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Abstract

Immune system and vaccine responses vary across geographical locations worldwide, not only
between high and low-middle income countries (LMICs), but also between rural and urban
populations within the same country. Lifestyle factors such as housing conditions, exposure to
microorganisms and parasites and diet are associated with rural-and urban-living. However,
the relationships between these lifestyle factors and immune profiles have not been mapped in
detail. Here, we profiled the immune system of 100 healthy Tanzanians living across four
rural/urban areas using mass cytometry. We developed a lifestyle score based on an individual's
household assets, housing condition and recent dietary history and studied the association with
cellular immune profiles. Seventeen out of 80 immune cell clusters were associated with living
location or lifestyle score, with eight identifiable only using lifestyle score. Individuals with
low lifestyle score, most of whom live in rural settings, showed higher frequencies of NK cells,
plasmablasts, atypical memory B cells, T helper 2 cells, regulatory T cells and activated
CD4+ T effector memory cells expressing CD38, HLA-DR and CTLA-4. In contrast, those
with high lifestyle score, most of whom live in urban areas, showed a less activated state of
the immune system illustrated by higher frequencies of naive CD8+ T cells. Using an elastic
net machine learning model, we identified cellular immune signatures most associated with
lifestyle score. Assuming a link between these immune profiles and vaccine responses, these
signatures may inform us on the cellular mechanisms underlying poor responses to vaccines

but also reduced autoimmunity and allergies in low- and middle-income countries.
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Lifestyle score and immune profiles

Introduction

Variation in the immune system have been observed across populations in low and middle-
income countries (LMIC) in Africa and Asia and those living in high-income countries (HIC)
in Europe and the USA[1-6]. In addition, immune system variation has been observed within
countries, such as in rural compared to urban areas in Senegal[2], Tanzania[7] and
Indonesia[1]. The immune system of rural-living individuals in LMICs shows higher memory,
activated and regulatory immune profiles, characterized by among others regulatory T cells
and T helper 2 cells (Th2 cells), compared to urban-living individuals[1, 2, 8, 9]. At the same
time, reduced vaccine performance has been observed in populations living in LMICs, in
particular in rural areas[4, 10, 11]. Moreover, it is known that in these same populations, there
are less diseases of affluence, such as allergies or auto-immunities, where unchecked

inflammation is a strong contributor[4, 11-19].

Several factors determine the immune profile of an individual, including genetic and
demographic factors, such as age and sex, as well as environmental factors, including exposure
to microorganisms and parasites, type of housing and dietary history[20, 21]. While genetics
plays an important role in immune system variation during early childhood, this influence
wanes with age due to cumulative exposure to environmental factors, including pathogens[20,
22, 23]. This has been illustrated in individuals chronically infected with helminths, who
exhibit skewed baseline immune profiles, characterized by higher frequencies of Th2,
regulatory T cells and higher expression of activation and inhibitory markers such as cytotoxic
T lymphocyte-associated protein 4 (CTLA-4), HLA-DR and programmed cell death protein 1
(PD-1) on T cells[24-26]. Furthermore, individuals infected with cytomegalovirus (CMV)
show a disproportionately higher activation state of the immune system and an increased

frequency of memory cells[27, 28].

Socioeconomic status (SES) is intertwined with housing quality, nutritional status and access
to healthcare[29, 30]. These factors contribute to infection risk and, therefore, propel the
vicious circle of infection/infestation, which strongly impacts the immune system[18, 29-33].
The type of diet can also be linked to variation in immune profile, as was demonstrated in a
recent study in Tanzania[7]. In this study, rural-living Tanzanians harbored a more anti-
inflammatory immune profile that correlated with higher levels of plant-derived flavonoid

apigenin found in food mostly eaten in rural settings[7]. Therefore, taken together, there is
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evidence for links between living environments such as housing, exposure to microorganisms
and parasites, SES including individual assets and diet and immune system variation in LMICs.
Although the immune profiles of urban- and rural-living individuals have been directly
compared, a more granular assessment of lifestyles irrespective of living location is lacking,
as individuals living in rural areas may exhibit an urban lifestyle and vice versa. We
hypothesized that a more refined measurement of lifestyle including housing status, assets (e.g.
car, bicycle motorcycle or radio), and dietary history (i.e. frequency of consumption of
common dietary products) will allow us to better explain immune variation previously related
to rural or urban living location. Especially, we aim to more precisely define immune
signatures in individuals exhibiting immune hypo-responsiveness. Such information can have
an impact on both communicable and non-communicable diseases, as a poor immune response
to vaccines will affect susceptibility to vaccine-preventable infections, while poor responses
to (self-)antigens can lead to fewer allergies or autoimmune diseases in rural-living individuals.
Therefore, we not only used mass cytometry to obtain a highly granular immune profile but
also surveyed lifestyle variation among Tanzanian adults recruited from two rural and two
urban locations to maximize lifestyle variation using a detailed questionnaire of housing
conditions, assets and recent dietary history. We present a lifestyle score based on these
questionnaire data, which places individuals on the spectrum ranging from rural to urban
lifestyle. We used this lifestyle score to explain immune profile variation in Tanzanian adults
living in rural and urban areas and contrasted this with immune signatures from urban-living
Europeans. In addition, we utilized a machine learning model to define combined immune

signatures most strongly associated with the lifestyle score.

Materials and Methods

Study design

This observational study was conducted between September and October 2022 as part of the
CapTan study. A total of 203 healthy Tanzanian participants aged between 18 to 35 years were
included from two urban locations (Urban Arusha and Urban Moshi) and two rural locations

(Rural Moshi and Mwanga) in northern Tanzania (Figure 1 A).
The study was approved both at a local level by the Ethical Board of the Kilimanjaro Christian
Medical University College (No. 2588) and at the national level by the Tanzania National

Ethical Committee Board (NIMR/HQ/R.8a/Vol.1X/4089). In addition, samples collected from
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ten Dutch 18 to 30-year-old adults enrolled between January 2022 and September 2022 were
included in the TINO study (ClinicalTrials.gov, reference no. NCT06039527). The study was
approved by the Ethics Committee of Leiden University Medical Center (NL77841.058.21).

Description of study areas

Arusha City (1400m above sea level; 617,631 inhabitants[34]) is the administrative, business,
commercial and educational centre of the Arusha region, as it accommodates most diplomatic
and international activities. Due to these important regional functions, there is high diversity
in ethnicity, economic status and lifestyle. Maasai, Meru and Chagga are the most common
ethnicities. Most people living in Arusha City have access to good sanitation with the
availability of clean, treated water. However, some people are slum dwellers, i.e. living in the
city but practicing a rural lifestyle. Most people are self-employed or office employees in the

government and private sectors[34].

Kilimanjaro region has about 1.9 million inhabitants[34] across seven different districts, three
of which are included in this study (Moshi City, Rural Moshi and Mwanga). Moshi City
(referred to as Urban Moshi) (700-950m above sea level; 331,733 inhabitants[34]) is the
administrative, commercial and educational center of the Kilimanjaro region. Most people live
a Western lifestyle and have good general sanitation and access to clean water. The main
ethnicities are Chagga and Pare. Formal business is the main activity, followed by government
and public employment, while few people are involved in agricultural and entrepreneurial

activities[34].

People in Rural Moshi (535,803 inhabitants[34]) are mainly involved in agricultural activities.
Some people have access to clean water, while few use borehole water sources. People live in
large family units and their main economic activities are subsistence farming and animal
husbandry. The main ethnicity is Chagga and people follow Chagga traditions, such as drinking

local brew from banana/plantain.

The population of Mwanga district (684m above sea level; 148,763 inhabitants[34]) is mainly
active in irrigation, subsistence farming and animal husbandry. The primary water sources are
boreholes, rivers and dams, with only few people having access to tap water. Like Rural Moshi,

people live in large family units. The main ethnicity is Pare, with few Chagga.
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Europeans were recruited in the area around Leiden, an urban centre in The Netherlands.

European individuals were Dutch.

