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Introduction 

Vaccines represent a significant milestone in modern medicine, second only to clean water and 

sanitation for reducing morbidity and mortality from infectious diseases[1-3]. However, 

immune systems vary significantly across populations, resulting in variations in immune 

response to vaccines[4-8]. Understanding the factors associated with immune variability that 

led to differences in vaccine responses is critical to addressing poor vaccine efficacy in 

populations that need it the most. Leveraging advanced single-cell technologies such as Mass 

Cytometry (CyTOF)[9], conventional flow cytometry [10],16S rRNA Sequencing[11], other 

omics technologies[12-14], and advanced data analysis, researchers have been able to dissect 

the factors driving immune variability across different populations. These tools have also shed 

light on the underlying factors linked to variations in immune responses to vaccines as further 

demonstrated below. 

 
Genetics, sex and age  

Immune variability is partly driven by genetic background [4, 7, 15-18]. Human genetic factors 

such as HLA polymorphisms[19, 20], PRRs [21, 22], and cytokine production genes[21], are 

linked to vaccine response variability. For example, individuals with certain HLA haplotypes 

show higher immune responses to HIV [23] and malaria vaccines[24, 25]. Beyond genetics, 

sex differences significantly impacts immune variation [26, 27], with women typically 

generating higher antibody titers to most of the vaccines than men[28-30]. However, gender 

roles in low- and middle-income countries (LMICs) can confound these differences[33]. Age 

also modulates immune variability, especially at the extremes of life in infants[34], and the 

elderly due to less developed or reduced activity of the immune system[35-38]. This 

consequently causes poor vaccine responses in both age groups[39-42]. It is important to note 

that age is also influenced by extrinsic factors, including environmental influences, which play 

a role in immune-biological ageing. 

 

Geographical location and seasons 

Non-genetic factors often play a larger role, particularly in adaptive immunity, which is more 

susceptible to environmental influences[4, 7, 15-18]. Immune profiles vary between HICs and 

LMICs [43-45], and between rural and urban settings[44, 45]. Similarly, immunogenicity to 

Chapter 1

8



 
 

vaccines differs in similar patterns, for example, vaccine immunogenicity was higher in the 

UK and Switzerland compared to Senegal, Malawi, and Uganda[46, 47]. Higher 

immunogenicity to tetanus and influenza vaccines has been also observed in semi-urban 

compared to their rural counterparts[48, 49]. Evidence suggests that dry and wet seasons 

influence immunological differences[50], higher antibody levels have been observed for 

vaccines administered during wet seasons compared to dry seasons in some populations[51, 

52]. 

 

Infections/Pathogen factors 

Pathogens significantly shape immune system function, contributing to immune variation. For 

instance, cytomegalovirus (CMV), which infects over 90% of individuals in LMICs, is 

strongly linked to immune variation and impairs vaccine responses, such as those for Ebola[53-

55]. Similarly, Schistosoma infection skews the immune system [44, 56] and is associated with 

reducing vaccine efficacy for hepatitis B[57], BCG [58], TT[59], and measles vaccines[60]. 

Furthermore, malaria, endemic in many tropical regions, is linked to immune variation [61-

64] and is associated with lower antibody responses to vaccines like measles[65], tetanus[66], 

Haemophilus influenzae type B, Salmonella typhi, and Neisseria meningitidis[67]. 

Ectoparasites such as tsetse flies, kissing bugs, fleas, and ticks, can also drive immune 

variations through compounds they inject, though their impact on vaccines remains uncertain 

[68, 69]. Additionally, chronic infections such as HIV, tuberculosis, and hepatitis C virus 

(HCV) also contribute to immune variation and affect vaccine efficacy/immunogenicity [70]. 

 

Lifestyle and socioeconomic factors  

Lifestyle factors such as smoking, exercise, sleeping and alcohol consumption are linked to 

immune variation[71]. Cigarette smoking is known to affect both innate- and adaptive 

immunity[72], leading to increased leukocytes and reduced NK cell numbers, serum 

immunoglobulin levels and poor vaccine efficacy/immunogenicity[73-75]. While 

socioeconomic status (SES) is complex and intertwined with other factors, making it difficult 

to isolate, low SES is linked to higher exposure to pathogens, poorer nutrition, and limited 

access to healthcare, all of which contribute to immune variation[76]. This, in turn, has been 

linked to reduced vaccine efficacy as seen with vaccines like polio [77] and oral rotavirus [78, 

79]. Diet is vital for immune function, fueling both innate and adaptive systems[80, 81]. 
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Malnutrition is linked to poor disease control and reduced vaccine responses[82]. Additionally, 

essential nutrients like iron and vitamin D also influence immune variation and vaccine 

efficacy based on their availability. 

 

Microbiome  

The microbiome significantly influences immune system variation through interactions with 

immune cells, affecting their development and regulatory functions[83]. Variations in 

microbiome composition are linked to differences in immune profiles and immune response 

to vaccines [84, 85]. Additionally, specific microbial populations can induce distinct immune 

profiles, underscoring the role of personalized microbiota in shaping immune variation[86, 

87]. Although not always the case, individuals with similar microbiomes, regardless of 

location, tend to have comparable vaccine responses, as seen in infants from Ghana, Pakistan, 

and the Netherlands[88, 89]. Certain bacteria, like Bifidobacterium longum, enhance vaccine 

responses to tetanus, BCG, and Hepatitis B[90], while others, like Proteobacteria, are 

negatively associated with vaccine efficacy[40]. Factors such as delivery method at birth, diet, 

infections, and medications also shape microbiomes[91]. 

 

Pre-existing immunity 

Pre-existing immunity can reduce vaccine efficacy. For instance, exposure to non-tuberculous 

mycobacteria (NTM) has been linked to lower BCG efficacy against Mycobacterium 

tuberculosis[92], similarly, exposure to Malaria has been associated with reduced or no change 

in antibody levels after administration of malaria vaccines[93]. In the case of yellow fever, 

prior vaccination can impair the boosting effect of the Yellow Fever vaccine[94], though some 

flaviviruses, such as dengue, benefit from prior exposure to related viruses [95]. Also, the 

natural infections or previous vaccinations with Ebola [96] or COVID-19[97, 98] vaccines 

lead to higher antibody production after subsequent vaccinations. Possibly this is due to 

differences in vaccine type and mechanism of action of vaccines[99]. 
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Vaccine-related factors  

Vaccine factors, such as differences in Yellow Fever vaccine strains (17D-204, 17D-213, and 

17DD) used by different countries, can cause variations in vaccine 

efficacy/immunogenicity[100]. Dosing and schedules vary and can be linked to variations in 

vaccine efficacy[101][103]. Additionally, adjuvants as seen with influenza[104] and hepatitis 

B vaccines[105].  

 

Baseline immune status  

Finally, baseline immune status is associated with variation in vaccine response. All host 

factors discussed above can potentially determine the status of baseline immune 

status(BIS)[106]. BIS has been linked to a diversity of vaccine responses [107-110]. Baseline 

immune status, both innate and adaptive level, if optimized before vaccination can help 

improve the vaccine responses.  

 

 

 

 

 

 

 

 

Figure 1: The factors associated with immune variation and differences in immune response to vaccines.  
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Potential mechanisms of pathogen-driven vaccine hypo-responsiveness  

To move beyond observed associations and understand why vaccines underperform in certain 

populations, it is essential to explore the underlying immunological mechanisms. While this 

section enumerates pathogen-associated variations in vaccine efficacy, the mechanistic 

underpinnings such as immune exhaustion (characterized by sustained expression of PD1, 

TIM3, CTLA4, and diminished effector function), chronic immune activation marked by 

CD38+HLA-DR+ cell profiles, skewed T helper cell polarization (favoring regulatory or TH2 

over TH1 responses), and structural alterations in lymphoid tissues are further dissected in 

Chapter 2. These immune dysregulations emerge in response to persistent exposure to 

environmental antigens, microbiome-derived metabolites, and chronic infections, particularly 

in low-resource settings. Chapter 2 builds on these observations by examining how these 

contexts reshape the immune landscape, ultimately compromising vaccine responsiveness 

through exhaustion, immunosenescence, regulatory dominance, and disrupted antigen 

presentation. 

The scope and aims of this thesis  

The overarching aim of this thesis is to investigate how factors such as the microbiota, 

environment, lifestyle, and baseline immune profiles contribute to variations in vaccine 

immunogenicity. Focusing on healthy Tanzanian adults, we explore the rural–urban immune 

divide using high-resolution immune profiling tools such as mass cytometry, conventional 

flow cytometry  and microbiome sequencing(16S rRNA sequencing). To achieve this, we 

conducted three distinct studies: two cross-sectional studies and one longitudinal cohort study. 

To ensure methodological rigor and minimize selection and measurement biases, all three 

studies employed standardized recruitment procedures, eligibility screening, and validated 

data collection tools. A school based approach, and community-based sensitization campaigns 

facilitated participant enrollment, and structured questionnaires adapted from previously 

validated studies used were administered by trained personnel. In the longitudinal study, 

participants were randomly assigned to vaccinated and control groups to reduce selection bias. 

In summary the first cross-sectional study focused on evaluating the prevalence and diagnostic 

accuracy of tools used for diagnosing schistosomiasis in a rural setting. This study involved 

over 500 school-aged children, providing critical insights into the prevalence and effectiveness 

of diagnostic methods in resource-limited environments. The second cross-sectional study 

aimed to compare the immunological profiles of individuals from rural and urban areas, while 
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identifying factors contributing to these variations. Participants were recruited from four 

distinct study sites, two rural and two urban, where blood, stool, and urine samples were 

collected. Detailed questionnaires were used to capture individual lifestyle factors such as 

socioeconomic status, diet, and environmental exposures, helping to elucidate the intrinsic and 

extrinsic drivers of immune variation.  

The third study, a longitudinal cohort study, followed individuals from two of the selected 

study sites one rural and one urban. A total of 185 participants were recruited, with an even 

distribution between rural and urban settings. To examine the factors influencing vaccine 

response, both groups were administered the yellow fever vaccine. Biological samples (blood, 

stool, urine) were collected at multiple time points before vaccination, and on days 2, 7, 14, 

28, 56, 90, and 178 post-vaccination. Additionally, detailed lifestyle information was gathered 

through questionnaires, capturing data on socio-economic factors, diet, and other relevant 

variables. Advanced single-cell technology, such as mass cytometry, helped in dissecting the 

immune cell profiles at high resolution, while 16S rRNA sequencing provided insights into 

microbiome composition. This integrative approach allowed for a comprehensive analysis of 

the intrinsic and extrinsic factors shaping immune variation and vaccine response in Tanzanian 

adults. 

 

Thesis outline 

This thesis is divided into seven chapters, each addressing key aspects of factors shaping 

immune variation and vaccine response. 

The first chapter serves as an introduction, we provide an overview of various factors 

influencing immune system variation and vaccine responses, setting the foundation for this 

thesis. 

 In the second chapter, we conduct a comprehensive review of immunological factors linked 

to geographical variations in vaccine response, delving into the mechanisms behind vaccine 

hypo-responsiveness and global disparities in vaccine efficacy. 
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In the third chapter, we present field and laboratory-based findings on the prevalence of 

Schistosomiasis among school-aged children in Mwanga District, Tanzania, providing insight 

into the prevalence of schistosomiasis. 

In the fourth chapter, we explore the impact of lifestyle factors on cellular immune profiles, 

focusing on differences between rural and urban populations in Tanzania, and analyze the 

factors associated with immune profile variations. 

In the fifth chapter, we examine the association between the innate immune state at baseline 

and vaccine responses, aiming to gain a deeper understanding of the immunological 

mechanisms underlying variations in vaccine efficacy. 

In the sixth chapter, we examine differences in gut microbiome composition between rural 

and urban settings and investigate the associations between gut microbiota and vaccine 

responses. We also compare vaccine responses between these populations. 

In the final chapter, we discuss the key findings, synthesize the results, and propose future 

research directions based on the implications of the study.  
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Abstract 

Vaccination is one of medicine’s greatest achievements; however, its full potential is 

hampered by considerable variation in efficacy across populations and geographical regions. 

For example, attenuated malaria vaccines in high-income countries confer almost 100% 

protection, whereas in low-income regions these same vaccines achieve only 20–50% 

protection. This trend is also observed for other vaccines, such as bacillus Calmette–Guérin 

(BCG), rotavirus and yellow fever vaccines, in terms of either immunogenicity or efficacy. 

Multiple environmental factors affect vaccine responses, including pathogen exposure, 

microbiota composition and dietary nutrients. However, there has been variable success with 

interventions that target these individual factors, highlighting the need for a better 

understanding of their downstream immunological mechanisms to develop new ways of 

modulating vaccine responses. Here, we review the immunological factors that underlie 

geographical variation in vaccine responses. Through the identification of causal pathways 

that link environmental influences to vaccine responsiveness, it might become possible to 

devise modulatory compounds that can complement vaccines for better outcomes in regions 

where they are needed most. 
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Introduction 

It is estimated that vaccines have prevented 37 million deaths in the past 20 years[1] , thereby 

having a substantial impact on global health. However, the full potential of some vaccines is 

hampered by their low and variable efficacy across populations and geographical areas 

(Box 1). This was first noted for bacillus Calmette–Guérin (BCG) vaccine efficacy, which 

was reported to vary with geographical latitude[2]. It is now increasingly recognized that 

several other vaccines induce variable responses in populations living in different 

geographical areas or of different socioeconomic status (Fig. 1). These include more recently 

developed vaccines such as rotavirus vaccines[3,4,5,6] and those under development, such 

as the whole-organism malaria radiation-attenuated Plasmodium falciparum sporozoite 

(PfSPZ) vaccine[7,8,9,10,11,12] and the PfSPZ–chemoprophylaxis attenuated 

vaccine (PfSPZ–CVac)[12,13,14], which show remarkable variation in efficacy. Variable 

vaccine immunogenicity has been observed when comparing low-income and/or middle-

income regions with high-income regions of the world not only for the aforementioned 

vaccines but also for vaccines that target yellow fever virus[15] and Ebola virus[16]. Lower 

performance of such vaccines, which we refer to as vaccine hyporesponsiveness, is seen not 

only in low- and middle-income countries, but also in poor rural areas compared with affluent 

urban regions within the same country[17,18]. It is estimated that worldwide 77 million 

children receiving BCG and 5 million receiving rotavirus vaccine are insufficiently protected 

against the diseases targeted by these vaccines[19]. 
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Fig. 1: Variations in vaccine immunogenicity or efficacy across populations. 
a, Vaccine immunogenicity varies between countries. The immunogenicity of: Ebola vaccine in the UK and Senegal 

was assessed by specific IgG antibodies[89]; bacillus Calmette–Guérin (BCG) vaccine in the UK and Malawi was 

assessed by the increase in interferon-γ (IFNγ) production in response to tuberculin purified protein derivative from 

pre-vaccination to post-vaccination[148]; yellow fever vaccine in Switzerland and Uganda was determined by the 

percentage of yellow fever antigen-specific tetramer-positive CD8+ T cells[15]; rotavirus vaccine in high- and low-

income countries was assessed by vaccine efficacy6; and irradiated malaria Plasmodium falciparum sporozoite 

(PfSPZ) vaccine in the USA[8] and Tanzania[11] was assessed by vaccine efficacy. b, The immunogenicity of 

vaccines varies between semi-urban and rural settings. In semi-urban and rural Gabon, tetanus vaccine was assessed 

by tetanus toxoid-stimulated IFNγ production by peripheral blood mononuclear cells (PBMCs)[149]; influenza 

vaccine was assessed by either influenza virus-stimulated IFNγ production by PBMCs or antibody titres through the 

haemagglutination inhibition assay[18]. EBOV, Ebola virus; ELISA, enzyme-linked immunosorbent assay; GP, 

envelope glycoprotein. 

 

Although genetic factors hard wire immune and vaccine responsiveness[20], twin studies have 

indicated that non-heritable factors contribute by more than 70% to shaping the immune 

response to vaccines[21,22]. Numerous environmental and non-heritable factors have been 

implicated in vaccine hyporesponsiveness, including nutritional status, the microbiome and 
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exposure to microorganisms and parasites[23,24,25,26,27,28] (Box 2). However, 

interventions to target some of these factors, such as micronutrient supplementation and/or 

probiotics[29] and anthelmintic treatment[30,31], have had variable success. This highlights 

that vaccine responses are modulated by multiple factors, which poses a challenge in applying 

public health measures to overcome vaccine hyporesponsiveness. Therefore, it is important to 

understand the mechanisms through which environmental factors drive vaccine 

hyporesponsiveness. Advances in technologies such as transcriptomics, metabolomics and 

epigenetic analyses at the single-cell level as well as high-dimensional cytometry allow us to 

study vaccine-specific immune responses in greater breadth and depth (Box 3), helping to 

identify new pathways and networks of immunological events that can be targeted for more 

effective vaccines[32,33]. 

In this Review, we discuss the immunological factors and proposed mechanisms that underlie 

variation in efficacy or immunogenicity of vaccines across populations from different 

geographical areas. We largely focus on vaccines against tuberculosis, rotavirus 

gastroenteritis, yellow fever and malaria, which are worldwide, highly prevalent and life-

threatening infectious diseases [Box 1]. 

 

Box 1 Vaccine hyporesponsiveness: efficacy and immunogenicity 

Vaccine performance can be studied through the assessment of immunogenicity, efficacy or 

effectiveness. Immunogenicity reveals the extent of an immune response evoked by a vaccine, 

whereas efficacy and effectiveness assess the beneficial effects of the vaccine in a trial setting 

or under real-life conditions, respectively. Immunogenicity, in contrast to efficacy and 

effectiveness, can be studied all over the world irrespective of whether the target disease is 

prevalent in a particular area and requires only a limited number of vaccinated individuals. 

However, with the increasing use of safe controlled human infection models in testing 

vaccines, it is now also possible to assess vaccine efficacy in different populations and 

geographical areas[11,150,151,152]. In such studies, healthy volunteers are given a vaccine or 

a placebo and thereafter are challenged with an infectious dose of the target pathogen that is 

known to establish infection with well-defined time to patency, burden and/or symptoms. 

Through this approach any protective effect of the administered vaccine against the given 

challenge can be assessed. Such models are increasingly complementing the traditional phase 

I or II studies in the field[150], although these cannot fully replace placebo-controlled trials. 

Differences in immunogenicity and efficacy of both licensed and newly developed vaccines 
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have become apparent between populations living in geographical areas that differ in 

environmental and socioeconomic conditions. 

Tuberculosis 

The bacillus Calmette–Guérin (BCG) vaccine is currently the only tuberculosis vaccine 

approved and licensed for use, and it consists of live attenuated Mycobacterium bovis[153]. 

This vaccine is recommended to be given at birth in 157 countries[154], and its protective 

efficacy has largely been attributed to CD4+ T cell-mediated immunity that can stimulate 

monocytes and/or macrophages to destroy intracellular mycobacteria; however, CD8+ T cell-

mediated cytotoxicity towards mycobacteria-infected cells has also been shown[155]. The 

efficacy of the BCG vaccine progressively increases further from the equator; with 23% 

efficacy at less than 20 degrees latitude, 32% at 20–40 degrees latitude and 69% at more than 

40 degrees latitude[156][Supplementary Table 1]. 

Rotavirus gastroenteritis 

The rotavirus vaccine developed to protect against severe diarrhoea is a live attenuated vaccine 

that is administered orally[157]. The first vaccine dose is given before 15 weeks of age, 

followed by one or two additional doses before 8 months of age[158]. It mediates protection 

mainly through the generation of antibodies to rotavirus[159]. The highest efficacy of Rotarix, 

one of the currently licensed rotavirus vaccines, over the first year of life, was seen in high-

income countries (>95%), whereas this was lower in middle-income countries (>80%) and 

low-income countries (<75%), with the lowest reported performance in Malawi 

(49.2%)[26,160]. This trend was confirmed in a meta-analysis[161] (Supplementary Table 2). 

The recently developed rotavirus RV3-BB vaccine showed a high cumulative serum immune 

response (76%) in neonates in Java, the most well-developed island of Indonesia[162]; 

however, in Malawi, the cumulative serum IgA seroconversion rate was 57% for neonates and 

59% for infants 4 weeks after vaccination[163], which resembles the seroconversion rate of 

Rotarix in Malawian infants (57%)[164]. 

Yellow fever 

The yellow fever vaccine is a live attenuated vaccine (17D strain) that can be given from the 

age of 9 months[165], and it protects by generating neutralizing antibodies[166]. Such live 

attenuated vaccines replicate and thus mimic a natural infection, which leads to a prolonged 

activation of multiple innate immune pathways and can induce appropriate humoral and 

cellular responses[167]. Although there were no vaccine efficacy studies performed, the 

vaccine is considered highly effective, and immunogenicity determined by seroconversion 
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rates after vaccination was statistically significantly higher in Europe and the USA (99%) than 

in Latin American countries, including Brazil and Colombia (94%)[168]. Furthermore, a study 

that compared 9-month-old children reported that the seroconversion rate was lower in rural 

Ghana (63.8%) than in urban Mali (91.0%)[44] (Supplementary Table 3). A comparison of 

immunological responses to yellow fever vaccines in Switzerland and Uganda noted that, 

although antibody titres reached protective levels in both cohorts, individuals from Switzerland 

had significantly higher titres of neutralizing antibodies than individuals from Uganda[15]. 

Malaria 

RTS,S is a subunit malaria vaccine adjuvanted with AS01, which is the only licensed malaria 

vaccine and is given in four doses to children from 5 months of age in areas of moderate and 

high malaria transmission[169]. It leads to antibody responses to circumsporozoite protein on 

sporozoites[170]. RTS,S/AS01 showed promising efficacy in malaria-naive adults[171]; 

however, variable efficacy was reported in a large phase III clinical trial in seven African 

countries, with an average 36% efficacy after three doses and booster regime in 

children aged 5–17 months[172] (Supplementary Table 4). Whole-sporozoite vaccines such as 

the live Plasmodium falciparum sporozoite (PfSPZ) vaccine are currently under development. 

This vaccine is ultimately to be given to children from 6 months of age[173], and it works 

through the induction of CD8+ T cell responses that target P. falciparum-infected 

hepatocytes146. In controlled human infection, in American malaria-naive subjects of various 

ethnic backgrounds, PfSPZ vaccine protected 12 of the 13 recipients (92.3%), whereas in a 

malaria-endemic area in Tanzania it protected only 4 of the 20 recipients (20%)[8,11]. 

Moreover, efficacy was shown to be much lower in a setting of natural infection in Mali [9,10]. 

Recent studies of PfSPZ–chemoprophylaxis attenuated vaccine (PfSPZ–CVac), which is a live 

chemo-attenuated P. falciparum vaccine, protected 100% of Dutch[174] and 

German[13] volunteers, whereas double the dose protected only 8 of the 13 recipients (55%) 

in Equatorial Guinea[12] [Supplementary Table 5]. 
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Box 2 Linking environmental factors to varied vaccine responses is complex 

Variations in vaccine response have been linked to exposure to and/or infections with viruses 

(for example, cytomegalovirus)[16], environmental mycobacteria[156] and parasites (such as 

helminths)[31,175]. However, confirming the impact of a single pathogen on vaccine 

responses is complicated; indeed, treatments that target a single type of pathogen, for example, 

anthelmintics, have had variable success[30,31]. This might be due to co-infections that are 

not removed by the given treatment or by incomplete reversal of the effect of past exposure by 

the treatment1[14,115,176]. 

High exposure to pathogens is often coincident with other key factors that influence vaccine 

responsiveness, such as malnutrition or altered gut microbiome composition. For example, 

helminth infections are often associated with poor nutritional status[177,178], as well as 

altered microbiome composition[179,180]. Poor nutritional status negatively impacts the 

immune system[181,182,183], and new insight into the links between the diet, the microbiome 

and the immune system indicate that even well-nourished individuals may have altered vaccine 

responses via mechanisms that involve food-derived metabolites that originate from dietary 

intake, such as flavonoids[133]. 

The association between microbiome composition and vaccine responses has been studied for 

several vaccines, including the rotavirus vaccine[24,36,184]. A recent study showed that 

several bacterial taxa (such as Streptococcus and Enterobacteriaceae) positively correlate with 

rotavirus seroconversion, whereas phage diversity, enterovirus B and multiple cosaviruses 

were negatively associated[184]. However, in a multicentre cohort study, microbiota diversity 

was negatively associated with neonatal rotavirus vaccine seroconversion in infants from India 

but not in infants from the UK, but no specific bacterial taxa could be linked to vaccine 

outcome in this case[36]. In addition to these associations, in one intervention study, antibiotics 

were administered before influenza vaccination, which reduced antibody induction in subjects 

with low pre-existing immunity to influenza virus and who had not been exposed to the 

influenza vaccine in the preceding 3 years. Antibiotic treatment had little effect if vaccinees 

had higher pre-vaccination antibodies and therefore showed lower seroconversion rates. This 

suggests that the microbiome has an adjuvant effect on the antibody response to vaccination 

in individuals with relatively little prior exposure to the antigen, but that immune memory 

caused by prior exposure to the antigen can withstand even the most severe perturbation of the 

microbiome[185]. Larger studies are needed to confirm these findings, and it remains to be 

determined whether such perturbation would affect other vaccine responses. Moreover, a 
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causal link showing an effect on vaccine responses by faecal microbiome 

transplantation[186] or introduction of a combination of microbiota species is lacking. 

Taken together, these studies highlight the fact that multiple factors have a role in modulating 

responses to vaccines and indicate how complex it might be to intervene at the level of 

environmental factors. Therefore, it is crucial to fully understand the downstream impact of 

environmental exposures on the immune system to identify immunological traits that are 

linked to, and could be targeted to improve, vaccine hyporesponsiveness. 

 

Box 3 High-dimensional methods to predict vaccine responses 

Differences in response to vaccination may in part be due to variations in baseline or early 

post-vaccination immune signatures. By combining high-dimensional immunological data 

with mathematical and computational analyses, it has been possible to define early signatures 

that predict vaccine immunogenicity, analysis that has mostly been done in cohorts in the USA. 

Studies of immune responses after vaccination showed that the generalizability of immune 

signatures was limited; predictive signatures for one particular vaccine could not predict 

outcomes for other vaccines[187,188]. A meta-analysis study sought to identify universal 

predictors of vaccine-induced responses with data from 820 adults in 28 studies against 13 

different vaccines. They found a consistent association between peak plasmablast levels and 

antibody induction after vaccination, but there was no other common signature that predicted 

a response to all vaccines; the responses depended on vaccine type and adjuvant type 

administered[189]. 

Similar analyses of baseline samples (before vaccination) have also been carried out to predict 

the outcome of vaccination[190] (see the table). The first study integrated microRNA and 

transcriptomic profiling to predict responses to a seasonal influenza vaccine in young adults, 

older individuals and individuals with diabetes across seasons and showed that immune 

signatures at baseline could distinguish between high and low vaccine responders[191]. 

Plasmablast and innate immunity modules at baseline predicted influenza-specific antibody 

levels at 1 month after vaccination, but not the longevity of the response. Baseline signatures 

of T and B cell gene modules correlated positively, whereas a monocyte inflammatory 

signature correlated negatively with antibody responses at 1 month, but showed little 

correlation with longevity of the response. This landmark study was followed by a combined 

effort examining six influenza vaccine cohorts that spanned distinct locations, ages and 
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seasons[192]. Nine genes and three gene modules were found to be associated with the 

magnitude of the antibody response in all study cohorts. Analysis in independent cohorts 

validated the baseline signatures predicting responses in young adults, but surprisingly, they 

had an inverse correlation in older adults[192]. 

Using a similar systems biology approach, Kotliarov and coworkers[193] identified a signature 

that predicts both influenza and yellow fever vaccine outcome. Ten genes involved in type I 

interferon responses were identified in immune cells at baseline that predicted antibody levels 

in three out of four influenza vaccine trials, as well as the antibody response to the yellow fever 

vaccine[193]. Another recent study analysed pre-vaccination transcriptome data of 820 adults 

from different vaccination studies[194]. Taking an unbiased approach, a common pre-

vaccination transcriptional signature with an overall predictive value of 62.3% for 13 different 

vaccines was identified, although the performance varied with different vaccines. The 

predictor consisted of an inflammatory gene signature downstream of nuclear factor-κB (NF-

κB) and interferon regulatory factor 7 in the innate immune cell compartment. Of interest, the 

inflammatory signature did not predict vaccine responses in elderly individuals, suggesting 

that the type of inflammation reflected by the signature in this age group has a different 

origin[194] (see the table). Given that the signalling networks regulated by NF-κB are 

enhanced in inflammageing[195], these results also suggest that the extent of the activation of 

these networks might be crucial: their activation favours vaccine responses, yet their 

overactivation hampers vaccine responses. 

Recent pioneering studies of large numbers of children and infants who were protected from 

clinical malaria following vaccination with RTS,S/AS01E (phase III trial) have shown that 

signatures that include NF-κB, Toll-like receptors and monocyte-related blood transcriptional 

modules, in baseline peripheral blood mononuclear cell cultures, depending on type of 

stimulation, can associate either positively[196] or negatively[197] with vaccination 

outcomes. Altogether, although systems biology approaches have proved valuable for 

identifying signatures that predict vaccine outcome, it is not clear how well these signatures 

hold up across populations from diverse geographical regions with different baseline 

inflammatory profiles and vaccine responses. Future studies should include a diversity of 

geographical locations and populations experiencing distinct environmental exposures to 

determine whether there are shared molecular pathways that underlie vaccine 

hyporesponsiveness. 
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Signature at baseline Predictive for Study populations 
(number) 

Refs. 

Positive correlation: B 
cell-enriched modules, T 
cell-enriched modules 
and T cell surface 
markers 
Negative correlation: 
monocyte-enriched 
module; cell cycle and 
its transcriptional 
regulation 

Influenza vaccine 
Signatures similar 
across young (<65 
years) and older (>65 
years) subjects and 
patients with type 2 
diabetes 

Discovery cohorts: 
influenza vaccination 
from 2007, 2008, 2009, 
2010 and 2011 
(n = 212), including 
older subjects (n = 54) 
and patients with type 2 
diabetes (n = 17) 
Validation cohorts: 
influenza vaccination 
from 2008 and 2009 
(n = 218) 

[191] 

Positive correlation (in 
subjects <35 years; 
negatively correlated in 
subjects >65 years): B 
cell receptor signalling, 
cell structure and 
motility, inflammatory 
responses and platelet 
activation 

Influenza vaccine Discovery cohorts: 
influenza vaccination 
from 2008, 2010, 2011 
and 2012 (n = 293), 
including young (<35 
years) and older (>65 
years) adults 
Validation cohorts: 
influenza vaccination 
from 2009 and 2010 
(n = 223) 

[192] 

    
Positive correlation: 
activated B cells 
(CD20+CD38++), cell 
cycle activation, type I 
interferon response 
Negative correlation: 
effector memory 
CD4+ T cells 

Influenza vaccine, 
yellow fever vaccine 
(YF-17D), systemic 
lupus erythematosus 
Independent of age 

Discovery cohort: 
influenza vaccination 
(n = 63) 
Validation cohorts: 
influenza vaccination 
from 2008, 2011 and 
2012 (n = 42); yellow 
fever vaccination from 
two trials (n = 22) 
Systemic lupus 
erythematosus cohort 
(n = 34) 

[193,198] 

    
Positive correlation: 
interferon-stimulated 
genes and pro-
inflammatory genes, 
such as innate immune 
sensors in monocytes 
and dendritic cells 
Negative correlation: 
transcriptomic markers 
of natural killer cells, T 

13 vaccines against 
influenza virus, yellow 
fever, HIV, Ebola 
virus, malaria, hepatitis 
A virus, hepatitis B 
virus, tuberculosis, 
smallpox, 
meningococcus, 
pneumococcus 

Training on the entire 
cohort (n = 820), 
transcriptional profiles 
revealed three 
endotypes: high, middle 
and low inflammatory; 
immune subsets and 
antibody responses 
were compared 

[194] 
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cells and B cells; target 
genes of pathways 
involved in cell 
proliferation and 
metabolism 
(E2F and MYC) 

between these 
endotypes 

    
Positive correlation: B 
cell activation 
Negative correlation: 
inflammation, effector 
memory CD4+ T cells 
(CD28) 

Hepatitis B virus 
vaccine 
Signature correlated 
with age 

First approach: entire 
cohort of adults aged 
25–83 years (n = 174) 
Second approach: 
training cohort 
(n = 116) and test 
cohort (n = 58) 

[48] 

 

Immunological factors linked to vaccine hyporesponsiveness 

Several immunological contexts may underlie vaccine hyporesponsiveness, including pre-

existing immunity, exuberant immune activation, skewed immune responses and restructured 

lymphoid tissue [Fig. 2], and may explain the varied efficacy of vaccines between different 

geographical areas and populations. 

 

 

Fig. 2: Factors and immunological mechanisms driving vaccine efficacy variation between populations. 

Immune reactivity to vaccines is shaped by previous exposure to several environmental and lifestyle factors. 
Immunological contexts that negatively affect vaccine responses include pre-existing immunity that results from 
exposure to similar or cross-reactive antigens, persistent challenges of the immune system that lead to naive T cell 
depletion, heightened immune activation, immune exhaustion and immunosenescence that impair the response to 
vaccines, restructuring of the lymphoid tissue and skewing of the immune system. This may be reflected in the 
different vaccine efficacies observed between different populations. Approaches to overcome vaccine 
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hyporesponsiveness could be envisaged through various immunological interventions. CMV, cytomegalovirus; 
KLRG1, killer cell lectin-like receptor subfamily G member 1; MADCAM1, mucosal address in cell adhesion 
molecule 1; Teff cell, effector T cell; TH1, T helper 1 cell; TH2, T helper 2 cell; TLR4, Toll-like receptor 4; Treg cell, 
regulatory T cell. 

 

Pre-existing immunity to similar or cross-reactive antigens 

One of the most intensively discussed effects of pre-exposure to a pathogen on performance 

of a vaccine that targets the pathogen has been the impact of environmental mycobacteria on 

BCG vaccine efficacy. The BCG vaccine consists of live attenuated Mycobacterium bovis, 

which mainly infects cattle but is closely related to the human pathogen Mycobacterium 

tuberculosis, and its protective effect can be affected by interference of cellular immune 

responses to non-tuberculous mycobacteria in the environment[2]. The mechanism that 

underlies this interference has been hypothesized to be via either a ‘blocking’ or ‘masking’ 

mechanism. According to the blocking hypothesis, pre-existing immune responses accelerate 

the clearance of BCG by preventing the multiplication of live attenuated bacteria required for 

the induction of an effective vaccine response. Essential to this hypothesis is that exposure to 

non-tuberculous mycobacteria induces no or little protection against tuberculosis. The masking 

hypothesis postulates that exposure to non-tuberculous mycobacteria provides significant 

protection against tuberculosis and thereby masks the effect of BCG, as vaccine efficacy is 

calculated by comparing disease incidence between vaccinated and unvaccinated 

individuals[34]. Although these two hypotheses are not mutually exclusive, a study by Barreto 

et al.[35] supports the notion that blocking rather than masking is the predominant mechanism 

behind the geographical variation in BCG vaccine efficacy. 

 

Interestingly, the blocking hypothesis might apply to the rotavirus vaccine, as children with 

higher titres of maternal anti-rotavirus IgG have a lower seroconversion rate after 

vaccination[36,37,38]. Similarly, the blocking effect of pre-exposure on vaccine responses 

seems to have a role in the reduced immunogenicity of the RTS,S malaria subunit vaccine. 

Analysis of data from a phase III trial of the RTS,S/AS01E vaccine showed that high levels of 

pre-vaccination antibodies to circumsporozoite epitopes were associated with low levels of 

vaccine-induced antibodies, particularly in infants[39]. The same principle might apply to the 

superior immunogenicity of a malaria vaccine candidate, the RH5.1 antigen, when boosting is 

delayed. The delayed boosting schedule corresponded to a time point when antibody levels 

from previous doses were declining[40]. Mechanistically, the binding of pre-existing 
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antibodies to vaccine antigens in the lymph nodes (LNs) could interfere with boosting of 

vaccine-induced antibody responses[41]. With respect to the efficacy of live attenuated malaria 

vaccines, which are associated with cellular immune responses that target liver-stage parasites, 

pre-exposure to malaria parasites might also have a role[28], but in a different way. Through 

repeated exposure to malaria parasites, both enhanced innate immunity through a type I 

interferon response and memory liver-resident CD8+ T cells can impede the entry of vaccine-

delivered sporozoites to the liver, thereby reducing the induction of protective immune 

responses[42,43]. However, pre-vaccination antibody titres against yellow fever virus do not 

seem to have a role in reduced responses to the yellow fever vaccine, as yellow fever 

vaccination resulted in higher seroconversion in Mali (91.0%) than in Ghana (63.5%) even 

though the pre-vaccination antibody titres were higher in Mali and, indeed, were not associated 

with post-vaccination antibody titres[44]. As the yellow fever vaccine induces an extremely 

robust protective response, and a fractional dose of this vaccine induces strong immunity[45], 

it is possible that the ability of the vaccine to self-replicate is not sufficiently hampered by the 

pre-existing neutralizing antibodies. A full understanding of pre-existing immunity could 

enable a better design in terms of selecting adjuvants, targeting of multiple epitopes or timing 

of boosting to help overcome any blocking effects on vaccine performance [Fig. 2]. 

 

Heightened inflammation and immune activation 

The activation status of the immune system before vaccination is of great importance to the 

quality of the induced immune response. In high-income countries, poor responses to some 

vaccines in elderly subjects have long been recognized and attributed to dysregulated immune 

interactions[46,47], raising the question of whether there are immunological commonalities 

with younger populations of low- and middle-income countries where vaccine 

hyporesponsiveness is seen. In elderly individuals, age-related alterations, such as lifelong 

exposure to immunological triggers and reduced ability of immune cell self-renewal, result in 

smaller naive T and B cell pools, which along with low-grade sterile inflammation, can 

underlie poor responses to vaccines[48,49]. In many areas of low- and middle-income 

countries, the continued challenge of the immune system, largely through exposure to 

microorganisms and parasites starting early in life, can lead to inflammation and a state of 

heightened activation of both innate and adaptive immune cells[50,51], clonal expansion and 

depletion of the naive lymphocyte pool[52], impairing the immune response to vaccination. 

Therefore, persistent inflammation and continuous reactivation of immune cells can result in 
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immune exhaustion and immunosenescence. These terms, which are often used 

indiscriminately, represent still not fully understood[53], distinct, yet overlapping, processes 

that mark an immune state that is detrimental to the outcome of vaccination. Detailed 

understanding of the characteristics of different states of the immune system associated with 

vaccine hyporesponsiveness might be helpful for designing interventions to improve vaccine 

performance. 

 

Gradual loss of naive T and B cells occurs naturally with ageing, but variation in their numbers 

has also been observed between various aged-matched populations from various geographical 

locations with different levels of exposure to infections[54,55,56]. For example, a study of 

age-matched children from Bangladesh and the USA found considerable similarity in immune 

profiles in the first year of life but at the age of 2–3 years, children from Bangladesh had higher 

numbers of differentiated CD4+ T cells and fewer monocytes and naive T cells compared with 

their counterparts from the USA. Importantly, T cell maturity in children from Bangladesh 

resembled that of adults in the USA[54]. These results are in line with studies showing that 

Malawian adolescents (aged 12–15 years) had a lower percentage of naive CD4+ and CD8+ T 

cells (CD45RO–CD62LhiCD11alow) than their UK counterparts. The percentage of naive T 

cells was negatively associated with cytomegalovirus seropositivity, which was more common 

in Malawian populations (100%) than in UK populations (36%)[55]. Also comparing immune 

profiles of individuals living in rural and urban areas of Senegal with those in the Netherlands 

showed a gradient in the proportion of naive T and B cells in young adults, with the lowest in 

rural Senegal, then urban Senegal followed by the Netherlands. This correlates with the highest 

exposure to microorganisms and parasites in rural Senegal and the lowest in the 

Netherlands[52]. Lower naive T cell numbers before vaccination have been associated with 

reduced responses to attenuated vaccinia virus in non-human primates[57], and with lower 

PfSPZ malaria vaccine-induced antibody responses in a study that compared adult vaccinees 

from Tanzania and the USA[11]. 

 

More recently, acute immune activation has been studied by examining responses following 

controlled malaria infection in healthy volunteers. It was shown that both Plasmodium 

vivax and P. falciparum infection can induce widespread immune activation, affecting 

myeloid cells and strongly activating 25% of T cells, which were marked by high CD38 

expression and low BCL-2 expression[58]. The high level of immune activation has been 
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observed in individuals with lifelong exposure to malaria[50] alongside lower malaria vaccine 

responses[11]. The impact of immune activation on vaccine responses has also been reported 

by Muyanja et al.[15], who studied the baseline immune profiles and vaccine responses to 

yellow fever vaccine in Uganda and Switzerland. The innate immune compartment was more 

activated in individuals from Uganda compared with individuals from Switzerland, as 

evidenced by an increased frequency of activated natural killer (NK) cells (CD16+HLA-DR+), 

recently activated CD16− NK cells (secreting interferon-γ (IFNγ) after restimulation ex vivo) 

and pro-inflammatory intermediate monocytes (CD14+CD16+), with higher expression of 

PDL1 and HLA-DR. In addition, in the adaptive arm, both the CD4+ and CD8+ T cell and B 

cell compartments exhibited more differentiated and memory profiles in individuals in Uganda 

compared with those in Switzerland. Upon yellow fever vaccination, the frequency of pro-

inflammatory monocytes and activated PD1+CD8+ T cells at baseline was negatively 

associated with the induction of neutralizing antibodies, linking the increased immune 

activation status to impaired vaccination outcome[15]. 

Needless to say, in children, the length of exposure to environmental factors is shorter and, 

therefore, the level of immune activation might be less, with little impact on vaccines that are 

given early in life. However, both rotavirus and cholera vaccines were less effective in children 

from Bangladesh[59,60]. In a separate study of children from Bangladesh, heightened immune 

activation was seen at 2 years of age but less so in the first year of life[54], when rotavirus 

vaccination is given. It would be helpful to assess immunological profiles of children and 

vaccination outcomes in the same cohorts to conclude with certainty whether immune 

activation has a role in rotavirus vaccine hyporesponsiveness. 

Data generated from immunophenotyping of blood samples from infants and children during 

the RTS,S malaria vaccine phase III trial was consistent with the idea that the immune system 

ages at different rates in different geographical areas; however, a more aged or mature immune 

system in children was associated with a stronger antibody response to RTS,S vaccine[61]. 

