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Abstract 
Immune system and vaccine responses vary across geographical locations worldwide, not only 

between high and low-middle income countries (LMICs), but also between rural and urban 

populations within the same country. Lifestyle factors such as housing conditions, exposure to 

microorganisms and parasites and diet are associated with rural-and urban-living. However, 

the relationships between these lifestyle factors and immune profiles have not been mapped in 

detail. Here, we profiled the immune system of 100 healthy Tanzanians living across four 

rural/urban areas using mass cytometry. We developed a lifestyle score based on an individual's 

household assets, housing condition and recent dietary history and studied the association with 

cellular immune profiles. Seventeen out of 80 immune cell clusters were associated with living 

location or lifestyle score, with eight identifiable only using lifestyle score. Individuals with 

low lifestyle score, most of whom live in rural settings, showed higher frequencies of NK cells, 

plasmablasts, atypical memory B cells, T helper 2 cells, regulatory T cells and activated 

CD4+ T effector memory cells expressing CD38, HLA-DR and CTLA-4. In contrast, those 

with high lifestyle score, most of whom live in urban areas, showed a less activated state of 

the immune system illustrated by higher frequencies of naïve CD8+ T cells. Using an elastic 

net machine learning model, we identified cellular immune signatures most associated with 

lifestyle score. Assuming a link between these immune profiles and vaccine responses, these 

signatures may inform us on the cellular mechanisms underlying poor responses to vaccines 

but also reduced autoimmunity and allergies in low- and middle-income countries. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Chapter 4

82



 
 

Introduction 
Variation in the immune system have been observed across populations in low and middle-

income countries (LMIC) in Africa and Asia and those living in high-income countries (HIC) 

in Europe and the USA[1-6]. In addition, immune system variation has been observed within 

countries, such as in rural compared to urban areas in Senegal[2], Tanzania[7] and 

Indonesia[1]. The immune system of rural-living individuals in LMICs shows higher memory, 

activated and regulatory immune profiles, characterized by among others regulatory T cells 

and T helper 2 cells (Th2 cells), compared to urban-living individuals[1, 2, 8, 9]. At the same 

time, reduced vaccine performance has been observed in populations living in LMICs, in 

particular in rural areas[4, 10, 11]. Moreover, it is known that in these same populations, there 

are less diseases of affluence, such as allergies or auto-immunities, where unchecked 

inflammation is a strong contributor[4, 11-19]. 

 

Several factors determine the immune profile of an individual, including genetic and 

demographic factors, such as age and sex, as well as environmental factors, including exposure 

to microorganisms and parasites, type of housing and dietary history[20, 21]. While genetics 

plays an important role in immune system variation during early childhood, this influence 

wanes with age due to cumulative exposure to environmental factors, including pathogens[20, 

22, 23]. This has been illustrated in individuals chronically infected with helminths, who 

exhibit skewed baseline immune profiles, characterized by higher frequencies of Th2, 

regulatory T cells and higher expression of activation and inhibitory markers such as cytotoxic 

T lymphocyte-associated protein 4 (CTLA-4), HLA-DR and programmed cell death protein 1 

(PD-1) on T cells[24-26]. Furthermore, individuals infected with cytomegalovirus (CMV) 

show a disproportionately higher activation state of the immune system and an increased 

frequency of memory cells[27, 28].  

 

Socioeconomic status (SES) is intertwined with housing quality, nutritional status and access 

to healthcare[29, 30]. These factors contribute to infection risk and, therefore, propel the 

vicious circle of infection/infestation, which strongly impacts the immune system[18, 29-33]. 

The type of diet can also be linked to variation in immune profile, as was demonstrated in a 

recent study in Tanzania[7]. In this study, rural-living Tanzanians harbored a more anti-

inflammatory immune profile that correlated with higher levels of plant-derived flavonoid 

apigenin found in food mostly eaten in rural settings[7]. Therefore, taken together, there is 
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evidence for links between living environments such as housing, exposure to microorganisms 

and parasites, SES including individual assets and diet and immune system variation in LMICs.  

Although the immune profiles of urban- and rural-living individuals have been directly 

compared, a more granular assessment of lifestyles irrespective of living location is lacking, 

as individuals living in rural areas may exhibit an urban lifestyle and vice versa. We 

hypothesized that a more refined measurement of lifestyle including housing status, assets (e.g. 

car, bicycle motorcycle or radio), and dietary history (i.e. frequency of consumption of 

common dietary products) will allow us to better explain immune variation previously related 

to rural or urban living location. Especially, we aim to more precisely define immune 

signatures in individuals exhibiting immune hypo-responsiveness. Such information can have 

an impact on both communicable and non-communicable diseases, as a poor immune response 

to vaccines will affect susceptibility to vaccine-preventable infections, while poor responses 

to (self-)antigens can lead to fewer allergies or autoimmune diseases in rural-living individuals. 

Therefore, we not only used mass cytometry to obtain a highly granular immune profile but 

also surveyed lifestyle variation among Tanzanian adults recruited from two rural and two 

urban locations to maximize lifestyle variation using a detailed questionnaire of housing 

conditions, assets and recent dietary history. We present a lifestyle score based on these 

questionnaire data, which places individuals on the spectrum ranging from rural to urban 

lifestyle. We used this lifestyle score to explain immune profile variation in Tanzanian adults 

living in rural and urban areas and contrasted this with immune signatures from urban-living 

Europeans. In addition, we utilized a machine learning model to define combined immune 

signatures most strongly associated with the lifestyle score. 

 

Materials and Methods 
Study design 

This observational study was conducted between September and October 2022 as part of the 

CapTan study. A total of 203 healthy Tanzanian participants aged between 18 to 35 years were 

included from two urban locations (Urban Arusha and Urban Moshi) and two rural locations 

(Rural Moshi and Mwanga) in northern Tanzania (Figure 1A).  

 

The study was approved both at a local level by the Ethical Board of the Kilimanjaro Christian 

Medical University College (No. 2588) and at the national level by the Tanzania National 

Ethical Committee Board (NIMR/HQ/R.8a/Vol.IX/4089). In addition, samples collected from 
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ten Dutch 18 to 30-year-old adults enrolled between January 2022 and September 2022 were 

included in the TINO study (ClinicalTrials.gov, reference no. NCT06039527). The study was 

approved by the Ethics Committee of Leiden University Medical Center (NL77841.058.21).  

 

Description of study areas 

Arusha City (1400m above sea level; 617,631 inhabitants[34]) is the administrative, business, 

commercial and educational centre of the Arusha region, as it accommodates most diplomatic 

and international activities. Due to these important regional functions, there is high diversity 

in ethnicity, economic status and lifestyle. Maasai, Meru and Chagga are the most common 

ethnicities. Most people living in Arusha City have access to good sanitation with the 

availability of clean, treated water. However, some people are slum dwellers, i.e. living in the 

city but practicing a rural lifestyle. Most people are self-employed or office employees in the 

government and private sectors[34]. 

 

Kilimanjaro region has about 1.9 million inhabitants[34] across seven different districts, three 

of which are included in this study (Moshi City, Rural Moshi and Mwanga). Moshi City 

(referred to as Urban Moshi)  (700-950m above sea level; 331,733 inhabitants[34]) is the 

administrative, commercial and educational center of the Kilimanjaro region. Most people live 

a Western lifestyle and have good general sanitation and access to clean water. The main 

ethnicities are Chagga and Pare. Formal business is the main activity, followed by government 

and public employment, while few people are involved in agricultural and entrepreneurial 

activities[34].  

 

People in Rural Moshi (535,803 inhabitants[34]) are mainly involved in agricultural activities. 

Some people have access to clean water, while few  use borehole water sources. People live in 

large family units and their main economic activities are subsistence farming and animal 

husbandry. The main ethnicity is Chagga and people follow Chagga traditions, such as drinking 

local brew from banana/plantain. 

 

The population of Mwanga district (684m above sea level; 148,763 inhabitants[34]) is mainly 

active in irrigation, subsistence farming and animal husbandry. The primary water sources are 

boreholes, rivers and dams, with only few people having access to tap water. Like Rural Moshi, 

people live in large family units. The main ethnicity is Pare, with few Chagga. 
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Europeans were recruited in the area around Leiden, an urban centre in The Netherlands. 

European individuals were Dutch. 

 

Participant screening and enrollment 

In rural communities, study information was given through community leaders and 

announcements during mass gatherings in mosques, churches and during village meetings. In 

urban communities, study information was distributed using leaflets and through community 

leaders, office announcements and university gatherings. Eligible participants (age 18-35 years 

and permanent residency of a given location) were asked to enroll in the study. Following 

informed consent, 230 participants were voluntarily screened for in- and exclusion criteria. 

Exclusion criteria were pregnancy, lactation, having acute or chronic diseases, being HIV-

positive, recent use of antibiotics, use of antimalarials and use of tuberculostatic drugs. 

Participants were screened for HIV infection (SDBIOLINE HIV-1/2 3.0kit, 

LOT:03ADG020A), malaria (Malaria Ag p.f/Pan, Ref: 05FK60, LOT:05EDG018A) and soil-

transmitted helminth such as hookworms (Ancylostoma duodenale and Necator americanus), 

Trichuris trichiura, Ascaris lumbricoides, Strongyloides stercoralis and Schistosoma mansoni 

using Kato-Katz or Schistosoma haematobium (POC-CCA, butch no:220701075). 