Participant screening and enrollment

In rural communities, study information was given through community leaders and
announcements during mass gatherings in mosques, churches and during village meetings. In
urban communities, study information was distributed using leaflets and through community
leaders, office announcements and university gatherings. Eligible participants (age 18-35 years
and permanent residency of a given location) were asked to enroll in the study. Following
informed consent, 230 participants were voluntarily screened for in- and exclusion criteria.
Exclusion criteria were pregnancy, lactation, having acute or chronic diseases, being HIV-
positive, recent use of antibiotics, use of antimalarials and use of tuberculostatic drugs.
Participants were screened for HIV infection (SDBIOLINE HIV-1/2 3.0kit,
LOT:03ADGO020A), malaria (Malaria Ag p.f/Pan, Ref: 05FK60, LOT:05EDGO018A) and soil-
transmitted helminth such as hookworms (Ancylostoma duodenale and Necator americanus),
Trichuris trichiura, Ascaris lumbricoides, Strongyloides stercoralis and Schistosoma mansoni
using Kato-Katz or Schistosoma haematobium (POC-CCA, butch no:220701075).
Furthermore, hemoglobin levels were measured (HemoCue Hb 301(CE:1450820055) and
random blood glucose was assessed (ACCU-CHECK glucose test strips, Roche Diabetic
care,06993761001). Weight and height were measured using a well-calibrated machine (RGZ-
160, made from China), and last, blood pressure was measured using
OMRON(SN:202111007949V). After nurse counseling, HIV-positive individuals who had
low or high blood pressure (<90/60mmHg and >140/90mmHg, respectively) or had high blood
glucose (>7.1mmol/L fasting or >11.1mmol/L random glucose) were excluded and guided for
further actions. People diagnosed with schistosomiasis or soil-transmitted helminth infections
were treated with praziquantel and albendazole, respectively according to Tanzanian treatment

guidelines. Based on exclusion criteria, 27 of 230 participants were excluded.
All questionnaires and clinical samples were collected by a trained study team, consisting of

medical doctors, nurses and laboratory scientists. Data from Tanzanian individuals were

collected using the cloud-based electronic data collection system REDCap, with a server
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hosted at the Kilimanjaro Clinical Research Institute in Tanzania. Data from Dutch participants

were collected in a Castor database, with a server hosted in The Netherlands.

Lifestyle questionnaire

Questionnaires adopted from the Tanzania Demographic and Health Survey and Malaria
Indicator Survey (TDHS-MIS) and previously published work conducted in Tanzania, focused
on diet in relation to metabolic profiles and inflammatory status[7, 54] were used to collect
data on basic demographics, wealth (house construction, general hygiene,
land/animal/livestock/non-productive asset ownership) and (recent) food history. Combined,
the collected information on wealth and food history was considered reflective of one’s
‘lifestyle’. Among others, our questionnaire included questions on the material used to
construct the house's floor, roof and walls, the source of water, the type of toilet and available
cooking facilities. We assessed the number of milk cows, cattle, goats, sheep, horses and
poultry owned and inquiries were made on land ownership and possession of non-productive
assets, such as radios, televisions, computers, refrigerators and ironing tools (whether powered
by charcoal or electricity), watches, motorcycles, trucks, animal-drawn carts, generators and
motorboats. As diet was recently found to shape immune responses in a Tanzanian
population[7], we additionally collected data on recent food history. We specifically focused
on the frequency of various food types participants consume per week, including ugali (stiff
porridge), plantain, rice, potatoes, meat, fish, beans/peas, green vegetables, cabbage, fruits and

local beer.

PBMC isolation and cryopreservation

Blood was collected in sodium heparin tubes from 189 of 203 participants. PBMC isolation
and cryopreservation were performed as previously described[1]. 27 Samples were excluded
due to low blood quality, technical problems during PBMC isolation or low cell counts. The
remaining 162 cryopreserved PBMC samples were transported from Moshi, Tanzania, to
Leiden, The Netherlands, using a liquid nitrogen dry vapor shipper. Out of these samples, we
selected 100 individuals (25 per location) for immune phenotyping based on age, sex and
educational level. Apart from these variables, baseline demographics for the total cohort and

the mass cytometry cohort were comparable (Table 1 and Table S1).
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Mass cytometry antibody staining

Antibody panels were designed to phenotype immune cells ex vivo. Details on antibodies used
are listed in Table S4. Antibodies were conjugated to metal using 100ug of purified antibody
combined with either the Maxpar X8 or MCP9 Antibody Labelling Kit (Fluidigm), as per the
manufacturer’s instructions. Conjugated antibodies were then stored in 200ul of Antibody
Stabilizer PBS (CANDOR Bioscience GmbH) at 4°C. Titration of all antibodies was
conducted on PBMC samples.

On the day of staining, cryopreserved PBMCs were thawed with 20% FCS/2mM
Mg2+/1:10,000 benzonase/RPMI medium at 37°C and washed twice with 10% FCS/RPMI
medium. For phenotyping, 3 x 106 cells per sample were prepared according to the Maxpar
Nuclear Antigen Staining Protocol V2 (Fluidigm). PBMCs were washed with Maxpar staining
buffer and centrifuged at 400g for 5 minutes in 5-ml Eppendorf tubes. Study samples were
randomized over seven batches and for each batch up to 17 samples were barcoded. To barcode
the samples, the cells were resuspended in 50ul of Maxpar staining buffer and 50ul of a
barcode mix targeting f2-microglobulin (B2M) was added to each sample, employing a 6-
choose-3 scheme using 106cadmium (Cd), 110Cd, 111Cd, 112Cd, 114Cd and 116Cd. After a
30-minute room temperature incubation and a wash with Maxpar Staining Buffer, the cells
were centrifuged, the supernatant was removed and the cells were resuspended in Maxpar

staining buffer and pooled into one tube for each batch.

Subsequently, cells were treated with Sml (about 0.17 0z) of 500 diluted Cell-ID Intercalator-
103Rh (Fluidigm) for 15 minutes to identify dead cells. After washing with staining buffer,
cells were incubated with 20pul Human TruStain FcX Fc receptor blocking solution
(BioLegend) and 130yl of staining buffer at room temperature for 5 minutes. Next, 150ul of a
freshly prepared surface antibody cocktail was added for another 30-minute room-temperature
incubation. After a double wash with staining buffer, cells were fixed with 1.6% PFA in Sml
PBS for 10 minutes. Post-centrifugation, cells underwent fixation and permeabilization using
the eBioscience Foxp3/Transcription Factor Staining Buffer Set from eBioscience, followed
by incubation with Human TruStain FcX receptor blocker. An intranuclear antibody cocktail
was then added and the cells were incubated for an additional 30 minutes. After washing with
permeabilization buffer and staining buffer, cells were fixed with 1.6% PFA in 5ml PBS for 10
minutes. Finally, cells are stained with 1000x diluted Cell-ID Intercalator-Ir (Fluidigm) in
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Maxpar Fix and Perm Buffer at room temperature for 1h and stored in RPMI 20% FCS 10%
DMSO at -80°C until acquisition.

Mass cytometry data acquisition

All barcoded samples within one batch were acquired simultaneously. Cells were measured
using a Helios mass cytometer (Fluidigm) and calibrated as per Fluidigm’s guidelines. Before
measurement, cells underwent counting, washing with Milli-Q water, straining and then were
suspended at a concentration of 1.0 x 106 cells/ml in a solution containing 10% EQ Four
Element Calibration Beads from Fluidigm and Milli-Q water. Data acquisition in mass
cytometry was performed using dual-count mode and with noise reduction. Various channels
were used, including those for antibody detection, intercalators (103Rh, 191Ir, 193Ir),
calibration beads (140Ce, 151Eu, 153Eu, 165Ho, 175Lu) and for tracking
background/contamination (133Cs, 138Ba, 206Pb). Post-acquisition, the mass bead signal was
used to standardize short-term signal variations, using the EQ passport P13H2302 as a
reference throughout each experiment. When necessary, normalized FCS files were merged

using Helios software, while retaining the beads.

Data analysis

All data preprocessing and statistics were performed in R v4.2.2 and RStudio Server
v2022.03.999. All p-values were corrected for multiple testing using the Benjamini-Hochberg
procedure (and referred to as g-values). P-/q-values<0.05 were considered statistically

significant.

Data preprocessing

First, cells were automatically gated based on Gaussian parameters (CyTOFClean R-package;
v1.03beta; https://github.com/JimboMahoney/cytofclean). Next, automatic gating was applied
to select for intact/ DNA+-(1911r and 1931Ir channels), CD45+- (89Y) and live cells (live/dead
staining) (openCyto v2.10.1 R-package). All automatically set gates were manually inspected.
Samples were compensated and debarcoded (CATALYST v1.22.0 R-package). Data were
transformed using a hyperbolic arcsinh-transformation with a cofactor of 5 for downstream
processing. Next, reference samples collected from healthy European adults included in each

individual batch were used to train a CytoNorm-model (CytoNorm v0.0.17 R-package;
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CytoNorm.train-function; nQ = 101; goal = ‘mean’; k = 10; limit = 0-8). The trained model

was applied to all samples, adjusting for batch effects (CytoNorm.normalize-function).

Cell clustering

Cells were subjected to flowSOM-clustering (15 x 15 hexagonal grid; rlen=100; kohonen
v3.0.11 R-package), followed by metaclustering at k = 80 clusters using the hierarchical
clustering (factoextra v1.0.7 R-package, hcut-function, distance = ‘ward.D2’). The clustering
map was trained on 100k cells per sample, the remaining cells were mapped to the trained map
(predict.kohonen-function). Cell clusters were annotated at subset-level by an expert
immunologist. Cell labels were further refined by incorporating markers that exhibit

variability within a given subset in the cell label.

Lifestyle score

Multiple correspondence analysis (MCA) was applied to categorical questionnaire data (38
manually curated lifestyle-related questions; 21 on assets, 11 on food and 6 on housing) for all
203 Tanzanian participants (FactoMineR v2.7 R-package, MCA-function). Missing values are
imputed using mode imputation. Principle component (PC) 1 was defined as ‘lifestyle score’,
as this component, per definition, explained most variance across lifestyle questionnaire data.
Coordinates of samples and variable categories were visualized in biplots. In addition,

(cumulative) variable category contributions for lifestyle score were extracted and shown.

