Where Chapter 3 already combines algorithm configuration
methods, a parameterised agent, an opponent preference estimation method, a
random search method, a feature logging mechanism, and the negotiation platform
GENIUS [99], Chapter 4 adds portfolio construction methods and an algorithm
selection method. The work in both chapters can be seen as initial steps towards
learned negotiation strategies, but it would be challenging to further advance those
lines of research. The work in Chapter 5 represents a substantial step towards con-
ceptual simplicity: It combines all the traditionally considered separate problems,
such as opponent preference estimation, strategy learning, and outcomes space
searching, into a single reinforcement learning problem on a clearly defined and
close to raw observation/action space. Chapter 5 opens up many new avenues for
further research, which we discuss in the next paragraph.

The discussed BOA structure aligns with the long-standing “divide-and-conquer”
tradition in Al i.e., to partition complex problems into more manageable sub-
problems. This makes such problems easier to understand and developed methods
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better explainable. However, the RL approach presented in this dissertation (Chap-
ter 5) deliberately steps away from this, treating the negotiation problem holisti-
cally. This approach prioritises simplicity, in the form of a unified learning process,
over the intrinsic explainability of divide-and-conquer approaches. The question
is whether this trade-off is desirable. With the advancement of the automated
negotiation research area, strategies are becoming more complex, challenging ex-
plainability regardless of whether a divide-and-conquer or holistic approach is
used. Recent work, for example, took a divide-and-conquer approach while using
RL to solve sub-problems [19, 18]. We argue that the research area might need
to accept that negotiation strategies for complex negotiation tasks will likely be
hard to explain regardless of the chosen approach. Therefore, stepping away from
this divide-and-conquer approach and focusing research on conceptually simple
methods is a potentially more productive path forward for the automated negotia-
tion community, even if it leads to challenges in understanding the resulting agent
behaviours.

REINFORCEMENT LEARNING FOR NEGOTIATION AGENTS

As discussed previously, the reinforcement learning-based strategy learning method
presented in Chapter 5 is conceptually simple and less affected by human-induced
bias. It integrates many of the problems faced in a negotiation game into a single-
policy learning problem. This is in contrast with the complexity of the modular
methods in the literature (see, e.g., [13, 19]), as we already discussed in Section 8.2.
A further benefit is that more elaborate strategies can be achieved by extending
the policy network, where, in modular approaches, this is achieved by adding
another module to the agent. Learning to negotiate will then simply remain a single
policy learning problem, which might be more difficult to learn, but only adds to
the complexity by including more trainable neural network layers. We think that
reinforcement learning is a fruitful direction for learning negotiation strategies
based on this flexibility.

PROGRESS IN NEGOTIATION STRATEGY DEVELOPMENT

The lack of a universally applicable evaluation metric for negotiation agents remains
a significant obstacle in the progress of the research area. Our analysis and discus-
sion in Chapter 6 concluded that there currently is no clear evaluation method for
negotiation agents and that the most commonly used metric, average individual
utility, has problematic characteristics. The standard procedure of developing such
agents is to take a set of top-performing agents of the Automated Negotiating Agents
Competition (ANAC) or literature and to create an agent that outperforms them, of-
ten based on average utility. Such newly developed state-of-the-art agents are then
included in benchmarks for future work. However, we discussed in Section 6.7.2
that average utility performance in a tournament with a set of benchmark agents
depends on the composition of that set. Adding a well-performing agent to a
benchmark set does not per se improve the benchmark but merely changes it. Any
newly designed agent is, therefore, not strictly better, but just specialised on the
new benchmark. We argue that not much progress is made in negotiation strategy
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design using this approach. As a community, we need to step outside the bound-
aries of evaluation methods and tasks that we have considered to make meaningful
progress.