Furthermore, hemoglobin levels were measured (HemoCue Hb 301(CE:1450820055) and 

random blood glucose was assessed (ACCU-CHECK glucose test strips, Roche Diabetic 

care,06993761001). Weight and height were measured using a well-calibrated machine (RGZ-

160, made from China), and last, blood pressure was measured using 

OMRON(SN:202111007949V). After nurse counseling, HIV-positive individuals who had 

low or high blood pressure (≤90/60mmHg and ≥140/90mmHg, respectively) or had high blood 

glucose (≥7.1mmol/L fasting or ≥11.1mmol/L random glucose) were excluded and guided for 

further actions. People diagnosed with schistosomiasis or soil-transmitted helminth infections 

were treated with praziquantel and albendazole, respectively according to Tanzanian treatment 

guidelines. Based on exclusion criteria, 27 of 230 participants were excluded.  

 

All questionnaires and clinical samples were collected by a trained study team, consisting of 

medical doctors, nurses and laboratory scientists. Data from Tanzanian individuals were 

collected using the cloud-based electronic data collection system REDCap, with a server 
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hosted at the Kilimanjaro Clinical Research Institute in Tanzania. Data from Dutch participants 

were collected in a Castor database, with a server hosted in The Netherlands. 

 

Lifestyle questionnaire 

Questionnaires adopted from the Tanzania Demographic and Health Survey and Malaria 

Indicator Survey (TDHS-MIS) and previously published work conducted in Tanzania, focused 

on diet in relation to metabolic profiles and inflammatory status[7, 54] were used to collect 

data on basic demographics, wealth (house construction, general hygiene, 

land/animal/livestock/non-productive asset ownership) and (recent) food history. Combined, 

the collected information on wealth and food history was considered reflective of one’s 

‘lifestyle’. Among others, our questionnaire included questions on the material used to 

construct the house's floor, roof and walls, the source of water, the type of toilet and available 

cooking facilities. We assessed the number of milk cows, cattle, goats, sheep, horses and 

poultry owned and inquiries were made on land ownership and possession of non-productive 

assets, such as radios, televisions, computers, refrigerators and ironing tools (whether powered 

by charcoal or electricity), watches, motorcycles, trucks, animal-drawn carts, generators and 

motorboats. As diet was recently found to shape immune responses in a Tanzanian 

population[7], we additionally collected data on recent food history. We specifically focused 

on the frequency of various food types participants consume per week, including ugali (stiff 

porridge), plantain, rice, potatoes, meat, fish, beans/peas, green vegetables, cabbage, fruits and 

local beer. 

 

PBMC isolation and cryopreservation 

Blood was collected in sodium heparin tubes from 189 of 203 participants. PBMC isolation 

and cryopreservation were performed as previously described[1]. 27 Samples were excluded 

due to low blood quality, technical problems during PBMC isolation or low cell counts. The 

remaining 162 cryopreserved PBMC samples were transported from Moshi, Tanzania, to 

Leiden, The Netherlands, using a liquid nitrogen dry vapor shipper. Out of these samples, we 

selected 100 individuals (25 per location) for immune phenotyping based on age, sex and 

educational level. Apart from these variables, baseline demographics for the total cohort and 

the mass cytometry cohort were comparable (Table 1 and Table S1). 
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Mass cytometry antibody staining  

Antibody panels were designed to phenotype immune cells ex vivo. Details on antibodies used 

are listed in Table S4. Antibodies were conjugated to metal using 100µg of purified antibody 

combined with either the Maxpar X8 or MCP9 Antibody Labelling Kit (Fluidigm), as per the 

manufacturer’s instructions. Conjugated antibodies were then stored in 200µl of Antibody 

Stabilizer PBS (CANDOR Bioscience GmbH) at 4°C. Titration of all antibodies was 

conducted on PBMC samples.  

On the day of staining, cryopreserved PBMCs were thawed with 20% FCS/2mM 

Mg2+/1:10,000 benzonase/RPMI medium at 37°C and washed twice with 10% FCS/RPMI 

medium. For phenotyping, 3 × 106 cells per sample were prepared according to the Maxpar 

Nuclear Antigen Staining Protocol V2 (Fluidigm). PBMCs were washed with Maxpar staining 

buffer and centrifuged at 400g for 5 minutes in 5-ml Eppendorf tubes. Study samples were 

randomized over seven batches and for each batch up to 17 samples were barcoded. To barcode 

the samples, the cells were resuspended in 50μl of Maxpar staining buffer and 50μl of a 

barcode mix targeting β2-microglobulin (B2M) was added to each sample, employing a 6-

choose-3 scheme using 106cadmium (Cd), 110Cd, 111Cd, 112Cd, 114Cd and 116Cd. After a 

30-minute room temperature incubation and a wash with Maxpar Staining Buffer, the cells 

were centrifuged, the supernatant was removed and the cells were resuspended in Maxpar 

staining buffer and pooled into one tube for each batch. 

 

Subsequently, cells were treated with 5ml (about 0.17 oz) of 500× diluted Cell-ID Intercalator-

103Rh (Fluidigm) for 15 minutes to identify dead cells. After washing with staining buffer, 

cells were incubated with 20µl Human TruStain FcX Fc receptor blocking solution 

(BioLegend) and 130µl of staining buffer at room temperature for 5 minutes. Next, 150µl of a 

freshly prepared surface antibody cocktail was added for another 30-minute room-temperature 

incubation. After a double wash with staining buffer, cells were fixed with 1.6% PFA in 5ml 

PBS for 10 minutes. Post-centrifugation, cells underwent fixation and permeabilization using 

the eBioscience Foxp3/Transcription Factor Staining Buffer Set from eBioscience, followed 

by incubation with Human TruStain FcX receptor blocker. An intranuclear antibody cocktail 

was then added and the cells were incubated for an additional 30 minutes. After washing with 

permeabilization buffer and staining buffer, cells were fixed with 1.6% PFA in 5ml PBS for 10 

minutes. Finally, cells are stained with 1000× diluted Cell-ID Intercalator-Ir (Fluidigm) in 
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Maxpar Fix and Perm Buffer at room temperature for 1h and stored in RPMI 20% FCS 10% 

DMSO at -80°C until acquisition. 

 

Mass cytometry data acquisition 

All barcoded samples within one batch were acquired simultaneously. Cells were measured 

using a Helios mass cytometer (Fluidigm) and calibrated as per Fluidigm’s guidelines. Before 

measurement, cells underwent counting, washing with Milli-Q water, straining and then were 

suspended at a concentration of 1.0 × 106 cells/ml in a solution containing 10% EQ Four 

Element Calibration Beads from Fluidigm and Milli-Q water. Data acquisition in mass 

cytometry was performed using dual-count mode and with noise reduction. Various channels 

were used, including those for antibody detection, intercalators (103Rh, 191Ir, 193Ir), 

calibration beads (140Ce, 151Eu, 153Eu, 165Ho, 175Lu) and for tracking 

background/contamination (133Cs, 138Ba, 206Pb). Post-acquisition, the mass bead signal was 

used to standardize short-term signal variations, using the EQ passport P13H2302 as a 

reference throughout each experiment. When necessary, normalized FCS files were merged 

using Helios software, while retaining the beads. 

 

Data analysis 

All data preprocessing and statistics were performed in R v4.2.2 and RStudio Server 

v2022.03.999. All p-values were corrected for multiple testing using the Benjamini-Hochberg 

procedure (and referred to as q-values). P-/q-values<0.05 were considered statistically 

significant. 

 

Data preprocessing 

First, cells were automatically gated based on Gaussian parameters (CyTOFClean R-package; 

v1.03beta; https://github.com/JimboMahoney/cytofclean). Next, automatic gating was applied 

to select for intact/DNA+-(191Ir and 193Ir channels), CD45+- (89Y) and live cells (live/dead 

staining) (openCyto v2.10.1 R-package). All automatically set gates were manually inspected. 

Samples were compensated and debarcoded (CATALYST v1.22.0 R-package). Data were 

transformed using a hyperbolic arcsinh-transformation with a cofactor of 5 for downstream 

processing. Next, reference samples collected from healthy European adults included in each 

individual batch were used to train a CytoNorm-model (CytoNorm v0.0.17 R-package; 
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CytoNorm.train-function; nQ = 101; goal = ‘mean’; k = 10; limit = 0-8). The trained model 

was applied to all samples, adjusting for batch effects (CytoNorm.normalize-function). 

 

Cell clustering 

Cells were subjected to flowSOM-clustering (15 × 15 hexagonal grid; rlen=100; kohonen 

v3.0.11 R-package), followed by metaclustering at k = 80 clusters using the hierarchical 

clustering (factoextra v1.0.7 R-package, hcut-function, distance = ‘ward.D2’). The clustering 

map was trained on 100k cells per sample, the remaining cells were mapped to the trained map 

(predict.kohonen-function). Cell clusters were annotated at subset-level by an expert 

immunologist. Cell labels were further refined by  incorporating markers that exhibit 

variability within a given subset in the cell label. 

 

Lifestyle score 

Multiple correspondence analysis (MCA) was applied to categorical questionnaire data (38 

manually curated lifestyle-related questions; 21 on assets, 11 on food and 6 on housing) for all 

203 Tanzanian participants (FactoMineR v2.7 R-package, MCA-function). Missing values are 

imputed using mode imputation. Principle component (PC) 1 was defined as ‘lifestyle score’, 

as this component, per definition, explained most variance across lifestyle questionnaire data. 

Coordinates of samples and variable categories were visualized in biplots. In addition, 

(cumulative) variable category contributions for lifestyle score were extracted and shown.  

