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Chapter 1

Introduction

Vaccines represent a significant milestone in modern medicine, second only to clean water and
sanitation for reducing morbidity and mortality from infectious diseases[1-3]. However,
immune systems vary significantly across populations, resulting in variations in immune
response to vaccines[4-8]. Understanding the factors associated with immune variability that
led to differences in vaccine responses is critical to addressing poor vaccine efficacy in
populations that need it the most. Leveraging advanced single-cell technologies such as Mass
Cytometry (CyTOF)[9], conventional flow cytometry [10],16S rRNA Sequencing[11], other
omics technologies[12-14], and advanced data analysis, researchers have been able to dissect
the factors driving immune variability across different populations. These tools have also shed
light on the underlying factors linked to variations in immune responses to vaccines as further

demonstrated below.

Genetics, sex and age

Immune variability is partly driven by genetic background [4, 7, 15-18]. Human genetic factors
such as HLA polymorphisms[19, 20], PRRs [21, 22], and cytokine production genes[21], are
linked to vaccine response variability. For example, individuals with certain HLA haplotypes
show higher immune responses to HIV [23] and malaria vaccines[24, 25]. Beyond genetics,
sex differences significantly impacts immune variation [26, 27], with women typically
generating higher antibody titers to most of the vaccines than men[28-30]. However, gender
roles in low- and middle-income countries (LMICs) can confound these differences[33]. Age
also modulates immune variability, especially at the extremes of life in infants[34], and the
elderly due to less developed or reduced activity of the immune system[35-38]. This
consequently causes poor vaccine responses in both age groups[39-42]. It is important to note
that age is also influenced by extrinsic factors, including environmental influences, which play

arole in immune-biological ageing.

Geographical location and seasons

Non-genetic factors often play a larger role, particularly in adaptive immunity, which is more
susceptible to environmental influences[4, 7, 15-18]. Immune profiles vary between HICs and

LMICs [43-45], and between rural and urban settings[44, 45]. Similarly, immunogenicity to
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vaccines differs in similar patterns, for example, vaccine immunogenicity was higher in the
UK and Switzerland compared to Senegal, Malawi, and Uganda[46, 47]. Higher
immunogenicity to tetanus and influenza vaccines has been also observed in semi-urban
compared to their rural counterparts[48, 49]. Evidence suggests that dry and wet seasons
influence immunological differences[50], higher antibody levels have been observed for
vaccines administered during wet seasons compared to dry seasons in some populations[51,

52].

Infections/Pathogen factors

Pathogens significantly shape immune system function, contributing to immune variation. For
instance, cytomegalovirus (CMYV), which infects over 90% of individuals in LMICs, is
strongly linked to immune variation and impairs vaccine responses, such as those for Ebola[53-
55]. Similarly, Schistosoma infection skews the immune system [44, 56] and is associated with
reducing vaccine efficacy for hepatitis B[57], BCG [58], TT[59], and measles vaccines[60].
Furthermore, malaria, endemic in many tropical regions, is linked to immune variation [61-
64] and is associated with lower antibody responses to vaccines like measles[65], tetanus[66],
Haemophilus influenzae type B, Salmonella typhi, and Neisseria meningitidis[67].
Ectoparasites such as tsetse flies, kissing bugs, fleas, and ticks, can also drive immune
variations through compounds they inject, though their impact on vaccines remains uncertain
[68, 69]. Additionally, chronic infections such as HIV, tuberculosis, and hepatitis C virus

(HCV) also contribute to immune variation and affect vaccine efficacy/immunogenicity [70].

Lifestyle and socioeconomic factors

Lifestyle factors such as smoking, exercise, sleeping and alcohol consumption are linked to
immune variation[71]. Cigarette smoking is known to affect both innate- and adaptive
immunity[72], leading to increased leukocytes and reduced NK cell numbers, serum
immunoglobulin levels and poor vaccine efficacy/immunogenicity[73-75]. While
socioeconomic status (SES) is complex and intertwined with other factors, making it difficult
to isolate, low SES is linked to higher exposure to pathogens, poorer nutrition, and limited
access to healthcare, all of which contribute to immune variation[76]. This, in turn, has been
linked to reduced vaccine efficacy as seen with vaccines like polio [77] and oral rotavirus [78,

79]. Diet is vital for immune function, fueling both innate and adaptive systems[80, 81].

Chapter 1
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Malnutrition is linked to poor disease control and reduced vaccine responses[82]. Additionally,
essential nutrients like iron and vitamin D also influence immune variation and vaccine

efficacy based on their availability.

Microbiome

The microbiome significantly influences immune system variation through interactions with
immune cells, affecting their development and regulatory functions[83]. Variations in
microbiome composition are linked to differences in immune profiles and immune response
to vaccines [84, 85]. Additionally, specific microbial populations can induce distinct immune
profiles, underscoring the role of personalized microbiota in shaping immune variation[86,
87]. Although not always the case, individuals with similar microbiomes, regardless of
location, tend to have comparable vaccine responses, as seen in infants from Ghana, Pakistan,
and the Netherlands[88, 89]. Certain bacteria, like Bifidobacterium longum, enhance vaccine
responses to tetanus, BCG, and Hepatitis B[90], while others, like Proteobacteria, are
negatively associated with vaccine efficacy[40]. Factors such as delivery method at birth, diet,

infections, and medications also shape microbiomes[91].

Pre-existing immunity

Pre-existing immunity can reduce vaccine efficacy. For instance, exposure to non-tuberculous
mycobacteria (NTM) has been linked to lower BCG efficacy against Mycobacterium
tuberculosis[92], similarly, exposure to Malaria has been associated with reduced or no change
in antibody levels after administration of malaria vaccines[93]. In the case of yellow fever,
prior vaccination can impair the boosting effect of the Yellow Fever vaccine[94], though some
flaviviruses, such as dengue, benefit from prior exposure to related viruses [95]. Also, the
natural infections or previous vaccinations with Ebola [96] or COVID-19[97, 98] vaccines
lead to higher antibody production after subsequent vaccinations. Possibly this is due to

differences in vaccine type and mechanism of action of vaccines[99].

10
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Vaccine-related factors

Vaccine factors, such as differences in Yellow Fever vaccine strains (17D-204, 17D-213, and
17DD) used by different countries, can cause variations in  vaccine
efficacy/immunogenicity[ 100]. Dosing and schedules vary and can be linked to variations in
vaccine efficacy[101][103]. Additionally, adjuvants as seen with influenza[104] and hepatitis
B vaccines[105].

Baseline immune status

Finally, baseline immune status is associated with variation in vaccine response. All host
factors discussed above can potentially determine the status of baseline immune
status(BIS)[106]. BIS has been linked to a diversity of vaccine responses [107-110]. Baseline
immune status, both innate and adaptive level, if optimized before vaccination can help

improve the vaccine responses.

3

(=) maeoen | (o
season factors.

Factors associated with immune variation and difference in immune response to vaccines

Figure 1: The factors associated with immune variation and differences in immune response to vaccines.
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Potential mechanisms of pathogen-driven vaccine hypo-responsiveness

To move beyond observed associations and understand why vaccines underperform in certain
populations, it is essential to explore the underlying immunological mechanisms. While this
section enumerates pathogen-associated variations in vaccine efficacy, the mechanistic
underpinnings such as immune exhaustion (characterized by sustained expression of PDI,
TIM3, CTLA4, and diminished effector function), chronic immune activation marked by
CD38+HLA-DR+ cell profiles, skewed T helper cell polarization (favoring regulatory or TH2
over THI responses), and structural alterations in lymphoid tissues are further dissected in
Chapter 2. These immune dysregulations emerge in response to persistent exposure to
environmental antigens, microbiome-derived metabolites, and chronic infections, particularly
in low-resource settings. Chapter 2 builds on these observations by examining how these
contexts reshape the immune landscape, ultimately compromising vaccine responsiveness
through exhaustion, immunosenescence, regulatory dominance, and disrupted antigen

presentation.
The scope and aims of this thesis

The overarching aim of this thesis is to investigate how factors such as the microbiota,
environment, lifestyle, and baseline immune profiles contribute to variations in vaccine
immunogenicity. Focusing on healthy Tanzanian adults, we explore the rural-urban immune
divide using high-resolution immune profiling tools such as mass cytometry, conventional
flow cytometry and microbiome sequencing(16S rRNA sequencing). To achieve this, we
conducted three distinct studies: two cross-sectional studies and one longitudinal cohort study.
To ensure methodological rigor and minimize selection and measurement biases, all three
studies employed standardized recruitment procedures, eligibility screening, and validated
data collection tools. A school based approach, and community-based sensitization campaigns
facilitated participant enrollment, and structured questionnaires adapted from previously
validated studies used were administered by trained personnel. In the longitudinal study,
participants were randomly assigned to vaccinated and control groups to reduce selection bias.
In summary the first cross-sectional study focused on evaluating the prevalence and diagnostic
accuracy of tools used for diagnosing schistosomiasis in a rural setting. This study involved
over 500 school-aged children, providing critical insights into the prevalence and effectiveness
of diagnostic methods in resource-limited environments. The second cross-sectional study

aimed to compare the immunological profiles of individuals from rural and urban areas, while

12
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identifying factors contributing to these variations. Participants were recruited from four
distinct study sites, two rural and two urban, where blood, stool, and urine samples were
collected. Detailed questionnaires were used to capture individual lifestyle factors such as
socioeconomic status, diet, and environmental exposures, helping to elucidate the intrinsic and

extrinsic drivers of immune variation.

The third study, a longitudinal cohort study, followed individuals from two of the selected
study sites one rural and one urban. A total of 185 participants were recruited, with an even
distribution between rural and urban settings. To examine the factors influencing vaccine
response, both groups were administered the yellow fever vaccine. Biological samples (blood,
stool, urine) were collected at multiple time points before vaccination, and on days 2, 7, 14,
28, 56, 90, and 178 post-vaccination. Additionally, detailed lifestyle information was gathered
through questionnaires, capturing data on socio-economic factors, diet, and other relevant
variables. Advanced single-cell technology, such as mass cytometry, helped in dissecting the
immune cell profiles at high resolution, while 16S rRNA sequencing provided insights into
microbiome composition. This integrative approach allowed for a comprehensive analysis of
the intrinsic and extrinsic factors shaping immune variation and vaccine response in Tanzanian

adults.

Thesis outline

This thesis is divided into seven chapters, each addressing key aspects of factors shaping

immune variation and vaccine response.

The first chapter serves as an introduction, we provide an overview of various factors
influencing immune system variation and vaccine responses, setting the foundation for this

thesis.

In the second chapter, we conduct a comprehensive review of immunological factors linked
to geographical variations in vaccine response, delving into the mechanisms behind vaccine

hypo-responsiveness and global disparities in vaccine efficacy.

13
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In the third chapter, we present field and laboratory-based findings on the prevalence of
Schistosomiasis among school-aged children in Mwanga District, Tanzania, providing insight

into the prevalence of schistosomiasis.

In the fourth chapter, we explore the impact of lifestyle factors on cellular immune profiles,
focusing on differences between rural and urban populations in Tanzania, and analyze the

factors associated with immune profile variations.

In the fifth chapter, we examine the association between the innate immune state at baseline
and vaccine responses, aiming to gain a deeper understanding of the immunological
mechanisms underlying variations in vaccine efficacy.
In the sixth chapter, we examine differences in gut microbiome composition between rural
and urban settings and investigate the associations between gut microbiota and vaccine

responses. We also compare vaccine responses between these populations.

In the final chapter, we discuss the key findings, synthesize the results, and propose future

research directions based on the implications of the study.

14
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Abstract

Vaccination is one of medicine’s greatest achievements; however, its full potential is
hampered by considerable variation in efficacy across populations and geographical regions.
For example, attenuated malaria vaccines in high-income countries confer almost 100%
protection, whereas in low-income regions these same vaccines achieve only 20-50%
protection. This trend is also observed for other vaccines, such as bacillus Calmette—Guérin
(BCQ), rotavirus and yellow fever vaccines, in terms of either immunogenicity or efficacy.
Multiple environmental factors affect vaccine responses, including pathogen exposure,
microbiota composition and dietary nutrients. However, there has been variable success with
interventions that target these individual factors, highlighting the need for a better
understanding of their downstream immunological mechanisms to develop new ways of
modulating vaccine responses. Here, we review the immunological factors that underlie
geographical variation in vaccine responses. Through the identification of causal pathways
that link environmental influences to vaccine responsiveness, it might become possible to
devise modulatory compounds that can complement vaccines for better outcomes in regions

where they are needed most.
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Introduction

It is estimated that vaccines have prevented 37 million deaths in the past 20 years[1], thereby
having a substantial impact on global health. However, the full potential of some vaccines is
hampered by their low and variable efficacy across populations and geographical areas
(Box 1). This was first noted for bacillus Calmette—Guérin (BCG) vaccine efficacy, which
was reported to vary with geographical latitude[2]. It is now increasingly recognized that
several other vaccines induce variable responses in populations living in different
geographical areas or of different socioeconomic status (Fig. 1). These include more recently
developed vaccines such as rotavirus vaccines|3,4,5,6] and those under development, such
as the whole-organism malaria radiation-attenuated Plasmodium falciparum sporozoite
(PfSPZ) vaccine[7,8,9,10,11,12] and the PfSPZ—chemoprophylaxis attenuated
vaccine (PfSPZ—CVac)[12,13,14], which show remarkable variation in efficacy. Variable
vaccine immunogenicity has been observed when comparing low-income and/or middle-
income regions with high-income regions of the world not only for the aforementioned
vaccines but also for vaccines that target yellow fever virus[15] and Ebola virus[16]. Lower
performance of such vaccines, which we refer to as vaccine hyporesponsiveness, is seen not
only in low- and middle-income countries, but also in poor rural areas compared with affluent
urban regions within the same country[17,18]. It is estimated that worldwide 77 million
children receiving BCG and 5 million receiving rotavirus vaccine are insufficiently protected

against the diseases targeted by these vaccines[19].
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Fig. 1: Variations in vaccine immunogenicity or efficacy across populations.

a, Vaccine immunogenicity varies between countries. The immunogenicity of: Ebola vaccine in the UK and Senegal
was assessed by specific IgG antibodies[89]; bacillus Calmette-Guérin (BCG) vaccine in the UK and Malawi was
assessed by the increase in interferon-y (IFNy) production in response to tuberculin purified protein derivative from
pre-vaccination to post-vaccination[148]; yellow fever vaccine in Switzerland and Uganda was determined by the
percentage of yellow fever antigen-specific tetramer-positive CD8" T cells[15]; rotavirus vaccine in high- and low-
income countries was assessed by vaccine efficacy6; and irradiated malaria Plasmodium falciparum sporozoite
(PfSPZ) vaccine in the USA[8] and Tanzania[l1l] was assessed by vaccine efficacy. b, The immunogenicity of
vaccines varies between semi-urban and rural settings. In semi-urban and rural Gabon, tetanus vaccine was assessed
by tetanus toxoid-stimulated IFNy production by peripheral blood mononuclear cells (PBMCs)[149]; influenza
vaccine was assessed by either influenza virus-stimulated IFNy production by PBMCs or antibody titres through the
haemagglutination inhibition assay[18]. EBOV, Ebola virus; ELISA, enzyme-linked immunosorbent assay; GP,

envelope glycoprotein.

Although genetic factors hard wire immune and vaccine responsiveness[20], twin studies have
indicated that non-heritable factors contribute by more than 70% to shaping the immune
response to vaccines[21,22]. Numerous environmental and non-heritable factors have been

implicated in vaccine hyporesponsiveness, including nutritional status, the microbiome and
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exposure to microorganisms and parasites[23,24,25,26,27,28] (Box 2). However,
interventions to target some of these factors, such as micronutrient supplementation and/or
probiotics[29] and anthelmintic treatment[30,31], have had variable success. This highlights
that vaccine responses are modulated by multiple factors, which poses a challenge in applying
public health measures to overcome vaccine hyporesponsiveness. Therefore, it is important to
understand the mechanisms through which environmental factors drive vaccine
hyporesponsiveness. Advances in technologies such as transcriptomics, metabolomics and
epigenetic analyses at the single-cell level as well as high-dimensional cytometry allow us to
study vaccine-specific immune responses in greater breadth and depth (Box 3), helping to
identify new pathways and networks of immunological events that can be targeted for more
effective vaccines[32,33].

In this Review, we discuss the immunological factors and proposed mechanisms that underlie
variation in efficacy or immunogenicity of vaccines across populations from different
geographical areas. We largely focus on vaccines against tuberculosis, rotavirus
gastroenteritis, yellow fever and malaria, which are worldwide, highly prevalent and life-

threatening infectious diseases [Box 1].

Box 1 Vaccine hyporesponsiveness: efficacy and immunogenicity

Vaccine performance can be studied through the assessment of immunogenicity, efficacy or
effectiveness. Immunogenicity reveals the extent of an immune response evoked by a vaccine,
whereas efficacy and effectiveness assess the beneficial effects of the vaccine in a trial setting
or under real-life conditions, respectively. Immunogenicity, in contrast to efficacy and
effectiveness, can be studied all over the world irrespective of whether the target disease is
prevalent in a particular area and requires only a limited number of vaccinated individuals.
However, with the increasing use of safe controlled human infection models in testing
vaccines, it is now also possible to assess vaccine efficacy in different populations and
geographical areas[11,150,151,152]. In such studies, healthy volunteers are given a vaccine or
a placebo and thereafter are challenged with an infectious dose of the target pathogen that is
known to establish infection with well-defined time to patency, burden and/or symptoms.
Through this approach any protective effect of the administered vaccine against the given
challenge can be assessed. Such models are increasingly complementing the traditional phase
I or II studies in the field[150], although these cannot fully replace placebo-controlled trials.

Differences in immunogenicity and efficacy of both licensed and newly developed vaccines
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have become apparent between populations living in geographical areas that differ in
environmental and socioeconomic conditions.

Tuberculosis

The bacillus Calmette—Guérin (BCG) vaccine is currently the only tuberculosis vaccine
approved and licensed for use, and it consists of live attenuated Mycobacterium bovis[153].
This vaccine is recommended to be given at birth in 157 countries[154], and its protective
efficacy has largely been attributed to CD4" T cell-mediated immunity that can stimulate
monocytes and/or macrophages to destroy intracellular mycobacteria; however, CD8" T cell-
mediated cytotoxicity towards mycobacteria-infected cells has also been shown[155]. The
efficacy of the BCG vaccine progressively increases further from the equator; with 23%
efficacy at less than 20 degrees latitude, 32% at 20—40 degrees latitude and 69% at more than
40 degrees latitude[156][Supplementary Table 1].

Rotavirus gastroenteritis

The rotavirus vaccine developed to protect against severe diarrhoea is a live attenuated vaccine
that is administered orally[157]. The first vaccine dose is given before 15 weeks of age,
followed by one or two additional doses before 8 months of age[158]. It mediates protection
mainly through the generation of antibodies to rotavirus[159]. The highest efficacy of Rotarix,
one of the currently licensed rotavirus vaccines, over the first year of life, was seen in high-
income countries (>95%), whereas this was lower in middle-income countries (>80%) and
low-income countries (<75%), with the lowest reported performance in Malawi
(49.2%)[26,160]. This trend was confirmed in a meta-analysis[161] (Supplementary Table 2).
The recently developed rotavirus RV3-BB vaccine showed a high cumulative serum immune
response (76%) in neonates in Java, the most well-developed island of Indonesia[162];
however, in Malawi, the cumulative serum IgA seroconversion rate was 57% for neonates and
59% for infants 4 weeks after vaccination[163], which resembles the seroconversion rate of
Rotarix in Malawian infants (57%)[164].

Yellow fever

The yellow fever vaccine is a live attenuated vaccine (17D strain) that can be given from the
age of 9 months[165], and it protects by generating neutralizing antibodies[166]. Such live
attenuated vaccines replicate and thus mimic a natural infection, which leads to a prolonged
activation of multiple innate immune pathways and can induce appropriate humoral and
cellular responses[167]. Although there were no vaccine efficacy studies performed, the

vaccine is considered highly effective, and immunogenicity determined by seroconversion
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rates after vaccination was statistically significantly higher in Europe and the USA (99%) than
in Latin American countries, including Brazil and Colombia (94%)[168]. Furthermore, a study
that compared 9-month-old children reported that the seroconversion rate was lower in rural
Ghana (63.8%) than in urban Mali (91.0%)[44] (Supplementary Table 3). A comparison of
immunological responses to yellow fever vaccines in Switzerland and Uganda noted that,
although antibody titres reached protective levels in both cohorts, individuals from Switzerland
had significantly higher titres of neutralizing antibodies than individuals from Uganda[15].
Malaria

RTS,S is a subunit malaria vaccine adjuvanted with ASO1, which is the only licensed malaria
vaccine and is given in four doses to children from 5 months of age in areas of moderate and
high malaria transmission[169]. It leads to antibody responses to circumsporozoite protein on
sporozoites[170]. RTS,S/ASO1 showed promising efficacy in malaria-naive adults[171];
however, variable efficacy was reported in a large phase III clinical trial in seven African
countries, with an average 36% efficacy after three doses and booster regime in
children aged 5—17 months[172] (Supplementary Table 4). Whole-sporozoite vaccines such as
the live Plasmodium falciparum sporozoite (PfSPZ) vaccine are currently under development.
This vaccine is ultimately to be given to children from 6 months of age[173], and it works
through the induction of CD8*T cell responses that target P. falciparum-infected
hepatocytes146. In controlled human infection, in American malaria-naive subjects of various
ethnic backgrounds, PfSPZ vaccine protected 12 of the 13 recipients (92.3%), whereas in a
malaria-endemic area in Tanzania it protected only 4 of the 20 recipients (20%)[8,11].
Moreover, efficacy was shown to be much lower in a setting of natural infection in Mali [9,10].
Recent studies of PfSPZ—chemoprophylaxis attenuated vaccine (PfSPZ—-CVac), which is a live
chemo-attenuated P.  falciparum vaccine,  protected 100%  of  Dutch[174] and
German|[13] volunteers, whereas double the dose protected only 8 of the 13 recipients (55%)

in Equatorial Guinea[12] [Supplementary Table 5].
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Box 2 Linking environmental factors to varied vaccine responses is complex

Variations in vaccine response have been linked to exposure to and/or infections with viruses
(for example, cytomegalovirus)[16], environmental mycobacteria[156] and parasites (such as
helminths)[31,175]. However, confirming the impact of a single pathogen on vaccine
responses is complicated; indeed, treatments that target a single type of pathogen, for example,
anthelmintics, have had variable success[30,31]. This might be due to co-infections that are
not removed by the given treatment or by incomplete reversal of the effect of past exposure by
the treatment1[14,115,176].

High exposure to pathogens is often coincident with other key factors that influence vaccine
responsiveness, such as malnutrition or altered gut microbiome composition. For example,
helminth infections are often associated with poor nutritional status[177,178], as well as
altered microbiome composition[179,180]. Poor nutritional status negatively impacts the
immune system[181,182,183], and new insight into the links between the diet, the microbiome
and the immune system indicate that even well-nourished individuals may have altered vaccine
responses via mechanisms that involve food-derived metabolites that originate from dietary
intake, such as flavonoids[133].

The association between microbiome composition and vaccine responses has been studied for
several vaccines, including the rotavirus vaccine[24,36,184]. A recent study showed that
several bacterial taxa (such as Strepfococcus and Enterobacteriaceae) positively correlate with
rotavirus seroconversion, whereas phage diversity, enterovirus B and multiple cosaviruses
were negatively associated[ 184]. However, in a multicentre cohort study, microbiota diversity
was negatively associated with neonatal rotavirus vaccine seroconversion in infants from India
but not in infants from the UK, but no specific bacterial taxa could be linked to vaccine
outcome in this case[36]. In addition to these associations, in one intervention study, antibiotics
were administered before influenza vaccination, which reduced antibody induction in subjects
with low pre-existing immunity to influenza virus and who had not been exposed to the
influenza vaccine in the preceding 3 years. Antibiotic treatment had little effect if vaccinees
had higher pre-vaccination antibodies and therefore showed lower seroconversion rates. This
suggests that the microbiome has an adjuvant effect on the antibody response to vaccination
in individuals with relatively little prior exposure to the antigen, but that immune memory
caused by prior exposure to the antigen can withstand even the most severe perturbation of the
microbiome[185]. Larger studies are needed to confirm these findings, and it remains to be

determined whether such perturbation would affect other vaccine responses. Moreover, a
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causal link showing an effect on vaccine responses by faecal microbiome
transplantation[ 186] or introduction of a combination of microbiota species is lacking.

Taken together, these studies highlight the fact that multiple factors have a role in modulating
responses to vaccines and indicate how complex it might be to intervene at the level of
environmental factors. Therefore, it is crucial to fully understand the downstream impact of
environmental exposures on the immune system to identify immunological traits that are

linked to, and could be targeted to improve, vaccine hyporesponsiveness.

Box 3 High-dimensional methods to predict vaccine responses

Differences in response to vaccination may in part be due to variations in baseline or early
post-vaccination immune signatures. By combining high-dimensional immunological data
with mathematical and computational analyses, it has been possible to define early signatures
that predict vaccine immunogenicity, analysis that has mostly been done in cohorts in the USA.
Studies of immune responses after vaccination showed that the generalizability of immune
signatures was limited; predictive signatures for one particular vaccine could not predict
outcomes for other vaccines[187,188]. A meta-analysis study sought to identify universal
predictors of vaccine-induced responses with data from 820 adults in 28 studies against 13
different vaccines. They found a consistent association between peak plasmablast levels and
antibody induction after vaccination, but there was no other common signature that predicted
a response to all vaccines; the responses depended on vaccine type and adjuvant type
administered[189].

Similar analyses of baseline samples (before vaccination) have also been carried out to predict
the outcome of vaccination[190] (see the table). The first study integrated microRNA and
transcriptomic profiling to predict responses to a seasonal influenza vaccine in young adults,
older individuals and individuals with diabetes across seasons and showed that immune
signatures at baseline could distinguish between high and low vaccine responders[191].
Plasmablast and innate immunity modules at baseline predicted influenza-specific antibody
levels at 1 month after vaccination, but not the longevity of the response. Baseline signatures
of T and B cell gene modules correlated positively, whereas a monocyte inflammatory
signature correlated negatively with antibody responses at 1 month, but showed little
correlation with longevity of the response. This landmark study was followed by a combined

effort examining six influenza vaccine cohorts that spanned distinct locations, ages and
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seasons[192]. Nine genes and three gene modules were found to be associated with the
magnitude of the antibody response in all study cohorts. Analysis in independent cohorts
validated the baseline signatures predicting responses in young adults, but surprisingly, they
had an inverse correlation in older adults[192].

Using a similar systems biology approach, Kotliarov and coworkers[193] identified a signature
that predicts both influenza and yellow fever vaccine outcome. Ten genes involved in type I
interferon responses were identified in immune cells at baseline that predicted antibody levels
in three out of four influenza vaccine trials, as well as the antibody response to the yellow fever
vaccine[193]. Another recent study analysed pre-vaccination transcriptome data of 820 adults
from different vaccination studies[194]. Taking an unbiased approach, a common pre-
vaccination transcriptional signature with an overall predictive value of 62.3% for 13 different
vaccines was identified, although the performance varied with different vaccines. The
predictor consisted of an inflammatory gene signature downstream of nuclear factor-xB (NF-
«B) and interferon regulatory factor 7 in the innate immune cell compartment. Of interest, the
inflammatory signature did not predict vaccine responses in elderly individuals, suggesting
that the type of inflammation reflected by the signature in this age group has a different
origin[194] (see the table). Given that the signalling networks regulated by NF-«xB are
enhanced in inflammageing[195], these results also suggest that the extent of the activation of
these networks might be crucial: their activation favours vaccine responses, yet their
overactivation hampers vaccine responses.

