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Introduction 

Vaccines represent a significant milestone in modern medicine, second only to clean water and 

sanitation for reducing morbidity and mortality from infectious diseases[1-3]. However, 

immune systems vary significantly across populations, resulting in variations in immune 

response to vaccines[4-8]. Understanding the factors associated with immune variability that 

led to differences in vaccine responses is critical to addressing poor vaccine efficacy in 

populations that need it the most. Leveraging advanced single-cell technologies such as Mass 

Cytometry (CyTOF)[9], conventional flow cytometry [10],16S rRNA Sequencing[11], other 

omics technologies[12-14], and advanced data analysis, researchers have been able to dissect 

the factors driving immune variability across different populations. These tools have also shed 

light on the underlying factors linked to variations in immune responses to vaccines as further 

demonstrated below. 

 
Genetics, sex and age  

Immune variability is partly driven by genetic background [4, 7, 15-18]. Human genetic factors 

such as HLA polymorphisms[19, 20], PRRs [21, 22], and cytokine production genes[21], are 

linked to vaccine response variability. For example, individuals with certain HLA haplotypes 

show higher immune responses to HIV [23] and malaria vaccines[24, 25]. Beyond genetics, 

sex differences significantly impacts immune variation [26, 27], with women typically 

generating higher antibody titers to most of the vaccines than men[28-30]. However, gender 

roles in low- and middle-income countries (LMICs) can confound these differences[33]. Age 

also modulates immune variability, especially at the extremes of life in infants[34], and the 

elderly due to less developed or reduced activity of the immune system[35-38]. This 

consequently causes poor vaccine responses in both age groups[39-42]. It is important to note 

that age is also influenced by extrinsic factors, including environmental influences, which play 

a role in immune-biological ageing. 

 

Geographical location and seasons 

Non-genetic factors often play a larger role, particularly in adaptive immunity, which is more 

susceptible to environmental influences[4, 7, 15-18]. Immune profiles vary between HICs and 

LMICs [43-45], and between rural and urban settings[44, 45]. Similarly, immunogenicity to 
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vaccines differs in similar patterns, for example, vaccine immunogenicity was higher in the 

UK and Switzerland compared to Senegal, Malawi, and Uganda[46, 47]. Higher 

immunogenicity to tetanus and influenza vaccines has been also observed in semi-urban 

compared to their rural counterparts[48, 49]. Evidence suggests that dry and wet seasons 

influence immunological differences[50], higher antibody levels have been observed for 

vaccines administered during wet seasons compared to dry seasons in some populations[51, 

52]. 

 

Infections/Pathogen factors 

Pathogens significantly shape immune system function, contributing to immune variation. For 

instance, cytomegalovirus (CMV), which infects over 90% of individuals in LMICs, is 

strongly linked to immune variation and impairs vaccine responses, such as those for Ebola[53-

55]. Similarly, Schistosoma infection skews the immune system [44, 56] and is associated with 

reducing vaccine efficacy for hepatitis B[57], BCG [58], TT[59], and measles vaccines[60]. 

Furthermore, malaria, endemic in many tropical regions, is linked to immune variation [61-

64] and is associated with lower antibody responses to vaccines like measles[65], tetanus[66], 

Haemophilus influenzae type B, Salmonella typhi, and Neisseria meningitidis[67]. 

Ectoparasites such as tsetse flies, kissing bugs, fleas, and ticks, can also drive immune 

variations through compounds they inject, though their impact on vaccines remains uncertain 

[68, 69]. Additionally, chronic infections such as HIV, tuberculosis, and hepatitis C virus 

(HCV) also contribute to immune variation and affect vaccine efficacy/immunogenicity [70]. 

 

Lifestyle and socioeconomic factors  

Lifestyle factors such as smoking, exercise, sleeping and alcohol consumption are linked to 

immune variation[71]. Cigarette smoking is known to affect both innate- and adaptive 

immunity[72], leading to increased leukocytes and reduced NK cell numbers, serum 

immunoglobulin levels and poor vaccine efficacy/immunogenicity[73-75]. While 

socioeconomic status (SES) is complex and intertwined with other factors, making it difficult 

to isolate, low SES is linked to higher exposure to pathogens, poorer nutrition, and limited 

access to healthcare, all of which contribute to immune variation[76]. This, in turn, has been 

linked to reduced vaccine efficacy as seen with vaccines like polio [77] and oral rotavirus [78, 

79]. Diet is vital for immune function, fueling both innate and adaptive systems[80, 81]. 

