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Chapter 1

Introduction

Vaccines represent a significant milestone in modern medicine, second only to clean water and
sanitation for reducing morbidity and mortality from infectious diseases[1-3]. However,
immune systems vary significantly across populations, resulting in variations in immune
response to vaccines[4-8]. Understanding the factors associated with immune variability that
led to differences in vaccine responses is critical to addressing poor vaccine efficacy in
populations that need it the most. Leveraging advanced single-cell technologies such as Mass
Cytometry (CyTOF)[9], conventional flow cytometry [10],16S rRNA Sequencing[11], other
omics technologies[12-14], and advanced data analysis, researchers have been able to dissect
the factors driving immune variability across different populations. These tools have also shed
light on the underlying factors linked to variations in immune responses to vaccines as further

demonstrated below.

Genetics, sex and age

Immune variability is partly driven by genetic background [4, 7, 15-18]. Human genetic factors
such as HLA polymorphisms[19, 20], PRRs [21, 22], and cytokine production genes[21], are
linked to vaccine response variability. For example, individuals with certain HLA haplotypes
show higher immune responses to HIV [23] and malaria vaccines[24, 25]. Beyond genetics,
sex differences significantly impacts immune variation [26, 27], with women typically
generating higher antibody titers to most of the vaccines than men[28-30]. However, gender
roles in low- and middle-income countries (LMICs) can confound these differences[33]. Age
also modulates immune variability, especially at the extremes of life in infants[34], and the
elderly due to less developed or reduced activity of the immune system[35-38]. This
consequently causes poor vaccine responses in both age groups[39-42]. It is important to note
that age is also influenced by extrinsic factors, including environmental influences, which play

arole in immune-biological ageing.

Geographical location and seasons

Non-genetic factors often play a larger role, particularly in adaptive immunity, which is more
susceptible to environmental influences[4, 7, 15-18]. Immune profiles vary between HICs and

LMICs [43-45], and between rural and urban settings[44, 45]. Similarly, immunogenicity to
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vaccines differs in similar patterns, for example, vaccine immunogenicity was higher in the
UK and Switzerland compared to Senegal, Malawi, and Uganda[46, 47]. Higher
immunogenicity to tetanus and influenza vaccines has been also observed in semi-urban
compared to their rural counterparts[48, 49]. Evidence suggests that dry and wet seasons
influence immunological differences[50], higher antibody levels have been observed for
vaccines administered during wet seasons compared to dry seasons in some populations[51,

52].

Infections/Pathogen factors

Pathogens significantly shape immune system function, contributing to immune variation. For
instance, cytomegalovirus (CMYV), which infects over 90% of individuals in LMICs, is
strongly linked to immune variation and impairs vaccine responses, such as those for Ebola[53-
55]. Similarly, Schistosoma infection skews the immune system [44, 56] and is associated with
reducing vaccine efficacy for hepatitis B[57], BCG [58], TT[59], and measles vaccines[60].
Furthermore, malaria, endemic in many tropical regions, is linked to immune variation [61-
64] and is associated with lower antibody responses to vaccines like measles[65], tetanus[66],
Haemophilus influenzae type B, Salmonella typhi, and Neisseria meningitidis[67].
Ectoparasites such as tsetse flies, kissing bugs, fleas, and ticks, can also drive immune
variations through compounds they inject, though their impact on vaccines remains uncertain
[68, 69]. Additionally, chronic infections such as HIV, tuberculosis, and hepatitis C virus

(HCV) also contribute to immune variation and affect vaccine efficacy/immunogenicity [70].