Such discrepancies in how the immune activation status in young children is associated with 

responses to distinct vaccines highlights the need for more studies: first, to disentangle immune 

maturation from heightened immune activation; second, to examine local rather than 

peripheral blood immune profiles, which might be more relevant, for example, for rotavirus 

vaccine efficacy; and third, to unravel whether different mechanisms underlie 

hyporesponsiveness to different vaccines. Therefore, a more in-depth understanding of the 
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mechanisms that underlie, rather than correlates of, vaccine hyporesponsiveness are needed. 

Given the data generated so far, it would be worth testing strategies to reduce inflammation or 

heightened immune activation in both elderly individuals and in those living in areas where 

exposure to microorganisms and parasites is high. This could, for a short period of time, before 

vaccination, either involve more general drugs, such as metformin, which not only reduces 

inflammation but also can boost memory formation[62], or more selective compounds that 

target specific immune pathways such as IL-1β or IL-6 [ref. 63], which have shown some 

beneficial effects in decreasing inflammation, to potentially reverse vaccine 

hyporesponsiveness[64] (Fig. 2). However, the benefits and risks associated with such trials 

will need to be carefully considered given the high infection burden in the environments in 

which vaccine hyporesponsiveness is often seen to avoid limiting immune control of 

infections. 

 

Immune exhaustion 

Repeated antigenic stimulation of lymphocytes and chronic activation can eventually lead to a 

state of dysfunction that is broadly termed exhaustion. Exhaustion in various lymphocyte 

populations, including NK cells, B cells and conventional CD4+ and CD8+ T cells, is generally 

associated with a progressive hierarchical loss of effector function and proliferative capacity, 

and the increased expression of inhibitory receptors, such as PD1, CTLA4, LAG3 and TIM3 

[refs. 53,65]. However, these inhibitory receptors are also transiently upregulated on functional 

effector T cells after T cell receptor stimulation. Therefore, recent studies of CD8+ T cells at 

various differentiation stages that identified TOX and eomesodermin[66,67] as specific 

transcription factors that regulate exhaustion might help to better define exhausted T cells[53]. 

Immune exhaustion can be caused by several persistent infections, including malaria and those 

caused by helminth parasites, M. tuberculosis, HIV and hepatitis B and C viruses, as well as 

by cancer[68,69,70,71,72]. 

Immune cell exhaustion occurring in the context of chronic hepatitis C virus infection was 

associated with lower antigen-specific T cell responses and seroconversion following hepatitis 

B vaccination compared with responses in healthy individuals or in individuals who 

spontaneously cleared hepatitis C virus infection[73]. Although many studies report the 

upregulation of inhibitory receptors during hepatitis C virus infection, not many studies have 

linked this upregulation to poor vaccine responses. Comparing hepatitis C virus-infected 

subjects after hepatitis B vaccination, TIM3 expression on monocytes[74] and PD1-expressing 

Geographical variation in vaccine responses

39

C
ha

pt
er

 2



CD4+ T cells[73] were increased in subjects that did not respond to the vaccine. Chronic 

exposure to malaria parasites is also associated with alterations in monocytes that might arise 

from epigenetic changes in precursor cells that reprogramme them towards a less inflammatory 

phenotype[75], as well as increased expression of PD1 by T cells, suggesting T cell 

exhaustion[76]. Antibody-mediated blockade of PD1 in in vitro assays improved hepatitis B 

virus antigen-specific responses[73,77] and malaria antigen-specific responses[78]. 

Amplification of antigen-specific T cell responses has been shown in vivo when PD1 

antagonists were combined with adenovirus-based or irradiated sporozoite-based malaria 

vaccines in mouse models[79.80]. 

The combination of immune checkpoint blockade, such as monoclonal antibodies to PD1, 

PDL1 or CTLA4, and therapeutic cancer vaccines is being studied extensively, but there are 

very few studies that combine immune checkpoint blockade with vaccines for infectious 

diseases[81]. However, vaccination against infectious diseases in patients with cancer treated 

with immune checkpoint blockade is generating some interesting insights. Recent work has 

shown that a subset of patients with cancer who are undergoing anti-PD1 antibody therapy and 

are vaccinated for influenza virus show higher increases in circulating CD4+ T follicular helper 

cells than patients not receiving anti-PD1 treatment[82]. Increases in plasmablasts and 

antibody titres indicated the potential of anti-PD1 antibody to enhance vaccine responses in 

humans in the context of immune exhaustion (Fig. 2). Although these findings highlight the 

potential of using anti-PD1 and other antibodies to immune checkpoints to overcome reduced 

vaccine efficacy, much more needs to be done to assess the risk of developing strong collateral 

autoimmune or autoinflammatory responses. Indeed, patients with cancer on anti-PD1 

treatment who showed heightened responses to vaccines also had a higher risk of developing 

immune-related adverse events[82]. Alternative approaches to overcome immune exhaustion, 

such as the use of Toll-like receptor (TLR) agonists, have been tested in patients on renal 

replacement therapy who show hyporesponsiveness to vaccines[83]. Indeed, the use of a 

hepatitis B vaccine with the TLR9 agonist CpG resulted in higher seroprotective antibody titres 

in patients with chronic kidney disease[84], indicating the ability to improve responses also in 

the context of immune exhaustion. 

Thus, more work is needed to better understand the exhaustion phenotype of T cells as well as 

of other cell types such as myeloid cells and the mechanisms that underlie its association with 

vaccine hyporesponsiveness. Studies of exhaustion in the context of cancer show that there are 

subtypes of exhausted T cells — TCF1- exhausted T cells and self-renewing TCF1+ stem-like 
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exhausted T cells[85] — with distinct responses to checkpoint inhibitors, yet very little is 

known about these subtypes during chronic exposure to microorganisms and parasites in 

humans. The same applies to the paucity of information on how repeated exposure to pathogen-

associated molecular patterns can alter antigen presentation and the control of responses to 

vaccination. Blocking the receptors and signalling pathways involved in exhaustion of 

different immune cells might lead to a degree of reversal and enhanced vaccine efficacy, 

although further studies are needed to assess the safety and benefits of such interventions. 

 

Immunosenescence 

Immunosenescence refers to the gradual dysregulation of the immune system as a consequence 

of ageing, potentially attributed to chronic low-grade antigenic stimulation. It encompasses 

reduced production of T cells in the thymus, as well as increased sterile, low-grade, chronic 

inflammation that can contribute to age-associated decline in vaccine efficacy[86]. Although 

immunosenescence and exhaustion both lead to reduced proliferative capacity and immune 

function, the pathways involved can be distinct, as reviewed elsewhere[87]. Senescence is 

characterized by shortening of telomeres, loss of telomerase activity and expression of CD57 

and killer cell lectin-like receptor subfamily G member 1 (KLRG1)[87, although CD57 and 

KLRG1 can also be co-expressed with exhaustion markers such as PD1 [ref. 88]. 

In addition to biological ageing, immunosenescence has been associated with latent viruses 

that might reactivate, such as cytomegalovirus. An immunization study of individuals in the 

UK and Senegal, involving priming with the chimpanzee adenovirus type 3-vectored Ebola 

Zaire vaccine (ChAd3-EBO-Z) and boosting with the modified vaccinia Ankara Ebola Zaire-

vectored (MVA-EBO-Z) vaccine, found a comparable induction of cytokine-producing T cells 

but a significantly decreased antibody response in individuals in Senegal compared with the 

UK[89]. Cytomegalovirus carriage, which was higher in Senegalese, was correlated with 

increased numbers of phenotypically senescent CD4+ and CD8+ T cells (CD57+KLRG1+), and 

the frequency of these cells was negatively associated with the vaccine-specific antibody 

responses[16]. It is important to note that other infections such as malaria can also contribute 

to the immunosenescent phenotype seen in Senegalese individuals[90]. The disconnection 

between comparable T cell cytokine responses yet poorer antibody responses in Senegalese 

compared with UK vaccinees might be related to the ability of senescent cells to produce 

cytokines, but this remains to be fully understood. 
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There is great interest in finding ways to reverse immunosenescence[91], with some progress 

in animal models using senolytics, such as dasatinib and quercetin, which promote the 

clearance of senescent cells[92]. Moreover, the control of telomere length in immunosenescent 

cells is an area that is intensely studied at the molecular level, but currently far from clinical 

application[93]. However, studies using a p38 mitogen-activated protein kinase inhibitor, 

losmapimod, in elderly subjects has shown promise in enhancing skin immune reactions to 

varicella zoster virus antigen[94]. In addition, targeting metabolic pathways, for example, 

using pan mTOR inhibition by AZD8055, has been shown to reverse senescence in skin 

fibroblasts[95] and, when the same pathway was targeted in elderly subjects before influenza 

vaccination, it improved vaccine-induced responses[96]. Yet, to what extent such molecular 

pathways are specific for senescent cells is largely unknown, as they also affect inflammation 

[Fig.2]. 

Therefore, a more precise characterization of overlapping and distinct pathways underlying 

exhaustion, senescence and heightened activation of the immune system in different human 

populations is needed to help understand the variation in vaccine responsiveness across 

geographical areas and design immunological interventions. Are we dealing with a vicious 

circle of inflammation and regulation that we should disrupt using anti-inflammatory 

interventions simultaneously with checkpoint blockade for better vaccine outcomes? 

 

Skewed immune responses 

The proper functioning of the immune system involves a tight balance between pro-

inflammatory and anti-inflammatory responses to allow the development of sufficiently strong 

immune responses to pathogens yet prevent overzealous inflammation and tissue 

damage[97,98]. In a simplified view, the immune system deals with a range of pathogens 

through the induction of various T helper cell subsets, such as TH1, TH2 and TH17 cells, 

alongside matched innate effector cells, that are suited for optimal control of a particular type 

of pathogen. These responses are kept in check by regulatory populations, such as regulatory 

T (Treg) cells, regulatory B cells[99] and anti-inflammatory monocytes or macrophages[100]. 

T cell responses can also be regulated cell-intrinsically through the upregulation of inhibitory 

receptors or other molecules that limit their inflammatory activity after activation. For 

example, in the setting of chronic helminth infection, the protective TH2 cell responses are 

compromised by a regulatory environment, generating a so-called ‘modified TH2 cell response’ 

associated with high IL-10 and IgG4 levels and low IgE levels, rather than the typical TH2 cell 

Chapter 2

42



 
 

response characterized by high IL-4, IL-5 and IgE[101]. Treg cells can be induced in response 

to inflammatory signals such as tumour necrosis factor (TNF)[102] but also by certain 

pathogens that express immunomodulatory molecules to allow their long-term survival within 

the host[98]. Parasitic helminth infections are highly prevalent in rural areas of low- and 

middle-income countries and have been shown to be associated with increased numbers of TH2 

cells, group 2 innate lymphoid cells (ILC2s), Treg cells and regulatory B cells[51], which can 

modulate responses to P. falciparum and M. tuberculosis[103,104]. A study of Treg cells in an 

area endemic for helminth infections showed that the suppressive activity of 

CD25hiFOXP3+ Treg cells was higher in helminth-infected children than uninfected children. 

In vitro T cell proliferative and IFNγ responses to BCG and malaria antigens increased 

following depletion of Treg cells only in samples from individuals infected with helminths and 

not in those from uninfected subjects[105]. A role for helminth-induced immune regulation 

was further substantiated by an anthelmintic trial showing that T cells expressing the inhibitory 

molecule CTLA4 decreased significantly following the reduction in helminth load, allowing 

the induction of stronger inflammatory TNF responses to malaria antigens[68]. Similarly, 

during blood-stage malaria infection, strong regulatory responses have been 

observed[106,107,108]; the number of Treg cells in the blood positively correlated with blood-

stage parasite burden and hampered the development of natural or vaccine-induced protection, 

as shown in a study that assessed the efficacy of the malaria vaccine candidate GMZ2 using 

controlled human malaria infection. Moreover, they showed that in addition to increased 

numbers of Treg cells, levels of HLA-G, which interacts with inhibitory receptors on T cells, B 

cells, NK cells and neutrophils, were negatively correlated with vaccine-specific antibody 

concentrations[108]. 

Given that a TH1-type and inflammatory status supports vaccine-induced IgG antibody 

responses, vaccination in the context of a TH2-type and regulatory environment would be 

expected to limit vaccine efficacy. A meta-analysis by Wait et al.[109] revealed poorer 

vaccination outcomes in populations infected by helminths at the time of vaccination. 

Moreover, the study found that chronic parasite infections, but not acute parasite infections, 

were associated with worse immunization outcomes[109]. Indeed, a study that examined the 

immune response to RTS,S vaccination showed that individuals with a TH1-type and pro-

inflammatory response to vaccination (such as production of IFNγ, IL-15 and GM-CSF) were 

protected from subsequent malaria infection, whereas those that produced the TH2 cytokine 

IL-5 were not110. Similarly, a negative association has been found between helminth 
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infections and protection induced by another malaria vaccine candidate, GMZ2 [ref. 111]. 

However, anthelmintic treatment has had variable effects on vaccine 

responses[18,30,31,112,113]. One potential explanation is that the anti-inflammatory immune 

status is not directly reverted upon helminth removal but can persist[114,115,116]. 

Altogether, larger studies are needed to delineate the relative contribution of TH2 and 

regulatory cells to vaccine hyporesponsiveness and to devise appropriate interventions. The 

blocking of TH2 cytokines and their downstream effects has shown promise in the field of 

asthma, where clinical trials using anti-IL-5 or anti-IL-4Rα show fewer acute exacerbations 

and reduced eosinophilia[117]. In the field of cancer, there has been significant interest in 

evaluating the clinical benefits of targeting Treg cells to improve TH1-type antitumour immune 

responses. Although success from early clinical trials using the human CD25-specific antibody 

daclizumab to deplete Treg cells has been modest, more recent approaches using modified 

antibodies with superior capacity to induce antibody-dependent cell cytotoxicity are more 

promising[118] [Fig. 2]. 

 

Alterations in the lymphoid tissue microenvironment 

The lymphoid tissues are essential for correct functioning of the immune system by providing 

organized structures that support interaction between cells and immune mediators. Structural 

changes in the LNs have been observed in older individuals, patients with HIV infection 

(including those on antiretroviral therapy) and healthy individuals from low-income countries 

(such as Uganda)[119,120,121]. With normal ageing, the number of LNs decreases, and there 

may be reductions in the area and volume of LN paracortical, cortex and medullary 

regions[122,123]. Furthermore, naive CD8+ T cell and CD20+ B cell numbers in LNs are 

reduced and there is a decrease in the relative and absolute dimensions of germinal centres, 

indicating a more static microarchitecture in older compared with younger individuals[124]. 

In the context of active HIV-1 replication, inflammation and tissue remodelling cause damage 

to the LN architecture, limiting its ability to support normal T cell numbers and thereby 

contributing to the reduced CD4+ T cell numbers observed in these patients[121]. Of interest, 

examination of LN sections of HIV-negative individuals from Uganda also showed LN 

architecture disruption, characterized by collagen formation in the parafollicular T cell zone, 

similar to that observed in HIV-positive individuals from the USA, suggesting that LN 

remodelling is not limited to HIV infection and may occur with other chronic endemic 

infections. In addition, the fibroblastic reticular cell network, an essential network for T cell–
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antigen interaction, was diminished in HIV-negative Ugandans compared with HIV-negative 

North Americans, as measured by desmin positivity. Moreover, the depleted fibroblastic 

reticular cell network was associated with a smaller CD4+ T cell population in the LNs. 

Vaccination of these HIV-negative Ugandans with the yellow fever vaccine YF-17D resulted 

in a blunted and short duration antibody response, and the more damage to the fibroblastic 

reticular cell network the smaller the peak antibody titre. Finally, confocal imaging revealed a 

lack of T follicular helper cells and diminished B cell follicle formation in HIV-negative 

Ugandans that was not rescued by vaccination[120]. 

 

The importance of an altered lymphoid tissue microenvironment to the development of 

immune and vaccine responses is also supported by a study that shows that changes to the LN 

microenvironment during ageing, rather than to the immune cells themselves, contribute to 

age-related immune dysfunction[124]. In aged mice, lymphoid tissue stromal cells expressing 

mucosal addressin cell adhesion molecule 1 (MADCAM1) failed to respond to immunization 

and support germinal centre responses. Targeting TLR4 by adjuvants improved the response 

to vaccination by MADCAM1+ stromal cells, which correlated with improved germinal centre 

responses[125] [Fig. 2]. Although alterations in the local microenvironment are receiving 

more attention lately, more in-depth studies are needed, also in humans, to reverse detrimental 

alterations in the microenvironment, which appears to be crucial for the vaccine response. 

 

Emerging areas for future of vaccinology 

A detailed understanding of the immune system is essential for the development of effective 

vaccines. However, much of our knowledge of immunology is based on studies carried out in 

laboratory animals and in humans living in affluent countries, such as the USA or Europe. As 

the environment has a tremendous impact on the immune system, the future of vaccinology 

will foremost need to include populations that are exposed to different environments. 

Parallels between the immunological changes during cancer and (chronic) infectious diseases 

might open new possibilities to overcome vaccine hyporesponsiveness. Both advanced cancers 

and chronic infections can induce persistent activation and inflammation, which can lead to T 

cell exhaustion, increased numbers of immunosuppressive and regulatory cell populations, as 

well as a shift from protective TH1-type immunity to TH2-type immunity or from pro-

inflammatory to anti-inflammatory innate effectors[72,126,127,128]. These changes can 

compromise the T cell functions necessary for adequate responses to pathogens and tumour 
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cells as well as to vaccines. Biologics that have been developed for cancer treatment are 

increasingly being studied in the context of chronic infectious diseases and may be worth 

exploring to increase vaccine efficacy in those with persistent pathogen 

exposure[79,80,129,130]. The potential role of the microbiome in enhancing vaccine 

responses is an emerging area of research, which has been the subject of a recent review[24]. 

Indeed, a growing number of metabolites derived from the microbiota[131] and 

foods[132] have been shown to modulate the immune system. A recent study that compared 

immune responses of residents of urban and rural Tanzania found more anti-inflammatory 

immune profiles in rural participants, which were associated with increased plasma levels of 

food-derived flavones[133]. Specifically, the plant-derived flavonoid apigenin showed anti-

inflammatory effects reflected in cytokine profiles assessed after cell stimulation[133]. 

Another study linked iron bioavailability to a reduced response to malaria vaccine (RTS,S) in 

African children. African children with anaemia had fewer isotype-switched memory B cells 

and plasmablasts than healthy children, and increasing iron bioavailability in vitro was able to 

restore the defective B cell proliferation and plasmablast differentiation[61]. With the 

development of highly sensitive metabolomic and proteomic platforms that better enable 

specific molecules in biofluids to be linked to immune responsiveness and investigation of the 

mechanisms that underlie their immunomodulatory effects, it is likely that additional pathways 

will be discovered as targets for improving vaccine responses. 

Previous exposures to microorganisms and parasites are also known to have lasting effects on 

the innate immune compartment — through processes termed trained immunity and 

tolerance[134]. Trained immunity refers to a baseline quiescent innate immune cell status that 

is modulated, at the epigenetic level, by previous exposures, to induce a faster and stronger 

response to a secondary exposure. Tolerance is the opposite phenomenon by which the 

response to a secondary exposure is lower than the first. Such a framework (elegantly reviewed 

recently[134] needs to be dissected precisely to examine whether and/or how it underpins 

heightened immune activation, exhaustion and senescence and their relation to vaccine 

hyporesponsiveness. 

Another important area of research that can shed light on the mechanisms that govern vaccine 

hyporesponsiveness and thereby help to identify actionable targets to overcome 

hyporesponsiveness is the field of immunometabolism. During the past decade it has become 

increasingly clear that a wide range of immune cell properties, including those leading to 

trained immunity and tolerance[135], exhaustion[136], senescence[137] and 
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hyperactivation[138], are associated with and dependent on engagement of particular 

metabolic programmes. Recent systems vaccinology work linked changes in metabolic 

pathways to shingles vaccine-induced T and B cell responses[139], and follow-up work in 

mice pinpointed the importance of sterol metabolism in B cells for antibody production 

following immunization[140]. These insights have sparked interest in exploring whether 

immune cell metabolism could be harnessed to direct immune responses for therapeutic gain. 

These developments are most advanced in the field of cancer, in which targeted modulation of 

metabolism of tumour-associated myeloid cells and adaptive immune cells has shown promise 

as a viable means to negate immune dysfunction commonly observed in tumour 

microenvironments[141,142]. Some of the metabolic principles that underpin immune 

dysfunction in a tumour context are likely to overlap with those that lead to vaccine 

hyporesponsiveness, and as such can inform the rational design of approaches that target 

immune cell metabolism to restore vaccine responsiveness. Efforts in this direction are still in 

their infancy. However, the clinical trial in which the mTOR inhibitor RAD001 was shown to 

ameliorate immunosenescence in elderly individuals and improve their response to influenza 

vaccination[143] provides the first evidence of therapeutic potential of modulation of immune 

cell metabolism in the context of vaccines. To further this field, a key first step will be to map 

in detail the metabolic characteristics of immune cell subsets in populations that are affected 

by poor vaccine responses, to identify therapeutic targets. 

Finally, studying compartments other than the peripheral blood seems to be the next frontier 

in vaccinology. A recent study by Wagar et al.[144] showed how cultures of tonsil tissue can 

provide a secondary lymphoid organ model to study adaptive immune responses to vaccines. 

In addition, by taking serial fine needle aspirates of a single LN germinal centre in response to 

a vaccine over time has provided unique insight into responses to mRNA-based vaccines[145]. 

Moreover, tissue-resident immune cells studied in malaria vaccine responses of non-human 

primates highlight that vaccine-induced CD8+ T cells or γδ T cells are present in much higher 

numbers in the liver, where infected hepatocytes are targeted, than can be appreciated from 

examining the peripheral blood[146,147]. Studies beyond the peripheral blood also provide 

the opportunity to examine the stromal cell compartment, which provides essential signals for 

immune function locally and might also be influenced by, for example, inflammation. 
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Conclusion 

Large-scale omics approaches that combine the study of transcriptomes and proteomes, such 

as through CITE-seq, show promise for determining baseline vaccine response predictors 

[Box 3], with further insight now being gained from also assessing epigenomes[33] and 

metabolomes[139]. Such approaches should also now be applied to cohorts from populations 

that reside in different environmental settings where exposure to microorganisms and 

parasites, nutrient and food intake, as well as lifestyle, differ greatly as do vaccine responses. 

We are hopeful that the dissection of immunological mechanisms that link environment to 

vaccine responsiveness will unravel pathways that are amenable to modification and identify 

immunomodulatory compounds that complement vaccines to provide effective vaccination 

programmes for those who need it most. 
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Abstract  
Schistosomiasis is a neglected tropical disease with significant health implications, particularly 

among children. A cross-sectional study was conducted among school-aged children (SAC) in 

Mwanga district, Tanzania, a region known to be co-endemic for S. haematobium and S. 

mansoni infection and where annual mass drug administration (MDA) has been conducted for 

20 years. In total, 576 SAC from 5 schools provided a urine sample for the detection of 

Schistosoma circulating anodic antigen using the upconverting particle-based lateral flow 

(UCP-LF CAA) test. Additionally, the potential of the point-of-care circulating cathodic 

antigen (POC-CCA) and microhaematuria dipstick test as field-applicable diagnostic 

alternatives for schistosomiasis were assessed and the prevalence outcome compared to UCP-

LF CAA. Risk factors associated with schistosomiasis was assessed based on UCP-LF CAA. 

The UCP-LF CAA test revealed an overall schistosomiasis prevalence of 20.3%, compared to 

65.3% based on a combination of POC-CCA and microhaematuria dipstick. No agreement was 

observed between the combined POC tests and UCP-LF CAA. Factors associated with 

schistosomiasis included age (5–10 years), involvement in fishing, farming, swimming 

activities and attending 2 of the 5 primary schools. Our findings suggest a significant progress 

in infection control in Mwanga district due to annual MDA, although not enough to interrupt 

transmission. Accurate diagnostics play a crucial role in monitoring intervention measures to 

effectively combat schistosomiasis. 
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Introduction 

Schistosomiasis is a major neglected tropical disease disproportionately affecting sub-Saharan 

African countries, with 90.0% of the global disease burden occurring in this region[1]. In 

Tanzania, the overall prevalence of schistosomiasis is 51.5% [2], and among school-aged 

children (SAC) it is reported to be 53.5%[3], reaching up to about 80.0% in the northwestern 

zone around Lake Victoria[4,5]. However, current prevalence estimates do not include the 

northern region of Tanzania, including Mwanga district in the Kilimanjaro region. This district 

has been known to be endemic for both Schistosoma haematobium and Schistosoma mansoni 

[6]. The population is at high risk of schistosomiasis possibly due to the presence of the 

intermediate snail host (Bulinus and Biomphalaria) as well as irrigation schemes, which are 

the conducive environment for the transmission the Schistosoma spp. The presence of the 

hydroelectric dam known as ‘Nyumba ya Mungu’ (Fig. 1) which ensures a constant water 

supply to the surrounding villages for irrigation contributes to the continues transmission of 

schistosomiasis in Mwanga district [5]. In Tanzania, including the Kilimanjaro region, mass 

drug administration (MDA) of praziquantel has been the major strategy to reduce the burden 

of schistosomiasis and has been organized annually since 2004 among SAC who are at the 

highest risk of infection[7]. The need to assess the success of MDA has been highlighted by 

the World Health Organization and tools to enhance strategic guidance for schistosomiasis 

control program in Tanzania have equally been reported[8,9]. The most recent data on the 

prevalence status of schistosomiasis among SAC in Mwanga district are from 2005, indicating 

a prevalence ranging from 33.5 to 70.0%[6]. Conventional microscopy is the reference method 

to diagnose schistosomiasis in endemic settings and involves the detection of Schistosoma 

eggs in feces or urine, depending on the species. However, microscopy requires experienced, 

well-trained technical personnel, is considered a time-consuming, laborious method and has 

limited sensitivity in low-intensity infection settings[10]. Furthermore, the availability and 

access to microscopy is challenging in many rural areas in Tanzania due to a lack of trained 

personnel and appropriate infrastructure. Low-cost, user-friendly rapid tests could overcome 

such issues, but the accuracy of available point-of-care (POC) tests to determine the prevalence 

of schistosomiasis in regions co-endemic for S. haematobium and S. mansoni needs to be 

determined. The POC test for detecting Schistosoma Circulating Cathodic Antigen (POC-

CCA) in urine has been endorsed by the WHO as an alternative to conventional microscopy, 

in particular for the diagnosis of S. mansoni infections[9]. It requires minimal training and has 

been validated in several field settings endemic for intestinal schistosomiasis[11, 12]. Another 
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easy-to-use rapid test is the microhaematuria dipstick test for the detection of haematuria, 

which has been shown to be strongly associated with urogenital schistosomiasis, although it is 

considered nonspecific[13]. A quantitative Up-Converting reporter Particle Lateral Flow 

(UCP-LF) test detecting the genus-specific Schistosoma Circulating Anodic Antigen (CAA) is 

a highly accurate test to detect active infection of all Schistosoma species in urine or serum[14]. 

[14]. Although it requires a more advanced laboratory infrastructure, it has been shown to be 

100% specific and can reach a sensitivity to detect single-worm infections[14,15,16]. This 

study aimed to determine the current prevalence of schistosomiasis in the Mwanga district 

Tanzania after approximately twenty years of MDA using the UCP-LF CAA test and to explore 

the potential of using the POC-CCA and microhaematuria dipstick as a combined POC test for 

diagnosing schistosomiasis in co-endemic settings in comparison to the laboratory-based UCP-

LF CAA test. Furthermore, we investigated Schistosoma infection risk factors and associated 

parameters. 

 

Materials and methods 

Ethical considerations 

Ethical approval for this study was obtained from Kilimanjaro Christian Medical University 

College (KCMUCo) research and ethical committee board (reference number: 2588). 

Administrative authorization was obtained from the district education officer and Mwanga 

District Medical Officer. Children were enrolled based on their availability, and those willing 

to participate were given a consent form to be signed by guardians and/or parents. Immediately 

after sample collection all children, including those who participated in our study, were 

provided with praziquantel under the yearly MDA program at school at the recommended dose 

in the presence of a local clinician. 

 

Study area and population 

The study was conducted in Mwanga district, one of the seven districts of Kilimanjaro region 

in Tanzania. Farming, fishing, sand collection, pebble making, soil bricking and animal 

keeping are the major economic activities. The study was conducted in five schools, of which 

two were selected based on a previous study[6]. MDA of praziquantel had occurred in these 

schools more than 6 months prior to our study. 

Chapter 3

66



 
 

 
Figure 1. Map of Mwanga district Tanzania showing water sources, five primary schools and irrigation schemes 

 

Sample/ data collection and processing 

Enrolled study participants provided consent forms from parents and were given sterile 

containers with unique identifiers to provide fresh urine samples. For each sample, POC-CCA 

and microhaematuria dipstick was done in the field for the diagnosis of S. mansoni and S. 

haematobium, respectively. An aliquot of 2 mL of urine was conserved (at −20°C) per 

participant and was shipped on ice to Leiden University Medical Center in the Netherlands for 

retrospective UCP-LF CAA analysis. Following urine sample collection, a face-to-face 

interview using a closed-ended questionnaire in English and Swahili was conducted. 

 

Field and laboratory analysis 

The POC-CCA test (batch 180817091) was obtained from Rapid Medical Diagnostics, South 

Africa (SA), and analysis was done according to the manufacturer's instructions. Briefly, two 

drops of urine were transferred into the sample window of the test cassette. The readout of the 

cassette was done in 20 minutes. Results were scored as negative, trace or positive. 

Microhaematuria dipstick (Mission Urinalysis, Lot no: URS8090018) test was performed by 
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placing the strip on a flat surface and a drop of urine applied to the reagent pad. Readouts were 

done in 1 minute as either negative or positive according to the manufacturer's instructions. 

The Schistosoma genus-specific UCP-LF CAA test was employed to detect CAA in urine 

samples and to confirm active infection with Schistosoma spp[14]. All urine samples were 

subjected to the UCAAhT417 wet format of the test. Briefly, 500 μL of each urine sample was 

mixed with 100 μL of 12% trichloroacetic acid, then incubated at room temperature for 5 

minutes and centrifuged. The clear supernatant was then concentrated to 20 μL using a 0.5 mL 

centrifugal device (Amicon Ultra-0.5, Millipore, Merck Chemicals B.V., Amsterdam, The 

Netherlands). The resulting concentrate was then applied to the lateral flow test strip. To 

quantify CAA concentrations and to validate the assay cutoff (0.6 pg mL−1 ), reference 

standards with known CAA-levels were included. A CAA concentration above 0.6 pg mL−1 

was considered positive. Infection intensity was categorized as low positive (>0.6–10 pg mL−1 

), moderate positive (>10–100 pg mL−1 ) and high positive (>100 pg mL−1 ). 

 

Statistical analysis 

The agreement between the combination of POC-CCA an microhaematuria dipstick 

(combined POC test) and UCP-LF CAA was performed using Kappa (K) statistics. For POC-

CCA, trace results were considered negative. Furthermore, the association between socio-

demographic characteristics and risk factors associated with Schistosoma infection, based on 

the UCP-LF CAA test, was performed using chi-square statistics, binary and multiple logistic 

regression analyses. Statistical analysis was performed using IBM Statistical Package for 

Social Sciences version 29 (SPSS Inc., Chicago, United States of America). For generation of 

plots, GraphPad Prism version 9.3.1 for Windows (GraphPad Software, San Diego, California 

USA, www.graphpad.com) was used. 

 

Results 

Socio-demographic characteristics 

A total of 576 children provided informed consent and subsequently provided a urine sample 

and were therefore included in the final analysis. In Table 1 socio-demographic characteristics 

of the study population are given. The children's age ranged from 5 to 16 years, with a mean 

age of 9.8 years (S . D .  2.4) and 50.7% were females. Furthermore, the majority of the 

children were in class range 1 to 3 (50.3%). Farming was the most common father's profession 
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(46.7%) followed by fishing (23.4%). The most common mother's profession was farming 

(44.8%), followed by small businesses (34.2%). 

 
Table 1. The prevalence of schistosomiasis across all five schools based on UCP-LF CAA, POC-CCA, 

microhaematuria dipstick and a combination of the POC-CCA and microhaematuria dipstick 

 
a Combination of POC-CCA and/or microheamaturia dipstick positive outcome. 

 

Prevalence and intensity of Schistosoma infection 

In total 117 (20.3%) of children were found to be CAA positive (Table 1). The highest 

proportion of positives was observed among children attending Kivulini primary school 

(33.3%), followed by Mkombozi primary school (29.2%). The lowest proportion was 12.5% 

and was found among school children at Kagongo primary school. The majority of moderate 

to high intensity infections based on CAA-levels was observed in the schools in Kivulini and 

Mkombozi (Fig. 2a). Furthermore, SAC within the age category 5–10 years were found to be 

more often CAA positive than those aged 11–16 years (Fig. 2b). The outcome of the point-of-

care tests are also summarized in Table 1. Based on POC-CCA and microhaematuria dipstick 

tests the prevalence of schistosomiasis were, 54.5% and 25.7% respectively. Assuming that 

the combination of two tests will give more clearer prevalence, combining POC-CCA and 

microhaematuria dipstick, the prevalence was 65.3%. 
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Figure 2. Prevalence and intensity of Schistosoma infection based on UCP-LF CAA amongst (A), five selected 

schools (B) the age categories. 

 

The agreement between the combination of POC-CCA and microhaematuria dipstick 
and the reference test UCP-LF CAA 

The combination of POC-CCA and microhaematuria dipstick showed no agreement with the 

UCP-LF CAA test (Table 2). Furthermore the P value indicates that this lack of agreement is 

not statistically significant, suggesting that the disagreement between tests is likely due to 

chance at significance level of 0.05. Analysis of the individual POC-CCA and 

microhaematuria dipstick tests also showed no agreement with the UCP-LF CAA test. 

 
Table 2. The level of agreement between point-of-care circulating cathodic antigen (POC-CCA) test, microhaematuria 

dipstick and upconverting particle lateral flow circulating anodic antigen (UCP-LF CAA) urine test by Cohen's kappa 

coefficient in 576 school-aged children from Mwanga Tanzania 

 
 

Risk factors associated with schistosomiasis 

Using multivariate logistic regression analysis (adjusted odd ratio), the potential risk factors 

associated with Schistosoma infection, based on the presence of CAA, showed that children in 

class level 1–3 had two times higher odds of having schistosomiasis than children in higher 

classes. Children involved in farming and swimming activities had respectively 5.6 and 3.6 
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odds of being infected than those who did not farm nor swim. Furthermore, children attending 

Kileo, Kivulini, Mkombozi and Mnoa primary schools had 2.2, 2.6, 2.4 and 2.7 times higher 

odds of CAA positive results respectively, when compared to those attending Kagongo 

primary school. More details can be found in Supplementary Table 1. 

 

Discussion 

Using a highly accurate diagnostic approach (UCP-LF CAA), this study indicated that after 

nearly two decades of MDA schistosomiasis remains highly prevalent (20%) among school-

aged children in Mwanga district, Tanzania. Although POC-CCA and microhaematuria 

dipstick test showed an even higher prevalence than the UCP-LF CAA test, no agreement was 

found between these tests and the UCP-LF CAA results nor any association was observed 

between these tests and known risk factors for schistosomiasis, highlighting the limitation of 

these currently available rapid diagnostics tests (POC-CCA and microhaematuria) in 

accurately determining the true prevalence in this specific setting that is known to be co-

endemic for S. mansoni and S. haematobium. 

Different prevalence’s have been observed throughout Tanzania[17,18,19,20,21]. As 

commonly known as well as shown in the current study, measurement of prevalence highly 

depends on the diagnostic method used. Since we have used a highly accurate diagnostic 

method in our study, i.e. the UCP-LF CAA test, it is difficult to directly compare our results 

to previously published results based on microscopy and/or POC-CCA as these methods have 

limited sensitivity/ specificity. Our data confirm regional variation in the burden of 

schistosomiasis in Mwanga district, which would, extrapolated to Tanzania as a whole, argue 

for a more focally oriented schistosomiasis control approach. A significant difference in 

infection rates among different age groups was identified. Younger children (5–10 years) 

exhibited a higher prevalence of schistosomiasis than the older age group (11–16 years), 

indicating early exposure to the infection[20] . The possible reason for older children having 

low prevalence is through acquired immunity due repeated infections as indicated by other 

previous studies for example possible presence of IgE antibodies[22, 23]. A significant 

association was found between schistosomiasis and children who swim in water bodies, which 

may be attributed to playful behavioural activities common among children[24]. The children 

involved in swimming activities had 3.6 times more risk of being infected, in line with recent 

systematic review demonstrated by Reitzug and colleagues[25]. Children’s involvement in 

farming was found to be associated with an increased risk of being infected with 
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schistosomiasis. Finally, children attending Kileo, Kivulini, Mkombozi and Mnoa primary 

schools were identified to have higher rates of Schistosoma infection compared to those 

attending Kagongo primary school. These findings are likely due to the proximity of irrigation 

schemes/rivers to these schools, which are perceived as safer water sources for young children 

and so most likely to visit compared to larger water bodies like the dams located closer to 

Kagongo, where parents have concerns about the risk of children drowning and so cautioned 

not to go there for water. 

Despite of providing crucial updates on the prevalence of schistosomiasis among school 

children in the area, the study has several limitations. Firstly, the laboratory UCP-LF CAA test 

detects all Schistosoma species, but it does not provide any species-specific information[14]. 

In control settings, where species information would be relevant, other measures can provide 

this, e.g. determining the presence of specific snail species, or performing egg microscopy or 

species-specific PCR. For treatment, species information as such is not needed, and CAA has 

been demonstrated to be an excellent marker for monitoring treatment efficacy[26,16,27,28]. 

Although POC-CCA and microhaematuria rapid tests are user-friendly, kappa statistics 

revealed a poor agreement between these tests and the UCP-LF CAA. It was expected that the 

combined positivity rates of POC-CCA and microhaematuria dipstick test would reflect the 

UCP-LF CAA results, however this was not the case (Table 1). The poor agreement may be 

due to production batch differences, sexually transmitted infections (STIs), low-intensity 

infections, and subjectivity to test readouts, which might also affect results[29]. Furthermore, 

more accurate result with both tests might have been possible if the test was scored in a more 

quantitative manner. For example, following the recently described G-score scoring method 

for POC-CCA, an inclusion of control samples as a way to standardize the readout and to 

determine the cut-off for positivity. The microhaematuria test can be scored semi-

quantitatively based on colour intensity linked to the level of red blood cells. However, 

registering of more quantitative results was not foreseen in this study. 

In conclusion, this study demonstrates a moderate prevalence of schistosomiasis in Mwanga 

district Tanzania, implicating that the ∼20 years annual MDA of praziquantel in this region 

may have had an effect on reducing the schistosomiasis burden, but transmission is still 

ongoing. To improve the efficacy of MDA strategies, diagnosis at acute stages of the disease 

in combination with treatment could be extended not only to higher risk groups but also to all 

persons above 2 years of age as recommended by WHO[30, 9]. Apart from that, integrated 

approaches including improved access to WASH infrastructure, political willingness, and 

Chapter 3

72



 
 

production of reliable data are important for controlling schistosomiasis in Tanzania[31]. The 

presence of persistent hotspots in countries like Tanzania where provision of MDA program 

failed to provide long terms solution in some villages shows the need for such an integrated 

approach[32]. Furthermore, a combination of the POC-CCA and microhaematuria dipstick did 

not prove to be useful as a screening tool for schistosomiasis in this S. haematobium and S. 

mansoni co-endemic setting. However, efforts are ongoing to make CAA detection generally 

available, with a recent initiative focusing on the development of a more easy-to-use, accurate, 

affordable and visually scored CAA-RDT[33,34]. The CAA-RDT could be of great potential 

in resource-poor endemic settings and assist in the development of targeted control measures 

and interventions to effectively combat schistosomiasis.  
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Abstract 
Immune system and vaccine responses vary across geographical locations worldwide, not only 

between high and low-middle income countries (LMICs), but also between rural and urban 

populations within the same country. Lifestyle factors such as housing conditions, exposure to 

microorganisms and parasites and diet are associated with rural-and urban-living. However, 

the relationships between these lifestyle factors and immune profiles have not been mapped in 

detail. Here, we profiled the immune system of 100 healthy Tanzanians living across four 

rural/urban areas using mass cytometry. We developed a lifestyle score based on an individual's 

household assets, housing condition and recent dietary history and studied the association with 

cellular immune profiles. Seventeen out of 80 immune cell clusters were associated with living 

location or lifestyle score, with eight identifiable only using lifestyle score. Individuals with 

low lifestyle score, most of whom live in rural settings, showed higher frequencies of NK cells, 

plasmablasts, atypical memory B cells, T helper 2 cells, regulatory T cells and activated 

CD4+ T effector memory cells expressing CD38, HLA-DR and CTLA-4. In contrast, those 

with high lifestyle score, most of whom live in urban areas, showed a less activated state of 

the immune system illustrated by higher frequencies of naïve CD8+ T cells. Using an elastic 

net machine learning model, we identified cellular immune signatures most associated with 

lifestyle score. Assuming a link between these immune profiles and vaccine responses, these 

signatures may inform us on the cellular mechanisms underlying poor responses to vaccines 

but also reduced autoimmunity and allergies in low- and middle-income countries. 
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Introduction 
Variation in the immune system have been observed across populations in low and middle-

income countries (LMIC) in Africa and Asia and those living in high-income countries (HIC) 

in Europe and the USA[1-6]. In addition, immune system variation has been observed within 

countries, such as in rural compared to urban areas in Senegal[2], Tanzania[7] and 

Indonesia[1]. The immune system of rural-living individuals in LMICs shows higher memory, 

activated and regulatory immune profiles, characterized by among others regulatory T cells 

and T helper 2 cells (Th2 cells), compared to urban-living individuals[1, 2, 8, 9]. At the same 

time, reduced vaccine performance has been observed in populations living in LMICs, in 

particular in rural areas[4, 10, 11]. Moreover, it is known that in these same populations, there 

are less diseases of affluence, such as allergies or auto-immunities, where unchecked 

inflammation is a strong contributor[4, 11-19]. 

 

Several factors determine the immune profile of an individual, including genetic and 

demographic factors, such as age and sex, as well as environmental factors, including exposure 

to microorganisms and parasites, type of housing and dietary history[20, 21]. While genetics 

plays an important role in immune system variation during early childhood, this influence 

wanes with age due to cumulative exposure to environmental factors, including pathogens[20, 

22, 23]. This has been illustrated in individuals chronically infected with helminths, who 

exhibit skewed baseline immune profiles, characterized by higher frequencies of Th2, 

regulatory T cells and higher expression of activation and inhibitory markers such as cytotoxic 

T lymphocyte-associated protein 4 (CTLA-4), HLA-DR and programmed cell death protein 1 

(PD-1) on T cells[24-26]. Furthermore, individuals infected with cytomegalovirus (CMV) 

show a disproportionately higher activation state of the immune system and an increased 

frequency of memory cells[27, 28].  