Statistical analyses

To understand the overall structure of the data, cells were placed on a two-dimensional t-
distributed Stochastic Neighbor Embedding (t-SNE) map using the Fit-SNE algorithm v1.2.1
(https://github.com/KlugerLab/Fit-SNE/blob/master/fast_tsne.R). Fit-SNE was performed on
a down-sampled dataset including 1,500 cells per sample (max_iter = 1,000; learning rate = n

cells/12; perplexity = n cells/100).

To compare the frequency of cell clusters across rural and urban Tanzanian locations, we
employed a generalized linear mixed model (binomial = ‘family’; link = ‘logit’; Ime4 R-
package v1.1-31). The number of cells in each cell cluster (as a fraction of total CD45+ cells
per sample) was considered the dependent variable. We fit two models to assess the overall

effect of location. Model 1 included (scaled) age and sex as fixed explanatory variables and
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‘sample ID’ as a random intercept. ‘Sample ID’ was included as a random effect to deal with
any under- or overdispersion due to the binomial model. Model 2 was the same as model 1,
except that ‘location’ was added as a fixed explanatory variable. ANOVA tests were used to
assess whether location (model 2) significantly improved model fit compared to model 1.
Significant models (after correction for multiple testing using Benjamini-Hochberg) were
subjected to pairwise comparisons between locations using the emmeans v1.8.5 R-package
(Tukey post hoc test). The associations between cell cluster frequency and lifestyle score were
also assessed using GLMMs, including lifestyle score, (scaled) age and sex as fixed
explanatory variables and ‘sample ID’ as a random intercept. For sensitivity analyses, we fitted
an additional ‘combined” GLMM, including both location and lifestyle (LS) (as well as age
(scaled) and sex) as fixed effects and sample ID as random effect. Model fit (using Akaike
Information Criterion [AIC]) of the ‘combined” GLMM was compared to same model, after
removing either location or lifestyle score, to assess the relative importance of these variables

to performance cluster-specific models.

Elastic net machine learning modelling

To identify a combined immune ‘endotype’ most associated with variation in lifestyle score,
we fit an elastic net machine learning model (tidymodels v1.1.1 R-package, glmnet-engine).
Scaled age, sex and cell frequencies of all 80 clusters were included as predictors and lifestyle
score was included as an outcome variable. Data was randomly split into train (80%) and test
(20%) data (stratified for living location). Model tuning was performed on training data using
2,000 bootstrapped data samples, optimizing penalty and mixture parameters. The best model
was identified based on the highest explained variance (R2) between observed and predicted
lifestyle score (penalty = 0.788, mixture = 0.1). The final model was applied to both training
and testing data to generate final estimates of model fit (R2). Variable importance was assessed
using the vip v0.4.1 R-package. Feature stability was assessed by extracting all features from
the models fitted with the optimized tuning parameters across bootstrap datasets (n = 2,000).

The number of times a feature was selected was used as a measure for feature stability.

Results

Characteristics of the study population
The Tanzanian study population consisted of 203 adults recruited from four geographical

locations in northern Tanzania, including two urban locations, Arusha and Moshi Urban and

91

Chapter 4



Chapter 4

two rural locations, Moshi Rural and Mwanga (Figure 1A). These four locations were
categorized as rural and urban based on the National Bureau of Statistics and the 2022
Census[34]. Detailed information on housing, assets and food history was collected using

questionnaires[7, 35] (Figure 1B).

From these 203 individuals (Table S1), PBMC samples of 100 individuals were included for
mass cytometry analyses (n = 100; n = 25 from each site in four sites) (Table 1). The median
age was 25.0 years (interquartile range [IQR], 23-29 years). The prevalence of parasitic
infections was 7% and these infections were detected only in individuals from rural areas
(Table 1). As a comparator cohort, PBMC samples from ten Dutch individuals recruited in
Leiden, The Netherlands (median age 29 [IQR 27-30], 50% female) were acquired using mass

cytometry (referred to as ‘urban European”).

Table 1 | Baseline characteristics of the study population (V= 100).

Variable Overall, N Urban Urban Rural Rural p-value
=100 Arusha, N Moshi, N= Moshi, N = Mwanga,
=25 25 25 N=25
Sex, female 53 (53%) 14 (56%) 14 (56%) 13 (52%) 12 (48%) 0.932
Age 25.0(23.0, 25.0(23.0, 25.0(24.0, 240(22.0, 250(22.0, 0.686
29.0) 30.0) 27.0) 27.0) 31.0)
Age categories 0.955
18-25 56 (56%) 13 (52%) 14 (56%) 15 (60%) 14 (56%)
26-36 44 (44%) 12 (48%) 11 (44%) 10 (40%) 11 (44%)
BMI 22.8(20.5, 21.8(19.0, 24.1(229, 223(203, 22.4(213, 0.243
26.0) 26.8) 28.4) 26.7) 24.6)
Missing 1 1 0 0 0
BMI classification 0.591
<18.5 7 (7.1%) 3 (13%) 2 (8.0%) 1 (4.0%) 1 (4.0%)
18.5-24.9 60 (61%) 14 (58%) 13 (52%) 15 (60%) 18 (72%)
25.0-29.9 16 (16%) 2 (8.3%) 5(20%) 4 (16%) 5(20%)
>30 16 (16%) 5(21%) 5(20%) 5 (20%) 1 (4.0%)
Missing 1 1 0 0 0
Systolic blood pressure 119 (110, 110 (109, 110 (100, 121 (112, 123 (119, <0.001
(mmHg) 125) 120) 119) 130) 128)
Missing 1 1 0 0 0
Diastolic blood 73 (70,79)  70(70,77)  69(64,72)  78(70,80) 78 (74,80) <0.001
pressure (mmHg)
Missing 1 1 0 0 0
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Hemoglobin level g/dl

Random blood sugar,

mmol-1**
Missing

14.35
(13.30,
16.50)

5.20 (4.60,

5.95)
1

Highest level of education

Primary
Secondary
College
University
Malaria
Missing
Helminth infection®
Schistosomiasis®
Missing
Insurance status
Occupation
Farming
Elementary
occupation
Student
Employed/business

owner
Not employed

30 (30%)

24 (24%)

15 (15%)

31 (31%)

0 (0%)

1

7(7.0%)

3 (3.0%)
1

31 (31%)

20 (20%)
28 (28%)
23 (23%)
20 (20%)

9 (9.0%)

14.00
(13.30,
16.60)
4.90 (4.40,
5.50)
0

0 (0%)
6 (24%)
12 (48%)
7 (28%)
0 (0%)
0
0 (0%)
0 (0%)
1

13 (52%)

0 (0%)

5 (20%)
5 (20%)
10 (40%)

5 (20%)

13.80
(12.40,
15.60)
5.20 (4.70,
6.23)
1

0 (0%)
0 (0%)
1 (4.0%)
24 (96%)
0 (0%)
1
0 (0%)
0 (0%)
0

15 (60%)

1 (4.0%)
2 (8.0%)
15 (60%)
5 (20%)

2 (8.0%)

14.20
(13.70,
16.00)
5.20 (4.10,
5.50)
0

13 (52%)
10 (40%)
2 (8.0%)
0 (0%)
0 (0%)
0
2 (8.0%)
0 (0%)
0

3 (12%)

5 (20%)
16 (64%)
2 (8.0%)
2 (8.0%)

0 (0%)

15.20
(13.80,
16.60)
5.80 (4.90,
6.50)
0

17 (68%)
8 (32%)
0 (0%)
0 (0%)
0 (0%)
0
5 (20%)
3 (12%)
0

0 (0%)

14 (56%)
5 (20%)
1 (4.0%)
3 (12%)

2 (8.0%)

0.223

0.053

<0.001

Chapter 4

0.015

0.057

<0.001

<0.001

N = 100 participants. Values represent number of participants (percentage of total) and median (interquartile range

[IQR]) for categorical and continuous variables, respectively. Comparisons between locations were performed using

Fisher’s exact, chi-squared and Mann—Whitney U-test for categorical and continuous variables, respectively. * Stool

was tested for helminths using the Kato-Katz method, testing for Schistosoma haematobium, Schistosoma mansoni,

Ascaris Lumbricoides, hookworm and Trichuris trichuria. ° Tested for schistosomiasis using the POC-CCA method,

testing for Schistosoma haematobium and Schistosoma mansoni.
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Cellular immune profiles differ between rural- and urban-living Tanzanian adults.

To characterize the cellular immune profiles between rural- and urban-living individuals,
peripheral blood mononuclear cells (PBMCs) were stained with a panel of 37 metal-tagged
antibodies. The processed single-cell level dataset contained 69.6 million live CD45+ cells,
which allowed the identification of six major immune lineages, including B cells, CD4+ T
cells, CD8+ T cells, innate lymphoid cells (ILCs), myeloid cells and unconventional T cells
(including yd T cells) (Figure 1C). Clustering analyses using self-organizing maps (SOM),
followed by hierarchical clustering resulted in 80 distinct immune cell clusters (Figure S1 and
Table S2). Cell clusters were annotated at subset-level by an expert immunologist. Cell labels
were further refined by incorporating markers that exhibit variability within a given subset in
the cell label. Using Generalized Linear Mixed Models (GLMMs), we identified nine clusters
which were significantly different between the four locations, after adjusting for age and sex

(Figure 1D-E).