We think that research into automated negotiation application areas is the way
forward. A clear task specification helps in defining the negotiation setting, such
that performance criteria might change. In Chapter 7, we proposed multi-agent
calendar scheduling as a concrete, real-world application area for automated ne-
gotiation. This problem encapsulates many of the challenges faced in negotiation
research. It serves as an excellent example of a task-specific challenge that can
potentially drive progress in the research area. We might find out that performance
criteria are always different per agent, or that we should not care much about
determining “winners” in groups of negotiation agents. We encourage the commu-
nity to adopt this or similar challenge problems to drive progress, similar to how
benchmark datasets like ImageNet [41] have driven progress in computer vision.

EMPIRICAL EXPERIMENTATION AT SCALE

The automated negotiation community needs to mature in its approach to large-
scale experimentation. Our work, particularly in part one and Chapter 6, goes
beyond what is commonly seen in the automated negotiation literature in terms
of the scale of training and evaluation iterations. Learning negotiation strategies
on large and diverse sets of negotiation instances is computationally intensive but
also important in the pursuit of generalisability. This also shifts the burden from
manual algorithm design to computational resources, aligning with the increasing
availability of compute in recent years. The added benefit of such learning methods
is the partial removal of human bias in the negotiation strategies. Furthering this
line of research requires training at scale.

Scaling is a challenge in evaluating automated negotiation agents. The Auto-
mated Negotiation League (ANL) faces the curse of dimensionality in its tourna-
ments. For instance, a bilateral tournament with 20 agents and 10 negotiation
scenarios requires 1 900 evaluations, excluding repetitions commonly performed to
minimise stochastic influence. To manage this, competition editions often adopted
a two-phase approach: an initial group phase followed by a finalists phase. While
this reduces the number of evaluations required, it introduces a new problem. As
shown in Chapter 6, group composition significantly influences agent rankings.
Consequently, the final rankings are affected by the initial, arbitrary group divisions,
introducing undesirable inconsistency in the evaluation process.

This brings us to our statement that the automated negotiation community
needs to mature in experimentation at scale and use the abundance of computing
power that has become readily available in recent years. This is a prerequisite
to improve the evaluation of negotiation agents, as well as to further the line of
research into learning negotiation agents.

COOPERATION AND NEGOTIATION

Chapter 1 opened with the statement that human success is due to our ability to co-
operate, which is partially enabled by our ability to negotiate. However, negotiation
agents in the automated negotiation community often show limited cooperative
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behaviour. Many agents are designed to optimise their individual utility, which
is supported by individual utility being one of the main evaluation criteria in the
ANAC leagues (including the editions that we organised). The behaviour frequently
comes at the expense of finding mutually beneficial outcomes that would maximise
social welfare and causes many negotiations to end without an agreement. For
example, approximately 11% of the negotiations ended in no agreement for the top
performing agent in Table 6.4. This myopic approach is particularly problematic in
mixed-motive scenarios where there is potential for joint gains. As we demonstrated
in Chapter 6, in a tournament of competitive agents, the social welfare of the group
is sub-optimal due to negotiations ending without an agreement. This is wasteful
and undesirable for some potential applications, such as energy grid management,
where prosumers must cooperate to distribute energy effectively.

How to move away from this competitive behaviour is, however, unclear. Agents
can specifically be designed to optimise for social welfare, but that makes them
sensitive to exploitation. After all, in a group of cooperators, it is often beneficial to
be a defector [112]. This is already a challenge for groups of humans, but it is an
even more significant challenge in groups of artificial agents, as they are insensitive
to social constructs and norms. In other words, negotiation agents can afford to
negotiate more aggressively than we think human negotiators will be comfortable
with, which is a problem if cooperation is ultimately the goal.

8.3 LIMITATIONS & FUTURE WORK

Aside from the contributions of this dissertation to the research area of automated
negotiation, there are also limitations to our work, as well as potential directions for
future work. We discuss both in this section many of which follow from Section 8.2.