Recent pioneering studies of large numbers of children and infants who were protected from
clinical malaria following vaccination with RTS,S/ASO1E (phase III trial) have shown that
signatures that include NF-«xB, Toll-like receptors and monocyte-related blood transcriptional
modules, in baseline peripheral blood mononuclear cell cultures, depending on type of
stimulation, can associate either positively[196] or negatively[197] with vaccination
outcomes. Altogether, although systems biology approaches have proved valuable for
identifying signatures that predict vaccine outcome, it is not clear how well these signatures
hold up across populations from diverse geographical regions with different baseline
inflammatory profiles and vaccine responses. Future studies should include a diversity of
geographical locations and populations experiencing distinct environmental exposures to
determine whether there are shared molecular pathways that wunderlie vaccine

hyporesponsiveness.
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Signature at baseline Predictive for Study populations Refs.
(number)
Positive correlation: B Influenza vaccine Discovery cohorts: [191]
cell-enriched modules, T | Signatures similar influenza vaccination
cell-enriched modules across young (<65 from 2007, 2008, 2009,
and T cell surface years) and older (>65 2010 and 2011
markers years) subjects and (n=212), including
Negative correlation: patients with type 2 older subjects (n =54)
monocyte-enriched diabetes and patients with type 2
module; cell cycle and diabetes (n=17)
its transcriptional Validation cohorts:
regulation influenza vaccination
from 2008 and 2009
(n=218)
Positive correlation (in Influenza vaccine Discovery cohorts: [192]
subjects <35 years; influenza vaccination
negatively correlated in from 2008, 2010, 2011
subjects >65 years): B and 2012 (n =293),
cell receptor signalling, including young (<35
cell structure and years) and older (>65
motility, inflammatory years) adults
responses and platelet Validation cohorts:
activation influenza vaccination
from 2009 and 2010
(n=223)
Positive correlation: Influenza vaccine, Discovery cohort: [193,198]
activated B cells yellow fever vaccine influenza vaccination
(CD20"CD38), cell (YF-17D), systemic (n=63)
cycle activation, type | lupus erythematosus Validation cohorts:
interferon response Independent of age influenza vaccination
Negative correlation: from 2008, 2011 and
effector memory 2012 (n=42); yellow
CD4* T cells fever vaccination from
two trials (n =22)
Systemic lupus
erythematosus cohort
(n=34)
Positive correlation: 13 vaccines against Training on the entire [194]

interferon-stimulated
genes and pro-
inflammatory genes,
such as innate immune
sensors in monocytes
and dendritic cells
Negative correlation:
transcriptomic markers
of natural killer cells, T

influenza virus, yellow
fever, HIV, Ebola
virus, malaria, hepatitis
A virus, hepatitis B
virus, tuberculosis,
smallpox,
meningococcus,
pneumococcus

cohort (n = 820),
transcriptional profiles
revealed three
endotypes: high, middle
and low inflammatory;
immune subsets and
antibody responses
were compared

33

Chapter 2



Chapter 2

cells and B cells; target between these

genes of pathways endotypes

involved in cell

proliferation and

metabolism

(E2F and MYC)

Positive correlation: B Hepatitis B virus First approach: entire [48]

cell activation vaccine cohort of adults aged

Negative correlation: Signature correlated 25-83 years (n=174)

inflammation, effector with age Second approach:

memory CD4" T cells training cohort

(CD28) (n=116) and test
cohort (n =58)

Immunological factors linked to vaccine hyporesponsiveness

Several immunological contexts may underlie vaccine hyporesponsiveness, including pre-
existing immunity, exuberant immune activation, skewed immune responses and restructured
lymphoid tissue [Fig. 2], and may explain the varied efficacy of vaccines between different

geographical areas and populations.
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Fig. 2: Factors and immunological mechanisms driving vaccine efficacy variation between populations.

Immune reactivity to vaccines is shaped by previous exposure to several environmental and lifestyle factors.
Immunological contexts that negatively affect vaccine responses include pre-existing immunity that results from
exposure to similar or cross-reactive antigens, persistent challenges of the immune system that lead to naive T cell
depletion, heightened immune activation, immune exhaustion and immunosenescence that impair the response to
vaccines, restructuring of the lymphoid tissue and skewing of the immune system. This may be reflected in the
different vaccine efficacies observed between different populations. Approaches to overcome vaccine
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hyporesponsiveness could be envisaged through various immunological interventions. CMV, cytomegalovirus;
KLRGI, killer cell lectin-like receptor subfamily G member 1; MADCAMI, mucosal address in cell adhesion
molecule 1; Teg cell, effector T cell; Tyl, T helper 1 cell; Tu2, T helper 2 cell; TLR4, Toll-like receptor 4; T, cell,
regulatory T cell.

Pre-existing immunity to similar or cross-reactive antigens

One of the most intensively discussed effects of pre-exposure to a pathogen on performance
of a vaccine that targets the pathogen has been the impact of environmental mycobacteria on
BCG vaccine efficacy. The BCG vaccine consists of live attenuated Mycobacterium bovis,
which mainly infects cattle but is closely related to the human pathogen Mycobacterium
tuberculosis, and its protective effect can be affected by interference of cellular immune
responses to non-tuberculous mycobacteria in the environment[2]. The mechanism that
underlies this interference has been hypothesized to be via either a ‘blocking’ or ‘masking’
mechanism. According to the blocking hypothesis, pre-existing immune responses accelerate
the clearance of BCG by preventing the multiplication of live attenuated bacteria required for
the induction of an effective vaccine response. Essential to this hypothesis is that exposure to
non-tuberculous mycobacteria induces no or little protection against tuberculosis. The masking
hypothesis postulates that exposure to non-tuberculous mycobacteria provides significant
protection against tuberculosis and thereby masks the effect of BCG, as vaccine efficacy is
calculated by comparing disease incidence between vaccinated and unvaccinated
individuals[34]. Although these two hypotheses are not mutually exclusive, a study by Barreto
et al.[35] supports the notion that blocking rather than masking is the predominant mechanism

behind the geographical variation in BCG vaccine efficacy.

Interestingly, the blocking hypothesis might apply to the rotavirus vaccine, as children with
higher titres of maternal anti-rotavirus IgG have a lower seroconversion rate after
vaccination[36,37,38]. Similarly, the blocking effect of pre-exposure on vaccine responses
seems to have a role in the reduced immunogenicity of the RTS,S malaria subunit vaccine.
Analysis of data from a phase III trial of the RTS,S/ASO1E vaccine showed that high levels of
pre-vaccination antibodies to circumsporozoite epitopes were associated with low levels of
vaccine-induced antibodies, particularly in infants[39]. The same principle might apply to the
superior immunogenicity of a malaria vaccine candidate, the RH5.1 antigen, when boosting is
delayed. The delayed boosting schedule corresponded to a time point when antibody levels

from previous doses were declining[40]. Mechanistically, the binding of pre-existing
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antibodies to vaccine antigens in the lymph nodes (LNs) could interfere with boosting of
vaccine-induced antibody responses[41]. With respect to the efficacy of live attenuated malaria
vaccines, which are associated with cellular immune responses that target liver-stage parasites,
pre-exposure to malaria parasites might also have a role[28], but in a different way. Through
repeated exposure to malaria parasites, both enhanced innate immunity through a type I
interferon response and memory liver-resident CD8" T cells can impede the entry of vaccine-
delivered sporozoites to the liver, thereby reducing the induction of protective immune
responses[42,43]. However, pre-vaccination antibody titres against yellow fever virus do not
seem to have a role in reduced responses to the yellow fever vaccine, as yellow fever
vaccination resulted in higher seroconversion in Mali (91.0%) than in Ghana (63.5%) even
though the pre-vaccination antibody titres were higher in Mali and, indeed, were not associated
with post-vaccination antibody titres[44]. As the yellow fever vaccine induces an extremely
robust protective response, and a fractional dose of this vaccine induces strong immunity[45],
it is possible that the ability of the vaccine to self-replicate is not sufficiently hampered by the
pre-existing neutralizing antibodies. A full understanding of pre-existing immunity could
enable a better design in terms of selecting adjuvants, targeting of multiple epitopes or timing

of boosting to help overcome any blocking effects on vaccine performance [Fig. 2].

Heightened inflammation and immune activation

The activation status of the immune system before vaccination is of great importance to the
quality of the induced immune response. In high-income countries, poor responses to some
vaccines in elderly subjects have long been recognized and attributed to dysregulated immune
interactions[46,47], raising the question of whether there are immunological commonalities
with younger populations of low- and middle-income countries where vaccine
hyporesponsiveness is seen. In elderly individuals, age-related alterations, such as lifelong
exposure to immunological triggers and reduced ability of immune cell self-renewal, result in
smaller naive T and B cell pools, which along with low-grade sterile inflammation, can
underlie poor responses to vaccines[48,49]. In many areas of low- and middle-income
countries, the continued challenge of the immune system, largely through exposure to
microorganisms and parasites starting early in life, can lead to inflammation and a state of
heightened activation of both innate and adaptive immune cells[50,51], clonal expansion and
depletion of the naive lymphocyte pool[52], impairing the immune response to vaccination.

Therefore, persistent inflammation and continuous reactivation of immune cells can result in
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immune exhaustion and immunosenescence. These terms, which are often used
indiscriminately, represent still not fully understood[53], distinct, yet overlapping, processes
that mark an immune state that is detrimental to the outcome of vaccination. Detailed
understanding of the characteristics of different states of the immune system associated with
vaccine hyporesponsiveness might be helpful for designing interventions to improve vaccine

performance.

Gradual loss of naive T and B cells occurs naturally with ageing, but variation in their numbers
has also been observed between various aged-matched populations from various geographical
locations with different levels of exposure to infections[54,55,56]. For example, a study of
age-matched children from Bangladesh and the USA found considerable similarity in immune
profiles in the first year of life but at the age of 2—3 years, children from Bangladesh had higher
numbers of differentiated CD4" T cells and fewer monocytes and naive T cells compared with
their counterparts from the USA. Importantly, T cell maturity in children from Bangladesh
resembled that of adults in the USA[54]. These results are in line with studies showing that
Malawian adolescents (aged 12—15 years) had a lower percentage of naive CD4" and CD8* T
cells (CD45ROCD62LMCD1 1a'") than their UK counterparts. The percentage of naive T
cells was negatively associated with cytomegalovirus seropositivity, which was more common
in Malawian populations (100%) than in UK populations (36%)[55]. Also comparing immune
profiles of individuals living in rural and urban areas of Senegal with those in the Netherlands
showed a gradient in the proportion of naive T and B cells in young adults, with the lowest in
rural Senegal, then urban Senegal followed by the Netherlands. This correlates with the highest
exposure to microorganisms and parasites in rural Senegal and the lowest in the
Netherlands[52]. Lower naive T cell numbers before vaccination have been associated with
reduced responses to attenuated vaccinia virus in non-human primates[57], and with lower
PfSPZ malaria vaccine-induced antibody responses in a study that compared adult vaccinees

from Tanzania and the USA[11].

More recently, acute immune activation has been studied by examining responses following
controlled malaria infection in healthy volunteers. It was shown that both Plasmodium
vivax and P. falciparum infection can induce widespread immune activation, affecting
myeloid cells and strongly activating 25% of T cells, which were marked by high CD38

expression and low BCL-2 expression[58]. The high level of immune activation has been
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observed in individuals with lifelong exposure to malaria[50] alongside lower malaria vaccine
responses[11]. The impact of immune activation on vaccine responses has also been reported
by Muyanja et al.[15], who studied the baseline immune profiles and vaccine responses to
yellow fever vaccine in Uganda and Switzerland. The innate immune compartment was more
activated in individuals from Uganda compared with individuals from Switzerland, as
evidenced by an increased frequency of activated natural killer (NK) cells (CD16"HLA-DR"),
recently activated CD16™ NK cells (secreting interferon-y (IFNy) after restimulation ex vivo)
and pro-inflammatory intermediate monocytes (CD14"CD16%), with higher expression of
PDLI1 and HLA-DR. In addition, in the adaptive arm, both the CD4" and CD8" T cell and B
cell compartments exhibited more differentiated and memory profiles in individuals in Uganda
compared with those in Switzerland. Upon yellow fever vaccination, the frequency of pro-
inflammatory monocytes and activated PD1'CD8* T cells at baseline was negatively
associated with the induction of neutralizing antibodies, linking the increased immune

activation status to impaired vaccination outcome[15].

Needless to say, in children, the length of exposure to environmental factors is shorter and,
therefore, the level of immune activation might be less, with little impact on vaccines that are
given early in life. However, both rotavirus and cholera vaccines were less effective in children
from Bangladesh[59,60]. In a separate study of children from Bangladesh, heightened immune
activation was seen at 2 years of age but less so in the first year of life[54], when rotavirus
vaccination is given. It would be helpful to assess immunological profiles of children and
vaccination outcomes in the same cohorts to conclude with certainty whether immune

activation has a role in rotavirus vaccine hyporesponsiveness.

Data generated from immunophenotyping of blood samples from infants and children during
the RTS,S malaria vaccine phase III trial was consistent with the idea that the immune system
ages at different rates in different geographical areas; however, a more aged or mature immune
system in children was associated with a stronger antibody response to RTS,S vaccine[61].
Such discrepancies in how the immune activation status in young children is associated with
responses to distinct vaccines highlights the need for more studies: first, to disentangle immune
maturation from heightened immune activation; second, to examine local rather than
peripheral blood immune profiles, which might be more relevant, for example, for rotavirus
vaccine efficacy; and third, to unravel whether different mechanisms underlie

hyporesponsiveness to different vaccines. Therefore, a more in-depth understanding of the
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mechanisms that underlie, rather than correlates of, vaccine hyporesponsiveness are needed.
Given the data generated so far, it would be worth testing strategies to reduce inflammation or
heightened immune activation in both elderly individuals and in those living in areas where
exposure to microorganisms and parasites is high. This could, for a short period of time, before
vaccination, either involve more general drugs, such as metformin, which not only reduces
inflammation but also can boost memory formation[62], or more selective compounds that
target specific immune pathways such as IL-1p or IL-6 [ref. 63], which have shown some
beneficial effects in decreasing inflammation, to potentially reverse vaccine
hyporesponsiveness[64] (Fig. 2). However, the benefits and risks associated with such trials
will need to be carefully considered given the high infection burden in the environments in
which vaccine hyporesponsiveness is often seen to avoid limiting immune control of

infections.

Immune exhaustion

Repeated antigenic stimulation of lymphocytes and chronic activation can eventually lead to a
state of dysfunction that is broadly termed exhaustion. Exhaustion in various lymphocyte
populations, including NK cells, B cells and conventional CD4* and CD8" T cells, is generally
associated with a progressive hierarchical loss of effector function and proliferative capacity,
and the increased expression of inhibitory receptors, such as PD1, CTLA4, LAG3 and TIM3
[refs. 53,65]. However, these inhibitory receptors are also transiently upregulated on functional
effector T cells after T cell receptor stimulation. Therefore, recent studies of CD8" T cells at
various differentiation stages that identified TOX and eomesodermin[66,67] as specific
transcription factors that regulate exhaustion might help to better define exhausted T cells[53].
Immune exhaustion can be caused by several persistent infections, including malaria and those
caused by helminth parasites, M. tuberculosis, HIV and hepatitis B and C viruses, as well as
by cancer[68,69,70,71,72].

Immune cell exhaustion occurring in the context of chronic hepatitis C virus infection was
associated with lower antigen-specific T cell responses and seroconversion following hepatitis
B vaccination compared with responses in healthy individuals or in individuals who
spontaneously cleared hepatitis C virus infection[73]. Although many studies report the
upregulation of inhibitory receptors during hepatitis C virus infection, not many studies have
linked this upregulation to poor vaccine responses. Comparing hepatitis C virus-infected

subjects after hepatitis B vaccination, TIM3 expression on monocytes[74] and PD1-expressing
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CD4" T cells[73] were increased in subjects that did not respond to the vaccine. Chronic
exposure to malaria parasites is also associated with alterations in monocytes that might arise
from epigenetic changes in precursor cells that reprogramme them towards a less inflammatory
phenotype[75], as well as increased expression of PD1 by T cells, suggesting T cell
exhaustion[76]. Antibody-mediated blockade of PD1 in in vitro assays improved hepatitis B
virus antigen-specific responses[73,77] and malaria antigen-specific responses[78].
Amplification of antigen-specific T cell responses has been shown in vivo when PDI1
antagonists were combined with adenovirus-based or irradiated sporozoite-based malaria
vaccines in mouse models[79.80].

The combination of immune checkpoint blockade, such as monoclonal antibodies to PDI1,
PDL1 or CTLAA4, and therapeutic cancer vaccines is being studied extensively, but there are
very few studies that combine immune checkpoint blockade with vaccines for infectious
diseases[81]. However, vaccination against infectious diseases in patients with cancer treated
with immune checkpoint blockade is generating some interesting insights. Recent work has
shown that a subset of patients with cancer who are undergoing anti-PD1 antibody therapy and
are vaccinated for influenza virus show higher increases in circulating CD4" T follicular helper
cells than patients not receiving anti-PD1 treatment[82]. Increases in plasmablasts and
antibody titres indicated the potential of anti-PD1 antibody to enhance vaccine responses in
humans in the context of immune exhaustion (Fig. 2). Although these findings highlight the
potential of using anti-PD1 and other antibodies to immune checkpoints to overcome reduced
vaccine efficacy, much more needs to be done to assess the risk of developing strong collateral
autoimmune or autoinflammatory responses. Indeed, patients with cancer on anti-PD1
treatment who showed heightened responses to vaccines also had a higher risk of developing
immune-related adverse events[82]. Alternative approaches to overcome immune exhaustion,
such as the use of Toll-like receptor (TLR) agonists, have been tested in patients on renal
replacement therapy who show hyporesponsiveness to vaccines[83]. Indeed, the use of a
hepatitis B vaccine with the TLR9 agonist CpG resulted in higher seroprotective antibody titres
in patients with chronic kidney disease[84], indicating the ability to improve responses also in
the context of immune exhaustion.

Thus, more work is needed to better understand the exhaustion phenotype of T cells as well as
of other cell types such as myeloid cells and the mechanisms that underlie its association with
vaccine hyporesponsiveness. Studies of exhaustion in the context of cancer show that there are

subtypes of exhausted T cells — TCF1- exhausted T cells and self-renewing TCF1* stem-like
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exhausted T cells[85] — with distinct responses to checkpoint inhibitors, yet very little is
known about these subtypes during chronic exposure to microorganisms and parasites in
humans. The same applies to the paucity of information on how repeated exposure to pathogen-
associated molecular patterns can alter antigen presentation and the control of responses to
vaccination. Blocking the receptors and signalling pathways involved in exhaustion of
different immune cells might lead to a degree of reversal and enhanced vaccine efficacy,

although further studies are needed to assess the safety and benefits of such interventions.

Immunosenescence

Immunosenescence refers to the gradual dysregulation of the immune system as a consequence
of ageing, potentially attributed to chronic low-grade antigenic stimulation. It encompasses
reduced production of T cells in the thymus, as well as increased sterile, low-grade, chronic
inflammation that can contribute to age-associated decline in vaccine efficacy[86]. Although
immunosenescence and exhaustion both lead to reduced proliferative capacity and immune
function, the pathways involved can be distinct, as reviewed elsewhere[87]. Senescence is
characterized by shortening of telomeres, loss of telomerase activity and expression of CD57
and killer cell lectin-like receptor subfamily G member 1 (KLRG1)[87, although CD57 and
KLRGI can also be co-expressed with exhaustion markers such as PD1 [ref. 88].

In addition to biological ageing, immunosenescence has been associated with latent viruses
that might reactivate, such as cytomegalovirus. An immunization study of individuals in the
UK and Senegal, involving priming with the chimpanzee adenovirus type 3-vectored Ebola
Zaire vaccine (ChAd3-EBO-Z) and boosting with the modified vaccinia Ankara Ebola Zaire-
vectored (MVA-EBO-Z) vaccine, found a comparable induction of cytokine-producing T cells
but a significantly decreased antibody response in individuals in Senegal compared with the
UK]J89]. Cytomegalovirus carriage, which was higher in Senegalese, was correlated with
increased numbers of phenotypically senescent CD4* and CD8" T cells (CD57'KLRG1%), and
the frequency of these cells was negatively associated with the vaccine-specific antibody
responses[16]. It is important to note that other infections such as malaria can also contribute
to the immunosenescent phenotype seen in Senegalese individuals[90]. The disconnection
between comparable T cell cytokine responses yet poorer antibody responses in Senegalese
compared with UK vaccinees might be related to the ability of senescent cells to produce

cytokines, but this remains to be fully understood.
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There is great interest in finding ways to reverse immunosenescence[91], with some progress
in animal models using senolytics, such as dasatinib and quercetin, which promote the
clearance of senescent cells[92]. Moreover, the control of telomere length in immunosenescent
cells is an area that is intensely studied at the molecular level, but currently far from clinical
application[93]. However, studies using a p38 mitogen-activated protein kinase inhibitor,
losmapimod, in elderly subjects has shown promise in enhancing skin immune reactions to
varicella zoster virus antigen[94]. In addition, targeting metabolic pathways, for example,
using pan mTOR inhibition by AZD8055, has been shown to reverse senescence in skin
fibroblasts[95] and, when the same pathway was targeted in elderly subjects before influenza
vaccination, it improved vaccine-induced responses[96]. Yet, to what extent such molecular
pathways are specific for senescent cells is largely unknown, as they also affect inflammation
[Fig.2].

Therefore, a more precise characterization of overlapping and distinct pathways underlying
exhaustion, senescence and heightened activation of the immune system in different human
populations is needed to help understand the variation in vaccine responsiveness across
geographical areas and design immunological interventions. Are we dealing with a vicious
circle of inflammation and regulation that we should disrupt using anti-inflammatory

interventions simultaneously with checkpoint blockade for better vaccine outcomes?

Skewed immune responses

The proper functioning of the immune system involves a tight balance between pro-
inflammatory and anti-inflammatory responses to allow the development of sufficiently strong
immune responses to pathogens yet prevent overzealous inflammation and tissue
damage[97,98]. In a simplified view, the immune system deals with a range of pathogens
through the induction of various T helper cell subsets, such as Tul, Tu2 and Tul7 cells,
alongside matched innate effector cells, that are suited for optimal control of a particular type
of pathogen. These responses are kept in check by regulatory populations, such as regulatory
T (Try) cells, regulatory B cells[99] and anti-inflammatory monocytes or macrophages[100].
T cell responses can also be regulated cell-intrinsically through the upregulation of inhibitory
receptors or other molecules that limit their inflammatory activity after activation. For
example, in the setting of chronic helminth infection, the protective T2 cell responses are
compromised by a regulatory environment, generating a so-called ‘modified Tx2 cell response’

associated with high IL-10 and IgG4 levels and low IgE levels, rather than the typical T2 cell
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response characterized by high IL-4, IL-5 and IgE[101]. Ty, cells can be induced in response
to inflammatory signals such as tumour necrosis factor (TNF)[102] but also by certain
pathogens that express immunomodulatory molecules to allow their long-term survival within
the host[98]. Parasitic helminth infections are highly prevalent in rural areas of low- and
middle-income countries and have been shown to be associated with increased numbers of Ty2
cells, group 2 innate lymphoid cells (ILC2s), Ty cells and regulatory B cells[51], which can
modulate responses to P. falciparum and M. tuberculosis[103,104]. A study of Ty, cells in an
area endemic for helminth infections showed that the suppressive activity of
CD25MFOXP3" Ty, cells was higher in helminth-infected children than uninfected children.
In vitro T cell proliferative and IFNy responses to BCG and malaria antigens increased
following depletion of Ty cells only in samples from individuals infected with helminths and
not in those from uninfected subjects[105]. A role for helminth-induced immune regulation
was further substantiated by an anthelmintic trial showing that T cells expressing the inhibitory
molecule CTLA4 decreased significantly following the reduction in helminth load, allowing
the induction of stronger inflammatory TNF responses to malaria antigens[68]. Similarly,
during blood-stage malaria infection, strong regulatory responses have been
observed[106,107,108]; the number of T cells in the blood positively correlated with blood-
stage parasite burden and hampered the development of natural or vaccine-induced protection,
as shown in a study that assessed the efficacy of the malaria vaccine candidate GMZ2 using
controlled human malaria infection. Moreover, they showed that in addition to increased
numbers of Ty, cells, levels of HLA-G, which interacts with inhibitory receptors on T cells, B
cells, NK cells and neutrophils, were negatively correlated with vaccine-specific antibody
concentrations[108].

Given that a Tyl-type and inflammatory status supports vaccine-induced IgG antibody
responses, vaccination in the context of a Tu2-type and regulatory environment would be
expected to limit vaccine efficacy. A meta-analysis by Wait et al.[109] revealed poorer
vaccination outcomes in populations infected by helminths at the time of vaccination.
Moreover, the study found that chronic parasite infections, but not acute parasite infections,
were associated with worse immunization outcomes[109]. Indeed, a study that examined the
immune response to RTS,S vaccination showed that individuals with a Tyl-type and pro-
inflammatory response to vaccination (such as production of IFNy, IL-15 and GM-CSF) were
protected from subsequent malaria infection, whereas those that produced the T2 cytokine

IL-5 were notl110. Similarly, a negative association has been found between helminth
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infections and protection induced by another malaria vaccine candidate, GMZ2 [ref. 111].
However, anthelmintic  treatment has had variable effects on  vaccine
responses[18,30,31,112,113]. One potential explanation is that the anti-inflammatory immune
status is not directly reverted upon helminth removal but can persist[114,115,116].

Altogether, larger studies are needed to delineate the relative contribution of Ty2 and
regulatory cells to vaccine hyporesponsiveness and to devise appropriate interventions. The
blocking of Tu2 cytokines and their downstream effects has shown promise in the field of
asthma, where clinical trials using anti-IL-5 or anti-IL-4Ra show fewer acute exacerbations
and reduced eosinophilia[117]. In the field of cancer, there has been significant interest in
evaluating the clinical benefits of targeting Ty, cells to improve Ty1-type antitumour immune
responses. Although success from early clinical trials using the human CD25-specific antibody
daclizumab to deplete Ty, cells has been modest, more recent approaches using modified
antibodies with superior capacity to induce antibody-dependent cell cytotoxicity are more

promising[118] [Fig. 2].

Alterations in the lymphoid tissue microenvironment

The lymphoid tissues are essential for correct functioning of the immune system by providing
organized structures that support interaction between cells and immune mediators. Structural
changes in the LNs have been observed in older individuals, patients with HIV infection
(including those on antiretroviral therapy) and healthy individuals from low-income countries
(such as Uganda)[119,120,121]. With normal ageing, the number of LNs decreases, and there
may be reductions in the area and volume of LN paracortical, cortex and medullary
regions[122,123]. Furthermore, naive CD8" T cell and CD20" B cell numbers in LNs are
reduced and there is a decrease in the relative and absolute dimensions of germinal centres,
indicating a more static microarchitecture in older compared with younger individuals[124].
In the context of active HIV-1 replication, inflammation and tissue remodelling cause damage
to the LN architecture, limiting its ability to support normal T cell numbers and thereby
contributing to the reduced CD4* T cell numbers observed in these patients[121]. Of interest,
examination of LN sections of HIV-negative individuals from Uganda also showed LN
architecture disruption, characterized by collagen formation in the parafollicular T cell zone,
similar to that observed in HIV-positive individuals from the USA, suggesting that LN
remodelling is not limited to HIV infection and may occur with other chronic endemic

infections. In addition, the fibroblastic reticular cell network, an essential network for T cell—-
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antigen interaction, was diminished in HIV-negative Ugandans compared with HIV-negative
North Americans, as measured by desmin positivity. Moreover, the depleted fibroblastic
reticular cell network was associated with a smaller CD4" T cell population in the LNG.
Vaccination of these HIV-negative Ugandans with the yellow fever vaccine YF-17D resulted
in a blunted and short duration antibody response, and the more damage to the fibroblastic
reticular cell network the smaller the peak antibody titre. Finally, confocal imaging revealed a
lack of T follicular helper cells and diminished B cell follicle formation in HIV-negative

Ugandans that was not rescued by vaccination[120].

The importance of an altered lymphoid tissue microenvironment to the development of
immune and vaccine responses is also supported by a study that shows that changes to the LN
microenvironment during ageing, rather than to the immune cells themselves, contribute to
age-related immune dysfunction[124]. In aged mice, lymphoid tissue stromal cells expressing
mucosal addressin cell adhesion molecule 1 (MADCAMI1) failed to respond to immunization
and support germinal centre responses. Targeting TLR4 by adjuvants improved the response
to vaccination by MADCAM1" stromal cells, which correlated with improved germinal centre
responses[125] [Fig. 2]. Although alterations in the local microenvironment are receiving
more attention lately, more in-depth studies are needed, also in humans, to reverse detrimental

alterations in the microenvironment, which appears to be crucial for the vaccine response.

Emerging areas for future of vaccinology

A detailed understanding of the immune system is essential for the development of effective
vaccines. However, much of our knowledge of immunology is based on studies carried out in
laboratory animals and in humans living in affluent countries, such as the USA or Europe. As
the environment has a tremendous impact on the immune system, the future of vaccinology
will foremost need to include populations that are exposed to different environments.

Parallels between the immunological changes during cancer and (chronic) infectious diseases
might open new possibilities to overcome vaccine hyporesponsiveness. Both advanced cancers
and chronic infections can induce persistent activation and inflammation, which can lead to T
cell exhaustion, increased numbers of immunosuppressive and regulatory cell populations, as
well as a shift from protective Tyl-type immunity to Tu2-type immunity or from pro-
inflammatory to anti-inflammatory innate effectors[72,126,127,128]. These changes can

compromise the T cell functions necessary for adequate responses to pathogens and tumour
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cells as well as to vaccines. Biologics that have been developed for cancer treatment are
increasingly being studied in the context of chronic infectious diseases and may be worth
exploring to increase vaccine efficacy in those with persistent pathogen
exposure[79,80,129,130]. The potential role of the microbiome in enhancing vaccine
responses is an emerging area of research, which has been the subject of a recent review[24].
Indeed, a growing number of metabolites derived from the microbiota[131]and
foods[132] have been shown to modulate the immune system. A recent study that compared
immune responses of residents of urban and rural Tanzania found more anti-inflammatory
immune profiles in rural participants, which were associated with increased plasma levels of
food-derived flavones[133]. Specifically, the plant-derived flavonoid apigenin showed anti-
inflammatory effects reflected in cytokine profiles assessed after cell stimulation[133].
Another study linked iron bioavailability to a reduced response to malaria vaccine (RTS,S) in
African children. African children with anaemia had fewer isotype-switched memory B cells
and plasmablasts than healthy children, and increasing iron bioavailability in vitro was able to
restore the defective B cell proliferation and plasmablast differentiation[61]. With the
development of highly sensitive metabolomic and proteomic platforms that better enable
specific molecules in biofluids to be linked to immune responsiveness and investigation of the
mechanisms that underlie their immunomodulatory effects, it is likely that additional pathways
will be discovered as targets for improving vaccine responses.