 

Socioeconomic status (SES) is intertwined with housing quality, nutritional status and access 

to healthcare[29, 30]. These factors contribute to infection risk and, therefore, propel the 

vicious circle of infection/infestation, which strongly impacts the immune system[18, 29-33]. 

The type of diet can also be linked to variation in immune profile, as was demonstrated in a 

recent study in Tanzania[7]. In this study, rural-living Tanzanians harbored a more anti-

inflammatory immune profile that correlated with higher levels of plant-derived flavonoid 

apigenin found in food mostly eaten in rural settings[7]. Therefore, taken together, there is 
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evidence for links between living environments such as housing, exposure to microorganisms 

and parasites, SES including individual assets and diet and immune system variation in LMICs.  

Although the immune profiles of urban- and rural-living individuals have been directly 

compared, a more granular assessment of lifestyles irrespective of living location is lacking, 

as individuals living in rural areas may exhibit an urban lifestyle and vice versa. We 

hypothesized that a more refined measurement of lifestyle including housing status, assets (e.g. 

car, bicycle motorcycle or radio), and dietary history (i.e. frequency of consumption of 

common dietary products) will allow us to better explain immune variation previously related 

to rural or urban living location. Especially, we aim to more precisely define immune 

signatures in individuals exhibiting immune hypo-responsiveness. Such information can have 

an impact on both communicable and non-communicable diseases, as a poor immune response 

to vaccines will affect susceptibility to vaccine-preventable infections, while poor responses 

to (self-)antigens can lead to fewer allergies or autoimmune diseases in rural-living individuals. 

Therefore, we not only used mass cytometry to obtain a highly granular immune profile but 

also surveyed lifestyle variation among Tanzanian adults recruited from two rural and two 

urban locations to maximize lifestyle variation using a detailed questionnaire of housing 

conditions, assets and recent dietary history. We present a lifestyle score based on these 

questionnaire data, which places individuals on the spectrum ranging from rural to urban 

lifestyle. We used this lifestyle score to explain immune profile variation in Tanzanian adults 

living in rural and urban areas and contrasted this with immune signatures from urban-living 

Europeans. In addition, we utilized a machine learning model to define combined immune 

signatures most strongly associated with the lifestyle score. 

 

Materials and Methods 
Study design 

This observational study was conducted between September and October 2022 as part of the 

CapTan study. A total of 203 healthy Tanzanian participants aged between 18 to 35 years were 

included from two urban locations (Urban Arusha and Urban Moshi) and two rural locations 

(Rural Moshi and Mwanga) in northern Tanzania (Figure 1A).  

 

The study was approved both at a local level by the Ethical Board of the Kilimanjaro Christian 

Medical University College (No. 2588) and at the national level by the Tanzania National 

Ethical Committee Board (NIMR/HQ/R.8a/Vol.IX/4089). In addition, samples collected from 
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ten Dutch 18 to 30-year-old adults enrolled between January 2022 and September 2022 were 

included in the TINO study (ClinicalTrials.gov, reference no. NCT06039527). The study was 

approved by the Ethics Committee of Leiden University Medical Center (NL77841.058.21).  

 

Description of study areas 

Arusha City (1400m above sea level; 617,631 inhabitants[34]) is the administrative, business, 

commercial and educational centre of the Arusha region, as it accommodates most diplomatic 

and international activities. Due to these important regional functions, there is high diversity 

in ethnicity, economic status and lifestyle. Maasai, Meru and Chagga are the most common 

ethnicities. Most people living in Arusha City have access to good sanitation with the 

availability of clean, treated water. However, some people are slum dwellers, i.e. living in the 

city but practicing a rural lifestyle. Most people are self-employed or office employees in the 

government and private sectors[34]. 

 

Kilimanjaro region has about 1.9 million inhabitants[34] across seven different districts, three 

of which are included in this study (Moshi City, Rural Moshi and Mwanga). Moshi City 

(referred to as Urban Moshi)  (700-950m above sea level; 331,733 inhabitants[34]) is the 

administrative, commercial and educational center of the Kilimanjaro region. Most people live 

a Western lifestyle and have good general sanitation and access to clean water. The main 

ethnicities are Chagga and Pare. Formal business is the main activity, followed by government 

and public employment, while few people are involved in agricultural and entrepreneurial 

activities[34].  

 

People in Rural Moshi (535,803 inhabitants[34]) are mainly involved in agricultural activities. 

Some people have access to clean water, while few  use borehole water sources. People live in 

large family units and their main economic activities are subsistence farming and animal 

husbandry. The main ethnicity is Chagga and people follow Chagga traditions, such as drinking 

local brew from banana/plantain. 

 

The population of Mwanga district (684m above sea level; 148,763 inhabitants[34]) is mainly 

active in irrigation, subsistence farming and animal husbandry. The primary water sources are 

boreholes, rivers and dams, with only few people having access to tap water. Like Rural Moshi, 

people live in large family units. The main ethnicity is Pare, with few Chagga. 
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Europeans were recruited in the area around Leiden, an urban centre in The Netherlands. 

European individuals were Dutch. 

 

Participant screening and enrollment 

In rural communities, study information was given through community leaders and 

announcements during mass gatherings in mosques, churches and during village meetings. In 

urban communities, study information was distributed using leaflets and through community 

leaders, office announcements and university gatherings. Eligible participants (age 18-35 years 

and permanent residency of a given location) were asked to enroll in the study. Following 

informed consent, 230 participants were voluntarily screened for in- and exclusion criteria. 

Exclusion criteria were pregnancy, lactation, having acute or chronic diseases, being HIV-

positive, recent use of antibiotics, use of antimalarials and use of tuberculostatic drugs. 

Participants were screened for HIV infection (SDBIOLINE HIV-1/2 3.0kit, 

LOT:03ADG020A), malaria (Malaria Ag p.f/Pan, Ref: 05FK60, LOT:05EDG018A) and soil-

transmitted helminth such as hookworms (Ancylostoma duodenale and Necator americanus), 

Trichuris trichiura, Ascaris lumbricoides, Strongyloides stercoralis and Schistosoma mansoni 

using Kato-Katz or Schistosoma haematobium (POC-CCA, butch no:220701075). 

Furthermore, hemoglobin levels were measured (HemoCue Hb 301(CE:1450820055) and 

random blood glucose was assessed (ACCU-CHECK glucose test strips, Roche Diabetic 

care,06993761001). Weight and height were measured using a well-calibrated machine (RGZ-

160, made from China), and last, blood pressure was measured using 

OMRON(SN:202111007949V). After nurse counseling, HIV-positive individuals who had 

low or high blood pressure (≤90/60mmHg and ≥140/90mmHg, respectively) or had high blood 

glucose (≥7.1mmol/L fasting or ≥11.1mmol/L random glucose) were excluded and guided for 

further actions. People diagnosed with schistosomiasis or soil-transmitted helminth infections 

were treated with praziquantel and albendazole, respectively according to Tanzanian treatment 

guidelines. Based on exclusion criteria, 27 of 230 participants were excluded.  

 

All questionnaires and clinical samples were collected by a trained study team, consisting of 

medical doctors, nurses and laboratory scientists. Data from Tanzanian individuals were 

collected using the cloud-based electronic data collection system REDCap, with a server 
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hosted at the Kilimanjaro Clinical Research Institute in Tanzania. Data from Dutch participants 

were collected in a Castor database, with a server hosted in The Netherlands. 

 

Lifestyle questionnaire 

Questionnaires adopted from the Tanzania Demographic and Health Survey and Malaria 

Indicator Survey (TDHS-MIS) and previously published work conducted in Tanzania, focused 

on diet in relation to metabolic profiles and inflammatory status[7, 54] were used to collect 

data on basic demographics, wealth (house construction, general hygiene, 

land/animal/livestock/non-productive asset ownership) and (recent) food history. Combined, 

the collected information on wealth and food history was considered reflective of one’s 

‘lifestyle’. Among others, our questionnaire included questions on the material used to 

construct the house's floor, roof and walls, the source of water, the type of toilet and available 

cooking facilities. We assessed the number of milk cows, cattle, goats, sheep, horses and 

poultry owned and inquiries were made on land ownership and possession of non-productive 

assets, such as radios, televisions, computers, refrigerators and ironing tools (whether powered 

by charcoal or electricity), watches, motorcycles, trucks, animal-drawn carts, generators and 

motorboats. As diet was recently found to shape immune responses in a Tanzanian 

population[7], we additionally collected data on recent food history. We specifically focused 

on the frequency of various food types participants consume per week, including ugali (stiff 

porridge), plantain, rice, potatoes, meat, fish, beans/peas, green vegetables, cabbage, fruits and 

local beer. 

 

PBMC isolation and cryopreservation 

Blood was collected in sodium heparin tubes from 189 of 203 participants. PBMC isolation 

and cryopreservation were performed as previously described[1]. 27 Samples were excluded 

due to low blood quality, technical problems during PBMC isolation or low cell counts. The 

remaining 162 cryopreserved PBMC samples were transported from Moshi, Tanzania, to 

Leiden, The Netherlands, using a liquid nitrogen dry vapor shipper. Out of these samples, we 

selected 100 individuals (25 per location) for immune phenotyping based on age, sex and 

educational level. Apart from these variables, baseline demographics for the total cohort and 

the mass cytometry cohort were comparable (Table 1 and Table S1). 
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Mass cytometry antibody staining  

Antibody panels were designed to phenotype immune cells ex vivo. Details on antibodies used 

are listed in Table S4. Antibodies were conjugated to metal using 100µg of purified antibody 

combined with either the Maxpar X8 or MCP9 Antibody Labelling Kit (Fluidigm), as per the 

manufacturer’s instructions. Conjugated antibodies were then stored in 200µl of Antibody 

Stabilizer PBS (CANDOR Bioscience GmbH) at 4°C. Titration of all antibodies was 

conducted on PBMC samples.  

On the day of staining, cryopreserved PBMCs were thawed with 20% FCS/2mM 

Mg2+/1:10,000 benzonase/RPMI medium at 37°C and washed twice with 10% FCS/RPMI 

medium. For phenotyping, 3 × 106 cells per sample were prepared according to the Maxpar 

Nuclear Antigen Staining Protocol V2 (Fluidigm). PBMCs were washed with Maxpar staining 

buffer and centrifuged at 400g for 5 minutes in 5-ml Eppendorf tubes. Study samples were 

randomized over seven batches and for each batch up to 17 samples were barcoded. To barcode 

the samples, the cells were resuspended in 50μl of Maxpar staining buffer and 50μl of a 

barcode mix targeting β2-microglobulin (B2M) was added to each sample, employing a 6-

choose-3 scheme using 106cadmium (Cd), 110Cd, 111Cd, 112Cd, 114Cd and 116Cd. After a 

30-minute room temperature incubation and a wash with Maxpar Staining Buffer, the cells 

were centrifuged, the supernatant was removed and the cells were resuspended in Maxpar 

staining buffer and pooled into one tube for each batch. 

 

Subsequently, cells were treated with 5ml (about 0.17 oz) of 500× diluted Cell-ID Intercalator-

103Rh (Fluidigm) for 15 minutes to identify dead cells. After washing with staining buffer, 

cells were incubated with 20µl Human TruStain FcX Fc receptor blocking solution 

(BioLegend) and 130µl of staining buffer at room temperature for 5 minutes. Next, 150µl of a 

freshly prepared surface antibody cocktail was added for another 30-minute room-temperature 

incubation. After a double wash with staining buffer, cells were fixed with 1.6% PFA in 5ml 

PBS for 10 minutes. Post-centrifugation, cells underwent fixation and permeabilization using 

the eBioscience Foxp3/Transcription Factor Staining Buffer Set from eBioscience, followed 

by incubation with Human TruStain FcX receptor blocker. An intranuclear antibody cocktail 

was then added and the cells were incubated for an additional 30 minutes. After washing with 

permeabilization buffer and staining buffer, cells were fixed with 1.6% PFA in 5ml PBS for 10 

minutes. Finally, cells are stained with 1000× diluted Cell-ID Intercalator-Ir (Fluidigm) in 
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Maxpar Fix and Perm Buffer at room temperature for 1h and stored in RPMI 20% FCS 10% 

DMSO at -80°C until acquisition. 

 

Mass cytometry data acquisition 

All barcoded samples within one batch were acquired simultaneously. Cells were measured 

using a Helios mass cytometer (Fluidigm) and calibrated as per Fluidigm’s guidelines. Before 

measurement, cells underwent counting, washing with Milli-Q water, straining and then were 

suspended at a concentration of 1.0 × 106 cells/ml in a solution containing 10% EQ Four 

Element Calibration Beads from Fluidigm and Milli-Q water. Data acquisition in mass 

cytometry was performed using dual-count mode and with noise reduction. Various channels 

were used, including those for antibody detection, intercalators (103Rh, 191Ir, 193Ir), 

calibration beads (140Ce, 151Eu, 153Eu, 165Ho, 175Lu) and for tracking 

background/contamination (133Cs, 138Ba, 206Pb). Post-acquisition, the mass bead signal was 

used to standardize short-term signal variations, using the EQ passport P13H2302 as a 

reference throughout each experiment. When necessary, normalized FCS files were merged 

using Helios software, while retaining the beads. 

 

Data analysis 

All data preprocessing and statistics were performed in R v4.2.2 and RStudio Server 

v2022.03.999. All p-values were corrected for multiple testing using the Benjamini-Hochberg 

procedure (and referred to as q-values). P-/q-values<0.05 were considered statistically 

significant. 

 

Data preprocessing 

First, cells were automatically gated based on Gaussian parameters (CyTOFClean R-package; 

v1.03beta; https://github.com/JimboMahoney/cytofclean). Next, automatic gating was applied 

to select for intact/DNA+-(191Ir and 193Ir channels), CD45+- (89Y) and live cells (live/dead 

staining) (openCyto v2.10.1 R-package). All automatically set gates were manually inspected. 

Samples were compensated and debarcoded (CATALYST v1.22.0 R-package). Data were 

transformed using a hyperbolic arcsinh-transformation with a cofactor of 5 for downstream 

processing. Next, reference samples collected from healthy European adults included in each 

individual batch were used to train a CytoNorm-model (CytoNorm v0.0.17 R-package; 
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CytoNorm.train-function; nQ = 101; goal = ‘mean’; k = 10; limit = 0-8). The trained model 

was applied to all samples, adjusting for batch effects (CytoNorm.normalize-function). 

 

Cell clustering 

Cells were subjected to flowSOM-clustering (15 × 15 hexagonal grid; rlen=100; kohonen 

v3.0.11 R-package), followed by metaclustering at k = 80 clusters using the hierarchical 

clustering (factoextra v1.0.7 R-package, hcut-function, distance = ‘ward.D2’). The clustering 

map was trained on 100k cells per sample, the remaining cells were mapped to the trained map 

(predict.kohonen-function). Cell clusters were annotated at subset-level by an expert 

immunologist. Cell labels were further refined by  incorporating markers that exhibit 

variability within a given subset in the cell label. 

 

Lifestyle score 

Multiple correspondence analysis (MCA) was applied to categorical questionnaire data (38 

manually curated lifestyle-related questions; 21 on assets, 11 on food and 6 on housing) for all 

203 Tanzanian participants (FactoMineR v2.7 R-package, MCA-function). Missing values are 

imputed using mode imputation. Principle component (PC) 1 was defined as ‘lifestyle score’, 

as this component, per definition, explained most variance across lifestyle questionnaire data. 

Coordinates of samples and variable categories were visualized in biplots. In addition, 

(cumulative) variable category contributions for lifestyle score were extracted and shown.  

 

Statistical analyses 

To understand the overall structure of the data, cells were placed on a two-dimensional t-

distributed Stochastic Neighbor Embedding (t-SNE) map using the Fit-SNE algorithm v1.2.1 

(https://github.com/KlugerLab/Fit-SNE/blob/master/fast_tsne.R). Fit-SNE was performed on 

a down-sampled dataset including 1,500 cells per sample (max_iter = 1,000; learning rate = n 

cells/12; perplexity = n cells/100). 

 

To compare the frequency of cell clusters across rural and urban Tanzanian locations, we 

employed a generalized linear mixed model (binomial = ‘family’; link = ‘logit’; lme4 R-

package v1.1-31). The number of cells in each cell cluster (as a fraction of total CD45+ cells 

per sample) was considered the dependent variable. We fit two models to assess the overall 

effect of location. Model 1 included (scaled) age and sex as fixed explanatory variables and 
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‘sample ID’ as a random intercept. ‘Sample ID’ was included as a random effect to deal with 

any under- or overdispersion due to the binomial model. Model 2 was the same as model 1, 

except that ‘location’ was added as a fixed explanatory variable. ANOVA tests were used to 

assess whether location (model 2) significantly improved model fit compared to model 1. 

Significant models (after correction for multiple testing using Benjamini-Hochberg) were 

subjected to pairwise comparisons between locations using the emmeans v1.8.5 R-package 

(Tukey post hoc test). The associations between cell cluster frequency and lifestyle score were 

also assessed using GLMMs, including lifestyle score, (scaled) age and sex as fixed 

explanatory variables and ‘sample ID’ as a random intercept. For sensitivity analyses, we fitted 

an additional ‘combined’ GLMM, including both location and lifestyle (LS) (as well as age 

(scaled) and sex) as fixed effects and sample ID as random effect. Model fit (using Akaike 

Information Criterion [AIC]) of the ‘combined’ GLMM was compared to same model, after 

removing either location or lifestyle score, to assess the relative importance of these variables 

to performance cluster-specific models. 

 

Elastic net machine learning modelling 

To identify a combined immune ‘endotype’ most associated with variation in lifestyle score, 

we fit an elastic net machine learning model (tidymodels v1.1.1 R-package, glmnet-engine). 

Scaled age, sex and cell frequencies of all 80 clusters were included as predictors and lifestyle 

score was included as an outcome variable. Data was randomly split into train (80%) and test 

(20%) data (stratified for living location). Model tuning was performed on training data using 

2,000 bootstrapped data samples, optimizing penalty and mixture parameters. The best model 

was identified based on the highest explained variance (R2) between observed and predicted 

lifestyle score (penalty = 0.788, mixture = 0.1). The final model was applied to both training 

and testing data to generate final estimates of model fit (R2). Variable importance was assessed 

using the vip v0.4.1 R-package. Feature stability was assessed by extracting all features from 

the models fitted with the optimized tuning parameters across bootstrap datasets (n = 2,000). 

The number of times a feature was selected was used as a measure for feature stability. 

 

Results 
Characteristics of the study population 

The Tanzanian study population consisted of 203 adults recruited from four geographical 

locations in northern Tanzania, including two urban locations, Arusha and Moshi Urban and 
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two rural locations, Moshi Rural and Mwanga (Figure 1A). These four locations were 

categorized as rural and urban based on the National Bureau of Statistics and the 2022 

Census[34]. Detailed information on housing, assets and food history was collected using 

questionnaires[7, 35] (Figure 1B).  

 

From these 203 individuals (Table S1), PBMC samples of 100 individuals were included for 

mass cytometry analyses (n = 100; n = 25 from each site in four sites) (Table 1). The median 

age was 25.0 years (interquartile range [IQR], 23-29 years). The prevalence of parasitic 

infections was 7% and these infections were detected only in individuals from rural areas 

(Table 1). As a comparator cohort, PBMC samples from ten Dutch individuals recruited in 

Leiden, The Netherlands (median age 29 [IQR 27-30], 50% female) were acquired using mass 

cytometry (referred to as ‘urban European’). 

 
Table 1 | Baseline characteristics of the study population (N = 100). 

Variable Overall, N 
= 100 

Urban 
Arusha, N 

= 25 

Urban 
Moshi, N = 

25 

Rural 
Moshi, N = 

25 

Rural 
Mwanga, 

N = 25 

p-value 

Sex, female 53 (53%) 14 (56%) 14 (56%) 13 (52%) 12 (48%) 0.932 
Age 25.0 (23.0, 

29.0) 
25.0 (23.0, 

30.0) 
25.0 (24.0, 

27.0) 
24.0 (22.0, 

27.0) 
25.0 (22.0, 

31.0) 
0.686 

Age categories    
 

 0.955 
   18-25 56 (56%) 13 (52%) 14 (56%) 15 (60%) 14 (56%) 

 

   26-36 44 (44%) 12 (48%) 11 (44%) 10 (40%) 11 (44%) 
 

BMI 22.8 (20.5, 
26.0) 

21.8 (19.0, 
26.8) 

24.1 (22.9, 
28.4) 

22.3 (20.3, 
26.7) 

22.4 (21.3, 
24.6) 

0.243 

Missing 1 1 0 0 0 
 

BMI classification    
 

 0.591 

   <18.5 7 (7.1%) 3 (13%) 2 (8.0%) 1 (4.0%) 1 (4.0%) 
 

   18.5-24.9 60 (61%) 14 (58%) 13 (52%) 15 (60%) 18 (72%) 
 

   25.0-29.9 16 (16%) 2 (8.3%) 5 (20%) 4 (16%) 5 (20%) 
 

   >30 16 (16%) 5 (21%) 5 (20%) 5 (20%) 1 (4.0%) 
 

Missing 1 1 0 0 0 
 

Systolic blood pressure 
(mmHg) 

119 (110, 
125) 

110 (109, 
120) 

110 (100, 
119) 

121 (112, 
130) 

123 (119, 
128) 

<0.001 

Missing 1 1 0 0 0 
 

Diastolic blood 
pressure (mmHg) 

73 (70, 79) 70 (70, 77) 69 (64, 72) 78 (70, 80) 78 (74, 80) <0.001 

Missing 1 1 0 0 0 
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Hemoglobin level g/dl 14.35 
(13.30, 
16.50) 

14.00 
(13.30, 
16.60) 

13.80 
(12.40, 
15.60) 

14.20 
(13.70, 
16.00) 

15.20 
(13.80, 
16.60) 

0.223 

Random blood sugar, 
mmol-1^^ 

5.20 (4.60, 
5.95) 

4.90 (4.40, 
5.50) 

5.20 (4.70, 
6.23) 

5.20 (4.10, 
5.50) 

5.80 (4.90, 
6.50) 

0.053 

Missing 1 0 1 0 0 
 

Highest level of education   
 

 <0.001 

   Primary 30 (30%) 0 (0%) 0 (0%) 13 (52%) 17 (68%) 
 

   Secondary 24 (24%) 6 (24%) 0 (0%) 10 (40%) 8 (32%) 
 

   College 15 (15%) 12 (48%) 1 (4.0%) 2 (8.0%) 0 (0%) 
 

   University 31 (31%) 7 (28%) 24 (96%) 0 (0%) 0 (0%) 
 

Malaria 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
 

Missing 1 0 1 0 0 
 

Helminth infectiona  7 (7.0%) 0 (0%) 0 (0%) 2 (8.0%) 5 (20%) 0.015 

Schistosomiasisb 3 (3.0%) 0 (0%) 0 (0%) 0 (0%) 3 (12%) 0.057 

Missing 1 1 0 0 0 
 

Insurance status 31 (31%) 13 (52%) 15 (60%) 3 (12%) 0 (0%) <0.001 

Occupation    
 

 <0.001 

   Farming 20 (20%) 0 (0%) 1 (4.0%) 5 (20%) 14 (56%) 
 

   Elementary 
occupation 

28 (28%) 5 (20%) 2 (8.0%) 16 (64%) 5 (20%) 
 

   Student 23 (23%) 5 (20%) 15 (60%) 2 (8.0%) 1 (4.0%) 
 

   Employed/business 
owner 

20 (20%) 10 (40%) 5 (20%) 2 (8.0%) 3 (12%) 
 

   Not employed 9 (9.0%) 5 (20%) 2 (8.0%) 0 (0%) 2 (8.0%) 
 

 

N = 100 participants. Values represent number of participants (percentage of total) and median (interquartile range 

[IQR]) for categorical and continuous variables, respectively. Comparisons between locations were performed using 

Fisher’s exact, chi-squared and Mann–Whitney U-test for categorical and continuous variables, respectively. a Stool 

was tested for helminths using the Kato-Katz method, testing for Schistosoma haematobium, Schistosoma mansoni, 

Ascaris Lumbricoides, hookworm and Trichuris trichuria. b Tested for schistosomiasis using the POC-CCA method, 

testing for Schistosoma haematobium and Schistosoma mansoni. 
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Cellular immune profiles differ between rural- and urban-living Tanzanian adults.  

To characterize the cellular immune profiles between rural- and urban-living individuals, 

peripheral blood mononuclear cells (PBMCs) were stained with a panel of 37 metal-tagged 

antibodies. The processed single-cell level dataset contained 69.6 million live CD45+ cells, 

which allowed the identification of six major immune lineages, including B cells, CD4+ T 

cells, CD8+ T cells, innate lymphoid cells (ILCs), myeloid cells and unconventional T cells 

(including γδ T cells) (Figure 1C). Clustering analyses using self-organizing maps (SOM), 

followed by hierarchical clustering resulted in 80 distinct immune cell clusters (Figure S1 and 

Table S2). Cell clusters were annotated at subset-level by an expert immunologist. Cell labels 

were further refined by  incorporating markers that exhibit variability within a given subset in 

the cell label. Using Generalized Linear Mixed Models (GLMMs), we identified nine clusters 

which were significantly different between the four locations, after adjusting for age and sex 

(Figure 1D-E). 

 

The CD4+ T cell lineage was composed of 28 cell clusters, of which 5 significantly differed 

across locations. Th2 cells (cluster 51) represented the strongest rural signal, where we 

observed significantly higher frequencies in rural-living locations (especially rural Moshi) 

compared to urban-living individuals (median 0.7% of total CD45+ cells across rural sites 

compared to 0.3% and 0.2% in urban Tanzanians and Europeans, respectively). Rural-living 

individuals additionally showed a significantly higher frequencies of three cell clusters of 

CD4+ T cells. These clusters included CD161dim PD-1dim CTLA-4+ CD4+ T effector 

memory (Tem)  cells (cluster 46), CD4+ Tem cells expressing CD38, CD161, CTLA-4 and 

PD-1 (cluster 79) and HLA-DRdim PD-1+ KLRG-1+ CD4+ Tem cells (cluster 72). In contrast, 

the CD27+ CD28+ CD45RO+ CD127+ CD4+ T central memory (Tcm) cell cluster (cluster 

53) was higher in urban compared to rural-living individuals (Figure 1E).  

 

Within the CD8+ T cell lineage, 1 out of 15 CD8+ T cell clusters significantly differed across 

locations. This cluster was characterized by recently activated CD8+ Tem cells expressing 

CXCR3 and T-bet (cluster 11), which showed higher frequencies in urban compared to both 

rural locations (Figure 1E). Furthermore, within the gamma delta (γδ) T cell lineage 

(containing 7 clusters), naïve γδ T cells expressing CXCR3 (cluster 40) were significantly 

higher in frequency in urban living compared to both rural-living individuals. Finally, within 

the B cell lineage, we observed significantly higher frequencies of classical naive B cells 
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(cluster 34) and atypical memory B cells expressing CD11c and Tbet (cluster 35) in rural- 

compared to urban-living locations (Figure 1E). Six out of seven rural-associated clusters 

showed visual evidence of a rural-urban-European gradient, where cell frequencies showed a 

stepwise decrease from rural-to-urban and urban-to-European sites, except for cluster 40 

(naïve γδ T cells). On the other hand, gradients were less clear for clusters enriched in urban 

Tanzanians. 

 

Questionnaire data reveal differences in lifestyle between locations. 

Within living locations, considerable variation in immune signatures was observed. Therefore, 

to better capture immune variation across locations, we developed a lifestyle score, which 

incorporates detailed questionnaire data on assets (e.g. possession of a watch, television or 

car), housing (i.e. materials used to construct the house) and food history (i.e. frequency of 

consumption of dietary products) into a single score. To obtain the lifestyle score, we applied 

Multiple Correspondence Analysis (MCA), a dimensionality reduction method similar to 

Principal Component Analysis (PCA), but for categorical data, which was applied to 38 

questions (118 variable categories) collected from all 203 participants (Table S3 and Figure 

S2). MCA clearly separated individuals based on living location, especially across principal 

component (PC) 1. Since the MCA was based on lifestyle questionnaire data and PC1 per 

definition explains most variance, PC1 was referred to as ‘lifestyle score’, explaining 7.8% of 

the variation in the questionnaire data (Figure 2A). Across the first two principal components, 

we found that spread was highest in rural- compared to urban-living individuals (variance 

6.1%/5.1% and 11.3%/11.2% for PC1/PC2 scores across urban and rural sites, respectively), 

indicating rural people have more heterogeneous lifestyles (Figure 2B). Sensitivity analyses 

on condensed questionnaire data (collapsing rare categories and removing uninformative 

variables) showed that the relatively low percentage of variance explained by lifestyle score 

and other high-ranking principle components (Figure S3A) is caused by the inclusion of rarer 

variable categories. Removing these had no important effect on the lifestyle score (Pearson r 

= 0.97, p-value < 2.2 × 10-16). 
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Figure 1 | Mass cytometry immune profiles differ across individuals living in rural (Moshi Rural and 

Mwanga) and urban (Arusha and Moshi Urban) regions. 

A) Map of study sites in Tanzania and in The Netherlands. B) Graphical representation of sample numbers and the 

study design. C-D) t-distributed Stochastic Neighbor Embedding (t-SNE) visualizations (n = 1500 random 

cells/individual); cells are coloured according to lineage (C) or significant cell cluster (D). E) Differential cell 

frequencies between rural and urban Tanzanian regions. Boxplots represent the 25th and 75th percentiles (lower and 

upper boundaries of boxes, respectively), the median (middle horizontal line) and measurements that fall within 1.5 

times the interquartile range (IQR; distance between 25th and 75th percentiles; whiskers). Only clusters showing a 
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significant effect of ‘location’ (across Tanzanian sites) were shown. The significance of ‘location’ was assessed using 

analysis of variance (ANOVA)-tests comparing a full (location, age [scaled] and sex [fixed effects] and sample ID 

[random effect]) and a simpler model, which was the same as the full model, except that we removed ‘location’ from 

the model. ANOVA p-values were corrected for multiple testing using the Benjamini-Hochberg method and referred 

to as q-values. Asterisks denote statistical significance (*, q ≤ 0.05; **, q ≤ 0.01; ***, q ≤ 0.001). The statistical 

significance of differences between each location was assessed using the emmeans()-function (Tukey post hoc test). 

Urban Europeans were included in the figure for visual comparisons and were not included in statistical tests. 

 

We found that the lifestyle score was significantly associated with thirteen of 80 cell clusters, 

while none of the other principal components (PC2-PC5) showed any statistically significant 

associations with cell cluster frequencies (Figure S3B), underscoring the validity and 

biological relevance of the lifestyle score. 

 

Next, we explored the most strongly contributing lifestyle score variables across questionnaire 

categories, including housing conditions, assets and food history. Overall, assets showed the 

highest cumulative contribution to the lifestyle score (53.6%), followed by housing (30.3%) 

and food variables (16.1%) (Figure 2D). Among the top 20 variables most strongly 

contributing to PC1, factors such as having a house with an earth/sand floor, a mud wall, no 

household electricity and a pit latrine as toilet were associated with low lifestyle score. 

Additionally, the lack of assets such as an ironing tool, refrigerator, computer, radio, car, 

television, or watch and not consuming potatoes was associated with a low lifestyle score. 

Factors associated with a high lifestyle score were a house with a flush toilet connected to a 

sewage/septic tank, a separate room used as a kitchen and possessing assets such as a car, a 

working computer and a refrigerator (Figure 2E).  

 

Besides lifestyle score (PC1), we found that PC2 explained 4.1% of the variance (Figure S3A) 

and showed the highest spread across individuals living in rural Mwanga (variance across PC2 

scores 15.0% compared to 2.9%-7.0% in other sites) (Figure 2B). Similar to PC1, variables 

related to assets were most important (cumulative contribution 66.0%), particularly those 

related to livestock farming (Figure S3C). PC3 through PC5 explained 3.2-3.5% of the 

variance (Figure S3A), generally showing a higher cumulative contribution of food variables 

(40.3-49.4%) (Figure S3C) compared to PC1 and PC2. 
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Figure 2 | Multiple Correspondence Analysis (MCA) based on questionnaire data to generate lifestyle score. 

A) MCA was applied to categorical questionnaire data (38 manually curated questions; 21 on assets, 11 on food and 

6 on housing) (N = 203 individuals). Data points are coloured based on location. Ellipses reflect the data spread at a 
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level of confidence of 95%. Density plots show the distribution of PC1 (lifestyle score) (x-axis) and PC2 (y-axis) 

score. B) Comparisons of PC1 (lifestyle score) and PC2 across locations. Global significance was assessed using 

analysis of variance (ANOVA) and post hoc tests between locations were performed using Tukey HSD tests. Asterisks 

denote statistical significance (NS, non-significant; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001, p ≤ 0.0001). C) 

Coordinates of each variable category (a.-t.; see E) across dimensions 1 and 2. Variable categories with similar profiles 

are grouped together. D) Cumulative contributions (in percentage) of the variable categories by questionnaire data 

category (i.e. housing, assets and food). E) Contributions (in percentage) of variable categories to PC1 or lifestyle 

score. Bars are coloured based on whether a variable was associated with a high (> zero) or low (< zero) lifestyle 

score. 

 

Lifestyle score association tests reveal additional immune cell clusters not previously 

linked to living location 

We next assessed the association between lifestyle score and immune cell frequencies using 

GLMMs, adjusting for age and sex. We first verified that lifestyle score in individuals with 

matching mass cytometry data (n = 100), which was not significantly different from 

individuals without mass cytometry data available (Figure S4). 

Overall, 13 cell clusters were associated with lifestyle score, of which 8 clusters were not 

identified by previous analyses where we assessed differences in immune profile between 

locations (Figure 3A and 3B). Indeed, only one of these clusters (cluster 12; CD8+ naïve) 

showed a trend towards significance across locations (q = 0.055; Figure S5). In addition, we 

confirmed 5 out of 9 clusters which were previously found to significantly differ across 

locations, which were Th2 cells (cluster 51; GLMM; β = -0.66), two CD4+ Tem clusters that 

were CTLA-4+ and/or CD161+ (cluster 79 and 46; β = -0.50 and -0.28, respectively), atypical 

memory B cells (cluster 35; β = -0.37) (rural-living location and low lifestyle score) and a 

CD8+ Tem cluster (cluster 11; β = 0.32) (urban-living location and high lifestyle score) (Figure 

3C). The additional clusters identified using the lifestyle score were two CD4+ Tem cell 

clusters that were associated with low lifestyle score: HLA-DR+ PD-1+ CD4+ Tem (cluster 

43; β = -0.38) and regulatory T cells (cluster 75; β = -0.35). Furthermore, we identified a cluster 

of plasmablasts (cluster 57; β = -0.49), which was enriched in those with low lifestyle score. 

Last, an innate immune cell cluster of NK-cells (cluster 25; β = -0.68) was also linked to a low 

lifestyle score (Figure 3D).  

  

In contrast, within the CD8+ T cell lineage, we identified three clusters of CD8+ T cells that 

were associated with high lifestyle score. These included two CD8+ naïve T cell clusters 

(cluster 12 and 21; β = 0.38 and 0.39, respectively) and a cluster of CD8+ Tem cells expressing 
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CD161 and KLRG1 (cluster 38; β = 0.59). In addition, we found a positive association between 

higher frequencies of ILC2 (cluster 60; β = 0.33) and a high lifestyle score (Figure 3D). 

Sensitivity analyses, where we jointly modelled lifestyle score and location and compared the 

model fit to simpler models (excluding either lifestyle score or location), indicated that indeed 

using lifestyle score we can detect an additional group of clusters which we could not have 

detected with location alone (Figure S6). 
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Figure 3 | Lifestyle score is associated with specific immune cell clusters not identified by comparisons across 

locations.  

A) Venn diagram indicating the number of cell clusters that show differences in cell frequencies 1) across locations 

[Figure 1E], 2) both across locations and lifestyle score [Figure 3C] and 3) only with lifestyle score [Figure 3D]. Eight 

cell clusters were uniquely associated with lifestyle score and were not identified by comparisons across sampling 

locations. B) Volcano plot showing differential frequency results. Results were derived from a GLMM with cell 

frequency as outcome variable, lifestyle score, age (scaled) and sex as  fixed effects and sample ID as a random effect. 

Model estimates and corresponding Benjamini-Hochberg (BH)-adjusted p-values (-log10(q-value)) were shown. Each 

point represents a cluster, clusters with q-values<0.05 are coloured by association (high or low lifestyle score, or only 

significantly associated with location). Shapes indicate whether lifestyle-associated clusters were also detected by 

comparisons across sampling locations. Each point is labelled with a cluster identifier. C-D) Scatter plots showing the 

association between lifestyle score and cell frequency for C) clusters significantly related to both location as well as 

lifestyle score and D) clusters uniquely related to lifestyle score (i.e. clusters not identified as differentially abundant 

between locations). Data points are coloured based on location. Lines represent linear fits to the data and are included 

for visualization purposes only. Statistical significance was assessed using a linear mixed model including lifestyle 

score, age (scaled) and sex as fixed effects and sample ID as random effect. Additionally, we ran univariable Spearman 

correlation tests, p-values were corrected for multiple testing using the Benjamini-Hochberg method (q-value). 

Asterisks indicate clusters that significantly differed between locations. Only cell clusters significant in GLMMs are 

shown. 

 

Machine learning modelling links a combined immune endotype with a lifestyle score  

To investigate if a combination of immune cell clusters could be identified that together is 

associated with a lifestyle score (‘immune endotype’), a machine learning model (elastic net) 

was trained with lifestyle score as an outcome and cell cluster frequencies, age and sex as the 

predictor variables. Model training and hyperparameter tuning were performed on 80% of the 

data (n = 80 individuals; 2,000 bootstrapped datasets) and the model was tested on the 

remaining 20% of the data (n = 20 individuals) (Figure 4A). The model was able to predict 

44.1% and 29.6% of the variance in the training and test data, respectively. Using feature 

importance analysis, we verified 11 of the 14 clusters that were previously associated with 

living location and/or lifestyle score. Compared to previous analyses, the current model is a 

multivariable model, estimating the contribution of each cell cluster to the prediction of 

lifestyle score while adjusting for all other cluster cell frequencies. Therefore, using this 

complementary approach, we identified three additional clusters, including CD8+ Tem cells 

expressing CD161 and KLRG1 (cluster 37) associated with high lifestyles score, pDCs (cluster 

58) and γδ T-cells (cluster 22) related to low lifestyle score (Figure 4B).  
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Taken together the elastic net model unveiled a fairly stable (Figure 4C) immune endotype 

characterized by Th2 cells, regulatory T cells, atypical B memory cells, plasmablasts, NK, 

CTLA-4+ CD161+ CD4+ Tem, KLRG1+ γδ T-cells and plasmacytoid dendritic cells (pDCs) 

associated with a low lifestyle score. Inversely, the immune profile characterized by CD8+ 

naïve T cells, CXCR3+ CD127+ CD8+ Tem, two CD8+ Tem CD161+ CD56dim KLRG1+ 

and ILC2 is associated with a high lifestyle score (Figure 4B).  

 
Figure 4 | Machine learning model based on cell cluster frequencies can partly reconstruct lifestyle score.  

A) Performance of an elastic net machine learning model based on cell cluster frequencies (n = 80), age and sex trained 

to predict lifestyle score. Observed compared to predicted lifestyle score based on training (80%) and test data (20%; 

n = 5 samples per location) are shown. Using cell frequency data, we can explain ~30% of the variance in lifestyle 

scores (leave-out test data). B) Feature importance of all features that remained in the model after feature 

shrinkage/regularization. Clusters previously associated with either location or lifestyle score (n = 17) are indicated 

(*). Three clusters have not been associated with location nor lifestyle score in previous analyses. C) Feature stability 

across bootstraps. All features from the models fitted with the optimized tuning parameters (penalty/mixture) were 

extracted. The number of times a feature was selected across bootstrap samples serves as a score for stability of that 

feature (maximum score = 2,000). 
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Discussion 
Here, we assessed the associations between location and/or lifestyle score and cellular immune 

profiles measured by mass cytometry. We found that seventeen of 80 clusters were associated 

with location or lifestyle score, with eight identifiable only when using lifestyle score, 

illustrating the ability of lifestyle score to capture immune variation. Indeed, individuals living 

in rural areas may exhibit an urban lifestyle and vice versa. This was further substantiated by 

applying a machine learning model, which identified a combined immune signature associated 

with lifestyle score. 

 

We found an association between low lifestyle score and expression of activation markers such 

as CD38, HLA-DR and CTLA-4 on CD4+ Tem cells, along with expansion of Th2 and an 

increased frequency of regulatory T cells expressing CTLA-4. An increase in a specific 

memory T cell subsets might indicate that fewer naïve T cells are available for activation and 

expansion upon encounter with a new antigen. Furthermore, expression of 

activation/inhibitory markers on T cells can result in a reduced response to vaccines and 

allergens but may also explain a lower prevalence of autoimmune diseases in LMICs[19, 24, 

36]. Indeed, in rural Senegalese, immune profiles were enriched for HLA-DR-expressing 

CD4+ T cells compared to urban-living individuals[2]. Previous studies comparing rural and 

urban populations in Indonesia[1, 25] and Gabon[26, 37] found that immune profiles in rural-

living individuals, characterized by high frequencies of Th2 cells, T regulatory cells expressing 

CTLA-4, HLA-DR, ICOS or CD161 and atypical memory B cells, were strongly linked to 

(chronic) helminth infections[1, 25, 26].  

 

In contrast to these previous studies, none of our participants tested positive for malaria and 

the prevalence of current helminth infections was very low. Therefore, we speculate that 

increased activation of CD4+ Tem cells, along with expansion of Th2 and higher regulatory T 

cell frequencies, may represent an immune footprint left behind by parasitic infection in the 

past or even during childhood, as have been suggested by others [24, 38, 39]. Indeed, in 2005, 

the prevalence of schistosomiasis among school-aged children in two different schools located 

in one of the rural areas included in this study ranged between 34-70% with evidence for the 

presence of other soil-transmitted infections in the same setting[40]. Thus, based on their age, 

our study participants likely experienced a high burden of helminth infections during 

childhood.  
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Alternatively, housing conditions related to a low lifestyle score (e.g. sand or earth floors and 

mud-wall houses) may predispose to different commensals or exposure to bacteria and fungi 

and their metabolites[41], some of which have immunomodulatory properties. Poor housing 

conditions also attract vectors like flies, lice, ticks, mites and mosquitoes, which may directly 

activate the immune system through components present in their saliva, even in the absence of 

disease transmission[31, 42]. Furthermore, rural-living individuals closely live with livestock 

and as such are exposed to an additional reservoir of micro-organisms and (zoonotic) 

pathogens[43]. Taken together, past (parasitic) infections or unmeasured variables, such as the 

microbiome or exposure to vectors, are tightly linked to housing conditions. These factors may 

drive lifestyle-related immune variation, resulting in enrichment of Th2, regulatory T cells and 

activated T cells.  