 

Statistical analyses 

To understand the overall structure of the data, cells were placed on a two-dimensional t-

distributed Stochastic Neighbor Embedding (t-SNE) map using the Fit-SNE algorithm v1.2.1 

(https://github.com/KlugerLab/Fit-SNE/blob/master/fast_tsne.R). Fit-SNE was performed on 

a down-sampled dataset including 1,500 cells per sample (max_iter = 1,000; learning rate = n 

cells/12; perplexity = n cells/100). 

 

To compare the frequency of cell clusters across rural and urban Tanzanian locations, we 

employed a generalized linear mixed model (binomial = ‘family’; link = ‘logit’; lme4 R-

package v1.1-31). The number of cells in each cell cluster (as a fraction of total CD45+ cells 

per sample) was considered the dependent variable. We fit two models to assess the overall 

effect of location. Model 1 included (scaled) age and sex as fixed explanatory variables and 
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‘sample ID’ as a random intercept. ‘Sample ID’ was included as a random effect to deal with 

any under- or overdispersion due to the binomial model. Model 2 was the same as model 1, 

except that ‘location’ was added as a fixed explanatory variable. ANOVA tests were used to 

assess whether location (model 2) significantly improved model fit compared to model 1. 

Significant models (after correction for multiple testing using Benjamini-Hochberg) were 

subjected to pairwise comparisons between locations using the emmeans v1.8.5 R-package 

(Tukey post hoc test). The associations between cell cluster frequency and lifestyle score were 

also assessed using GLMMs, including lifestyle score, (scaled) age and sex as fixed 

explanatory variables and ‘sample ID’ as a random intercept. For sensitivity analyses, we fitted 

an additional ‘combined’ GLMM, including both location and lifestyle (LS) (as well as age 

(scaled) and sex) as fixed effects and sample ID as random effect. Model fit (using Akaike 

Information Criterion [AIC]) of the ‘combined’ GLMM was compared to same model, after 

removing either location or lifestyle score, to assess the relative importance of these variables 

to performance cluster-specific models. 

 

Elastic net machine learning modelling 

To identify a combined immune ‘endotype’ most associated with variation in lifestyle score, 

we fit an elastic net machine learning model (tidymodels v1.1.1 R-package, glmnet-engine). 

Scaled age, sex and cell frequencies of all 80 clusters were included as predictors and lifestyle 

score was included as an outcome variable. Data was randomly split into train (80%) and test 

(20%) data (stratified for living location). Model tuning was performed on training data using 

2,000 bootstrapped data samples, optimizing penalty and mixture parameters. The best model 

was identified based on the highest explained variance (R2) between observed and predicted 

lifestyle score (penalty = 0.788, mixture = 0.1). The final model was applied to both training 

and testing data to generate final estimates of model fit (R2). Variable importance was assessed 

using the vip v0.4.1 R-package. Feature stability was assessed by extracting all features from 

the models fitted with the optimized tuning parameters across bootstrap datasets (n = 2,000). 

The number of times a feature was selected was used as a measure for feature stability. 

 

Results 
Characteristics of the study population 

The Tanzanian study population consisted of 203 adults recruited from four geographical 

locations in northern Tanzania, including two urban locations, Arusha and Moshi Urban and 
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two rural locations, Moshi Rural and Mwanga (Figure 1A). These four locations were 

categorized as rural and urban based on the National Bureau of Statistics and the 2022 

Census[34]. Detailed information on housing, assets and food history was collected using 

questionnaires[7, 35] (Figure 1B).  

 

From these 203 individuals (Table S1), PBMC samples of 100 individuals were included for 

mass cytometry analyses (n = 100; n = 25 from each site in four sites) (Table 1). The median 

age was 25.0 years (interquartile range [IQR], 23-29 years). The prevalence of parasitic 

infections was 7% and these infections were detected only in individuals from rural areas 

(Table 1). As a comparator cohort, PBMC samples from ten Dutch individuals recruited in 

Leiden, The Netherlands (median age 29 [IQR 27-30], 50% female) were acquired using mass 

cytometry (referred to as ‘urban European’). 

 
Table 1 | Baseline characteristics of the study population (N = 100). 

Variable Overall, N 
= 100 

Urban 
Arusha, N 

= 25 

Urban 
Moshi, N = 

25 

Rural 
Moshi, N = 

25 

Rural 
Mwanga, 

N = 25 

p-value 

Sex, female 53 (53%) 14 (56%) 14 (56%) 13 (52%) 12 (48%) 0.932 
Age 25.0 (23.0, 

29.0) 
25.0 (23.0, 

30.0) 
25.0 (24.0, 

27.0) 
24.0 (22.0, 

27.0) 
25.0 (22.0, 

31.0) 
0.686 

Age categories    
 

 0.955 
   18-25 56 (56%) 13 (52%) 14 (56%) 15 (60%) 14 (56%) 

 

   26-36 44 (44%) 12 (48%) 11 (44%) 10 (40%) 11 (44%) 
 

BMI 22.8 (20.5, 
26.0) 

21.8 (19.0, 
26.8) 

24.1 (22.9, 
28.4) 

22.3 (20.3, 
26.7) 

22.4 (21.3, 
24.6) 

0.243 

Missing 1 1 0 0 0 
 

BMI classification    
 

 0.591 

   <18.5 7 (7.1%) 3 (13%) 2 (8.0%) 1 (4.0%) 1 (4.0%) 
 

   18.5-24.9 60 (61%) 14 (58%) 13 (52%) 15 (60%) 18 (72%) 
 

   25.0-29.9 16 (16%) 2 (8.3%) 5 (20%) 4 (16%) 5 (20%) 
 

   >30 16 (16%) 5 (21%) 5 (20%) 5 (20%) 1 (4.0%) 
 

Missing 1 1 0 0 0 
 

Systolic blood pressure 
(mmHg) 

119 (110, 
125) 

110 (109, 
120) 

110 (100, 
119) 

121 (112, 
130) 

123 (119, 
128) 

<0.001 

Missing 1 1 0 0 0 
 

Diastolic blood 
pressure (mmHg) 

73 (70, 79) 70 (70, 77) 69 (64, 72) 78 (70, 80) 78 (74, 80) <0.001 

Missing 1 1 0 0 0 
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Hemoglobin level g/dl 14.35 
(13.30, 
16.50) 

14.00 
(13.30, 
16.60) 

13.80 
(12.40, 
15.60) 

14.20 
(13.70, 
16.00) 

15.20 
(13.80, 
16.60) 

0.223 

Random blood sugar, 
mmol-1^^ 

5.20 (4.60, 
5.95) 

4.90 (4.40, 
5.50) 

5.20 (4.70, 
6.23) 

5.20 (4.10, 
5.50) 

5.80 (4.90, 
6.50) 

0.053 

Missing 1 0 1 0 0 
 

Highest level of education   
 

 <0.001 

   Primary 30 (30%) 0 (0%) 0 (0%) 13 (52%) 17 (68%) 
 

   Secondary 24 (24%) 6 (24%) 0 (0%) 10 (40%) 8 (32%) 
 

   College 15 (15%) 12 (48%) 1 (4.0%) 2 (8.0%) 0 (0%) 
 

   University 31 (31%) 7 (28%) 24 (96%) 0 (0%) 0 (0%) 
 

Malaria 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
 

Missing 1 0 1 0 0 
 

Helminth infectiona  7 (7.0%) 0 (0%) 0 (0%) 2 (8.0%) 5 (20%) 0.015 

Schistosomiasisb 3 (3.0%) 0 (0%) 0 (0%) 0 (0%) 3 (12%) 0.057 

Missing 1 1 0 0 0 
 

Insurance status 31 (31%) 13 (52%) 15 (60%) 3 (12%) 0 (0%) <0.001 

Occupation    
 

 <0.001 

   Farming 20 (20%) 0 (0%) 1 (4.0%) 5 (20%) 14 (56%) 
 

   Elementary 
occupation 

28 (28%) 5 (20%) 2 (8.0%) 16 (64%) 5 (20%) 
 

   Student 23 (23%) 5 (20%) 15 (60%) 2 (8.0%) 1 (4.0%) 
 

   Employed/business 
owner 

20 (20%) 10 (40%) 5 (20%) 2 (8.0%) 3 (12%) 
 

   Not employed 9 (9.0%) 5 (20%) 2 (8.0%) 0 (0%) 2 (8.0%) 
 

 

N = 100 participants. Values represent number of participants (percentage of total) and median (interquartile range 

[IQR]) for categorical and continuous variables, respectively. Comparisons between locations were performed using 

Fisher’s exact, chi-squared and Mann–Whitney U-test for categorical and continuous variables, respectively. a Stool 

was tested for helminths using the Kato-Katz method, testing for Schistosoma haematobium, Schistosoma mansoni, 

Ascaris Lumbricoides, hookworm and Trichuris trichuria. b Tested for schistosomiasis using the POC-CCA method, 

testing for Schistosoma haematobium and Schistosoma mansoni. 
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Cellular immune profiles differ between rural- and urban-living Tanzanian adults.  

To characterize the cellular immune profiles between rural- and urban-living individuals, 

peripheral blood mononuclear cells (PBMCs) were stained with a panel of 37 metal-tagged 

antibodies. The processed single-cell level dataset contained 69.6 million live CD45+ cells, 

which allowed the identification of six major immune lineages, including B cells, CD4+ T 

cells, CD8+ T cells, innate lymphoid cells (ILCs), myeloid cells and unconventional T cells 

(including γδ T cells) (Figure 1C). Clustering analyses using self-organizing maps (SOM), 

followed by hierarchical clustering resulted in 80 distinct immune cell clusters (Figure S1 and 

Table S2). Cell clusters were annotated at subset-level by an expert immunologist. Cell labels 

were further refined by  incorporating markers that exhibit variability within a given subset in 

the cell label. Using Generalized Linear Mixed Models (GLMMs), we identified nine clusters 

which were significantly different between the four locations, after adjusting for age and sex 

(Figure 1D-E). 