Previous exposures to microorganisms and parasites are also known to have lasting effects on
the innate immune compartment — through processes termed trained immunity and
tolerance[ 134]. Trained immunity refers to a baseline quiescent innate immune cell status that
is modulated, at the epigenetic level, by previous exposures, to induce a faster and stronger
response to a secondary exposure. Tolerance is the opposite phenomenon by which the
response to a secondary exposure is lower than the first. Such a framework (elegantly reviewed
recently[134] needs to be dissected precisely to examine whether and/or how it underpins
heightened immune activation, exhaustion and senescence and their relation to vaccine
hyporesponsiveness.

Another important area of research that can shed light on the mechanisms that govern vaccine
hyporesponsiveness and thereby help to identify actionable targets to overcome
hyporesponsiveness is the field of immunometabolism. During the past decade it has become
increasingly clear that a wide range of immune cell properties, including those leading to

trained  immunity and  tolerance[135], exhaustion[136], senescence[137] and
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hyperactivation[138], are associated with and dependent on engagement of particular
metabolic programmes. Recent systems vaccinology work linked changes in metabolic
pathways to shingles vaccine-induced T and B cell responses[139], and follow-up work in
mice pinpointed the importance of sterol metabolism in B cells for antibody production
following immunization[140]. These insights have sparked interest in exploring whether
immune cell metabolism could be harnessed to direct immune responses for therapeutic gain.
These developments are most advanced in the field of cancer, in which targeted modulation of
metabolism of tumour-associated myeloid cells and adaptive immune cells has shown promise
as a viable means to negate immune dysfunction commonly observed in tumour
microenvironments[141,142]. Some of the metabolic principles that underpin immune
dysfunction in a tumour context are likely to overlap with those that lead to vaccine
hyporesponsiveness, and as such can inform the rational design of approaches that target
immune cell metabolism to restore vaccine responsiveness. Efforts in this direction are still in
their infancy. However, the clinical trial in which the mTOR inhibitor RAD001 was shown to
ameliorate immunosenescence in elderly individuals and improve their response to influenza
vaccination[143] provides the first evidence of therapeutic potential of modulation of immune
cell metabolism in the context of vaccines. To further this field, a key first step will be to map
in detail the metabolic characteristics of immune cell subsets in populations that are affected
by poor vaccine responses, to identify therapeutic targets.

Finally, studying compartments other than the peripheral blood seems to be the next frontier
in vaccinology. A recent study by Wagar et al.[144] showed how cultures of tonsil tissue can
provide a secondary lymphoid organ model to study adaptive immune responses to vaccines.
In addition, by taking serial fine needle aspirates of a single LN germinal centre in response to
avaccine over time has provided unique insight into responses to mRNA-based vaccines[145].
Moreover, tissue-resident immune cells studied in malaria vaccine responses of non-human
primates highlight that vaccine-induced CD8" T cells or y3 T cells are present in much higher
numbers in the liver, where infected hepatocytes are targeted, than can be appreciated from
examining the peripheral blood[146,147]. Studies beyond the peripheral blood also provide
the opportunity to examine the stromal cell compartment, which provides essential signals for

immune function locally and might also be influenced by, for example, inflammation.
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Conclusion

Large-scale omics approaches that combine the study of transcriptomes and proteomes, such
as through CITE-seq, show promise for determining baseline vaccine response predictors
[Box 3], with further insight now being gained from also assessing epigenomes[33] and
metabolomes[139]. Such approaches should also now be applied to cohorts from populations
that reside in different environmental settings where exposure to microorganisms and
parasites, nutrient and food intake, as well as lifestyle, differ greatly as do vaccine responses.
We are hopeful that the dissection of immunological mechanisms that link environment to
vaccine responsiveness will unravel pathways that are amenable to modification and identify
immunomodulatory compounds that complement vaccines to provide effective vaccination

programmes for those who need it most.
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Abstract

Schistosomiasis is a neglected tropical disease with significant health implications, particularly
among children. A cross-sectional study was conducted among school-aged children (SAC) in
Mwanga district, Tanzania, a region known to be co-endemic for S. haematobium and S.
mansoni infection and where annual mass drug administration (MDA) has been conducted for
20 years. In total, 576 SAC from 5 schools provided a urine sample for the detection of
Schistosoma circulating anodic antigen using the upconverting particle-based lateral flow
(UCP-LF CAA) test. Additionally, the potential of the point-of-care circulating cathodic
antigen (POC-CCA) and microhaematuria dipstick test as field-applicable diagnostic
alternatives for schistosomiasis were assessed and the prevalence outcome compared to UCP-
LF CAA. Risk factors associated with schistosomiasis was assessed based on UCP-LF CAA.
The UCP-LF CAA test revealed an overall schistosomiasis prevalence of 20.3%, compared to
65.3% based on a combination of POC-CCA and microhaematuria dipstick. No agreement was
observed between the combined POC tests and UCP-LF CAA. Factors associated with
schistosomiasis included age (5-10 years), involvement in fishing, farming, swimming
activities and attending 2 of the 5 primary schools. Our findings suggest a significant progress
in infection control in Mwanga district due to annual MDA, although not enough to interrupt
transmission. Accurate diagnostics play a crucial role in monitoring intervention measures to

effectively combat schistosomiasis.
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Introduction

Schistosomiasis is a major neglected tropical disease disproportionately affecting sub-Saharan
African countries, with 90.0% of the global disease burden occurring in this region[1]. In
Tanzania, the overall prevalence of schistosomiasis is 51.5% [2], and among school-aged
children (SAC) it is reported to be 53.5%][3], reaching up to about 80.0% in the northwestern
zone around Lake Victoria[4,5]. However, current prevalence estimates do not include the
northern region of Tanzania, including Mwanga district in the Kilimanjaro region. This district
has been known to be endemic for both Schistosoma haematobium and Schistosoma mansoni
[6]. The population is at high risk of schistosomiasis possibly due to the presence of the
intermediate snail host (Bulinus and Biomphalaria) as well as irrigation schemes, which are
the conducive environment for the transmission the Schistosoma spp. The presence of the
hydroelectric dam known as ‘Nyumba ya Mungu’ (Fig. 1) which ensures a constant water
supply to the surrounding villages for irrigation contributes to the continues transmission of
schistosomiasis in Mwanga district [5]. In Tanzania, including the Kilimanjaro region, mass
drug administration (MDA) of praziquantel has been the major strategy to reduce the burden
of schistosomiasis and has been organized annually since 2004 among SAC who are at the
highest risk of infection[7]. The need to assess the success of MDA has been highlighted by
the World Health Organization and tools to enhance strategic guidance for schistosomiasis
control program in Tanzania have equally been reported[8,9]. The most recent data on the
prevalence status of schistosomiasis among SAC in Mwanga district are from 2005, indicating
a prevalence ranging from 33.5 to 70.0%[6]. Conventional microscopy is the reference method
to diagnose schistosomiasis in endemic settings and involves the detection of Schistosoma
eggs in feces or urine, depending on the species. However, microscopy requires experienced,
well-trained technical personnel, is considered a time-consuming, laborious method and has
limited sensitivity in low-intensity infection settings[10]. Furthermore, the availability and
access to microscopy is challenging in many rural areas in Tanzania due to a lack of trained
personnel and appropriate infrastructure. Low-cost, user-friendly rapid tests could overcome
such issues, but the accuracy of available point-of-care (POC) tests to determine the prevalence
of schistosomiasis in regions co-endemic for S. haematobium and S. mansoni needs to be
determined. The POC test for detecting Schistosoma Circulating Cathodic Antigen (POC-
CCA) in urine has been endorsed by the WHO as an alternative to conventional microscopy,
in particular for the diagnosis of S. mansoni infections[9]. It requires minimal training and has

been validated in several field settings endemic for intestinal schistosomiasis[11, 12]. Another
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easy-to-use rapid test is the microhaematuria dipstick test for the detection of haematuria,
which has been shown to be strongly associated with urogenital schistosomiasis, although it is
considered nonspecific[13]. A quantitative Up-Converting reporter Particle Lateral Flow
(UCP-LF) test detecting the genus-specific Schistosoma Circulating Anodic Antigen (CAA) is
a highly accurate test to detect active infection of all Schistosoma species in urine or serum[14].
[14]. Although it requires a more advanced laboratory infrastructure, it has been shown to be
100% specific and can reach a sensitivity to detect single-worm infections[14,15,16]. This
study aimed to determine the current prevalence of schistosomiasis in the Mwanga district
Tanzania after approximately twenty years of MDA using the UCP-LF CAA test and to explore
the potential of using the POC-CCA and microhaematuria dipstick as a combined POC test for
diagnosing schistosomiasis in co-endemic settings in comparison to the laboratory-based UCP-
LF CAA test. Furthermore, we investigated Schistosoma infection risk factors and associated

parameters.

Materials and methods
Ethical considerations

Ethical approval for this study was obtained from Kilimanjaro Christian Medical University
College (KCMUCo) research and ethical committee board (reference number: 2588).
Administrative authorization was obtained from the district education officer and Mwanga
District Medical Officer. Children were enrolled based on their availability, and those willing
to participate were given a consent form to be signed by guardians and/or parents. Immediately
after sample collection all children, including those who participated in our study, were
provided with praziquantel under the yearly MDA program at school at the recommended dose

in the presence of a local clinician.

Study area and population

The study was conducted in Mwanga district, one of the seven districts of Kilimanjaro region
in Tanzania. Farming, fishing, sand collection, pebble making, soil bricking and animal
keeping are the major economic activities. The study was conducted in five schools, of which
two were selected based on a previous study[6]. MDA of praziquantel had occurred in these

schools more than 6 months prior to our study.
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Figure 1. Map of Mwanga district Tanzania showing water sources, five primary schools and irrigation schemes

Sample/ data collection and processing

Enrolled study participants provided consent forms from parents and were given sterile
containers with unique identifiers to provide fresh urine samples. For each sample, POC-CCA
and microhaematuria dipstick was done in the field for the diagnosis of S. mansoni and S.
haematobium, respectively. An aliquot of 2 mL of urine was conserved (at —20°C) per
participant and was shipped on ice to Leiden University Medical Center in the Netherlands for
retrospective UCP-LF CAA analysis. Following urine sample collection, a face-to-face

interview using a closed-ended questionnaire in English and Swahili was conducted.

Field and laboratory analysis

The POC-CCA test (batch 180817091) was obtained from Rapid Medical Diagnostics, South
Africa (SA), and analysis was done according to the manufacturer's instructions. Briefly, two
drops of urine were transferred into the sample window of the test cassette. The readout of the
cassette was done in 20 minutes. Results were scored as negative, trace or positive.

Microhaematuria dipstick (Mission Urinalysis, Lot no: URS8090018) test was performed by
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placing the strip on a flat surface and a drop of urine applied to the reagent pad. Readouts were
done in 1 minute as either negative or positive according to the manufacturer's instructions.

The Schistosoma genus-specific UCP-LF CAA test was employed to detect CAA in urine
samples and to confirm active infection with Schistosoma spp[14]. All urine samples were
subjected to the UCAAWT417 wet format of the test. Briefly, 500 puL of each urine sample was
mixed with 100 pL of 12% trichloroacetic acid, then incubated at room temperature for 5
minutes and centrifuged. The clear supernatant was then concentrated to 20 uL using a 0.5 mL
centrifugal device (Amicon Ultra-0.5, Millipore, Merck Chemicals B.V., Amsterdam, The
Netherlands). The resulting concentrate was then applied to the lateral flow test strip. To
quantify CAA concentrations and to validate the assay cutoff (0.6 pg mL—1 ), reference
standards with known CAA-levels were included. A CAA concentration above 0.6 pg mL—1
was considered positive. Infection intensity was categorized as low positive (>0.6—10 pg mL—1

), moderate positive (>10-100 pg mL—1 ) and high positive (>100 pg mL—1).

Statistical analysis

The agreement between the combination of POC-CCA an microhaematuria dipstick
(combined POC test) and UCP-LF CAA was performed using Kappa (K) statistics. For POC-
CCA, trace results were considered negative. Furthermore, the association between socio-
demographic characteristics and risk factors associated with Schistosoma infection, based on
the UCP-LF CAA test, was performed using chi-square statistics, binary and multiple logistic
regression analyses. Statistical analysis was performed using IBM Statistical Package for
Social Sciences version 29 (SPSS Inc., Chicago, United States of America). For generation of
plots, GraphPad Prism version 9.3.1 for Windows (GraphPad Software, San Diego, California

USA, www.graphpad.com) was used.

Results

Socio-demographic characteristics

A total of 576 children provided informed consent and subsequently provided a urine sample
and were therefore included in the final analysis. In Table 1 socio-demographic characteristics
of the study population are given. The children's age ranged from 5 to 16 years, with a mean
age of 9.8 years (S.D. 2.4) and 50.7% were females. Furthermore, the majority of the

children were in class range 1 to 3 (50.3%). Farming was the most common father's profession
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(46.7%) followed by fishing (23.4%). The most common mother's profession was farming
(44.8%), followed by small businesses (34.2%).

Table 1.The prevalence of schistosomiasis across all five schools based on UCP-LF CAA, POC-CCA,

microhaematuria dipstick and a combination of the POC-CCA and microhaematuria dipstick

Diagnostic test

UCP-LF CAA POC-CCA Microheamaturia dipstick Combined Test®

Number of children Positive (%) Positive (%) Positive (%) Positive {36)

School Kagongo 2719 35 (12.59) 174 (62.4) 84 (30.1) 209 (74.9)
Kilea 59 14 (23.7) 37 (62.7) 12 (20.3) 41 (69.5)

Kivulini 57 19 (33.3) 30 (52.6) 12 (21.1) 36 (63.2)

Mkombozi 106 31(22.2) 35 (33.1) 23 (21.6) 43 (40.6)

Mnoa 75 18 (24.0) 38 (50.6) 17 (22.7) 47 (62.7)

Total 576 117 (20.3) 314 (54.5) 148 (25.7) 376 (65.3)

* Combination of POC-CCA and/or microheamaturia dipstick positive outcome.

Prevalence and intensity of Schistosoma infection

In total 117 (20.3%) of children were found to be CAA positive (Table 1). The highest
proportion of positives was observed among children attending Kivulini primary school
(33.3%), followed by Mkombozi primary school (29.2%). The lowest proportion was 12.5%
and was found among school children at Kagongo primary school. The majority of moderate
to high intensity infections based on CAA-levels was observed in the schools in Kivulini and
Mkombozi (Fig. 2a). Furthermore, SAC within the age category 5—10 years were found to be
more often CAA positive than those aged 11-16 years (Fig. 2b). The outcome of the point-of-
care tests are also summarized in Table 1. Based on POC-CCA and microhaematuria dipstick
tests the prevalence of schistosomiasis were, 54.5% and 25.7% respectively. Assuming that
the combination of two tests will give more clearer prevalence, combining POC-CCA and

microhaematuria dipstick, the prevalence was 65.3%.
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Figure 2. Prevalence and intensity of Schistosoma infection based on UCP-LF CAA amongst (A), five selected

schools (B) the age categories.

The agreement between the combination of POC-CCA and microhaematuria dipstick
and the reference test UCP-LF CAA

The combination of POC-CCA and microhaematuria dipstick showed no agreement with the
UCP-LF CAA test (Table 2). Furthermore the P value indicates that this lack of agreement is
not statistically significant, suggesting that the disagreement between tests is likely due to
chance at significance level of 0.05. Analysis of the individual POC-CCA and

microhaematuria dipstick tests also showed no agreement with the UCP-LF CAA test.

Table 2. The level of agreement between point-of-care circulating cathodic antigen (POC-CCA) test, microhaematuria
dipstick and upconverting particle lateral flow circulating anodic antigen (UCP-LF CAA) urine test by Cohen's kappa

coefficient in 576 school-aged children from Mwanga Tanzania

UCP-LF CAA

Test Positive MNegative K-value P Value Interpretation

POC-CCA Positive 86 367 0.011 0.128 Poor
Negative 31 92

Microhaematuria dipstick Positive 37 110 0.013 0.080 Poar
Negative 80 349

Combined (Microhaematuria and POC-CCA) Positive 79 297 0.015 0.569 Poar
Negative 38 162

Risk factors associated with schistosomiasis

Using multivariate logistic regression analysis (adjusted odd ratio), the potential risk factors
associated with Schistosoma infection, based on the presence of CAA, showed that children in
class level 1-3 had two times higher odds of having schistosomiasis than children in higher

classes. Children involved in farming and swimming activities had respectively 5.6 and 3.6
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odds of being infected than those who did not farm nor swim. Furthermore, children attending
Kileo, Kivulini, Mkombozi and Mnoa primary schools had 2.2, 2.6, 2.4 and 2.7 times higher
odds of CAA positive results respectively, when compared to those attending Kagongo

primary school. More details can be found in Supplementary Table 1.

Discussion

Using a highly accurate diagnostic approach (UCP-LF CAA), this study indicated that after
nearly two decades of MDA schistosomiasis remains highly prevalent (20%) among school-
aged children in Mwanga district, Tanzania. Although POC-CCA and microhaematuria
dipstick test showed an even higher prevalence than the UCP-LF CAA test, no agreement was
found between these tests and the UCP-LF CAA results nor any association was observed
between these tests and known risk factors for schistosomiasis, highlighting the limitation of
these currently available rapid diagnostics tests (POC-CCA and microhaematuria) in
accurately determining the true prevalence in this specific setting that is known to be co-
endemic for S. mansoni and S. haematobium.

Different prevalence’s have been observed throughout Tanzania[l17,18,19,20,21]. As
commonly known as well as shown in the current study, measurement of prevalence highly
depends on the diagnostic method used. Since we have used a highly accurate diagnostic
method in our study, i.e. the UCP-LF CAA test, it is difficult to directly compare our results
to previously published results based on microscopy and/or POC-CCA as these methods have
limited sensitivity/ specificity. Our data confirm regional variation in the burden of
schistosomiasis in Mwanga district, which would, extrapolated to Tanzania as a whole, argue
for a more focally oriented schistosomiasis control approach. A significant difference in
infection rates among different age groups was identified. Younger children (5-10 years)
exhibited a higher prevalence of schistosomiasis than the older age group (11-16 years),
indicating early exposure to the infection[20] . The possible reason for older children having
low prevalence is through acquired immunity due repeated infections as indicated by other
previous studies for example possible presence of IgE antibodies[22, 23]. A significant
association was found between schistosomiasis and children who swim in water bodies, which
may be attributed to playful behavioural activities common among children[24]. The children
involved in swimming activities had 3.6 times more risk of being infected, in line with recent
systematic review demonstrated by Reitzug and colleagues[25]. Children’s involvement in

farming was found to be associated with an increased risk of being infected with
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schistosomiasis. Finally, children attending Kileo, Kivulini, Mkombozi and Mnoa primary
schools were identified to have higher rates of Schistosoma infection compared to those
attending Kagongo primary school. These findings are likely due to the proximity of irrigation
schemes/rivers to these schools, which are perceived as safer water sources for young children
and so most likely to visit compared to larger water bodies like the dams located closer to
Kagongo, where parents have concerns about the risk of children drowning and so cautioned
not to go there for water.

Despite of providing crucial updates on the prevalence of schistosomiasis among school
children in the area, the study has several limitations. Firstly, the laboratory UCP-LF CAA test
detects all Schistosoma species, but it does not provide any species-specific information[14].
In control settings, where species information would be relevant, other measures can provide
this, e.g. determining the presence of specific snail species, or performing egg microscopy or
species-specific PCR. For treatment, species information as such is not needed, and CAA has
been demonstrated to be an excellent marker for monitoring treatment efficacy[26,16,27,28].
Although POC-CCA and microhaematuria rapid tests are user-friendly, kappa statistics
revealed a poor agreement between these tests and the UCP-LF CAA. It was expected that the
combined positivity rates of POC-CCA and microhaematuria dipstick test would reflect the
UCP-LF CAA results, however this was not the case (Table 1). The poor agreement may be
due to production batch differences, sexually transmitted infections (STIs), low-intensity
infections, and subjectivity to test readouts, which might also affect results[29]. Furthermore,
more accurate result with both tests might have been possible if the test was scored in a more
quantitative manner. For example, following the recently described G-score scoring method
for POC-CCA, an inclusion of control samples as a way to standardize the readout and to
determine the cut-off for positivity. The microhaematuria test can be scored semi-
quantitatively based on colour intensity linked to the level of red blood cells. However,
registering of more quantitative results was not foreseen in this study.

In conclusion, this study demonstrates a moderate prevalence of schistosomiasis in Mwanga
district Tanzania, implicating that the ~20 years annual MDA of praziquantel in this region
may have had an effect on reducing the schistosomiasis burden, but transmission is still
ongoing. To improve the efficacy of MDA strategies, diagnosis at acute stages of the disease
in combination with treatment could be extended not only to higher risk groups but also to all
persons above 2 years of age as recommended by WHO[30, 9]. Apart from that, integrated

approaches including improved access to WASH infrastructure, political willingness, and
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production of reliable data are important for controlling schistosomiasis in Tanzania[31]. The
presence of persistent hotspots in countries like Tanzania where provision of MDA program
failed to provide long terms solution in some villages shows the need for such an integrated
approach[32]. Furthermore, a combination of the POC-CCA and microhaematuria dipstick did
not prove to be useful as a screening tool for schistosomiasis in this S. haematobium and S.
mansoni co-endemic setting. However, efforts are ongoing to make CAA detection generally
available, with a recent initiative focusing on the development of a more easy-to-use, accurate,
affordable and visually scored CAA-RDT[33,34]. The CAA-RDT could be of great potential
in resource-poor endemic settings and assist in the development of targeted control measures

and interventions to effectively combat schistosomiasis.
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Abstract

Immune system and vaccine responses vary across geographical locations worldwide, not only
between high and low-middle income countries (LMICs), but also between rural and urban
populations within the same country. Lifestyle factors such as housing conditions, exposure to
microorganisms and parasites and diet are associated with rural-and urban-living. However,
the relationships between these lifestyle factors and immune profiles have not been mapped in
detail. Here, we profiled the immune system of 100 healthy Tanzanians living across four
rural/urban areas using mass cytometry. We developed a lifestyle score based on an individual's
household assets, housing condition and recent dietary history and studied the association with
cellular immune profiles. Seventeen out of 80 immune cell clusters were associated with living
location or lifestyle score, with eight identifiable only using lifestyle score. Individuals with
low lifestyle score, most of whom live in rural settings, showed higher frequencies of NK cells,
plasmablasts, atypical memory B cells, T helper 2 cells, regulatory T cells and activated
CD4+ T effector memory cells expressing CD38, HLA-DR and CTLA-4. In contrast, those
with high lifestyle score, most of whom live in urban areas, showed a less activated state of
the immune system illustrated by higher frequencies of naive CD8+ T cells. Using an elastic
net machine learning model, we identified cellular immune signatures most associated with
lifestyle score. Assuming a link between these immune profiles and vaccine responses, these
signatures may inform us on the cellular mechanisms underlying poor responses to vaccines

but also reduced autoimmunity and allergies in low- and middle-income countries.
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Introduction

Variation in the immune system have been observed across populations in low and middle-
income countries (LMIC) in Africa and Asia and those living in high-income countries (HIC)
in Europe and the USA[1-6]. In addition, immune system variation has been observed within
countries, such as in rural compared to urban areas in Senegal[2], Tanzania[7] and
Indonesia[1]. The immune system of rural-living individuals in LMICs shows higher memory,
activated and regulatory immune profiles, characterized by among others regulatory T cells
and T helper 2 cells (Th2 cells), compared to urban-living individuals[1, 2, 8, 9]. At the same
time, reduced vaccine performance has been observed in populations living in LMICs, in
particular in rural areas[4, 10, 11]. Moreover, it is known that in these same populations, there
are less diseases of affluence, such as allergies or auto-immunities, where unchecked

inflammation is a strong contributor[4, 11-19].

Several factors determine the immune profile of an individual, including genetic and
demographic factors, such as age and sex, as well as environmental factors, including exposure
to microorganisms and parasites, type of housing and dietary history[20, 21]. While genetics
plays an important role in immune system variation during early childhood, this influence
wanes with age due to cumulative exposure to environmental factors, including pathogens[20,
22, 23]. This has been illustrated in individuals chronically infected with helminths, who
exhibit skewed baseline immune profiles, characterized by higher frequencies of Th2,
regulatory T cells and higher expression of activation and inhibitory markers such as cytotoxic
T lymphocyte-associated protein 4 (CTLA-4), HLA-DR and programmed cell death protein 1
(PD-1) on T cells[24-26]. Furthermore, individuals infected with cytomegalovirus (CMV)
show a disproportionately higher activation state of the immune system and an increased

frequency of memory cells[27, 28].

Socioeconomic status (SES) is intertwined with housing quality, nutritional status and access
to healthcare[29, 30]. These factors contribute to infection risk and, therefore, propel the
vicious circle of infection/infestation, which strongly impacts the immune system[18, 29-33].
The type of diet can also be linked to variation in immune profile, as was demonstrated in a
recent study in Tanzania[7]. In this study, rural-living Tanzanians harbored a more anti-
inflammatory immune profile that correlated with higher levels of plant-derived flavonoid

apigenin found in food mostly eaten in rural settings[7]. Therefore, taken together, there is
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evidence for links between living environments such as housing, exposure to microorganisms
and parasites, SES including individual assets and diet and immune system variation in LMICs.
Although the immune profiles of urban- and rural-living individuals have been directly
compared, a more granular assessment of lifestyles irrespective of living location is lacking,
as individuals living in rural areas may exhibit an urban lifestyle and vice versa. We
hypothesized that a more refined measurement of lifestyle including housing status, assets (e.g.
car, bicycle motorcycle or radio), and dietary history (i.e. frequency of consumption of
common dietary products) will allow us to better explain immune variation previously related
to rural or urban living location. Especially, we aim to more precisely define immune
signatures in individuals exhibiting immune hypo-responsiveness. Such information can have
an impact on both communicable and non-communicable diseases, as a poor immune response
to vaccines will affect susceptibility to vaccine-preventable infections, while poor responses
to (self-)antigens can lead to fewer allergies or autoimmune diseases in rural-living individuals.
Therefore, we not only used mass cytometry to obtain a highly granular immune profile but
also surveyed lifestyle variation among Tanzanian adults recruited from two rural and two
urban locations to maximize lifestyle variation using a detailed questionnaire of housing
conditions, assets and recent dietary history. We present a lifestyle score based on these
questionnaire data, which places individuals on the spectrum ranging from rural to urban
lifestyle. We used this lifestyle score to explain immune profile variation in Tanzanian adults
living in rural and urban areas and contrasted this with immune signatures from urban-living
Europeans. In addition, we utilized a machine learning model to define combined immune

signatures most strongly associated with the lifestyle score.

Materials and Methods

Study design

This observational study was conducted between September and October 2022 as part of the
CapTan study. A total of 203 healthy Tanzanian participants aged between 18 to 35 years were
included from two urban locations (Urban Arusha and Urban Moshi) and two rural locations

(Rural Moshi and Mwanga) in northern Tanzania (Figure 1 A).
The study was approved both at a local level by the Ethical Board of the Kilimanjaro Christian
Medical University College (No. 2588) and at the national level by the Tanzania National

Ethical Committee Board (NIMR/HQ/R.8a/Vol.1X/4089). In addition, samples collected from
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ten Dutch 18 to 30-year-old adults enrolled between January 2022 and September 2022 were
included in the TINO study (ClinicalTrials.gov, reference no. NCT06039527). The study was
approved by the Ethics Committee of Leiden University Medical Center (NL77841.058.21).

Description of study areas

Arusha City (1400m above sea level; 617,631 inhabitants[34]) is the administrative, business,
commercial and educational centre of the Arusha region, as it accommodates most diplomatic
and international activities. Due to these important regional functions, there is high diversity
in ethnicity, economic status and lifestyle. Maasai, Meru and Chagga are the most common
ethnicities. Most people living in Arusha City have access to good sanitation with the
availability of clean, treated water. However, some people are slum dwellers, i.e. living in the
city but practicing a rural lifestyle. Most people are self-employed or office employees in the

government and private sectors[34].

Kilimanjaro region has about 1.9 million inhabitants[34] across seven different districts, three
of which are included in this study (Moshi City, Rural Moshi and Mwanga). Moshi City
(referred to as Urban Moshi) (700-950m above sea level; 331,733 inhabitants[34]) is the
administrative, commercial and educational center of the Kilimanjaro region. Most people live
a Western lifestyle and have good general sanitation and access to clean water. The main
ethnicities are Chagga and Pare. Formal business is the main activity, followed by government
and public employment, while few people are involved in agricultural and entrepreneurial

activities[34].