Lifestyle and socioeconomic factors

Lifestyle factors such as smoking, exercise, sleeping and alcohol consumption are linked to
immune variation[71]. Cigarette smoking is known to affect both innate- and adaptive
immunity[72], leading to increased leukocytes and reduced NK cell numbers, serum
immunoglobulin levels and poor vaccine efficacy/immunogenicity[73-75]. While
socioeconomic status (SES) is complex and intertwined with other factors, making it difficult
to isolate, low SES is linked to higher exposure to pathogens, poorer nutrition, and limited
access to healthcare, all of which contribute to immune variation[76]. This, in turn, has been
linked to reduced vaccine efficacy as seen with vaccines like polio [77] and oral rotavirus [78,

79]. Diet is vital for immune function, fueling both innate and adaptive systems[80, 81].

Chapter 1
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Malnutrition is linked to poor disease control and reduced vaccine responses[82]. Additionally,
essential nutrients like iron and vitamin D also influence immune variation and vaccine

efficacy based on their availability.

Microbiome

The microbiome significantly influences immune system variation through interactions with
immune cells, affecting their development and regulatory functions[83]. Variations in
microbiome composition are linked to differences in immune profiles and immune response
to vaccines [84, 85]. Additionally, specific microbial populations can induce distinct immune
profiles, underscoring the role of personalized microbiota in shaping immune variation[86,
87]. Although not always the case, individuals with similar microbiomes, regardless of
location, tend to have comparable vaccine responses, as seen in infants from Ghana, Pakistan,
and the Netherlands[88, 89]. Certain bacteria, like Bifidobacterium longum, enhance vaccine
responses to tetanus, BCG, and Hepatitis B[90], while others, like Proteobacteria, are
negatively associated with vaccine efficacy[40]. Factors such as delivery method at birth, diet,

infections, and medications also shape microbiomes[91].

Pre-existing immunity

Pre-existing immunity can reduce vaccine efficacy. For instance, exposure to non-tuberculous
mycobacteria (NTM) has been linked to lower BCG efficacy against Mycobacterium
tuberculosis[92], similarly, exposure to Malaria has been associated with reduced or no change
in antibody levels after administration of malaria vaccines[93]. In the case of yellow fever,
prior vaccination can impair the boosting effect of the Yellow Fever vaccine[94], though some
flaviviruses, such as dengue, benefit from prior exposure to related viruses [95]. Also, the
natural infections or previous vaccinations with Ebola [96] or COVID-19[97, 98] vaccines
lead to higher antibody production after subsequent vaccinations. Possibly this is due to

differences in vaccine type and mechanism of action of vaccines[99].
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Vaccine-related factors

Vaccine factors, such as differences in Yellow Fever vaccine strains (17D-204, 17D-213, and
17DD) used by different countries, can cause variations in  vaccine
efficacy/immunogenicity[ 100]. Dosing and schedules vary and can be linked to variations in
vaccine efficacy[101][103]. Additionally, adjuvants as seen with influenza[104] and hepatitis
B vaccines[105].

Baseline immune status

Finally, baseline immune status is associated with variation in vaccine response. All host
factors discussed above can potentially determine the status of baseline immune
status(BIS)[106]. BIS has been linked to a diversity of vaccine responses [107-110]. Baseline
immune status, both innate and adaptive level, if optimized before vaccination can help

improve the vaccine responses.
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Factors associated with immune variation and difference in immune response to vaccines

Figure 1: The factors associated with immune variation and differences in immune response to vaccines.
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Potential mechanisms of pathogen-driven vaccine hypo-responsiveness

To move beyond observed associations and understand why vaccines underperform in certain
populations, it is essential to explore the underlying immunological mechanisms. While this
section enumerates pathogen-associated variations in vaccine efficacy, the mechanistic
underpinnings such as immune exhaustion (characterized by sustained expression of PDI,
TIM3, CTLA4, and diminished effector function), chronic immune activation marked by
CD38+HLA-DR+ cell profiles, skewed T helper cell polarization (favoring regulatory or TH2
over THI responses), and structural alterations in lymphoid tissues are further dissected in
Chapter 2. These immune dysregulations emerge in response to persistent exposure to
environmental antigens, microbiome-derived metabolites, and chronic infections, particularly
in low-resource settings. Chapter 2 builds on these observations by examining how these
contexts reshape the immune landscape, ultimately compromising vaccine responsiveness
through exhaustion, immunosenescence, regulatory dominance, and disrupted antigen