General introduction

9

C
ha

pt
er

 1



Malnutrition is linked to poor disease control and reduced vaccine responses[82]. Additionally, 

essential nutrients like iron and vitamin D also influence immune variation and vaccine 

efficacy based on their availability. 

 

Microbiome  

The microbiome significantly influences immune system variation through interactions with 

immune cells, affecting their development and regulatory functions[83]. Variations in 

microbiome composition are linked to differences in immune profiles and immune response 

to vaccines [84, 85]. Additionally, specific microbial populations can induce distinct immune 

profiles, underscoring the role of personalized microbiota in shaping immune variation[86, 

87]. Although not always the case, individuals with similar microbiomes, regardless of 

location, tend to have comparable vaccine responses, as seen in infants from Ghana, Pakistan, 

and the Netherlands[88, 89]. Certain bacteria, like Bifidobacterium longum, enhance vaccine 

responses to tetanus, BCG, and Hepatitis B[90], while others, like Proteobacteria, are 

negatively associated with vaccine efficacy[40]. Factors such as delivery method at birth, diet, 

infections, and medications also shape microbiomes[91]. 

 

Pre-existing immunity 

Pre-existing immunity can reduce vaccine efficacy. For instance, exposure to non-tuberculous 

mycobacteria (NTM) has been linked to lower BCG efficacy against Mycobacterium 

tuberculosis[92], similarly, exposure to Malaria has been associated with reduced or no change 

in antibody levels after administration of malaria vaccines[93]. In the case of yellow fever, 

prior vaccination can impair the boosting effect of the Yellow Fever vaccine[94], though some 

flaviviruses, such as dengue, benefit from prior exposure to related viruses [95]. Also, the 

natural infections or previous vaccinations with Ebola [96] or COVID-19[97, 98] vaccines 

lead to higher antibody production after subsequent vaccinations. Possibly this is due to 

differences in vaccine type and mechanism of action of vaccines[99]. 
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Vaccine-related factors  

Vaccine factors, such as differences in Yellow Fever vaccine strains (17D-204, 17D-213, and 

17DD) used by different countries, can cause variations in vaccine 

efficacy/immunogenicity[100]. Dosing and schedules vary and can be linked to variations in 

vaccine efficacy[101][103]. Additionally, adjuvants as seen with influenza[104] and hepatitis 

B vaccines[105].  

 

Baseline immune status  

Finally, baseline immune status is associated with variation in vaccine response. All host 

factors discussed above can potentially determine the status of baseline immune 

status(BIS)[106]. BIS has been linked to a diversity of vaccine responses [107-110]. Baseline 

immune status, both innate and adaptive level, if optimized before vaccination can help 

improve the vaccine responses.  

 

 

 

 

 

 

 

 

Figure 1: The factors associated with immune variation and differences in immune response to vaccines.  
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Potential mechanisms of pathogen-driven vaccine hypo-responsiveness  

To move beyond observed associations and understand why vaccines underperform in certain 

populations, it is essential to explore the underlying immunological mechanisms. While this 

section enumerates pathogen-associated variations in vaccine efficacy, the mechanistic 

underpinnings such as immune exhaustion (characterized by sustained expression of PD1, 

TIM3, CTLA4, and diminished effector function), chronic immune activation marked by 

CD38+HLA-DR+ cell profiles, skewed T helper cell polarization (favoring regulatory or TH2 

over TH1 responses), and structural alterations in lymphoid tissues are further dissected in 

Chapter 2. These immune dysregulations emerge in response to persistent exposure to 

environmental antigens, microbiome-derived metabolites, and chronic infections, particularly 

in low-resource settings. Chapter 2 builds on these observations by examining how these 

contexts reshape the immune landscape, ultimately compromising vaccine responsiveness 

through exhaustion, immunosenescence, regulatory dominance, and disrupted antigen 

presentation. 