People in Rural Moshi (535,803 inhabitants[34]) are mainly involved in agricultural activities.
Some people have access to clean water, while few use borehole water sources. People live in
large family units and their main economic activities are subsistence farming and animal
husbandry. The main ethnicity is Chagga and people follow Chagga traditions, such as drinking

local brew from banana/plantain.

The population of Mwanga district (684m above sea level; 148,763 inhabitants[34]) is mainly
active in irrigation, subsistence farming and animal husbandry. The primary water sources are
boreholes, rivers and dams, with only few people having access to tap water. Like Rural Moshi,

people live in large family units. The main ethnicity is Pare, with few Chagga.
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Europeans were recruited in the area around Leiden, an urban centre in The Netherlands.

European individuals were Dutch.

Participant screening and enrollment

In rural communities, study information was given through community leaders and
announcements during mass gatherings in mosques, churches and during village meetings. In
urban communities, study information was distributed using leaflets and through community
leaders, office announcements and university gatherings. Eligible participants (age 18-35 years
and permanent residency of a given location) were asked to enroll in the study. Following
informed consent, 230 participants were voluntarily screened for in- and exclusion criteria.
Exclusion criteria were pregnancy, lactation, having acute or chronic diseases, being HIV-
positive, recent use of antibiotics, use of antimalarials and use of tuberculostatic drugs.
Participants were screened for HIV infection (SDBIOLINE HIV-1/2 3.0kit,
LOT:03ADGO020A), malaria (Malaria Ag p.f/Pan, Ref: 05FK60, LOT:05EDGO018A) and soil-
transmitted helminth such as hookworms (Ancylostoma duodenale and Necator americanus),
Trichuris trichiura, Ascaris lumbricoides, Strongyloides stercoralis and Schistosoma mansoni
using Kato-Katz or Schistosoma haematobium (POC-CCA, butch no:220701075).
Furthermore, hemoglobin levels were measured (HemoCue Hb 301(CE:1450820055) and
random blood glucose was assessed (ACCU-CHECK glucose test strips, Roche Diabetic
care,06993761001). Weight and height were measured using a well-calibrated machine (RGZ-
160, made from China), and last, blood pressure was measured using
OMRON(SN:202111007949V). After nurse counseling, HIV-positive individuals who had
low or high blood pressure (<90/60mmHg and >140/90mmHg, respectively) or had high blood
glucose (>7.1mmol/L fasting or >11.1mmol/L random glucose) were excluded and guided for
further actions. People diagnosed with schistosomiasis or soil-transmitted helminth infections
were treated with praziquantel and albendazole, respectively according to Tanzanian treatment

guidelines. Based on exclusion criteria, 27 of 230 participants were excluded.
All questionnaires and clinical samples were collected by a trained study team, consisting of

medical doctors, nurses and laboratory scientists. Data from Tanzanian individuals were

collected using the cloud-based electronic data collection system REDCap, with a server
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hosted at the Kilimanjaro Clinical Research Institute in Tanzania. Data from Dutch participants

were collected in a Castor database, with a server hosted in The Netherlands.

Lifestyle questionnaire

Questionnaires adopted from the Tanzania Demographic and Health Survey and Malaria
Indicator Survey (TDHS-MIS) and previously published work conducted in Tanzania, focused
on diet in relation to metabolic profiles and inflammatory status[7, 54] were used to collect
data on basic demographics, wealth (house construction, general hygiene,
land/animal/livestock/non-productive asset ownership) and (recent) food history. Combined,
the collected information on wealth and food history was considered reflective of one’s
‘lifestyle’. Among others, our questionnaire included questions on the material used to
construct the house's floor, roof and walls, the source of water, the type of toilet and available
cooking facilities. We assessed the number of milk cows, cattle, goats, sheep, horses and
poultry owned and inquiries were made on land ownership and possession of non-productive
assets, such as radios, televisions, computers, refrigerators and ironing tools (whether powered
by charcoal or electricity), watches, motorcycles, trucks, animal-drawn carts, generators and
motorboats. As diet was recently found to shape immune responses in a Tanzanian
population[7], we additionally collected data on recent food history. We specifically focused
on the frequency of various food types participants consume per week, including ugali (stiff
porridge), plantain, rice, potatoes, meat, fish, beans/peas, green vegetables, cabbage, fruits and

local beer.

PBMC isolation and cryopreservation

Blood was collected in sodium heparin tubes from 189 of 203 participants. PBMC isolation
and cryopreservation were performed as previously described[1]. 27 Samples were excluded
due to low blood quality, technical problems during PBMC isolation or low cell counts. The
remaining 162 cryopreserved PBMC samples were transported from Moshi, Tanzania, to
Leiden, The Netherlands, using a liquid nitrogen dry vapor shipper. Out of these samples, we
selected 100 individuals (25 per location) for immune phenotyping based on age, sex and
educational level. Apart from these variables, baseline demographics for the total cohort and

the mass cytometry cohort were comparable (Table 1 and Table S1).
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Mass cytometry antibody staining

Antibody panels were designed to phenotype immune cells ex vivo. Details on antibodies used
are listed in Table S4. Antibodies were conjugated to metal using 100ug of purified antibody
combined with either the Maxpar X8 or MCP9 Antibody Labelling Kit (Fluidigm), as per the
manufacturer’s instructions. Conjugated antibodies were then stored in 200ul of Antibody
Stabilizer PBS (CANDOR Bioscience GmbH) at 4°C. Titration of all antibodies was
conducted on PBMC samples.

On the day of staining, cryopreserved PBMCs were thawed with 20% FCS/2mM
Mg2+/1:10,000 benzonase/RPMI medium at 37°C and washed twice with 10% FCS/RPMI
medium. For phenotyping, 3 x 106 cells per sample were prepared according to the Maxpar
Nuclear Antigen Staining Protocol V2 (Fluidigm). PBMCs were washed with Maxpar staining
buffer and centrifuged at 400g for 5 minutes in 5-ml Eppendorf tubes. Study samples were
randomized over seven batches and for each batch up to 17 samples were barcoded. To barcode
the samples, the cells were resuspended in 50ul of Maxpar staining buffer and 50ul of a
barcode mix targeting f2-microglobulin (B2M) was added to each sample, employing a 6-
choose-3 scheme using 106cadmium (Cd), 110Cd, 111Cd, 112Cd, 114Cd and 116Cd. After a
30-minute room temperature incubation and a wash with Maxpar Staining Buffer, the cells
were centrifuged, the supernatant was removed and the cells were resuspended in Maxpar

staining buffer and pooled into one tube for each batch.

Subsequently, cells were treated with Sml (about 0.17 0z) of 500 diluted Cell-ID Intercalator-
103Rh (Fluidigm) for 15 minutes to identify dead cells. After washing with staining buffer,
cells were incubated with 20pul Human TruStain FcX Fc receptor blocking solution
(BioLegend) and 130yl of staining buffer at room temperature for 5 minutes. Next, 150ul of a
freshly prepared surface antibody cocktail was added for another 30-minute room-temperature
incubation. After a double wash with staining buffer, cells were fixed with 1.6% PFA in Sml
PBS for 10 minutes. Post-centrifugation, cells underwent fixation and permeabilization using
the eBioscience Foxp3/Transcription Factor Staining Buffer Set from eBioscience, followed
by incubation with Human TruStain FcX receptor blocker. An intranuclear antibody cocktail
was then added and the cells were incubated for an additional 30 minutes. After washing with
permeabilization buffer and staining buffer, cells were fixed with 1.6% PFA in 5ml PBS for 10
minutes. Finally, cells are stained with 1000x diluted Cell-ID Intercalator-Ir (Fluidigm) in
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Maxpar Fix and Perm Buffer at room temperature for 1h and stored in RPMI 20% FCS 10%
DMSO at -80°C until acquisition.

Mass cytometry data acquisition

All barcoded samples within one batch were acquired simultaneously. Cells were measured
using a Helios mass cytometer (Fluidigm) and calibrated as per Fluidigm’s guidelines. Before
measurement, cells underwent counting, washing with Milli-Q water, straining and then were
suspended at a concentration of 1.0 x 106 cells/ml in a solution containing 10% EQ Four
Element Calibration Beads from Fluidigm and Milli-Q water. Data acquisition in mass
cytometry was performed using dual-count mode and with noise reduction. Various channels
were used, including those for antibody detection, intercalators (103Rh, 191Ir, 193Ir),
calibration beads (140Ce, 151Eu, 153Eu, 165Ho, 175Lu) and for tracking
background/contamination (133Cs, 138Ba, 206Pb). Post-acquisition, the mass bead signal was
used to standardize short-term signal variations, using the EQ passport P13H2302 as a
reference throughout each experiment. When necessary, normalized FCS files were merged

using Helios software, while retaining the beads.

Data analysis

All data preprocessing and statistics were performed in R v4.2.2 and RStudio Server
v2022.03.999. All p-values were corrected for multiple testing using the Benjamini-Hochberg
procedure (and referred to as g-values). P-/q-values<0.05 were considered statistically

significant.

Data preprocessing

First, cells were automatically gated based on Gaussian parameters (CyTOFClean R-package;
v1.03beta; https://github.com/JimboMahoney/cytofclean). Next, automatic gating was applied
to select for intact/ DNA+-(1911r and 1931Ir channels), CD45+- (89Y) and live cells (live/dead
staining) (openCyto v2.10.1 R-package). All automatically set gates were manually inspected.
Samples were compensated and debarcoded (CATALYST v1.22.0 R-package). Data were
transformed using a hyperbolic arcsinh-transformation with a cofactor of 5 for downstream
processing. Next, reference samples collected from healthy European adults included in each

individual batch were used to train a CytoNorm-model (CytoNorm v0.0.17 R-package;
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CytoNorm.train-function; nQ = 101; goal = ‘mean’; k = 10; limit = 0-8). The trained model

was applied to all samples, adjusting for batch effects (CytoNorm.normalize-function).

Cell clustering

Cells were subjected to flowSOM-clustering (15 x 15 hexagonal grid; rlen=100; kohonen
v3.0.11 R-package), followed by metaclustering at k = 80 clusters using the hierarchical
clustering (factoextra v1.0.7 R-package, hcut-function, distance = ‘ward.D2’). The clustering
map was trained on 100k cells per sample, the remaining cells were mapped to the trained map
(predict.kohonen-function). Cell clusters were annotated at subset-level by an expert
immunologist. Cell labels were further refined by incorporating markers that exhibit

variability within a given subset in the cell label.

Lifestyle score

Multiple correspondence analysis (MCA) was applied to categorical questionnaire data (38
manually curated lifestyle-related questions; 21 on assets, 11 on food and 6 on housing) for all
203 Tanzanian participants (FactoMineR v2.7 R-package, MCA-function). Missing values are
imputed using mode imputation. Principle component (PC) 1 was defined as ‘lifestyle score’,
as this component, per definition, explained most variance across lifestyle questionnaire data.
Coordinates of samples and variable categories were visualized in biplots. In addition,

(cumulative) variable category contributions for lifestyle score were extracted and shown.

Statistical analyses

To understand the overall structure of the data, cells were placed on a two-dimensional t-
distributed Stochastic Neighbor Embedding (t-SNE) map using the Fit-SNE algorithm v1.2.1
(https://github.com/KlugerLab/Fit-SNE/blob/master/fast_tsne.R). Fit-SNE was performed on
a down-sampled dataset including 1,500 cells per sample (max_iter = 1,000; learning rate = n

cells/12; perplexity = n cells/100).

To compare the frequency of cell clusters across rural and urban Tanzanian locations, we
employed a generalized linear mixed model (binomial = ‘family’; link = ‘logit’; Ime4 R-
package v1.1-31). The number of cells in each cell cluster (as a fraction of total CD45+ cells
per sample) was considered the dependent variable. We fit two models to assess the overall

effect of location. Model 1 included (scaled) age and sex as fixed explanatory variables and
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‘sample ID’ as a random intercept. ‘Sample ID’ was included as a random effect to deal with
any under- or overdispersion due to the binomial model. Model 2 was the same as model 1,
except that ‘location’ was added as a fixed explanatory variable. ANOVA tests were used to
assess whether location (model 2) significantly improved model fit compared to model 1.
Significant models (after correction for multiple testing using Benjamini-Hochberg) were
subjected to pairwise comparisons between locations using the emmeans v1.8.5 R-package
(Tukey post hoc test). The associations between cell cluster frequency and lifestyle score were
also assessed using GLMMs, including lifestyle score, (scaled) age and sex as fixed
explanatory variables and ‘sample ID’ as a random intercept. For sensitivity analyses, we fitted
an additional ‘combined” GLMM, including both location and lifestyle (LS) (as well as age
(scaled) and sex) as fixed effects and sample ID as random effect. Model fit (using Akaike
Information Criterion [AIC]) of the ‘combined” GLMM was compared to same model, after
removing either location or lifestyle score, to assess the relative importance of these variables

to performance cluster-specific models.

Elastic net machine learning modelling

To identify a combined immune ‘endotype’ most associated with variation in lifestyle score,
we fit an elastic net machine learning model (tidymodels v1.1.1 R-package, glmnet-engine).
Scaled age, sex and cell frequencies of all 80 clusters were included as predictors and lifestyle
score was included as an outcome variable. Data was randomly split into train (80%) and test
(20%) data (stratified for living location). Model tuning was performed on training data using
2,000 bootstrapped data samples, optimizing penalty and mixture parameters. The best model
was identified based on the highest explained variance (R2) between observed and predicted
lifestyle score (penalty = 0.788, mixture = 0.1). The final model was applied to both training
and testing data to generate final estimates of model fit (R2). Variable importance was assessed
using the vip v0.4.1 R-package. Feature stability was assessed by extracting all features from
the models fitted with the optimized tuning parameters across bootstrap datasets (n = 2,000).

The number of times a feature was selected was used as a measure for feature stability.

Results

Characteristics of the study population
The Tanzanian study population consisted of 203 adults recruited from four geographical

locations in northern Tanzania, including two urban locations, Arusha and Moshi Urban and

91

Chapter 4



Chapter 4

two rural locations, Moshi Rural and Mwanga (Figure 1A). These four locations were
categorized as rural and urban based on the National Bureau of Statistics and the 2022
Census[34]. Detailed information on housing, assets and food history was collected using

questionnaires[7, 35] (Figure 1B).

From these 203 individuals (Table S1), PBMC samples of 100 individuals were included for
mass cytometry analyses (n = 100; n = 25 from each site in four sites) (Table 1). The median
age was 25.0 years (interquartile range [IQR], 23-29 years). The prevalence of parasitic
infections was 7% and these infections were detected only in individuals from rural areas
(Table 1). As a comparator cohort, PBMC samples from ten Dutch individuals recruited in
Leiden, The Netherlands (median age 29 [IQR 27-30], 50% female) were acquired using mass

cytometry (referred to as ‘urban European”).

Table 1 | Baseline characteristics of the study population (V= 100).

Variable Overall, N Urban Urban Rural Rural p-value
=100 Arusha, N Moshi, N= Moshi, N = Mwanga,
=25 25 25 N=25
Sex, female 53 (53%) 14 (56%) 14 (56%) 13 (52%) 12 (48%) 0.932
Age 25.0(23.0, 25.0(23.0, 25.0(24.0, 240(22.0, 250(22.0, 0.686
29.0) 30.0) 27.0) 27.0) 31.0)
Age categories 0.955
18-25 56 (56%) 13 (52%) 14 (56%) 15 (60%) 14 (56%)
26-36 44 (44%) 12 (48%) 11 (44%) 10 (40%) 11 (44%)
BMI 22.8(20.5, 21.8(19.0, 24.1(229, 223(203, 22.4(213, 0.243
26.0) 26.8) 28.4) 26.7) 24.6)
Missing 1 1 0 0 0
BMI classification 0.591
<18.5 7 (7.1%) 3 (13%) 2 (8.0%) 1 (4.0%) 1 (4.0%)
18.5-24.9 60 (61%) 14 (58%) 13 (52%) 15 (60%) 18 (72%)
25.0-29.9 16 (16%) 2 (8.3%) 5(20%) 4 (16%) 5(20%)
>30 16 (16%) 5(21%) 5(20%) 5 (20%) 1 (4.0%)
Missing 1 1 0 0 0
Systolic blood pressure 119 (110, 110 (109, 110 (100, 121 (112, 123 (119, <0.001
(mmHg) 125) 120) 119) 130) 128)
Missing 1 1 0 0 0
Diastolic blood 73 (70,79)  70(70,77)  69(64,72)  78(70,80) 78 (74,80) <0.001
pressure (mmHg)
Missing 1 1 0 0 0
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Hemoglobin level g/dl

Random blood sugar,

mmol-1**
Missing

14.35
(13.30,
16.50)

5.20 (4.60,

5.95)
1

Highest level of education

Primary
Secondary
College
University
Malaria
Missing
Helminth infection®
Schistosomiasis®
Missing
Insurance status
Occupation
Farming
Elementary
occupation
Student
Employed/business

owner
Not employed

30 (30%)

24 (24%)

15 (15%)

31 (31%)

0 (0%)

1

7(7.0%)

3 (3.0%)
1

31 (31%)

20 (20%)
28 (28%)
23 (23%)
20 (20%)

9 (9.0%)

14.00
(13.30,
16.60)
4.90 (4.40,
5.50)
0

0 (0%)
6 (24%)
12 (48%)
7 (28%)
0 (0%)
0
0 (0%)
0 (0%)
1

13 (52%)

0 (0%)

5 (20%)
5 (20%)
10 (40%)

5 (20%)

13.80
(12.40,
15.60)
5.20 (4.70,
6.23)
1

0 (0%)
0 (0%)
1 (4.0%)
24 (96%)
0 (0%)
1
0 (0%)
0 (0%)
0

15 (60%)

1 (4.0%)
2 (8.0%)
15 (60%)
5 (20%)

2 (8.0%)

14.20
(13.70,
16.00)
5.20 (4.10,
5.50)
0

13 (52%)
10 (40%)
2 (8.0%)
0 (0%)
0 (0%)
0
2 (8.0%)
0 (0%)
0

3 (12%)

5 (20%)
16 (64%)
2 (8.0%)
2 (8.0%)

0 (0%)

15.20
(13.80,
16.60)
5.80 (4.90,
6.50)
0

17 (68%)
8 (32%)
0 (0%)
0 (0%)
0 (0%)
0
5 (20%)
3 (12%)
0

0 (0%)

14 (56%)
5 (20%)
1 (4.0%)
3 (12%)

2 (8.0%)

0.223

0.053

<0.001

Chapter 4

0.015

0.057

<0.001

<0.001

N = 100 participants. Values represent number of participants (percentage of total) and median (interquartile range

[IQR]) for categorical and continuous variables, respectively. Comparisons between locations were performed using

Fisher’s exact, chi-squared and Mann—Whitney U-test for categorical and continuous variables, respectively. * Stool

was tested for helminths using the Kato-Katz method, testing for Schistosoma haematobium, Schistosoma mansoni,

Ascaris Lumbricoides, hookworm and Trichuris trichuria. ° Tested for schistosomiasis using the POC-CCA method,

testing for Schistosoma haematobium and Schistosoma mansoni.
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Cellular immune profiles differ between rural- and urban-living Tanzanian adults.

To characterize the cellular immune profiles between rural- and urban-living individuals,
peripheral blood mononuclear cells (PBMCs) were stained with a panel of 37 metal-tagged
antibodies. The processed single-cell level dataset contained 69.6 million live CD45+ cells,
which allowed the identification of six major immune lineages, including B cells, CD4+ T
cells, CD8+ T cells, innate lymphoid cells (ILCs), myeloid cells and unconventional T cells
(including yd T cells) (Figure 1C). Clustering analyses using self-organizing maps (SOM),
followed by hierarchical clustering resulted in 80 distinct immune cell clusters (Figure S1 and
Table S2). Cell clusters were annotated at subset-level by an expert immunologist. Cell labels
were further refined by incorporating markers that exhibit variability within a given subset in
the cell label. Using Generalized Linear Mixed Models (GLMMs), we identified nine clusters
which were significantly different between the four locations, after adjusting for age and sex

(Figure 1D-E).

The CD4+ T cell lineage was composed of 28 cell clusters, of which 5 significantly differed
across locations. Th2 cells (cluster 51) represented the strongest rural signal, where we
observed significantly higher frequencies in rural-living locations (especially rural Moshi)
compared to urban-living individuals (median 0.7% of total CD45+ cells across rural sites
compared to 0.3% and 0.2% in urban Tanzanians and Europeans, respectively). Rural-living
individuals additionally showed a significantly higher frequencies of three cell clusters of
CD4+ T cells. These clusters included CD161dim PD-1dim CTLA-4+ CD4+ T effector
memory (Tem) cells (cluster 46), CD4+ Tem cells expressing CD38, CD161, CTLA-4 and
PD-1 (cluster 79) and HLA-DRdim PD-1+ KLRG-1+ CD4+ Tem cells (cluster 72). In contrast,
the CD27+ CD28+ CD45RO+ CD127+ CD4+ T central memory (Tem) cell cluster (cluster

53) was higher in urban compared to rural-living individuals (Figure 1E).

Within the CD8+ T cell lineage, 1 out of 15 CD8+ T cell clusters significantly differed across
locations. This cluster was characterized by recently activated CD8+ Tem cells expressing
CXCR3 and T-bet (cluster 11), which showed higher frequencies in urban compared to both
rural locations (Figure 1E). Furthermore, within the gamma delta (yd) T cell lineage
(containing 7 clusters), naive yd T cells expressing CXCR3 (cluster 40) were significantly
higher in frequency in urban living compared to both rural-living individuals. Finally, within

the B cell lineage, we observed significantly higher frequencies of classical naive B cells
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(cluster 34) and atypical memory B cells expressing CD11c and Tbet (cluster 35) in rural-
compared to urban-living locations (Figure 1E). Six out of seven rural-associated clusters
showed visual evidence of a rural-urban-European gradient, where cell frequencies showed a
stepwise decrease from rural-to-urban and urban-to-European sites, except for cluster 40
(naive yd T cells). On the other hand, gradients were less clear for clusters enriched in urban

Tanzanians.

Questionnaire data reveal differences in lifestyle between locations.

Within living locations, considerable variation in immune signatures was observed. Therefore,
to better capture immune variation across locations, we developed a lifestyle score, which
incorporates detailed questionnaire data on assets (e.g. possession of a watch, television or
car), housing (i.e. materials used to construct the house) and food history (i.e. frequency of
consumption of dietary products) into a single score. To obtain the lifestyle score, we applied
Multiple Correspondence Analysis (MCA), a dimensionality reduction method similar to
Principal Component Analysis (PCA), but for categorical data, which was applied to 38
questions (118 variable categories) collected from all 203 participants (Table S3 and Figure
S2). MCA clearly separated individuals based on living location, especially across principal
component (PC) 1. Since the MCA was based on lifestyle questionnaire data and PC1 per
definition explains most variance, PC1 was referred to as ‘lifestyle score’, explaining 7.8% of
the variation in the questionnaire data (Figure 2A). Across the first two principal components,
we found that spread was highest in rural- compared to urban-living individuals (variance
6.1%/5.1% and 11.3%/11.2% for PC1/PC2 scores across urban and rural sites, respectively),
indicating rural people have more heterogeneous lifestyles (Figure 2B). Sensitivity analyses
on condensed questionnaire data (collapsing rare categories and removing uninformative
variables) showed that the relatively low percentage of variance explained by lifestyle score
and other high-ranking principle components (Figure S3A) is caused by the inclusion of rarer
variable categories. Removing these had no important effect on the lifestyle score (Pearson r

=0.97, p-value < 2.2 x 10-16).
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Figure 1 | Mass cytometry immune profiles differ across individuals living in rural (Moshi Rural and

Mwanga) and urban (Arusha and Moshi Urban) regions.

A) Map of study sites in Tanzania and in The Netherlands. B) Graphical representation of sample numbers and the
study design. C-D) t-distributed Stochastic Neighbor Embedding (t-SNE) visualizations (n 1500 random

cells/individual); cells are coloured according to lineage (C) or significant cell cluster (D). E) Differential cell

frequencies between rural and urban Tanzanian regions. Boxplots

upper boundaries of boxes, respectively), the median (middle horizontal line) and measurements that fall within 1.5

times the interquartile range (IQR; distance between 25th and 75th percentiles; whiskers). Only clusters showing a
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significant effect of ‘location’ (across Tanzanian sites) were shown. The significance of ‘location’ was assessed using
analysis of variance (ANOVA)-tests comparing a full (location, age [scaled] and sex [fixed effects] and sample ID
[random effect]) and a simpler model, which was the same as the full model, except that we removed ‘location’ from
the model. ANOVA p-values were corrected for multiple testing using the Benjamini-Hochberg method and referred
to as g-values. Asterisks denote statistical significance (¥, q < 0.05; **, q < 0.01; ***, q < 0.001). The statistical
significance of differences between each location was assessed using the emmeans()-function (Tukey post hoc test).

Urban Europeans were included in the figure for visual comparisons and were not included in statistical tests.

We found that the lifestyle score was significantly associated with thirteen of 80 cell clusters,
while none of the other principal components (PC2-PCS5) showed any statistically significant
associations with cell cluster frequencies (Figure S3B), underscoring the validity and

biological relevance of the lifestyle score.

Next, we explored the most strongly contributing lifestyle score variables across questionnaire
categories, including housing conditions, assets and food history. Overall, assets showed the
highest cumulative contribution to the lifestyle score (53.6%), followed by housing (30.3%)
and food variables (16.1%) (Figure 2D). Among the top 20 variables most strongly
contributing to PC1, factors such as having a house with an earth/sand floor, a mud wall, no
household electricity and a pit latrine as toilet were associated with low lifestyle score.
Additionally, the lack of assets such as an ironing tool, refrigerator, computer, radio, car,
television, or watch and not consuming potatoes was associated with a low lifestyle score.
Factors associated with a high lifestyle score were a house with a flush toilet connected to a
sewage/septic tank, a separate room used as a kitchen and possessing assets such as a car, a

working computer and a refrigerator (Figure 2E).

Besides lifestyle score (PC1), we found that PC2 explained 4.1% of the variance (Figure S3A)
and showed the highest spread across individuals living in rural Mwanga (variance across PC2
scores 15.0% compared to 2.9%-7.0% in other sites) (Figure 2B). Similar to PC1, variables
related to assets were most important (cumulative contribution 66.0%), particularly those
related to livestock farming (Figure S3C). PC3 through PC5 explained 3.2-3.5% of the
variance (Figure S3A), generally showing a higher cumulative contribution of food variables

(40.3-49.4%) (Figure S3C) compared to PC1 and PC2.
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level of confidence of 95%. Density plots show the distribution of PC1 (lifestyle score) (x-axis) and PC2 (y-axis)
score. B) Comparisons of PC1 (lifestyle score) and PC2 across locations. Global significance was assessed using
analysis of variance (ANOVA) and post hoc tests between locations were performed using Tukey HSD tests. Asterisks
denote statistical significance (NS, non-significant; *, p < 0.05; **, p < 0.01; *** p < 0.001, p < 0.0001). C)
Coordinates of each variable category (a.-t.; see E) across dimensions 1 and 2. Variable categories with similar profiles
are grouped together. D) Cumulative contributions (in percentage) of the variable categories by questionnaire data
category (i.e. housing, assets and food). E) Contributions (in percentage) of variable categories to PC1 or lifestyle
score. Bars are coloured based on whether a variable was associated with a high (> zero) or low (< zero) lifestyle

score.

Lifestyle score association tests reveal additional immune cell clusters not previously
linked to living location

We next assessed the association between lifestyle score and immune cell frequencies using
GLMMs, adjusting for age and sex. We first verified that lifestyle score in individuals with
matching mass cytometry data (n = 100), which was not significantly different from
individuals without mass cytometry data available (Figure S4).

Overall, 13 cell clusters were associated with lifestyle score, of which 8 clusters were not
identified by previous analyses where we assessed differences in immune profile between
locations (Figure 3A and 3B). Indeed, only one of these clusters (cluster 12; CD8+ naive)
showed a trend towards significance across locations (q = 0.055; Figure S5). In addition, we
confirmed 5 out of 9 clusters which were previously found to significantly differ across
locations, which were Th2 cells (cluster 51; GLMM; § = -0.66), two CD4+ Tem clusters that
were CTLA-4+ and/or CD161+ (cluster 79 and 46; B =-0.50 and -0.28, respectively), atypical
memory B cells (cluster 35; f = -0.37) (rural-living location and low lifestyle score) and a
CD8+ Tem cluster (cluster 11; f = 0.32) (urban-living location and high lifestyle score) (Figure
3C). The additional clusters identified using the lifestyle score were two CD4+ Tem cell
clusters that were associated with low lifestyle score: HLA-DR+ PD-1+ CD4+ Tem (cluster
43; p=-0.38) and regulatory T cells (cluster 75; B =-0.35). Furthermore, we identified a cluster
of plasmablasts (cluster 57; B = -0.49), which was enriched in those with low lifestyle score.
Last, an innate immune cell cluster of NK-cells (cluster 25; = -0.68) was also linked to a low

lifestyle score (Figure 3D).