 

We found that individuals with low lifestyle score most of whom live in rural settings, display 

a higher frequency of plasmablasts. Plasmablasts are differentiated B cells with a short 

lifespan, which initiate early antibody responses during infections [44-46]. However, due to 

their high metabolic activity, the rapid development of short-lived plasmablasts can 

paradoxically impair humoral immunity by slowing down germinal centre formation. This, in 

turn may impair responsiveness to vaccines and reduce risk of developing allergies and 

autoimmunity by limiting the generation of long-lived plasma and memory B cells. Although 

this has been shown in the context of malaria infection [47], which is not endemic in northern 

Tanzania, other infectious diseases endemic in the area, may similarly induce high levels of 

plasmablasts, including dengue[48]. 

 

Last, we identified an association between both naïve CD8+ T cells and CD8+ Tem expressing 

CD161 and high lifestyle score. Although we lack immune markers to confirm, CD161+CD8+ 

Tem encompasses mucosal-associated invariant T cells (MAIT) cells. MAIT cells are abundant 

in blood and at mucosal sites and can activate dendritic cells that promote T follicular helper 

cells to induce mucosal antigen-specific IgA[49]. Therefore, the presence of such cells in 

urban-living individuals might indicate the propensity to react more strongly to antigens in a 

vaccine, allergens, or autoantigens. This aligns with the results of an earlier study indicating 

that healthy individuals residing in urban Moshi had a higher pro-inflammatory cytokine 

response upon pathogen challenge in an ex vivo PBMC stimulation assay compared to those 

living in rural areas[7, 35]. Regarding the naïve CD8+ T cells being enriched in urban living, 
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it has been noted that they allow new immune responses to be mounted to both infections and 

vaccines[50]. Their higher frequency in urban areas is in line with previous studies in 

Bangladeshi compared to (urban living) North American children within the first three years 

of life[51] as well as in Malawian compared to UK adults[52]. Reduced numbers of naïve 

CD8+ T cells was associated with a higher burden of intestinal worms and viral infections (e.g. 

CMV) in children from Bangladesh compared to those from the USA[3] and higher burden of 

CMV among Malawian adults[52]. Similarly, we speculate that the association between high 

life score and naive CD8+ T cells in our study is driven by reduced pathogen exposure in 

people living in urban settings due to differences in daily activities and hygiene practices 

compared to rural-living individuals. 

 

The strengths of this study include the use of mass cytometry data in combination with the 

availability of detailed information on housing, assets and food history. Condensing this 

information into a single score allowed us to train a machine learning model to identify a 

distinct group of cell clusters (termed ‘immune endotype’), which was strongly associated with 

lifestyle score variation. Previous studies in HICs indicated that baseline (gene-expression-

based) immune endotypes exhibiting a strong pro-inflammatory profile are predictive of 

improved vaccine responses in young adults across multiple vaccines[53]. In a similar fashion, 

we speculate the immune endotypes identified in this study are linked to vaccine responses in 

populations living in rural or urban Africa. As such, further phenotyping of immune endotypes 

in varied populations, not limited to HIC, using protein-based single-cell modalities such as 

mass cytometry, may deepen our understanding of variation in vaccine responses or reactivity 

to allergens or autoantigens and their underlying mechanisms. At the same time, using lifestyle 

scores opens opportunities for public health experts to screen individuals prone to, for example, 

vaccine hypo-responsiveness, informing policymakers on preventative measures, such as 

repeated vaccination. These interventions could target these high-risk individuals, potentially 

improving vaccine efficacy and public health outcomes. Since those mounting reduced vaccine 

responses are the very same individuals that also show lower responses to allergens and auto-

antigens, immune phenotyping may also unveil new ways to prevent non-communicable 

diseases in urban-living individuals. Our study also has limitations. Among others, we did not 

assess cellular immune function through stimulation assays. In addition, future studies 

establishing direct links between low lifestyle score and responses to vaccines, allergens and 

autoantigens would be of great value.  
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In conclusion, in this study we comprehensively assessed the association between immune 

profiles and location and lifestyle variables in a LMIC. Additional cell clusters were detected 

through a more refined measurement of lifestyle. Follow-up studies should therefore focus on 

the links between lifestyle score, immune signature and functional immune responses, 

particularly in populations where vaccine responses are expected to be reduced and in 

populations with the highest prevalence of diseases linked to exaggerated immune responses 

to allergens and autoantigen. 
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Supplementary material  

 

 
Figure S1 | Heatmap showing median marker expression for each cluster.  

Clusters were based on SOM and hierarchical clustering. Each tile depicts the median expression of a given marker 
(rows) for a specific cluster (columns). The heatmap is stratified based on cell lineage. The bottom heatmap indicates 
which clusters were significantly associated with 1) location (Figure 1) and/or 2) lifestyle score (Figure 3). 
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Figure S2 | Heatmap visualizing lifestyle questionnaire data.  

N = 203 participants. Values represent the number of participants. Colours indicate the percentage of the total. 
Comparisons between locations were performed using Fisher’s exact or chi-squared tests. Asterisks denote statistical 
significance (NS, non-significant; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001, p ≤ 0.0001). See Table S3. 
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Figure S3 | MCA principal component variance explained, contributions and cluster associations.  

A) Variance explained (% of total) for PC1-PC5. B) Number of significant cell cluster associations with PC1 
(lifestyle score) to PC5 using modelling as described in the legend of Figure 3. C) Cumulative 
contributions (in percentage) of the variable categories by questionnaire data category (i.e. housing, assets 
and food, n = 38 questions and n = 118 variable categories) for PC1-PC5. 
 

 

 
Figure S4 | Boxplots showing lifestyle score for individuals with and without mass cytometry immune profiles 

(n = 100). P-value determined using Student’s t-test.  
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Figure S5 | Cell frequencies of clusters uniquely related to lifestyle score between locations.  

Cell frequencies of clusters uniquely related to lifestyle score across rural and urban Tanzanian regions and urban 
Europeans (Figure 3D). Boxplots represent the 25th and 75th percentiles (lower and upper boundaries of boxes, 
respectively), the median (middle horizontal line) and measurements that fall within 1.5 times the interquartile range 
(IQR; distance between 25th and 75th percentiles; whiskers). Significance of ‘location’ was assessed using analysis 
of variance (ANOVA)-tests comparing a simple (age [scaled] and sex [fixed effects] and sample ID [random effect]) 
and a full model (simple model with location as fixed effect added). P-values were corrected for multiple testing using 
the Benjamini-Hochberg method and referred to as q-values. Urban Europeans were included in the figure for visual 
comparisons and were not included in statistical tests. 
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Figure S6 | Sensitivity analysis comparing location- and/or lifestyle-based models. 
For each of the clusters that was significant in either location- and/or lifestyle-based models (n = 17), we additionally 
fitted a joint model, including both location and lifestyle (LS) (as well as age [scaled] and sex) as fixed effects and 
sample ID as random effect (GLMMLS+loc). Statistical significance of the combined effect of location and lifestyle 
score was assessed by comparing GLMMLS+loc to an ‘empty model’ where both location and lifestyle score were 
removed using ANOVA (triangles indicate significant models). Akaike Information Criterion (AIC) (measure of model 
fit while accounting for model complexity) was compared between the ‘combined model’ (AICLS+loc) and the same 
model from which either lifestyle score (AICloc) or location (AICLS) was removed. Clusters were grouped according 
to the statistics shown in Figure 1 and Figure 3, i.e. location significant, LS significant or LS + location significant 
clusters. Dropping location or lifestyle score from the combined model for location significant and LS significant 
clusters, respectively, worsened the combined model, indicating that location and lifestyle score were indeed related 
to distinct immune cell clusters. For most of the clusters in the LS + location significant group, dropping either location 
or lifestyle score did not change model performance, indicating that indeed here, location and lifestyle score may be 
more interrelated and capture similar information. 
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Table S1 | Baseline characteristics of the study population (N = 203). 

 

Variable Overall, N 
= 203 

Urban 
Arusha, N 

= 57 

Urban 
Moshi, N = 

47 

Rural 
Moshi, N = 

46 

Rural 
Mwanga, N 

= 53 

p-
value 

Sex, female 100 (49%) 40 (70%) 26 (55%) 18 (39%) 16 (30%) <0.001 
Age 25.0 (22.0, 

29.5) 
25.0 (22.0, 
30.0) 

25.0 (23.0, 
27.0) 

26.0 (22.3, 
31.0) 

24.0 (21.0, 
27.0) 

0.165 

Age categories 
 

  
 

0.259 
   18-25 116 (57%) 30 (53%) 30 (64%) 22 (48%) 34 (64%) 

 

   26-36 87 (43%) 27 (47%) 17 (36%) 24 (52%) 19 (36%) 
 

BMI 22.6 (20.5, 
25.6) 

22.2 (19.9, 
25.8) 

23.9 (22.2, 
26.1) 

22.4 (20.7, 
25.0) 

22.3 (20.3, 
25.3) 

0.183 

Missing 1 1 0 0 0 
 

BMI 
classification 

 
  

 
0.585 

   <18.5 13 (6.4%) 6 (11%) 3 (6.4%) 3 (6.5%) 1 (1.9%) 
 

   18.5-24.9 130 (64%) 34 (61%) 27 (57%) 31 (67%) 38 (72%) 
 

   25.0-29.9 39 (19%) 10 (18%) 11 (23%) 10 (22%) 8 (15%) 
 

   >30 20 (9.9%) 6 (11%) 6 (13%) 2 (4.3%) 6 (11%) 
 

Missing 1 1 0 0 0 
 

Systolic blood 
pressure (mmHg) 

120 (110, 
128) 

110 (109, 
120) 

110 (103, 
120) 

126 (118, 
130) 

122 (120, 
130) 

<0.001 

Missing 1 1 0 0 0 
 

Diastolic blood 
pressure (mmHg) 

73 (68, 80) 70 (67, 79) 70 (64, 78) 78 (72, 81) 76 (70, 80) 0.001 

Missing 1 1 0 0 0 
 

Hemoglobin level 
g/dl 

14.50 
(13.35, 
16.40) 

13.90 
(13.10, 
15.00) 

13.70 
(12.30, 
15.30) 

15.25 
(14.03, 
16.58) 

15.80 
(14.00, 
17.00) 

<0.001 

Random blood 
sugar, mmol-1^^ 

5.00 (4.50, 
5.80) 

4.80 (4.40, 
5.50) 

5.15 (4.53, 
5.85) 

5.50 (4.75, 
6.20) 

4.70 (3.90, 
5.50) 

0.002 

Missing 1 0 1 0 0 
 

Highest level of 
education 

 
  <0.001 

   Primary 50 (25%) 4 (7.0%) 2 (4.3%) 27 (59%) 17 (32%) 
 

   Secondary 74 (36%) 18 (32%) 11 (23%) 19 (41%) 26 (49%) 
 

   College 40 (20%) 27 (47%) 6 (13%) 0 (0%) 7 (13%) 
 

   University 39 (19%) 8 (14%) 28 (60%) 0 (0%) 3 (5.7%) 
 

Malaria 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
 

Missing 1 0 1 0 0 
 

Helminth infectiona  8 (3.9%) 0 (0%) 0 (0%) 6 (13%) 2 (3.8%) 0.002 
Schistosomiasisb 7 (3.5%) 2 (3.6%) 1 (2.1%) 4 (8.9%) 0 (0%) 0.098 
Missing 3 2 0 1 0 

 

Insurance status 51 (25%) 24 (42%) 23 (50%) 0 (0%) 4 (7.5%) <0.001 
Missing 1 0 1 0 0 

 

Occupation 
 

  
 

<0.001 
   Farming 32 (16%) 2 (3.5%) 1 (2.1%) 23 (50%) 6 (11%) 

 

   Elementary 
occupation 

60 (30%) 14 (25%) 7 (15%) 13 (28%) 26 (49%) 
 

   Student 47 (23%) 12 (21%) 23 (49%) 2 (4.3%) 10 (19%) 
 

   Employed/ 
business  owner 

34 (17%) 15 (26%) 9 (19%) 4 (8.7%) 6 (11%) 
 

   Not employed 30 (15%) 14 (25%) 7 (15%) 4 (8.7%) 5 (9.4%) 
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N = 203 participants. Values represent number of participants (percentage of total) and median (interquartile range 

[IQR]) for categorical and continuous variables, respectively. Comparisons between locations were performed using 

Fisher’s exact, chi-squared and Mann–Whitney U-test for categorical and continuous variables, respectively. a Stool 

was tested for helminths using the Kato-Katz method, testing for Schistosoma haematobium, Schistosoma mansoni, 

Ascaris Lumbricoides, hookworm and Trichuris trichuria. b Tested for schistosomiasis using the POC-CCA method, 

testing for Schistosoma haematobium and Schistosoma mansoni. 

 

Table S2 | Overview of identified cell clusters. 

See spreadsheets available in this link  Download: Download spreadsheet (16KB) 

https://www.sciencedirect.com/science/article/pii/S2666354624001418. 
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Table S3 | Descriptives of lifestyle score variables.  

 

Characteristic Urban 
Arusha, N 
= 57 

Urban 
Moshi, N = 
47 

Rural 
Moshi, N = 
53 

Rural 
Mwanga, N 
= 46 

p-value 

House floor  
   

<0.001 
   Hard floor (tile, cement, concrete, 
wood) 

57 (100%) 47 (100%) 44 (83%) 33 (72%) 
 

   Earth/sand 0 (0%) 0 (0%) 9 (17%) 13 (28%) 
 

House walls  
   

<0.001 
   Cement, brick or stone 56 (98%) 46 (100%) 42 (79%) 39 (85%) 

 

   Cane, palm, trunks, bamboo 0 (0%) 0 (0%) 1 (1.9%) 0 (0%) 
 

   Mud (with poles) 1 (1.8%) 0 (0%) 10 (19%) 7 (15%) 
 

Missing 0 1 0 0 
 

House roof  
   

0.257 
   Roof tiles 2 (3.5%) 2 (4.3%) 0 (0%) 0 (0%) 

 

   Metal sheets 55 (96%) 45 (96%) 53 (100%) 45 (98%) 
 

   Other 0 (0%) 0 (0%) 0 (0%) 1 (2.2%) 
 

Water source  
   

<0.001 
   Tap water 51 (89%) 45 (96%) 33 (62%) 13 (28%) 

 

   Public standpipe 3 (5.3%) 1 (2.1%) 12 (23%) 10 (22%) 
 

   Protected tube well or bore hole 3 (5.3%) 0 (0%) 3 (5.7%) 20 (43%) 
 

   Spring 0 (0%) 1 (2.1%) 5 (9.4%) 0 (0%) 
 

   Pond-water or stream 0 (0%) 0 (0%) 0 (0%) 3 (6.5%) 
 

Toilet facility  
   

<0.001 
   Flush to piped sewage or septic 
tank 

41 (72%) 42 (89%) 17 (32%) 3 (6.5%) 
 

   Pour flush latrine 14 (25%) 1 (2.1%) 18 (34%) 36 (78%) 
 

   Pit latrine 2 (3.5%) 4 (8.5%) 18 (34%) 7 (15%) 
 

Cooking place 
   

<0.001 
   In a separate room used as 
kitchen 

32 (56%) 31 (66%) 14 (26%) 5 (11%)  

   In a separate building used as 
kitchen 

17 (30%) 9 (19%) 38 (72%) 37 (80%) 
 

   In a room used for living or 
sleeping 

8 (14%) 5 (11%) 1 (1.9%) 2 (4.3%) 
 

   Outdoors 0 (0%) 2 (4.3%) 0 (0%) 2 (4.3%) 
 

Total number of milk cows   
  

0.012 
   None 51 (89%) 43 (91%) 40 (75%) 40 (87%) 

 

   1-4 6 (11%) 1 (2.1%) 11 (21%) 2 (4.3%) 
 

   5-9 0 (0%) 2 (4.3%) 1 (1.9%) 1 (2.2%) 
 

   10+ 0 (0%) 1 (2.1%) 1 (1.9%) 3 (6.5%) 
 

Total number of other cattle 
  

<0.001 
   None 56 (98%) 46 (98%) 45 (85%) 39 (85%) 

 

   1-4 1 (1.8%) 1 (2.1%) 8 (15%) 2 (4.3%) 
 

   5-9 0 (0%) 0 (0%) 0 (0%) 1 (2.2%) 
 

   10+ 0 (0%) 0 (0%) 0 (0%) 4 (8.7%) 
 

Total number of horses 
  

>0.999 
   None 57 (100%) 47 (100%) 53 (100%) 46 (100%)  
   1-4 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

 

   5-9 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
 

   10+ 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
 

Total number of goats 
  

<0.001 
   None 53 (93%) 39 (83%) 29 (55%) 30 (65%) 

 

   1-4 3 (5.3%) 3 (6.4%) 12 (23%) 7 (15%) 
 

   5-9 0 (0%) 2 (4.3%) 11 (21%) 5 (11%) 
 

   10+ 1 (1.8%) 3 (6.4%) 1 (1.9%) 4 (8.7%) 
 

Total number of sheep 
  

0.031 
   None 55 (96%) 46 (98%) 52 (98%) 38 (83%) 

 

   1-4 0 (0%) 0 (0%) 1 (1.9%) 2 (4.3%) 
 

   5-9 1 (1.8%) 1 (2.1%) 0 (0%) 3 (6.5%) 
 

Chapter 4

118



 
 

   10+ 1 (1.8%) 0 (0%) 0 (0%) 3 (6.5%) 
 

Total number of chicken/poultry 
 

<0.001 
   None 33 (58%) 18 (38%) 8 (15%) 19 (41%) 

 

   1-4 2 (3.5%) 2 (4.3%) 2 (3.8%) 5 (11%) 
 

   5-9 6 (11%) 5 (11%) 11 (21%) 5 (11%) 
 

   10+ 16 (28%) 22 (47%) 31 (60%) 17 (37%) 
 

Missing 0 0 1 0 
 

Agricultural land (hectares) 
  

0.439 
   None 39 (68%) 31 (67%) 38 (72%) 30 (65%) 

 

   1-4 12 (21%) 10 (22%) 14 (26%) 12 (26%) 
 

   5-9 4 (7.0%) 2 (4.3%) 0 (0%) 4 (8.7%) 
 

   10+ 2 (3.5%) 3 (6.5%) 1 (1.9%) 0 (0%) 
 

Missing 0 1 0 0 
 

Connected to electricity 54 (96%) 46 (98%) 37 (70%) 32 (70%) <0.001 
Missing 1 0 0 0 

 

Working radio 49 (86%) 44 (94%) 42 (79%) 37 (80%) 0.185 
Working television 51 (89%) 40 (85%) 22 (42%) 25 (54%) <0.001 
Missing 0 0 1 0 

 

Working computer 23 (40%) 37 (79%) 4 (7.7%) 0 (0%) <0.001 
Missing 0 0 1 0 

 

Working refrigerator 34 (60%) 38 (81%) 8 (15%) 2 (4.3%) <0.001 
Working rechargeable battery or 
generator 

8 (15%) 13 (28%) 4 (7.5%) 11 (24%) 0.035 

Missing 2 0 0 1 
 

An iron (charcoal/electric) 51 (89%) 42 (93%) 38 (72%) 20 (43%) <0.001 
Missing 0 2 0 0 

 

Watch 44 (77%) 44 (98%) 29 (55%) 14 (30%) <0.001 
Missing 0 2 0 0 

 

Mobile phone 55 (96%) 47 (100%) 53 (100%) 44 (96%) 0.283 
Bicycle 11 (19%) 18 (38%) 4 (7.7%) 28 (61%) <0.001 
Missing 0 0 1 0 

 

Motorcycle 21 (37%) 17 (37%) 12 (23%) 24 (52%) 0.026 
Missing 0 1 0 0 

 

Animal drawn cart 0 (0%) 1 (2.2%) 0 (0%) 1 (2.2%) 0.353 
Missing 1 1 0 0 

 

Car or truck 19 (33%) 30 (64%) 6 (11%) 1 (2.2%) <0.001 
Boat with a motor 0 (0%) 1 (2.2%) 0 (0%) 1 (2.2%) 0.353 
Missing 0 1 1 1 

 

Ugali (stiff porridge) 
(×/week) 

  
<0.001 

   0 0 (0%) 2 (4.3%) 0 (0%) 0 (0%) 
 

   1 6 (11%) 11 (23%) 2 (3.8%) 1 (2.2%) 
 

   2-4 26 (46%) 23 (49%) 31 (58%) 13 (28%) 
 

   ≥5 24 (43%) 11 (23%) 20 (38%) 32 (70%) 
 

Missing 1 0 0 0 
 

Plantain (×/week) 
   

<0.001 
   0 19 (35%) 13 (28%) 16 (30%) 28 (62%) 

 

   1 27 (49%) 30 (64%) 25 (47%) 17 (38%) 
 

   2-4 5 (9.1%) 1 (2.1%) 10 (19%) 0 (0%) 
 

   ≥5 4 (7.3%) 3 (6.4%) 2 (3.8%) 0 (0%) 
 

Missing 2 0 0 1 
 

Banana (×/week) 
   

0.152 
   0 7 (13%) 4 (8.5%) 2 (3.8%) 10 (22%) 

 

   1 27 (48%) 22 (47%) 23 (43%) 23 (50%) 
 

   2-4 19 (34%) 18 (38%) 20 (38%) 10 (22%) 
 

   ≥5 3 (5.4%) 3 (6.4%) 8 (15%) 3 (6.5%) 
 

Missing 1 0 0 0 
 

Rice (×/week) 
   

<0.001 
   0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

 

   1 4 (7.0%) 4 (8.5%) 19 (36%) 7 (15%) 
 

   2-4 25 (44%) 17 (36%) 28 (53%) 18 (39%) 
 

   ≥5 28 (49%) 26 (55%) 6 (11%) 21 (46%) 
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Potatoes (×/week) 
   

0.005 
   0 1 (1.8%) 0 (0%) 11 (21%) 3 (6.7%) 

 

   1 26 (46%) 21 (45%) 28 (53%) 26 (58%) 
 

   2-4 21 (37%) 19 (40%) 11 (21%) 13 (29%) 
 

   ≥5 9 (16%) 7 (15%) 3 (5.7%) 3 (6.7%) 
 

Missing 0 0 0 1 
 

Meat (×/week) 
   

0.008 
   0 1 (1.8%) 1 (2.1%) 0 (0%) 2 (4.3%) 

 

   1 13 (23%) 5 (11%) 16 (30%) 11 (24%) 
 

   2-4 29 (52%) 20 (43%) 31 (58%) 25 (54%) 
 

   ≥5 13 (23%) 21 (45%) 6 (11%) 8 (17%) 
 

Missing 1 0 0 0 
 

Fish (×/week) 
   

<0.001 
   0 0 (0%) 3 (6.4%) 2 (3.8%) 0 (0%) 

 

   1 25 (44%) 26 (55%) 24 (45%) 7 (15%) 
 

   2-4 23 (40%) 15 (32%) 26 (49%) 13 (28%) 
 

   ≥5 9 (16%) 3 (6.4%) 1 (1.9%) 26 (57%) 
 

Beans/peas (×/week) 
  

0.005 
   0 2 (3.5%) 1 (2.1%) 1 (1.9%) 0 (0%) 

 

   1 11 (19%) 8 (17%) 20 (38%) 3 (6.5%) 
 

   2-4 28 (49%) 21 (45%) 20 (38%) 18 (39%) 
 

   ≥5 16 (28%) 17 (36%) 12 (23%) 25 (54%) 
 

Green vegetables (×/week) 
  

0.625 
   0 0 (0%) 1 (2.1%) 1 (1.9%) 1 (2.2%) 

 

   1 4 (7.0%) 5 (11%) 1 (1.9%) 2 (4.3%) 
 

   2-4 15 (26%) 10 (21%) 15 (28%) 16 (35%) 
 

   ≥5 38 (67%) 31 (66%) 36 (68%) 27 (59%) 
 

Fruits (×/week) 
   

0.003 
   0 0 (0%) 1 (2.1%) 1 (1.9%) 0 (0%) 

 

   1 9 (16%) 6 (13%) 21 (40%) 13 (28%) 
 

   2-4 15 (26%) 11 (23%) 16 (30%) 18 (39%) 
 

   ≥5 33 (58%) 29 (62%) 15 (28%) 15 (33%) 
 

Locally brewed beer 
(×/week) 

  
0.011 

   0 47 (82%) 40 (85%) 33 (62%) 41 (89%) 
 

   1 6 (11%) 6 (13%) 7 (13%) 1 (2.2%) 
 

   2-4 2 (3.5%) 1 (2.1%) 4 (7.5%) 1 (2.2%) 
 

   ≥5 2 (3.5%) 0 (0%) 9 (17%) 3 (6.5%) 
 

 
N = 203 participants. Values represent number of participants (percentage of total). Comparisons between locations 

were performed using Fisher’s exact or chi-squared tests. All variables (n = 38 variables), after mode imputation, 

were used to construct the lifestyle score. See Figure S2. 
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Table S4 | Mass cytometry antibody panel. 

Label Specificity Clone Suppliera Cat no Lot no End 
dilution 

Working 
dilution 

89Y CD45 HI30 Fluidigm 3089003B 2203476-08 200 100 
115In CD278 

(ICOS) 
C398.4A Biolegend 313502 22-02-2022 

MK 
100 50 

141Pr CD196 
(CCR6) 

G034E3 Fluidigm 3141003A 2201583-11 100 50 

142Nd CD19 HIB19 Biolegend 302202 24-06-2020 500 250 
143Nd CD117 (c-

Kit) 
104D2 Biolegend 313223 28-01-2020 500 250 

145Nd CD4 RPA-T4 Fluidigm 3145001B 2202012-07 500 250 
146Nd CD8a RPA-T8 Fluidigm 3146001B 2108701-11 500 250 
147Sm CD183 

(CXCR3) 
G025H7 Biolegend 353733 03-01-2018 100 50 

148Nd CD14 M5E2 Biolegend 301802 30-05-2022 200 100 
149Sm CD25 (IL-

2Ra) 
2A3 Fluidigm 3149010B 2104640-07 500 250 

150Nd CD185 
(CXCR5) 

J252D4 Biolegend 356902 10-09-2019 500 250 

151Eu CD123 6H6 Fluidigm 3151001B 2112140-01 500 250 
152Sm TCRγδ 11F2 Fluidigm 3152008B 2110581-20 200 100 
153Eu CD7 CD7-6B7 Fluidigm 3153014B 0282010 200 100 
154Sm CD163 GHI/61 Fluidigm 3154007B 3321818 100 50 
155Gd CD45RA HI100 Fluidigm 3155011B 0492003 200 100 
156Gd CD294 

(CRTH2) 
BM16 Biolegend 350102 30-05-2022 100 50 

158Gd CD122 (IL-
2Rb) 

TU27 Biolegend 339002 01-02-2022 500 250 

159Tb CD197 
(CCR7) 

G043H7 Biolegend 353237 11-09-2020 200 100 

161Dy KLRG1 
(MAFA) 

REA261 Miltenyi 130-126-
458 

01-02-2022 500 250 

162Dy CD11c Bu15 Fluidigm 3162005B 2111081-25 500 250 
164Dy CD161 HP-3G10 Fluidigm 3164009B 2111083-25 200 100 
165Ho CD127 (IL-

7Ra) 
AO19D5 Biolegend 351302 24-09-2020 500 250 

167Er CD27 O323 Biolegend 302839 11-09-2019 500 250 
168Er HLA-DR L243 Biolegend 307651 01-02-2022 200 100 
170Er CD3 UCHT1 Fluidigm 3170001B 169104 200 100 
171Yb CD28 CD28.2 Biolegend 302902 01-02-2022 200 100 
172Yb CD38 HIT2 Fluidigm 3172007B 2108738-17 200 100 
173Yb CD45RO UCHL1 Biolegend 304239 11-09-2019 200 100 
174Yb CD335 

(NKp46) 
9E2 Biolegend 331902 22-12-2020 500 250 

175Lu CD279 (PD-
1) 

EH 12.2H7 Fluidigm 3175008B 2104621-07 500 250 

176Yb CD56 NCAM16.2 Fluidigm 3176008B 2202917-03 500 250 
209BI CD16 3G8 Fluidigm 3209002B 2112429-15 200 100 

 
aFluidigm, South San Francisco, CA, USA; BioLegend, San Diego, CA, USA; Miltenyi Biotech, Bergisch Gladbach, 

Germany. CCR, CC chemokine receptor. CD, cluster of differentiation. CRTH2, prostaglandin D2 receptor 2. CXCR, 

CXC chemokine receptor. HLA-DR, human leukocyte antigen-D related. IL-2R, interleukin-2 receptor. IL2RB, 

Interleukin-2 receptor subunit beta, IL2Ra, Interleukin-2 receptor subunit alpha, ICOS, inducible T-cell COStimulator, 

IL-7Rα, interleukin-7 receptor alpha. KLRG1, killer cell lectin-like receptor subfamily G member 1. MAFA, mast cell 

function-associated antigen. c-Kit, receptor tyrosine kinase, PD-1, programmed cell death protein 1. TCR, T cell 

receptor. 
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Abstract 
Introduction: Variation in vaccine response is observed between populations living in distinct 

geographical areas. This is thought to be associated with an altered immune state at baseline.   

 

Aim: Here, we examine the association between the baseline innate immune characteristics 

and the response to yellow fever (YF) vaccination in healthy Dutch as well as urban and rural 

Tanzanian volunteers.   

 

Methods: Response to YF vaccination was assessed by measuring plasma levels of IgG 

specific to non-structural protein 1 (NS1) of the YF virus at days 0 and 178 post-vaccination 

using ELISA. Using spectral flow cytometry, peripheral blood mononuclear cells were profiled 

with a panel directed at  the innate immune system. PBMC were also analyzed after stimulation 

with the YF vaccine, ssRNA40 and Staphylococcus aureus enterotoxin B (SEB) for 24 hours. 

 

Results: Post vaccination, a greater proportion of Dutch compared to Tanzanians had a high  

antibody response to NS1, but no difference was seen between urban and rural Tanzanians, in 

spite of the heterogeneity in the endpoint anti-NS1 IgG levels. When comparing the high and 

low responders within the Tanzanian cohort, high responders had an increased frequency of 

classical monocytes compared to low responders, both ex vivo and upon stimulation. Low 

responding Tanzanians were characterized by decreased frequency of cDC2s and IFN-alpha+ 

CD1c- CD141- DCs, whereas IL-10 production by cDC2s in unstimulated cultures was 

increased compared to high responding Tanzanians. 

   
Conclusion: Differences in the frequency of subsets belonging to the myeloid compartment 

and their cytokine production associated with the antibody response to YF vaccination in 

Tanzanians. These data might help the understanding of the immunological mechanisms 

underlying  vaccine response variation, necessary to develop interventions to overcome 

vaccine hyporesponsiveness.   

  

Chapter 5

124



 
 

Introduction 
Vaccination against infectious diseases saves millions of lives each year [1]. However vaccines 

are not yet used to their full potential due to low and variable efficacy of some across 

populations and geographical areas [2-6]. Differences in vaccine efficacy are most clearly be 

observed for new vaccines evaluated in controlled human infection studies, such as the live 

Plasmodium falciparum sporozoite (PfSPZ) vaccine that demonstrated an protective efficacy 

of 92.3% in malaria-naïve subjects in the US, whereas in a malaria-endemic area in Tanzania 

it only protected 20% of the recipients [4, 5]. Moreover, reduced responses upon have been 

reported for well-established vaccines such as the yellow fever (YF), as Ugandans have been 

reported to have significantly lower neutralizing antibody titers upon vaccination in 

comparison to Swiss vaccinees [6].  

 

An important determinant of the response to vaccination is the immune state at baseline, as 

altered immune baseline profiles have previously been associated with reduced vaccine 

responses [6-8]. A study among children from Kenya and Gabon vaccinated with the malaria 

vaccine RTS,S/AS01, showed that the monocyte-to-lymphocyte (ML) ratio at baseline is a 

good predictor for the efficacy of this vaccine, with reduced vaccine efficacy in those with 

high ML ratio [7]. This aligns with a study into YF response in Swiss and Ugandans, showing 

that increased baseline monocyte counts and the frequency of intermediate monocytes were 

associated with reduced antibody responses [6]. Moreover, a higher frequency of activated B 

and CD8+ T cells at baseline was found in Ugandans than in Swiss, which negatively 

correlated with neutralizing antibodies upon vaccination. Together, these results indicate that 

heightened immune activation at baseline, as observed in Ugandans, may drive the reduced 

response to YF vaccination [6]. More recent studies have focused on identifying a universal 

baseline signature that is predictive across several vaccines [8, 9]. A study combining pre-

vaccination transcriptome data of multiple studies to predict the immune response across 13 

different vaccines, including YF and malaria, identified three endotypes that are defined by 

multiple sets of genes, including pro-inflammatory and interferon-stimulated genes [8]. 

Comparison of the vaccine response among these endotypes, showed that among these young 

American individuals with limited pre-exposure to infections with the most pro-inflammatory 

endotype demonstrated highest vaccine responses [8]. However, how well these signatures 

hold up across populations with different environmental exposures remains an open question, 

as populations from LMICs have not been included in such studies. 
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Besides variation in the immune system between countries, differences in immune profiles 

within countries also have been observed [10, 11]. A study employing a multi-omics approach 

to study the immune profiles of rural and urban Senegal and urban Dutch subjects, revealed a 

continuous trajectory of immune remodeling along the rural-urban gradient [10]. The immune 

trajectory of rural individuals in this study was more pro-inflammatory compared to urban 

Senegalese and Dutch as rural individuals had increased frequency of CD11c+ B cells, 

monocytes producing TNF-alpha and IL-1β and T helper 1 cells (Th1). Moreover, comparing 

the cellular immune profiles of individuals from two rural and two urban populations in 

Northern Tanzania has shown that individuals with a rural lifestyle (low lifestyle score) had a 

more activated immune system as their immune profile was characterized by expansion of  

atypical B cells, T helper 2 cells, regulatory T cells as well as activated CD4+ T cells expressing 

CD38, HLA-DR and CTLA-4 [11]. Those with an urbanized lifestyle (high lifestyle score), 

however, showed a less activated immune state illustrated by higher frequencies of naïve CD8+ 

T cells [11].  

 

Although heterogeneity in immune profiles within countries has been reported, the extent to 

which they affect the response to vaccines remains largely unexplored. The current work 

examines the differences of the immune system at baseline among rural and urban Tanzanians 

compared to Dutch and studies their association with the response to YF vaccine. Given the 

prominent role of the innate immune system in the initiation of the vaccine response and the 

observed associations between baseline inflammation and reduced vaccine response, the 

preliminary analysis presented here focuses on the innate immune compartment. Moreover, to 

assess the immune response to YF vaccine we use IgG specific to non-structural protein 1 of 

the YF virus (anti-NS1 IgG), an accurate continuous parameter [12], rather than the 

neutralizing antibody titer, which is often used in a dichotomous or semi-quantitative manner 

to confirm seroconversion. By studying the innate immune state at baseline among different 

populations and their relation to vaccine response, we will deepen our understanding of the 

immunological mechanisms that underly variation in vaccine responses, which is needed to 

develop interventions to overcome vaccine hyporesponsiveness.  
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Material and Methods   
Study design 

The current study is part of a prospective longitudinal cohort study (CapTan) in a healthy, 18-

35-year-old Tanzanian population from rural and urban Moshi, Northern Tanzania. Volunteers 

were randomized into a vaccine group, receiving a single dose of yellow fever vaccine (YF-

17D, Sanofi-Pasteur France) via intramuscular injection, and a control group who did not 

receive any intervention or placebo. Data and samples were collected at baseline and thereafter 

over a period of six months. The study took place from February to August 2023. The study 

protocol was approved by the Ethical Board of the Kilimanjaro Christian Medical University 

College (No. 2588) and by the Tanzania National Ethical Committee Board 

(NIMR/HQ/R.8a/Vol.IX/4089). The study was registered under The Pan African Clinical Trial 

Registry (PACTR) with trial number PACTR202405738173023. In addition, samples were 

collected from 15 Dutch participants who were not vaccinated with YF before. All individuals 

received the YF vaccine (YF-17D, Sanofi-Pasteur, France) via subcutaneous injection and 

were followed up for six months.  This study took place from March to September 2023 in the 

Leiden University Medical Centre in Leiden. The study was approved by the Medical Ethical 

Committee Leiden The Hague Delft (NL70951.058.19) and is registered as clinical trial 

(ClinicalTrials.gov, NCT05901454).  

 

Study population  

Description of the study areas from which the Tanzanian participants were enrolled were 

published before [11]. In short, the study was conducted in rural and urban Moshi location in 

the Kilimanjaro region in northern Tanzania. The district of Moshi city (urban Moshi) is the 

administrative, commercial and educational center of the region and most inhabitants practice 

a Western lifestyle with generally good quality sanitation. Rural Moshi is an area north of 

urban Moshi, higher up the slopes of the Kilimanjaro and therefore has an elevation of 2,000-

2,100 meters above sea level (compared to 700-950 meters in urban Moshi). Most inhabitants 

of rural Moshi are involved in farming activities.   

 

Participant enrollment and data collection 

Inhabitants of the two regions were informed about the study through community leaders, 

gatherings and leaflets and all eligible participants (age 18-35 years and permanent residence 

of the study location) were asked to enroll. Following informed consent, 233 participants were 
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voluntarily screened for exclusion criteria, including previous YF vaccination, comorbidities, 

HIV infection and use of medication possibly affecting the immune system; methods have 

previously been described in detail [11]. Based on the in- and exclusion criteria, 48 were 

excluded, therefore 185 participants were included and randomized over the vaccine and 

control group, resulting in 155 vaccinated individuals and 30 individuals that served as control 

group. Data were collected in REDCap, a cloud-based electronic data collection system, with 

a server hosted at the Kilimanjaro Clinical Research Institute (KCRI) in Tanzania. 

 

Sample collection and processing  

Before vaccination (Day 0), stool, urine and blood samples were collected from all included 

participants. Urine samples were used to test for pregnancy and determine infections with 

Schistosoma species using point-of-care test for the circulating cathodic antigen (POC-CCA). 

Kato-Katz was performed on stool samples to detect Schistosoma and soil-transmitted 

helminth eggs. From blood collected in sodium heparin tubes peripheral blood mononuclear 

cells (PBMCs) were isolated and cryopreserved as described previously [13]. Blood collected 

in EDTA tubes, were centrifuged upon arrival to the KCRI laboratory and plasma was collected 

and stored at -80°C within two hours. To assess the pre- and post-vaccination antibody 

response to YF vaccination, plasma was collected both at Day 0 and Day 178 post-vaccination. 

For the Dutch study  EDTA plasma and PBMCs were collected and processed at similar 

timepoints and using identical protocols.  

 

Enzyme-linked immunosorbent assay (ELISA) 

To assess the YF virus antibody response, IgG specific to Yellow Fever Virus NS1 Protein was 

measured in plasma samples using enzyme-linked immunosorbent assay (ELISA). High-

binding half area 96-well ELISA plates (Corning) were coated with 12.5 ng/well Yellow Fever 

Virus NS1 Protein (NAC-YFV-NS1-100, The Native Antigen Company) in 0.1 M sodium 

carbonate buffer (pH 9.6) overnight at 4°C. Plates were washed thrice with washing buffer 

(0.05% Tween-20 in PBS) and blocked for 2h with 5% skimmed milk in PBS containing 0.1% 

Tween-20. Plates were incubated with 25 µL/well of 4-step 1:2.5 serially diluted sera with a 

starting dilution of 1:250 for 2h at RT. After washing 5 times, NS1-specific IgG were measured 

using goat anti-human IgG-HRP (109-035-098, Jackson Immuno Research) at 1:5000 in 0.5% 

skimmed milk in PBS with 0.1% Tween-20 and 1-step TMB substrate solutions (34021, 
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ThermoFischer Scientific). Measured absorbance values were normalized using standard curve 

obtained from IgG (I5154, Sigma Aldrich) with the known concentration on each plate. 

 

Innate baseline profiling   

Sample selection for innate baseline profiling 

From the 155 vaccinated participants, 50 individuals (25 urban and 25 rural) were randomly 

selected for innate baseline profiling. Samples were randomly selected after excluding samples 

with incomplete datasets due to loss-to-follow up (n=17), positive pregnancy test at day 178 

(n=6) or insufficient PBMCs (n=6). From the Dutch cohort all participants were selected, 

except for one that had insufficient PBMCs, which resulted in the inclusion of n=14 Dutch 

individuals. In total 64 individuals were selected for innate immune profiling that were 

measured in three batches. Each of these batches were matched for geographical location, age 

and sex and included a reference control to allow batch correction after acquiring.  

 

Ex vivo assays spectral flow cytometry 

Cells were thawed and washed in RPMI 1640 supplemented with 100 U/mL penicillin, 100 

µg/mL streptomycin, 1 mM pyruvate, 2 mM L-glutamine, 2mM Mg2+, 50 U/ml benzonase, 

and 20% Heat-inactivated Fetal Calf Serum (hiFCS). Thereafter, cells were resuspended in 

IMDM supplemented with 100 U/mL penicillin, 100 µg/mL streptomycin, 1 mM pyruvate, 2 

mM L-glutamine, and 10% hiFCS,  and adjusted to a concentration of 5 x 106 cells/mL. Then, 

cells were plated as 0.5 x 106 cells per well in a 96-well V bottom plate. The cells were washed 

in phosphate-buffered saline (PBS),  stained for viability with LIVE/DEADTM Fixable Blue 

(Thermofisher) and Human TruStain FcXTM (Biolegend), washed again twice in FACS buffer 

(PBS supplemented with 0.5% BSA, Roche) and then stained with 50 µL of surface staining 

cocktail. The surface staining antibody cocktail, prepared in FACS buffer with Brilliant Stain 

Buffer Plus (BD Biosciences) and True-Stain Monocyte BlockerTM (Biolegend), was added to 

the cells and incubated for 30 min at RT. The list of antibodies can be found in Table S1. Cells 

were then washed twice in FACS buffer and afterward fixed with the eBioscienceTM FoxP3 

Transcription Factor Staining Buffer Set (ThermoFisher) for 30 minutes at 4 ̊  C. Subsequently, 

cells were washed twice with FACS buffer and resuspended in 120 µL of FACS buffer until 

acquisition. All centrifugation steps before fixation were performed at 450 g at RT and after 

fixation at 800 g at 4 °C. 
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In vitro stimulation assay spectral flow cytometry  

After thawing the cells as described above, 0.5 x 106 cells per well were plated in a 96-well U-

bottom plate and rested for 1 hour at 37 ̊  C under 5% CO2. After resting, cells were stimulated 

with either YF vaccine (YF-17D, Sanofi Pasteur, Lot nr: X3E042V) at a concentration of 

50.000 IU/mL (0.01 MOI) dissolved in 10% hiFCS/IMDM, 2 µg/mL ssRNA40 (Invitrogen), 

0.2 µg/mL staphylococcal enterotoxin B (SEB; Sigma-Aldrich), or 10% hiFCS/IMDM for 23 

h at 37 ˚ C under 5% CO2. During the last four hours of stimulation, 10 µg/mL Brefeldin A 

(Sigma-Aldrich) was added. 