 

The CD4+ T cell lineage was composed of 28 cell clusters, of which 5 significantly differed 

across locations. Th2 cells (cluster 51) represented the strongest rural signal, where we 

observed significantly higher frequencies in rural-living locations (especially rural Moshi) 

compared to urban-living individuals (median 0.7% of total CD45+ cells across rural sites 

compared to 0.3% and 0.2% in urban Tanzanians and Europeans, respectively). Rural-living 

individuals additionally showed a significantly higher frequencies of three cell clusters of 

CD4+ T cells. These clusters included CD161dim PD-1dim CTLA-4+ CD4+ T effector 

memory (Tem)  cells (cluster 46), CD4+ Tem cells expressing CD38, CD161, CTLA-4 and 

PD-1 (cluster 79) and HLA-DRdim PD-1+ KLRG-1+ CD4+ Tem cells (cluster 72). In contrast, 

the CD27+ CD28+ CD45RO+ CD127+ CD4+ T central memory (Tcm) cell cluster (cluster 

53) was higher in urban compared to rural-living individuals (Figure 1E).  

 

Within the CD8+ T cell lineage, 1 out of 15 CD8+ T cell clusters significantly differed across 

locations. This cluster was characterized by recently activated CD8+ Tem cells expressing 

CXCR3 and T-bet (cluster 11), which showed higher frequencies in urban compared to both 

rural locations (Figure 1E). Furthermore, within the gamma delta (γδ) T cell lineage 

(containing 7 clusters), naïve γδ T cells expressing CXCR3 (cluster 40) were significantly 

higher in frequency in urban living compared to both rural-living individuals. Finally, within 

the B cell lineage, we observed significantly higher frequencies of classical naive B cells 
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(cluster 34) and atypical memory B cells expressing CD11c and Tbet (cluster 35) in rural- 

compared to urban-living locations (Figure 1E). Six out of seven rural-associated clusters 

showed visual evidence of a rural-urban-European gradient, where cell frequencies showed a 

stepwise decrease from rural-to-urban and urban-to-European sites, except for cluster 40 

(naïve γδ T cells). On the other hand, gradients were less clear for clusters enriched in urban 

Tanzanians. 

 

Questionnaire data reveal differences in lifestyle between locations. 

Within living locations, considerable variation in immune signatures was observed. Therefore, 

to better capture immune variation across locations, we developed a lifestyle score, which 

incorporates detailed questionnaire data on assets (e.g. possession of a watch, television or 

car), housing (i.e. materials used to construct the house) and food history (i.e. frequency of 

consumption of dietary products) into a single score. To obtain the lifestyle score, we applied 

Multiple Correspondence Analysis (MCA), a dimensionality reduction method similar to 

Principal Component Analysis (PCA), but for categorical data, which was applied to 38 

questions (118 variable categories) collected from all 203 participants (Table S3 and Figure 

S2). MCA clearly separated individuals based on living location, especially across principal 

component (PC) 1. Since the MCA was based on lifestyle questionnaire data and PC1 per 

definition explains most variance, PC1 was referred to as ‘lifestyle score’, explaining 7.8% of 

the variation in the questionnaire data (Figure 2A). Across the first two principal components, 

we found that spread was highest in rural- compared to urban-living individuals (variance 

6.1%/5.1% and 11.3%/11.2% for PC1/PC2 scores across urban and rural sites, respectively), 

indicating rural people have more heterogeneous lifestyles (Figure 2B). Sensitivity analyses 

on condensed questionnaire data (collapsing rare categories and removing uninformative 

variables) showed that the relatively low percentage of variance explained by lifestyle score 

and other high-ranking principle components (Figure S3A) is caused by the inclusion of rarer 

variable categories. Removing these had no important effect on the lifestyle score (Pearson r 

= 0.97, p-value < 2.2 × 10-16). 
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Figure 1 | Mass cytometry immune profiles differ across individuals living in rural (Moshi Rural and 

Mwanga) and urban (Arusha and Moshi Urban) regions. 

A) Map of study sites in Tanzania and in The Netherlands. B) Graphical representation of sample numbers and the 

study design. C-D) t-distributed Stochastic Neighbor Embedding (t-SNE) visualizations (n = 1500 random 

cells/individual); cells are coloured according to lineage (C) or significant cell cluster (D). E) Differential cell 

frequencies between rural and urban Tanzanian regions. Boxplots represent the 25th and 75th percentiles (lower and 

upper boundaries of boxes, respectively), the median (middle horizontal line) and measurements that fall within 1.5 

times the interquartile range (IQR; distance between 25th and 75th percentiles; whiskers). Only clusters showing a 
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significant effect of ‘location’ (across Tanzanian sites) were shown. The significance of ‘location’ was assessed using 

analysis of variance (ANOVA)-tests comparing a full (location, age [scaled] and sex [fixed effects] and sample ID 

[random effect]) and a simpler model, which was the same as the full model, except that we removed ‘location’ from 

the model. ANOVA p-values were corrected for multiple testing using the Benjamini-Hochberg method and referred 

to as q-values. Asterisks denote statistical significance (*, q ≤ 0.05; **, q ≤ 0.01; ***, q ≤ 0.001). The statistical 

significance of differences between each location was assessed using the emmeans()-function (Tukey post hoc test). 

Urban Europeans were included in the figure for visual comparisons and were not included in statistical tests. 

 

We found that the lifestyle score was significantly associated with thirteen of 80 cell clusters, 

while none of the other principal components (PC2-PC5) showed any statistically significant 

associations with cell cluster frequencies (Figure S3B), underscoring the validity and 

biological relevance of the lifestyle score. 

 

Next, we explored the most strongly contributing lifestyle score variables across questionnaire 

categories, including housing conditions, assets and food history. Overall, assets showed the 

highest cumulative contribution to the lifestyle score (53.6%), followed by housing (30.3%) 

and food variables (16.1%) (Figure 2D). Among the top 20 variables most strongly 

contributing to PC1, factors such as having a house with an earth/sand floor, a mud wall, no 

household electricity and a pit latrine as toilet were associated with low lifestyle score. 

Additionally, the lack of assets such as an ironing tool, refrigerator, computer, radio, car, 

television, or watch and not consuming potatoes was associated with a low lifestyle score. 

Factors associated with a high lifestyle score were a house with a flush toilet connected to a 

sewage/septic tank, a separate room used as a kitchen and possessing assets such as a car, a 

working computer and a refrigerator (Figure 2E).  

 

Besides lifestyle score (PC1), we found that PC2 explained 4.1% of the variance (Figure S3A) 

and showed the highest spread across individuals living in rural Mwanga (variance across PC2 

scores 15.0% compared to 2.9%-7.0% in other sites) (Figure 2B). Similar to PC1, variables 

related to assets were most important (cumulative contribution 66.0%), particularly those 

related to livestock farming (Figure S3C). PC3 through PC5 explained 3.2-3.5% of the 

variance (Figure S3A), generally showing a higher cumulative contribution of food variables 

(40.3-49.4%) (Figure S3C) compared to PC1 and PC2. 
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Figure 2 | Multiple Correspondence Analysis (MCA) based on questionnaire data to generate lifestyle score. 

A) MCA was applied to categorical questionnaire data (38 manually curated questions; 21 on assets, 11 on food and 

6 on housing) (N = 203 individuals). Data points are coloured based on location. Ellipses reflect the data spread at a 
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level of confidence of 95%. Density plots show the distribution of PC1 (lifestyle score) (x-axis) and PC2 (y-axis) 

score. B) Comparisons of PC1 (lifestyle score) and PC2 across locations. Global significance was assessed using 

analysis of variance (ANOVA) and post hoc tests between locations were performed using Tukey HSD tests. Asterisks 

denote statistical significance (NS, non-significant; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001, p ≤ 0.0001). C) 

Coordinates of each variable category (a.-t.; see E) across dimensions 1 and 2. Variable categories with similar profiles 

are grouped together. D) Cumulative contributions (in percentage) of the variable categories by questionnaire data 

category (i.e. housing, assets and food). E) Contributions (in percentage) of variable categories to PC1 or lifestyle 

score. Bars are coloured based on whether a variable was associated with a high (> zero) or low (< zero) lifestyle 

score. 

 

Lifestyle score association tests reveal additional immune cell clusters not previously 

linked to living location 

We next assessed the association between lifestyle score and immune cell frequencies using 

GLMMs, adjusting for age and sex. We first verified that lifestyle score in individuals with 

matching mass cytometry data (n = 100), which was not significantly different from 

individuals without mass cytometry data available (Figure S4). 

Overall, 13 cell clusters were associated with lifestyle score, of which 8 clusters were not 

identified by previous analyses where we assessed differences in immune profile between 

locations (Figure 3A and 3B). Indeed, only one of these clusters (cluster 12; CD8+ naïve) 

showed a trend towards significance across locations (q = 0.055; Figure S5). In addition, we 

confirmed 5 out of 9 clusters which were previously found to significantly differ across 

locations, which were Th2 cells (cluster 51; GLMM; β = -0.66), two CD4+ Tem clusters that 

were CTLA-4+ and/or CD161+ (cluster 79 and 46; β = -0.50 and -0.28, respectively), atypical 

memory B cells (cluster 35; β = -0.37) (rural-living location and low lifestyle score) and a 

CD8+ Tem cluster (cluster 11; β = 0.32) (urban-living location and high lifestyle score) (Figure 

3C). The additional clusters identified using the lifestyle score were two CD4+ Tem cell 

clusters that were associated with low lifestyle score: HLA-DR+ PD-1+ CD4+ Tem (cluster 

43; β = -0.38) and regulatory T cells (cluster 75; β = -0.35). Furthermore, we identified a cluster 

of plasmablasts (cluster 57; β = -0.49), which was enriched in those with low lifestyle score. 