In contrast, within the CD8+ T cell lineage, we identified three clusters of CD8+ T cells that
were associated with high lifestyle score. These included two CD8+ naive T cell clusters

(cluster 12 and 21; B=10.38 and 0.39, respectively) and a cluster of CD8+ Tem cells expressing
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CD161 and KLRGI (cluster 38; B =0.59). In addition, we found a positive association between
higher frequencies of ILC2 (cluster 60; B = 0.33) and a high lifestyle score (Figure 3D).
Sensitivity analyses, where we jointly modelled lifestyle score and location and compared the
model fit to simpler models (excluding either lifestyle score or location), indicated that indeed

using lifestyle score we can detect an additional group of clusters which we could not have

detected with location alone (Figure S6).
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Figure 3 | Lifestyle score is associated with specific immune cell clusters not identified by comparisons across
locations.

A) Venn diagram indicating the number of cell clusters that show differences in cell frequencies 1) across locations
[Figure 1E], 2) both across locations and lifestyle score [Figure 3C] and 3) only with lifestyle score [Figure 3D]. Eight
cell clusters were uniquely associated with lifestyle score and were not identified by comparisons across sampling
locations. B) Volcano plot showing differential frequency results. Results were derived from a GLMM with cell
frequency as outcome variable, lifestyle score, age (scaled) and sex as fixed effects and sample ID as a random effect.
Model estimates and corresponding Benjamini-Hochberg (BH)-adjusted p-values (-log¢(q-value)) were shown. Each
point represents a cluster, clusters with q-values<0.05 are coloured by association (high or low lifestyle score, or only
significantly associated with location). Shapes indicate whether lifestyle-associated clusters were also detected by
comparisons across sampling locations. Each point is labelled with a cluster identifier. C-D) Scatter plots showing the
association between lifestyle score and cell frequency for C) clusters significantly related to both location as well as
lifestyle score and D) clusters uniquely related to lifestyle score (i.e. clusters not identified as differentially abundant
between locations). Data points are coloured based on location. Lines represent linear fits to the data and are included
for visualization purposes only. Statistical significance was assessed using a linear mixed model including lifestyle
score, age (scaled) and sex as fixed effects and sample ID as random effect. Additionally, we ran univariable Spearman
correlation tests, p-values were corrected for multiple testing using the Benjamini-Hochberg method (g-value).
Asterisks indicate clusters that significantly differed between locations. Only cell clusters significant in GLMMs are

shown.

Machine learning modelling links a combined immune endotype with a lifestyle score
To investigate if a combination of immune cell clusters could be identified that together is
associated with a lifestyle score (‘immune endotype’), a machine learning model (elastic net)
was trained with lifestyle score as an outcome and cell cluster frequencies, age and sex as the
predictor variables. Model training and hyperparameter tuning were performed on 80% of the
data (n = 80 individuals; 2,000 bootstrapped datasets) and the model was tested on the
remaining 20% of the data (n = 20 individuals) (Figure 4A). The model was able to predict
44.1% and 29.6% of the variance in the training and test data, respectively. Using feature
importance analysis, we verified 11 of the 14 clusters that were previously associated with
living location and/or lifestyle score. Compared to previous analyses, the current model is a
multivariable model, estimating the contribution of each cell cluster to the prediction of
lifestyle score while adjusting for all other cluster cell frequencies. Therefore, using this
complementary approach, we identified three additional clusters, including CD8+ Tem cells
expressing CD161 and KLRG1 (cluster 37) associated with high lifestyles score, pDCs (cluster
58) and yd T-cells (cluster 22) related to low lifestyle score (Figure 4B).
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Taken together the elastic net model unveiled a fairly stable (Figure 4C) immune endotype
characterized by Th2 cells, regulatory T cells, atypical B memory cells, plasmablasts, NK,
CTLA-4+ CD161+ CD4+ Tem, KLRGI1+ yd T-cells and plasmacytoid dendritic cells (pDCs)
associated with a low lifestyle score. Inversely, the immune profile characterized by CD8+
naive T cells, CXCR3+ CD127+ CD8+ Tem, two CD8+ Tem CD161+ CD56dim KLRG1+
and ILC2 is associated with a high lifestyle score (Figure 4B).
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Figure 4 | Machine learning model based on cell cluster frequencies can partly reconstruct lifestyle score.

A) Performance of an elastic net machine learning model based on cell cluster frequencies (n = 80), age and sex trained
to predict lifestyle score. Observed compared to predicted lifestyle score based on training (80%) and test data (20%;
n =5 samples per location) are shown. Using cell frequency data, we can explain ~30% of the variance in lifestyle
scores (leave-out test data). B) Feature importance of all features that remained in the model after feature
shrinkage/regularization. Clusters previously associated with either location or lifestyle score (n = 17) are indicated
(*). Three clusters have not been associated with location nor lifestyle score in previous analyses. C) Feature stability
across bootstraps. All features from the models fitted with the optimized tuning parameters (penalty/mixture) were
extracted. The number of times a feature was selected across bootstrap samples serves as a score for stability of that

feature (maximum score = 2,000).
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Discussion

Here, we assessed the associations between location and/or lifestyle score and cellular immune
profiles measured by mass cytometry. We found that seventeen of 80 clusters were associated
with location or lifestyle score, with eight identifiable only when using lifestyle score,
illustrating the ability of lifestyle score to capture immune variation. Indeed, individuals living
in rural areas may exhibit an urban lifestyle and vice versa. This was further substantiated by
applying a machine learning model, which identified a combined immune signature associated

with lifestyle score.

We found an association between low lifestyle score and expression of activation markers such
as CD38, HLA-DR and CTLA-4 on CD4+ Tem cells, along with expansion of Th2 and an
increased frequency of regulatory T cells expressing CTLA-4. An increase in a specific
memory T cell subsets might indicate that fewer naive T cells are available for activation and
expansion upon encounter with a new antigen. Furthermore, expression of
activation/inhibitory markers on T cells can result in a reduced response to vaccines and
allergens but may also explain a lower prevalence of autoimmune diseases in LMICs[19, 24,
36]. Indeed, in rural Senegalese, immune profiles were enriched for HLA-DR-expressing
CD4+ T cells compared to urban-living individuals[2]. Previous studies comparing rural and
urban populations in Indonesia[1, 25] and Gabon[26, 37] found that immune profiles in rural-
living individuals, characterized by high frequencies of Th2 cells, T regulatory cells expressing
CTLA-4, HLA-DR, ICOS or CDI161 and atypical memory B cells, were strongly linked to
(chronic) helminth infections[1, 25, 26].

In contrast to these previous studies, none of our participants tested positive for malaria and
the prevalence of current helminth infections was very low. Therefore, we speculate that
increased activation of CD4+ Tem cells, along with expansion of Th2 and higher regulatory T
cell frequencies, may represent an immune footprint left behind by parasitic infection in the
past or even during childhood, as have been suggested by others [24, 38, 39]. Indeed, in 2005,
the prevalence of schistosomiasis among school-aged children in two different schools located
in one of the rural areas included in this study ranged between 34-70% with evidence for the
presence of other soil-transmitted infections in the same setting[40]. Thus, based on their age,
our study participants likely experienced a high burden of helminth infections during

childhood.
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Alternatively, housing conditions related to a low lifestyle score (e.g. sand or earth floors and
mud-wall houses) may predispose to different commensals or exposure to bacteria and fungi
and their metabolites[41], some of which have immunomodulatory properties. Poor housing
conditions also attract vectors like flies, lice, ticks, mites and mosquitoes, which may directly
activate the immune system through components present in their saliva, even in the absence of
disease transmission[31, 42]. Furthermore, rural-living individuals closely live with livestock
and as such are exposed to an additional reservoir of micro-organisms and (zoonotic)
pathogens[43]. Taken together, past (parasitic) infections or unmeasured variables, such as the
microbiome or exposure to vectors, are tightly linked to housing conditions. These factors may
drive lifestyle-related immune variation, resulting in enrichment of Th2, regulatory T cells and

activated T cells.

We found that individuals with low lifestyle score most of whom live in rural settings, display
a higher frequency of plasmablasts. Plasmablasts are differentiated B cells with a short
lifespan, which initiate early antibody responses during infections [44-46]. However, due to
their high metabolic activity, the rapid development of short-lived plasmablasts can
paradoxically impair humoral immunity by slowing down germinal centre formation. This, in
turn may impair responsiveness to vaccines and reduce risk of developing allergies and
autoimmunity by limiting the generation of long-lived plasma and memory B cells. Although
this has been shown in the context of malaria infection [47], which is not endemic in northern
Tanzania, other infectious diseases endemic in the area, may similarly induce high levels of

plasmablasts, including dengue[48].

Last, we identified an association between both naive CD8+ T cells and CD8+ Tem expressing
CD161 and high lifestyle score. Although we lack immune markers to confirm, CD161+CD8+
Tem encompasses mucosal-associated invariant T cells (MAIT) cells. MAIT cells are abundant
in blood and at mucosal sites and can activate dendritic cells that promote T follicular helper
cells to induce mucosal antigen-specific IgA[49]. Therefore, the presence of such cells in
urban-living individuals might indicate the propensity to react more strongly to antigens in a
vaccine, allergens, or autoantigens. This aligns with the results of an earlier study indicating
that healthy individuals residing in urban Moshi had a higher pro-inflammatory cytokine
response upon pathogen challenge in an ex vivo PBMC stimulation assay compared to those

living in rural areas[7, 35]. Regarding the naive CD8+ T cells being enriched in urban living,
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it has been noted that they allow new immune responses to be mounted to both infections and
vaccines[50]. Their higher frequency in urban areas is in line with previous studies in
Bangladeshi compared to (urban living) North American children within the first three years
of life[51] as well as in Malawian compared to UK adults[52]. Reduced numbers of naive
CD8+ T cells was associated with a higher burden of intestinal worms and viral infections (e.g.
CMYV) in children from Bangladesh compared to those from the USA[3] and higher burden of
CMYV among Malawian adults[52]. Similarly, we speculate that the association between high
life score and naive CD8+ T cells in our study is driven by reduced pathogen exposure in
people living in urban settings due to differences in daily activities and hygiene practices

compared to rural-living individuals.

The strengths of this study include the use of mass cytometry data in combination with the
availability of detailed information on housing, assets and food history. Condensing this
information into a single score allowed us to train a machine learning model to identify a
distinct group of cell clusters (termed ‘immune endotype’), which was strongly associated with
lifestyle score variation. Previous studies in HICs indicated that baseline (gene-expression-
based) immune endotypes exhibiting a strong pro-inflammatory profile are predictive of
improved vaccine responses in young adults across multiple vaccines[53]. In a similar fashion,
we speculate the immune endotypes identified in this study are linked to vaccine responses in
populations living in rural or urban Africa. As such, further phenotyping of immune endotypes
in varied populations, not limited to HIC, using protein-based single-cell modalities such as
mass cytometry, may deepen our understanding of variation in vaccine responses or reactivity
to allergens or autoantigens and their underlying mechanisms. At the same time, using lifestyle
scores opens opportunities for public health experts to screen individuals prone to, for example,
vaccine hypo-responsiveness, informing policymakers on preventative measures, such as
repeated vaccination. These interventions could target these high-risk individuals, potentially
improving vaccine efficacy and public health outcomes. Since those mounting reduced vaccine
responses are the very same individuals that also show lower responses to allergens and auto-
antigens, immune phenotyping may also unveil new ways to prevent non-communicable
diseases in urban-living individuals. Our study also has limitations. Among others, we did not
assess cellular immune function through stimulation assays. In addition, future studies
establishing direct links between low lifestyle score and responses to vaccines, allergens and

autoantigens would be of great value.
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In conclusion, in this study we comprehensively assessed the association between immune
profiles and location and lifestyle variables in a LMIC. Additional cell clusters were detected
through a more refined measurement of lifestyle. Follow-up studies should therefore focus on
the links between lifestyle score, immune signature and functional immune responses,
particularly in populations where vaccine responses are expected to be reduced and in
populations with the highest prevalence of diseases linked to exaggerated immune responses

to allergens and autoantigen.
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Figure S1 | Heatmap showing median marker expression for each cluster.

Clusters were based on SOM and hierarchical clustering. Each tile depicts the median expression of a given marker
(rows) for a specific cluster (columns). The heatmap is stratified based on cell lineage. The bottom heatmap indicates
which clusters were significantly associated with 1) location (Figure 1) and/or 2) lifestyle score (Figure 3).
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Figure S2 | Heatmap visualizing lifestyle questionnaire data.

N = 203 participants. Values represent the number of participants. Colours indicate the percentage of the total.
Comparisons between locations were performed using Fisher’s exact or chi-squared tests. Asterisks denote statistical
significance (NS, non-significant; *, p < 0.05; **, p <0.01; *** p<0.001, p<0.0001). See Table S3.
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Figure S3 | MCA principal component variance explained, contributions and cluster associations.

A)

Variance explained (% of total) for PC1-PCS5. B) Number of significant cell cluster associations with PC1
(lifestyle score) to PCS using modelling as described in the legend of Figure 3. C) Cumulative
contributions (in percentage) of the variable categories by questionnaire data category (i.e. housing, assets
and food, n = 38 questions and n = 118 variable categories) for PC1-PC5.
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Figure S4 | Boxplots showing lifestyle score for individuals with and without mass cytometry immune profiles

(n =100). P-value determined using Student’s t-test.
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Figure S5 | Cell frequencies of clusters uniquely related to lifestyle score between locations.

Cell frequencies of clusters uniquely related to lifestyle score across rural and urban Tanzanian regions and urban
Europeans (Figure 3D). Boxplots represent the 25th and 75th percentiles (lower and upper boundaries of boxes,
respectively), the median (middle horizontal line) and measurements that fall within 1.5 times the interquartile range
(IQR; distance between 25th and 75th percentiles; whiskers). Significance of ‘location’ was assessed using analysis
of variance (ANOVA)-tests comparing a simple (age [scaled] and sex [fixed effects] and sample ID [random effect])
and a full model (simple model with location as fixed effect added). P-values were corrected for multiple testing using
the Benjamini-Hochberg method and referred to as q-values. Urban Europeans were included in the figure for visual
comparisons and were not included in statistical tests.
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Figure S6 | Sensitivity analysis comparing location- and/or lifestyle-based models.

For each of the clusters that was significant in either location- and/or lifestyle-based models (n = 17), we additionally
fitted a joint model, including both location and lifestyle (LS) (as well as age [scaled] and sex) as fixed effects and
sample ID as random effect (GLMM|s:10c). Statistical significance of the combined effect of location and lifestyle
score was assessed by comparing GLMM | to an ‘empty model’ where both location and lifestyle score were
removed using ANOVA (triangles indicate significant models). Akaike Information Criterion (AIC) (measure of model
fit while accounting for model complexity) was compared between the ‘combined model” (AICis:1c) and the same
model from which either lifestyle score (AIC,,) or location (AIC;s) was removed. Clusters were grouped according
to the statistics shown in Figure 1 and Figure 3, i.e. location significant, LS significant or LS + location significant
clusters. Dropping location or lifestyle score from the combined model for location significant and LS significant
clusters, respectively, worsened the combined model, indicating that location and lifestyle score were indeed related
to distinct immune cell clusters. For most of the clusters in the LS + location significant group, dropping either location
or lifestyle score did not change model performance, indicating that indeed here, location and lifestyle score may be
more interrelated and capture similar information.
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Table S1 | Baseline characteristics of the study population (N =203).

Variable Overall, N Urban Urban Rural Rural p-
=203 Arusha, N Moshi, N= Moshi, N= Mwanga, N value
=57 47 46 =53
Sex, female 100 (49%) 40 (70%) 26 (55%) 18 (39%) 16 (30%) <0.001
Age 25.0 (22.0, 25.0(22.0, 25.0 (23.0, 26.0(22.3, 24.0 (21.0, 0.165
29.5) 30.0) 27.0) 31.0) 27.0)
Age categories 0.259
18-25 116 (57%) 30 (53%) 30 (64%) 22 (48%) 34 (64%)
26-36 87 (43%) 27 (47%) 17 (36%) 24 (52%) 19 (36%)
BMI 22.6 (20.5, 22.2(19.9, 23.9(22.2, 22.4(20.7, 22.3(20.3, 0.183
25.6) 25.8) 26.1) 25.0) 25.3)
Missing 1 1 0 0 0
BMI 0.585
classification
<18.5 13 (6.4%) 6 (11%) 3 (6.4%) 3 (6.5%) 1 (1.9%)
18.5-24.9 130 (64%) 34 (61%) 27 (57%) 31 (67%) 38 (72%)
25.0-29.9 39 (19%) 10 (18%) 11 (23%) 10 (22%) 8 (15%)
>30 20 (9.9%) 6 (11%) 6 (13%) 2 (4.3%) 6 (11%)
Missing 1 1 0 0 0
Systolic blood 120 (110, 110 (109, 110 (103, 126 (118, 122 (120, <0.001
pressure (mmHg) 128) 120) 120) 130) 130)
Missing 1 1 0 0 0
Diastolic blood 73 (68, 80) 70 (67,79) 70 (64, 78) 78 (72, 81) 76 (70, 80) 0.001
pressure (mmHg)
Missing 1 1 0 0 0
Hemoglobin level 14.50 13.90 13.70 15.25 15.80 <0.001
g/dl (13.35, (13.10, (12.30, (14.03, (14.00,
16.40) 15.00) 15.30) 16.58) 17.00)
Random blood 5.00 (4.50, 4.80 (4.40, 5.15 (4.53, 5.50 (4.75, 4.70 (3.90, 0.002
sugar, mmol-1"* 5.80) 5.50) 5.85) 6.20) 5.50)
Missing 1 0 1 0 0
Highest level of <0.001
education
Primary 50 (25%) 4 (7.0%) 2 (4.3%) 27 (59%) 17 (32%)
Secondary 74 (36%) 18 (32%) 11 (23%) 19 (41%) 26 (49%)
College 40 (20%) 27 (47%) 6 (13%) 0 (0%) 7 (13%)
University 39 (19%) 8 (14%) 28 (60%) 0 (0%) 3 (5.7%)
Malaria 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Missing 1 0 1 0 0
Helminth infection® 8 (3.9%) 0 (0%) 0 (0%) 6 (13%) 2 (3.8%) 0.002
Schistosomiasis® 7 (3.5%) 2 (3.6%) 1(2.1%) 4 (8.9%) 0 (0%) 0.098
Missing 3 2 0 1 0
Insurance status 51 (25%) 24 (42%) 23 (50%) 0 (0%) 4 (7.5%) <0.001
Missing 1 0 1 0 0
Occupation <0.001
Farming 32 (16%) 2 (3.5%) 1(2.1%) 23 (50%) 6 (11%)
Elementary 60 (30%) 14 (25%) 7 (15%) 13 (28%) 26 (49%)
occupation
Student 47 (23%) 12 (21%) 23 (49%) 2 (4.3%) 10 (19%)
Employed/ 34 (17%) 15 (26%) 9 (19%) 4 (8.7%) 6 (11%)
business owner
Not employed 30 (15%) 14 (25%) 7 (15%) 4 (8.7%) 5(9.4%)
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N =203 participants. Values represent number of participants (percentage of total) and median (interquartile range
[IQRY]) for categorical and continuous variables, respectively. Comparisons between locations were performed using
Fisher’s exact, chi-squared and Mann—Whitney U-test for categorical and continuous variables, respectively. * Stool
was tested for helminths using the Kato-Katz method, testing for Schistosoma haematobium, Schistosoma mansoni,

Ascaris Lumbricoides, hookworm and Trichuris trichuria. ° Tested for schistosomiasis using the POC-CCA method,

testing for Schistosoma haematobium and Schistosoma mansoni.

Table S2 | Overview of identified cell clusters.
See spreadsheets available in this link Download: Download spreadsheet (16KB)
https://www.sciencedirect.com/science/article/pii/S2666354624001418.
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Table S3 | Descriptives of lifestyle score variables.

Characteristic

House floor
Hard floor (tile, cement, concrete,
wood)
Earth/sand
House walls
Cement, brick or stone
Cane, palm, trunks, bamboo
Mud (with poles)
Missing
House roof
Roof tiles
Metal sheets
Other
Water source
Tap water
Public standpipe
Protected tube well or bore hole
Spring
Pond-water or stream
Toilet facility
Flush to piped sewage or septic
tank
Pour flush latrine
Pit latrine
Cooking place
In a separate room used as
kitchen
In a separate building used as
kitchen
In a room used for living or
sleeping
Outdoors
Total number of milk cows
None
1-4
5-9
10+
Total number of other cattle
None
1-4
5-9
10+
Total number of horses
None
1-4
5-9
10+
Total number of goats
None
1-4
5-9
10+
Total number of sheep
None
1-4
59

118

Urban
Arusha, N
=57

57 (100%)
0 (0%)

56 (98%)
0 (0%)
1(1.8%)
0

2 (3.5%)
55 (96%)
0 (0%)

51 (89%)
3 (5.3%)
3 (5.3%)
0 (0%)
0 (0%)

41 (12%)

14 (25%)
2 (3.5%)

32 (56%)
17 (30%)
8 (14%)
0 (0%)

51 (89%)
6 (11%)
0 (0%)

0 (0%)

56 (98%)
1. (1.8%)
0 (0%)
0 (0%)

57 (100%)
0 (0%)
0 (0%)
0 (0%)

53 (93%)
3(5.3%)
0 (0%)

1 (1.8%)

55 (96%)
0 (0%)
1 (1.8%)

Urban
Moshi, N =
47

47 (100%)
0 (0%)

46 (100%)
0 (0%)

0 (0%)

1

2 (4.3%)
45 (96%)
0 (0%)

45 (96%)
1(2.1%)
0 (0%)
1 (2.1%)
0 (0%)

42 (89%)

1 (2.1%)
4 (8.5%)

31 (66%)
9 (19%)
5(11%)
2 (4.3%)

43 (91%)
1(2.1%)
2 (4.3%)
1(2.1%)

46 (98%)
1 (2.1%)
0 (0%)
0 (0%)

47 (100%)
0 (0%)
0 (0%)
0 (0%)

39 (83%)
3 (6.4%)
2 (4.3%)
3 (6.4%)

46 (98%)
0 (0%)
1(2.1%)

Rural
Moshi, N =
53

44 (83%)
9 (17%)

42 (19%)
1(1.9%)
10 (19%)
0

0 (0%)
53 (100%)
0 (0%)

33 (62%)
12 (23%)
3(5.7%)
5 (9.4%)
0 (0%)

17 (32%)

18 (34%)
18 (34%)

14 (26%)
38 (72%)
1 (1.9%)
0 (0%)

40 (75%)
11 21%)
1 (1.9%)
1(1.9%)

45 (85%)
8 (15%)
0 (0%)

0 (0%)

53 (100%)
0 (0%)
0 (0%)
0 (0%)

29 (55%)
12 (23%)
11 21%)
1 (1.9%)

52 (98%)
1 (1.9%)
0 (0%)

Rural
Mwanga, N
=46

33 (72%)
13 (28%)

39 (85%)
0 (0%)

7 (15%)
0

0 (0%)
45 (98%)
1 (2.2%)

13 (28%)
10 (22%)
20 (43%)
0 (0%)

3 (6.5%)

3 (6.5%)

36 (78%)
7 (15%)

5 (11%)
37 (80%)
2 (4.3%)
2 (4.3%)

40 (87%)
2 (4.3%)
1 (2.2%)
3 (6.5%)

39 (85%)
2 (4.3%)
1 (2.2%)
4 (8.7%)

46 (100%)
0 (0%)
0 (0%)
0 (0%)

30 (65%)
7 (15%)
5(11%)
4 (8.7%)

38 (83%)
2 (4.3%)
3 (6.5%)

p-value

<0.001

<0.001

0.257

<0.001

<0.001

<0.001

0.012

<0.001

>0.999

<0.001

0.031
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10+
Total number of chicken/poultry
None
1-4
5-9
10+
Missing
Agricultural land (hectares)
None
1-4
5-9
10+
Missing
Connected to electricity
Missing
Working radio
Working television
Missing
Working computer
Missing
Working refrigerator
Working rechargeable battery or
generator
Missing
An iron (charcoal/electric)
Missing
Watch
Missing
Mobile phone
Bicycle
Missing
Motorcycle
Missing
Animal drawn cart
Missing
Car or truck
Boat with a motor
Missing
Ugali (stiff porridge)
(x/week)
0
1
2-4
>5
Missing
Plantain (x/week)
0
1
2-4
>5
Missing
Banana (x/week)
0
1
2-4
>5
Missing
Rice (*/week)
0
1
2-4
>5

1(1.8%)

33 (58%)
2 (3.5%)
6 (11%)

16 (28%)
0

39 (68%)
12 (21%)
4 (7.0%)
2 (3.5%)
0

54 (96%)
1

49 (86%)
51 (89%)
0

23 (40%)
0

34 (60%)
8 (15%)

2
51 (89%)
0
44 (77%)
0

55 (96%)
11 (19%)
0

21 (37%)
0

0 (0%)

1

19 (33%)
0 (0%)

0

0 (0%)

6 (11%)
26 (46%)
24 (43%)
1

19 (35%)
27 (49%)
5(9.1%)
4 (7.3%)
2

7 (13%)
27 (48%)
19 (34%)
3 (5.4%)
1

0 (0%)

4 (7.0%)
25 (44%)
28 (49%)

0 (0%)

18 (38%)
2 (4.3%)
5 (11%)
22 (47%)
0

31 (67%)
10 (22%)
2 (4.3%)
3 (6.5%)
1

46 (98%)
0
44 (94%)
40 (85%)
0
37 (79%)
0
38 (81%)
13 (28%)

0
42 (93%)
2

44 (98%)
2

47 (100%)
18 (38%)
0

17 (37%)
1

1 (2.2%)

1

30 (64%)
1 (2.2%)

1

2 (4.3%)
11 (23%)
23 (49%)
11 (23%)
0

13 (28%)
30 (64%)
1 (2.1%)
3 (6.4%)
0

4 (8.5%)
22 (47%)
18 (38%)
3 (6.4%)
0

0 (0%)
4 (8.5%)
17 (36%)
26 (55%)

0 (0%) 3 (6.5%)
<0.001
8 (15%) 19 (41%)
2 (3.8%) 5 (11%)
11 21%)  5(11%)
31 (60%) 17 37%)
1 0
0.439
38(72%) 30 (65%)
14 (26%) 12 (26%)
0 (0%) 4 (8.7%)
1 (1.9%) 0 (0%)
0 0
37(70%)  32(70%)  <0.001
0 0
42 (19%) 37 (80%) 0.185
22 (42%)  25(54%)  <0.001
1 0
4(7.7%) 0 (0%) <0.001
1 0
8 (15%) 2 (4.3%) <0.001
4(7.5%) 11 (24%) 0.035
0 1
38(72%)  20(43%)  <0.001
0 0
29 (55%) 14(30%)  <0.001
0 0
53(100%) 44 (96%) 0.283
4(7.7%) 28 (61%) <0.001
1 0
12(23%) 24 (52%) 0.026
0 0
0 (0%) 1 (2.2%) 0.353
0 0
6 (11%) 1 (2.2%) <0.001
0 (0%) 1 (2.2%) 0.353
1 1
<0.001
0 (0%) 0 (0%)
2 (3.8%) 1 (2.2%)
31 (58%) 13 (28%)
20 (38%) 32 (70%)
0 0
<0.001
16 (30%) 28 (62%)
25 (47%) 17 (38%)
10(19%) 0 (0%)
2 (3.8%) 0 (0%)
0 1
0.152
2 (3.8%) 10 (22%)
23(43%) 23 (50%)
20 (38%) 10 (22%)
8 (15%) 3 (6.5%)
0 0
<0.001
0 (0%) 0 (0%)
1936%)  7(15%)
28 (53%) 18 (39%)
6 (11%) 21 (46%)
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Potatoes (x/week) 0.005
0 1(1.8%) 0 (0%) 11 (21%) 3 (6.7%)
1 26 (46%) 21 (45%) 28 (53%) 26 (58%)
2-4 21 (37%) 19 (40%) 11 (21%) 13 (29%)
>5 9 (16%) 7 (15%) 3 (5.7%) 3 (6.7%)
Missing 0 0 0 1
Meat (x/week) 0.008
0 1(1.8%) 1(2.1%) 0 (0%) 2 (4.3%)
1 13 (23%) 5(11%) 16 (30%) 11 (24%)
2-4 29 (52%) 20 (43%) 31 (58%) 25 (54%)
>5 13 (23%) 21 (45%) 6 (11%) 8 (17%)
Missing 1 0 0 0
Fish (x/week) <0.001
0 0 (0%) 3 (6.4%) 2 (3.8%) 0 (0%)
1 25 (44%) 26 (55%) 24 (45%) 7 (15%)
2-4 23 (40%) 15 (32%) 26 (49%) 13 (28%)
>5 9 (16%) 3 (6.4%) 1 (1.9%) 26 (57%)
Beans/peas (x/week) 0.005
0 2 (3.5%) 1(2.1%) 1 (1.9%) 0 (0%)
1 11 (19%) 8 (17%) 20 (38%) 3 (6.5%)
2-4 28 (49%) 21 (45%) 20 (38%) 18 (39%)
>5 16 (28%) 17 (36%) 12 (23%) 25 (54%)
Green vegetables (x/week) 0.625
0 0 (0%) 1(2.1%) 1(1.9%) 1(2.2%)
1 4 (7.0%) 5 (11%) 1 (1.9%) 2 (4.3%)
2-4 15 (26%) 10 (21%) 15 (28%) 16 (35%)
>5 38 (67%) 31 (66%) 36 (68%) 27 (59%)
Fruits (X/week) 0.003
0 0 (0%) 1(2.1%) 1 (1.9%) 0 (0%)
1 9 (16%) 6 (13%) 21 (40%) 13 (28%)
2-4 15 (26%) 11 (23%) 16 (30%) 18 (39%)
>5 33 (58%) 29 (62%) 15 (28%) 15 (33%)
Locally brewed beer 0.011
(x/week)
0 47 (82%) 40 (85%) 33 (62%) 41 (89%)
1 6 (11%) 6 (13%) 7 (13%) 1(2.2%)
2-4 2 (3.5%) 1(2.1%) 4 (7.5%) 1(2.2%)
>5 2 (3.5%) 0 (0%) 9 (17%) 3 (6.5%)

N =203 participants. Values represent number of participants (percentage of total). Comparisons between locations
were performed using Fisher’s exact or chi-squared tests. All variables (n = 38 variables), after mode imputation,

were used to construct the lifestyle score. See Figure S2.
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Table S4 | Mass cytometry antibody panel.