presentation.
The scope and aims of this thesis

The overarching aim of this thesis is to investigate how factors such as the microbiota,
environment, lifestyle, and baseline immune profiles contribute to variations in vaccine
immunogenicity. Focusing on healthy Tanzanian adults, we explore the rural-urban immune
divide using high-resolution immune profiling tools such as mass cytometry, conventional
flow cytometry and microbiome sequencing(16S rRNA sequencing). To achieve this, we
conducted three distinct studies: two cross-sectional studies and one longitudinal cohort study.
To ensure methodological rigor and minimize selection and measurement biases, all three
studies employed standardized recruitment procedures, eligibility screening, and validated
data collection tools. A school based approach, and community-based sensitization campaigns
facilitated participant enrollment, and structured questionnaires adapted from previously
validated studies used were administered by trained personnel. In the longitudinal study,
participants were randomly assigned to vaccinated and control groups to reduce selection bias.
In summary the first cross-sectional study focused on evaluating the prevalence and diagnostic
accuracy of tools used for diagnosing schistosomiasis in a rural setting. This study involved
over 500 school-aged children, providing critical insights into the prevalence and effectiveness
of diagnostic methods in resource-limited environments. The second cross-sectional study

aimed to compare the immunological profiles of individuals from rural and urban areas, while
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identifying factors contributing to these variations. Participants were recruited from four
distinct study sites, two rural and two urban, where blood, stool, and urine samples were
collected. Detailed questionnaires were used to capture individual lifestyle factors such as
socioeconomic status, diet, and environmental exposures, helping to elucidate the intrinsic and

extrinsic drivers of immune variation.

The third study, a longitudinal cohort study, followed individuals from two of the selected
study sites one rural and one urban. A total of 185 participants were recruited, with an even
distribution between rural and urban settings. To examine the factors influencing vaccine
response, both groups were administered the yellow fever vaccine. Biological samples (blood,
stool, urine) were collected at multiple time points before vaccination, and on days 2, 7, 14,
28, 56, 90, and 178 post-vaccination. Additionally, detailed lifestyle information was gathered
through questionnaires, capturing data on socio-economic factors, diet, and other relevant
variables. Advanced single-cell technology, such as mass cytometry, helped in dissecting the
immune cell profiles at high resolution, while 16S rRNA sequencing provided insights into
microbiome composition. This integrative approach allowed for a comprehensive analysis of
the intrinsic and extrinsic factors shaping immune variation and vaccine response in Tanzanian

adults.

Thesis outline

This thesis is divided into seven chapters, each addressing key aspects of factors shaping

immune variation and vaccine response.

The first chapter serves as an introduction, we provide an overview of various factors
influencing immune system variation and vaccine responses, setting the foundation for this

thesis.

In the second chapter, we conduct a comprehensive review of immunological factors linked
to geographical variations in vaccine response, delving into the mechanisms behind vaccine

hypo-responsiveness and global disparities in vaccine efficacy.

13
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In the third chapter, we present field and laboratory-based findings on the prevalence of
Schistosomiasis among school-aged children in Mwanga District, Tanzania, providing insight

into the prevalence of schistosomiasis.

In the fourth chapter, we explore the impact of lifestyle factors on cellular immune profiles,
focusing on differences between rural and urban populations in Tanzania, and analyze the

factors associated with immune profile variations.

In the fifth chapter, we examine the association between the innate immune state at baseline
and vaccine responses, aiming to gain a deeper understanding of the immunological
mechanisms underlying variations in vaccine efficacy.
In the sixth chapter, we examine differences in gut microbiome composition between rural
and urban settings and investigate the associations between gut microbiota and vaccine

responses. We also compare vaccine responses between these populations.

In the final chapter, we discuss the key findings, synthesize the results, and propose future

research directions based on the implications of the study.
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