The CD4+ T cell lineage was composed of 28 cell clusters, of which 5 significantly differed
across locations. Th2 cells (cluster 51) represented the strongest rural signal, where we
observed significantly higher frequencies in rural-living locations (especially rural Moshi)
compared to urban-living individuals (median 0.7% of total CD45+ cells across rural sites
compared to 0.3% and 0.2% in urban Tanzanians and Europeans, respectively). Rural-living
individuals additionally showed a significantly higher frequencies of three cell clusters of
CD4+ T cells. These clusters included CD161dim PD-1dim CTLA-4+ CD4+ T effector
memory (Tem) cells (cluster 46), CD4+ Tem cells expressing CD38, CD161, CTLA-4 and
PD-1 (cluster 79) and HLA-DRdim PD-1+ KLRG-1+ CD4+ Tem cells (cluster 72). In contrast,
the CD27+ CD28+ CD45RO+ CD127+ CD4+ T central memory (Tem) cell cluster (cluster

53) was higher in urban compared to rural-living individuals (Figure 1E).

Within the CD8+ T cell lineage, 1 out of 15 CD8+ T cell clusters significantly differed across
locations. This cluster was characterized by recently activated CD8+ Tem cells expressing
CXCR3 and T-bet (cluster 11), which showed higher frequencies in urban compared to both
rural locations (Figure 1E). Furthermore, within the gamma delta (yd) T cell lineage
(containing 7 clusters), naive yd T cells expressing CXCR3 (cluster 40) were significantly
higher in frequency in urban living compared to both rural-living individuals. Finally, within

the B cell lineage, we observed significantly higher frequencies of classical naive B cells
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(cluster 34) and atypical memory B cells expressing CD11c and Tbet (cluster 35) in rural-
compared to urban-living locations (Figure 1E). Six out of seven rural-associated clusters
showed visual evidence of a rural-urban-European gradient, where cell frequencies showed a
stepwise decrease from rural-to-urban and urban-to-European sites, except for cluster 40
(naive yd T cells). On the other hand, gradients were less clear for clusters enriched in urban

Tanzanians.

Questionnaire data reveal differences in lifestyle between locations.

Within living locations, considerable variation in immune signatures was observed. Therefore,
to better capture immune variation across locations, we developed a lifestyle score, which
incorporates detailed questionnaire data on assets (e.g. possession of a watch, television or
car), housing (i.e. materials used to construct the house) and food history (i.e. frequency of
consumption of dietary products) into a single score. To obtain the lifestyle score, we applied
Multiple Correspondence Analysis (MCA), a dimensionality reduction method similar to
Principal Component Analysis (PCA), but for categorical data, which was applied to 38
questions (118 variable categories) collected from all 203 participants (Table S3 and Figure
S2). MCA clearly separated individuals based on living location, especially across principal
component (PC) 1. Since the MCA was based on lifestyle questionnaire data and PC1 per
definition explains most variance, PC1 was referred to as ‘lifestyle score’, explaining 7.8% of
the variation in the questionnaire data (Figure 2A). Across the first two principal components,
we found that spread was highest in rural- compared to urban-living individuals (variance
6.1%/5.1% and 11.3%/11.2% for PC1/PC2 scores across urban and rural sites, respectively),
indicating rural people have more heterogeneous lifestyles (Figure 2B). Sensitivity analyses
on condensed questionnaire data (collapsing rare categories and removing uninformative
variables) showed that the relatively low percentage of variance explained by lifestyle score
and other high-ranking principle components (Figure S3A) is caused by the inclusion of rarer
variable categories. Removing these had no important effect on the lifestyle score (Pearson r

=0.97, p-value < 2.2 x 10-16).
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Figure 1 | Mass cytometry immune profiles differ across individuals living in rural (Moshi Rural and

Mwanga) and urban (Arusha and Moshi Urban) regions.

A) Map of study sites in Tanzania and in The Netherlands. B) Graphical representation of sample numbers and the
study design. C-D) t-distributed Stochastic Neighbor Embedding (t-SNE) visualizations (n 1500 random

cells/individual); cells are coloured according to lineage (C) or significant cell cluster (D). E) Differential cell

frequencies between rural and urban Tanzanian regions. Boxplots

upper boundaries of boxes, respectively), the median (middle horizontal line) and measurements that fall within 1.5

times the interquartile range (IQR; distance between 25th and 75th percentiles; whiskers). Only clusters showing a
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significant effect of ‘location’ (across Tanzanian sites) were shown. The significance of ‘location’ was assessed using
analysis of variance (ANOVA)-tests comparing a full (location, age [scaled] and sex [fixed effects] and sample ID
[random effect]) and a simpler model, which was the same as the full model, except that we removed ‘location’ from
the model. ANOVA p-values were corrected for multiple testing using the Benjamini-Hochberg method and referred
to as g-values. Asterisks denote statistical significance (¥, q < 0.05; **, q < 0.01; ***, q < 0.001). The statistical
significance of differences between each location was assessed using the emmeans()-function (Tukey post hoc test).

Urban Europeans were included in the figure for visual comparisons and were not included in statistical tests.

We found that the lifestyle score was significantly associated with thirteen of 80 cell clusters,
while none of the other principal components (PC2-PCS5) showed any statistically significant
associations with cell cluster frequencies (Figure S3B), underscoring the validity and

biological relevance of the lifestyle score.

Next, we explored the most strongly contributing lifestyle score variables across questionnaire
categories, including housing conditions, assets and food history. Overall, assets showed the
highest cumulative contribution to the lifestyle score (53.6%), followed by housing (30.3%)
and food variables (16.1%) (Figure 2D). Among the top 20 variables most strongly
contributing to PC1, factors such as having a house with an earth/sand floor, a mud wall, no
household electricity and a pit latrine as toilet were associated with low lifestyle score.
Additionally, the lack of assets such as an ironing tool, refrigerator, computer, radio, car,
television, or watch and not consuming potatoes was associated with a low lifestyle score.
Factors associated with a high lifestyle score were a house with a flush toilet connected to a
sewage/septic tank, a separate room used as a kitchen and possessing assets such as a car, a

working computer and a refrigerator (Figure 2E).

Besides lifestyle score (PC1), we found that PC2 explained 4.1% of the variance (Figure S3A)
and showed the highest spread across individuals living in rural Mwanga (variance across PC2
scores 15.0% compared to 2.9%-7.0% in other sites) (Figure 2B). Similar to PC1, variables
related to assets were most important (cumulative contribution 66.0%), particularly those
related to livestock farming (Figure S3C). PC3 through PC5 explained 3.2-3.5% of the
variance (Figure S3A), generally showing a higher cumulative contribution of food variables

(40.3-49.4%) (Figure S3C) compared to PC1 and PC2.
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6 on housing) (N = 203 individuals). Data points are coloured based on location. Ellipses reflect the data spread at a
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level of confidence of 95%. Density plots show the distribution of PC1 (lifestyle score) (x-axis) and PC2 (y-axis)
score. B) Comparisons of PC1 (lifestyle score) and PC2 across locations. Global significance was assessed using
analysis of variance (ANOVA) and post hoc tests between locations were performed using Tukey HSD tests. Asterisks
denote statistical significance (NS, non-significant; *, p < 0.05; **, p < 0.01; *** p < 0.001, p < 0.0001). C)
Coordinates of each variable category (a.-t.; see E) across dimensions 1 and 2. Variable categories with similar profiles
are grouped together. D) Cumulative contributions (in percentage) of the variable categories by questionnaire data
category (i.e. housing, assets and food). E) Contributions (in percentage) of variable categories to PC1 or lifestyle
score. Bars are coloured based on whether a variable was associated with a high (> zero) or low (< zero) lifestyle

score.

Lifestyle score association tests reveal additional immune cell clusters not previously
linked to living location

We next assessed the association between lifestyle score and immune cell frequencies using
GLMMs, adjusting for age and sex. We first verified that lifestyle score in individuals with
matching mass cytometry data (n = 100), which was not significantly different from
individuals without mass cytometry data available (Figure S4).