SIMPLIFICATION OF NEGOTIATION INSTANCES

Our studies primarily focused on bilateral negotiations with linear utility functions
and categorical issues. While these scenarios are common in the literature and
provide a good starting point, they do not capture the full complexity of real-world
negotiations. Multi-party negotiations, negotiations with continuous issues, and
scenarios with non-linear utility functions or interdependencies between issues
were not extensively explored. This is a limitation as such additional complexity is
common. For example, in the calendar scheduling task, there are often more than
two parties involved in setting meetings, time is continuous, and issues such as
location and availability can be connected.

LIMITED OPPONENT DIVERSITY

Although we used a variety of opponent strategies in our experiments, including
those from ANAC competitions, this set may not fully represent the diversity of
strategies encountered in real-world negotiations. Human negotiators, in particular,
may employ tactics and exhibit behaviours that are not well-represented by our
current set of artificial opponents. Evaluating against a broader range of opponents,
including human negotiators, would provide a more comprehensive assessment
of agent performance. As a result, the performance of the agents developed in this



8.3 LIMITATIONS & FUTURE WORK 113

dissertation could be unpredictable in real-world situations. Future work could
train negotiation agents using self-play, which avoids the requirement for a set of
opponent agents and has seen previous successes in, e.g., the game of Go [142].

PREFERENCES OF AGENTS

We assumed that preferences were clearly defined in every negotiation scenario by
means of the utility function. However, eliciting human preferences and capturing
them in a model (or utility function) is difficult and a research area by itself [27].
The assumption of having such a clearly defined cardinal ranking over the entire
outcome space is likely to be unrealistic. We also assumed that preferences won't
change over time but are static through a negotiation session. This does not have to
be the case, as negotiations might stretch out over longer periods when situations
change.

Unclear preferences would add significant challenges to developing negotiation
strategies, but should be studied in future work, as they are realistic. For example,
in the calendar scheduling task, preferences are more typically expressed as partial
constraints (“busy Tuesday morning”), ordinal statements (“prefer earlier slots”), or
fuzzy priorities. Furthermore, the static preference assumption directly contradicts
the dynamic reality of calendars, as availability changes and meeting importance
shifts.

LIMITED EXPLORATION OF MULTI-AGENT DYNAMICS

Our research primarily focused on the performance of individual agents rather
than the emergent behaviours in multi-agent systems where all participants are
learning agents. The long-term dynamics and potential equilibria in such systems
were touched upon in Chapter 6, but not extensively studied. This is an important
area for future research, as it could reveal insights into the stability and efficiency of
negotiation strategies in more realistic, adaptive environments.

LACK OF INTERPRETABILITY

Particularly in our end-to-end reinforcement learning approach, the learned strate-
gies can be difficult to interpret or explain. This lack of interpretability could be a
barrier to adoption in tasks where transparency and accountability are important.
Future work should explore methods for making learned negotiation strategies more
interpretable. While achieving interpretability for deep learning models remains
an open research area across Al, progress is needed for reinforcement learning
based negotiation agents. Future work could investigate techniques from explain-
able AT [108] to explore methods that extract simplified representations, such as
knowledge technology-based models that capture simple aspects of the learned
strategy. We realise that complete transparency might be unrealistic, but simplified
high-level insight could be acceptable.

EVALUATION METRICS

Future work should focus on developing more robust and comprehensive evalua-
tion metrics for negotiation agents. As demonstrated in Chapter 6, current metrics
such as average utility have significant limitations, particularly in their sensitivity to
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opponent groups and inability to capture non-transitive relationships. Directions
could be exploring multi-criteria evaluation frameworks that consider factors be-
yond just utility, such as fairness, stability of outcomes, and adaptability to different
negotiation settings. This could provide a more holistic assessment of agent perfor-
mance. Additionally, research into game-theoretic metrics that are more suitable
for handling general-sum games could yield valuable insights.