 

After stimulation, cells were resuspended in PBS containing 2 mM EDTA and left on ice for 

15 minutes, before transferring the cells to a 96-well V-bottom plate for staining. Thereafter, 

cells were washed in PBS, stained for viability with LIVE/DEADTM Fixable Blue 

(Thermofisher) and Human TruStain FcXTM (Biolegend), washed again twice in FACS buffer 

(PBS supplemented with 0.5% BSA, Roche) and then stained with 50 µL of surface staining 

antibody cocktail. The surface staining antibody  cocktail, prepared in FACS buffer with 

Brilliant Stain Buffer Plus (BD Biosciences) and True-Stain Monocyte BlockerTM (Biolegend), 

was added to the cells and incubated for 30 min at RT. The list of antibodies can be found in 

Table S1. Cells were then washed twice in FACS buffer and afterward fixed and permeabilized 

with the eBioscienceTM FoxP3 Transcription Factor Staining Buffer Set (ThermoFisher) for 30 

minutes at 4 ˚ C. Subsequently, cells were washes twice with the Permeabilization buffer from 

the eBioscienceTM FoxP3 Transcription Factor Staining Buffer Set and then stained with 

intracellular cocktail. The intracellular cocktail, prepared in the Permeabilization buffer with 

Brilliant Stain Buffer Plus (BD Biosciences), True-Stain Monocyte BlockerTM (Biolegend) 

and Human TruStain FcX™ (BioLegend), was added to the cells and incubated overnight at 4 

˚ C. Next day, cells were washed twice with eBioscienceTM Permeabilization buffer and were 

then resuspended in 120 µL of FACS buffer until acquisition. All centrifugation steps before 

fixation were performed at 450 g at RT and after fixation at 800 g at 4 °C. 

 

Cell acquisition 

Cells were acquired on a 5L-Cytek Aurora instrument at the Leiden University Medical Center 

Flow Cytometry Core Facility (https://www.lumc.nl/research/facilities/fcf/) with the 

SpectroFlo® v2.2.0.3 software (Cytek Biosciences). As controls, an unstained cell sample 

(pooled from all donors of the batch) and a single-stain sample for each antibody were used, 

Chapter 5

130



 
 

which were either 0.5 x 106  million PBMC or 50 µl UltraComp eBeads™ (Invitrogen). All 

reference controls underwent the same protocol as the fully stained samples, including washes, 

buffers used, and fixation and permeabilization steps. 

 

Data analysis and statistical analysis  

Transformation of spectral flow cytometry data  

To obtain live single cells, manual gating of live, single CD45+ cells was performed using the 

OMIQ software (www.omiq.ai). Thereafter, cell subsets were identified based on the 

expression of surface markers and according to a pre-defined gating strategy (Figure S1-S2). 

Data that was clustered was then exported as FCS files. The ex vivo samples were batch 

corrected using CytoNorm (on default settings) and the compensated expression matrices 

arcsinh transformed, with a cofactor of 6000, before the data was merged into one dataset. 

After running CytoNorm, one cell had a batch corrected value of negative infinity. This value 

was changed to be the 1% percentile expression value for that fluorophore, across all cells for 

that individual. Post CytoNorm, and arcsinh transformation, any values above 10 or below -10 

were clipped. The compensated expression matrices for the stimulated samples were also 

arcsinh transformed, with a cofactor of 6000. No batch correction was carried out for the 

culture samples. 

 

Dimensionality reduction  

For both the ex vivo merged datasets, a subsample of 100,000 cells was extracted randomly 

from the merged datasets and FItSNE ran on the arcsinh transformed batch corrected 

expression values of the ex vivo data subset, and the arcsinh transformed expression values of 

the culture data subset. For FItSNE, every marker associated with fluorophore was included 

as part of the feature space, except for CD45 and live/dead. For the principal component 

analysis, only the ex vivo dataset was used. In this analysis the frequency as percentage of total 

CD45+ cells of all the cell types manually gated were used. In addition, the 95th percentile 

expression of the activation markers were scaled to a mean of 0 and a standard deviation of 1 

and thereafter included in the principal component analysis. 
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Cytokine gating  

Cell type specific created to enable classification cells into cytokine positive and cytokine 

negative cells. For each of the fifteen gated innate cell types, a threshold was calculated to be:  

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥, 99)  +  ( 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥, 99)  × 0.2 ) 

 

Where 𝑥𝑥 is the arcsinh transformed expression of a given cytokine in a given innate cell type 

in the unstimulated condition (upon culturing with only media). For the media only, SEB, 

ssRNA40 and YF-17D samples, cells were assigned as producers of a particular cytokine if 

they were above the threshold for their cell type. 
 
Statistical analyses 

All pairwise comparisons were carried out using Mann-Whitney U test with Benjamini-

Hochberg correction. The number of comparisons to adjust for was based on the number of 

lineages (i.e. 5), not the number of gated subsets. For multiple comparisons of more than 2 

groups, a Kruskal-Wallis test was used, with Dunn’s test to carry out post-hoc pairwise 

comparisons between the groups. The FDR and alpha were set to be 5%.  Differences in 

cytokine producing cells between high and low responders were only considered if the median 

percentage was greater than 0 across all individuals, and differences in activation marker 

expression were considered if the median of the 95th percentile expression, across all 

individuals, was greater than 1. PERMANOVA was performed using the adonis function of 

the vegan R package with 999 permutations. The input to the function was a Euclidean distance 

matrix of each individual's position across the first two principal components. All statistical 

analyses were carried out in R version 4.4.1. The packages used, and their versions, are as 

follows: rstatix 0.7.2, cytolib 2.16.0, kohonen 3.0.12, CytoNorm 2.0.2, igraph 2.2.1, ggpubr 

0.6.0, matrixStats 1.4.1, stringr 1.5.1, flowCore 2.16.0 and vegan 2.6-8. 

 

Results  
Characteristics of the study population and antibody responses to YF-17D vaccination 

To investigate how the innate immune cell compartment differs in individuals across and 

within different geographical areas and how it may impact vaccine response, volunteers were 

recruited from rural and urban areas of Tanzania and an urban area of the Netherlands. In total, 

185 Tanzanians and 15 Dutch were recruited for the study, with 93 Tanzanians from urban and 
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92 from the rural area. All the Dutch and 155 of the Tanzanians (n=78 rural and n=77 urban) 

were vaccinated with the YF-17D vaccine, the remaining 30 Tanzanians served as a control 

(no vaccine) group. Dutch vaccinees were on average younger than Tanzanian vaccinees and 

more females were included in the Dutch compared to the Tanzanian cohort (Table S2). The 

characteristics of the Tanzanians that received the vaccine and that served as control group did 

not differ (Table S3).  

 

The vaccine immunogenicity was determined by measuring IgG specific to Yellow Fever non-

structural protein 1, here referred to as anti-NS1 IgG, at baseline and day 178 post-vaccination 

(~6 months). Data for both these timepoints was available from 147 of the 155 vaccinated 

Tanzanians (n=70 rural and n=77 urban) and 12 of the 15 Dutch individuals (Figure 1A). The 

demographics of the individuals for which plasma from both timepoints were available did not 

differ from that of the total vaccinated subjects (Table S4-5).  To examine the innate immune 

profile at baseline, we profiled the PBMC of 50 individuals (n=25 rural and n=25 urban) that 

were randomly selected from the 155 vaccinated Tanzanians. From the Dutch cohort all 

participants with sufficient PBMCs were included, which resulted in innate baseline profiling 

of 14 Dutch individuals (Figure 1A). The age, sex and anti-NS1 IgG levels of the individuals 

selected for innate baseline profiling did not significantly differ from that of all vaccinated 

subjects included in the study (Table S4-5). 

 

When comparing the anti-NS1 IgG levels between the cohorts, the median antibody levels did 

not significantly differ between the groups, but within the groups heterogeneity in the antibody 

response was observed (Figure S3A).  Visualizing the antibody response at baseline and at 

Day 178 in all vaccinated individuals together on a histogram showed two noticeable peaks 

(Figure S3B). These peaks were modelled using a two-component Gaussian Mixture Model 

(GMM) (Figure 1B). All but three of the pre-vaccination values and all but one of the post-

vaccination values of the control group (no vaccine) were positioned into this lower peak 

(Figure S3C-D).Therefore individuals whose post-vaccination anti-NS1 IgG levels clustered 

in this peak were designated as “low responders”, while individuals in the higher peak were 

designated as “high responders”. Using this categorization, in total 70 individuals were 

designated as high responders, whereas 89 individuals were low responders (Figure 1B). 

Examining the antibody response per group, showed that 83% (n=10) of Dutch individuals 

were in the high responders group, whereas 38% (n=29) of the urban Tanzanians and 44% 
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(n=31) of the rural Tanzanians were high responders (Figure 1C). The proportion of high 

responders was significantly greater in Dutch compared to all Tanzanians, whereas the 

proportion in urban and rural Tanzania was similar (Table S6).  

 

 
Figure 1. Studying the antibody response to yellow fever vaccination and innate immune baseline profile in 

rural and urban Tanzanians and Dutch vaccinees 

(A) Graphical overview of the study population showing the number of individuals across the three geographical areas 
(Dutch and rural and urban Tanzanian) who had their PBMCs and plasma sampled (left). Graphical overview of the 
processing and acquisition steps for the PBMC and plasma samples (right). (B) Histogram visualising the anti-NS1 
IgG levels of vaccinated individuals, with the individuals coloured by whether they were classified as high or low 
responders, based on a GMM model. The black lines show the distributions of the two Gaussian models. (C) Barplot 
showing the percentage of vaccinated individuals that belong to either high or low responders across the geographical 
areas, with each bar also showing the total number of individuals according to geographical area. 
 
 

Baseline difference in the innate immune profiles of Dutch and Tanzanians  

The innate immune profile was characterized before vaccination, at baseline, to assess whether 

signatures could be discerned that would predict antibody responses after vaccination. PBMCs 

were profiled from a random selection of 50 Tanzanians (18/32 high vs low responders equally 
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split between rural and urban, n=25 urban, n=25 rural) and 14 Dutch (10/2 high vs low 

responders, n=2 no day 178) vaccinees. One individual from the urban Tanzanians was 

removed due to low recovered cell count following staining. Spectral flow cytometry was 

performed using a panel to measure 26 markers for the ex vivo condition and 32 for the in vitro 

stimulated assay (Table S1). Manual gating using OMIQ, allowed us to identify monocytes, 

ILCs, Natural Killer (NK) cells, Myeloid Dendritic Cells (mDCs), plasmacytoid dendritic cells 

(pDCs) and Basophils (Figure 2A). Moreover, the monocyte population, here defined as CD3-

CD19- CD88+ and/or CD14+, was further divided into four groups based on the expression of 

CD14 and CD16; classical monocytes (CD14+ CD16), intermediate monocytes (CD14+ 

CD16+), non-classical monocytes (CD14- CD16+) and CD14- CD16- monocytes. Moreover, 

the ILCs were classified as either ILC1, 2 and 3; the myeloid DCs could be subdivided into 

cDC1, cDC2 or CD1c-CD141- DC and the NK cells were split into three groups based on 

expression of CD16 and CD56 (Figure S4). To examine the activation status of these subsets, 

the 95th percentile expression of each activation marker (Table S1) for each of the manually 

gated innate cell types was determined.  

 

To explore the overall innate immune baseline profile of rural and urban Tanzanians and Dutch 

individuals, a principal component analysis was performed using the frequencies of the 

manually gated innate cell types and the 95th percentile expression of activation markers in 

each of these cell types of the ex vivo samples. A significant separation (PERMANOVA p = 

0.001) was seen across the first two principal components, with the Dutch being distinct from 

the rural and urban Tanzanians, whereas the rural and urban Tanzanians overlapped greatly 

(Figure 2B). To further examine the cell subsets and characteristics that contribute to the 

differences in the overall innate baseline profiles across the geographical areas, we compared 

the individual cell frequencies and expression of activation markers between rural and urban 

Tanzanians and Dutch (Figure 2C-D). With the exception of classical monocytes, which were 

higher in Dutch compared with Tanzanians, other myeloid cell subsets were significantly lower 

in the Dutch (Figure 2C). Moreover, the frequency of ILC2 and basophils, which indicate 

expansion of type-2 responses was significantly higher in urban Tanzanians compared to rural 

Tanzanians or the Dutch (Figure 2C). When comparing the activation status using the 95th 

percentile of the expression of the activation markers in the innate cell types a higher 

expression of TIM-3, an immunoinhibitory molecule, was observed in classical monocytes and 

cDC2s in Tanzanians compared to Dutch. Moreover, the expression of TIGIT, a marker of NK 
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activation and/or exhaustion, was significantly increased in CD16+ and CD16- NK cells of 

Tanzanians compared to Dutch equivalent cells (Figure 2D). Thus, the innate immune profile 

at baseline ex vivo of Dutch is distinct of that of Tanzanians, whereas urban and rural Tanzanian 

innate baseline profiles show great resemblance.  

 

 
Figure 2. Innate immune profile at baseline of Dutch is distinct from that of Tanzanians 

(A) FItSNE projection of a subset of the total innate cells from the ex vivo samples. Lineages of cells are outlined and 
annotated. (B) Principal component (PC) analysis of innate immune cells derived ex vivo from patients. PCs were 
generated from the 95th percentile expression of activation markers and frequency of innate cell types (as a percentage 
of total CD45+ cells). Individuals are coloured by the geographical area where the individual is from, and the coloured 
outline shows the 95th percentile area for each of the three geographical areas. PERMANOVA comparing the 
geographical areas is also shown. Boxplots showing the frequency of various innate immune cell types (as a percentage 
of total CD45+ cells) (C) and 95th percentile expression of activation markers TIGIT and TIM-3 (D) in rural 
Tanzanians, urban Tanzanians and Dutch. The boxplots are coloured by geographical area and contains the median 
(horizontal line), mean (dot) and 25th/75th percentiles with whiskers extending to ±1.5 × IQR. Differences in innate 
immune cell frequency and 95th percentile expression of activation marker across the three groups was assessed with 
Kruskal-Wallis test, with post-hoc pairwise comparisons achieved with Dunn’s test, with Benjamini-Hochberg 
correction to account for multiple testing. ns = p > 0.05, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 
0.0001. 
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Frequency of ex vivo classical monocytes at baseline associates with post-vaccination 

antibody responses in Tanzanians 

We next investigated whether differences between the vaccine responder groups, in terms of 

innate immune cells, could be detected at baseline. As only few Dutch were low responders 

and the innate immune signature at baseline of the Dutch was distinct from that of Tanzanians 

(Figure 1C and 2B), the high and low responders were compared for the Dutch and Tanzanian 

cohorts separately. Upon comparison, a significant increase in the frequency of classical 

monocytes was found in the high compared to low responding Tanzanians and this difference 

remained significant when Tanzanians were split between  urban and rural (Figure 3A-B). As 

the frequency of classical monocytes in both high and low Dutch responders resembled that of 

high responding Tanzanians, no significant difference was found between high and low 

responding Dutch, although only few Dutch were low responders (Figure 3C). Besides 

differences in the frequency of classical monocytes, no statistically significant differences were 

found the frequency of other cell types or in the level of expression of activation markers 

within cell subsets between high and low responders. 
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Figure 3. High responding Tanzanians have increased frequency of ex vivo classical monocytes at baseline 

compared to responding Tanzanians:  

Boxplots showing the frequency of CD16-CD14+ monocytes (as a proportion of the total CD45+ cells) between the 

high and low responders of all Tanzanian (A), rural and urban Tanzanians (B) and Dutch individuals (C). The 

boxplots are coloured by YF-17D vaccine response and geographical area, and contain the median (horizontal line) 

and 25th/75th percentiles with whiskers extending to ±1.5 × IQR. Changes in CD16-CD14+ monocyte frequency was 

assessed using a Mann-Whitney U test, with multiple test corrections with Benjamini-Hochberg. ns = p > 0.05, * = p 

< 0.05, ** = p < 0.01. 

 
Cultured innate immune cell profiles associated with vaccine response in Tanzanians  

We next examined whether responsiveness of innate immune cells to a challenge associates 

with antibody response to vaccination. To this end, in vitro response to either YF-17D, the 

TLR-8 ligand ssRNA40, the superantigen Staphylococcal Enterotoxin B (SEB) or medium as 

control (unstimulated culture) was determined. Similar to the ex vivo results, in the 

unstimulated culture, the frequency of classical monocytes were significantly increased in the 

high responding Tanzanians compared to the low responders (Figure 4A). In addition, upon 

culturing with medium the frequency of cDC2s and CD1c- CD141- DCs was significantly 

associated with the antibody response to YF in all Tanzanians. The frequency of cDC2s was 

increased in high compared to low responders, whereas for CD1c- CD141- DCs, the opposite 

was observed with lower frequencies in the high responding Tanzanians (Figure 4A). 

Interestingly, no such differences were seen in the high and low Dutch responders (Figure S5). 

In these unstimulated cultures, cDC2s producing IL-10 and CD1c- CD141- DCs producing 

IFN-alpha were different between high and low responding Tanzanians, as high responders 

had reduced IL-10+, but increased IFN-alpha+ CD1c- CD141- DCs (Figure 4B). Again, none 

of these differences between the high and low Dutch responders reached statistical significance 

(Figure S5). 
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Figure 4. Frequency and cytokine production in dendritic cells in unstimulated culture are associated with the 

response to yellow fever vaccination in Tanzanians:  

Boxplots showing the frequency of various innate immune cell types (as a percentage of total CD45+ cells) (A) and 

frequency of cytokine producing cells (as a percentage of the total parent cell) (B) between all Tanzanian high and 

low responders to the YF-17D vaccine, when the immune cells were cultured in media. The boxplots are coloured by 

YF-17D vaccine response and contains the median (horizontal line), mean (dot) and 25th/75th percentiles with 

whiskers extending to ±1.5 × IQR. Differences in innate immune cell frequency and cytokine producing cell frequency 

across between high and low responders was assessed with Mann-Whitney U test, with Benjamini-Hochberg 

correction to account for multiple testing. ns = p > 0.05, * = p < 0.05. 

 

Upon stimulation with YF-17D, ssRNA40 and SEB, the innate cells responded by increased 

cytokine production, however when comparing the cytokine production between high and low 

responding Tanzanians we did not find statistical differences for any of the cytokines in any of 

the cell types after multiple testing correction (Figure S6). Comparison of the cell frequencies 

upon stimulation between high and low responders from Tanzania revealed that the differences 

largely reflected what was observed in unstimulated cultures (Figure 4). For the YF-17D 

stimulated culture, the frequency of CD1c-CD141- DCs was higher in the low responders, 

while that of classical monocytes and cDC2s was higher in the high responders, however these 

did not reach statistical significance (Figure 5A). The same trend, but with statistically 

significant differences was found in response to ssRNA40 with the frequencies of classical 

monocytes  and cDC2s being higher but CD1c-CD141- DC lower in high responders compared 
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to low responders (Figure 5B). Finally, SEB stimulated cultures showed similar patterns 

(Figure 5C).  

Figure 5. Changes in cell frequency upon culturing differ between stimuli, but cell types associated with 

antibody response to yellow fever vaccination show overlap across stimulations:  
Boxplots showing the frequency of CD16-CD14+ monocytes (left), cDC2 (middle) and CD1c-CD141- DC (right) (as 

a proportion of the total CD45+ cells) between all Tanzanians who are high or low responders to the YF-17D vaccine. 

The boxplots are grouped based on whether the innate immune cell cultures were exposed to YF-17D (A), ssRNA40 

(B) or SEB (C). The boxplots are coloured by YF-17D vaccine response and contains the median (horizontal line), 

mean (dot) and 25th/75th percentiles with whiskers extending to ±1.5 × IQR. Changes in the cell type frequency was 

assessed using a Mann-Whitney U test, with correction for multiple comparisons being achieved with Benjamini-

Hochberg. ns = p > 0.05, * = p < 0.05, ** = p < 0.01. 
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Discussion 
In summary, examining the antibody response to YF vaccination across populations revealed 

that most Dutch were high responders. Although high frequency of low responders were 

observed among Tanzanian vaccinees, no difference in the proportion of high and low 

responders between urban and rural Tanzania was observed. Comparing the innate baseline 

immune profiles across the geographical areas, showed that the overall innate immune profile 

at baseline of Dutch was distinct from that of Tanzanians and that Dutch had increased 

frequencies of classical monocytes and decreased frequencies of non-classical monocytes and 

multiple myeloid dendritic cell subsets. Within the Tanzanian cohort, high responders had a 

higher frequency of baseline classical monocytes, both ex vivo and upon in vitro stimulation, 

in comparison to low responders. When PBMCs were cultured, we found an increased 

frequency of cDC2s and reduced frequency of CD1c- CD141- DCs in low responding 

Tanzanians. Moreover, in unstimulated cultures both IL-10 production by cDC2s as well as 

IFN-alpha concentration in CD1c- CD141- DCs was increased in the high responders.  

 
The increased antibody responses in Dutch compared to Tanzanian found in the current study, 

aligns with previous reports, as higher YF-17D specific CD8+ T cell and YF neutralizing 

antibody (nAb) responses have been found in Swiss compared to Ugandans [6]. As the 

antibody response between urban and rural Tanzanians did not significantly differ, this deviates 

from the findings of a recent study in Uganda. This study reported significantly higher nAb 

upon YF vaccination in urban individuals compared to helminth-endemic rural individuals 28 

days post-vaccination and to malaria-endemic rural individuals 1 year after vaccination [14]. 

As helminth and malaria prevalence was low in the current study these discordant results may 

be explained by different levels of exposure to these pathogens between the Tanzanian and 

Ugandan cohorts. However, neither preventive treatment for malaria nor intensive praziquantel 

administration against Schistosoma mansoni improved the response to YF vaccine in the same 

study [15, 16]. As such, either past exposures or differences in the exposure to other 

environmental factors such as dietary habits should be considered [17].   

 
To further understand the immunological mechanisms underlying variation in the response to 

YF vaccination, we profiled the innate immune system at baseline from a subset of Dutch and 
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Tanzanian vaccinees. The frequency of non-classical monocytes were decreased along the 

rural-urban gradient, while the frequency of classical monocytes showed the opposite trend. 

This aligns with findings of an earlier study showing increased proportions of intermediate and 

non-classical monocytes in Africans, while the frequency of classical monocytes followed a 

rural-urban gradient being highest in Europeans [18]. Within the Tanzanian cohort, the 

frequency of classical monocytes was significantly increased in high compared to low 

responders, both ex vivo and upon culturing, and when urban and rural were analyzed 

separately. The study of Muyanja et al. (2014) found a negative correlation between monocyte 

counts at baseline and YF nAb in the Ugandan cohort [6]. Moreover, when combining the data 

of Swiss and Ugandans vaccinees, the frequency of intermediate monocytes at baseline 

negatively correlated with YF nAb, although this was clearly driven by the distinct responses 

between geographical areas [6].  As characterization of the monocyte compartment can be 

challenging due to downregulation of markers upon culturing and may be affected by the 

gating strategy and cytometry panel used, the differential findings in our study and the study 

of Muyanja et al. (2014) should be interpreted with caution. A more standardized way of 

characterizing monocytes [19, 20]  would allow comparison of different studies and will 

facilitate unraveling the role monocytes in response to (YF) vaccination.  

 
Next to monocytes, differences in the proportion and cytokine response of myeloid dendritic 

cells between high and low responding Tanzanians were observed when PBMCs were cultured. 

In low responders, we detected an expansion of CD1c- CD141- DCs, a subset known to be 

enriched for type 1 interferon signaling and to share signatures with CD16+ monocytes [21].  

Interestingly, although their frequency was decreased, the IFN-alpha production by these cells 

in unstimulated cultures was increased in high responders, indicating that in low responders 

the type 1 interferon production by these DCs might be hampered.  Expansion of CD1c- 

CD141- DCS defective in their IFN signaling has previously been observed in SARS-CoV-2-

infected individuals  and these DCs were characterized by reduced ability for immune cross-

talk and high mitochondrial activity [22]. Efforts should be made to further characterize the 

CD1c- CD141- DC population identified in the current study as this population is likely to 

comprise of multiple cell subsets given their high frequency upon culture. In addition to 

expansion of CD1c- CD141- DCs, increased frequency of IL-10+ cDC2s upon (unstimulated) 

culturing was observed in low versus high responding Tanzanians. A negative association 

between high IL-10 levels at baseline and reduced vaccine response has been reported 
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previously, as the level of IL-10 secreted by baseline PBMCs incubated with YF-17D 

overnight negatively correlated with YF nAb levels in Ugandans [6]. Given that IL-10 is an 

anti-inflammatory cytokine that regulates the T cell responses [23], enhanced IL-10 levels at 

baseline may suppress T cell responses upon vaccination, thereby hampering vaccine response. 

Indeed, a study in mice showed that increased levels of IL-10 were associated with reduced T 

cell responses and that blocking IL-10 during vaccination resulted in enhanced effector T cell 

responses and improved vaccine efficacy [24]. Together, these results indicate that alterations 

in subsets of myeloid dendritic cells are associated with reduced vaccine response. Therefore, 

single cell analysis of these dendritic cell subsets would be highly valuable to gain insight into 

the pathways involved and how these may be modulated to increase vaccine response.   

 

Inherent to the preliminary nature of the analysis presented here, there are some limitations to 

be accounted for. In the current analysis, the characterization of the innate immune 

compartment was limited to identification of the main innate immune cell types by manual 

gating and the expression of the activation markers and cytokine production within these major 

innate immune subsets. Additional analysis such as sub-clustering of these major cell types 

which takes into account co-expression would enable us to identify and define smaller subsets 

and study their role in the response to YF vaccination. Moreover, the innate immune system 

of a limited number of subjects was profiled at baseline. As differences between the urban and 

rural populations included in the current study are likely to be relatively small, immune 

profiling of additional vaccinees from rural and urban Tanzanians might provide more power 

to detect differences.  

In conclusion, upon YF vaccination the Dutch demonstrated increased antibody responses 

compared to Tanzanians, whereas the proportion of low responders was similar between urban 

and rural Tanzanians. Within the Tanzanian cohort, low responders were characterized by 

decreased frequency of classical monocytes and IFN-alpha production by CD1c- CD141- DCs, 

whereas IL-10 production by cDC2s in unstimulated cultures was increased. These results 

indicate that differences in the myeloid compartment at baseline may be associated with YF 

vaccine response, although additional characterization is needed to understand how specific 

cell subsets contribute to vaccine response variation. The insights obtained by this study 

contribute to our understanding of the immunological mechanisms underlying vaccine 

responses, which is essential for the development of interventions needed to overcome vaccine 

hyporesponsiveness.  
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Supplementary material  

Supp. Figure 1 Gating strategy ex vivo spectral flow cytometry  

Example of the gating strategies used to identify the cell types present in the ex vivo derived PBMCs as 

captured using spectral flow cytometry. The x and y axes represent the compensated fluorescence values of 

specific fluorophore/marker combinations or stain, with each dot representing an event and the events 

coloured by event density. Gating was carried out using OMIQ. 
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Supp. Figure 2 Gating strategy in vitro stimulation spectral flow cytometry 

Example of the gating strategies used to identify the cell types present when PBMCs are cultured for 24 hours 

with either Yellow Fever vaccine, SSRNA40 or SEB as captured using spectral flow cytometry. The x and y 

axes represent the compensated fluorescence values of specific fluorophore/marker combinations or stain, 

with each dot representing an event and the events coloured by event density. Gating was carried out using 

OMIQ. 
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Supp. Figure 3 Yellow fever antibody response across geographical areas and in the control group  
(A) Boxplot showing the Log2 fold change of anti-NS1 IgG levels in individuals from baseline to 178 days 

post-vaccination with YF-17D. The boxplots are coloured by the geographical area that the individual is from 

and contains the median (horizontal line), mean (dot) and 25th/75th percentiles with whiskers extending to 

±1.5 × IQR. Differences in log2FC between the different areas was assessed with Kruskal-Wallis test, with 

post-hoc multiple comparisons achieved with Dunn’s test using Benjamini-Hochberg correction. ns = p > 

0.05. (B) Histogram visualising the anti-NS1 IgG levels from individuals at baseline and 178 days post-

vaccination with YF-17D. Histogram visualising the anti-NS1 IgG levels of vaccinated individuals at 

baseline (C) and unvaccinated control individuals (D), with the individuals coloured by whether they were 

classified as high or low responders, based on the GMM model shown in Figure 1B. The black lines show 

the distributions of the two Gaussian models while the purple vertical line denotes the decision boundary 

between the two clusters.  
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Supp. Figure 4 Expression of lineage markers in Ex vivo dataset cells 

Heatmap showing the median signal intensity (MSI) of lineage markers across the OMIQ defined gates. Data 

shown is from all ex vivo spectral flow cytometry samples collected from Dutch and Tanzanian individuals. 

 

Supp. Figure 5 Difference in frequency and cytokine production in medium condition between low and 

high responding Dutch vaccines 

Boxplots showing the frequency of various innate immune cell types (as a percentage of total CD45+ cells) 

(A) and frequency of cytokine producing cells (as a percentage of the total parent cell) (B) between Dutch 

high and low responders to the YF-17D vaccine, when the immune cells were cultured in media. The boxplots 

are coloured by YF-17D vaccine response and contains the median (horizontal line), mean (dot) and 25th/75th 

percentiles with whiskers extending to ±1.5 × IQR. Differences in innate immune cell frequency and cytokine 
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producing cell frequency across between high and low responders was assessed with Mann-Whitney U test, 

with Benjamini-Hochberg correction to account for multiple testing. ns = p > 0.05. 
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Supp. Figure 6 Cytokine responses upon culturing with different stimuli across cell subsets  

Heatmap showing the Log2 fold change (Log2FC) in cytokine+ cell frequency (as a percentage of total 

parent cell) between the media only culture and the YF-17D, ssRNA40 and SEB stimulated for all 

Tanzanian derived cultures. Each column represents an individual, with the individuals being grouped by 

whether they are a high or low responder (top grouping) and which stimuli was used during the culture 

(bottom grouping). A high Log2FC indicates that the frequency of cytokine+ cells is higher in the given 

stimulated condition compared to the media-only. Log2FC below 0 have been clipped to 0 for the purposes 

of this plot. 
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Table S1. Flow cytometry Antibody Panels  

 

Ex vivo panel indicated that the antibody was only used in the panel to the ex vivo condition Culture panel 

indicates that the antibody was only used in the panel to measure after in vitro stimulation with medium, 

YF-17D, ssRNA40 or SEB for 24 hours  Both panel indicates that the anybody was used for both in vitro 

stimulation and ex vivo measurements.  

 

No. Panel Target Fluorochrome Dilution Clone  Source Catalogue Type 
1 Both CD294 

(CRTH2) 
BV605  50 BM16 Biolegend 350121 Lineage 

2 Both CD279 
(PD-1) 

PE/Fire 700 50 A17188B Biolegend 621621 Activation 

3 Both CD11c BV750 50 B-ly6 BD 747459 Lineage 
4 Both CD159c 

(NKG2C) 
BUV615 50 134591 BD 751059 Activation 

5 Both CD274 
(PD-L1) 

APC/Fire 810 50 MIH3 Biolegend 374515 Activation 

6 Both CD117 
(c-kit) 

PE/Cy5 50 104D2 Biolegend 313210 Activation 

7 Both CD178 
(FasL) 

PE/Cy7 50 NOK-1 Biolegend 306417 Activation 

8 Both CD161 BUV563 100 HP-3G10 BD 749223 Activation 
9 Both TIGIT BV421 200 741182 BD 747844 Activation 
10 Both KLRG1 APC/Fire 750 200 SA231A2 Biolegend 367717 Activation 
11 Both CD14 BUV395  200 M5E2 BD 740286 Lineage 
12 Both CD45 Spark Blue 550 200 2D1 Biolegend 368549 Lineage 
13 Both CD88 AF700  200 S5/1 Biolegend 344314 Lineage 
14 Both CD366 

(TIM-3) 
BUV737 400 7D3 BD 568680 Activation 

15 Both CD123 BUV805 400 6H6 BD 751840 Lineage 
16 Both CD40 BV785  400 5C3 Biolegend 334339 Activation 
17 Both CD3 Spark Blue 574  400 UCHT1 Biolegend 300487 Lineage 
18 Both CD56 Spark NIR 685 800 5.1H11 Biolegend 362563 Lineage 
19 Both HLA-DR BV570  800 L243 Biolegend 307637 Activation 
20 Both CD141 BB700 1600 1A4 BD 742245 Lineage 
21 Both CD16 BUV496 1600 3G8 BD 612944 Lineage 
22 Both CD163 BUV661 1600 MAC2-

158 
BD 752880 Activation 

23 Both CD1c BV480 1600 F10/21A3 BD 746677 Lineage 
24 Both CD57 Pacific Blue  3200 HNK-1 Biolegend 359607 Activation 
25 Ex 

vivo 
CD127 RB744 50 HIL-7R-

M21 
BD 570607 Lineage 

26 Ex 
vivo 

CD19 BV510 400 HIB19 Biolegend 302241 Lineage 

27 Culture CD19 Spark Blue 574 100 SJ25C1 Biolegend 363048 Lineage 
28 Culture CD7 BV510 200 M-T701 BD 563650 Lineage 
29 Culture IFN-

gamma 
BV650 1600 4S.B3 Biolegend 502537 Cytokine 

30 Culture TNF-
alpha 

RealBlue780 12800 Mab11 BD 569091 Cytokine 

31 Culture IL12p70 APC 50 C11.5 BD 554576 Cytokine 
32 Culture IFN-alpha PE-Vio 615 100 REA1013 BD 560097 Cytokine 
33 Culture IL-10 BV711 100 JES3-9D7 BD 564050 Cytokine 
24 Culture IL1b FITC 1600 JK1B-1 Biolegend 508206 Cytokine 
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Table S2.  Baseline characteristics of the vaccinated study population 

 

 
N – 170 participants. Values represent the number of participants (percentage of total) and median 

(interquartile range [IQR]) for categorical and continuous variables respectively. Comparisons between 

vaccinated Dutch and all vaccinated Tanzanians were performed using Pearson’s Chi-squared test for 

comparing Sex, Fisher’s exact test for Age category and Wilcoxon rank sum test for Age. 
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Table S3. Baseline characteristics of the vaccinated and unvaccinated Tanzanian study population 

 

 
N – 185 participants. Values represent the number of participants (percentage of total) and median 

(interquartile range [IQR]) for categorical and continuous variables respectively. Comparisons between 

vaccinated Dutch and all vaccinated Tanzanians were performed using Pearson’s Chi-squared test for 

comparing Sex and Age category, and Wilcoxon rank sum test for Age. 
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Table S4. Comparisons of characteristics between all, plasma anti-NS1 IgG measured and PBMC 

sampled vaccinated Dutch individuals 

 

 
Values represent the number of participants (percentage of total) and median (interquartile range [IQR]) for 

categorical and continuous variables respectively. Comparisons between the three populations were 

performed using Fisher’s exact test for comparing Sex and Kruskal-Wallis rank sum test for Age and anti-

NS1 levels. 

 

Table S5. Comparisons of characteristics between all, plasma anti-NS1 IgG measured and PBMC 

sampled vaccinated Tanzanian individuals 
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Values represent the number of participants (percentage of total) and median (interquartile range [IQR]) for 

categorical and continuous variables respectively. Comparisons between the three populations were 

performed using Pearson’s Chi-squared test for comparing Sex and Kruskal-Wallis rank sum test for Age and 

anti-NS1 levels. 

 

Table S6. Differences in frequencies of vaccine responders between Dutch and Tanzanians, and Rural 
and Urban Tanzanians 

 

 
 

N – 158 participants for Dutch and all Tanzanians, N – 146 for all Tanzanians. Values represent the number 

of participants (percentage of total). Comparisons between the frequency of high and low vaccine responders 

were performed using Pearson’s Chi-squared test. 
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Abstract 

Vaccine responses vary across populations and are influenced by numerous intrinsic 

and extrinsic factors, including the gut microbiota. However, studies linking microbiota 

composition to vaccine immunogenicity in low- and middle-income countries are 

sparse. In this study, we examined the gut microbiota of 143 healthy rural and urban 

living Tanzanians who participated in a yellow fever vaccine (YF-17D) trial. We found 

significant differences in gut microbiota profiles between rural and urban participants. 

Rural-associated microbiota showed higher diversity and enrichment of taxa like 

Prevotella and Succinivibrio, which were linked to dietary intake patterns. Yellow fever 

neutralizing antibody titers were higher in rural compared to urban participants. 

Interestingly, a subset of urban individuals with a rural-like microbiota had higher 

antibody titers and faster waning than those with a more industrialized microbiota. 

These findings suggest that gut microbiota composition might be linked to vaccine 

immunogenicity, potentially outweighing the influence of living location. 

Keywords: Yellow fever vaccine, YF-17D, microbiota, 16S-rRNA gene sequencing, 

neutralizing antibody, rural/urban differences, Tanzania. 
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Introduction 

Vaccines play a critical role in the prevention of infectious diseases, especially in high-

burden populations[1-5]. However, vaccine-induced immune responses vary across 

populations. Lower vaccine immunogenicity and efficacy (‘hypo-responsiveness’) is 

mainly observed in rural areas in low- and middle-income countries (LMICs), 

especially when compared to high-income countries (HICs) or to urban areas within 

the same countries[6-9]. Vaccine responses are impacted by a range of extrinsic and 

intrinsic factors, including host (age, sex, genetics, co-morbidities), behavioral (e.g. 

smoking) and environmental (rural/urban living location, season) factors, diet and 

nutrition, pre-existing immunity and vaccine factors (vaccine type, adjuvants, dose and 

administration route)[10-12]. Evidence suggests that the gut microbiome influences 

immune system development and regulation, thereby affecting vaccine responses[13-

19].  Like vaccine responsiveness, the gut microbiota is highly variable across age, 

geographical locations and between people of different lifestyles[20-23]. Broad 

differences in gut microbiota composition and diversity have been observed between 

individuals living in rural and urban areas in LMICs[23-27]. Generally, these rural 

living individuals show a predominance of bacteria capable of polysaccharide 

degradation and fermentation, including Prevotella and other commensal bacteria such 

as the spirochaete Treponema succifaciens, which is enriched in non-industrialized 

populations[20,23,24,28,29]. In contrast, urban living individuals, who generally 

consume more processed foods and refined sugars, have a less diverse gut microbiota 

characterized by high abundance of Bacteroides[23,26,30,31].   

 
Gut microbiota variation has been linked to both humoral and cellular vaccine 

responses6 with the strongest associations found in mice receiving non-adjuvanted 

vaccines (e.g. non-adjuvanted influenza vaccine and inactivated polio vaccine)[32,33] 

The mechanisms underlying these associations include the production of 

immunomodulatory metabolites such as short-chain fatty acids[6,33]. In addition, it has 

been shown that microbial ligands from the microbiome may serve as natural vaccine 

adjuvants34. Indeed, studies in knockout mice have shown that innate sensing of 
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bacterial flagellin in the gut microbiome can provide adjuvant signals enhancing the 

antibody response to non-adjuvanted vaccines such as trivalent influenza vaccines 

(TIV) and polio vaccine[32]. The role of the microbiome in live-attenuated (self-

adjuvanted) vaccine responses remains contentious. While studies on the yellow fever 

vaccine show that antibody responses in antibiotic-treated mice are similar to those in 

non-treated mice, suggesting minimal microbiome influence[32,34], there is also 

research indicating that the microbiome may impact responses to other live-attenuated 

vaccines, like BCG[35-37]. These findings so far suggest variation in associations 

between the host microbiome and the response to specific vaccines.  In humans, similar 

in-human antibiotic intervention studies have not been performed for self-adjuvanted 

vaccines. Therefore, it is currently unknown whether the microbiota plays a role in 

potentiating the immune responses to self-adjuvanted vaccines, such as yellow fever 

vaccine and are generally considered prone to developing poor vaccine responses. 

Given that the gut microbiota can be modulated through diet and the administration of 

pre- or postbiotics, it may pose an interesting target for future strategies to enhance 

vaccine responses in these vulnerable populations. 

 
We hypothesize that the gut microbiota profiles in rural and urban living Tanzanians 

are linked to vaccine responsiveness. To study this, we recruited healthy Tanzanian 

adults and vaccinated them with yellow fever vaccine (YF-17D). Stool and blood 

samples were collected over time. In line with previous work, we demonstrate that the 

gut microbiota composition is profoundly different between rural and urban living 

individuals and is linked to dietary habits. Variation in yellow fever neutralizing 

antibody responses may be at least partly explained by differences in microbiota 

community state types, potentially outweighing the impact of living location.  

 

Results 
Baseline characteristics of the study population 

We enrolled 185 individuals living in rural and urban locations in Moshi, Northern 

Tanzania (Figure 1a-b and Supplementary Figure 1). Individuals were randomized 

into a vaccination group, including those who received the yellow fever vaccine (YF-
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17D; n = 155) or a non-vaccinated control group (n = 30). All individuals were followed 

over six months and demographics and lifestyle variables (housing, assets and food 

history) were collected (Supplementary Table 1 and Supplementary Table 2, 

Supplementary Figure 2). Plasma and/or stool samples were collected at baseline, day 

28, 56 and 178 (Figure 1c).  

 
Figure 1 | Study overview.  

a) Geographic map of study sites in Tanzania (Moshi Urban and Moshi Rural), within the Kilimanjaro region. 

b) Graphical representation of the number of urban and rural living participants included in the study and of 

those from whom stool samples for microbiota assays were available, stratified by the total number of 

participants (N) and the number of individuals who received the yellow fever (YF-17D) vaccine (Nvacc). c) 

Study design and number of samples at each time point. Numbers depicted as n (nvacc), i.e. total number of 

samples (number of samples from vaccinated individuals). The number of samples in which neutralizing 

antibodies were measured only includes those samples with a matching stool sample. d) Graphical summary 

of study analyses. Questionnaire data from all included individuals (N = 185) were used in multiple 

correspondence analyses (MCA)/principal component analyses (PCA) to derive lifestyle/food scores. The 

associations between microbiota profiles and demographics and lifestyle factors (summarized in scores) and 

vaccine responses were assessed. Stool samples were available for microbiota sequencing from 143 of 185 

(77.3%) individuals (n = 74 rural and 69 urban) (Table 1). A total of 154 stool samples were collected from 

143 individuals (paired samples before and after vaccination were available from 11 individuals). The median 

age was 23.1 years (interquartile range [IQR], 21.2-27.1 years) and 43% were female (35% vs 52% in rural 
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and urban locations, respectively, p = 0.040). Baseline characteristics of the microbiota cohort were similar 

to the overall cohort (Table 1 and Supplementary Table 1). The prevalence of parasitic infections was 4.9% 

and these infections were detected only in individuals from rural areas (Table 1).  