Overall, 13 cell clusters were associated with lifestyle score, of which 8 clusters were not
identified by previous analyses where we assessed differences in immune profile between
locations (Figure 3A and 3B). Indeed, only one of these clusters (cluster 12; CD8+ naive)
showed a trend towards significance across locations (q = 0.055; Figure S5). In addition, we
confirmed 5 out of 9 clusters which were previously found to significantly differ across
locations, which were Th2 cells (cluster 51; GLMM; § = -0.66), two CD4+ Tem clusters that
were CTLA-4+ and/or CD161+ (cluster 79 and 46; B =-0.50 and -0.28, respectively), atypical
memory B cells (cluster 35; f = -0.37) (rural-living location and low lifestyle score) and a
CD8+ Tem cluster (cluster 11; f = 0.32) (urban-living location and high lifestyle score) (Figure
3C). The additional clusters identified using the lifestyle score were two CD4+ Tem cell
clusters that were associated with low lifestyle score: HLA-DR+ PD-1+ CD4+ Tem (cluster
43; p=-0.38) and regulatory T cells (cluster 75; B =-0.35). Furthermore, we identified a cluster
of plasmablasts (cluster 57; B = -0.49), which was enriched in those with low lifestyle score.
Last, an innate immune cell cluster of NK-cells (cluster 25; = -0.68) was also linked to a low

lifestyle score (Figure 3D).

In contrast, within the CD8+ T cell lineage, we identified three clusters of CD8+ T cells that
were associated with high lifestyle score. These included two CD8+ naive T cell clusters

(cluster 12 and 21; B=10.38 and 0.39, respectively) and a cluster of CD8+ Tem cells expressing
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CD161 and KLRGI (cluster 38; B =0.59). In addition, we found a positive association between
higher frequencies of ILC2 (cluster 60; B = 0.33) and a high lifestyle score (Figure 3D).
Sensitivity analyses, where we jointly modelled lifestyle score and location and compared the
model fit to simpler models (excluding either lifestyle score or location), indicated that indeed

using lifestyle score we can detect an additional group of clusters which we could not have

detected with location alone (Figure S6).
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Figure 3 | Lifestyle score is associated with specific immune cell clusters not identified by comparisons across
locations.

A) Venn diagram indicating the number of cell clusters that show differences in cell frequencies 1) across locations
[Figure 1E], 2) both across locations and lifestyle score [Figure 3C] and 3) only with lifestyle score [Figure 3D]. Eight
cell clusters were uniquely associated with lifestyle score and were not identified by comparisons across sampling
locations. B) Volcano plot showing differential frequency results. Results were derived from a GLMM with cell
frequency as outcome variable, lifestyle score, age (scaled) and sex as fixed effects and sample ID as a random effect.
Model estimates and corresponding Benjamini-Hochberg (BH)-adjusted p-values (-log¢(q-value)) were shown. Each
point represents a cluster, clusters with q-values<0.05 are coloured by association (high or low lifestyle score, or only
significantly associated with location). Shapes indicate whether lifestyle-associated clusters were also detected by
comparisons across sampling locations. Each point is labelled with a cluster identifier. C-D) Scatter plots showing the
association between lifestyle score and cell frequency for C) clusters significantly related to both location as well as
lifestyle score and D) clusters uniquely related to lifestyle score (i.e. clusters not identified as differentially abundant
between locations). Data points are coloured based on location. Lines represent linear fits to the data and are included
for visualization purposes only. Statistical significance was assessed using a linear mixed model including lifestyle
score, age (scaled) and sex as fixed effects and sample ID as random effect. Additionally, we ran univariable Spearman
correlation tests, p-values were corrected for multiple testing using the Benjamini-Hochberg method (g-value).
Asterisks indicate clusters that significantly differed between locations. Only cell clusters significant in GLMMs are

shown.

Machine learning modelling links a combined immune endotype with a lifestyle score
To investigate if a combination of immune cell clusters could be identified that together is
associated with a lifestyle score (‘immune endotype’), a machine learning model (elastic net)
was trained with lifestyle score as an outcome and cell cluster frequencies, age and sex as the
predictor variables. Model training and hyperparameter tuning were performed on 80% of the
data (n = 80 individuals; 2,000 bootstrapped datasets) and the model was tested on the
remaining 20% of the data (n = 20 individuals) (Figure 4A). The model was able to predict
44.1% and 29.6% of the variance in the training and test data, respectively. Using feature
importance analysis, we verified 11 of the 14 clusters that were previously associated with
living location and/or lifestyle score. Compared to previous analyses, the current model is a
multivariable model, estimating the contribution of each cell cluster to the prediction of
lifestyle score while adjusting for all other cluster cell frequencies. Therefore, using this
complementary approach, we identified three additional clusters, including CD8+ Tem cells
expressing CD161 and KLRG1 (cluster 37) associated with high lifestyles score, pDCs (cluster
58) and yd T-cells (cluster 22) related to low lifestyle score (Figure 4B).
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Taken together the elastic net model unveiled a fairly stable (Figure 4C) immune endotype
characterized by Th2 cells, regulatory T cells, atypical B memory cells, plasmablasts, NK,
CTLA-4+ CD161+ CD4+ Tem, KLRGI1+ yd T-cells and plasmacytoid dendritic cells (pDCs)
associated with a low lifestyle score. Inversely, the immune profile characterized by CD8+
naive T cells, CXCR3+ CD127+ CD8+ Tem, two CD8+ Tem CD161+ CD56dim KLRG1+
and ILC2 is associated with a high lifestyle score (Figure 4B).
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Figure 4 | Machine learning model based on cell cluster frequencies can partly reconstruct lifestyle score.

A) Performance of an elastic net machine learning model based on cell cluster frequencies (n = 80), age and sex trained
to predict lifestyle score. Observed compared to predicted lifestyle score based on training (80%) and test data (20%;
n =5 samples per location) are shown. Using cell frequency data, we can explain ~30% of the variance in lifestyle
scores (leave-out test data). B) Feature importance of all features that remained in the model after feature
shrinkage/regularization. Clusters previously associated with either location or lifestyle score (n = 17) are indicated
(*). Three clusters have not been associated with location nor lifestyle score in previous analyses. C) Feature stability
across bootstraps. All features from the models fitted with the optimized tuning parameters (penalty/mixture) were
extracted. The number of times a feature was selected across bootstrap samples serves as a score for stability of that

feature (maximum score = 2,000).
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Discussion

Here, we assessed the associations between location and/or lifestyle score and cellular immune
profiles measured by mass cytometry. We found that seventeen of 80 clusters were associated
with location or lifestyle score, with eight identifiable only when using lifestyle score,
illustrating the ability of lifestyle score to capture immune variation. Indeed, individuals living
in rural areas may exhibit an urban lifestyle and vice versa. This was further substantiated by
applying a machine learning model, which identified a combined immune signature associated

with lifestyle score.

We found an association between low lifestyle score and expression of activation markers such
as CD38, HLA-DR and CTLA-4 on CD4+ Tem cells, along with expansion of Th2 and an
increased frequency of regulatory T cells expressing CTLA-4. An increase in a specific
memory T cell subsets might indicate that fewer naive T cells are available for activation and
expansion upon encounter with a new antigen. Furthermore, expression of
activation/inhibitory markers on T cells can result in a reduced response to vaccines and
allergens but may also explain a lower prevalence of autoimmune diseases in LMICs[19, 24,
36]. Indeed, in rural Senegalese, immune profiles were enriched for HLA-DR-expressing
CD4+ T cells compared to urban-living individuals[2]. Previous studies comparing rural and
urban populations in Indonesia[1, 25] and Gabon[26, 37] found that immune profiles in rural-
living individuals, characterized by high frequencies of Th2 cells, T regulatory cells expressing
CTLA-4, HLA-DR, ICOS or CDI161 and atypical memory B cells, were strongly linked to
(chronic) helminth infections[1, 25, 26].

In contrast to these previous studies, none of our participants tested positive for malaria and
the prevalence of current helminth infections was very low. Therefore, we speculate that
increased activation of CD4+ Tem cells, along with expansion of Th2 and higher regulatory T
cell frequencies, may represent an immune footprint left behind by parasitic infection in the
past or even during childhood, as have been suggested by others [24, 38, 39]. Indeed, in 2005,
the prevalence of schistosomiasis among school-aged children in two different schools located
in one of the rural areas included in this study ranged between 34-70% with evidence for the
presence of other soil-transmitted infections in the same setting[40]. Thus, based on their age,
our study participants likely experienced a high burden of helminth infections during

childhood.
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Alternatively, housing conditions related to a low lifestyle score (e.g. sand or earth floors and
mud-wall houses) may predispose to different commensals or exposure to bacteria and fungi
and their metabolites[41], some of which have immunomodulatory properties. Poor housing
conditions also attract vectors like flies, lice, ticks, mites and mosquitoes, which may directly
activate the immune system through components present in their saliva, even in the absence of
disease transmission[31, 42]. Furthermore, rural-living individuals closely live with livestock
and as such are exposed to an additional reservoir of micro-organisms and (zoonotic)
pathogens[43]. Taken together, past (parasitic) infections or unmeasured variables, such as the
microbiome or exposure to vectors, are tightly linked to housing conditions. These factors may
drive lifestyle-related immune variation, resulting in enrichment of Th2, regulatory T cells and

activated T cells.

We found that individuals with low lifestyle score most of whom live in rural settings, display
a higher frequency of plasmablasts. Plasmablasts are differentiated B cells with a short
lifespan, which initiate early antibody responses during infections [44-46]. However, due to
their high metabolic activity, the rapid development of short-lived plasmablasts can
paradoxically impair humoral immunity by slowing down germinal centre formation. This, in
turn may impair responsiveness to vaccines and reduce risk of developing allergies and
autoimmunity by limiting the generation of long-lived plasma and memory B cells. Although
this has been shown in the context of malaria infection [47], which is not endemic in northern
Tanzania, other infectious diseases endemic in the area, may similarly induce high levels of

plasmablasts, including dengue[48].