Label Specificity Clone Supplier® Cat no Lot no End Working
dilution dilution

By CD45 HI30 Fluidigm  3089003B  2203476-08 200 100

151p CD278 C398.4A Biolegend 313502 22-02-2022 100 50
(ICOoS) MK

M4ipr CD196 GO034E3 Fluidigm  3141003A  2201583-11 100 50
(CCR6)

“2Nd  CD19 HIB19 Biolegend 302202 24-06-2020 500 250

SNd  CDI117 (c- 104D2 Biolegend 313223 28-01-2020 500 250
Kit)

“SNd  CD4 RPA-T4 Fluidigm  3145001B  2202012-07 500 250

46Nd  CD8a RPA-TS8 Fluidigm  3146001B  2108701-11 500 250

“ISm  CDI183 GO025H7 Biolegend 353733 03-01-2018 100 50
(CXCR3)

“¥Nd  CD14 MSE2 Biolegend 301802 30-05-2022 200 100

¥Sm  CD25 (IL- 2A3 Fluidigm  3149010B  2104640-07 500 250
2Ra)

5'Nd  CDI185 1252D4 Biolegend 356902 10-09-2019 500 250 <
(CXCR5) 8

gy CDI123 6H6 Fluidigm  3151001B  2112140-01 500 250 =

52Sm  TCRyd 11F2 Fluidigm  3152008B  2110581-20 200 100 "5

SEuw  CD7 CD7-6B7 Fluidigm  3153014B 0282010 200 100

Sm  CD163 GHI/61 Fluidigm  3154007B 3321818 100 50

55Gd  CD45RA HI100 Fluidigm 3155011B 0492003 200 100

15Gd  CD29%4 BM16 Biolegend 350102 30-05-2022 100 50
(CRTH2)

8Gd  CDI122 (IL- TU27 Biolegend 339002 01-02-2022 500 250
2Rb)

¥Thp  CD197 GO043H7 Biolegend 353237 11-09-2020 200 100
(CCR7)

16lpy  KLRGI REA261 Miltenyi 130-126- 01-02-2022 500 250
(MAFA) 458

2py  CDllc Buls Fluidigm  3162005B  2111081-25 500 250

14py  CDIl61 HP-3G10 Fluidigm  3164009B  2111083-25 200 100

1%Ho  CDI127 (IL- AO19D5 Biolegend 351302 24-09-2020 500 250
7Ra)

gy  CD27 0323 Biolegend 302839 11-09-2019 500 250

18gr  HLA-DR L243 Biolegend 307651 01-02-2022 200 100

"MEr  CD3 UCHT1 Fluidigm 3170001B 169104 200 100

7yb  CD28 CD28.2 Biolegend 302902 01-02-2022 200 100

2yb  CD38 HIT2 Fluidigm  3172007B  2108738-17 200 100

3Yb  CD45RO UCHL1 Biolegend 304239 11-09-2019 200 100

%Yb  CD335 9E2 Biolegend 331902 22-12-2020 500 250
(NKp46)

"SLu  CD279 (PD- EH 122H7  Fluidigm  3175008B  2104621-07 500 250
1)

76yb  CDS56 NCAMI16.2  Fluidigm  3176008B  2202917-03 500 250

209B1 CD16 3G8 Fluidigm  3209002B  2112429-15 200 100

*Fluidigm, South San Francisco, CA, USA; BioLegend, San Diego, CA, USA; Miltenyi Biotech, Bergisch Gladbach,
Germany. CCR, CC chemokine receptor. CD, cluster of differentiation. CRTH2, prostaglandin D2 receptor 2. CXCR,
CXC chemokine receptor. HLA-DR, human leukocyte antigen-D related. IL-2R, interleukin-2 receptor. IL2RB,
Interleukin-2 receptor subunit beta, IL2Ra, Interleukin-2 receptor subunit alpha, ICOS, inducible T-cell COStimulator,
IL-7Ro, interleukin-7 receptor alpha. KLRG1, killer cell lectin-like receptor subfamily G member 1. MAFA, mast cell
function-associated antigen. c-Kit, receptor tyrosine kinase, PD-1, programmed cell death protein 1. TCR, T cell

receptor.
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Abstract

Introduction: Variation in vaccine response is observed between populations living in distinct

geographical areas. This is thought to be associated with an altered immune state at baseline.

Aim: Here, we examine the association between the baseline innate immune characteristics
and the response to yellow fever (YF) vaccination in healthy Dutch as well as urban and rural

Tanzanian volunteers.

Methods: Response to YF vaccination was assessed by measuring plasma levels of IgG
specific to non-structural protein 1 (NS1) of the YF virus at days 0 and 178 post-vaccination
using ELISA. Using spectral flow cytometry, peripheral blood mononuclear cells were profiled
with a panel directed at the innate immune system. PBMC were also analyzed after stimulation

with the YF vaccine, ssRNA40 and Staphylococcus aureus enterotoxin B (SEB) for 24 hours.

Results: Post vaccination, a greater proportion of Dutch compared to Tanzanians had a high
antibody response to NS1, but no difference was seen between urban and rural Tanzanians, in
spite of the heterogeneity in the endpoint anti-NS1 IgG levels. When comparing the high and
low responders within the Tanzanian cohort, high responders had an increased frequency of
classical monocytes compared to low responders, both ex vivo and upon stimulation. Low
responding Tanzanians were characterized by decreased frequency of cDC2s and IFN-alpha+
CDlc- CD141- DCs, whereas IL-10 production by c¢DC2s in unstimulated cultures was

increased compared to high responding Tanzanians.

Conclusion: Differences in the frequency of subsets belonging to the myeloid compartment
and their cytokine production associated with the antibody response to YF vaccination in
Tanzanians. These data might help the understanding of the immunological mechanisms
underlying vaccine response variation, necessary to develop interventions to overcome

vaccine hyporesponsiveness.
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Introduction

Vaccination against infectious diseases saves millions of lives each year [1]. However vaccines
are not yet used to their full potential due to low and variable efficacy of some across
populations and geographical areas [2-6]. Differences in vaccine efficacy are most clearly be
observed for new vaccines evaluated in controlled human infection studies, such as the live
Plasmodium falciparum sporozoite (PfSPZ) vaccine that demonstrated an protective efficacy
of 92.3% in malaria-naive subjects in the US, whereas in a malaria-endemic area in Tanzania
it only protected 20% of the recipients [4, 5]. Moreover, reduced responses upon have been
reported for well-established vaccines such as the yellow fever (YF), as Ugandans have been
reported to have significantly lower neutralizing antibody titers upon vaccination in

comparison to Swiss vaccinees [6].

An important determinant of the response to vaccination is the immune state at baseline, as
altered immune baseline profiles have previously been associated with reduced vaccine
responses [6-8]. A study among children from Kenya and Gabon vaccinated with the malaria
vaccine RTS,S/AS01, showed that the monocyte-to-lymphocyte (ML) ratio at baseline is a
good predictor for the efficacy of this vaccine, with reduced vaccine efficacy in those with
high ML ratio [7]. This aligns with a study into YF response in Swiss and Ugandans, showing
that increased baseline monocyte counts and the frequency of intermediate monocytes were
associated with reduced antibody responses [6]. Moreover, a higher frequency of activated B
and CD8+ T cells at baseline was found in Ugandans than in Swiss, which negatively
correlated with neutralizing antibodies upon vaccination. Together, these results indicate that
heightened immune activation at baseline, as observed in Ugandans, may drive the reduced
response to YF vaccination [6]. More recent studies have focused on identifying a universal
baseline signature that is predictive across several vaccines [8, 9]. A study combining pre-
vaccination transcriptome data of multiple studies to predict the immune response across 13
different vaccines, including YF and malaria, identified three endotypes that are defined by
multiple sets of genes, including pro-inflammatory and interferon-stimulated genes [8].
Comparison of the vaccine response among these endotypes, showed that among these young
American individuals with limited pre-exposure to infections with the most pro-inflammatory
endotype demonstrated highest vaccine responses [8]. However, how well these signatures
hold up across populations with different environmental exposures remains an open question,

as populations from LMICs have not been included in such studies.
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Besides variation in the immune system between countries, differences in immune profiles
within countries also have been observed [10, 11]. A study employing a multi-omics approach
to study the immune profiles of rural and urban Senegal and urban Dutch subjects, revealed a
continuous trajectory of immune remodeling along the rural-urban gradient [10]. The immune
trajectory of rural individuals in this study was more pro-inflammatory compared to urban
Senegalese and Dutch as rural individuals had increased frequency of CDllc+ B cells,
monocytes producing TNF-alpha and IL-1p and T helper 1 cells (Thl). Moreover, comparing
the cellular immune profiles of individuals from two rural and two urban populations in
Northern Tanzania has shown that individuals with a rural lifestyle (low lifestyle score) had a
more activated immune system as their immune profile was characterized by expansion of
atypical B cells, T helper 2 cells, regulatory T cells as well as activated CD4+ T cells expressing
CD38, HLA-DR and CTLA-4 [11]. Those with an urbanized lifestyle (high lifestyle score),
however, showed a less activated immune state illustrated by higher frequencies of naive CD8+

T cells [11].

Although heterogeneity in immune profiles within countries has been reported, the extent to
which they affect the response to vaccines remains largely unexplored. The current work
examines the differences of the immune system at baseline among rural and urban Tanzanians
compared to Dutch and studies their association with the response to YF vaccine. Given the
prominent role of the innate immune system in the initiation of the vaccine response and the
observed associations between baseline inflammation and reduced vaccine response, the
preliminary analysis presented here focuses on the innate immune compartment. Moreover, to
assess the immune response to YF vaccine we use IgG specific to non-structural protein 1 of
the YF virus (anti-NS1 IgG), an accurate continuous parameter [12], rather than the
neutralizing antibody titer, which is often used in a dichotomous or semi-quantitative manner
to confirm seroconversion. By studying the innate immune state at baseline among different
populations and their relation to vaccine response, we will deepen our understanding of the
immunological mechanisms that underly variation in vaccine responses, which is needed to

develop interventions to overcome vaccine hyporesponsiveness.
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Material and Methods

Study design

The current study is part of a prospective longitudinal cohort study (CapTan) in a healthy, 18-
35-year-old Tanzanian population from rural and urban Moshi, Northern Tanzania. Volunteers
were randomized into a vaccine group, receiving a single dose of yellow fever vaccine (YF-
17D, Sanofi-Pasteur France) via intramuscular injection, and a control group who did not
receive any intervention or placebo. Data and samples were collected at baseline and thereafter
over a period of six months. The study took place from February to August 2023. The study
protocol was approved by the Ethical Board of the Kilimanjaro Christian Medical University
College (No. 2588) and by the Tanzania National Ethical Committee Board
(NIMR/HQ/R.8a/Vol.IX/4089). The study was registered under The Pan African Clinical Trial
Registry (PACTR) with trial number PACTR202405738173023. In addition, samples were
collected from 15 Dutch participants who were not vaccinated with YF before. All individuals
received the YF vaccine (YF-17D, Sanofi-Pasteur, France) via subcutaneous injection and
were followed up for six months. This study took place from March to September 2023 in the
Leiden University Medical Centre in Leiden. The study was approved by the Medical Ethical
Committee Leiden The Hague Delft (NL70951.058.19) and is registered as clinical trial
(ClinicalTrials.gov, NCT05901454).

Study population

Description of the study areas from which the Tanzanian participants were enrolled were
published before [11]. In short, the study was conducted in rural and urban Moshi location in
the Kilimanjaro region in northern Tanzania. The district of Moshi city (urban Moshi) is the
administrative, commercial and educational center of the region and most inhabitants practice
a Western lifestyle with generally good quality sanitation. Rural Moshi is an area north of
urban Moshi, higher up the slopes of the Kilimanjaro and therefore has an elevation of 2,000-
2,100 meters above sea level (compared to 700-950 meters in urban Moshi). Most inhabitants

of rural Moshi are involved in farming activities.

Participant enrollment and data collection
Inhabitants of the two regions were informed about the study through community leaders,
gatherings and leaflets and all eligible participants (age 18-35 years and permanent residence

of the study location) were asked to enroll. Following informed consent, 233 participants were
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voluntarily screened for exclusion criteria, including previous YF vaccination, comorbidities,
HIV infection and use of medication possibly affecting the immune system; methods have
previously been described in detail [11]. Based on the in- and exclusion criteria, 48 were
excluded, therefore 185 participants were included and randomized over the vaccine and
control group, resulting in 155 vaccinated individuals and 30 individuals that served as control
group. Data were collected in REDCap, a cloud-based electronic data collection system, with

a server hosted at the Kilimanjaro Clinical Research Institute (KCRI) in Tanzania.

Sample collection and processing

Before vaccination (Day 0), stool, urine and blood samples were collected from all included
participants. Urine samples were used to test for pregnancy and determine infections with
Schistosoma species using point-of-care test for the circulating cathodic antigen (POC-CCA).
Kato-Katz was performed on stool samples to detect Schistosoma and soil-transmitted
helminth eggs. From blood collected in sodium heparin tubes peripheral blood mononuclear
cells (PBMCs) were isolated and cryopreserved as described previously [13]. Blood collected
in EDTA tubes, were centrifuged upon arrival to the KCRI laboratory and plasma was collected
and stored at -80°C within two hours. To assess the pre- and post-vaccination antibody
response to YF vaccination, plasma was collected both at Day 0 and Day 178 post-vaccination.
For the Dutch study EDTA plasma and PBMCs were collected and processed at similar

timepoints and using identical protocols.

Enzyme-linked immunosorbent assay (ELISA)

To assess the YF virus antibody response, IgG specific to Yellow Fever Virus NS1 Protein was
measured in plasma samples using enzyme-linked immunosorbent assay (ELISA). High-
binding half area 96-well ELISA plates (Corning) were coated with 12.5 ng/well Yellow Fever
Virus NS1 Protein (NAC-YFV-NS1-100, The Native Antigen Company) in 0.1 M sodium
carbonate buffer (pH 9.6) overnight at 4°C. Plates were washed thrice with washing buffer
(0.05% Tween-20 in PBS) and blocked for 2h with 5% skimmed milk in PBS containing 0.1%
Tween-20. Plates were incubated with 25 pL/well of 4-step 1:2.5 serially diluted sera with a
starting dilution of 1:250 for 2h at RT. After washing 5 times, NS1-specific IgG were measured
using goat anti-human IgG-HRP (109-035-098, Jackson Immuno Research) at 1:5000 in 0.5%
skimmed milk in PBS with 0.1% Tween-20 and 1-step TMB substrate solutions (34021,
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ThermoFischer Scientific). Measured absorbance values were normalized using standard curve

obtained from IgG (15154, Sigma Aldrich) with the known concentration on each plate.

Innate baseline profiling

Sample selection for innate baseline profiling

From the 155 vaccinated participants, 50 individuals (25 urban and 25 rural) were randomly
selected for innate baseline profiling. Samples were randomly selected after excluding samples
with incomplete datasets due to loss-to-follow up (n=17), positive pregnancy test at day 178
(n=6) or insufficient PBMCs (n=6). From the Dutch cohort all participants were selected,
except for one that had insufficient PBMCs, which resulted in the inclusion of n=14 Dutch
individuals. In total 64 individuals were selected for innate immune profiling that were
measured in three batches. Each of these batches were matched for geographical location, age

and sex and included a reference control to allow batch correction after acquiring.

EXx vivo assays spectral flow cytometry

Cells were thawed and washed in RPMI 1640 supplemented with 100 U/mL penicillin, 100
pg/mL streptomycin, 1 mM pyruvate, 2 mM L-glutamine, 2mM Mg2+, 50 U/ml benzonase,
and 20% Heat-inactivated Fetal Calf Serum (hiFCS). Thereafter, cells were resuspended in
IMDM supplemented with 100 U/mL penicillin, 100 pg/mL streptomycin, 1 mM pyruvate, 2
mM L-glutamine, and 10% hiFCS, and adjusted to a concentration of 5 x 10° cells/mL. Then,
cells were plated as 0.5 x 10° cells per well in a 96-well V bottom plate. The cells were washed
in phosphate-buffered saline (PBS), stained for viability with LIVE/DEAD™ Fixable Blue
(Thermofisher) and Human TruStain FcX™ (Biolegend), washed again twice in FACS buffer
(PBS supplemented with 0.5% BSA, Roche) and then stained with 50 pL of surface staining
cocktail. The surface staining antibody cocktail, prepared in FACS buffer with Brilliant Stain
Buffer Plus (BD Biosciences) and True-Stain Monocyte Blocker™ (Biolegend), was added to
the cells and incubated for 30 min at RT. The list of antibodies can be found in Table S1. Cells
were then washed twice in FACS buffer and afterward fixed with the eBioscience™ FoxP3
Transcription Factor Staining Buffer Set (ThermoFisher) for 30 minutes at 4 ° C. Subsequently,
cells were washed twice with FACS buffer and resuspended in 120 pL of FACS buffer until
acquisition. All centrifugation steps before fixation were performed at 450 g at RT and after

fixation at 800 g at 4 °C.
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In vitro stimulation assay spectral flow cytometry

After thawing the cells as described above, 0.5 x 10° cells per well were plated in a 96-well U-
bottom plate and rested for 1 hour at 37 ° C under 5% CO2. After resting, cells were stimulated
with either YF vaccine (YF-17D, Sanofi Pasteur, Lot nr: X3E042V) at a concentration of
50.000 IU/mL (0.01 MOI) dissolved in 10% hiFCS/IMDM, 2 pg/mL ssRNA40 (Invitrogen),
0.2 pg/mL staphylococcal enterotoxin B (SEB; Sigma-Aldrich), or 10% hiFCS/IMDM for 23
h at 37 ° C under 5% CO,. During the last four hours of stimulation, 10 pg/mL Brefeldin A
(Sigma-Aldrich) was added.

After stimulation, cells were resuspended in PBS containing 2 mM EDTA and left on ice for
15 minutes, before transferring the cells to a 96-well V-bottom plate for staining. Thereafter,
cells were washed in PBS, stained for viability with LIVE/DEAD™ Fixable Blue
(Thermofisher) and Human TruStain FcX™ (Biolegend), washed again twice in FACS buffer
(PBS supplemented with 0.5% BSA, Roche) and then stained with 50 puL of surface staining
antibody cocktail. The surface staining antibody cocktail, prepared in FACS buffer with
Brilliant Stain Buffer Plus (BD Biosciences) and True-Stain Monocyte Blocker™ (Biolegend),
was added to the cells and incubated for 30 min at RT. The list of antibodies can be found in
Table S1. Cells were then washed twice in FACS buffer and afterward fixed and permeabilized
with the eBioscience™ FoxP3 Transcription Factor Staining Buffer Set (ThermoFisher) for 30
minutes at 4 ° C. Subsequently, cells were washes twice with the Permeabilization buffer from
the eBioscience™ FoxP3 Transcription Factor Staining Buffer Set and then stained with
intracellular cocktail. The intracellular cocktail, prepared in the Permeabilization buffer with
Brilliant Stain Buffer Plus (BD Biosciences), True-Stain Monocyte BlockerTM (Biolegend)
and Human TruStain FcX™ (BioLegend), was added to the cells and incubated overnight at 4
° C. Next day, cells were washed twice with eBioscience™ Permeabilization buffer and were
then resuspended in 120 pL of FACS buffer until acquisition. All centrifugation steps before
fixation were performed at 450 g at RT and after fixation at 800 g at 4 °C.

Cell acquisition

Cells were acquired on a SL-Cytek Aurora instrument at the Leiden University Medical Center
Flow Cytometry Core Facility (https://www.lumc.nl/research/facilities/fcf/) with the
SpectroFlo® v2.2.0.3 software (Cytek Biosciences). As controls, an unstained cell sample

(pooled from all donors of the batch) and a single-stain sample for each antibody were used,
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which were either 0.5 x 10¢ million PBMC or 50 ul UltraComp eBeads™ (Invitrogen). All
reference controls underwent the same protocol as the fully stained samples, including washes,

buffers used, and fixation and permeabilization steps.

Data analysis and statistical analysis

Transformation of spectral flow cytometry data

To obtain live single cells, manual gating of live, single CD45+ cells was performed using the
OMIQ software (www.omiq.ai). Thereafter, cell subsets were identified based on the
expression of surface markers and according to a pre-defined gating strategy (Figure S1-S2).
Data that was clustered was then exported as FCS files. The ex vivo samples were batch
corrected using CytoNorm (on default settings) and the compensated expression matrices
arcsinh transformed, with a cofactor of 6000, before the data was merged into one dataset.
After running CytoNorm, one cell had a batch corrected value of negative infinity. This value
was changed to be the 1% percentile expression value for that fluorophore, across all cells for
that individual. Post CytoNorm, and arcsinh transformation, any values above 10 or below -10
were clipped. The compensated expression matrices for the stimulated samples were also
arcsinh transformed, with a cofactor of 6000. No batch correction was carried out for the

culture samples.

Dimensionality reduction

For both the ex vivo merged datasets, a subsample of 100,000 cells was extracted randomly
from the merged datasets and FItSNE ran on the arcsinh transformed batch corrected
expression values of the ex vivo data subset, and the arcsinh transformed expression values of
the culture data subset. For FItSNE, every marker associated with fluorophore was included
as part of the feature space, except for CD45 and live/dead. For the principal component
analysis, only the ex vivo dataset was used. In this analysis the frequency as percentage of total
CD45+ cells of all the cell types manually gated were used. In addition, the 95™ percentile
expression of the activation markers were scaled to a mean of 0 and a standard deviation of 1

and thereafter included in the principal component analysis.
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Cytokine gating
Cell type specific created to enable classification cells into cytokine positive and cytokine

negative cells. For each of the fifteen gated innate cell types, a threshold was calculated to be:

percentile(x,99) + (percentile(x,99) x 0.2)

Where x is the arcsinh transformed expression of a given cytokine in a given innate cell type
in the unstimulated condition (upon culturing with only media). For the media only, SEB,
ssRNA40 and YF-17D samples, cells were assigned as producers of a particular cytokine if
they were above the threshold for their cell type.

Statistical analyses

All pairwise comparisons were carried out using Mann-Whitney U test with Benjamini-
Hochberg correction. The number of comparisons to adjust for was based on the number of
lineages (i.e. 5), not the number of gated subsets. For multiple comparisons of more than 2
groups, a Kruskal-Wallis test was used, with Dunn’s test to carry out post-hoc pairwise
comparisons between the groups. The FDR and alpha were set to be 5%. Differences in
cytokine producing cells between high and low responders were only considered if the median
percentage was greater than 0 across all individuals, and differences in activation marker
expression were considered if the median of the 95th percentile expression, across all
individuals, was greater than 1. PERMANOVA was performed using the adonis function of
the vegan R package with 999 permutations. The input to the function was a Euclidean distance
matrix of each individual's position across the first two principal components. All statistical
analyses were carried out in R version 4.4.1. The packages used, and their versions, are as
follows: rstatix 0.7.2, cytolib 2.16.0, kohonen 3.0.12, CytoNorm 2.0.2, igraph 2.2.1, ggpubr
0.6.0, matrixStats 1.4.1, stringr 1.5.1, flowCore 2.16.0 and vegan 2.6-8.

Results

Characteristics of the study population and antibody responses to YF-17D vaccination

To investigate how the innate immune cell compartment differs in individuals across and
within different geographical areas and how it may impact vaccine response, volunteers were
recruited from rural and urban areas of Tanzania and an urban area of the Netherlands. In total,

185 Tanzanians and 15 Dutch were recruited for the study, with 93 Tanzanians from urban and
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92 from the rural area. All the Dutch and 155 of the Tanzanians (n=78 rural and n=77 urban)
were vaccinated with the YF-17D vaccine, the remaining 30 Tanzanians served as a control
(no vaccine) group. Dutch vaccinees were on average younger than Tanzanian vaccinees and
more females were included in the Dutch compared to the Tanzanian cohort (Table S2). The
characteristics of the Tanzanians that received the vaccine and that served as control group did

not differ (Table S3).

The vaccine immunogenicity was determined by measuring IgG specific to Yellow Fever non-
structural protein 1, here referred to as anti-NS1 IgG, at baseline and day 178 post-vaccination
(-6 months). Data for both these timepoints was available from 147 of the 155 vaccinated
Tanzanians (n=70 rural and n=77 urban) and 12 of the 15 Dutch individuals (Figure 1A). The
demographics of the individuals for which plasma from both timepoints were available did not
differ from that of the total vaccinated subjects (Table S4-5). To examine the innate immune
profile at baseline, we profiled the PBMC of 50 individuals (n=25 rural and n=25 urban) that
were randomly selected from the 155 vaccinated Tanzanians. From the Dutch cohort all
participants with sufficient PBMCs were included, which resulted in innate baseline profiling
of 14 Dutch individuals (Figure 1A). The age, sex and anti-NS1 IgG levels of the individuals
selected for innate baseline profiling did not significantly differ from that of all vaccinated

subjects included in the study (Table S4-5).

When comparing the anti-NS1 IgG levels between the cohorts, the median antibody levels did
not significantly differ between the groups, but within the groups heterogeneity in the antibody
response was observed (Figure S3A). Visualizing the antibody response at baseline and at
Day 178 in all vaccinated individuals together on a histogram showed two noticeable peaks
(Figure S3B). These peaks were modelled using a two-component Gaussian Mixture Model
(GMM) (Figure 1B). All but three of the pre-vaccination values and all but one of the post-
vaccination values of the control group (no vaccine) were positioned into this lower peak
(Figure S3C-D).Therefore individuals whose post-vaccination anti-NS1 IgG levels clustered
in this peak were designated as “low responders”, while individuals in the higher peak were
designated as “high responders”. Using this categorization, in total 70 individuals were
designated as high responders, whereas 89 individuals were low responders (Figure 1B).
Examining the antibody response per group, showed that 83% (n=10) of Dutch individuals

were in the high responders group, whereas 38% (n=29) of the urban Tanzanians and 44%
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(n=31) of the rural Tanzanians were high responders (Figure 1C). The proportion of high
responders was significantly greater in Dutch compared to all Tanzanians, whereas the

proportion in urban and rural Tanzania was similar (Table S6).
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Figure 1. Studying the antibody response to yellow fever vaccination and innate immune baseline profile in
rural and urban Tanzanians and Dutch vaccinees

(A) Graphical overview of the study population showing the number of individuals across the three geographical areas
(Dutch and rural and urban Tanzanian) who had their PBMCs and plasma sampled (left). Graphical overview of the
processing and acquisition steps for the PBMC and plasma samples (right). (B) Histogram visualising the anti-NS1
IgG levels of vaccinated individuals, with the individuals coloured by whether they were classified as high or low
responders, based on a GMM model. The black lines show the distributions of the two Gaussian models. (C) Barplot
showing the percentage of vaccinated individuals that belong to either high or low responders across the geographical
areas, with each bar also showing the total number of individuals according to geographical area.

Baseline difference in the innate immune profiles of Dutch and Tanzanians
The innate immune profile was characterized before vaccination, at baseline, to assess whether
signatures could be discerned that would predict antibody responses after vaccination. PBMCs

were profiled from a random selection of 50 Tanzanians (18/32 high vs low responders equally
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split between rural and urban, n=25 urban, n=25 rural) and 14 Dutch (10/2 high vs low
responders, n=2 no day 178) vaccinees. One individual from the urban Tanzanians was
removed due to low recovered cell count following staining. Spectral flow cytometry was
performed using a panel to measure 26 markers for the ex vivo condition and 32 for the in vitro
stimulated assay (Table S1). Manual gating using OMIQ, allowed us to identify monocytes,
ILCs, Natural Killer (NK) cells, Myeloid Dendritic Cells (mDCs), plasmacytoid dendritic cells
(pDCs) and Basophils (Figure 2A). Moreover, the monocyte population, here defined as CD3-
CD19- CD88+ and/or CD14+, was further divided into four groups based on the expression of
CD14 and CDI16; classical monocytes (CD14+ CD16), intermediate monocytes (CD14+
CD16+), non-classical monocytes (CD14- CD16+) and CD14- CD16- monocytes. Moreover,
the ILCs were classified as either ILC1, 2 and 3; the myeloid DCs could be subdivided into
¢DCl1, ¢DC2 or CD1¢-CD141- DC and the NK cells were split into three groups based on
expression of CD16 and CD56 (Figure S4). To examine the activation status of these subsets,
the 95" percentile expression of each activation marker (Table S1) for each of the manually

gated innate cell types was determined.