The scope and aims of this thesis  

The overarching aim of this thesis is to investigate how factors such as the microbiota, 

environment, lifestyle, and baseline immune profiles contribute to variations in vaccine 

immunogenicity. Focusing on healthy Tanzanian adults, we explore the rural–urban immune 

divide using high-resolution immune profiling tools such as mass cytometry, conventional 

flow cytometry  and microbiome sequencing(16S rRNA sequencing). To achieve this, we 

conducted three distinct studies: two cross-sectional studies and one longitudinal cohort study. 

To ensure methodological rigor and minimize selection and measurement biases, all three 

studies employed standardized recruitment procedures, eligibility screening, and validated 

data collection tools. A school based approach, and community-based sensitization campaigns 

facilitated participant enrollment, and structured questionnaires adapted from previously 

validated studies used were administered by trained personnel. In the longitudinal study, 

participants were randomly assigned to vaccinated and control groups to reduce selection bias. 

In summary the first cross-sectional study focused on evaluating the prevalence and diagnostic 

accuracy of tools used for diagnosing schistosomiasis in a rural setting. This study involved 

over 500 school-aged children, providing critical insights into the prevalence and effectiveness 

of diagnostic methods in resource-limited environments. The second cross-sectional study 

aimed to compare the immunological profiles of individuals from rural and urban areas, while 
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identifying factors contributing to these variations. Participants were recruited from four 

distinct study sites, two rural and two urban, where blood, stool, and urine samples were 

collected. Detailed questionnaires were used to capture individual lifestyle factors such as 

socioeconomic status, diet, and environmental exposures, helping to elucidate the intrinsic and 

extrinsic drivers of immune variation.  

The third study, a longitudinal cohort study, followed individuals from two of the selected 

study sites one rural and one urban. A total of 185 participants were recruited, with an even 

distribution between rural and urban settings. To examine the factors influencing vaccine 

response, both groups were administered the yellow fever vaccine. Biological samples (blood, 

stool, urine) were collected at multiple time points before vaccination, and on days 2, 7, 14, 

28, 56, 90, and 178 post-vaccination. Additionally, detailed lifestyle information was gathered 

through questionnaires, capturing data on socio-economic factors, diet, and other relevant 

variables. Advanced single-cell technology, such as mass cytometry, helped in dissecting the 

immune cell profiles at high resolution, while 16S rRNA sequencing provided insights into 

microbiome composition. This integrative approach allowed for a comprehensive analysis of 

the intrinsic and extrinsic factors shaping immune variation and vaccine response in Tanzanian 

adults. 

 

Thesis outline 

This thesis is divided into seven chapters, each addressing key aspects of factors shaping 

immune variation and vaccine response. 

The first chapter serves as an introduction, we provide an overview of various factors 

influencing immune system variation and vaccine responses, setting the foundation for this 

thesis. 

 In the second chapter, we conduct a comprehensive review of immunological factors linked 

to geographical variations in vaccine response, delving into the mechanisms behind vaccine 

hypo-responsiveness and global disparities in vaccine efficacy. 
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In the third chapter, we present field and laboratory-based findings on the prevalence of 

Schistosomiasis among school-aged children in Mwanga District, Tanzania, providing insight 

into the prevalence of schistosomiasis. 

In the fourth chapter, we explore the impact of lifestyle factors on cellular immune profiles, 

focusing on differences between rural and urban populations in Tanzania, and analyze the 

factors associated with immune profile variations. 

In the fifth chapter, we examine the association between the innate immune state at baseline 

and vaccine responses, aiming to gain a deeper understanding of the immunological 

mechanisms underlying variations in vaccine efficacy. 

In the sixth chapter, we examine differences in gut microbiome composition between rural 

and urban settings and investigate the associations between gut microbiota and vaccine 

responses. We also compare vaccine responses between these populations. 

In the final chapter, we discuss the key findings, synthesize the results, and propose future 

research directions based on the implications of the study.  
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