Last, we identified an association between both naive CD8+ T cells and CD8+ Tem expressing
CD161 and high lifestyle score. Although we lack immune markers to confirm, CD161+CD8+
Tem encompasses mucosal-associated invariant T cells (MAIT) cells. MAIT cells are abundant
in blood and at mucosal sites and can activate dendritic cells that promote T follicular helper
cells to induce mucosal antigen-specific IgA[49]. Therefore, the presence of such cells in
urban-living individuals might indicate the propensity to react more strongly to antigens in a
vaccine, allergens, or autoantigens. This aligns with the results of an earlier study indicating
that healthy individuals residing in urban Moshi had a higher pro-inflammatory cytokine
response upon pathogen challenge in an ex vivo PBMC stimulation assay compared to those

living in rural areas[7, 35]. Regarding the naive CD8+ T cells being enriched in urban living,
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it has been noted that they allow new immune responses to be mounted to both infections and
vaccines[50]. Their higher frequency in urban areas is in line with previous studies in
Bangladeshi compared to (urban living) North American children within the first three years
of life[51] as well as in Malawian compared to UK adults[52]. Reduced numbers of naive
CD8+ T cells was associated with a higher burden of intestinal worms and viral infections (e.g.
CMYV) in children from Bangladesh compared to those from the USA[3] and higher burden of
CMYV among Malawian adults[52]. Similarly, we speculate that the association between high
life score and naive CD8+ T cells in our study is driven by reduced pathogen exposure in
people living in urban settings due to differences in daily activities and hygiene practices

compared to rural-living individuals.

The strengths of this study include the use of mass cytometry data in combination with the
availability of detailed information on housing, assets and food history. Condensing this
information into a single score allowed us to train a machine learning model to identify a
distinct group of cell clusters (termed ‘immune endotype’), which was strongly associated with
lifestyle score variation. Previous studies in HICs indicated that baseline (gene-expression-
based) immune endotypes exhibiting a strong pro-inflammatory profile are predictive of
improved vaccine responses in young adults across multiple vaccines[53]. In a similar fashion,
we speculate the immune endotypes identified in this study are linked to vaccine responses in
populations living in rural or urban Africa. As such, further phenotyping of immune endotypes
in varied populations, not limited to HIC, using protein-based single-cell modalities such as
mass cytometry, may deepen our understanding of variation in vaccine responses or reactivity
to allergens or autoantigens and their underlying mechanisms. At the same time, using lifestyle
scores opens opportunities for public health experts to screen individuals prone to, for example,
vaccine hypo-responsiveness, informing policymakers on preventative measures, such as
repeated vaccination. These interventions could target these high-risk individuals, potentially
improving vaccine efficacy and public health outcomes. Since those mounting reduced vaccine
responses are the very same individuals that also show lower responses to allergens and auto-
antigens, immune phenotyping may also unveil new ways to prevent non-communicable
diseases in urban-living individuals. Our study also has limitations. Among others, we did not
assess cellular immune function through stimulation assays. In addition, future studies
establishing direct links between low lifestyle score and responses to vaccines, allergens and

autoantigens would be of great value.
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In conclusion, in this study we comprehensively assessed the association between immune
profiles and location and lifestyle variables in a LMIC. Additional cell clusters were detected
through a more refined measurement of lifestyle. Follow-up studies should therefore focus on
the links between lifestyle score, immune signature and functional immune responses,
particularly in populations where vaccine responses are expected to be reduced and in
populations with the highest prevalence of diseases linked to exaggerated immune responses

to allergens and autoantigen.
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Figure S1 | Heatmap showing median marker expression for each cluster.

Clusters were based on SOM and hierarchical clustering. Each tile depicts the median expression of a given marker
(rows) for a specific cluster (columns). The heatmap is stratified based on cell lineage. The bottom heatmap indicates
which clusters were significantly associated with 1) location (Figure 1) and/or 2) lifestyle score (Figure 3).
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Figure S2 | Heatmap visualizing lifestyle questionnaire data.

N = 203 participants. Values represent the number of participants. Colours indicate the percentage of the total.
Comparisons between locations were performed using Fisher’s exact or chi-squared tests. Asterisks denote statistical
significance (NS, non-significant; *, p < 0.05; **, p <0.01; *** p<0.001, p<0.0001). See Table S3.
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Figure S3 | MCA principal component variance explained, contributions and cluster associations.

A)

Variance explained (% of total) for PC1-PCS5. B) Number of significant cell cluster associations with PC1
(lifestyle score) to PCS using modelling as described in the legend of Figure 3. C) Cumulative
contributions (in percentage) of the variable categories by questionnaire data category (i.e. housing, assets
and food, n = 38 questions and n = 118 variable categories) for PC1-PC5.

=
8
g
p=0_47- b ] =
T 05— %
: i
wr
L 001
I T
(]
E
= 0.5 o C
O : of
a L -
-1.0- + ]
o o)
/\@ /\@
& &

&
CyTOF data available

%

Figure S4 | Boxplots showing lifestyle score for individuals with and without mass cytometry immune profiles

(n =100). P-value determined using Student’s t-test.
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Figure S5 | Cell frequencies of clusters uniquely related to lifestyle score between locations.

Cell frequencies of clusters uniquely related to lifestyle score across rural and urban Tanzanian regions and urban
Europeans (Figure 3D). Boxplots represent the 25th and 75th percentiles (lower and upper boundaries of boxes,
respectively), the median (middle horizontal line) and measurements that fall within 1.5 times the interquartile range
(IQR; distance between 25th and 75th percentiles; whiskers). Significance of ‘location’ was assessed using analysis
of variance (ANOVA)-tests comparing a simple (age [scaled] and sex [fixed effects] and sample ID [random effect])
and a full model (simple model with location as fixed effect added). P-values were corrected for multiple testing using
the Benjamini-Hochberg method and referred to as q-values. Urban Europeans were included in the figure for visual
comparisons and were not included in statistical tests.
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Figure S6 | Sensitivity analysis comparing location- and/or lifestyle-based models.

For each of the clusters that was significant in either location- and/or lifestyle-based models (n = 17), we additionally
fitted a joint model, including both location and lifestyle (LS) (as well as age [scaled] and sex) as fixed effects and
sample ID as random effect (GLMM|s:10c). Statistical significance of the combined effect of location and lifestyle
score was assessed by comparing GLMM | to an ‘empty model’ where both location and lifestyle score were
removed using ANOVA (triangles indicate significant models). Akaike Information Criterion (AIC) (measure of model
fit while accounting for model complexity) was compared between the ‘combined model” (AICis:1c) and the same
model from which either lifestyle score (AIC,,) or location (AIC;s) was removed. Clusters were grouped according
to the statistics shown in Figure 1 and Figure 3, i.e. location significant, LS significant or LS + location significant
clusters. Dropping location or lifestyle score from the combined model for location significant and LS significant
clusters, respectively, worsened the combined model, indicating that location and lifestyle score were indeed related
to distinct immune cell clusters. For most of the clusters in the LS + location significant group, dropping either location
or lifestyle score did not change model performance, indicating that indeed here, location and lifestyle score may be
more interrelated and capture similar information.
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Table S1 | Baseline characteristics of the study population (N =203).