Last, an innate immune cell cluster of NK-cells (cluster 25; β = -0.68) was also linked to a low 

lifestyle score (Figure 3D).  

  

In contrast, within the CD8+ T cell lineage, we identified three clusters of CD8+ T cells that 

were associated with high lifestyle score. These included two CD8+ naïve T cell clusters 

(cluster 12 and 21; β = 0.38 and 0.39, respectively) and a cluster of CD8+ Tem cells expressing 
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CD161 and KLRG1 (cluster 38; β = 0.59). In addition, we found a positive association between 

higher frequencies of ILC2 (cluster 60; β = 0.33) and a high lifestyle score (Figure 3D). 

Sensitivity analyses, where we jointly modelled lifestyle score and location and compared the 

model fit to simpler models (excluding either lifestyle score or location), indicated that indeed 

using lifestyle score we can detect an additional group of clusters which we could not have 

detected with location alone (Figure S6). 
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Figure 3 | Lifestyle score is associated with specific immune cell clusters not identified by comparisons across 

locations.  

A) Venn diagram indicating the number of cell clusters that show differences in cell frequencies 1) across locations 

[Figure 1E], 2) both across locations and lifestyle score [Figure 3C] and 3) only with lifestyle score [Figure 3D]. Eight 

cell clusters were uniquely associated with lifestyle score and were not identified by comparisons across sampling 

locations. B) Volcano plot showing differential frequency results. Results were derived from a GLMM with cell 

frequency as outcome variable, lifestyle score, age (scaled) and sex as  fixed effects and sample ID as a random effect. 

Model estimates and corresponding Benjamini-Hochberg (BH)-adjusted p-values (-log10(q-value)) were shown. Each 

point represents a cluster, clusters with q-values<0.05 are coloured by association (high or low lifestyle score, or only 

significantly associated with location). Shapes indicate whether lifestyle-associated clusters were also detected by 

comparisons across sampling locations. Each point is labelled with a cluster identifier. C-D) Scatter plots showing the 

association between lifestyle score and cell frequency for C) clusters significantly related to both location as well as 

lifestyle score and D) clusters uniquely related to lifestyle score (i.e. clusters not identified as differentially abundant 

between locations). Data points are coloured based on location. Lines represent linear fits to the data and are included 

for visualization purposes only. Statistical significance was assessed using a linear mixed model including lifestyle 

score, age (scaled) and sex as fixed effects and sample ID as random effect. Additionally, we ran univariable Spearman 

correlation tests, p-values were corrected for multiple testing using the Benjamini-Hochberg method (q-value). 

Asterisks indicate clusters that significantly differed between locations. Only cell clusters significant in GLMMs are 

shown. 

 

Machine learning modelling links a combined immune endotype with a lifestyle score  

To investigate if a combination of immune cell clusters could be identified that together is 

associated with a lifestyle score (‘immune endotype’), a machine learning model (elastic net) 

was trained with lifestyle score as an outcome and cell cluster frequencies, age and sex as the 

predictor variables. Model training and hyperparameter tuning were performed on 80% of the 

data (n = 80 individuals; 2,000 bootstrapped datasets) and the model was tested on the 

remaining 20% of the data (n = 20 individuals) (Figure 4A). The model was able to predict 

44.1% and 29.6% of the variance in the training and test data, respectively. Using feature 

importance analysis, we verified 11 of the 14 clusters that were previously associated with 

living location and/or lifestyle score. Compared to previous analyses, the current model is a 

multivariable model, estimating the contribution of each cell cluster to the prediction of 

lifestyle score while adjusting for all other cluster cell frequencies. Therefore, using this 

complementary approach, we identified three additional clusters, including CD8+ Tem cells 

expressing CD161 and KLRG1 (cluster 37) associated with high lifestyles score, pDCs (cluster 

58) and γδ T-cells (cluster 22) related to low lifestyle score (Figure 4B).  
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Taken together the elastic net model unveiled a fairly stable (Figure 4C) immune endotype 

characterized by Th2 cells, regulatory T cells, atypical B memory cells, plasmablasts, NK, 

CTLA-4+ CD161+ CD4+ Tem, KLRG1+ γδ T-cells and plasmacytoid dendritic cells (pDCs) 

associated with a low lifestyle score. Inversely, the immune profile characterized by CD8+ 

naïve T cells, CXCR3+ CD127+ CD8+ Tem, two CD8+ Tem CD161+ CD56dim KLRG1+ 

and ILC2 is associated with a high lifestyle score (Figure 4B).  

 
Figure 4 | Machine learning model based on cell cluster frequencies can partly reconstruct lifestyle score.  

A) Performance of an elastic net machine learning model based on cell cluster frequencies (n = 80), age and sex trained 

to predict lifestyle score. Observed compared to predicted lifestyle score based on training (80%) and test data (20%; 

n = 5 samples per location) are shown. Using cell frequency data, we can explain ~30% of the variance in lifestyle 

scores (leave-out test data). B) Feature importance of all features that remained in the model after feature 

shrinkage/regularization. Clusters previously associated with either location or lifestyle score (n = 17) are indicated 

(*). Three clusters have not been associated with location nor lifestyle score in previous analyses. C) Feature stability 

across bootstraps. All features from the models fitted with the optimized tuning parameters (penalty/mixture) were 

extracted. The number of times a feature was selected across bootstrap samples serves as a score for stability of that 

feature (maximum score = 2,000). 
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Discussion 
Here, we assessed the associations between location and/or lifestyle score and cellular immune 

profiles measured by mass cytometry. We found that seventeen of 80 clusters were associated 

with location or lifestyle score, with eight identifiable only when using lifestyle score, 

illustrating the ability of lifestyle score to capture immune variation. Indeed, individuals living 

in rural areas may exhibit an urban lifestyle and vice versa. This was further substantiated by 

applying a machine learning model, which identified a combined immune signature associated 

with lifestyle score. 

 

We found an association between low lifestyle score and expression of activation markers such 

as CD38, HLA-DR and CTLA-4 on CD4+ Tem cells, along with expansion of Th2 and an 

increased frequency of regulatory T cells expressing CTLA-4. An increase in a specific 

memory T cell subsets might indicate that fewer naïve T cells are available for activation and 

expansion upon encounter with a new antigen. Furthermore, expression of 

activation/inhibitory markers on T cells can result in a reduced response to vaccines and 

allergens but may also explain a lower prevalence of autoimmune diseases in LMICs[19, 24, 

36]. Indeed, in rural Senegalese, immune profiles were enriched for HLA-DR-expressing 

CD4+ T cells compared to urban-living individuals[2]. Previous studies comparing rural and 

urban populations in Indonesia[1, 25] and Gabon[26, 37] found that immune profiles in rural-

living individuals, characterized by high frequencies of Th2 cells, T regulatory cells expressing 

CTLA-4, HLA-DR, ICOS or CD161 and atypical memory B cells, were strongly linked to 

(chronic) helminth infections[1, 25, 26].  

 

In contrast to these previous studies, none of our participants tested positive for malaria and 

the prevalence of current helminth infections was very low. Therefore, we speculate that 

increased activation of CD4+ Tem cells, along with expansion of Th2 and higher regulatory T 

cell frequencies, may represent an immune footprint left behind by parasitic infection in the 

past or even during childhood, as have been suggested by others [24, 38, 39]. Indeed, in 2005, 

the prevalence of schistosomiasis among school-aged children in two different schools located 

in one of the rural areas included in this study ranged between 34-70% with evidence for the 

presence of other soil-transmitted infections in the same setting[40]. Thus, based on their age, 

our study participants likely experienced a high burden of helminth infections during 

childhood.  
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Alternatively, housing conditions related to a low lifestyle score (e.g. sand or earth floors and 

mud-wall houses) may predispose to different commensals or exposure to bacteria and fungi 

and their metabolites[41], some of which have immunomodulatory properties. Poor housing 

conditions also attract vectors like flies, lice, ticks, mites and mosquitoes, which may directly 

activate the immune system through components present in their saliva, even in the absence of 

disease transmission[31, 42]. Furthermore, rural-living individuals closely live with livestock 

and as such are exposed to an additional reservoir of micro-organisms and (zoonotic) 

pathogens[43]. Taken together, past (parasitic) infections or unmeasured variables, such as the 

microbiome or exposure to vectors, are tightly linked to housing conditions. These factors may 

drive lifestyle-related immune variation, resulting in enrichment of Th2, regulatory T cells and 

activated T cells.  

 

We found that individuals with low lifestyle score most of whom live in rural settings, display 

a higher frequency of plasmablasts. Plasmablasts are differentiated B cells with a short 

lifespan, which initiate early antibody responses during infections [44-46]. However, due to 

their high metabolic activity, the rapid development of short-lived plasmablasts can 

paradoxically impair humoral immunity by slowing down germinal centre formation. This, in 

turn may impair responsiveness to vaccines and reduce risk of developing allergies and 

autoimmunity by limiting the generation of long-lived plasma and memory B cells. Although 

this has been shown in the context of malaria infection [47], which is not endemic in northern 

Tanzania, other infectious diseases endemic in the area, may similarly induce high levels of 

plasmablasts, including dengue[48]. 