To explore the overall innate immune baseline profile of rural and urban Tanzanians and Dutch
individuals, a principal component analysis was performed using the frequencies of the
manually gated innate cell types and the 95 percentile expression of activation markers in
each of these cell types of the ex vivo samples. A significant separation (PERMANOVA p =
0.001) was seen across the first two principal components, with the Dutch being distinct from
the rural and urban Tanzanians, whereas the rural and urban Tanzanians overlapped greatly
(Figure 2B). To further examine the cell subsets and characteristics that contribute to the
differences in the overall innate baseline profiles across the geographical areas, we compared
the individual cell frequencies and expression of activation markers between rural and urban
Tanzanians and Dutch (Figure 2C-D). With the exception of classical monocytes, which were
higher in Dutch compared with Tanzanians, other myeloid cell subsets were significantly lower
in the Dutch (Figure 2C). Moreover, the frequency of ILC2 and basophils, which indicate
expansion of type-2 responses was significantly higher in urban Tanzanians compared to rural
Tanzanians or the Dutch (Figure 2C). When comparing the activation status using the 95%
percentile of the expression of the activation markers in the innate cell types a higher
expression of TIM-3, an immunoinhibitory molecule, was observed in classical monocytes and

¢DC2s in Tanzanians compared to Dutch. Moreover, the expression of TIGIT, a marker of NK
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activation and/or exhaustion, was significantly increased in CD16+ and CD16- NK cells of
Tanzanians compared to Dutch equivalent cells (Figure 2D). Thus, the innate immune profile
at baseline ex vivo of Dutch is distinct of that of Tanzanians, whereas urban and rural Tanzanian

innate baseline profiles show great resemblance.
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Figure 2. Innate immune profile at baseline of Dutch is distinct from that of Tanzanians

(A) FItSNE projection of a subset of the total innate cells from the ex vivo samples. Lineages of cells are outlined and
annotated. (B) Principal component (PC) analysis of innate immune cells derived ex vivo from patients. PCs were
generated from the 95th percentile expression of activation markers and frequency of innate cell types (as a percentage
of total CD45+ cells). Individuals are coloured by the geographical area where the individual is from, and the coloured
outline shows the 95th percentile area for each of the three geographical areas. PERMANOVA comparing the
geographical areas is also shown. Boxplots showing the frequency of various innate immune cell types (as a percentage
of total CD45+ cells) (C) and 95th percentile expression of activation markers TIGIT and TIM-3 (D) in rural
Tanzanians, urban Tanzanians and Dutch. The boxplots are coloured by geographical area and contains the median
(horizontal line), mean (dot) and 25th/75th percentiles with whiskers extending to +1.5 x IQR. Differences in innate
immune cell frequency and 95th percentile expression of activation marker across the three groups was assessed with
Kruskal-Wallis test, with post-hoc pairwise comparisons achieved with Dunn’s test, with Benjamini-Hochberg
correction to account for multiple testing. ns = p > 0.05, * = p < 0.05, ** =p < 0.01, *** = p < 0.001, **** =p <
0.0001.
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Frequency of ex vivo classical monocytes at baseline associates with post-vaccination
antibody responses in Tanzanians

We next investigated whether differences between the vaccine responder groups, in terms of
innate immune cells, could be detected at baseline. As only few Dutch were low responders
and the innate immune signature at baseline of the Dutch was distinct from that of Tanzanians
(Figure 1C and 2B), the high and low responders were compared for the Dutch and Tanzanian
cohorts separately. Upon comparison, a significant increase in the frequency of classical
monocytes was found in the high compared to low responding Tanzanians and this difference
remained significant when Tanzanians were split between urban and rural (Figure 3A-B). As
the frequency of classical monocytes in both high and low Dutch responders resembled that of
high responding Tanzanians, no significant difference was found between high and low
responding Dutch, although only few Dutch were low responders (Figure 3C). Besides
differences in the frequency of classical monocytes, no statistically significant differences were
found the frequency of other cell types or in the level of expression of activation markers

within cell subsets between high and low responders.
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Figure 3. High responding Tanzanians have increased frequency of ex vivo classical monocytes at baseline
compared to responding Tanzanians:

Boxplots showing the frequency of CD16-CD14+ monocytes (as a proportion of the total CD45+ cells) between the
high and low responders of all Tanzanian (A), rural and urban Tanzanians (B) and Dutch individuals (C). The
boxplots are coloured by YF-17D vaccine response and geographical area, and contain the median (horizontal line)
and 25th/75th percentiles with whiskers extending to +1.5 X IQR. Changes in CD16-CD14+ monocyte frequency was
assessed using a Mann-Whitney U test, with multiple test corrections with Benjamini-Hochberg. ns = p > 0.05, * =p

<0.05, ** =p < 0.01.

Cultured innate immune cell profiles associated with vaccine response in Tanzanians

We next examined whether responsiveness of innate immune cells to a challenge associates
with antibody response to vaccination. To this end, in vitro response to either YF-17D, the
TLR-8 ligand ssRNA40, the superantigen Staphylococcal Enterotoxin B (SEB) or medium as
control (unstimulated culture) was determined. Similar to the ex vivo results, in the
unstimulated culture, the frequency of classical monocytes were significantly increased in the
high responding Tanzanians compared to the low responders (Figure 4A). In addition, upon
culturing with medium the frequency of cDC2s and CD1c- CD141- DCs was significantly
associated with the antibody response to YF in all Tanzanians. The frequency of cDC2s was
increased in high compared to low responders, whereas for CD1c- CD141- DCs, the opposite
was observed with lower frequencies in the high responding Tanzanians (Figure 4A).
Interestingly, no such differences were seen in the high and low Dutch responders (Figure S5).
In these unstimulated cultures, cDC2s producing IL-10 and CD1c- CD141- DCs producing
IFN-alpha were different between high and low responding Tanzanians, as high responders
had reduced IL-10+, but increased IFN-alpha+ CD1c- CD141- DCs (Figure 4B). Again, none
of these differences between the high and low Dutch responders reached statistical significance

(Figure S5).
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Figure 4. Frequency and cytokine production in dendritic cells in unstimulated culture are associated with the
response to yellow fever vaccination in Tanzanians:

Boxplots showing the frequency of various innate immune cell types (as a percentage of total CD45+ cells) (A) and
frequency of cytokine producing cells (as a percentage of the total parent cell) (B) between all Tanzanian high and
low responders to the YF-17D vaccine, when the immune cells were cultured in media. The boxplots are coloured by
YF-17D vaccine response and contains the median (horizontal line), mean (dot) and 25th/75th percentiles with
whiskers extending to +1.5 x IQR. Differences in innate immune cell frequency and cytokine producing cell frequency
across between high and low responders was assessed with Mann-Whitney U test, with Benjamini-Hochberg

correction to account for multiple testing. ns = p > 0.05, * = p < 0.05.

Upon stimulation with YF-17D, ssRNA40 and SEB, the innate cells responded by increased
cytokine production, however when comparing the cytokine production between high and low
responding Tanzanians we did not find statistical differences for any of the cytokines in any of
the cell types after multiple testing correction (Figure S6). Comparison of the cell frequencies
upon stimulation between high and low responders from Tanzania revealed that the differences
largely reflected what was observed in unstimulated cultures (Figure 4). For the YF-17D
stimulated culture, the frequency of CD1c-CD141- DCs was higher in the low responders,
while that of classical monocytes and cDC2s was higher in the high responders, however these
did not reach statistical significance (Figure 5A). The same trend, but with statistically
significant differences was found in response to ssSRNA40 with the frequencies of classical

monocytes and cDC2s being higher but CD1c-CD141- DC lower in high responders compared
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to low responders (Figure 5B). Finally, SEB stimulated cultures showed similar patterns

(Figure 5C).
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Figure S. Changes in cell frequency upon culturing differ between stimuli, but cell types associated with
antibody response to yellow fever vaccination show overlap across stimulations:

Boxplots showing the frequency of CD16-CD14+ monocytes (left), cDC2 (middle) and CD1c-CD141- DC (right) (as
a proportion of the total CD45+ cells) between all Tanzanians who are high or low responders to the YF-17D vaccine.
The boxplots are grouped based on whether the innate immune cell cultures were exposed to YF-17D (A), ssRNA40
(B) or SEB (C). The boxplots are coloured by YF-17D vaccine response and contains the median (horizontal line),
mean (dot) and 25th/75th percentiles with whiskers extending to +1.5 x IQR. Changes in the cell type frequency was
assessed using a Mann-Whitney U test, with correction for multiple comparisons being achieved with Benjamini-

Hochberg. ns =p > 0.05, ¥ =p <0.05, ** =p <0.01.
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Discussion

In summary, examining the antibody response to YF vaccination across populations revealed
that most Dutch were high responders. Although high frequency of low responders were
observed among Tanzanian vaccinees, no difference in the proportion of high and low
responders between urban and rural Tanzania was observed. Comparing the innate baseline
immune profiles across the geographical areas, showed that the overall innate immune profile
at baseline of Dutch was distinct from that of Tanzanians and that Dutch had increased
frequencies of classical monocytes and decreased frequencies of non-classical monocytes and
multiple myeloid dendritic cell subsets. Within the Tanzanian cohort, high responders had a
higher frequency of baseline classical monocytes, both ex vivo and upon in vitro stimulation,
in comparison to low responders. When PBMCs were cultured, we found an increased
frequency of ¢DC2s and reduced frequency of CDlc- CD141- DCs in low responding
Tanzanians. Moreover, in unstimulated cultures both IL-10 production by ¢cDC2s as well as

IFN-alpha concentration in CD1c- CD141- DCs was increased in the high responders.

The increased antibody responses in Dutch compared to Tanzanian found in the current study,
aligns with previous reports, as higher YF-17D specific CD8+ T cell and YF neutralizing
antibody (nAb) responses have been found in Swiss compared to Ugandans [6]. As the
antibody response between urban and rural Tanzanians did not significantly differ, this deviates
from the findings of a recent study in Uganda. This study reported significantly higher nAb
upon YF vaccination in urban individuals compared to helminth-endemic rural individuals 28
days post-vaccination and to malaria-endemic rural individuals 1 year after vaccination [14].
As helminth and malaria prevalence was low in the current study these discordant results may
be explained by different levels of exposure to these pathogens between the Tanzanian and
Ugandan cohorts. However, neither preventive treatment for malaria nor intensive praziquantel
administration against Schistosoma mansoni improved the response to YF vaccine in the same
study [15, 16]. As such, either past exposures or differences in the exposure to other

environmental factors such as dietary habits should be considered [17].

To further understand the immunological mechanisms underlying variation in the response to

YF vaccination, we profiled the innate immune system at baseline from a subset of Dutch and
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Tanzanian vaccinees. The frequency of non-classical monocytes were decreased along the
rural-urban gradient, while the frequency of classical monocytes showed the opposite trend.
This aligns with findings of an earlier study showing increased proportions of intermediate and
non-classical monocytes in Africans, while the frequency of classical monocytes followed a
rural-urban gradient being highest in Europeans [18]. Within the Tanzanian cohort, the
frequency of classical monocytes was significantly increased in high compared to low
responders, both ex vivo and upon culturing, and when urban and rural were analyzed
separately. The study of Muyanja ef al. (2014) found a negative correlation between monocyte
counts at baseline and YF nAb in the Ugandan cohort [6]. Moreover, when combining the data
of Swiss and Ugandans vaccinees, the frequency of intermediate monocytes at baseline
negatively correlated with YF nAb, although this was clearly driven by the distinct responses
between geographical areas [6]. As characterization of the monocyte compartment can be
challenging due to downregulation of markers upon culturing and may be affected by the
gating strategy and cytometry panel used, the differential findings in our study and the study
of Muyanja et al. (2014) should be interpreted with caution. A more standardized way of
characterizing monocytes [19, 20] would allow comparison of different studies and will

facilitate unraveling the role monocytes in response to (YF) vaccination.

Next to monocytes, differences in the proportion and cytokine response of myeloid dendritic
cells between high and low responding Tanzanians were observed when PBMCs were cultured.
In low responders, we detected an expansion of CDlc- CD141- DCs, a subset known to be
enriched for type | interferon signaling and to share signatures with CD16+ monocytes [21].
Interestingly, although their frequency was decreased, the IFN-alpha production by these cells
in unstimulated cultures was increased in high responders, indicating that in low responders
the type 1 interferon production by these DCs might be hampered. Expansion of CDlc-
CD141- DCS defective in their IFN signaling has previously been observed in SARS-CoV-2-
infected individuals and these DCs were characterized by reduced ability for immune cross-
talk and high mitochondrial activity [22]. Efforts should be made to further characterize the
CDlc- CD141- DC population identified in the current study as this population is likely to
comprise of multiple cell subsets given their high frequency upon culture. In addition to
expansion of CD1c- CD141- DCs, increased frequency of IL-10+ ¢DC2s upon (unstimulated)
culturing was observed in low versus high responding Tanzanians. A negative association

between high IL-10 levels at baseline and reduced vaccine response has been reported
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previously, as the level of IL-10 secreted by baseline PBMCs incubated with YF-17D
overnight negatively correlated with YF nAb levels in Ugandans [6]. Given that IL-10 is an
anti-inflammatory cytokine that regulates the T cell responses [23], enhanced IL-10 levels at
baseline may suppress T cell responses upon vaccination, thereby hampering vaccine response.
Indeed, a study in mice showed that increased levels of IL-10 were associated with reduced T
cell responses and that blocking IL-10 during vaccination resulted in enhanced effector T cell
responses and improved vaccine efficacy [24]. Together, these results indicate that alterations
in subsets of myeloid dendritic cells are associated with reduced vaccine response. Therefore,
single cell analysis of these dendritic cell subsets would be highly valuable to gain insight into

the pathways involved and how these may be modulated to increase vaccine response.

Inherent to the preliminary nature of the analysis presented here, there are some limitations to
be accounted for. In the current analysis, the characterization of the innate immune
compartment was limited to identification of the main innate immune cell types by manual
gating and the expression of the activation markers and cytokine production within these major
innate immune subsets. Additional analysis such as sub-clustering of these major cell types
which takes into account co-expression would enable us to identify and define smaller subsets
and study their role in the response to YF vaccination. Moreover, the innate immune system
of a limited number of subjects was profiled at baseline. As differences between the urban and
rural populations included in the current study are likely to be relatively small, immune
profiling of additional vaccinees from rural and urban Tanzanians might provide more power
to detect differences.

In conclusion, upon YF vaccination the Dutch demonstrated increased antibody responses
compared to Tanzanians, whereas the proportion of low responders was similar between urban
and rural Tanzanians. Within the Tanzanian cohort, low responders were characterized by
decreased frequency of classical monocytes and IFN-alpha production by CD1c- CD141- DCs,
whereas IL-10 production by ¢DC2s in unstimulated cultures was increased. These results
indicate that differences in the myeloid compartment at baseline may be associated with YF
vaccine response, although additional characterization is needed to understand how specific
cell subsets contribute to vaccine response variation. The insights obtained by this study
contribute to our understanding of the immunological mechanisms underlying vaccine
responses, which is essential for the development of interventions needed to overcome vaccine

hyporesponsiveness.
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Supp. Figure 1 Gating strategy ex vivo spectral flow cytometry

Example of the gating strategies used to identify the cell types present in the ex vivo derived PBMCs as
captured using spectral flow cytometry. The x and y axes represent the compensated fluorescence values of
specific fluorophore/marker combinations or stain, with each dot representing an event and the events

coloured by event density. Gating was carried out using OMIQ.
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Supp. Figure 2 Gating strategy in vitro stimulation spectral flow cytometry

Example of the gating strategies used to identify the cell types present when PBMC:s are cultured for 24 hours

with either Yellow Fever vaccine, SSRNA40 or SEB as captured using spectral flow cytometry. The x and y

axes represent the compensated fluorescence values of specific fluorophore/marker combinations or stain,

with each dot representing an event and the events coloured by event density. Gating was carried out using

OMIQ.
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Supp. Figure 3 Yellow fever antibody response across geographical areas and in the control group

(A) Boxplot showing the Log, fold change of anti-NS1 IgG levels in individuals from baseline to 178 days
post-vaccination with YF-17D. The boxplots are coloured by the geographical area that the individual is from
and contains the median (horizontal line), mean (dot) and 25th/75th percentiles with whiskers extending to
+1.5 x IQR. Differences in log,FC between the different areas was assessed with Kruskal-Wallis test, with
post-hoc multiple comparisons achieved with Dunn’s test using Benjamini-Hochberg correction. ns = p >
0.05. (B) Histogram visualising the anti-NS1 IgG levels from individuals at baseline and 178 days post-
vaccination with YF-17D. Histogram visualising the anti-NS1 IgG levels of vaccinated individuals at
baseline (C) and unvaccinated control individuals (D), with the individuals coloured by whether they were
classified as high or low responders, based on the GMM model shown in Figure 1B. The black lines show
the distributions of the two Gaussian models while the purple vertical line denotes the decision boundary

between the two clusters.

149



Chapter 5

CD16+ NK cels

|
|

CO16- NK ouils

} COS6H NK cels
1
|

Basophils

co3

co19.
comt
co8s
co123
CRT)
co!
cotte

cor27
com.
cote.

g
3
Supp. Figure 4 Expression of lineage markers in Ex vivo dataset cells

Heatmap showing the median signal intensity (MSI) of lineage markers across the OMIQ defined gates. Data

shown is from all ex vivo spectral flow cytometry samples collected from Dutch and Tanzanian individuals.
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Supp. Figure 5 Difference in frequency and cytokine production in medium condition between low and
high responding Dutch vaccines

Boxplots showing the frequency of various innate immune cell types (as a percentage of total CD45+ cells)
(A) and frequency of cytokine producing cells (as a percentage of the total parent cell) (B) between Dutch
high and low responders to the YF-17D vaccine, when the immune cells were cultured in media. The boxplots
are coloured by YF-17D vaccine response and contains the median (horizontal line), mean (dot) and 25th/75th

percentiles with whiskers extending to +1.5 x IQR. Differences in innate immune cell frequency and cytokine
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producing cell frequency across between high and low responders was assessed with Mann-Whitney U test,

with Benjamini-Hochberg correction to account for multiple testing. ns = p > 0.05.
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Supp. Figure 6 Cytokine responses upon culturing with different stimuli across cell subsets

Heatmap showing the Log, fold change (Log,FC) in cytokine+ cell frequency (as a percentage of total
parent cell) between the media only culture and the YF-17D, ssRNA40 and SEB stimulated for all
Tanzanian derived cultures. Each column represents an individual, with the individuals being grouped by
whether they are a high or low responder (top grouping) and which stimuli was used during the culture
(bottom grouping). A high Log,FC indicates that the frequency of cytokine+ cells is higher in the given
stimulated condition compared to the media-only. Log,FC below 0 have been clipped to 0 for the purposes

of this plot.
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Table S1. Flow cytometry Antibody Panels

No. | Panel Target Fluorochrome | Dilution | Clone Source Catalogue | Type

1 Both CD2%4 BV605 50 BM16 Biolegend | 350121 Lineage
(CRTH2)

2 Both CD279 PE/Fire 700 50 A17188B | Biolegend | 621621 Activation
(PD-1)

3 Both CDllIc BV750 50 B-ly6 BD 747459 Lineage

4 Both CD159¢ BUV615 50 134591 BD 751059 Activation
(NKG2C)

5 Both CD274 APC/Fire 810 50 MIH3 Biolegend | 374515 Activation
(PD-L1)

6 Both CD117 PE/Cy5 50 104D2 Biolegend | 313210 Activation
(c-kit)

7 Both CD178 PE/Cy7 50 NOK-1 Biolegend | 306417 Activation
(FasL)

8 Both CDI161 BUVS563 100 HP-3G10 | BD 749223 Activation

9 Both TIGIT BV421 200 741182 BD 747844 Activation

10 Both KLRG1 APC/Fire 750 200 SA231A2 | Biolegend | 367717 Activation

11 Both CDl14 BUV395 200 MSE2 BD 740286 Lineage

12 Both CD45 Spark Blue 550 | 200 2D1 Biolegend | 368549 Lineage

13 Both CD88 AF700 200 S5/1 Biolegend | 344314 Lineage

14 Both CD366 BUV737 400 7D3 BD 568680 Activation
(TIM-3)

15 Both CDI123 BUV805 400 6H6 BD 751840 Lineage

16 Both CD40 BV785 400 5C3 Biolegend | 334339 Activation

17 Both CD3 Spark Blue 574 | 400 UCHT1 Biolegend | 300487 Lineage

18 Both CD56 Spark NIR 685 | 800 5.1H11 Biolegend | 362563 Lineage

19 Both HLA-DR | BV570 800 1243 Biolegend | 307637 Activation

20 Both CD141 BB700 1600 1A4 BD 742245 Lineage

21 Both CDI16 BUV496 1600 3G8 BD 612944 Lineage

22 Both CD163 BUV661 1600 MAC2- BD 752880 Activation

158

23 Both CDlc BV480 1600 F10/21A3 | BD 746677 Lineage

24 Both CD57 Pacific Blue 3200 HNK-1 Biolegend | 359607 Activation

25 Ex CD127 RB744 50 HIL-7R- BD 570607 Lineage

vivo M21
26 Ex CDI19 BVS510 400 HIB19 Biolegend | 302241 Lineage
vivo

27 Culture | CDI19 Spark Blue 574 | 100 SJ25C1 Biolegend | 363048 Lineage

28 Culture | CD7 BVS510 200 M-T701 BD 563650 Lineage

29 Culture | IFN- BV650 1600 4S.B3 Biolegend | 502537 Cytokine
gamma

30 Culture | TNF- RealBlue780 12800 Mabl11 BD 569091 Cytokine
alpha

31 Culture | IL12p70 APC 50 Cl1.5 BD 554576 Cytokine

32 Culture | IFN-alpha | PE-Vio 615 100 REA1013 | BD 560097 Cytokine

33 Culture | IL-10 BV711 100 JES3-9D7 | BD 564050 Cytokine

24 Culture | IL1b FITC 1600 JKI1B-1 Biolegend | 508206 Cytokine

Ex vivo panel indicated that the antibody was only used in the panel to the ex vivo condition Culture panel

indicates that the antibody was only used in the panel to measure after in vitro stimulation with medium,

YF-17D, ssRNA40 or SEB for 24 hours Both panel indicates that the anybody was used for both in vitro

stimulation and ex vivo measurements.
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Table S2. Baseline characteristics of the vaccinated study population

Vaccinated Dutch Vaccinated Tanzanian

Variable N N =15’ N = 155’ p-value2
Sex 170 0.003
Female 13 (87%) 73 (47%)
Male 2 (13%) 82 (53%)
Age 170 20 (20, 22) 23 (21, 27) 0.004
Age Category 170 0.003
18-25 15 (100%) 100 (65%)
26-35 0 (0%) 55 (35%)

"h (%); Median (Q1, Q3)

? Pearson'’s Chi-squared test; Wilcoxon rank sum test; Fisher's exact test

N — 170 participants. Values represent the number of participants (percentage of total) and median
(interquartile range [IQR]) for categorical and continuous variables respectively. Comparisons between
vaccinated Dutch and all vaccinated Tanzanians were performed using Pearson’s Chi-squared test for

comparing Sex, Fisher’s exact test for Age category and Wilcoxon rank sum test for Age.
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Table S3. Baseline characteristics of the vaccinated and unvaccinated Tanzanian study population

Unvaccinated Tanzanian Vaccinated Tanzanian

Variable N N =30
Sex 185
Female 11 (37%)
Male 19 (63%)
Age 185 22 (20, 25)

Age Category 185
18-25 23 (77%)
26-35 7 (23%)

"1 (%); Median (Q1, Q3)

¢ pearson’s Chi-squared test; Wilcoxon rank sum test

N = 155’ p-valuez
03

73 (47%)

82 (53%)

23:21:27) 03
0.2

100 (65%)

55 (35%)

N — 185 participants. Values represent the number of participants (percentage of total) and median

Chapter 5

(interquartile range [IQR]) for categorical and continuous variables respectively. Comparisons between

vaccinated Dutch and all vaccinated Tanzanians were performed using Pearson’s Chi-squared test for

comparing Sex and Age category, and Wilcoxon rank sum test for Age.
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Table S4. Comparisons of characteristics between all, plasma anti-NS1 IgG measured and PBMC

sampled vaccinated Dutch individuals

Dutch, All  Dutch, Plasma Dutch, PBMC p-

Variable N =15’ N =12 N =14 value’
Sex >0.9
Female 13 (87%) 11 (92%) 12 (86%)
Male 2 (13%) 1(8.3%) 2 (14%)
Age 20 (20, 22) 21 (20, 22) 20 (20, 22) >0.9
Anti:NS?, 178 days post- 7.94 (7.37, 7.94 (7.37, 7.99 (7.33, 509
vaccination 8.54) 8.54) 8.58)

"1 (%); Median (Q1, Q3)

? Fisher's exact test; Kruskal-Wallis rank sum test

Values represent the number of participants (percentage of total) and median (interquartile range [IQR]) for
categorical and continuous variables respectively. Comparisons between the three populations were
performed using Fisher’s exact test for comparing Sex and Kruskal-Wallis rank sum test for Age and anti-

NS1 levels.

Table SS. Comparisons of characteristics between all, plasma anti-NS1 IgG measured and PBMC

sampled vaccinated Tanzanian individuals

Tanzanian, Tanzanian,
Tanzanian, All Plasma PBMC p-

Variable N = 155’ N = 147’ N =50’ value’
Sex >0.9

Female 73 (47%) 69 (47%) 24 (48%)

Male 82 (53%) 78 (53%) 26 (52%)
Age 23 (21, 27) 24 (21, 27) 22 (20, 26) 0.2
Bitl=s s 175y powt- 703633 3 653,804) 690636815 07
vaccination 8.04)

"h (%); Median (Q1, Q3)

? Pearson's Chi-squared test; Kruskal-Wallis rank sum test
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Values represent the number of participants (percentage of total) and median (interquartile range [IQR]) for

categorical and continuous variables respectively. Comparisons between the three populations were

performed using Pearson’s Chi-squared test for comparing Sex and Kruskal-Wallis rank sum test for Age and

anti-NS1 levels.

Table S6. Differences in frequencies of vaccine responders between Dutch and Tanzanians, and Rural

and Urban Tanzanians

Dutch, Plasma Tanzanian, Plasma

Variable N N=12' N = 147 p—valueZ
Vaccine Responder 159 0.022
High Responder 9 (75%) 60 (41%)
Low Responder 3 (25%) 87 (59%)

"n (%)

? pearson's Chi-squared test

Rural Tanzanian, Plasma Urban Tanzanian, Plasma

N N =70 N=77' p-value’
147 04
31 (44%) 29 (38%)
39 (56%) 48 (62%)

N — 158 participants for Dutch and all Tanzanians, N — 146 for all Tanzanians. Values represent the number

of participants (percentage of total). Comparisons between the frequency of high and low vaccine responders

were performed using Pearson’s Chi-squared test.
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Abstract

Vaccine responses vary across populations and are influenced by numerous intrinsic
and extrinsic factors, including the gut microbiota. However, studies linking microbiota
composition to vaccine immunogenicity in low- and middle-income countries are
sparse. In this study, we examined the gut microbiota of 143 healthy rural and urban
living Tanzanians who participated in a yellow fever vaccine (YF-17D) trial. We found
significant differences in gut microbiota profiles between rural and urban participants.
Rural-associated microbiota showed higher diversity and enrichment of taxa like
Prevotella and Succinivibrio, which were linked to dietary intake patterns. Yellow fever
neutralizing antibody titers were higher in rural compared to urban participants.
Interestingly, a subset of urban individuals with a rural-like microbiota had higher
antibody titers and faster waning than those with a more industrialized microbiota.
These findings suggest that gut microbiota composition might be linked to vaccine
immunogenicity, potentially outweighing the influence of living location.

Keywords: Yellow fever vaccine, YF-17D, microbiota, 16S-rRNA gene sequencing,

neutralizing antibody, rural/urban differences, Tanzania.