Variable Overall, N Urban Urban Rural Rural p-
=203 Arusha, N Moshi, N= Moshi, N= Mwanga, N value
=57 47 46 =53
Sex, female 100 (49%) 40 (70%) 26 (55%) 18 (39%) 16 (30%) <0.001
Age 25.0 (22.0, 25.0(22.0, 25.0 (23.0, 26.0(22.3, 24.0 (21.0, 0.165
29.5) 30.0) 27.0) 31.0) 27.0)
Age categories 0.259
18-25 116 (57%) 30 (53%) 30 (64%) 22 (48%) 34 (64%)
26-36 87 (43%) 27 (47%) 17 (36%) 24 (52%) 19 (36%)
BMI 22.6 (20.5, 22.2(19.9, 23.9(22.2, 22.4(20.7, 22.3(20.3, 0.183
25.6) 25.8) 26.1) 25.0) 25.3)
Missing 1 1 0 0 0
BMI 0.585
classification
<18.5 13 (6.4%) 6 (11%) 3 (6.4%) 3 (6.5%) 1 (1.9%)
18.5-24.9 130 (64%) 34 (61%) 27 (57%) 31 (67%) 38 (72%)
25.0-29.9 39 (19%) 10 (18%) 11 (23%) 10 (22%) 8 (15%)
>30 20 (9.9%) 6 (11%) 6 (13%) 2 (4.3%) 6 (11%)
Missing 1 1 0 0 0
Systolic blood 120 (110, 110 (109, 110 (103, 126 (118, 122 (120, <0.001
pressure (mmHg) 128) 120) 120) 130) 130)
Missing 1 1 0 0 0
Diastolic blood 73 (68, 80) 70 (67,79) 70 (64, 78) 78 (72, 81) 76 (70, 80) 0.001
pressure (mmHg)
Missing 1 1 0 0 0
Hemoglobin level 14.50 13.90 13.70 15.25 15.80 <0.001
g/dl (13.35, (13.10, (12.30, (14.03, (14.00,
16.40) 15.00) 15.30) 16.58) 17.00)
Random blood 5.00 (4.50, 4.80 (4.40, 5.15 (4.53, 5.50 (4.75, 4.70 (3.90, 0.002
sugar, mmol-1"* 5.80) 5.50) 5.85) 6.20) 5.50)
Missing 1 0 1 0 0
Highest level of <0.001
education
Primary 50 (25%) 4 (7.0%) 2 (4.3%) 27 (59%) 17 (32%)
Secondary 74 (36%) 18 (32%) 11 (23%) 19 (41%) 26 (49%)
College 40 (20%) 27 (47%) 6 (13%) 0 (0%) 7 (13%)
University 39 (19%) 8 (14%) 28 (60%) 0 (0%) 3 (5.7%)
Malaria 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Missing 1 0 1 0 0
Helminth infection® 8 (3.9%) 0 (0%) 0 (0%) 6 (13%) 2 (3.8%) 0.002
Schistosomiasis® 7 (3.5%) 2 (3.6%) 1(2.1%) 4 (8.9%) 0 (0%) 0.098
Missing 3 2 0 1 0
Insurance status 51 (25%) 24 (42%) 23 (50%) 0 (0%) 4 (7.5%) <0.001
Missing 1 0 1 0 0
Occupation <0.001
Farming 32 (16%) 2 (3.5%) 1(2.1%) 23 (50%) 6 (11%)
Elementary 60 (30%) 14 (25%) 7 (15%) 13 (28%) 26 (49%)
occupation
Student 47 (23%) 12 (21%) 23 (49%) 2 (4.3%) 10 (19%)
Employed/ 34 (17%) 15 (26%) 9 (19%) 4 (8.7%) 6 (11%)
business owner
Not employed 30 (15%) 14 (25%) 7 (15%) 4 (8.7%) 5(9.4%)
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N =203 participants. Values represent number of participants (percentage of total) and median (interquartile range
[IQRY]) for categorical and continuous variables, respectively. Comparisons between locations were performed using
Fisher’s exact, chi-squared and Mann—Whitney U-test for categorical and continuous variables, respectively. * Stool
was tested for helminths using the Kato-Katz method, testing for Schistosoma haematobium, Schistosoma mansoni,

Ascaris Lumbricoides, hookworm and Trichuris trichuria. ° Tested for schistosomiasis using the POC-CCA method,

testing for Schistosoma haematobium and Schistosoma mansoni.

Table S2 | Overview of identified cell clusters.
See spreadsheets available in this link Download: Download spreadsheet (16KB)
https://www.sciencedirect.com/science/article/pii/S2666354624001418.
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Table S3 | Descriptives of lifestyle score variables.

Characteristic

House floor
Hard floor (tile, cement, concrete,
wood)
Earth/sand
House walls
Cement, brick or stone
Cane, palm, trunks, bamboo
Mud (with poles)
Missing
House roof
Roof tiles
Metal sheets
Other
Water source
Tap water
Public standpipe
Protected tube well or bore hole
Spring
Pond-water or stream
Toilet facility
Flush to piped sewage or septic
tank
Pour flush latrine
Pit latrine
Cooking place
In a separate room used as
kitchen
In a separate building used as
kitchen
In a room used for living or
sleeping
Outdoors
Total number of milk cows
None
1-4
5-9
10+
Total number of other cattle
None
1-4
5-9
10+
Total number of horses
None
1-4
5-9
10+
Total number of goats
None
1-4
5-9
10+
Total number of sheep
None
1-4
59
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Urban
Arusha, N
=57

57 (100%)
0 (0%)

56 (98%)
0 (0%)
1(1.8%)
0

2 (3.5%)
55 (96%)
0 (0%)

51 (89%)
3 (5.3%)
3 (5.3%)
0 (0%)
0 (0%)

41 (12%)

14 (25%)
2 (3.5%)

32 (56%)
17 (30%)
8 (14%)
0 (0%)

51 (89%)
6 (11%)
0 (0%)

0 (0%)

56 (98%)
1. (1.8%)
0 (0%)
0 (0%)

57 (100%)
0 (0%)
0 (0%)
0 (0%)

53 (93%)
3(5.3%)
0 (0%)

1 (1.8%)

55 (96%)
0 (0%)
1 (1.8%)

Urban
Moshi, N =
47

47 (100%)
0 (0%)

46 (100%)
0 (0%)

0 (0%)

1

2 (4.3%)
45 (96%)
0 (0%)

45 (96%)
1(2.1%)
0 (0%)
1 (2.1%)
0 (0%)

42 (89%)

1 (2.1%)
4 (8.5%)

31 (66%)
9 (19%)
5(11%)
2 (4.3%)

43 (91%)
1(2.1%)
2 (4.3%)
1(2.1%)

46 (98%)
1 (2.1%)
0 (0%)
0 (0%)

47 (100%)
0 (0%)
0 (0%)
0 (0%)

39 (83%)
3 (6.4%)
2 (4.3%)
3 (6.4%)

46 (98%)
0 (0%)
1(2.1%)

Rural
Moshi, N =
53

44 (83%)
9 (17%)

42 (19%)
1(1.9%)
10 (19%)
0

0 (0%)
53 (100%)
0 (0%)

33 (62%)
12 (23%)
3(5.7%)
5 (9.4%)
0 (0%)

17 (32%)

18 (34%)
18 (34%)

14 (26%)
38 (72%)
1 (1.9%)
0 (0%)

40 (75%)
11 21%)
1 (1.9%)
1(1.9%)

45 (85%)
8 (15%)
0 (0%)

0 (0%)

53 (100%)
0 (0%)
0 (0%)
0 (0%)

29 (55%)
12 (23%)
11 21%)
1 (1.9%)

52 (98%)
1 (1.9%)
0 (0%)

Rural
Mwanga, N
=46

33 (72%)
13 (28%)

39 (85%)
0 (0%)

7 (15%)
0

0 (0%)
45 (98%)
1 (2.2%)

13 (28%)
10 (22%)
20 (43%)
0 (0%)

3 (6.5%)

3 (6.5%)

36 (78%)
7 (15%)

5 (11%)
37 (80%)
2 (4.3%)
2 (4.3%)

40 (87%)
2 (4.3%)
1 (2.2%)
3 (6.5%)

39 (85%)
2 (4.3%)
1 (2.2%)
4 (8.7%)

46 (100%)
0 (0%)
0 (0%)
0 (0%)

30 (65%)
7 (15%)
5(11%)
4 (8.7%)

38 (83%)
2 (4.3%)
3 (6.5%)

p-value

<0.001

<0.001

0.257

<0.001

<0.001

<0.001

0.012

<0.001

>0.999

<0.001

0.031
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10+
Total number of chicken/poultry
None
1-4
5-9
10+
Missing
Agricultural land (hectares)
None
1-4
5-9
10+
Missing
Connected to electricity
Missing
Working radio
Working television
Missing
Working computer
Missing
Working refrigerator
Working rechargeable battery or
generator
Missing
An iron (charcoal/electric)
Missing
Watch
Missing
Mobile phone
Bicycle
Missing
Motorcycle
Missing
Animal drawn cart
Missing
Car or truck
Boat with a motor
Missing
Ugali (stiff porridge)
(x/week)
0
1
2-4
>5
Missing
Plantain (x/week)
0
1
2-4
>5
Missing
Banana (x/week)
0
1
2-4
>5
Missing
Rice (*/week)
0
1
2-4
>5

1(1.8%)

33 (58%)
2 (3.5%)
6 (11%)

16 (28%)
0

39 (68%)
12 (21%)
4 (7.0%)
2 (3.5%)
0

54 (96%)
1

49 (86%)
51 (89%)
0

23 (40%)
0

34 (60%)
8 (15%)

2
51 (89%)
0
44 (77%)
0

55 (96%)
11 (19%)
0

21 (37%)
0

0 (0%)

1

19 (33%)
0 (0%)

0

0 (0%)

6 (11%)
26 (46%)
24 (43%)
1

19 (35%)
27 (49%)
5(9.1%)
4 (7.3%)
2

7 (13%)
27 (48%)
19 (34%)
3 (5.4%)
1

0 (0%)

4 (7.0%)
25 (44%)
28 (49%)

0 (0%)

18 (38%)
2 (4.3%)
5 (11%)
22 (47%)
0

31 (67%)
10 (22%)
2 (4.3%)
3 (6.5%)
1

46 (98%)
0
44 (94%)
40 (85%)
0
37 (79%)
0
38 (81%)
13 (28%)

0
42 (93%)
2

44 (98%)
2

47 (100%)
18 (38%)
0

17 (37%)
1

1 (2.2%)