COOPERATION

As discussed in Section 8.2, the level of cooperativeness is lacking in negotiation
agents, as they are often designed to maximise individual utility without much
risk for repercussions. Negotiation agents often have restricted communication
capabilities, preventing them from engaging in the rich, nuanced dialogue that
facilitates human cooperation. There is a lack of sophisticated mechanisms for
building and maintaining trust, which is crucial for fostering cooperation, especially
in repeated interactions or when dealing with partial information. There is a general
lack of meta-strategic reasoning, with agents typically not engaging in higher-level
thinking about the broader context of negotiations or the impact of their actions on
future interactions. Note that implementing a memory mechanism to detect and
reciprocate uncooperative behaviour might not be enough to enforce cooperative
behaviour. Sometimes, individuals need to be excluded from the group based
on the experiences of others to foster cooperation. Addressing these limitations
represents a significant opportunity for future research to develop more cooperative
negotiation agents. A potential starting point would be implementing reciprocity
mechanisms that foster cooperation, such as described by Nowak [112].

REINFORCEMENT LEARNING IN NEGOTIATION AGENTS

The application of reinforcement learning in automated negotiation research re-
mains relatively uncommon, with only a few notable attempts [19, 137, 18, 97].
While the challenge of managing variable-sized action spaces may have contributed
to this scarcity, we addressed this issue in Chapter 5. The introduction of single
policy-based agents now allows for the integration of multiple learning problems
rather than the potentially noisy stacking of learning methods. This development
opens up new possibilities and avenues for future work. Based on the policy pro-
posed in Chapter 5, we suggest several further advancements.

* The policy network could be modified to include the full history in the obser-
vation (using, e.g., recurrent nets or transformers), potentially enabling it to
identify and adapt to different opponent types, a capability we have shown to
improve performance (Chapter 4).

* The loss function can include information that is typically unavailable during
evaluation. For instance, the loss can be set to maximise social welfare, which
requires knowledge of the opponent’s utility function. This approach could
help steer agents towards agreements with higher social welfare. The loss
function can also be modified to explicitly incorporate the task of learning
the opponent’s utility function. Explicitly adding this task could improve the
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agent’s capabilities of finding mutually beneficial agreements. Note that this
is only possible if we train the agent in simulations with full observability.

* To explore the possibility of handling continuous actions with our proposed
policy network, the node outputs can be interpreted directly as bounded
continuous distributions. Some negotiation objectives, such as price, are
inherently continuous and would be better represented by continuous actions.
This could also reduce the number of trainable parameters.

We think that the first point, including a history in the policy input, is a promising
direction for future work. As demonstrated in Chapter 5, the reinforcement learning
agent currently struggles to effectively adapt its strategy to diverse opponent types.
Enabling the policy to learn from the history of interactions could directly address
this limitation, which would be a significant step towards adaptive negotiation
agents.

8.4 CLOSING REMARKS

In the introduction of this dissertation, we began by reflecting on Yuval Harari’s
insight from “Sapiens” that humans’ unique ability to cooperate flexibly and at scale
is what sets us apart and has led to our dominance as a species. Negotiation, as a
special form of communication, plays a crucial role in enabling this cooperation.
Throughout this work, we have explored how to create artificial agents capable
of negotiating effectively and mirroring, in some ways, the development of this
essential human skill. From the automated configuration of negotiation strategies
to portfolio-based approaches and end-to-end reinforcement learning, we have
taken notable steps to develop more flexible and adaptive negotiating agents.

As we conclude, it is worth considering how the advancement of negotiating Al
agents might impact human cooperation and society at large. Just as the develop-
ment of human negotiation skills enabled more complex forms of collaboration
and social organisation, sophisticated Al negotiators could potentially facilitate
new forms of AI-Al cooperation and Al-human cooperation at an unprecedented
scale. However, as our analysis of evaluation metrics and the challenges in multi-
agent dynamics reveal, there is still much to learn about the creation of effective
negotiation strategies. As we continue to develop Al that can negotiate, we must
ensure that it enhances rather than diminishes cooperative capabilities.
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