 
Table 1 | Baseline characteristics of the study population (N = 143). 

Variable Overall, N = 143 Urban Moshi, N 
= 69 

Rural Moshi, N 
= 74 

p-value 

Female sex 62 (43%) 36 (52%) 26 (35%) 0.040 
Age 23.1 (21.2, 27.1) 23.0 (21.2, 24.6) 24.0 (21.2, 29.7) 0.209 
Age categories 

  
<0.001 

18-25 94 (66%) 55 (80%) 39 (53%) 
 

26-36 49 (34%) 14 (20%) 35 (47%) 
 

BMI 22.5 (19.8, 25.1) 23.1 (20.4, 26.4) 22.2 (19.8, 24.4) 0.207 
BMI classification 

  
0.486 

<18.5 16 (11%) 6 (8.7%) 10 (14%) 
 

18.5-24.9 91 (64%) 42 (61%) 49 (66%) 
 

25.0-29.9 27 (19%) 16 (23%) 11 (15%) 
 

>30 9 (6.3%) 5 (7.2%) 4 (5.4%) 
 

Systolic blood pressure 
(mmHg) 

117 (106, 124) 110 (102, 120) 120 (110, 129) 0.003 

Diastolic blood pressure 
(mmHg) 

70 (65, 78) 70 (63, 76) 72 (67, 79) 0.099 

Hemoglobin level g/dl 15.00 (13.60, 16.20) 14.30 (12.60, 
15.60) 

15.65 (14.20, 
16.50) 

<0.001 

Random blood sugar, mmol-
1^^ 

5.20 (4.80, 5.80) 5.30 (4.90, 6.00) 4.95 (4.70, 5.50) 0.008 

Highest level of education 
 

<0.001 
Primary 43 (30%) 2 (2.9%) 41 (55%) 

 

Secondary 69 (48%) 38 (55%) 31 (42%) 
 

College 15 (10%) 14 (20%) 1 (1.4%) 
 

University 16 (11%) 15 (22%) 1 (1.4%) 
 

Helminth infectiona 7 (4.9%) 0 (0%) 7 (9.5%) 0.014 
Insurance status 63 (44%) 60 (87%) 3 (4.1%) <0.001 
Occupation 

  
<0.001 

Farming 28 (20%) 10 (14%) 18 (24%) 
 

Elementary occupation 50 (35%) 7 (10%) 43 (58%) 
 

Employed/business owner 58 (41%) 49 (71%) 9 (12%) 
 

Other 7 (4.9%) 3 (4.3%) 4 (5.4%) 
 

Received yellow fever vaccine 121 (85%) 55 (80%) 66 (89%) 0.116 
N = 143 participants. Values represent number of participants (percentage of total) and median (interquartile 

range [IQR]) for categorical and continuous variables, respectively. Comparisons between locations were 

performed using Fisher’s exact, chi-squared and Mann–Whitney U-test for categorical and continuous 

variables, respectively. a Stool was tested for helminths using the Kato-Katz method, testing for Schistosoma 

mansoni, Ascaris lumbricoides, hookworm and Trichuris trichuria. Additionally, urine was tested for 

Schistosoma haematobium and Schistosoma mansoni using the POC-CCA method.  
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Lifestyle and food scores vary with living location 

Lifestyle questionnaire data were combined into a single lifestyle score to objectively 

gauge rural/urban living location-associated lifestyles (N = 185). To obtain the lifestyle 

score, we applied multiple correspondence analysis (MCA, a dimensionality reduction 

method for categorical data) to 38 questions (118 variable categories; Supplementary 

Figure 3a). MCA separated individuals based on living location, especially across 

principal component (PC) 1 (‘lifestyle score’, Supplementary Figure 3b), which 

captured 12.1% of the variation in questionnaire data. Rural individuals showed a larger 

spread across both PC1 and PC2, indicating they exhibit more diverse lifestyles. All 

variable categories contributed to the lifestyle score (Supplementary Figure 3c), with 

variables related to possession of assets showing the highest cumulative contribution 

(57.8%). Variable categories most related to higher lifestyle score (associated with 

living in urban areas) included possession of household assets (e.g. working television, 

iron, watch, computer, refrigerator, radio, car/truck or computer). Variables related to 

housing quality, including the presence of a pit latrine, floors made of soil or sand and 

walls made of cane/palm/trunks/bamboo contributed to low lifestyle score (related to 

living in rural areas) (Supplementary Figure 3d-e). PC2 scores were additionally 

driven by livestock-associated variables (Supplementary Figure 3f-g). Lifestyle 

scores (PC1) were similar for the overall (N = 185) and microbiota (N = 143) cohort 

(Supplementary Figure 3h). 

 

Given the known association between diet and microbiome[38], we additionally 

developed a food score, based on 11 questions on frequency of consumption of specific 

food per week (ordinal variables). Using principal component analysis (PCA), variation 

in food consumption was captured across PC1 (‘food score’), again showing a clear 

separation between rural and urban groups (Supplementary Figure 4a-b). In contrast, 

PC2 covaried with the average reporting frequency across all food variables 

(Supplementary Figure 4c), indicating interindividual differences in how the food 

questionnaire was filled out. Logistic regression analysis indicated that frequent 

consumption of fish, locally brewed beer (composed of fermented banana and millet) 

and green vegetables (p ≤ 0.009) was significantly associated with rural living, whereas 

a carbohydrate-rich diet consisting of rice and potatoes was related to living in urban 
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areas (adjusted for all other food variables and sex, p ≤ 9.0 × 10-4; Supplementary 

Figure 4d). Both lifestyle and food score were included in microbiota association tests 

(N = 143; Figure 1d). 

 

Characteristics of microbiota data 

To characterize the microbiota profiles of rural and urban living individuals, stool 

samples were subjected to Illumina MiSeq sequencing of V3-V4-region of the 16S-

rRNA-gene, resulting in a median of 93,471 reads (range 58,482-124,868) per sample. 

A median of 68,648 reads (38,118-93,731) per sample remained after bioinformatic 

processing and quality filtering. We identified 3,354 amplicon sequence variants 

(ASVs) that occurred in ≥2 samples. ASVs could be aggregated into 272 genus-level 

taxa, 25 of which were part of the ‘core microbiota’ (genera detected in 80% of samples 

at ≥0.1% relative abundance). Highly abundant genera included Prevotella (mean 

relative abundance 27.6%), Bacteroides (7.9%), Faecalibacterium (7.7%), 

Lachnospiraceae (4.2%), Oscillospiraceae (3.5%), Blautia (2.6%) and Succinivibrio 

(2.4%). All microbiota analyses are conducted on samples collected at day 56, if not 

mentioned otherwise. 

 

Microbiota profiles differ between rural and urban living Tanzanian adults  

First, we investigated differences in microbiota profiles between rural and urban living 

Tanzanian adults. The number of observed ASVs was higher in rural compared to urban 

living Tanzanians (linear model, adjusted for vaccination status, age, sex and 

sequencing depth, ꞵ = 89.0, p = 1.6 × 10-8). Shannon diversity, a measure of within-

sample microbial diversity, was higher in rural compared to urban living adults (ꞵ = 

0.368, p = 1.1 × 10-6, respectively; Figure 2a). Similarly, a higher number of observed 

genera was detected in rural compared to urban living individuals (ꞵ = 13.2, p = 1.0 × 

10-4), yet genus-level Shannon diversity did not show differences between groups (ꞵ = 

-0.019, p = 0.789; Figure 2b). 
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Next, we investigated the global differences in gut microbial community structure 

between rural and urban living Tanzanians. Principal component analysis (PCA on a 

centered-log-ratio [CLR]-transformed genus-level abundance matrix) indicated 

profound differences linked to rural/urban living location (Figure 2c), which was 

confirmed by Permutational Multivariate Analysis of Variance (PERMANOVA; 

adjusting for vaccination, age and sex; R2 = 9.0%, p < 0.001). Other important factors 

driving overall microbial community variation included lifestyle score (PC1 housing, 

assets and food-related questionnaire data), food score (PC1 food-related questionnaire 

data), highest level of education, PC2 (lifestyle) and sex (PERMANOVA, R2 = 7.9%, 

6.6%, 6.3%, 2.2% and 1.6%, respectively, p ≤ 0.005), which are all at least partly 

collinear with rural/urban living location, which was therefore not considered in our 

models (Table 1 and  Supplementary Table 1, Supplementary Figure 3b and 

Supplementary Figure 4b). No statistically significant association between helminth  
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Figure 2 | Microbiota profiles differ across Tanzanians living in rural and urban regions. 

a-b) ASV-level (a) and genus-level (b) Shannon diversity between study groups. Box plots represent the 25th 

and 75th percentiles (lower and upper boundaries of boxes, respectively), the median (middle horizontal line), 

and measurements that fall within 1.5 times the interquartile range (IQR; distance between 25th and 75th 

percentiles; whiskers). Density plots were used to visualize the distribution of data points. Statistical 

significance between groups was assessed using linear models with observed richness or Shannon diversity 

as outcome, adjusting for vaccination status, age, sex and sequencing depth. c) Principal component analysis 

(PCA) biplot using CLR-transformed genus-level microbiota features across day 56 samples. Percentages in 

square brackets denote the total variance explained by the first two principal coordinates. Each data point 

indicates a stool microbiota sample colored by group (rural/urban living). Ellipses reflect the data spread at 

a 95% confidence level. Density plots show the distribution of MDS1 (x-axis) and MDS2 (y-axis) score. The 

15 highest ranking genera across all day 56 samples were simultaneously visualized (squares). R2 and 

statistical significance of the association between group and the overall microbiota composition was assessed 

using PERMANOVA-test (1,000 permutations), while adjusting for vaccination status, age and sex. d) Bar 

plots indicating the effect size (R2) of the association between demographic, technical, lifestyle or food-

related variables (or derived scores based on these variables; see Supplementary Figure 3 and Supplementary 

Figure 4) and the overall microbiota composition. Statistical significance was assessed using PERMANOVA-

tests. Each variable was tested separately. All analyses were adjusted for living location (except when 

assessing the impact of lifestyle/food-related variables, helminth infection status or sex), vaccination status, 

age and sex. Differential abundance analyses were primarily performed at genus level (MaAsLin2), testing 

all genera present at >0.1% abundance in ≥10% of samples. We found higher abundance of 34 genera in rural 

living individuals compared to 14 genera enriched in those living in an urban environment (109 genera tested; 

padj < 0.05 and log2-transformed fold change (FC) > 1.5; Figure 3a).  

 

infection status and microbiota composition was detected (R2 = 0.8%, p = 0.184). 

Importantly, no association with vaccination status was detected (PERMANOVA, 

adjusting for living location, age and sex; R2 = 0.5%, p = 0.787), suggesting that the 

vaccine had no impact on the gut microbiota composition at day 56 post-vaccination. 

In addition, no statistically significant effects for age, BMI or sequencing depth were 

observed (PERMANOVA, adjusting for living location, vaccination age and sex, as 

appropriate; R2 = 0.8%, 0.8% and 0.6%, respectively, p ≥ 0.122; Figure 2d). 
 
Specific taxa have previously been associated with industrialized and non-

industrialized populations and are referred to as BloSSUM (bloom or selected in 

societies of urbanization/modernization) and VANISH (volatile and/or associated 

negatively with industrialized societies of humans) taxa respectively22. We found that 

urban-associated genera (15/109 genera tested) were significantly enriched for 
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BloSSUM taxa (9/14 urban-associated genera, compared to 6/95 non-urban-associated 

genera, Fisher’s Exact test p = 1.8×10-6; Figure 3b and 2c), whereas rural living 

individuals were specifically devoid of these genera (1/34 compared to 14/75, p = 

0.034; Figure 3d). In contrast, genera associated with rural living location were not 

significantly enriched for VANISH taxa (total 18/109; 8/34 rural-associated genera, 

compared to 10/75 non-rural-associated genera, Fisher’s Exact test p = 0.264; Figure 

3e).  

 

For rural living individuals the strongest enriched genus was Succinivibrio (log2FC = 

6.76, padj = 1.3×10-12). Together with Treponema (log2FC = 1.62, padj = 0.061), these 

genera showed a clear multimodal distribution within rural living individuals, with 

maximum relative abundance peaks detected at 8.6% and 7.0% for Succinivibrio and 

Treponema, respectively (post-hoc analysis, Figure 3f-g). Six genera belonging to the 

family of Prevotellaceae were strongly associated with rural living, including 

Prevotella (7/9) and Alloprevotella (log2FC ≥ 3.92, padj ≤ 7.7×10-5). Similarly, five 

genera belonging to the family of Lachnospiraceae were enriched in rural living 

individuals including Butyrivibrio, Eubacterium ruminatium and Ruminococcus 

torques (log2FC ≥ 1.78, padj ≤ 3.3×10-4). Other highly significantly enriched genera in 

rural individuals included Fournierella, Holdemanella, Solobacterium, Sutterella, 

Anaeroplasma and Catenibacterium (padj ≤ 3.4×10-5; Figure 3a and Supplementary 

Figure 5). 

 

In urban living individuals, abundance of Bacteroides and Parabacteroides was 

significantly higher compared to rural living (log2FC = -3.70 and -2.30, padj = 8.9×10-

12 and 3.78×10-7, respectively). Bacteroides showed a multimodal distribution among 

individuals living at an urban location with two major peaks at a relative abundance of 

1.2% and at 24.2% (Figure 3g). Other highly urban-associated genera included 

Alistipes, Parasutterella, Bifidobacterium, Odoribacter, Bilophila and Akkermansia 

(padj ≤ 2.8×10-6). The gut microbiome of urban living individuals was further enriched 

for genera belonging to the family of Enterobacteriaceae, including Enterobacter, 

Klebsiella and Escherichia/Shigella (padj ≤ 0.009; Figure 3a and Supplementary 

Figure 5). Taken together, rural living individuals lacked BloSSUM taxa and had 
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higher abundance of VANISH taxa such as Prevotella and Succinivibrio, whereas urban 

individuals were enriched with BloSSUM taxa like Bacteroides. 
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Figure 3 | Differential abundance analyses indicate specific taxa are related to urban/rural living.  

a) Volcano plot visualizing genera enriched in rural or urban living individuals. Statistical significance 

between groups (rural/urban living) was assessed using linear models with genus-level abundance as 

outcome, adjusting for vaccination status, age and sex. Genera with padj < 0.05 and log2-fold change (FC) <-

1.5 or >1.5 are colored and genera with a padj < 1 × 10-5 and log2FC <-1.5 or >1.5 were annotated. The shape 

of the data points indicates whether these genera were previously considered to belong to VANISH (volatile 

and/or associated negatively with industrialized societies of humans) or BloSSUM (bloom or selected in 

societies of urbanization/modernization) taxa. b-e 2 × 2 tables showing the number of BLoSSUM (b and d) 

or VANISH taxa (c and e) across urban- and rural-associated taxa. The number between brackets indicates 

the percentage of VANISH/BloSSUM/other taxa out of the total number of (non-)-rural-/urban-associated 

taxa. Statistical significance was assessed using Fisher’s Exact tests. f) Stacked bar chart showing the genus-

level taxonomic composition of each sample as relative abundances. Bar colors are based on a hierarchical 

color palette with hues specified by Phylum and shades specified by Genus. Samples are arranged based on 

Bray-Curtis dissimilarities and the plot is divided by living location. Right of the per-sample bar chart, a bar 

chart showing mean relative abundance for each taxon per group is shown. g) Density plots showing the 

relative abundance distribution of Bacteroides, Succinivibrio and Treponema within rural or urban living 

individuals. Modes are indicated by dashed lines. 

 

Rural and urban-associated differences in diet are linked to microbiota profiles 

Given the multimodal distribution of the relative abundance of specific genera not only 

between rural and urban living individuals, but also within individuals from the same 

location (Figure 3g), we next assessed the impact of dietary history on microbiota 

composition. To study this, we clustered samples into two Community State Types 

(CSTs; Supplementary Figure 6a and Supplementary Figure 6b) using Dirichlet-

multinomial modelling (DMM). CST1 was characterized by a (non-significant) 

enrichment of VANISH bacteria (25% vs 12%, Fisher’s Exact test p = 0.106), including 

Prevotella, Alloprevotella, Holdemanella and Succinivibrio, whereas CST2 was 

strongly enriched for BloSSUM taxa (67% vs 7%, Fisher’s Exact test p = 6.5×10-6), 

like Bacteroides, Alistipes, Parasutterella and Bifidobacterium (Figure 4a and 

Supplementary Figure 6c-f).  

 

Although the majority of samples from rural living individuals clustered in CST1 

(93.2%), urban living individuals were split across CST1 (30.4%) and CST2 (69.6%). 

Baseline characteristics between urban living individuals with CST1 (referred to as 

‘rural-like urbanites’) and urban living individuals with CST2 did not differ, except that 
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a higher proportion of rural-like urbanites was male (71.5% vs 37.5%, p = 0.009; 

Supplementary Table 3). Comparing rural-like urbanites to urban living individuals 

revealed highly divergent profiles, with differences similar to those observed when 

assessing CST1 compared to CST2. Conversely, rural-like urbanites showed much 

more subtle differences compared to rural living individuals, with enrichment of 

Haemophilus and Akkermansia, but lack of rural-associated Succinivibrio and 

Fournierella (109 genera tested; padj < 0.05 and log2-transformed fold change (FC)> 

1.5; Supplementary Figure 7).  

 

We did not observe differences in either lifestyle or food score between rural-like urban 

or urban individuals (Figure 4b). However, individual food variables did show 

differences, indicating that rural-like urbanites less frequently consume rice (logistic 

regression analyses adjusted for all other food variables and sex, β = -1.95, p = 0.032) 

and more beans and/or peas (β = 0.85, p = 0.078) compared to urbanites belonging to 

CST2 (i.e. non-rural-like urbanites). Regardless, rural-like urbanites still more 

frequently consumed rice compared to rural living individuals (β = 2.20, p = 0.033). 

Furthermore, rural-like urbanites ate significantly less ugali (maize stiff porridge) 

compared to rural living individuals (β = -3.38, p = 0.023), yet ugali consumption was 

no different from other urban living individuals (CST2) (β = -0.73, p = 0.212). Last, we 

found that rural-like urban individuals less frequently eat potatoes compared to both 

urban living individuals (CST2; β = -0.815, p = 0.087) and rural living individuals (β = 

-2.02, p = 0.100; Figure 4c). Together, these findings suggest urban living individuals 

less frequently consuming starch/carbohydrate-rich dietary products (potatoes and rice) 

and more fiber-rich products (beans and/or peas) harbor a microbiota reminiscent of 

that of rural living individuals, despite slight differences in dietary habits compared to 

this latter group. 

 

Genus-level microbiota association tests (linear models including all food variables, 

vaccination, age and sex) were stratified by living location, given the strong collinearity 

between living location and dietary habits. Among rural living adults, we detected 

seven significant associations, suggesting enrichment of Prevotella¸ Prevotellaceae and 

Eubacterium ventriosum and lower abundance of Odoribacter with increased 
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consumption of locally brewed beer. Odoribacter abundance was also negatively 

associated with the consumption of bananas, as was Alistipes abundance (Figure 4d). 

Within urban living individuals, we detected five significant associations, indicating 

frequent ugali consumption is linked to the depletion of Oscillibacter, 

Christensenellaceae, Clostridia, Eubacterium eligens and Eubacterium siraeum 

(Figure 4e).  
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Figure 4 | Frequent consumption of carbohydrate-rich dietary products is associated with 

urbanization.  
a) Volcano plot visualizing genera enriched in CST1 and CST2. Statistical significance between CSTs was 

assessed using linear models with genus-level abundance as outcome (no adjustment for covariates). Genera 

with padj < 0.05 and log2-fold change (FC) <-1.5 or >1.5 are colored and genera with a padj < 1 × 10-7 and 

log2FC <-1.5 or >1.5 were annotated. The shape of the data points indicates whether these genera were 

previously considered to belong to VANISH (volatile and/or associated negatively with industrialized 

societies of humans) or BloSSUM (bloom or selected in societies of urbanization/modernization) taxa. b) 

Differences in lifestyle scores (PC1/PC2; Supplementary Figure 3) and food scores (PC1/PC2; 

Supplementary Figure 4) between rural living individuals, rural-like urbanites (urban living individuals 

belonging to community state type [CST]1; Supplementary Figure 6) and urban living individuals (urban 

living individuals with CST2). See legend Figure 2a-b. Statistical significance between groups (n = 3) was 

assessed using linear models with lifestyle/food score as outcome, adjusting for vaccination status, age and 

sex. Pairwise contrasts were extracted and adjusted using Tukey’s post-hoc test. c) Association between food 

variables and group (rural living individuals, rural-like urbanites (urban living + CST1) or urban living 

individuals with CST2). For each comparison (panel), a separate logistic regression model was fitted 

including all food variables and sex. Model estimates are depicted along the x-axis (colored points). Colors 

indicate the group with which a given food variable is positively associated. Whiskers denote 95% confidence 

intervals (CIs; Wald-method). d-e) Association between food variables and genera (present in ≥10% of 

samples at >0.1% abundance across day 56 samples; n = 109) within rural (d) and urban living individuals 

(e). Results were stratified by food variable and only food variables with any significant (p < 0.05) 

associations are shown. Log2 fold change (FC) is shown along the x-axis. Whiskers denote 95% confidence 

intervals (CIs; Wald-method). Asterisks denote statistical significance (*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 

0.001). 

 

Rural-like microbiota profile is linked to yellow fever neutralizing antibody titers 

Next, we investigated whether vaccine immunogenicity differed between rural and 

urban living individuals. Across all vaccinated individuals (N = 155), no significant 

differences in yellow fever Plaque Reduction Neutralization Test (PRNT) (PRNT50 and 

PRNT90) were found between rural and urban living individuals at 4 weeks post-

vaccination (generalized linear mixed effects regression [GLMER], adjusted for age 

and sex, p = 0.161 and p = 0.226, respectively, Supplementary Figure 8a-b). However, 

for the microbiota sub-cohort (i.e. with stool sample available, N = 121), yellow fever 

neutralizing antibodies (PRNT50) at 4 weeks post-vaccination were higher in rural 

(geometric mean titer [GMT], 954 [95% CI, 742 – 1,226]) compared to urban living 

individuals (656 [95% CI, [490 – 880], p = 0.042). This was similar for PRNT90 values 
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(p = 0.032, Figure 5b and Supplementary Figure 8d). Antibody titers (PRNT50) were 

lower at 6 months compared to 4 weeks post-vaccination for both urban (PRNT50; β = 

-1.16, p = 0.082) and rural living individuals (PRNT50; β = -1.48, p = 0.040), with urban 

living individuals showing a slightly stronger and statistically significant drop (Figure 

5b). Similar results were found when considering all individuals (N = 155; 

Supplementary Figure 8c). 

 

To assess whether microbiota profiles impact subsequent YF-17D-induced vaccine 

responses, we first ascertained that vaccination at day 0 had no impact on microbiota 

profiles collected at day 56. No significant difference in overall microbiota composition 

between day 56 samples from vaccinated compared to non-vaccinated subjects were 

found (PERMANOVA-test, adjusted for living location, age and sex, R2 = 0.5%, p 

= 0.787; Figure 2d and Supplementary Figure 9a). Also, paired day 0 and day 56 

samples of vaccinated individuals did not show a consistent direction of movement 

(Supplementary Figure 9b-c, PERMANOVA-test, R2 = 2.3%, p = 0.422). Within- 

and between-subject distances between sample pairs and permutation tests across 

between-subject distances similarly indicated no statistically significant effect of 

vaccination (Supplementary Figure 9d-e). Therefore, day 56 samples were considered 

representative of day 0 (i.e. before vaccination) and were used as such for downstream 

analyses.  

Next, yellow fever neutralizing antibodies (PRNT50 at 4 weeks post-vaccination), were 

linked to Shannon diversity estimates, adjusting for living location, the interaction 

between living location and Shannon diversity, age and sex. Shannon diversity was 

negatively associated with antibody titers in rural-living individuals (β = -0.345, p = 

0.034), but positively in urban-living individuals (interaction term; β = 0.496, p = 

0.025; Supplementary Figure 8e). Similar results were found when considering 

PRNT50 at 6 months post-vaccination and PRNT90 titers. 

Following, yellow fever neutralizing antibodies (PRNT50 or PRNT90) were related to 

CSTs, showing that CST1 (enriched in rural living individuals) is linked to higher 

antibody titers compared to CST2 (PRNT50; p = 0.005, Figure 5c and Supplementary 

Figure 8f [PRNT90]). Of note, this association showed large model estimates and was 
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highly significant, as opposed to initial comparisons between rural and urban living 

individuals, indicating microbial signatures better explain antibody variation than 

living location. Though antibody titers were higher 4 weeks post-vaccination, 

individuals with CST1 showed a much stronger and faster drop over time (PRNT50; β 

= -1.96,, p = 0.002) compared to CST2 (β = -0.02, p = 0.805; Figure 5d). 

We found that within urban living individuals, there was a striking variation in antibody 

titers (particularly PRNT50) linked to CSTs, with rural-like urbanites showing higher 

PRNT50 compared to urban living individuals with a CST2-profile (GMT 95%CI, 

1,064 [723 – 1,565] vs 548 [381 – 787], p = 0.022, Figure 5e and Supplementary 

Figure 8g [PRNT90]). Furthermore, in rural-like urbanites, stronger waning was seen 

(PRNT50 at 6 months compared to 4 weeks post-vaccination; β = -0.502, p = 2.5 × 

10-4) compared to rural living individuals (β = -0.116, p =0.065) and urbanites with 

CST2-profile (β = -0.015, p =0.856, Figure 5f). Findings for PRNT90 were similar but 

less outspoken (Supplementary Figure 10). Together, these findings indicate that 

microbiota profiles might be an important  driver of yellow fever neutralizing 

antibodies in this population. 

Differential abundance analyses at genus level (n = 109) revealed no significant 

associations between specific genera and yellow fever neutralizing antibodies (PRNT50 

or PRNT90) at 4 weeks or 6 months post-vaccination (linear models, adjusting for either 

1) living location, age and sex or 2) age and sex).  This may indicate that the bacterial 

community in its totality, rather than single genera, relates to yellow fever vaccine 

immunogenicity. 
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Figure 5 | Yellow fever neutralizing antibody titer variation across living location and with microbiota 

profiles (N = 121). a-f) Boxplots (see legend Figure 2a-b) showing yellow neutralizing antibody titers 

(PRNT50) in vaccinated individuals from whom a stool sample was collected (N = 121) at baseline (day 0, 

d0), 4 weeks post-vaccination (day 28, d28) and 6 months post-vaccination (day 178, d178). a, c, e) 

Participants were compared according to group (rural/urban living location; a) CST (c) and group/CST (i.e. 

rural living individuals, rural-like urbanites [CST1] and urban living individuals [CST2]) (e). b, d, f) Boxplots 

showing yellow neutralizing antibody titers (PRNT50) at 4 weeks post-vaccination (day 28, d28) compared 

to 6 months post-vaccination (day 178, d178) for group (rural/urban living location; b), CST (d) and 

group/CST (f). Diamond-shaped data points and color values at the bottom of the plot denote log10-base 

geometric mean titers. Statistical analyses were performed using a generalized linear mixed effects model 

with log10-transformed PRNT50-values as outcome, group, CST or group/CST, time point, the interaction 

between group, CST or group/CST and time point, age and sex as fixed effects and participant ID as random 

effects. Pairwise comparisons of estimated marginal means between groups were computed at each time point 

(a, c and d) or between day 28 and day 178 for each group (b, d and f). Values under the limit of detection 

(<10) were assumed to have a value of 5. 
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Discussion 

Here, we assessed the associations between rural or urban living location, gut 

microbiota profiles and yellow fever vaccine responses. We identified striking 

differences in microbiota community composition between rural and urban living 

individuals, which appeared in part related to dietary habits. Gut microbiota profile 

variation was linked to yellow fever vaccine immunogenicity and waning, at least at a 

microbiota community, but not a genus-level. 

 

We show that rural living individuals harbor a gut microbiota enriched for 

Succinivibrio, Treponema and Prevotella, which is consistent with 

literature[20,26,28,39], and likely explained by variation in dietary habits. Higher 

abundance of these microbiota members has been associated with the digestion of 

plant-rich diets and the production of short-chain fatty acids[24,40,41]. Indeed, we 

found that Tanzanians living in rural settings consume more grain-based food products 

such as ugali (maize stiff porridge), vegetables and local beer made by a mix of 

fermented bananas and finger millet[26]. Strikingly, within those living in rural areas, 

local beer consumption in particular was associated with a higher abundance of 

Prevotella, suggesting it may be a particularly important driver of the rural microbiota 

signature. 

 

Urban living individuals exhibited a higher abundance of Bacteroides, 

Parabacteroides, Enterobacteriaceae and Bifidobacterium, which may be related to the 

consumption of a more carbohydrate-rich diet, again largely aligning with 

literature[27,31,42]. Interestingly, approximately half of the urban living individuals 

showed a high abundance of Prevotella, which we identified as characteristic of the 

rural microbial signature. The microbiota composition of this subgroup of urban living 

individuals co-clustered with rural living individuals based on their microbial make-up. 

Despite that, these rural-like urbanites showed a different dietary consumption pattern 

from both rural living individuals and their urban counterparts, with high consumption 

of beans and peas (rich in proteins, carbohydrates and dietary fibers) and lower rates of 

potato and rice consumption. Within the urban population we found that frequent 
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consumption of ugali (maize stiff porridge) is related to a reduced abundance of 

Eubacterium siraeum. Eubacterium siraeum has previously been linked to the 

consumption of a Western diet and systemic inflammation[43], possibly indicating that 

ugali consumption limits the establishment of microbes related to industrialization. 

 

Genera associated with rural or urban living location were classified as either 

BloSSUM or VANISH taxa. The distinction between these taxa has been based on 

previous work comparing the gut microbiome of a Tanzanian population of Hadza 

hunter-gatherers to that of populations living industrialized lifestyles[22].  Although 

rural living individuals in our study showed a lack of industrialized lifestyle-associated 

BloSSUM taxa, we did not observe a significant enrichment for VANISH taxa, 

suggesting that indeed the population of rural living individuals recruited in our study 

is possibly in transition between traditional and industrialized lifestyles. Conversely, a 

clear signature of Westernized microbiota profiles was detected in urban living 

individuals, indicated by significant enrichment of BloSSUM taxa. Apart from diet, 

there may be other host and environmental factors contributing to the observed 

differences in microbiota composition between rural and urban living individuals. 

Among others, agricultural activities, such as livestock farming[44,45], and 

environmental exposures, including indoor cooking, wood stove cooking or exposure 

to pollutants, may impact microbiota composition[46]. Helminth infections have 

previously been linked to microbiota changes[47-50], but since helminth infection 

prevalence was low in our rural cohort (4.3%), we presume this was not a main driver 

of rural urban differences in our study. We detected slightly higher yellow fever 

neutralizing antibody responses 4 weeks post-vaccination in participants living in rural 

compared to urban settings. The difference was statistically significant in the 

microbiota sub-cohort, but not in the total vaccinated cohort. At 6 months, titers 

remained higher in rural settings. This is not in line with the general hypothesis that 

vaccine immunogenicity in rural populations is lower than urban urban-living 

individuals, especially within LMICs, which has been observed for a wide range of 

vaccines[6,51]. Yellow fever vaccine, which is highly effective, has previously been 

used to model human immune responses to vaccines in general. As such, several studies 

assessed yellow fever vaccine immunogenicity, showing lower antibody titers and rapid 
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waning in Ugandan compared to Swiss individuals and lower seroprevalence rates in 

rural Ghanaian compared to urban Malian infants[52,53]. In both studies, the observed 

differences in immunogenicity are relatively small compared to other vaccines, such as 

for malaria[54,55], and may be obscured by between-country differences. Moreover, 

discordant results have been reported in some studies assessing factors associated with 

yellow fever vaccine immunogenicity[56,57]. Regardless, a recent study in Uganda 

(POPVAC)[58], did show higher yellow fever vaccine antibody titers in urban living 

individuals compared to individuals living in rural settings, which is in contrast with 

our findings and at least in part could be explained by the high helminth and malaria 

infection prevalence in the Ugandan study. Also, the rural sites sampled in our study 

are relatively developed compared to other rural sites in Tanzania and some other East 

African countries, with better access to health care and nutrition[59,60]. Last, rural 

individuals in our study live at high altitude, which induces a hypoxic state, as reflected 

by their high hemoglobin levels. We speculate this causes an increase of transcriptional 

factor hypoxia-inducible factor (HIF), which induces metabolic and phenotypic 

changes in B cells and boosts B cell differentiation and antigen switching, thus resulting 

in higher antibody titers in these rural individuals[61-64]. We found that especially 

within urban living individuals, a rural-like microbiota profile was related to relatively 

higher antibody titers, but stronger waning, as opposed to a more Prevotella-depleted, 

industrialized microbial community composition. Despite this, no significant 

associations were detected between specific genera and yellow fever vaccine-induced 

neutralizing antibody titers. This lack of genus-level associations could be explained 

by insufficient statistical power or limited sequencing resolution from 16S-rRNA-

sequencing. Alternatively, it may suggest that the overall bacterial community, rather 

than individual genera, is linked to yellow fever vaccine immunogenicity. The 

microbiota has been suggested to potentiate vaccine responses by providing adjuvating 

signals, although this seems most relevant to vaccines other than yellow fever vaccine, 

which has endogenous adjuvants and is therefore able to engage with toll-like receptors 

(TLRs) and RIG-1 receptors itself32. Alternatively, we speculate higher yellow fever 

antibody titers observed in rural living individuals and rural-like urbanites could be 

related to increased consumption of fiber-rich diets which enriches for short-chain fatty 

acid (SCFA)-producing bacteria, such as Prevotella[40]. In B cells, SCFAs increase 
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acetyl-CoA and metabolic activity, resulting in increased antibody production[65]. 

Indeed, a study showed that mice fed with a diet low in dietary fibers had lower 

production of SCFAs and a reduced specific antibody response towards pathogens[65]. 

It is possible that the microbiota-associated increase in antibody titers observed in rural 

individuals in our study has been obscured in other rural populations by factors such as 

a high prevalence of helminth infections and other infections such as malaria.  

Although the gut microbiota of rural and urban living individuals in LMICs has been 

described previously, there remains a significant gap in the literature regarding gut 

microbiota profiles from LMIC populations currently transitioning from traditional to 

industrialized lifestyles. Our work expands on this topic, but also furthers our 

understanding on microbiome-host associations in the context of yellow fever 

vaccination. Our study also has limitations, such as the use of 16S-rRNA sequencing 

rather than shotgun sequencing. Additionally, as this was primarily an observational 

study aimed at identifying associations between the gut microbiome and the yellow 

fever vaccine responses, we could not assess causal effects. Also, we cannot exclude 

the possibility that (unmeasured) microbiota-independent factors (e.g. altitude, genetic 

variation and historic microbial exposures) drive vaccine immunogenicity, although the 

observed variation within the urban subgroup advocates against this. Fungal and viral 

microbiota may covary with the bacterial microbiota and explain the residual variation 

in vaccine responses we identified. We lacked longitudinal stool samples for most 

participants, as most samples were collected post-vaccination, which may have 

influenced the findings. However, our extensive analyses, also leveraging the paired 

samples we had available, indicated no major impact of the vaccine on the gut 

microbiota. This warrants our assumption that the microbiota measured post-

vaccination is reflective of the baseline microbiota in these individuals. 

To further explore microbe-host interactions in the context of yellow fever vaccination, 

future studies could include measurements of the cellular immune responses, which 

have previously been shown to differ at least between HIC and LMIC-populations[52]. 

Taken together, we show strong differences in gut microbiota profiles between rural 

and urban living individuals, with part of urban living individuals currently 
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transitioning towards a more industrialized microbiota profile. Microbiota variation 

within urban living individuals was associated with moderate variation in yellow fever 

vaccine-induced neutralizing antibodies and antibody waning. These findings suggest 

that gut microbiota profiles may impact vaccine responsiveness in a vaccine- and 

context-dependent manner. Identifying adult subpopulations where microbiota 

influences vaccine responsiveness creates opportunities for research on microbiota-

based interventions. 

 

Methods 
Study design 

This is a prospective longitudinal cohort study (CapTan) in a healthy, 18-35-year-old 

Tanzanian population recruited in a rural and urban Moshi, Northern Tanzania. 

Volunteers were enrolled and randomized into a vaccine group receiving a single 0.5 

mL intramuscular dose of the yellow fever vaccine (YF-17D, Sanofi-Pasteur) and a 

control group. Randomization occurred by allocating every sixth individual to the 

control group. No placebo was administered to the control group. Neither the volunteers 

nor study personnel were blinded to group allocation. Plasma samples were collected 

at baseline (pre-vaccination), day 28 (4 weeks post-vaccination), 56 (8 weeks post-

vaccination) and 178 (~6 months post-vaccination). Paired stool samples were collected 

at baseline and on day 56 for 11 individuals. For 143 individuals, stools samples were 

collected on day 56 only. All questionnaires and clinical samples were collected by a 

well-trained study team consisting of medical doctors, nurses and laboratory scientists. 

All samples were processed according to established standard operational procedures 

and good clinical and laboratory practice principles.  

 

The study protocol was approved by the Ethical Board of the Kilimanjaro Christian 

Medical University College (No. 2588) and by the Tanzania National Ethical 

Committee Board (NIMR/HQ/R.8a/Vol.IX/4089). The study was registered under The 

Pan African Clinical Trial Registry (PACTR) with trial number 

PACTR202405738173023 on 03 May 2024. Data were collected in REDCap, a cloud-
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based electronic data collection system, with a server hosted at the Kilimanjaro Clinical 

Research Institute (KCRI) in Tanzania. 

 

Description of study areas 

The study was conducted in rural and urban Moshi located in the Kilimanjaro region 

(total population of 1.9 million (Figure 1a). The rural study area is at an elevation of 

2,000-2,100 meters above sea level, while urban Moshi is at 700-950 meters above sea 

level. The district of Moshi City (urban Moshi) is the administrative, commercial and 

educational center of the Kilimanjaro region, having 331,733 inhabitants. Most people 

practice a Western lifestyle with good general sanitation and access to clean water. The 

main ethnicities are Chagga and Pare. Formal business is the main activity, followed 

by government and public employment, while a small proportion of people are involved 

in agricultural and entrepreneurial activities. Rural Moshi has about 535,803 

inhabitants who are mainly involved in farming activities. Most people have access to 

clean water, but a small proportion use borehole water sources. People live in large 

family units, and their main economic activities are subsistence farming and animal 

husbandry. The primary ethnicity is Chagga, and people follow Chagga traditions, such 

as drinking local brews made from banana or plantain. 

Participant screening and enrollment 

In rural Moshi, study information was given through community leaders and 

announcements during mass gatherings in mosques, churches and village meetings. In 

urban Moshi, study information was distributed using leaflets and through community 

leaders, office announcements and university gatherings. Eligible participants (aged 18-

35 years and with permanent residency of a given location) were asked to enroll in the 

study. Following informed consent, 233 participants were voluntarily screened for in- 

and exclusion criteria. Exclusion criteria were having an acute or chronic disease 

(including HIV, tuberculosis, cancer, cardiovascular disease, gastrointestinal diseases, 

recurrent infections, liver, renal, endocrine or neurological disorders), ≥2 hospital 

admissions times/year in the last year, chronic use of antibiotics or corticosteroids, use 
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of other immunosuppressive drugs, recent receipt of another vaccine, lactation, positive 

pregnancy test, history of blood product transfusion, hemoglobin level ≤8.5 g/dL, 

testing positive HIV or malaria, low or high blood pressure (≤90/60mmHg and 

≥140/90mmHg, respectively) or high blood glucose (≥7.1mmol/L fasting or 

≥11.1mmol/L random glucose).  

Participants were screened for HIV infection (SDBIOLINE HIV-1/2 3.0kit, 

LOT:03ADG020A), malaria (Malaria Ag p.f/Pan, Ref: 05FK60, LOT:05EDG018A) 

and soil-transmitted helminth such as hookworms (Ancylostoma duodenale and 

Necator americanus), Trichuris trichiura, Ascaris lumbricoides, Strongyloides 

stercoralis and Schistosoma mansoni using Kato-Katz or POC-CCA (Schistosoma 

mansoni and Schistosoma haematobium; butch no:220701075). Furthermore, 

hemoglobin levels were measured (HemoCue Hb 301(CE:1450820055) and random 

blood glucose was assessed (ACCU-CHECK glucose test strips, Roche Diabetic 

care,06993761001). Weight and height were measured using a well-calibrated machine 

(RGZ-160, made in China), and blood pressure was measured using 

OMRON(SN:202111007949V). All individuals with abnormal laboratory or clinical 

findings except those with parasitic infections received nurse counselling, referral, or 

treatment before being excluded. Based on exclusion criteria, 48 of 233 participants 

were excluded. 

 

Lifestyle questionnaire 

Questionnaires were adapted from the Tanzania Demographic and Health Survey and 

Malaria Indicator Survey (TDHS-MIS) and a food history questionnaire previously 

applied to a similar population[54,60]. We collected information on the water source, 

toilet type, available cooking facilities and the materials used to construct the floor, 

roof and walls of the house. We assessed exposure to livestock by collecting 

information on the number of milk cows, cattle, goats, sheep, horses and poultry owned. 

Inquiries were made on land ownership and possession of non-productive assets, 

including radios, televisions, computers, refrigerators, ironing tools (whether powered 

by charcoal or electricity), watches, motorcycles, trucks, animal-drawn carts, 
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generators and motorboats. Using food questionnaires, data was collected on the 

frequency of dietary products participants consume weekly, including ugali (maize stiff 

porridge), plantain, banana, rice, potatoes, meat, fish, beans/peas, green vegetables, 

fruits and locally brewed beer. 