 

Last, we identified an association between both naïve CD8+ T cells and CD8+ Tem expressing 

CD161 and high lifestyle score. Although we lack immune markers to confirm, CD161+CD8+ 

Tem encompasses mucosal-associated invariant T cells (MAIT) cells. MAIT cells are abundant 

in blood and at mucosal sites and can activate dendritic cells that promote T follicular helper 

cells to induce mucosal antigen-specific IgA[49]. Therefore, the presence of such cells in 

urban-living individuals might indicate the propensity to react more strongly to antigens in a 

vaccine, allergens, or autoantigens. This aligns with the results of an earlier study indicating 

that healthy individuals residing in urban Moshi had a higher pro-inflammatory cytokine 

response upon pathogen challenge in an ex vivo PBMC stimulation assay compared to those 

living in rural areas[7, 35]. Regarding the naïve CD8+ T cells being enriched in urban living, 
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it has been noted that they allow new immune responses to be mounted to both infections and 

vaccines[50]. Their higher frequency in urban areas is in line with previous studies in 

Bangladeshi compared to (urban living) North American children within the first three years 

of life[51] as well as in Malawian compared to UK adults[52]. Reduced numbers of naïve 

CD8+ T cells was associated with a higher burden of intestinal worms and viral infections (e.g. 

CMV) in children from Bangladesh compared to those from the USA[3] and higher burden of 

CMV among Malawian adults[52]. Similarly, we speculate that the association between high 

life score and naive CD8+ T cells in our study is driven by reduced pathogen exposure in 

people living in urban settings due to differences in daily activities and hygiene practices 

compared to rural-living individuals. 

 

The strengths of this study include the use of mass cytometry data in combination with the 

availability of detailed information on housing, assets and food history. Condensing this 

information into a single score allowed us to train a machine learning model to identify a 

distinct group of cell clusters (termed ‘immune endotype’), which was strongly associated with 

lifestyle score variation. Previous studies in HICs indicated that baseline (gene-expression-

based) immune endotypes exhibiting a strong pro-inflammatory profile are predictive of 

improved vaccine responses in young adults across multiple vaccines[53]. In a similar fashion, 

we speculate the immune endotypes identified in this study are linked to vaccine responses in 

populations living in rural or urban Africa. As such, further phenotyping of immune endotypes 

in varied populations, not limited to HIC, using protein-based single-cell modalities such as 

mass cytometry, may deepen our understanding of variation in vaccine responses or reactivity 

to allergens or autoantigens and their underlying mechanisms. At the same time, using lifestyle 

scores opens opportunities for public health experts to screen individuals prone to, for example, 

vaccine hypo-responsiveness, informing policymakers on preventative measures, such as 

repeated vaccination. These interventions could target these high-risk individuals, potentially 

improving vaccine efficacy and public health outcomes. Since those mounting reduced vaccine 

responses are the very same individuals that also show lower responses to allergens and auto-

antigens, immune phenotyping may also unveil new ways to prevent non-communicable 

diseases in urban-living individuals. Our study also has limitations. Among others, we did not 

assess cellular immune function through stimulation assays. In addition, future studies 

establishing direct links between low lifestyle score and responses to vaccines, allergens and 

autoantigens would be of great value.  
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In conclusion, in this study we comprehensively assessed the association between immune 

profiles and location and lifestyle variables in a LMIC. Additional cell clusters were detected 

through a more refined measurement of lifestyle. Follow-up studies should therefore focus on 

the links between lifestyle score, immune signature and functional immune responses, 

particularly in populations where vaccine responses are expected to be reduced and in 

populations with the highest prevalence of diseases linked to exaggerated immune responses 

to allergens and autoantigen. 
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Supplementary material  

 

 
Figure S1 | Heatmap showing median marker expression for each cluster.  

Clusters were based on SOM and hierarchical clustering. Each tile depicts the median expression of a given marker 
(rows) for a specific cluster (columns). The heatmap is stratified based on cell lineage. The bottom heatmap indicates 
which clusters were significantly associated with 1) location (Figure 1) and/or 2) lifestyle score (Figure 3). 
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Figure S2 | Heatmap visualizing lifestyle questionnaire data.  

N = 203 participants. Values represent the number of participants. Colours indicate the percentage of the total. 
Comparisons between locations were performed using Fisher’s exact or chi-squared tests. Asterisks denote statistical 
significance (NS, non-significant; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001, p ≤ 0.0001). See Table S3. 
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Figure S3 | MCA principal component variance explained, contributions and cluster associations.  

A) Variance explained (% of total) for PC1-PC5. B) Number of significant cell cluster associations with PC1 
(lifestyle score) to PC5 using modelling as described in the legend of Figure 3. C) Cumulative 
contributions (in percentage) of the variable categories by questionnaire data category (i.e. housing, assets 
and food, n = 38 questions and n = 118 variable categories) for PC1-PC5. 
 

 

 
Figure S4 | Boxplots showing lifestyle score for individuals with and without mass cytometry immune profiles 

(n = 100). P-value determined using Student’s t-test.  
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Figure S5 | Cell frequencies of clusters uniquely related to lifestyle score between locations.  

Cell frequencies of clusters uniquely related to lifestyle score across rural and urban Tanzanian regions and urban 
Europeans (Figure 3D). Boxplots represent the 25th and 75th percentiles (lower and upper boundaries of boxes, 
respectively), the median (middle horizontal line) and measurements that fall within 1.5 times the interquartile range 
(IQR; distance between 25th and 75th percentiles; whiskers). Significance of ‘location’ was assessed using analysis 
of variance (ANOVA)-tests comparing a simple (age [scaled] and sex [fixed effects] and sample ID [random effect]) 
and a full model (simple model with location as fixed effect added). P-values were corrected for multiple testing using 
the Benjamini-Hochberg method and referred to as q-values. Urban Europeans were included in the figure for visual 
comparisons and were not included in statistical tests. 
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Figure S6 | Sensitivity analysis comparing location- and/or lifestyle-based models. 
For each of the clusters that was significant in either location- and/or lifestyle-based models (n = 17), we additionally 
fitted a joint model, including both location and lifestyle (LS) (as well as age [scaled] and sex) as fixed effects and 
sample ID as random effect (GLMMLS+loc). Statistical significance of the combined effect of location and lifestyle 
score was assessed by comparing GLMMLS+loc to an ‘empty model’ where both location and lifestyle score were 
removed using ANOVA (triangles indicate significant models). Akaike Information Criterion (AIC) (measure of model 
fit while accounting for model complexity) was compared between the ‘combined model’ (AICLS+loc) and the same 
model from which either lifestyle score (AICloc) or location (AICLS) was removed. Clusters were grouped according 
to the statistics shown in Figure 1 and Figure 3, i.e. location significant, LS significant or LS + location significant 
clusters. Dropping location or lifestyle score from the combined model for location significant and LS significant 
clusters, respectively, worsened the combined model, indicating that location and lifestyle score were indeed related 
to distinct immune cell clusters. For most of the clusters in the LS + location significant group, dropping either location 
or lifestyle score did not change model performance, indicating that indeed here, location and lifestyle score may be 
more interrelated and capture similar information. 
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Table S1 | Baseline characteristics of the study population (N = 203). 

 

Variable Overall, N 
= 203 

Urban 
Arusha, N 

= 57 

Urban 
Moshi, N = 

47 

Rural 
Moshi, N = 

46 

Rural 
Mwanga, N 

= 53 

p-
value 

Sex, female 100 (49%) 40 (70%) 26 (55%) 18 (39%) 16 (30%) <0.001 
Age 25.0 (22.0, 

29.5) 
25.0 (22.0, 
30.0) 

25.0 (23.0, 
27.0) 

26.0 (22.3, 
31.0) 

24.0 (21.0, 
27.0) 

0.165 

Age categories 
 

  
 

0.259 
   18-25 116 (57%) 30 (53%) 30 (64%) 22 (48%) 34 (64%) 

 

   26-36 87 (43%) 27 (47%) 17 (36%) 24 (52%) 19 (36%) 
 

BMI 22.6 (20.5, 
25.6) 

22.2 (19.9, 
25.8) 

23.9 (22.2, 
26.1) 

22.4 (20.7, 
25.0) 

22.3 (20.3, 
25.3) 

0.183 

Missing 1 1 0 0 0 
 

BMI 
classification 

 
  

 
0.585 

   <18.5 13 (6.4%) 6 (11%) 3 (6.4%) 3 (6.5%) 1 (1.9%) 
 

   18.5-24.9 130 (64%) 34 (61%) 27 (57%) 31 (67%) 38 (72%) 
 

   25.0-29.9 39 (19%) 10 (18%) 11 (23%) 10 (22%) 8 (15%) 
 

   >30 20 (9.9%) 6 (11%) 6 (13%) 2 (4.3%) 6 (11%) 
 

Missing 1 1 0 0 0 
 

Systolic blood 
pressure (mmHg) 

120 (110, 
128) 

110 (109, 
120) 

110 (103, 
120) 

126 (118, 
130) 

122 (120, 
130) 

<0.001 

Missing 1 1 0 0 0 
 

Diastolic blood 
pressure (mmHg) 

73 (68, 80) 70 (67, 79) 70 (64, 78) 78 (72, 81) 76 (70, 80) 0.001 

Missing 1 1 0 0 0 
 

Hemoglobin level 
g/dl 

14.50 
(13.35, 
16.40) 

13.90 
(13.10, 
15.00) 

13.70 
(12.30, 
15.30) 

15.25 
(14.03, 
16.58) 

15.80 
(14.00, 
17.00) 

<0.001 

Random blood 
sugar, mmol-1^^ 

5.00 (4.50, 
5.80) 