1

30 (64%)
1 (2.2%)

1

2 (4.3%)
11 (23%)
23 (49%)
11 (23%)
0

13 (28%)
30 (64%)
1 (2.1%)
3 (6.4%)
0

4 (8.5%)
22 (47%)
18 (38%)
3 (6.4%)
0

0 (0%)
4 (8.5%)
17 (36%)
26 (55%)

0 (0%) 3 (6.5%)
<0.001
8 (15%) 19 (41%)
2 (3.8%) 5 (11%)
11 21%)  5(11%)
31 (60%) 17 37%)
1 0
0.439
38(72%) 30 (65%)
14 (26%) 12 (26%)
0 (0%) 4 (8.7%)
1 (1.9%) 0 (0%)
0 0
37(70%)  32(70%)  <0.001
0 0
42 (19%) 37 (80%) 0.185
22 (42%)  25(54%)  <0.001
1 0
4(7.7%) 0 (0%) <0.001
1 0
8 (15%) 2 (4.3%) <0.001
4(7.5%) 11 (24%) 0.035
0 1
38(72%)  20(43%)  <0.001
0 0
29 (55%) 14(30%)  <0.001
0 0
53(100%) 44 (96%) 0.283
4(7.7%) 28 (61%) <0.001
1 0
12(23%) 24 (52%) 0.026
0 0
0 (0%) 1 (2.2%) 0.353
0 0
6 (11%) 1 (2.2%) <0.001
0 (0%) 1 (2.2%) 0.353
1 1
<0.001
0 (0%) 0 (0%)
2 (3.8%) 1 (2.2%)
31 (58%) 13 (28%)
20 (38%) 32 (70%)
0 0
<0.001
16 (30%) 28 (62%)
25 (47%) 17 (38%)
10(19%) 0 (0%)
2 (3.8%) 0 (0%)
0 1
0.152
2 (3.8%) 10 (22%)
23(43%) 23 (50%)
20 (38%) 10 (22%)
8 (15%) 3 (6.5%)
0 0
<0.001
0 (0%) 0 (0%)
1936%)  7(15%)
28 (53%) 18 (39%)
6 (11%) 21 (46%)
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Potatoes (x/week) 0.005
0 1(1.8%) 0 (0%) 11 (21%) 3 (6.7%)
1 26 (46%) 21 (45%) 28 (53%) 26 (58%)
2-4 21 (37%) 19 (40%) 11 (21%) 13 (29%)
>5 9 (16%) 7 (15%) 3 (5.7%) 3 (6.7%)
Missing 0 0 0 1
Meat (x/week) 0.008
0 1(1.8%) 1(2.1%) 0 (0%) 2 (4.3%)
1 13 (23%) 5(11%) 16 (30%) 11 (24%)
2-4 29 (52%) 20 (43%) 31 (58%) 25 (54%)
>5 13 (23%) 21 (45%) 6 (11%) 8 (17%)
Missing 1 0 0 0
Fish (x/week) <0.001
0 0 (0%) 3 (6.4%) 2 (3.8%) 0 (0%)
1 25 (44%) 26 (55%) 24 (45%) 7 (15%)
2-4 23 (40%) 15 (32%) 26 (49%) 13 (28%)
>5 9 (16%) 3 (6.4%) 1 (1.9%) 26 (57%)
Beans/peas (x/week) 0.005
0 2 (3.5%) 1(2.1%) 1 (1.9%) 0 (0%)
1 11 (19%) 8 (17%) 20 (38%) 3 (6.5%)
2-4 28 (49%) 21 (45%) 20 (38%) 18 (39%)
>5 16 (28%) 17 (36%) 12 (23%) 25 (54%)
Green vegetables (x/week) 0.625
0 0 (0%) 1(2.1%) 1(1.9%) 1(2.2%)
1 4 (7.0%) 5 (11%) 1 (1.9%) 2 (4.3%)
2-4 15 (26%) 10 (21%) 15 (28%) 16 (35%)
>5 38 (67%) 31 (66%) 36 (68%) 27 (59%)
Fruits (X/week) 0.003
0 0 (0%) 1(2.1%) 1 (1.9%) 0 (0%)
1 9 (16%) 6 (13%) 21 (40%) 13 (28%)
2-4 15 (26%) 11 (23%) 16 (30%) 18 (39%)
>5 33 (58%) 29 (62%) 15 (28%) 15 (33%)
Locally brewed beer 0.011
(x/week)
0 47 (82%) 40 (85%) 33 (62%) 41 (89%)
1 6 (11%) 6 (13%) 7 (13%) 1(2.2%)
2-4 2 (3.5%) 1(2.1%) 4 (7.5%) 1(2.2%)
>5 2 (3.5%) 0 (0%) 9 (17%) 3 (6.5%)

N =203 participants. Values represent number of participants (percentage of total). Comparisons between locations
were performed using Fisher’s exact or chi-squared tests. All variables (n = 38 variables), after mode imputation,

were used to construct the lifestyle score. See Figure S2.
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Table S4 | Mass cytometry antibody panel.

Label Specificity Clone Supplier® Cat no Lot no End Working
dilution dilution

By CD45 HI30 Fluidigm  3089003B  2203476-08 200 100

151p CD278 C398.4A Biolegend 313502 22-02-2022 100 50
(ICOoS) MK

M4ipr CD196 GO034E3 Fluidigm  3141003A  2201583-11 100 50
(CCR6)

“2Nd  CD19 HIB19 Biolegend 302202 24-06-2020 500 250

SNd  CDI117 (c- 104D2 Biolegend 313223 28-01-2020 500 250
Kit)

“SNd  CD4 RPA-T4 Fluidigm  3145001B  2202012-07 500 250

46Nd  CD8a RPA-TS8 Fluidigm  3146001B  2108701-11 500 250

“ISm  CDI183 GO025H7 Biolegend 353733 03-01-2018 100 50
(CXCR3)

“¥Nd  CD14 MSE2 Biolegend 301802 30-05-2022 200 100

¥Sm  CD25 (IL- 2A3 Fluidigm  3149010B  2104640-07 500 250
2Ra)

5'Nd  CDI185 1252D4 Biolegend 356902 10-09-2019 500 250 <
(CXCR5) 8

gy CDI123 6H6 Fluidigm  3151001B  2112140-01 500 250 =

52Sm  TCRyd 11F2 Fluidigm  3152008B  2110581-20 200 100 "5

SEuw  CD7 CD7-6B7 Fluidigm  3153014B 0282010 200 100

Sm  CD163 GHI/61 Fluidigm  3154007B 3321818 100 50

55Gd  CD45RA HI100 Fluidigm 3155011B 0492003 200 100

15Gd  CD29%4 BM16 Biolegend 350102 30-05-2022 100 50
(CRTH2)

8Gd  CDI122 (IL- TU27 Biolegend 339002 01-02-2022 500 250
2Rb)

¥Thp  CD197 GO043H7 Biolegend 353237 11-09-2020 200 100
(CCR7)

16lpy  KLRGI REA261 Miltenyi 130-126- 01-02-2022 500 250
(MAFA) 458

2py  CDllc Buls Fluidigm  3162005B  2111081-25 500 250

14py  CDIl61 HP-3G10 Fluidigm  3164009B  2111083-25 200 100

1%Ho  CDI127 (IL- AO19D5 Biolegend 351302 24-09-2020 500 250
7Ra)

gy  CD27 0323 Biolegend 302839 11-09-2019 500 250

18gr  HLA-DR L243 Biolegend 307651 01-02-2022 200 100

"MEr  CD3 UCHT1 Fluidigm 3170001B 169104 200 100

7yb  CD28 CD28.2 Biolegend 302902 01-02-2022 200 100

2yb  CD38 HIT2 Fluidigm  3172007B  2108738-17 200 100

3Yb  CD45RO UCHL1 Biolegend 304239 11-09-2019 200 100

%Yb  CD335 9E2 Biolegend 331902 22-12-2020 500 250
(NKp46)

"SLu  CD279 (PD- EH 122H7  Fluidigm  3175008B  2104621-07 500 250
1)

76yb  CDS56 NCAMI16.2  Fluidigm  3176008B  2202917-03 500 250

209B1 CD16 3G8 Fluidigm  3209002B  2112429-15 200 100

*Fluidigm, South San Francisco, CA, USA; BioLegend, San Diego, CA, USA; Miltenyi Biotech, Bergisch Gladbach,
Germany. CCR, CC chemokine receptor. CD, cluster of differentiation. CRTH2, prostaglandin D2 receptor 2. CXCR,
CXC chemokine receptor. HLA-DR, human leukocyte antigen-D related. IL-2R, interleukin-2 receptor. IL2RB,
Interleukin-2 receptor subunit beta, IL2Ra, Interleukin-2 receptor subunit alpha, ICOS, inducible T-cell COStimulator,
IL-7Ro, interleukin-7 receptor alpha. KLRG1, killer cell lectin-like receptor subfamily G member 1. MAFA, mast cell
function-associated antigen. c-Kit, receptor tyrosine kinase, PD-1, programmed cell death protein 1. TCR, T cell

receptor.
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