 
Microbiota profiling 

Stool sample collection 

Stool samples were collected at baseline and/or at day 56. For rural individuals, stool 

samples were collected at the outpatient clinic or at home. For urban individuals, stool 

was collected at the KCMC or at home. Feces were initially stored in a dry stool 

container, before it was transferred into DNA/RNA Shield Fecal Collection (Zymo 

Research, Irvine, California, USA) for transportation and storage (median [IQR] time 

between stool production and storage in medium, 58.5 [15.0-113.0] minutes). Samples 

were stored in a -80°C freezer at the KCMC (median [IQR] time between storage in 

medium and storage in freezer, 120.5 [93.0-168.5 minutes]). Samples were transported 

to The Netherlands on dry ice and stored at -80°C before further processing. Samples 

of individuals who took antibiotics between study enrollment and stool sample 

collection at day 56 were excluded (n = 9). 

 

Bacterial DNA isolation 

DNA was extracted from 250 µL diluted feces (in DNA/RNA Shield) by Repeated Bead 

Beating (RBB) combined with purification using the chemagic DNA Stool 200 Kit H96 

(Revvity, Waltham, Massachusetts, USA). Briefly, 250 µL diluted feces was 

homogenized with 1.0 mL Lysis Buffer 1 of the chemagic DNA Stool 200 Kit H96 by 

vortexing in a 2 mL tube (with screw cap) containing 0.5 g of sterile zirconia beads Ø 

0.1mm (BioSpec, Cat. No. 11079101z). Cells were mechanically lysed on a FastPrep-

24™ 5G Instrument (MP Bio, Irvine, California, USA) at 5.5 m/s for 3 cycles of 1 

minute. Samples were subsequently centrifuged (16,000 x g 4°C, for 5 min) and the 

supernatant was transferred to a new tube to which 30 µL Proteinase K was added, 

mixed and incubated for 10 minutes at 70°C. Thereafter, samples were incubated for 

another 5 minutes at 95°C followed by centrifugation for 5 minutes at high speed 
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(13,000 rpm). Deep-well plates were filled with 800 µL of the supernatant (lysates) and 

further isolation was done on a chemagic™ 360 instrument (Revvity, Waltham, 

Massachusetts, USA) according to the manufacturer’s instructions. Finally, purified 

DNA was quantified on a Qubit Fluorometer (Thermofischer Scientific, Waltham, 

Massachusetts, USA) using the dsDNA HS Assay Kit (Invitrogen, Waltham, 

Massachusetts, USA). 

 

16S-rRNA gene amplicon sequencing 

The variable regions of the V3-V4 of the bacterial 16S rRNA gene were PCR amplified 

from each DNA sample in a single reaction workflow with simultaneous indexing and 

target amplification using the EasySeq™ 16S Microbiome Library Prep Kit (NimaGen, 

Nijmegen, the Netherlands) according to the manufacturer’s instructions. Amplicon 

libraries were sequenced on an Illumina MiSeq instrument (Illumina, Eindhoven, The 

Netherlands) (MiSeq Reagent Kit v3, 2 × 300 cycles, 10% PhiX) to generate paired-

end reads of 300 bases in length in both directions. 

 

16S rRNA gene amplicon sequence data processing 

Forward and reverse primers were removed using cutadapt v4.766. Following, using 

DADA2 (v1.28.0) paired-end sequences were filtered and trimmed (maxEE = 2, 

truncLen = 240/210bp), denoised, merged (minOverlap = 10, maxMismatch = 0) and a 

sequence table was constructed. Chimeras were identified and removed (method = 

‘consensus’). After denoising and merging, any ASVs with a length of <350 or >500 

bases were discarded. ASVs were annotated up to genus-level using the DADA2 

implementation of the naïve Bayesian classifier based on the SILVA v138.1 reference 

database. Species-level annotations were added using the addSpecies()-function67. 

ASVs not assigned to the kingdom Archaea/Bacteria or annotated as Mitochondria 

(family) or Chloroplast (class) were removed. 

 

Yellow fever neutralizing antibody titer measurements 

Blood sample collection and processing  

Blood samples were collected were collected in 5mL EDTA tubes on day 0 (pre-

vaccination), day 28 (4 weeks post-vaccination; presumed peak in antibody titers) and 
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day 178 (~6 months post-vaccination; detect delayed response/assess weaning status). 

Blood samples were transported to a clinical laboratory for plasma separation through 

centrifugation. Plasma samples were stored at -80°C within two hours. Samples were 

shipped between institutions on dry ice. 

  

Yellow fever plaque reduction neutralization tests  

Plasma neutralizing antibodies against the yellow fever virus from all individuals were 

quantified using plaque reduction neutralization tests (PRNTs). Results are presented 

as PRNT50 and PRNT90 titers, which correspond to the reciprocal of the plasma dilution, 

achieving a 50% and 90% reduction in virus plaque-forming units per 0.1 mL of the 

reference 17D virus preparation, respectively. Assay quality control included 

determining the 50% and 90% neutralization cut-off values for each assay via back 

titration of the virus inoculum. Further details are provided elsewhere68. 

 

Data analysis 

All data preprocessing and statistics were performed in R v4.3.3 within R Studio 

v2024.04.1+748 (Boston, MA). Microbiota-specific analyses and visualization, 

including alpha- and beta-diversity analyses and microbiota association tests were 

performed using the microViz v0.12.1 R package69. All statistical tests were two-sided 

and p-values were corrected for multiple testing using the Benjamini-Hochberg 

procedure (referred to as padj-values). P-/padj-values<0.05 were considered statistically 

significant. 

 

Baseline characteristics 

Descriptives for baseline and lifestyle questionnaire data were generated using the 

gtsummary v1.7.2 R package. 

Lifestyle and food score 

Lifestyle questionnaire data (N = 185) were mode imputed (missing values) and 

subjected to either Multiple Correspondence Analysis (MCA) or Principal Component 

Analysis (PCA) to calculate lifestyle and food score, respectively. Lifestyle score was 

calculated by applying MCA to categorical questionnaire data (n = 38 manually curated 
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lifestyle-related questions; 21 on assets, 11 on food and 6 on housing) (FactoMineR 

v2.7 R package, MCA()-function; PC1 defined as ‘lifestyle score’). (Cumulative) 

variable category contributions were extracted and shown. To calculate a food score, 

variables capturing the frequency of consumption of dietary products (n = 11; 0, 1, 2-4 

or ≥5×/week) were converted into ordinal variables and used as input variables for a 

PCA ordination (PCA()-function). Coordinates of samples and variable 

categories/variables were visualized in biplots. For lifestyle score analyses, 

(cumulative) variable category contributions were extracted and shown. 

 

Alpha-diversity analysis 

Diversity analyses were performed on unfiltered and non-rarefied raw read counts 

(ASVs present in ≥2 samples). Shannon diversity was primarily used as a measure for 

within-sample/alpha-diversity, leveraging both species richness and evenness (ASV- 

and genus-level). In addition, we compared the number of observed ASVs or genera. 

Statistical significance between groups was assessed using linear models with observed 

richness or Shannon diversity as outcome, adjusting for vaccination status, age, sex and 

sequencing depth. 

 

Beta-diversity analysis 

Beta-diversity analyses were performed on centered-log-ratio [CLR]-transformed 

genus-level abundance matrices. CLR-transformed abundances were used in principal 

components analysis (PCA) to visualize major patterns of microbiota variation. 

Associations between rural/urban living location, host and environmental variables 

(age, sex, helminth infection status, highest level of education, body mass index (BMI), 

lifestyle and food scores (PC1 and PC2), vaccination status and technical variables 

(sequencing depth) were explored by multivariable Permutational Multivariate 

Analysis of Variance (Aitchison-distance matrix; PERMANOVA), adjusting for living 

location, vaccination, age and sex as appropriate. For variables for which collinearity 

with living location was expected (i.e. lifestyle/food scores, helminth infection status 

and sex), models were adjusted for vaccination, age and sex (dropping living location). 

Paired day 0 and day 56 samples from vaccinated individuals were tested for 

Chapter 6

188



 
 

differences between time points (indicating a vaccination effect) using a 

PERMANOVA with permutations restricted within participant. 

 

Microbiota clustering 

Microbiota profiles (n = 154 samples) were clustered into Community State Types 

(CSTs) by fitting a Dirichlet Multinomial model (DirichletMultinomial v1.46.0 R-

package; dmn()-function). Genus-level count data were taken as input and models were 

fitted with 1 to 10 components. The optimal number of Dirichlet components was 

determined by inspecting measures of fit (Laplace, AIC and BIC). Species associated 

with either CST1 or CST2 were identified using differential abundance analyses 

(MaAsLin2; no adjustment for covariates, see below). 

 

Food-variable association tests 

To assess the association between food variables (frequency of consumption of dietary 

products per week) and living location and living location/CST (including rural-like 

urban individuals), we used logistic regression analysis, adjusting for all other food 

variables and sex.  

 

Differential abundance analysis 

Differentially abundant taxa between groups were identified using linear models, like 

the implementation in the MaAsLin2 framework (default parameters; log2-

normalisation)68. For each comparison genera present at >0.1% relative abundance in 

≥10% of samples were selected. We explored the associations between 1) rural/urban 

living location (adjusted for vaccination status, age and sex), 2) CST1 and CST2 (no 

adjustment for covariates), 3) urban (urban + CST2)/rural living individuals and rural-

like urbanites (urban + CST1) (no adjustment for covariates), 4) food variables 

(stratified by living location; adjusted for other food variables and sex), and 5) log10-

transformed yellow fever neutralizing antibodies (adjusted for living location, age and 

sex or age and sex) and relative abundances of individual taxa. When comparing >2 

groups (e.g. urban/rural/rural-like urbanites), estimates and p-values for each pairwise 

comparison between groups (e.g. urban vs rural) were extracted using the emmeans 

v1.8.5 R-package. p-values were adjusted per rank, term and contrast, as appropriate, 

Gut microbiota and yellow fever responses

189

C
ha

pt
er

 6



and resulting BH-adjusted p-values of below 0.05 were considered statistically 

significant. 

 
BloSSUM and VANISH taxa 

Classification into BloSSUM (bloom or selected in societies of 

urbanization/modernization) and VANISH (volatile and/or associated negatively with 

industrialized societies of humans) taxa was based on a publication describing gut 

microbiota profiles in a non-industrialized population of Hadza hunter-gatherers. Lists 

of BloSSUM and VANISH taxa were extracted from the publication and collapsed at 

genus-level. Genera classified as both BloSSUM- and VANISH-associated were 

dropped. For differentially abundant genera associated with rural/urban living or 

CST1/CST2, we tested for significant enrichment of either BloSSUM or VANISH taxa 

using Fisher’s Exact tests. 

 
Multimodal analyses 

Based on visual inspection of stacked bar plots, we manually selected several genera 

for which the (multimodal) distribution of relative abundance was assessed in a post-

hoc analysis using the multimode R-package. The number of modes was determined 

using the nmodes()-function, based on inspection of a stairs plot across a range of 

density bandwidths. Mode location was determined by the locmodes()-function. 

 

Yellow fever neutralizing antibody titers 

Log10-base geometric mean yellow fever neutralizing antibody titers (PRNT50 and 

PRNT90) at baseline (pre-vaccination), day 28 (4 weeks post-vaccination) and at day 

178 (~6 months post-vaccination) were calculated. Values under the limit of detection 

(<10) were assumed to have a value of 5. Statistical analyses were performed using a 

generalized linear mixed effects model with log10-transformed PRNT50/PRNT90-values 

as outcome, group, CST or group/CST, time point, the interaction between group, CST 

or group/CST and time point, age and sex as fixed effects and participant ID as random 

effects. Pairwise comparisons of estimated marginal means between groups were 
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computed at each time point or between day 28 and day 178 for each group (emmeans 

v1.10.0 R package). 

 

Data availability 
16S-rRNA sequencing data from this study are available from NCBI under BioProject 

accession number PRJNA1141956. Other data are available from the corresponding 

author upon reasonable request. 
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Supplementary Figure 

 
Supplementary Figure 1 | Flowchart of volunteer recruitment, randomization and stool sample collection. 

N = number of volunteers; n = number of samples. YF = Yellow Fever; d0 = day 0/baseline sample; d56 = day 56 

sample. Low Hb, Hb < 8.5 g/dL; low blood pressure, blood pressure ≤90/60mmHg; high blood pressure, blood 

pressure ≥140/90mmHg. Non-permanent residency indicates individuals who upon further questioning had not lived 

at a given location for their whole life. *1 volunteer without recorded group/vaccine status at the moment of sample 

shipment. 
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Supplementary Figure 2 | Heatmap visualizing lifestyle questionnaire data. N = 185 participants.  

Values represent the number of participants. Colors indicate the percentage of the total. Comparisons between groups 

( rural/urban living) were performed using Fisher’s exact or chi-squared tests. Asterisks denote statistical significance 

(NS, non-significant; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001, p ≤ 0.0001). See Supplementary Table 2. 
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Supplementary Figure 3 | Multiple Correspondence Analysis (MCA) based on questionnaire data to generate 

lifestyle score.  

a) MCA was applied to categorical questionnaire data (38 manually curated questions; 21 on assets, 11 on food and 6 

on housing) (N = 185 individuals). Data points are colored based on location Ellipses reflect the data spread at a 95% 

confidence level. Density plots show the distribution of PC1 (lifestyle score) (x-axis) and PC2 (y-axis) score. b) 

Differences in lifestyle scores (PC1/PC2) between rural and urban living individuals. See legend Figure 2a-b. 

Statistical significance between groups was assessed using linear models with lifestyle score as outcome, adjusting 

for age and sex. c) Cumulative contributions (in percentage) of the variable categories by questionnaire data category 
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(i.e. housing, assets and food). d, f) Coordinates of each variable category most strongly contributing to PC1 (d) or 

PC2 (f) across dimensions 1 and 2. e, g) Contributions (in percentage) of variable categories to e) PC1 or lifestyle 

score or g) PC2 (based on lifestyle variables). Bars are colored based on PC1/PC2 scores as appropriate. h) Difference 

in lifestyle score across the overall cohort (N = 185) compared to the microbiota subcohort (N = 143), stratified by 

urban/rural living location. Statistical significance between groups was assessed using a linear model with lifestyle 

score as outcome. 

 

 
Supplementary Figure 4 | Principal component analysis (PCA) based on food variables to generate a food score.  

a) PCA was applied to 11 food-related variables (encoded as ordinal variables) (N = 185 individuals). Data points are 

colored based on location. Ellipses reflect the data spread at a 95% confidence level. b) Differences in food scores 

(PC1/PC2) between rural and urban living individuals. See legend Figure 2a-b. Statistical significance between groups 

was assessed using linear models with food score as outcome, adjusting for age and sex. c) Relation between PC2 

food score and reporting rate of food variables (expressed as the mean ordinal value across 11 food variables for each 

individual). d) Association between food variables and living location (rural/urban; N = 185). Statistical significance 

was assessed using a logistic regression analysis with group as outcome and all food variables and sex as predictors. 

For each food variable, model estimates are depicted along the x-axis (colored points). Colors indicate the group with 

which a given food variable is positively associated with. Whiskers denote 95% confidence intervals (CIs; Wald-

method). Asterisks denote statistical significance (*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001). 
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Supplementary Figure 5 | Boxplots of genera associated with rural/urban living location.  

Only genera with padj < 5 × 10-5 and log2FC <-1.5 or >1.5 are shown. Statistical significance between groups 

(rural/urban living) was assessed using linear models with genus-level abundance as outcome, adjusting for 

vaccination status, age and sex. See legend Figure 2a-b. 
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Supplementary Figure 6 | Microbiota profiles cluster in distinct Community State Types (CSTs) using 
Dirichlet-multinomial modelling (DMM).  
a) DMM goodness-of-fit (AIC, BIC and Laplace) for k = 1-10 mixture components. For each goodness-of-fit measure, 

the optimal number of components is denoted using a colored arrow. b) Heatmap showing the relative abundance of 

the 30 most abundant genera for each sample. Samples are ordered based on living location; within living location 

samples are ordered according to Bray-Curtis dissimilarities (based on genus-level relative abundance) between 

samples. Taxa are ordered based on using hierarchical clustering (Euclidean distance) with optimal leaf ordering. Top 

horizontal bars indicate 1) living location, 2) CST allocation and 3) living location and CST membership combined. 

Urban living individuals belonging to CST1 were classified as rural-like urbanites since rural individuals almost 

exclusively clustered in CST1. For these comparisons, ‘Urban’ denotes urban individuals belonging to CST2. c-f 2 × 

2 tables showing the number of VANISH (c, e) or BloSSUM taxa (d, f) across CST1- and CST2-associated taxa. 

Statistical significance was assessed using Fisher’s Exact tests. 
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Supplementary Figure 7 | Differential abundance analyses urban/rural living individuals and rural-like 

urbanites. 

 a-c) Volcano plots visualizing genera enriched in a) urban (urban + CST2) living individuals compared to rural-like 

urbanites, b) rural-like urbanites compared to rural living individuals and c) urban (urban + CST2) compared to rural 

living individuals. Statistical significance between groups (rural/urban living/rural-like urbanites) was assessed using 

linear models with genus-level abundance as outcome (no adjustment for covariates). Model estimates and p-values 

for each contrast were extracted using the emmeans R-package. P-values were adjusted for multiple testing for each 

contrast. Genera with padj < 0.05 and log2-fold change (FC) <-1.5 or >1.5 are colored and genera with a padj < 0.001 

(a), padj < 0.05 (b) or padj < 1 × 10-7 (c) and log2FC <-1.5 or >1.5 were annotated. The shape of the data points indicates 

whether these genera were previously considered to belong to VANISH (volatile and/or associated negatively with 

industrialized societies of humans) or BloSSUM (bloom or selected in societies of urbanization/modernization) taxa. 
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Supplementary Figure 8 | Yellow fever neutralizing antibody titer variation across living location and with 

microbiota profiles. 

a-f) Boxplots (see legend Figure 2a-b) showing yellow neutralizing antibody titers (a; PRNT50 and b-f; PRNT90) in all 

vaccinated individuals (N = 155, a-c) and in those from whom a stool sample was collected (N = 121, d-f) at baseline 

(day 0, d0), 4 weeks post-vaccination (day 28, d28) and 6 months post-vaccination (day 178, d178). Boxplots show 

comparisons according to group (rural/urban living location; a-b), CST (e) and group/CST (i.e. rural living individuals, 

rural-like urbanites [CST1] and urban living individuals [CST2]) (f). c) Boxplots showing yellow neutralizing 

antibody titers (PRNT50) at 4 weeks post-vaccination (day 28, d28) compared to 6 months post-vaccination (day 178, 

d178) for group (rural/urban living location). Diamond-shaped data points and color values at the bottom of the plot 

denote log10-base geometric mean titers. Statistical analyses were performed using a generalized linear mixed effects 

model with log10-transformed PRNT50/PRNT90-values as outcome, group, CST or group/CST, time point, the 

interaction between group, CST or group/CST and time point, age and sex as fixed effects and participant ID as random 

effects. Pairwise comparisons of estimated marginal means between groups were computed at each time point (a-b, d-

f) or between day 28 and day 178 for each group (c). Values under the limit of detection (<10) were assumed to have 

a value of 5. 
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Supplementary Figure 9 | Association between YF-17D vaccination on gut microbiota profiles.  

a) Principal component analysis (PCA) biplot using CLR-transformed genus-level microbiota features across day 56 

samples. Data points, ellipses and side plots are colored based on vaccination status. See legend Figure 1C. R2 and 

statistical significance of the association between vaccination status and the overall microbiota composition was 

assessed using PERMANOVA-test (1,000 permutations), while adjusting for living location, age and sex. b) Principal 

coordinate analysis of vaccinated volunteers with paired (day 0 – day 56) stool samples (N = 8, n = 16). Arrows 

indicate direction of ‘movement’ across PC1 and PC2 from day 0 to day 56. c) Boxplots (see legend Figure 2a-b) 

showing the distance from day 0 to day 56 across PC1-PC7. d) Within-subject distances (day 0 – day 56) between 

vaccinated (N = 8) and non-vaccinated individuals (N = 3) compared to between-subject distances (day 56). Distances 

between subjects were calculated for subjects with matching group (rural/urban living) and vaccination status (yes/no 

YF-17D vaccination). Up to 50 distances per stratum (rural – vaccine, urban – vaccine, rural – no vaccine and urban 

– no vaccine) were randomly selected (n = 28 distances were selected for rural – no vaccine). Statistical significance 

was assessed using a Student’s t-test with Aitchison distance as dependent variable and vaccine status as independent 

variable. e) Permutation test based on subsampled between-subject distances between paired vaccinated and non-

vaccinated subjects (n = 8 and n = 3, respectively). Histogram and line plot indicate the density distribution of p-values 

across 5,000 iterations. The ‘true’ observed within-subject p-value is shown in dark red.  
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Supplementary Figure 10 | Change in yellow fever neutralizing antibody titers at day 28 compared to day 178. 

a-c) Boxplots (see legend Figure 2a-b) showing yellow neutralizing antibody titers (PRNT90) at 4 weeks post-

vaccination (day 28, d28) compared to 6 months post-vaccination (day 178, d178) for rural compared to urban living 

individuals (a), CST1 compared to CST2 (b) and group/CST (i.e. rural living individuals, rural-like urbanites [CST1] 

[RLU] and urban living individuals [CST2]) (c) (N = 121). Diamond-shaped data points and color values at the bottom 

of the plot denote log10-base geometric mean titers. Statistical analyses were performed using a generalized linear 

mixed effects model with log10-transformed PRNT90-values as outcome, group, CST or group/CST, time point, the 

interaction between group, CST or group/CST and time point, age and sex as fixed effects and participant ID as random 

effects. Pairwise comparisons of estimated marginal means between day 28 and day 178 were computed for each 

group. Values under the limit of detection (<10) were assumed to have a value of 5. 
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Supplementary tables 

Supplementary Table 1 | Baseline characteristics of the study population (N = 185). 

Variable Overall, N = 185 Urban Moshi, N 
= 94 

Rural Moshi, N = 
91 

p-value 

Female sex 84 (45%) 50 (53%) 34 (37%) 0.031 
Age 23.7 (21.2, 27.5) 23.6 (21.8, 26.1) 23.9 (20.3, 29.7) 0.813 
Age categories 

  
0.022 

   18-25 115 (62%) 66 (70%) 49 (54%) 
 

   26-36 70 (38%) 28 (30%) 42 (46%) 
 

BMI 22.5 (20.0, 25.1) 23.6 (20.4, 26.4) 22.1 (19.9, 24.6) 0.076 
BMI classification 

  
0.228 

   <18.5 20 (11%) 9 (9.6%) 11 (12%) 
 

   18.5-24.9 118 (64%) 55 (59%) 63 (69%) 
 

   25.0-29.9 34 (18%) 22 (23%) 12 (13%) 
 

   >30 13 (7.0%) 8 (8.5%) 5 (5.5%) 
 

Systolic blood pressure 
(mmHg) 

116 (105, 124) 111 (102, 121) 120 (110, 129) 0.002 

Diastolic blood pressure 
(mmHg) 

71 (65, 78) 70 (64, 76) 72 (67, 79) 0.125 

Hemoglobin level g/dl 15.00 (13.70, 
16.20) 

14.45 (12.70, 
15.88) 

15.40 (14.20, 
16.50) 

<0.001 

Random blood sugar, mmol-
1^^ 

5.20 (4.80, 5.80) 5.30 (4.90, 6.00) 4.90 (4.70, 5.45) <0.001 

Highest level of education 
 

<0.001 
   Primary 52 (28%) 2 (2.1%) 50 (55%) 

 

   Secondary 85 (46%) 47 (50%) 38 (42%) 
 

   College 21 (11%) 20 (21%) 1 (1.1%) 
 

   University 27 (15%) 25 (27%) 2 (2.2%) 
 

Helminth infectiona 8 (4.3%) 0 (0%) 8 (8.8%) 0.003 
Insurance status 80 (43%) 77 (82%) 3 (3.3%) <0.001 
Occupation 

  
<0.001 

   Farming 39 (21%) 13 (14%) 26 (29%) 
 

   Elementary occupation 59 (32%) 10 (11%) 49 (54%) 
 

   Student 3 (1.6%) 3 (3.2%) 0 (0%) 
 

   Employed/business owner 75 (41%) 64 (68%) 11 (12%) 
 

   Not employed 1 (0.5%) 0 (0%) 1 (1.1%) 
 

   Other 8 (4.3%) 4 (4.3%) 4 (4.4%) 
 

Received yellow fever vaccine 155 (84%) 78 (83%) 77 (85%) 0.763 

 
N = 185 participants. Values represent number of participants (percentage of total) and median (interquartile range 

[IQR]) for categorical and continuous variables, respectively. Comparisons between locations were performed using 

Fisher’s exact, chi-squared and Mann–Whitney U-test for categorical and continuous variables, respectively. aStool 

was tested for helminths using the Kato-Katz method, testing for Schistosoma mansoni, Ascaris lumbricoides, 

hookworm and Trichuris trichuria. Additionally, urine was tested for Schistosoma haematobium and Schistosoma 

mansoni using the POC-CCA method. 
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Supplementary Table 2 | Descriptives of lifestyle score variables (N = 185). 

Characteristic Urban Moshi, N = 94 Rural Moshi, N = 91 p-value 

House floor 
  

<0.001 

   Hard floor (tile, cement, concrete, wood) 94 (100%) 74 (81%) 
 

   Soil/sand 0 (0%) 17 (19%) 
 

House walls 
  

<0.001 

   Cement, brick or stone 94 (100%) 71 (78%) 
 

   Cane, palm, trunks, bamboo 0 (0%) 14 (15%) 
 

   Mud (with poles) 0 (0%) 6 (6.6%) 
 

 House roof 
  

0.497 

    Roof tiles 2 (2.1%) 0 (0%) 
 

    Metal sheets 92 (98%) 91 (100%) 

Water source 
  

0.156 

   Tap water (piped through house or at yard) 92 (98%) 83 (91%) 
 

   Public standpipe 1 (1.1%) 1 (1.1%) 
 

   Spring 1 (1.1%) 4 (4.4%) 
 

   Pond-water or stream 0 (0%) 2 (2.2%) 
 

   Other 0 (0%) 1 (1.1%) 
 

Toilet facility 
  

<0.001 

   Flush to piped sewage or septic tank 63 (67%) 18 (20%) 
 

   Pour flush latrine 30 (32%) 43 (47%) 
 

   Pit latrine 1 (1.1%) 30 (33%) 
 

Cooking place 
  

<0.001 

   In a separate room used as kitchen 59 (63%) 14 (15%) 
 

   In a separate building used as kitchen 32 (34%) 77 (85%) 
 

   In a room used for living or sleeping 3 (3.2%) 0 (0%) 
 

Total number of milk cows 
  

0.036 

   None 77 (82%) 68 (75%) 
 

   1-4 11 (12%) 22 (24%) 
 

   5-9 5 (5.3%) 1 (1.1%) 
 

   10+ 1 (1.1%) 0 (0%) 
 

Total number of other cattle 
  

0.004 

   None 93 (99%) 81 (89%) 
 

   1-4 1 (1.1%) 10 (11%) 
 

   5-9 0 (0%) 0 (0%) 
 

   10+ 0 (0%) 0 (0%) 
 

Total number of horses 
  

>0.999 

   None 94 (100%) 91 (100%) 

   1-4 0 (0%) 0 (0%) 
 

   5-9 0 (0%) 0 (0%) 
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   10+ 0 (0%) 0 (0%) 
 

Total number of goats 
  

<0.001 

   None 86 (91%) 37 (41%) 
 

   1-4 3 (3.2%) 35 (38%) 
 

   5-9 3 (3.2%) 17 (19%) 
 

   10+ 2 (2.1%) 2 (2.2%) 
 

Total number of sheep 
  

0.273 

   None 92 (98%) 86 (95%) 
 

   1-4 2 (2.1%) 5 (5.5%) 
 

   5-9 0 (0%) 0 (0%) 
 

   10+ 0 (0%) 0 (0%) 
 

Total number of chicken/poultry 
  

<0.001 

   None 39 (41%) 23 (25%) 
 

   1-4 3 (3.2%) 13 (14%) 
 

   5-9 5 (5.3%) 20 (22%) 
 

   10+ 47 (50%) 35 (38%) 
 

Agricultural land (hectares) 
  

<0.001 

   None 47 (50%) 67 (74%) 
 

   1-4 29 (31%) 23 (25%) 
 

   5-9 7 (7.4%) 1 (1.1%) 
 

   10+ 11 (12%) 0 (0%) 
 

Connected to electricity 94 (100%) 60 (66%) <0.001 

Working radio 90 (96%) 74 (81%) 0.002 

Working television 92 (98%) 44 (48%) <0.001 

Working computer 76 (81%) 5 (5.5%) <0.001 

Working refrigerator 84 (89%) 7 (7.7%) <0.001 

Working rechargeable battery or generator 41 (44%) 31 (34%) 0.183 

An iron (charcoal/electric) 91 (97%) 51 (56%) <0.001 

Watch 92 (98%) 45 (49%) <0.001 

Mobile phone 94 (100%) 90 (99%) 0.492 

Bicycle 41 (44%) 7 (7.7%) <0.001 

Motorcycle 29 (31%) 13 (14%) 0.007 

Animal drawn cart 2 (2.1%) 0 (0%) 0.497 

Car or truck 70 (74%) 11 (12%) <0.001 

Boat with a motor 1 (1.1%) 0 (0%) >0.999 

Ugali (maize stiff porridge) (×/week) 
  

<0.001 

   0 10 (11%) 0 (0%) 
 

   1 39 (41%) 5 (5.5%) 
 

   2-4 40 (43%) 65 (71%) 
 

   ≥5 5 (5.3%) 21 (23%) 
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Plantain (×/week) 
  

0.134 

   0 17 (18%) 7 (7.7%) 
 

   1 63 (67%) 68 (75%) 
 

   2-4 8 (8.5%) 12 (13%) 
 

   ≥5 6 (6.4%) 4 (4.4%) 
 

Banana (×/week) 
  

0.001 

   0 5 (5.3%) 0 (0%) 
 

   1 52 (55%) 32 (35%) 
 

   2-4 27 (29%) 45 (49%) 
 

   ≥5 10 (11%) 14 (15%) 
 

Rice (×/week) 
  

<0.001 

   0 0 (0%) 0 (0%) 
 

   1 3 (3.2%) 35 (38%) 
 

   2-4 22 (24%) 45 (49%) 
 

   ≥5 68 (73%) 11 (12%) 
 

   Missing 1 0 
 

Potatoes (×/week) 
  

<0.001 

   0 2 (2.1%) 5 (5.5%) 
 

   1 25 (27%) 67 (74%) 
 

   2-4 31 (33%) 17 (19%) 
 

   ≥5 36 (38%) 2 (2.2%) 
 

Meat (×/week) 
  

0.007 

   0 0 (0%) 0 (0%) 
 

   1 8 (8.5%) 14 (15%) 
 

   2-4 44 (47%) 56 (62%) 
 

   ≥5 42 (45%) 21 (23%) 
 

Fish (×/week) 
  

<0.001 

   0 2 (2.1%) 0 (0%) 
 

   1 61 (65%) 39 (43%) 
 

   2-4 20 (21%) 45 (49%) 
 

   ≥5 11 (12%) 7 (7.7%) 
 

Beans/peas (×/week) 
  

<0.001 

   0 5 (5.3%) 0 (0%) 
 

   1 12 (13%) 40 (44%) 
 

   2-4 28 (30%) 37 (41%) 
 

   ≥5 49 (52%) 13 (14%) 
 

   Missing 0 1 
 

Green vegetables (×/week) 
  

0.347 

   0 0 (0%) 0 (0%) 
 

   1 6 (6.5%) 4 (4.4%) 
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   2-4 29 (31%) 21 (23%) 
 

   ≥5 58 (62%) 65 (72%) 
 

   Missing 1 1 
 

Fruits (×/week) 
  

<0.001 

   0 0 (0%) 0 (0%) 
 

   1 3 (3.2%) 27 (30%) 
 

   2-4 24 (26%) 18 (20%) 
 

   ≥5 67 (71%) 46 (51%) 
 

Locally brewed beer (×/week) 
  

<0.001 

   0 68 (73%) 41 (46%) 
 

   1 22 (24%) 13 (14%) 
 

   2-4 0 (0%) 10 (11%) 
 

   ≥5 3 (3.2%) 26 (29%) 
 

   Missing 1 1 
 

 
N = 185 participants. Values represent number of participants (percentage of total). Comparisons between locations 

were performed using Fisher’s exact or chi-squared tests. All variables (n = 38 variables), after mode imputation, were 

used to construct the lifestyle score. See Supplementary Figure 2. 

 
Supplementary Table 3 | Baseline characteristics of the rural-like urbanites compared to other urban living 

individuals (N = 69). 

Variable Overall, N = 69 Rural-like Urban, N 
= 21 

Urban, N = 48 p-value 

Female sex 36 (52%) 6 (29%) 30 (63%) 0.009 
Age 23.0 (21.2, 24.6) 23.1 (21.8, 24.6) 22.9 (21.2, 

24.5) 
0.676 

Age categories 
  

>0.999 
   18-25 55 (80%) 17 (81%) 38 (79%) 

 

   26-36 14 (20%) 4 (19%) 10 (21%) 
 

BMI 23.1 (20.4, 26.4) 23.8 (20.7, 26.3) 22.8 (19.8, 
26.5) 

0.825 

BMI classification 
  

0.575 
   <18.5 6 (8.7%) 3 (14%) 3 (6.3%) 

 

   18.5-24.9 42 (61%) 11 (52%) 31 (65%) 
 

   25.0-29.9 16 (23%) 6 (29%) 10 (21%) 
 

   >30 5 (7.2%) 1 (4.8%) 4 (8.3%) 
 

Systolic blood pressure 
(mmHg) 

110 (102, 120) 110 (107, 120) 111 (100, 121) 0.481 

Diastolic blood pressure 
(mmHg) 

70 (63, 76) 70 (60, 77) 70 (64, 75) 0.958 

Hemoglobin level g/dl 14.30 (12.60, 15.60) 14.90 (14.20, 15.80) 13.65 (12.43, 
15.28) 

0.022 

Random blood sugar, mmol-
1^^ 

5.30 (4.90, 6.00) 5.30 (5.10, 5.60) 5.30 (4.90, 
6.00) 

0.759 

Highest level of education 
 

0.593 
   Primary 2 (2.9%) 1 (4.8%) 1 (2.1%) 

 

   Secondary 38 (55%) 10 (48%) 28 (58%) 
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   College 14 (20%) 4 (19%) 10 (21%) 
 

   University 15 (22%) 6 (29%) 9 (19%) 
 

Insurance status 60 (87%) 18 (86%) 42 (88%) >0.999 
Occupation 

  
0.690 

   Farming 10 (14%) 2 (9.5%) 8 (17%) 
 

   Elementary occupation 7 (10%) 2 (9.5%) 5 (10%) 
 

   Employed/business owner 49 (71%) 17 (81%) 32 (67%) 
 

   Other 3 (4.3%) 0 (0%) 3 (6.3%) 
 

Received yellow fever 
vaccine 

55 (80%) 15 (71%) 40 (83%) 0.332 

 
N = 69 urban living participants. Values represent number of participants (percentage of total) and median 

(interquartile range [IQR]) for categorical and continuous variables, respectively. Comparisons between locations 

were performed using Fisher’s exact, chi-squared and Mann–Whitney U-test for categorical and continuous variables, 

respectively. 
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Summary, general discussion and future perspective 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Summary 

In Chapter 1, we introduced the factors associated with variation in the immune system and 

the differences in immune responses to vaccines. Additionally, we outlined the main objective 

of this thesis, the study designs, the geographical areas where the studies were conducted, and 

the study populations recruited. An outline of the subsequent chapters of the thesis was also 

provided. 

In Chapter 2, we reviewed the significant challenge that vaccine hypo-responsiveness to 

certain vaccines poses to global health, particularly due to the variability in vaccine efficacy 

across different populations and geographical regions. This is especially pronounced in low- 

and middle-income countries, where vaccines for diseases such as malaria, tuberculosis (TB) 

and rotavirus often demonstrate reduced immunogenicity and, for some even effectiveness, 

compared to those in high-income regions. Our review identified several contributing factors 

to vaccine hypo-responsiveness, including environmental and lifestyle factors such as 

exposure to microorganisms and parasites (such as HIV, CMV, malaria, helminths, and 

environmental mycobacteria), variations in the microbiome (such as phage diversity, 

commensal bacteria), and the presence of pro-inflammatory and anti-inflammatory metabolites 

(for example, flavones). 

We further explored the potential immunological mechanisms underlying poor responses to 

vaccines including pre-existing immunity or cross-reactive antigens, persistent immune 

activation, immune exhaustion, immune senescence, and alterations in tissue micro-

environments, such as in lymph nodes, and skewed immune responses. In addition, we 

reviewed potential strategies to reverse or enhance vaccine responses. These strategies include 

the change in the use of adjuvants and adjustments to vaccine regimens, reduction of 

inflammation, application of checkpoint and MAPK inhibitors, modifications of lymphoid 

stromal cells, and the use of monoclonal antibodies targeting TH2 cytokines and Treg-cells. 

We concluded that the application of advanced omics technologies and further exploration of 

the roles of immune metabolism and local microenvironments could provide deeper insights 

into the mechanisms behind vaccine hypo-responsiveness. Such understanding is crucial for 

the development of tailored vaccination strategies that can effectively overcome these barriers. 
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As helminths seem to be important immune modulators, their prevalence in different 

geographical areas might need to be assessed when studying vaccine responses. To achieve 

this, sensitive and specific diagnostic tools are needed.  

In chapter 3, we investigated the current prevalence of schistosomiasis among school-aged 

children in Mwanga district, Tanzania, after nearly two decades of Mass Drug Administration 

(MDA) with praziquantel. While urine microscopy remains the conventional gold standard for 

diagnosing urinary schistosomiasis in endemic settings, its sensitivity is limited. Therefore, we 

employed the Up-Converting Particle Lateral Flow Circulating Anodic Antigen (UCP-LF 

CAA) test, known for its high sensitivity in detecting active infections but needs a laboratory-

based reading machine. We also explored the potential of using the Point-of-Care Circulating 

Cathodic Antigen (POC-CCA) test and the micro-haematuria dipstick as combined diagnostic 

tools in comparison to the UCP-LF CAA test. 

Our findings indicated a moderate prevalence of schistosomiasis of 20.3% based on the UCP-

LF CAA test, which provided a more accurate reflection of the current disease burden than the 

combined POC-CCA and micro-haematuria tests. The latter showed higher prevalence rates, 

but the poor agreement with the UCP-LF CAA test, questions the reliability of the POC-CCA. 

The POC-CCA test appears to show variability due to factors such as production batch 

differences, variability in test sensitivity, and the subjective nature of the interpretation of the 

results.  

Our study underscores the persistent transmission of schistosomiasis in the region despite long-

term MDA efforts. It also emphasizes the need for improved diagnostic tools that can be 

applied directly as a point-of-care test in the field without the need for any apparatus.  Such a 

test would need to be integrated into control strategies that consider local transmission 

dynamics and socio-environmental factors. These advancements are crucial for achieving 

more effective disease management and moving closer to the goal of schistosomiasis 

elimination in endemic regions. 

In Chapter 4, we investigated the association between lifestyle factors and cellular immune 

profiles in healthy Tanzanian adults. The lifestyle score was developed based on household 

assets, housing conditions, and dietary history. First, using rural-urban locations: we found 

significant differences in immune cell frequencies between rural and urban participants. Rural 
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participants exhibited higher frequencies of Th2-cells, atypical memory B-cells, and various 

subsets of CD4+ T effector memory (Tem)-cells, including those expressing markers like 

CD38, HLA-DR, PD-1, KLRG-1 and CTLA-4. Indicating a more activated and regulatory 

immune state. 

Importantly, the lifestyle score confirmed five immune cell clusters previously identified by 

geographical location alone. These included clusters of Th2-cells, CD4+ Tem-cells, atypical 

memory B-cells, and CD8+ Tem-cells. These clusters were predominantly associated with 

rural living and a lower lifestyle score. Additionally, the lifestyle score identified eight unique 

immune cell clusters that were not detected when considering geographical location alone. 

Lower lifestyle scores were linked to higher frequencies of plasmablasts, regulatory T-cells, 

and NK-cells, while higher lifestyle scores, typically associated with urban living, correlated 

with increased frequencies of naïve CD8+ T-cells and CD8+ Tem-cells expressing markers 

like CD161 and KLRG-1. We concluded that lifestyle factors significantly shape cellular 

immune profiles beyond the influence of geographical location alone. This enhanced 

understanding of lifestyle-driven immune variation is crucial for improving vaccine responses 

and managing immune-related diseases, particularly in diverse and low- and middle-income 

populations. 

In Chapter 5, Following the findings of immunological differences across geographical areas, 

we were interested in the impact of these differences on vaccine responses. To this end, we 

compared yellow fever vaccine immunogenicity in rural and urban Moshi. Immunogenicity 

was measured using a clinically important neutralization assay, which allowed us to identify 

protected and non-protected subjects. In addition, we measured antibodies against non-

structural protein 1 (NS1) using ELISA, providing a robust continuous dataset representing 

vaccine immunogenicity.  

In Chapter 6, we investigated the association of gut microbiota composition in rural- and 

urban-living Tanzanian adults concerning the yellow fever vaccine antibody response. We 

found significant differences in the gut microbiota composition between individuals living in 

rural and urban areas. In rural Tanzanians, the gut microbiota was more diverse, with a higher 

prevalence of genera such as Prevotella, Succinivibrio, and Treponema. Rural diets in this 

study were characterized by a higher intake of traditional foods like ugali (a stiff porridge made 

from maize), vegetables, and locally brewed beer, which altogether represent plant-based diets 
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rich in fibres and complex carbohydrates. In contrast, urban Tanzanians displayed a gut 

microbiota dominated by Bacteroides, Parabacteroides, and members of the 

Enterobacteriaceae family. These bacterial genera are typically associated with diets high in 

processed foods and refined carbohydrates, food consumed by most in urban areas for example 

rice and potatoes in the form of chips. Interestingly, we identified a subset of urban individuals 

with a microbiota composition resembling that of rural inhabitants, termed "rural-like urban" 

individuals. These individuals consumed more beans and peas, foods high in proteins and 

dietary fibres while consuming less rice and ugali, aligning their microbiota profiles more 

closely with those of rural individuals. 

Urban-living individuals were significantly enriched for BloSSUM taxa (bloom or selected in 

societies of urbanization/modernization), while rural-living individuals lacked these genera, 

with no significant enrichment of VANISH taxa (volatile and/or associated negatively with 

industrialized societies of humans) in rural-associated genera. Regarding yellow fever vaccine 

antibody titer, we found that rural individuals generally exhibited higher yellow fever 

neutralizing antibody titers compared to their urban counterparts. Notably, within the urban 

population, those with a rural-like microbiota profile showed higher initial antibody titers but 

also experienced stronger waning over time, like the rural group. The findings indicate that the 

gut microbiota, influenced partly by diet, might have the ability to modulate vaccine responses. 