4.80 (4.40, 
5.50) 

5.15 (4.53, 
5.85) 

5.50 (4.75, 
6.20) 

4.70 (3.90, 
5.50) 

0.002 

Missing 1 0 1 0 0 
 

Highest level of 
education 

 
  <0.001 

   Primary 50 (25%) 4 (7.0%) 2 (4.3%) 27 (59%) 17 (32%) 
 

   Secondary 74 (36%) 18 (32%) 11 (23%) 19 (41%) 26 (49%) 
 

   College 40 (20%) 27 (47%) 6 (13%) 0 (0%) 7 (13%) 
 

   University 39 (19%) 8 (14%) 28 (60%) 0 (0%) 3 (5.7%) 
 

Malaria 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
 

Missing 1 0 1 0 0 
 

Helminth infectiona  8 (3.9%) 0 (0%) 0 (0%) 6 (13%) 2 (3.8%) 0.002 
Schistosomiasisb 7 (3.5%) 2 (3.6%) 1 (2.1%) 4 (8.9%) 0 (0%) 0.098 
Missing 3 2 0 1 0 

 

Insurance status 51 (25%) 24 (42%) 23 (50%) 0 (0%) 4 (7.5%) <0.001 
Missing 1 0 1 0 0 

 

Occupation 
 

  
 

<0.001 
   Farming 32 (16%) 2 (3.5%) 1 (2.1%) 23 (50%) 6 (11%) 

 

   Elementary 
occupation 

60 (30%) 14 (25%) 7 (15%) 13 (28%) 26 (49%) 
 

   Student 47 (23%) 12 (21%) 23 (49%) 2 (4.3%) 10 (19%) 
 

   Employed/ 
business  owner 

34 (17%) 15 (26%) 9 (19%) 4 (8.7%) 6 (11%) 
 

   Not employed 30 (15%) 14 (25%) 7 (15%) 4 (8.7%) 5 (9.4%) 
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N = 203 participants. Values represent number of participants (percentage of total) and median (interquartile range 

[IQR]) for categorical and continuous variables, respectively. Comparisons between locations were performed using 

Fisher’s exact, chi-squared and Mann–Whitney U-test for categorical and continuous variables, respectively. a Stool 

was tested for helminths using the Kato-Katz method, testing for Schistosoma haematobium, Schistosoma mansoni, 

Ascaris Lumbricoides, hookworm and Trichuris trichuria. b Tested for schistosomiasis using the POC-CCA method, 

testing for Schistosoma haematobium and Schistosoma mansoni. 

 

Table S2 | Overview of identified cell clusters. 

See spreadsheets available in this link  Download: Download spreadsheet (16KB) 

https://www.sciencedirect.com/science/article/pii/S2666354624001418. 
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Table S3 | Descriptives of lifestyle score variables.  

 

Characteristic Urban 
Arusha, N 
= 57 

Urban 
Moshi, N = 
47 

Rural 
Moshi, N = 
53 

Rural 
Mwanga, N 
= 46 

p-value 

House floor  
   

<0.001 
   Hard floor (tile, cement, concrete, 
wood) 

57 (100%) 47 (100%) 44 (83%) 33 (72%) 
 

   Earth/sand 0 (0%) 0 (0%) 9 (17%) 13 (28%) 
 

House walls  
   

<0.001 
   Cement, brick or stone 56 (98%) 46 (100%) 42 (79%) 39 (85%) 

 

   Cane, palm, trunks, bamboo 0 (0%) 0 (0%) 1 (1.9%) 0 (0%) 
 

   Mud (with poles) 1 (1.8%) 0 (0%) 10 (19%) 7 (15%) 
 

Missing 0 1 0 0 
 

House roof  
   

0.257 
   Roof tiles 2 (3.5%) 2 (4.3%) 0 (0%) 0 (0%) 

 

   Metal sheets 55 (96%) 45 (96%) 53 (100%) 45 (98%) 
 

   Other 0 (0%) 0 (0%) 0 (0%) 1 (2.2%) 
 

Water source  
   

<0.001 
   Tap water 51 (89%) 45 (96%) 33 (62%) 13 (28%) 

 

   Public standpipe 3 (5.3%) 1 (2.1%) 12 (23%) 10 (22%) 
 

   Protected tube well or bore hole 3 (5.3%) 0 (0%) 3 (5.7%) 20 (43%) 
 

   Spring 0 (0%) 1 (2.1%) 5 (9.4%) 0 (0%) 
 

   Pond-water or stream 0 (0%) 0 (0%) 0 (0%) 3 (6.5%) 
 

Toilet facility  
   

<0.001 
   Flush to piped sewage or septic 
tank 

41 (72%) 42 (89%) 17 (32%) 3 (6.5%) 
 

   Pour flush latrine 14 (25%) 1 (2.1%) 18 (34%) 36 (78%) 
 

   Pit latrine 2 (3.5%) 4 (8.5%) 18 (34%) 7 (15%) 
 

Cooking place 
   

<0.001 
   In a separate room used as 
kitchen 

32 (56%) 31 (66%) 14 (26%) 5 (11%)  

   In a separate building used as 
kitchen 

17 (30%) 9 (19%) 38 (72%) 37 (80%) 
 

   In a room used for living or 
sleeping 

8 (14%) 5 (11%) 1 (1.9%) 2 (4.3%) 
 

   Outdoors 0 (0%) 2 (4.3%) 0 (0%) 2 (4.3%) 
 

Total number of milk cows   
  

0.012 
   None 51 (89%) 43 (91%) 40 (75%) 40 (87%) 

 

   1-4 6 (11%) 1 (2.1%) 11 (21%) 2 (4.3%) 
 

   5-9 0 (0%) 2 (4.3%) 1 (1.9%) 1 (2.2%) 
 

   10+ 0 (0%) 1 (2.1%) 1 (1.9%) 3 (6.5%) 
 

Total number of other cattle 
  

<0.001 
   None 56 (98%) 46 (98%) 45 (85%) 39 (85%) 

 

   1-4 1 (1.8%) 1 (2.1%) 8 (15%) 2 (4.3%) 
 

   5-9 0 (0%) 0 (0%) 0 (0%) 1 (2.2%) 
 

   10+ 0 (0%) 0 (0%) 0 (0%) 4 (8.7%) 
 

Total number of horses 
  

>0.999 
   None 57 (100%) 47 (100%) 53 (100%) 46 (100%)  
   1-4 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

 

   5-9 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
 

   10+ 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
 

Total number of goats 
  

<0.001 
   None 53 (93%) 39 (83%) 29 (55%) 30 (65%) 

 

   1-4 3 (5.3%) 3 (6.4%) 12 (23%) 7 (15%) 
 

   5-9 0 (0%) 2 (4.3%) 11 (21%) 5 (11%) 
 

   10+ 1 (1.8%) 3 (6.4%) 1 (1.9%) 4 (8.7%) 
 

Total number of sheep 
  

0.031 
   None 55 (96%) 46 (98%) 52 (98%) 38 (83%) 

 

   1-4 0 (0%) 0 (0%) 1 (1.9%) 2 (4.3%) 
 

   5-9 1 (1.8%) 1 (2.1%) 0 (0%) 3 (6.5%) 
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   10+ 1 (1.8%) 0 (0%) 0 (0%) 3 (6.5%) 
 

Total number of chicken/poultry 
 

<0.001 
   None 33 (58%) 18 (38%) 8 (15%) 19 (41%) 

 

   1-4 2 (3.5%) 2 (4.3%) 2 (3.8%) 5 (11%) 
 

   5-9 6 (11%) 5 (11%) 11 (21%) 5 (11%) 
 

   10+ 16 (28%) 22 (47%) 31 (60%) 17 (37%) 
 

Missing 0 0 1 0 
 

Agricultural land (hectares) 
  

0.439 
   None 39 (68%) 31 (67%) 38 (72%) 30 (65%) 

 

   1-4 12 (21%) 10 (22%) 14 (26%) 12 (26%) 
 

   5-9 4 (7.0%) 2 (4.3%) 0 (0%) 4 (8.7%) 
 

   10+ 2 (3.5%) 3 (6.5%) 1 (1.9%) 0 (0%) 
 

Missing 0 1 0 0 
 

Connected to electricity 54 (96%) 46 (98%) 37 (70%) 32 (70%) <0.001 
Missing 1 0 0 0 

 

Working radio 49 (86%) 44 (94%) 42 (79%) 37 (80%) 0.185 
Working television 51 (89%) 40 (85%) 22 (42%) 25 (54%) <0.001 
Missing 0 0 1 0 

 

Working computer 23 (40%) 37 (79%) 4 (7.7%) 0 (0%) <0.001 
Missing 0 0 1 0 

 

Working refrigerator 34 (60%) 38 (81%) 8 (15%) 2 (4.3%) <0.001 
Working rechargeable battery or 
generator 

8 (15%) 13 (28%) 4 (7.5%) 11 (24%) 0.035 

Missing 2 0 0 1 
 

An iron (charcoal/electric) 51 (89%) 42 (93%) 38 (72%) 20 (43%) <0.001 
Missing 0 2 0 0 

 

Watch 44 (77%) 44 (98%) 29 (55%) 14 (30%) <0.001 
Missing 0 2 0 0 

 

Mobile phone 55 (96%) 47 (100%) 53 (100%) 44 (96%) 0.283 
Bicycle 11 (19%) 18 (38%) 4 (7.7%) 28 (61%) <0.001 
Missing 0 0 1 0 

 

Motorcycle 21 (37%) 17 (37%) 12 (23%) 24 (52%) 0.026 
Missing 0 1 0 0 

 