The study findings emphasize the potential for microbiota-targeted interventions, such as 

dietary modifications, to improve vaccine efficacy, particularly in populations undergoing 

rapid urbanization and dietary transitions.  

In Chapter 7, we discussed the main findings of this thesis, focusing on a select few factors 

associated with variations in the immune system and differences in immune responses to 

vaccines. Additionally, we explored future perspectives and concluded with the main 

conclusions of this thesis. 
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General discussion   

The role of diagnostic tools in understanding the immune system 

In Chapter 3, of this thesis, we investigated the current prevalence of schistosomiasis among 

school-aged children in Mwanga District, Tanzania, following nearly two decades of Mass 

Drug Administration (MDA) with praziquantel. Utilizing the highly sensitive and specific Up-

Converting Particle Lateral Flow Circulating Anodic Antigen (UCP-LF CAA) test[1], we 

found a schistosomiasis prevalence of 20.3%. This contrasts with a 65.3% prevalence detected 

when combining the Point-of-Care Circulating Cathodic Antigen (POC-CCA) test and 

microhematuria dipstick. These results suggest that schistosomiasis remains prevalent in the 

area, indicating ongoing transmission. Furthermore, they underscore the importance of the 

sensitivity and specificity of diagnostic tools in accurately assessing disease prevalence. The 

lower prevalence detected by the ultra-sensitive CAA test[1] likely reflects a true decline from 

the 51.8% average prevalence recorded in 2005 using the Kato-Katz egg method, which may 

have underestimated the true burden of the disease due to its low sensitivity[2]. Indeed relying 

on a single Kato-Katz test can lead to an underestimation of prevalence by as much as 50%[3]. 

This decline could be attributed to the ongoing mass drug administration (MDA) program, 

which administers praziquantel annually to primary school-aged children. 

To explore immunological differences between rural and urban settings, we extended our study 

to adults from the same rural areas, as discussed in Chapter 4. In this adult population from 

Mwanga, the prevalence of schistosomiasis was 4%, as determined by the Kato-Katz test and 

POC-CCA. Given that adults are typically not included in the MDA programs, and their 

primary economic activities such as agriculture or fishing involve water contact, the most 

plausible contribution to their lower infection rates may be age-related acquired immunity[4]. 

Additionally, the lower sensitivity of the Kato-Katz test, especially in low-endemic areas 

where egg output is low, might have underestimated the true prevalence[5]. Other factors 

contributing to the observed low prevalence may include environmental changes, preventive 

strategies, and increased self-deworming practices. Despite the low prevalence detected by 

Kato-Katz and POC-CCA, we observed high frequencies of Th2-cells in the adult population, 

suggesting that these individuals might still harbour schistosomiasis infections that were not 

detected by Kato-Katz, or that the elevated Th2 response could result from previous/historical 

infections or other lifestyle factors. 

Chapter 7

220



 
 

These findings emphasize the critical role of high-quality diagnostic tools in accurately 

estimating schistosomiasis prevalence and understanding the immunological variations 

associated with the infection. Schistosomiasis-infected individuals typically exhibit elevated 

Th2 responses, which decrease following treatment with anti-helminthic drugs, alongside other 

immunological changes, including reductions in T regulatory cells [6, 7].  In studies such as 

Human Controlled Infection Models (CHIMs) for schistosomiasis, the use of CAA tests has 

proven invaluable in confirming infection and correlating antigen levels with specific immune 

responses, thus linking immunological changes to infection dynamics[8].  

Conversely, poor-quality diagnostic tools, whether due to variability in sensitivity, specificity, 

or technical errors, can lead to missed infections or overestimation of prevalence. This can 

obscure our understanding of the factors driving immune variation and hinder efforts to address 

the impacts on vaccine response variation. Given the lower sensitivity of the Kato-Katz test, 

particularly in low transmission areas, CAA tests provide a more reliable option for monitoring 

schistosomiasis and understanding its immunopathology. Regarding the effect on vaccine 

responses, future vaccine studies in areas endemic for helminth infections could investigate 

whether current infection is associated with variation in vaccine responses. This could be done 

by designing treatment studies in healthy adults, like the study conducted in Uganda, where 

pregnant women and their children were dewormed, and their cytokine levels were 

measured[9]. 

The association between lifestyle factors and cellular immune profiles  

In Chapter 4, we examined the relationship between lifestyle factors and cellular immune 

profiles in healthy Tanzanian adults. Our study revealed significant differences in immune cell 

frequencies between rural and urban participants. Individuals from rural areas exhibited higher 

frequencies of Th2-cells, memory CD4 T-cells, atypical memory B-cells, and increased 

activation of these cells compared to their urban counterparts. Conversely, urban individuals 

showed higher frequencies of naïve gamma delta T-cells, CD4+ T central memory-cells, and 

CXR3+, CD8+ T-cells. These differences are likely due to current or past environmental 

exposures, particularly to infections such as parasitic diseases. Individuals in rural settings are 

more at risk of acquiring such infections due to socio-economic activities like agriculture, 

fishing, and recreational activities (swimming), but also limited resources that mean exposure 

to contaminated water and poor hygiene, all drivers of an activated immune system. 
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Our findings align with other studies, such as those comparing rural and urban populations in 

Senegal and Indonesia[6, 10]. In these studies, rural populations, particularly in Senegal, had 

higher frequencies of Th2-cells, pro-inflammatory cytokines, memory CD4+ T-cells, and 

memory B-cells, indicating a heightened immune response[10]. Similarly, rural individuals in 

Indonesia exhibited an activated immune status, characterized by higher frequencies of Th2 

and regulatory T-cells, mirroring some of our findings[6]. While previous studies have linked 

these activated immune states to helminth infections, shown by a decrease in specific Th2 and 

regulatory T-cells post-treatment[6, 7], the low prevalence of helminth infections in our study 

prompted us to explore other factors contributing to the observed immune activation. 

To further investigate the basis of these immunological differences, we assessed the 

relationship between lifestyle scores and immune profiles. The lifestyle score was developed 

based on household assets, housing conditions, and dietary history, capturing data on housing 

(e.g., type of floor, wall materials, electricity connection, toilet facilities), asset ownership 

(e.g., bicycles, cars, radios, TVs, refrigerators, computers), and dietary habits (e.g., types of 

food consumed weekly). Using this lifestyle score, we were able to detect and confirm clusters 

observed using the rural-urban scale. Additionally, this approach highlighted immune cell 

clusters uniquely associated with lifestyle factors, which were not identified using the rural-

urban dichotomy. The question is why these clusters were not observed when considering the 

rural-urban dichotomy. The identification of additional and unique cell clusters not observed 

with the rural-urban gradient indicates that lifestyle factors, such as those used in our study, 

offer a more granular understanding of immune profiles. For example, socio-economic status, 

as reflected in asset ownership, has the potential to capture more subtle influences, such as the 

impact of low socio-economic status on stress levels, nutrition, and environmental exposures, 

which may have contributed to the additional clusters we identified. Furthermore, dietary 

history, which can influence the immune system, likely plays a role in additional clusters.  

We found that lower lifestyle scores were associated with higher frequencies of plasmablasts, 

regulatory T-cells, and NK-cells. In contrast, higher lifestyle scores, typically linked to urban 

living, correlated with increased frequencies of naïve CD8+ T-cells and CD8+ Tem-cells 

expressing markers such as CD161 and KLRG-1. These may include MAIT-cells, which are 

commonly observed in urban environments; however, we were unable to confirm this due to 

the absence of TCRva72.  
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 First, this indicates that individuals with lower lifestyle scores have an activated immune state, 

given the very low prevalence of helminth infections, other factors, though not measured in 

this thesis, such as viral infections like CMV[11], the presence of ectoparasites (e.g., ticks)[12], 

fungal exposure in living environments and food[13, 14], nutrition[15, 16], and animal contact, 

may partly explain the observed immune activation. Indeed, in our study housing conditions, 

asset ownership (socio-economic status), diet, and nutritional history differed significantly 

between rural and urban individuals. Upon further consideration, individuals with a higher 

lifestyle score tend to exhibit a less activated immune state, characterized by a greater number 

of naïve T-cells. However, these individuals also possess an increased number of CD8+ Tem-

cells expressing CD161 and KLRG1. As previously mentioned, the possibility that these are 

MAIT-cells cannot be ruled out. The CD161 marker is associated with enhanced cytotoxic 

activities and shows high expression of IFN-γ upon activation, which is observed in various 

conditions such as viral infections and inflammatory states[17]. Conversely, KLRG1 serves as 

an inhibitory marker capable of downregulating immune activation by suppressing 

cytotoxicity, inhibiting cytokine production, or through other mechanisms[18-20]. Given that 

urban individuals are generally less exposed to pathogens, aside from common seasonal viral 

infections, this expression pattern may reflect a physiological mechanism aimed at controlling 

inflammatory conditions, such as autoimmune diseases or latent infections such as CMV or 

EBV. Urban living is associated with a higher risk of inflammatory conditions, including 

allergies and autoimmune diseases[21, 22] suggesting that the body is in a constant state of 

regulatory adjustment to mitigate these risks. 

Vaccine hypo-responsiveness in a state context 

In Chapter 5, we investigated whether vaccine responses differed between rural and urban 

individuals. Contrary to the initial hypothesis, which proposed that urban individuals would 

exhibit a stronger immune response due to potentially lower exposure to pathogens, better 

healthcare access, healthier diets, and higher socioeconomic status, our study revealed that 

rural individuals generally exhibited higher yellow fever-neutralizing antibody levels 

compared to their urban counterparts. Given that rural populations are often expected to have 

poorer responses to vaccines, these findings suggest that the variation in vaccine response is 

context-dependent, and influenced by individual characteristics, the type of vaccine, and other 

factors. In this case, rural individuals have shown better responses to vaccines, and possibly 
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better protection, compared to those in urban settings. This challenges the assumption of 

generalized vaccine hypo-responsiveness and highlights the complexity of immune responses 

to vaccines, calling for a tailored approach in vaccination strategies. 

Contradictory findings such as these have also been reported in other studies on yellow fever 

vaccines. For example, a large trial involving individuals from North America and the United 

Kingdom found no significant difference in yellow fever immunogenicity between young and 

elderly populations[23-25]. Similarly, our findings contrast with several previous studies, such 

as those comparing children vaccinated with yellow fever in rural Ghana and urban Mali[26], 

and in Schistosoma-endemic areas of Uganda versus urban populations, where lower antibody 

titers were observed in rural settings[27]. Additionally, a study comparing yellow fever-

vaccinated individuals between Uganda and Switzerland showed that Ugandan adults had 

lower antibody levels than those in Switzerland[28]. 

The differences between our findings and those from other locations might be explained by 

varying rates of pathogen exposure. Pathogen exposure is known to affect the immune system 

and able to reduce vaccine efficacy[29]. In our study, rural individuals had no history of 

malaria exposure and tested negative for malaria; there was also a very low prevalence of 

parasitic infections, and we did not find for example schistosomiasis, a pathogen notorious for 

its ability to modulate the immune system[30]. The difference between our study and that 

conducted in Uganda might point towards a crucial role in the ability of parasitic infections to 

profoundly affect the immune system and thereby responses to vaccines.  Moreover, possibly 

related to this, is that an optimal immunological age for immune priming is reached in our 

young adults from rural areas, compared to the younger individuals, and adolescents studied 

in Uganda where a stable level of immune activity enables a better vaccine response. The 

differences in exposure to cross reactive pathogens might also be different between Tanzania 

and Uganda. A direct comparison of the baseline immunological profiles of the Ugandan study 

with ours might be able to shed light on the differences in YF vaccine responses across rural 

and urban areas. 

Another possible reason for the observed differences is the nature of the gut microbiome. Rural 

individuals typically have a more diverse gut microbiome, which is becoming recognized as a 

key factor influencing immune function and vaccine response. Unlike most other LMICs, the 

gut microbiome of our study population might be more balanced due to better nutrition and a 
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lower prevalence of pathogens that can cause enteropathy and affect vaccine response[31]. 

Rural living individuals have nutrient-rich diets due to the geographical location on the slopes 

of Mount Kilimanjaro, a volcanic mountain with fertile soil and abundant water sources for 

agriculture, supporting a variety of high-quality foods, including maize, bananas, beans, fruits 

(avocado, mangoes) and green vegetables[32]. This difference in dietary history may have 

contributed to the enhanced vaccine response observed. Other factors, such as better 

socioeconomic status resulting from coffee sales and better access to healthcare services 

compared to most other rural settings in African countries, can also influence the findings. 

An interesting baseline difference between rural and urban individuals that might have 

influenced the higher antibody levels was the haemoglobin level. Rural individuals had 

significantly higher haemoglobin levels compared to urban individuals, which contrasts with 

several findings in Africa, where lower haemoglobin levels have been reported in rural 

compared to urban populations[33, 34], within the rural population, individuals with higher 

haemoglobin levels were found to have higher antibody titers. This suggests that haemoglobin 

levels might be a contributing factor to the variation in vaccine response Different factors, such 

as nutrient type and high altitude, could explain this. Indeed rural individuals live in altitudes 

ranging from 1800-2145 meters above sea level compared to  700-950 meters above sea level 

in urban settings[35]. High altitude, which is associated with hypoxic conditions, can increase 

the transcription factor hypoxia-inducible factor (HIF). This, in turn, induces metabolic and 

phenotypic changes in B-cells, boosts B-cell differentiation[36-39], and enhances CD4+ T-cell 

function[40]. The enhanced T-cell function promotes the production of cytokines, which are 

important for antibody production and class switching by B-cells. Indeed, studies in animals 

have shown that hypoxia-inducible factors in CD4+ T-cells are crucial for effective humoral 

immunity, as they enhance glycolysis, and cytokine production, and regulate T-cell 

subsets[40]. It would be interesting to measure HIF levels in the blood samples collected to 

ascertain if there is a statistically significant difference between rural and urban populations. 

Our findings exemplify the complexity of findings from population studies. For instance, 

studies conducted in the same geographical areas as ours, showed a significant upregulation 

of inflammatory genes, accompanied by higher ex-vivo cytokine levels among urban compared 

with rural Tanzanians [41]. A genomic study comparing Tanzanians and Europeans revealed 

that Tanzanian populations have an enrichment of the interferon pathway compared to 

Europeans[42].  
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In Chapter 2 of this thesis, we extensively reviewed those inflammatory pathways, 

particularly those involving NF-κB and IRF7, that play a crucial role in predicting vaccine 

responses[43]. In studies done mostly in Western populations, it is known that type 1 interferon 

pathways are important and commonly upregulated shortly after vaccination, especially live 

attenuated viral vaccines and during infections[44, 45].  

Given these observations, it would be expected that urban individuals would have higher 

antibody titers compared to rural individuals; however, this was not the case in our study. 

Several factors could explain this, including environmental such as living altitude, and 

microbial exposure. Interestingly, despite the observed enrichment of inflammatory pathways 

among Tanzanians, studies have also found that these pathways are enriched with anti-

inflammatory cytokines like IL-10, highlighting that pro-inflammatory responses are 

integrated with anti-inflammatory regulation[42]. This raises questions about whether 

immunological studies conducted in Western contexts can be equally applicable to individuals 

in low- and middle-income countries. Taken together, the higher antibody titers among rural 

individuals suggest that vaccine response is a dynamic phenomenon, and no single hypothesis 

so far could fully explain the observed differences. Furthermore, the status of hypo-

responsiveness in certain demographics, such as rural populations, the elderly, or infants, may 

not be universally applicable. Therefore, we should approach this in a more context-dependent 

manner, considering environmental factors, geographical location, characteristics of the 

individuals studied, vaccine types and antigen specificities. This approach will help in 

explaining findings and support context-based decision-making based on actual results. 

Gut microbiome composition 

In Chapter 5, we explored whether the gut microbiome differs between rural and urban 

populations. Like the variations observed in vaccine responses and immunological profiles, 

the gut microbiome also differed markedly between these settings. Our study revealed that 

rural-living Tanzanians exhibited higher within-sample microbial diversity, evidenced by 

greater Shannon diversity, a higher number of observed Amplicon Sequence Variants (ASVs), 

and a greater variety of observed genera compared to their urban counterparts. 

Compositionally, rural individuals were enriched with Succinivibrio, Treponema, and 

Prevotellaceae (including Prevotella and Alloprevotella), while urban individuals showed 

higher levels of Bacteroides and Parabacteroides. This indicates that rural Tanzanians have a 
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more diverse and balanced microbial community and that there are distinct differences in gut 

microbiota composition between rural and urban settings. Several factors could explain this 

difference, including diet, environmental factors, and lifestyle factors such as housing and 

animal contact. 

Our findings align with broader research in this field, which consistently shows that rural 

populations possess more diverse gut microbiomes[46-50]. Like our findings, other studies in 

rural settings in Africa show higher microbial diversity, including a predominance of 

Prevotella[50]. These microbes are known to produce short-chain fatty acids (SCFAs) like 

butyrate and propionate, which play a crucial role in maintaining gut barrier integrity and 

modulating immune responses, potentially enhancing vaccine efficacy[51-54]. However, 

particularly in low- and middle-income settings, counterintuitive findings have been reported 

in children who received Rotavirus vaccines, where higher microbial diversity was associated 

with poor vaccine efficacy[55]. This could occur due to increased competition among 

microbial species, where the abundance of beneficial microbes essential for optimal vaccine 

response is affected, or due to the presence of potentially pathogenic species, which can cause 

immune overstimulation or exhaustion, resulting in a lower vaccine response (Levine, 2010; 

Lynn, 2022). For example, most oral vaccines rely on the gut’s immune system to elicit an 

immune response, but the presence of more diverse microbes or a higher burden of enteric 

pathogens may reduce the vaccine performance by competing for cell entry or receptor 

binding[56].  This suggests that not only the quantity but also the balanced quality of the 

microbial community is crucial for the survival of beneficial bacteria, which act as natural 

adjuvants or sources of short-chain fatty acids.  

Urban populations, on the other hand, showed an increased abundance of Bacteroides[57, 58] 

, a strain that has been observed to displace Prevotella across generations[59, 60] . These 

microbiota compositions are linked to reduced microbial diversity and increased inflammation, 

which, in a vaccine context-dependent manner, can either enhance or impair immune function 

and vaccine efficacy[61, 62]. The enrichment of Succinivibrio, Treponema, and 

Prevotellaceae among rural Tanzanians echoes findings from studies on traditional 

populations like the Hadza of Tanzania and immigrant populations in the USA[49, 60] 

Like other low- and middle-income countries, Tanzania is undergoing rapid urbanization, 

impacting lifestyle choices and environmental exposure regardless of whether people live in 
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rural or urban areas. For example, rural individuals now have easier access to fast food or may 

adopt urban lifestyles by cooking or consuming highly refined foods. These lifestyle changes, 

along with environmental changes, can influence the gut microbiome and, consequently, the 

immune system. Our study found that genera associated with urban living were notably 

enriched for BloSSUM (bloom or selected in societies of urbanization/modernization) taxa, 

indicating their adaptation to urbanized environments. This aligns with existing literature 

showing that urbanization leads to the enrichment of microbial taxa adapted to processed foods 

and reduced microbial diversity typically found in urban settings[59, 63, 64]. In contrast, 

genera linked to rural living were not significantly enriched for VANISH (volatile and/or 

associated negatively with industrialized societies of humans) taxa, suggesting that rural 

individuals might be undergoing a transition, already departing from traditional microbial 

profiles and reflecting early signs of exposure to urban lifestyles. This observation is supported 

by studies showing that rural populations exposed to urbanized lifestyles exhibit a decrease in 

microbiome diversity and an increase in taxa associated with urbanization[48, 65, 66]. This 

transitional microbiome state in rural populations might suggest an intermediate immune 

response to vaccines, potentially more effective than that of urban populations but not as robust 

as that of traditional rural microbiomes. 

In the same chapter 5, we assessed the impacts of dietary habits on microbiota composition. 

The study of dietary habits and their impact on gut microbiota composition provides important 

insights into how diet might influence vaccine efficacy. Samples were clustered into two 

community state types (CSTs): CST1 was enriched for Prevotella, common in rural 

individuals, and CST2 was enriched for Bacteroides, common in urban individuals. 

Interestingly, ~ 93% of rural individuals remained in CST1, but urban individuals were split 

between CST1 ~ 63% and CST2 ~37%. Urban individuals harbouring Prevotella were 

classified as "rural-like urban" (urban+CST1), while those harbouring Bacteroides were 

classified as "urban" (urban+CST2). This classification highlighted the heterogeneity among 

individuals, regardless of their living locations. Based on dietary habits, individuals with rural-

like gut microbiota (CST1) consumed more fibre-rich and carbohydrate-rich diets, such as 

ugali (stiff porridge) and locally made beer (mbege), and fewer starch-based foods like 

potatoes and rice. Ugali in rural areas is made from whole grain maize flour, whereas in urban 

areas it is made from refined maize flour, making it different in content; the rural ugali retains 

the bran, germ, and endosperm, while the urban version has only the endosperm. The locally 
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made beer, mbege, is made from fermented banana and finger millet; fermented foods are 

created by encouraging the growth of beneficial microbes and the enzymatic breakdown of 

food elements[67]. These food contents have been shown to result in the bioavailability of 

nutrients, flavonoids, tannins, phytochemicals, bioactive compounds, and microbial 

metabolites that are normally consumed as a rich source of probiotic microbes and are thought 

to act as immunomodulatory compounds[68, 69]. Indeed, findings indicate that certain 

fermented foods have the potential to promote gut immunity[68, 69]. Therefore, the influence 

of fermented products, though they promise to modulate vaccine responses, warrants local 

well-designed interventional studies. Regarding ‘rural-like urban’ individuals (urban+CST1), 

they consumed more beans and peas, which was different from urban individuals 

(urban+CST2) who consumed more rice, potatoes (chips), and refined ugali. The intermediate 

state of the rural-like urban group suggests that the continued consumption of traditional, fiber-

rich foods like beans and peas, supports a more diverse gut microbiota and immune responses 

similar to rural populations, but with components of urban microbiome.   

Apart from diet, studies in animals have shown that living environments including housing 

significantly influence the immune system. For instance, housing plays a crucial role in 

shaping the gut microbiome of pigs early in life[70]. Individuals sharing an environment, such 

as cohabiting parents, exhibit 50% less immunological variation compared to individuals in 

the broader population[71]. Shared environments lead to similar immune profiles[72] and gut 

microbiota among cohabiting individuals and their animals(e.g., dogs)[73]. Together, these 

findings indicate that lifestyle factors significantly shape the immune system, potentially due 

to shared environmental factors such as pathogens, microbiomes, animal contact and dietary 

patterns. Therefore, information about lifestyle factors can help explain the factors not 

accounted for when using the rural-urban dichotomy. Lifestyle factors can also better enhance 

our understanding of the complexity of human-environment interactions, providing detailed 

insights into human life.  

Gut microbiome and antibody waning. 

In Chapter 5, we assessed how the gut microbiome is associated with yellow fever antibody 

titers over time. As mentioned already, rural individuals, overall, had higher antibody titers 

compared to urban individuals. We also found that individuals with a rural-like gut 

microbiome (CST1) living in rural areas had higher antibody levels compared to those with an 
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urban-like microbiome (CST2) living in urban settings. Interestingly, individuals characterized 

by a rural microbiome while living in an urban environment ("urban-like rural" or 

urban+CST1) also had higher antibody levels than those with an urban-like microbiome 

(CST2). However, these "urban-like rural" individuals experienced faster antibody waning 

compared to the other groups. This accelerated waning among individuals with rural-like 

microbiome characteristics in an urban setting could be due to the reduction of certain 

beneficial microbes, which may impair the production of immune-enhancing metabolites like 

short-chain fatty acids (SCFAs). SCFAs are important for antibody production, mutation, and 

maturation. To the best of our knowledge, no studies have specifically investigated the 

association between the gut microbiome and the yellow fever vaccine. However, studies on 

other parenteral mRNA vaccines have shown that the gut microbiome can influence vaccine 

response, potentially by facilitating SCFA production or acting as a natural adjuvant. For 

example, the presence of bacterial species such as Eubacterium rectale and Roseburia faecis, 

which produce butyrate (an SCFA that acts as a natural adjuvant), has been associated with 

increased immunogenicity in recipients of the BNT162b2 mRNA COVID-19 vaccine[74]. 

Similarly, Bifidobacterium adolescentis has been linked to higher neutralizing antibodies in 

CoronaVac vaccine recipients, enhancing immune protection through enriched carbohydrate 

metabolic pathways[74]. Among children who received fermented formula milk alongside the 

poliovirus vaccine, antibody levels correlated with the presence of Bifidobacterium longum or 

Bifidobacterium infantis[75]. Therefore, the reduction of some of these beneficial bacteria may 

contribute to the observed pattern. Metagenomic analysis could offer a more detailed 

understanding of the pathways involved. The faster reduction of antibodies in the 'urban-like 

rural' group is particularly noteworthy. Given that the Plaque Reduction Neutralization Test 

(PRNT) is not selective for IgG alone, the early effects of other antibodies, such as IgM, may 

also be observed. If this is the case, individuals experiencing a more rapid decline in antibody 

levels may have generated higher amounts of IgM initially, which then decreased over time. 

Indeed, IgM typically begins to wane around 15 days post-vaccination and can reach nearly 

undetectable levels by 18 months[76]. Isotype-specific ELISA could be utilized to determine 

whether there are differences in the induction of IgG and IgM. Waning is the key determinant 

of the need for and frequency of revaccinations. Waning is also important in general 

immunization programs, especially in endemic areas, because if antibody levels decline too 

quickly, it may be unlikely to reach herd immunity. Faster yellow fever antibody waning has 

been observed in rural or in LMIC when comparing rural and urban populations[26] or 
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between low- and middle-income countries and high-income countries[28]. However, this 

observation has not been directly linked to the gut microbiome in the context of yellow fever 

vaccine studies. It is important to note that for vaccines like the CoronaVac, the baseline gut 

microbiome has been able to predict vaccine immunogenicity, particularly in individuals with 

a high abundance of Bifidobacterium adolescentis, Bifidobacterium bifidum, and Roseburia 

faecis [77]. It is also important to note that while humoral immunity is crucial, effective 

immunity requires both humoral and cellular responses for complete protection against 

disease. Therefore, it is essential to assess not only antibody levels but also the strength of 

cellular immune responses.  

 

Future perspectives 
Exploring the role of diet on the microbiota and vaccine efficacy 

Research into the microbiota's role in enhancing vaccine efficacy is an emerging and promising 

field. There is a complex relationship between diet, microbiota, and the immune system. 

Findings suggest that metabolites produced by the microbiota, along with specific dietary 

components, such as those found in fermented food diets, can modulate immune responses[78]. 

To optimize immunization strategies, future research might focus on identifying pathways and 

mechanisms through which the microbiota influences vaccine responses. In our research, we 

found an association between diets rich in fibers or complex carbohydrates can influence the 

gut microbiome. A promising approach could involve leveraging locally available diets, such 

as fermented local beverages in Tanzania, which have been shown to have anti-inflammatory 

effects[41].  

Other dietary options, such as fermented milk, have shown promising potential in enhancing 

vaccine responses, particularly for influenza vaccines[79] and Salmonella typhi Ty21a[80]. 

This opens the door for more rigorous exploration through well-designed, controlled trials. By 

including larger, more diverse populations and evaluating its effects across a broader range of 

vaccines, we can better understand the role of fermented local beverages in boosting immune 

responses. In Tanzania, An ongoing study is investigating the impact of traditional plant-based 

diets and fermented foods on alleviating immune metabolic dysregulation and enhancing 

vaccine response in overweight and obese individuals[81]. In this study, one group receives a 

fermented banana beverage, another follows a high plant-based diet, and a third consumes a 
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normal diet[81]. These dietary interventions are administered alongside various vaccines to 

assess whether they can improve immune responses. While this study has the potential to offer 

valuable insights, its results are still pending. A limitation of our current study is the absence 

of dietary intervention, and we are currently awaiting results from the Tanzania study, the 

study in which participants, who received intervention are obese individuals, limiting 

generalization[81]. Therefore, future research should aim to address this gap by integrating 

dietary modifications alongside vaccination in a controlled cohort of normal-weight, healthy 

individuals. Such an approach would facilitate the identification of specific dietary compounds 

or metabolites that may modulate the immune system and enhance vaccine efficacy. 

Longitudinal studies are particularly well-suited for this purpose, as they can provide 

comprehensive insights into how various dietary factors influence the gut microbiome and, 

consequently, impact immune responses to vaccines. 

 

Investigating the role of hypoxia-inducible factors in immune function and vaccine 

response at high altitude. 

High-altitude hypoxia induces hypoxia-inducible factors (HIFs), HIFs affect both innate and 

adaptive immune cells, including antigen-presenting cells, T-cells, and B lymphocytes, thereby 

altering their phenotype and function[39]. However, the role of HIFs in vaccine responses 

remains largely unexplored in humans. HIFs are known to cause significant metabolic and 

phenotypic changes in B-cells, boosting B-cell differentiation and enhancing CD4+ T-cell 

function[40]. These changes promote IFN-γ or IL-4 cytokine production[40], which is crucial 

for antibody production and class switching in B-cells, with the possibility of supporting robust 

humoral immunity. Studies in animals have demonstrated that HIFs in CD4+ T-cells enhance 

glycolysis, promote cytokine production, and regulate T-cell subsets, all of which are vital for 

effective immune responses[40]. 

To better understand the effects of high altitude on immune function, it would be valuable to 

measure HIF levels in blood samples collected from different altitude rural areas as well as 

different altitude urban areas. By assessing whether there are statistically significant 

differences in HIF expression between these populations, researchers could gain insights into 

how environmental factors like altitude influence immune responses. This could have 

important implications for tailoring public health strategies and vaccination programs in high-

altitude regions. Additionally, understanding the role of HIFs in immune modulation could 
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open up new avenues for therapeutic interventions that harness these pathways to enhance the 

immune response to vaccines.  

 

The importance of inclusive research 

Our study underscores the crucial need for inclusive research that considers the diversity of 

populations, particularly in understanding variations in immune responses and vaccine 

effectiveness. It is increasingly evident that these variations extend beyond the differences 

observed between high-income countries (HICs) and low- and middle-income countries 

(LMICs)[10, 82]; significant differences are also present within geographically proximate 

regions, such as urban versus rural settings. As demonstrated by our findings, populations 

living only an hour apart can exhibit striking differences in immunological profiles and gut 

microbiome composition, as well as subtle but notable differences in vaccine immunogenicity. 

Nevertheless, our study was limited by its focus on specific populations and regions, 

examining only two out of five districts in the region. This indicates the need for broader 

research that includes a wider range of populations exposed to diverse environmental 

conditions. Such research is vital not only for deepening our understanding of how various 

factors influence immune profiles and vaccine responses but also for informing public health 

strategies that address health disparities linked to distinct environments. Ultimately, this 

approach could lead to more effective and equitable vaccination strategies, particularly through 

the tailoring of vaccine formulations and immunization schedules to specific environmental 

exposures. 

 

Prioritizing immune variation or its drivers 

Deciding whether to focus future research on immune variation itself or the underlying drivers, 

such as microbiome and metabolome variations, is pivotal for advancing our understanding of 

immune responses to vaccines. Investigating immune variation directly provides immediate 

insights into how immune responses differ among individuals and populations, which is highly 

relevant for developing targeted immunization strategies. This approach helps identify specific 

immune profiles associated with better vaccine responses or increased susceptibility to 

infections, allowing for tailored interventions in diverse settings. However, this strategy may 

overlook the root causes of these immune differences. Without understanding the drivers of 
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immune variation, sustainable solutions to address differences in immune responses might 

remain elusive. 

On the other hand, focusing on the drivers of immune variation, such as the microbiome, 

lifestyle factors, and metabolome, offers a more comprehensive understanding of the factors 

influencing immune responses. These drivers interact with the host immune system in complex 

ways, affecting everything from immune development to disease progression. For instance, 

different microbes can harbour the same metabolic pathways, leading to similar biological 

outcomes, and different environmental drivers can produce the same downstream immune 

effects. This redundancy approach suggests that studying these drivers could help uncover 

universal mechanisms underlying immune responses, potentially leading to broad-spectrum 

interventions that are effective across diverse populations. However, this approach is not 

without its challenges. The complexity of, for example,  microbiome and metabolome, coupled 

with their interactions with various environmental factors, makes it difficult to pinpoint 

specific drivers of immune variation. Moreover, the same microbial or metabolic changes can 

have different effects depending on the host’s genetic background, health status, and 

environmental exposures, complicating the translation of these findings into actionable public 

health strategies. Again, a more balanced approach, as I often refer to in the discussion of this 

thesis, that integrates both immune variation and its drivers may provide the most robust 

framework for understanding and enhancing immune responses across populations. 

 

Combining advanced technology, data analysis, and integration to harness the individual 

studies  

Leveraging advanced technologies such as transcriptomics, metabolomics, epigenetic analyses 

at the single-cell level, and high-dimensional cytometry presents unprecedented opportunities 

to study immune variation and vaccine-specific immune responses in greater depth and 

breadth. These technologies can uncover new immunological pathways and networks, paving 

the way for designing more effective vaccines.  

To maximize the potential of these advanced tools, it is crucial to utilize and expand 

international collaborative networks, such as Hypovax Global (hypovax.org), which can 

provide access to cutting-edge technologies and expertise. Additionally, investing in training 

and capacity-building initiatives will empower local scientists to analyze and interpret complex 
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datasets. Establishing local data servers or data sharing points and other data-sharing platforms 

can address the challenges posed by the relative lack of infrastructure, that enables large-scale 

data storage, processing, and analysis. This way, new PhD students can be recruited easily and 

PhD students who finish their training can continue their work and contribute toward 

understanding the variation in vaccine response. Moreover, standardizing protocols and 

harmonizing data formats will ensure consistency and facilitate meta-analyses across studies. 

Access to user-friendly bioinformatics tools, particularly open-source software with localized 

adaptations, will further enhance the ability of researchers in LMICs to conduct advanced data 

analyses, ultimately contributing to more robust and impactful scientific outcomes. 

 

Conclusion 

In conclusion, the work presented in this thesis contributes to the expanding body of literature 

demonstrating that immune system variability exists between populations, as well as 

differences in vaccine efficacy/immunogenicity, particularly when comparing rural and urban 

populations. This research, uniquely based in Africa, highlights the importance of lifestyle 

factors such as housing, asset ownership, and dietary history as key variables in understanding 

immune system variation. These findings address gaps that a simplistic rural-urban dichotomy 

would have missed. If applied carefully, a lifestyle score can provide immunologists, 

vaccinologists, public health experts, and researchers with a deeper understanding of how these 

factors influence immune function, and vaccine responses. 

Furthermore, this thesis underscores the context-dependent nature of vaccine responses, 

emphasizing the need for bidirectional hypotheses. This approach allows for more precise 

mapping of the factors influencing vaccine hypo-responsiveness. Additionally, the association 

between the gut microbiome and the faster, stronger antibody waning observed in individuals 

with urban but rural-like characteristics suggests that the microbiome plays a crucial role in 

immune response regulation. These findings, particularly the unexpectedly higher antibody 

levels in rural populations and the accelerated antibody waning in urban individuals with rural-

like traits call for further research into the role of the microbiome. 
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Nederlandse Samenvatting:  

Het overkoepelende doel van dit proefschrift was het onderzoeken van de factoren die 

samenhangen met variaties in het immuunsysteem en verschillen in vaccin responsen bij 

Tanzaniaanse volwassenen, met behulp van geavanceerde technologieën zoals single-cell-

analyse via massa cytometrie en 16S rRNA-sequencing. Om dit te bereiken voerden we een 

literatuurstudie en drie verschillende veldonderzoeken uit (twee cross-sectionele studies en één 

studie met longitudinale follow-up). 

Allereerst voerden we een literatuurstudie uit, gevolgd door twee cross-sectionele studies. De 

eerste van deze twee richtte zich op het evalueren van de prevalentie en diagnostische 

nauwkeurigheid van hulpmiddelen die worden gebruikt voor de diagnose van schistosomiasis 

in een landelijke omgeving. Deze studie betrof meer dan 500 schoolgaande kinderen en leverde 

cruciale inzichten op in de prevalentie van de ziekte in Tanzania en in de effectiviteit van 

diagnostische methoden in een omgeving met beperkte middelen. De tweede cross-sectionele 

studie had als doel de immunologische profielen van personen uit landelijke en stedelijke 

gebieden te vergelijken en factoren te identificeren die bijdragen aan immuunvariatie. In deze 

studie werden deelnemers geworven uit vier verschillende locaties - twee landelijke en twee 

stedelijke - waar bloed-, ontlastings- en urinemonsters werden verzameld. Gedetailleerde 

vragenlijsten registreerden individuele leefstijlfactoren zoals sociaal-economische status, dieet 

en omgevingsblootstelling, wat hielp bij het verduidelijken van de intrinsieke en extrinsieke 

oorzaken van immuunvariatie. 

Een derde studie, een longitudinale cohortstudie, resulteerde al in twee wetenschappelijke 

artikelen. Deze studie betrof de follow-up van personen uit twee van de geselecteerde 

onderzoekslocaties, één landelijke en één stedelijke. In totaal werden 185 deelnemers 

geworven, gelijkmatig verdeeld tussen landelijke en stedelijke gebieden. Om de factoren te 

onderzoeken die de vaccinrespons beïnvloeden, werd beide groepen het gele koorts-vaccin 

toegediend. Biologische monsters (bloed, ontlasting, urine) werden verzameld op meerdere 

tijdstippen: vóór de vaccinatie en op dag 2, 7, 14, 28, 56, 90 en 178 na vaccinatie. Daarnaast 

werd gedetailleerde informatie over de leefstijl verzameld via vragenlijsten, met gegevens over 

sociaal-economische factoren, dieet en andere relevante variabelen. Geavanceerde single-cell-

technologie, zoals massacytometrie, hielp bij het in kaart brengen van immuun-cel profielen 
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met hoge resolutie, terwijl 16S rRNA-sequencing inzicht bood in de samenstelling van het 

microbioom.  

Belangrijkste bevindingen per hoofdstuk: 

Hoofdstuk 1: Hier introduceerden we de factoren die samenhangen met variaties in het 

immuunsysteem en de verschillen in immuunresponsen op vaccins. Daarnaast beschreven we 

de belangrijkste doelstellingen van dit proefschrift, de onderzoeksopzet, de geografische 

gebieden waar de studies zijn uitgevoerd, en de onderzochte populaties. In Hoofdstuk 2 

bespraken we de aanzienlijke uitdaging die hypo-responsiviteit op vaccins vormt voor de 

wereldwijde volksgezondheid, met name door de variabiliteit in effectiviteit van vaccins tussen 

verschillende populaties en geografische regio’s. Dit probleem is vooral zichtbaar in landen 

met een laag of midden inkomen, waar vaccins tegen ziekten zoals malaria, tuberculose (Tb) 

en rotavirus vaak een verminderde immunogeniciteit en effectiviteit laten zien in vergelijking 

met landen met een hoog inkomen. We identificeerden meerdere bijdragende factoren aan deze 

hypo-responsiviteit, waaronder blootstelling aan micro-organismen en parasieten (zoals HIV, 

CMV, malaria, parasitaire wormen, en omgevings mycobacteriën), variaties in het microbioom 

(zoals faagdiversiteit en commensale bacteriën), en de aanwezigheid van pro- en anti-

inflammatoire metabolieten (bijvoorbeeld flavonen). We onderzochten mogelijke 

immunologische mechanismen achter verminderde vaccin responsen, waaronder pre-existente 

immuniteit, persisterende immuunactivatie, immuun uitputting, en veranderingen in weefsel 

micro-omgevingen, zoals in de lymfeklieren. Ook bespraken we potentiële strategieën om 

vaccin responsen te verbeteren, zoals het aanpassen van adjuvantia, het wijzigen van vaccinatie 

regimes, het verminderen van ontstekingsreacties, en het gebruik van monoklonale 

antilichamen gericht tegen Th2-cytokines en Treg-cellen.  

Hoofdstuk 3: We onderzochten de prevalentie van schistosomiasis bij scholieren in het 

Mwanga-district, Tanzania, na bijna twee decennia van Mass Drug Administration (MDA) met 

praziquantel. Hiervoor gebruikten we de Up-Converting Particle Lateral Flow Circulating 

Anodic Antigen (UCP-LF CAA) test, bekend om zijn hoge gevoeligheid. Daarnaast 

onderzochten we de Point-of-Care Circulating Cathodic Antigen (POC-CCA) test en de 

microhematurie-dipstick als diagnostische hulpmiddelen. Onze bevindingen toonden een 

prevalentie van schistosomiasis van 20,3% op basis van de UCP-LF CAA-test, wat een 

nauwkeuriger weergave van de ziektelast gaf dan de POC-CCA- en microhematurie-tests. 
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Onze studie benadrukte de aanhoudende overdracht van schistosomiasis ondanks langdurige 

MDA-inspanningen en de noodzaak van verbeterde diagnostische tools voor veldgebruik. 

Hoofdstuk 4: We onderzochten de relatie tussen leefstijlfactoren en cellulaire 

immuunprofielen bij gezonde Tanzaniaanse volwassenen. De leefstijlscores waren gebaseerd 

op huishoudelijke bezittingen, woonsituatie en dieetgeschiedenis. We vonden significante 

verschillen in immuuncel frequentie tussen landelijke en stedelijke deelnemers. Landelijke 

deelnemers vertoonden hogere frequenties van Th2-cellen, atypische geheugen-B-cellen, en 

CD4+ T-effector geheugencellen. Leefstijlfactoren bleken een significante invloed te hebben 

op cellulaire immuunprofielen, onafhankelijk van de geografische locatie. Hoofdstuk 5: We 

vergeleken de immunogeniciteit van het gele koorts-vaccin in landelijk en stedelijk Moshi. 

Immunogeniciteit werd functioneel gemeten met een neutralisatietest, en titers van 

antilichamen tegen niet-structureel eiwit 1 (NS1) werden gemeten met ELISA. Hoofdstuk 6: 

We onderzochten de samenstelling van het darmmicrobioom bij Tanzaniaanse volwassenen uit 

landelijke en stedelijke gebieden in relatie tot de antilichaamrespons op het gele koorts-vaccin. 

We vonden significante verschillen in microbiota samenstelling tussen de twee groepen. 

Landelijke deelnemers vertoonden een grotere microbiële diversiteit, wat deels werd verklaard 

door dieetverschillen. Hoofdstuk 7: We bespraken de belangrijkste bevindingen van dit 

proefschrift, met aandacht voor de factoren die bijdragen aan variaties in het immuunsysteem 

en verschillen in immuunresponsen op vaccins. Tot slot presenteerden we 

toekomstperspectieven en de algemene conclusies van dit onderzoek. 
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