Animal drawn cart 0 (0%) 1 (2.2%) 0 (0%) 1 (2.2%) 0.353 
Missing 1 1 0 0 

 

Car or truck 19 (33%) 30 (64%) 6 (11%) 1 (2.2%) <0.001 
Boat with a motor 0 (0%) 1 (2.2%) 0 (0%) 1 (2.2%) 0.353 
Missing 0 1 1 1 

 

Ugali (stiff porridge) 
(×/week) 

  
<0.001 

   0 0 (0%) 2 (4.3%) 0 (0%) 0 (0%) 
 

   1 6 (11%) 11 (23%) 2 (3.8%) 1 (2.2%) 
 

   2-4 26 (46%) 23 (49%) 31 (58%) 13 (28%) 
 

   ≥5 24 (43%) 11 (23%) 20 (38%) 32 (70%) 
 

Missing 1 0 0 0 
 

Plantain (×/week) 
   

<0.001 
   0 19 (35%) 13 (28%) 16 (30%) 28 (62%) 

 

   1 27 (49%) 30 (64%) 25 (47%) 17 (38%) 
 

   2-4 5 (9.1%) 1 (2.1%) 10 (19%) 0 (0%) 
 

   ≥5 4 (7.3%) 3 (6.4%) 2 (3.8%) 0 (0%) 
 

Missing 2 0 0 1 
 

Banana (×/week) 
   

0.152 
   0 7 (13%) 4 (8.5%) 2 (3.8%) 10 (22%) 

 

   1 27 (48%) 22 (47%) 23 (43%) 23 (50%) 
 

   2-4 19 (34%) 18 (38%) 20 (38%) 10 (22%) 
 

   ≥5 3 (5.4%) 3 (6.4%) 8 (15%) 3 (6.5%) 
 

Missing 1 0 0 0 
 

Rice (×/week) 
   

<0.001 
   0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

 

   1 4 (7.0%) 4 (8.5%) 19 (36%) 7 (15%) 
 

   2-4 25 (44%) 17 (36%) 28 (53%) 18 (39%) 
 

   ≥5 28 (49%) 26 (55%) 6 (11%) 21 (46%) 
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Potatoes (×/week) 
   

0.005 
   0 1 (1.8%) 0 (0%) 11 (21%) 3 (6.7%) 

 

   1 26 (46%) 21 (45%) 28 (53%) 26 (58%) 
 

   2-4 21 (37%) 19 (40%) 11 (21%) 13 (29%) 
 

   ≥5 9 (16%) 7 (15%) 3 (5.7%) 3 (6.7%) 
 

Missing 0 0 0 1 
 

Meat (×/week) 
   

0.008 
   0 1 (1.8%) 1 (2.1%) 0 (0%) 2 (4.3%) 

 

   1 13 (23%) 5 (11%) 16 (30%) 11 (24%) 
 

   2-4 29 (52%) 20 (43%) 31 (58%) 25 (54%) 
 

   ≥5 13 (23%) 21 (45%) 6 (11%) 8 (17%) 
 

Missing 1 0 0 0 
 

Fish (×/week) 
   

<0.001 
   0 0 (0%) 3 (6.4%) 2 (3.8%) 0 (0%) 

 

   1 25 (44%) 26 (55%) 24 (45%) 7 (15%) 
 

   2-4 23 (40%) 15 (32%) 26 (49%) 13 (28%) 
 

   ≥5 9 (16%) 3 (6.4%) 1 (1.9%) 26 (57%) 
 

Beans/peas (×/week) 
  

0.005 
   0 2 (3.5%) 1 (2.1%) 1 (1.9%) 0 (0%) 

 

   1 11 (19%) 8 (17%) 20 (38%) 3 (6.5%) 
 

   2-4 28 (49%) 21 (45%) 20 (38%) 18 (39%) 
 

   ≥5 16 (28%) 17 (36%) 12 (23%) 25 (54%) 
 

Green vegetables (×/week) 
  

0.625 
   0 0 (0%) 1 (2.1%) 1 (1.9%) 1 (2.2%) 

 

   1 4 (7.0%) 5 (11%) 1 (1.9%) 2 (4.3%) 
 

   2-4 15 (26%) 10 (21%) 15 (28%) 16 (35%) 
 

   ≥5 38 (67%) 31 (66%) 36 (68%) 27 (59%) 
 

Fruits (×/week) 
   

0.003 
   0 0 (0%) 1 (2.1%) 1 (1.9%) 0 (0%) 

 

   1 9 (16%) 6 (13%) 21 (40%) 13 (28%) 
 

   2-4 15 (26%) 11 (23%) 16 (30%) 18 (39%) 
 

   ≥5 33 (58%) 29 (62%) 15 (28%) 15 (33%) 
 

Locally brewed beer 
(×/week) 

  
0.011 

   0 47 (82%) 40 (85%) 33 (62%) 41 (89%) 
 

   1 6 (11%) 6 (13%) 7 (13%) 1 (2.2%) 
 

   2-4 2 (3.5%) 1 (2.1%) 4 (7.5%) 1 (2.2%) 
 

   ≥5 2 (3.5%) 0 (0%) 9 (17%) 3 (6.5%) 
 

 
N = 203 participants. Values represent number of participants (percentage of total). Comparisons between locations 

were performed using Fisher’s exact or chi-squared tests. All variables (n = 38 variables), after mode imputation, 

were used to construct the lifestyle score. See Figure S2. 
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Table S4 | Mass cytometry antibody panel. 

Label Specificity Clone Suppliera Cat no Lot no End 
dilution 

Working 
dilution 

89Y CD45 HI30 Fluidigm 3089003B 2203476-08 200 100 
115In CD278 

(ICOS) 
C398.4A Biolegend 313502 22-02-2022 

MK 
100 50 

141Pr CD196 
(CCR6) 

G034E3 Fluidigm 3141003A 2201583-11 100 50 

142Nd CD19 HIB19 Biolegend 302202 24-06-2020 500 250 
143Nd CD117 (c-

Kit) 
104D2 Biolegend 313223 28-01-2020 500 250 

145Nd CD4 RPA-T4 Fluidigm 3145001B 2202012-07 500 250 
146Nd CD8a RPA-T8 Fluidigm 3146001B 2108701-11 500 250 
147Sm CD183 

(CXCR3) 
G025H7 Biolegend 353733 03-01-2018 100 50 

148Nd CD14 M5E2 Biolegend 301802 30-05-2022 200 100 
149Sm CD25 (IL-

2Ra) 
2A3 Fluidigm 3149010B 2104640-07 500 250 

150Nd CD185 
(CXCR5) 

J252D4 Biolegend 356902 10-09-2019 500 250 

151Eu CD123 6H6 Fluidigm 3151001B 2112140-01 500 250 
152Sm TCRγδ 11F2 Fluidigm 3152008B 2110581-20 200 100 
153Eu CD7 CD7-6B7 Fluidigm 3153014B 0282010 200 100 
154Sm CD163 GHI/61 Fluidigm 3154007B 3321818 100 50 
155Gd CD45RA HI100 Fluidigm 3155011B 0492003 200 100 
156Gd CD294 

(CRTH2) 
BM16 Biolegend 350102 30-05-2022 100 50 

158Gd CD122 (IL-
2Rb) 

TU27 Biolegend 339002 01-02-2022 500 250 

159Tb CD197 
(CCR7) 

G043H7 Biolegend 353237 11-09-2020 200 100 

161Dy KLRG1 
(MAFA) 

REA261 Miltenyi 130-126-
458 

01-02-2022 500 250 

162Dy CD11c Bu15 Fluidigm 3162005B 2111081-25 500 250 
164Dy CD161 HP-3G10 Fluidigm 3164009B 2111083-25 200 100 
165Ho CD127 (IL-

7Ra) 
AO19D5 Biolegend 351302 24-09-2020 500 250 

167Er CD27 O323 Biolegend 302839 11-09-2019 500 250 
168Er HLA-DR L243 Biolegend 307651 01-02-2022 200 100 
170Er CD3 UCHT1 Fluidigm 3170001B 169104 200 100 
171Yb CD28 CD28.2 Biolegend 302902 01-02-2022 200 100 
172Yb CD38 HIT2 Fluidigm 3172007B 2108738-17 200 100 
173Yb CD45RO UCHL1 Biolegend 304239 11-09-2019 200 100 
174Yb CD335 

(NKp46) 
9E2 Biolegend 331902 22-12-2020 500 250 

175Lu CD279 (PD-
1) 

EH 12.2H7 Fluidigm 3175008B 2104621-07 500 250 

176Yb CD56 NCAM16.2 Fluidigm 3176008B 2202917-03 500 250 
209BI CD16 3G8 Fluidigm 3209002B 2112429-15 200 100 

 
aFluidigm, South San Francisco, CA, USA; BioLegend, San Diego, CA, USA; Miltenyi Biotech, Bergisch Gladbach, 

Germany. CCR, CC chemokine receptor. CD, cluster of differentiation. CRTH2, prostaglandin D2 receptor 2. CXCR, 

CXC chemokine receptor. HLA-DR, human leukocyte antigen-D related. IL-2R, interleukin-2 receptor. IL2RB, 

Interleukin-2 receptor subunit beta, IL2Ra, Interleukin-2 receptor subunit alpha, ICOS, inducible T-cell COStimulator, 

IL-7Rα, interleukin-7 receptor alpha. KLRG1, killer cell lectin-like receptor subfamily G member 1. MAFA, mast cell 

function-associated antigen. c-Kit, receptor tyrosine kinase, PD-1, programmed cell death protein 1. TCR, T cell 

receptor. 
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