160



Gut microbiota and yellow fever responses

Introduction

Vaccines play a critical role in the prevention of infectious diseases, especially in high-
burden populations[1-5]. However, vaccine-induced immune responses vary across
populations. Lower vaccine immunogenicity and efficacy (‘hypo-responsiveness’) is
mainly observed in rural areas in low- and middle-income countries (LMICs),
especially when compared to high-income countries (HICs) or to urban areas within
the same countries[6-9]. Vaccine responses are impacted by a range of extrinsic and
intrinsic factors, including host (age, sex, genetics, co-morbidities), behavioral (e.g.
smoking) and environmental (rural/urban living location, season) factors, diet and
nutrition, pre-existing immunity and vaccine factors (vaccine type, adjuvants, dose and
administration route)[10-12]. Evidence suggests that the gut microbiome influences
immune system development and regulation, thereby affecting vaccine responses[13-
19]. Like vaccine responsiveness, the gut microbiota is highly variable across age,

geographical locations and between people of different lifestyles[20-23]. Broad

differences in gut microbiota composition and diversity have been observed between

individuals living in rural and urban areas in LMICs[23-27]. Generally, these rural

Chapter 6

living individuals show a predominance of bacteria capable of polysaccharide
degradation and fermentation, including Prevotella and other commensal bacteria such
as the spirochaete Treponema succifaciens, which is enriched in non-industrialized
populations[20,23,24,28,29]. In contrast, urban living individuals, who generally
consume more processed foods and refined sugars, have a less diverse gut microbiota

characterized by high abundance of Bacteroides[23,26,30,31].

Gut microbiota variation has been linked to both humoral and cellular vaccine
responses® with the strongest associations found in mice receiving non-adjuvanted
vaccines (e.g. non-adjuvanted influenza vaccine and inactivated polio vaccine)[32,33]
The mechanisms underlying these associations include the production of
immunomodulatory metabolites such as short-chain fatty acids[6,33]. In addition, it has
been shown that microbial ligands from the microbiome may serve as natural vaccine

adjuvants®. Indeed, studies in knockout mice have shown that innate sensing of
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bacterial flagellin in the gut microbiome can provide adjuvant signals enhancing the
antibody response to non-adjuvanted vaccines such as trivalent influenza vaccines
(TIV) and polio vaccine[32]. The role of the microbiome in live-attenuated (self-
adjuvanted) vaccine responses remains contentious. While studies on the yellow fever
vaccine show that antibody responses in antibiotic-treated mice are similar to those in
non-treated mice, suggesting minimal microbiome influence[32,34], there is also
research indicating that the microbiome may impact responses to other live-attenuated
vaccines, like BCG[35-37]. These findings so far suggest variation in associations
between the host microbiome and the response to specific vaccines._In humans, similar
in-human antibiotic intervention studies have not been performed for self-adjuvanted
vaccines. Therefore, it is currently unknown whether the microbiota plays a role in
potentiating the immune responses to self-adjuvanted vaccines, such as yellow fever
vaccine and are generally considered prone to developing poor vaccine responses.
Given that the gut microbiota can be modulated through diet and the administration of
pre- or postbiotics, it may pose an interesting target for future strategies to enhance

vaccine responses in these vulnerable populations.

We hypothesize that the gut microbiota profiles in rural and urban living Tanzanians
are linked to vaccine responsiveness. To study this, we recruited healthy Tanzanian
adults and vaccinated them with yellow fever vaccine (YF-17D). Stool and blood
samples were collected over time. In line with previous work, we demonstrate that the
gut microbiota composition is profoundly different between rural and urban living
individuals and is linked to dietary habits. Variation in yellow fever neutralizing
antibody responses may be at least partly explained by differences in microbiota

community state types, potentially outweighing the impact of living location.

Results

Baseline characteristics of the study population

We enrolled 185 individuals living in rural and urban locations in Moshi, Northern
Tanzania (Figure 1a-b and Supplementary Figure 1). Individuals were randomized

into a vaccination group, including those who received the yellow fever vaccine (YF-

162



Gut microbiota and yellow fever responses

17D; n=155) or a non-vaccinated control group (7 = 30). All individuals were followed
over six months and demographics and lifestyle variables (housing, assets and food
history) were collected (Supplementary Table 1 and Supplementary Table 2,
Supplementary Figure 2). Plasma and/or stool samples were collected at baseline, day

28, 56 and 178 (Figure 1c¢).
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Figure 1 | Study overview.

a) Geographic map of study sites in Tanzania (Moshi Urban and Moshi Rural), within the Kilimanjaro region.
b) Graphical representation of the number of urban and rural living participants included in the study and of
those from whom stool samples for microbiota assays were available, stratified by the total number of
participants (V) and the number of individuals who received the yellow fever (YF-17D) vaccine (Nyuc)- €)
Study design and number of samples at each time point. Numbers depicted as 7 (#,4.c), i.€. total number of
samples (number of samples from vaccinated individuals). The number of samples in which neutralizing
antibodies were measured only includes those samples with a matching stool sample. d) Graphical summary
of study analyses. Questionnaire data from all included individuals (N = 185) were used in multiple
correspondence analyses (MCA)/principal component analyses (PCA) to derive lifestyle/food scores. The
associations between microbiota profiles and demographics and lifestyle factors (summarized in scores) and
vaccine responses were assessed. Stool samples were available for microbiota sequencing from 143 of 185
(77.3%) individuals (n = 74 rural and 69 urban) (Table 1). A total of 154 stool samples were collected from
143 individuals (paired samples before and after vaccination were available from 11 individuals). The median

age was 23.1 years (interquartile range [IQR], 21.2-27.1 years) and 43% were female (35% vs 52% in rural
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and urban locations, respectively, p = 0.040). Baseline characteristics of the microbiota cohort were similar

to the overall cohort (Table 1 and Supplementary Table 1). The prevalence of parasitic infections was 4.9%

and these infections were detected only in individuals from rural areas (Table 1).

Table 1 | Baseline characteristics of the study population (N = 143).

Variable Overall, V=143 Urban Moshi, N Rural Moshi, N p-value
=69 =74

Female sex 62 (43%) 36 (52%) 26 (35%) 0.040

Age 23.1(21.2,27.1) 23.0(21.2,24.6) 24.0(21.2,29.7) 0.209

Age categories <0.001

18-25 94 (66%) 55 (80%) 39 (53%)

26-36 49 (34%) 14 (20%) 35 (47%)

BMI 22.5(19.8,25.1) 23.1(20.4,26.4) 22.2(19.8,24.4) 0.207

BMI classification 0.486

<18.5 16 (11%) 6 (8.7%) 10 (14%)

18.5-24.9 91 (64%) 42 (61%) 49 (66%)

25.0-29.9 27 (19%) 16 (23%) 11 (15%)

>30 9 (6.3%) 5(7.2%) 4 (5.4%)

Systolic blood pressure 117 (106, 124) 110 (102, 120) 120 (110, 129) 0.003

(mmHg)

Diastolic blood pressure 70 (65, 78) 70 (63, 76) 72 (67,79) 0.099

(mmHg)

Hemoglobin level g/dl 15.00 (13.60, 16.20) 14.30 (12.60, 15.65 (14.20, <0.001
15.60) 16.50)

Random blood sugar, mmol- 5.20 (4.80, 5.80) 5.30(4.90, 6.00) 4.95 (4.70, 5.50) 0.008

lAA

Highest level of education <0.001

Primary 43 (30%) 2 (2.9%) 41 (55%)

Secondary 69 (48%) 38 (55%) 31 (42%)

College 15 (10%) 14 (20%) 1 (1.4%)

University 16 (11%) 15 (22%) 1 (1.4%)

Helminth infection® 7 (4.9%) 0 (0%) 7 (9.5%) 0.014

Insurance status 63 (44%) 60 (87%) 3 (4.1%) <0.001

Occupation <0.001

Farming 28 (20%) 10 (14%) 18 (24%)

Elementary occupation 50 (35%) 7 (10%) 43 (58%)

Employed/business owner 58 (41%) 49 (71%) 9 (12%)

Other 7 (4.9%) 3 (4.3%) 4 (5.4%)

Received yellow fever vaccine 121 (85%) 55 (80%) 66 (89%) 0.116

N = 143 participants. Values represent number of participants (percentage of total) and median (interquartile

range [IQR]) for categorical and continuous variables, respectively. Comparisons between locations were

performed using Fisher’s exact, chi-squared and Mann—-Whitney U-test for categorical and continuous

variables, respectively. * Stool was tested for helminths using the Kato-Katz method, testing for Schistosoma

mansoni, Ascaris lumbricoides, hookworm and Trichuris trichuria. Additionally, urine was tested for

Schistosoma haematobium and Schistosoma mansoni using the POC-CCA method.
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Lifestyle and food scores vary with living location

Lifestyle questionnaire data were combined into a single lifestyle score to objectively
gauge rural/urban living location-associated lifestyles (N = 185). To obtain the lifestyle
score, we applied multiple correspondence analysis (MCA, a dimensionality reduction
method for categorical data) to 38 questions (118 variable categories; Supplementary
Figure 3a). MCA separated individuals based on living location, especially across
principal component (PC) 1 (‘lifestyle score’, Supplementary Figure 3b), which
captured 12.1% of the variation in questionnaire data. Rural individuals showed a larger
spread across both PC1 and PC2, indicating they exhibit more diverse lifestyles. All
variable categories contributed to the lifestyle score (Supplementary Figure 3c), with
variables related to possession of assets showing the highest cumulative contribution
(57.8%). Variable categories most related to higher lifestyle score (associated with
living in urban areas) included possession of household assets (e.g. working television,
iron, watch, computer, refrigerator, radio, car/truck or computer). Variables related to

housing quality, including the presence of a pit latrine, floors made of soil or sand and

walls made of cane/palm/trunks/bamboo contributed to low lifestyle score (related to

living in rural areas) (Supplementary Figure 3d-e). PC2 scores were additionally
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driven by livestock-associated variables (Supplementary Figure 3f-g). Lifestyle
scores (PC1) were similar for the overall (N = 185) and microbiota (N = 143) cohort

(Supplementary Figure 3h).

Given the known association between diet and microbiome[38], we additionally
developed a food score, based on 11 questions on frequency of consumption of specific
food per week (ordinal variables). Using principal component analysis (PCA), variation
in food consumption was captured across PC1 (‘food score’), again showing a clear
separation between rural and urban groups (Supplementary Figure 4a-b). In contrast,
PC2 covaried with the average reporting frequency across all food variables
(Supplementary Figure 4c), indicating interindividual differences in how the food
questionnaire was filled out. Logistic regression analysis indicated that frequent
consumption of fish, locally brewed beer (composed of fermented banana and millet)
and green vegetables (p < 0.009) was significantly associated with rural living, whereas

a carbohydrate-rich diet consisting of rice and potatoes was related to living in urban
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areas (adjusted for all other food variables and sex, p < 9.0 x 10"*; Supplementary
Figure 4d). Both lifestyle and food score were included in microbiota association tests

(N = 143; Figure 1d).

Characteristics of microbiota data

To characterize the microbiota profiles of rural and urban living individuals, stool
samples were subjected to Illumina MiSeq sequencing of V3-V4-region of the 16S-
rRNA-gene, resulting in a median of 93,471 reads (range 58,482-124,868) per sample.
A median of 68,648 reads (38,118-93,731) per sample remained after bioinformatic
processing and quality filtering. We identified 3,354 amplicon sequence variants
(ASVs) that occurred in >2 samples. ASVs could be aggregated into 272 genus-level
taxa, 25 of which were part of the ‘core microbiota’ (genera detected in 80% of samples
at >0.1% relative abundance). Highly abundant genera included Prevotella (mean
relative abundance 27.6%), Bacteroides (7.9%), Faecalibacterium (7.7%),
Lachnospiraceae (4.2%), Oscillospiraceae (3.5%), Blautia (2.6%) and Succinivibrio
(2.4%). All microbiota analyses are conducted on samples collected at day 56, if not

mentioned otherwise.

Microbiota profiles differ between rural and urban living Tanzanian adults

First, we investigated differences in microbiota profiles between rural and urban living
Tanzanian adults. The number of observed ASV's was higher in rural compared to urban
living Tanzanians (linear model, adjusted for vaccination status, age, sex and
sequencing depth, 8 = 89.0, p = 1.6 x 10%). Shannon diversity, a measure of within-
sample microbial diversity, was higher in rural compared to urban living adults (f =
0.368, p = 1.1 x 10°, respectively; Figure 2a). Similarly, a higher number of observed
genera was detected in rural compared to urban living individuals (= 13.2, p = 1.0 x
10%), yet genus-level Shannon diversity did not show differences between groups (8 =

-0.019, p = 0.789; Figure 2b).
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Next, we investigated the global differences in gut microbial community structure
between rural and urban living Tanzanians. Principal component analysis (PCA on a
centered-log-ratio [CLR]-transformed genus-level abundance matrix) indicated
profound differences linked to rural/urban living location (Figure 2c¢), which was
confirmed by Permutational Multivariate Analysis of Variance (PERMANOVA;
adjusting for vaccination, age and sex; R’ = 9.0%, p < 0.001). Other important factors
driving overall microbial community variation included lifestyle score (PC1 housing,
assets and food-related questionnaire data), food score (PC1 food-related questionnaire
data), highest level of education, PC2 (lifestyle) and sex (PERMANOVA, R’ = 7.9%,
6.6%, 6.3%, 2.2% and 1.6%, respectively, p < 0.005), which are all at least partly
collinear with rural/urban living location, which was therefore not considered in our
models (Table 1 and Supplementary Table 1, Supplementary Figure 3b and

Supplementary Figure 4b). No statistically significant association between helminth
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Figure 2 | Microbiota profiles differ across Tanzanians living in rural and urban regions.

a-b) ASV-level (a) and genus-level (b) Shannon diversity between study groups. Box plots represent the 25™
and 75" percentiles (lower and upper boundaries of boxes, respectively), the median (middle horizontal line),
and measurements that fall within 1.5 times the interquartile range (IQR; distance between 25™ and 75™
percentiles; whiskers). Density plots were used to visualize the distribution of data points. Statistical
significance between groups was assessed using linear models with observed richness or Shannon diversity
as outcome, adjusting for vaccination status, age, sex and sequencing depth. ¢) Principal component analysis
(PCA) biplot using CLR-transformed genus-level microbiota features across day 56 samples. Percentages in
square brackets denote the total variance explained by the first two principal coordinates. Each data point
indicates a stool microbiota sample colored by group (rural/urban living). Ellipses reflect the data spread at
a 95% confidence level. Density plots show the distribution of MDSI (x-axis) and MDS2 (y-axis) score. The
15 highest ranking genera across all day 56 samples were simultaneously visualized (squares). R’ and
statistical significance of the association between group and the overall microbiota composition was assessed
using PERMANOVA-test (1,000 permutations), while adjusting for vaccination status, age and sex. d) Bar
plots indicating the effect size (R’) of the association between demographic, technical, lifestyle or food-
related variables (or derived scores based on these variables; see Supplementary Figure 3 and Supplementary
Figure 4) and the overall microbiota composition. Statistical significance was assessed using PERMANOVA-
tests. Each variable was tested separately. All analyses were adjusted for living location (except when
assessing the impact of lifestyle/food-related variables, helminth infection status or sex), vaccination status,
age and sex. Differential abundance analyses were primarily performed at genus level (MaAsLin2), testing
all genera present at >0.1% abundance in >10% of samples. We found higher abundance of 34 genera in rural
living individuals compared to 14 genera enriched in those living in an urban environment (109 genera tested;

Padi < 0.05 and log,-transformed fold change (FC) > 1.5; Figure 3a).

infection status and microbiota composition was detected (R’ = 0.8%, p = 0.184).
Importantly, no association with vaccination status was detected (PERMANOVA,
adjusting for living location, age and sex; R’ = 0.5%, p = 0.787), suggesting that the
vaccine had no impact on the gut microbiota composition at day 56 post-vaccination.
In addition, no statistically significant effects for age, BMI or sequencing depth were
observed (PERMANOVA, adjusting for living location, vaccination age and sex, as
appropriate; R? = 0.8%, 0.8% and 0.6%, respectively, p > 0.122; Figure 2d).

Specific taxa have previously been associated with industrialized and non-
industrialized populations and are referred to as BloSSUM (bloom or selected in
societies of urbanization/modernization) and VANISH (volatile and/or associated
negatively with industrialized societies of humans) taxa respectively??. We found that

urban-associated genera (15/109 genera tested) were significantly enriched for
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BloSSUM taxa (9/14 urban-associated genera, compared to 6/95 non-urban-associated
genera, Fisher’s Exact test p = 1.8x10°% Figure 3b and 2c), whereas rural living
individuals were specifically devoid of these genera (1/34 compared to 14/75, p =
0.034; Figure 3d). In contrast, genera associated with rural living location were not
significantly enriched for VANISH taxa (total 18/109; 8/34 rural-associated genera,
compared to 10/75 non-rural-associated genera, Fisher’s Exact test p = 0.264; Figure

3e).

For rural living individuals the strongest enriched genus was Succinivibrio (logoFC =
6.76, pag = 1.3x10712). Together with Treponema (10g2FC = 1.62, puy = 0.061), these
genera showed a clear multimodal distribution within rural living individuals, with
maximum relative abundance peaks detected at 8.6% and 7.0% for Succinivibrio and
Treponema, respectively (post-hoc analysis, Figure 3f-g). Six genera belonging to the
family of Prevotellaceae were strongly associated with rural living, including

Prevotella (7/9) and Alloprevotella (1ogFC > 3.92, pug < 7.7x107). Similarly, five

genera belonging to the family of Lachnospiraceae were enriched in rural living

individuals including Butyrivibrio, Eubacterium ruminatium and Ruminococcus
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torques (1ogoFC > 1.78, pag < 3.3x10#). Other highly significantly enriched genera in
rural individuals included Fournierella, Holdemanella, Solobacterium, Sutterella,
Anaeroplasma and Catenibacterium (pagi < 3.4x10%; Figure 3a and Supplementary

Figure 5).

In urban living individuals, abundance of Bacteroides and Parabacteroides was
significantly higher compared to rural living (log,FC = -3.70 and -2.30, pag = 8.9%x10"
12and 3.78%107, respectively). Bacteroides showed a multimodal distribution among
individuals living at an urban location with two major peaks at a relative abundance of
1.2% and at 24.2% (Figure 3g). Other highly urban-associated genera included
Alistipes, Parasutterella, Bifidobacterium, Odoribacter, Bilophila and Akkermansia
(Pagy < 2.8%107). The gut microbiome of urban living individuals was further enriched
for genera belonging to the family of Enterobacteriaceae, including Enterobacter,
Klebsiella and Escherichia/Shigella (p.q < 0.009; Figure 3a and Supplementary
Figure 5). Taken together, rural living individuals lacked BloSSUM taxa and had
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higher abundance of VANISH taxa such as Prevotella and Succinivibrio, whereas urban

individuals were enriched with BloSSUM taxa like Bacteroides.

a b
125 (Gl 1
L] 2.F I
3. Pre laceae NK3B31 group Urban-associated | 9 (64) 14
L. 2—— Non-urban-associated 6 (6) 89 95
5. Prevotella § LA
10,0 6. Prevotella 7 Total 15 94 109
7. Hi — Relative abundance (%) p=18x10°
* 01
® 10 c d\
N3
75
= ® 50 ,\?e d‘sﬂ‘ @*9
g @ 200 Urt yeiated! 0 (0) 141 14
&L = Non-urban-associated 18 (19) 77 - 95
k) = 1x10-8 Total 18 91 109
& 5o | ERIETIITTS s Classification
= VANISH p=0.120
4 BoSsUM o &
* None S >
25 d‘@,@
Pagy = 0.05 Associated with: F(umi—af:b(n:ia!edj 1(3) 3334
Non-rural-associated 14 (23) 61 75
bt Total 15 94 109
0.0 g ’ Urban p=0.034
=75 =50 -25-15 00 1525 5.0
e
log,FC ;‘§ o
B d‘é <&
Rural-associated | 8 (24) 26 | 34
Non-rural-associated - 10 (9) 65 ' 75
f Total 18 91 109
Phylum: Genus p=0.264
Firmicutes:  Faecalibacterium
i Firmicutes:  Blautia
| — Firmicutes:  Lachnospiraceae family
Firmicutes: ~ Other
Bacteroidota;  Prevolella 9
75| Bacteroidota;  Bacteroides
Bacteroidota:  Prevotella
g g Bacteroidota:  Other
Py @ Proteobacteria: Succinivibrio
o
§ 5 50 Proteobacteria: Escherichia Shigella
g E Proteobacteria: Sutterella
S 2 Proteobacteria: Other
Actinobacteriota: Bilidobacterium
Actinobacteriota: Collinsella
Actinobacteriota: Senegalimassilia
Actinobacteriota: Other
Otherphyla:  Trepohema

Other phyla:  Brachyspira
| Otherphyla:  Sphaerochaeta
Other phyla: ~ Other

Tiaponema

' T (G
i ] ] 20 fl ' 1
1 ! ! i 0
H i : f ¢ i
" Ll ] 1.5 l ] 1
. : : ) P
' 1 ' 1.0 1 1 1
: | \ \ Vo
: : ! ,
: i ! 05 | 1
00 T — | 00 ; —
-6 -4 -2 0 -6 -4 -2 0

-6 -4 -2 0
log, g(relative abundance + min/2)

170



Gut microbiota and yellow fever responses

Figure 3 | Differential abundance analyses indicate specific taxa are related to urban/rural living.

a) Volcano plot visualizing genera enriched in rural or urban living individuals. Statistical significance
between groups (rural/urban living) was assessed using linear models with genus-level abundance as
outcome, adjusting for vaccination status, age and sex. Genera with p,4;< 0.05 and log,-fold change (FC) <-
1.5 or >1.5 are colored and genera with a p,g;< 1 x 10? and log,FC <-1.5 or >1.5 were annotated. The shape
of the data points indicates whether these genera were previously considered to belong to VANISH (volatile
and/or associated negatively with industrialized societies of humans) or BloSSUM (bloom or selected in
societies of urbanization/modernization) taxa. b-e 2 x 2 tables showing the number of BLoSSUM (b and d)
or VANISH taxa (c and e) across urban- and rural-associated taxa. The number between brackets indicates
the percentage of VANISH/BloSSUM/other taxa out of the total number of (non-)-rural-/urban-associated
taxa. Statistical significance was assessed using Fisher’s Exact tests. f) Stacked bar chart showing the genus-
level taxonomic composition of each sample as relative abundances. Bar colors are based on a hierarchical
color palette with hues specified by Phylum and shades specified by Genus. Samples are arranged based on
Bray-Curtis dissimilarities and the plot is divided by living location. Right of the per-sample bar chart, a bar
chart showing mean relative abundance for each taxon per group is shown. g) Density plots showing the
relative abundance distribution of Bacteroides, Succinivibrio and Treponema within rural or urban living

individuals. Modes are indicated by dashed lines.

Rural and urban-associated differences in diet are linked to microbiota profiles

Given the multimodal distribution of the relative abundance of specific genera not only

between rural and urban living individuals, but also within individuals from the same
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location (Figure 3g), we next assessed the impact of dietary history on microbiota
composition. To study this, we clustered samples into two Community State Types
(CSTs; Supplementary Figure 6a and Supplementary Figure 6b) using Dirichlet-
multinomial modelling (DMM). CST1 was characterized by a (non-significant)
enrichment of VANISH bacteria (25% vs 12%, Fisher’s Exact test p = 0.106), including
Prevotella, Alloprevotella, Holdemanella and Succinivibrio, whereas CST2 was
strongly enriched for BloSSUM taxa (67% vs 7%, Fisher’s Exact test p = 6.5x10°),
like Bacteroides, Alistipes, Parasutterella and Bifidobacterium (Figure 4a and

Supplementary Figure 6c-f).

Although the majority of samples from rural living individuals clustered in CST1
(93.2%), urban living individuals were split across CST1 (30.4%) and CST2 (69.6%).
Baseline characteristics between urban living individuals with CST1 (referred to as

‘rural-like urbanites’) and urban living individuals with CST2 did not differ, except that
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a higher proportion of rural-like urbanites was male (71.5% vs 37.5%, p = 0.009;
Supplementary Table 3). Comparing rural-like urbanites to urban living individuals
revealed highly divergent profiles, with differences similar to those observed when
assessing CST1 compared to CST2. Conversely, rural-like urbanites showed much
more subtle differences compared to rural living individuals, with enrichment of
Haemophilus and Akkermansia, but lack of rural-associated Succinivibrio and
Fournierella (109 genera tested; p.q < 0.05 and log,-transformed fold change (FC)>
1.5; Supplementary Figure 7).

We did not observe differences in either lifestyle or food score between rural-like urban
or urban individuals (Figure 4b). However, individual food variables did show
differences, indicating that rural-like urbanites less frequently consume rice (logistic
regression analyses adjusted for all other food variables and sex, f =-1.95, p = 0.032)
and more beans and/or peas (f = 0.85, p = 0.078) compared to urbanites belonging to
CST2 (i.e. non-rural-like urbanites). Regardless, rural-like urbanites still more
frequently consumed rice compared to rural living individuals (f = 2.20, p = 0.033).
Furthermore, rural-like urbanites ate significantly less ugali (maize stiff porridge)
compared to rural living individuals (f = -3.38, p = 0.023), yet ugali consumption was
no different from other urban living individuals (CST2) (=-0.73, p =0.212). Last, we
found that rural-like urban individuals less frequently eat potatoes compared to both
urban living individuals (CST2; = -0.815, p = 0.087) and rural living individuals (5 =
-2.02, p = 0.100; Figure 4c¢). Together, these findings suggest urban living individuals
less frequently consuming starch/carbohydrate-rich dietary products (potatoes and rice)
and more fiber-rich products (beans and/or peas) harbor a microbiota reminiscent of
that of rural living individuals, despite slight differences in dietary habits compared to

this latter group.

Genus-level microbiota association tests (linear models including all food variables,
vaccination, age and sex) were stratified by living location, given the strong collinearity
between living location and dietary habits. Among rural living adults, we detected
seven significant associations, suggesting enrichment of Prevotella, Prevotellaceae and

Fubacterium ventriosum and lower abundance of Odoribacter with increased
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consumption of locally brewed beer. Odoribacter abundance was also negatively
associated with the consumption of bananas, as was Alistipes abundance (Figure 4d).
Within urban living individuals, we detected five significant associations, indicating
frequent ugali consumption is linked to the depletion of Oscillibacter,

Christensenellaceae, Clostridia, Eubacterium eligens and FEubacterium siraeum

.
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Figure 4 | Frequent consumption of carbohydrate-rich dietary products is associated with
urbanization.

a) Volcano plot visualizing genera enriched in CST1 and CST2. Statistical significance between CSTs was
assessed using linear models with genus-level abundance as outcome (no adjustment for covariates). Genera
with p,g < 0.05 and log,-fold change (FC) <-1.5 or >1.5 are colored and genera with a p,;< 1 x 107 and
log,FC <-1.5 or >1.5 were annotated. The shape of the data points indicates whether these genera were
previously considered to belong to VANISH (volatile and/or associated negatively with industrialized
societies of humans) or BloSSUM (bloom or selected in societies of urbanization/modernization) taxa. b)
Differences in lifestyle scores (PC1/PC2; Supplementary Figure 3) and food scores (PC1/PC2;
Supplementary Figure 4) between rural living individuals, rural-like urbanites (urban living individuals
belonging to community state type [CST]1; Supplementary Figure 6) and urban living individuals (urban
living individuals with CST2). See legend Figure 2a-b. Statistical significance between groups (n = 3) was
assessed using linear models with lifestyle/food score as outcome, adjusting for vaccination status, age and
sex. Pairwise contrasts were extracted and adjusted using Tukey’s post-hoc test. ¢) Association between food
variables and group (rural living individuals, rural-like urbanites (urban living + CST1) or urban living
individuals with CST2). For each comparison (panel), a separate logistic regression model was fitted
including all food variables and sex. Model estimates are depicted along the x-axis (colored points). Colors
indicate the group with which a given food variable is positively associated. Whiskers denote 95% confidence
intervals (Cls; Wald-method). d-e) Association between food variables and genera (present in >10% of
samples at >0.1% abundance across day 56 samples; » = 109) within rural (d) and urban living individuals
(e). Results were stratified by food variable and only food variables with any significant (p < 0.05)
associations are shown. Log, fold change (FC) is shown along the x-axis. Whiskers denote 95% confidence
intervals (CIs; Wald-method). Asterisks denote statistical significance (¥, p < 0.05; **, p < 0.01; *** p <
0.001).

Rural-like microbiota profile is linked to yellow fever neutralizing antibody titers

Next, we investigated whether vaccine immunogenicity differed between rural and
urban living individuals. Across all vaccinated individuals (N = 155), no significant
differences in yellow fever Plaque Reduction Neutralization Test (PRNT) (PRNTso and
PRNT9y) were found between rural and urban living individuals at 4 weeks post-
vaccination (generalized linear mixed effects regression [GLMER], adjusted for age
and sex, p=0.161 and p = 0.226, respectively, Supplementary Figure 8a-b). However,
for the microbiota sub-cohort (i.e. with stool sample available, N = 121), yellow fever
neutralizing antibodies (PRNTso) at 4 weeks post-vaccination were higher in rural
(geometric mean titer [GMT], 954 [95% CI, 742 — 1,226]) compared to urban living
individuals (656 [95% CI, [490 — 880], p = 0.042). This was similar for PRNTy values
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(p» =0.032, Figure 5b and Supplementary Figure 8d). Antibody titers (PRNTS50) were
lower at 6 months compared to 4 weeks post-vaccination for both urban (PRNT5so; f =
-1.16, p=0.082) and rural living individuals (PRNTSso; 5 =-1.48, p = 0.040), with urban
living individuals showing a slightly stronger and statistically significant drop (Figure
5b). Similar results were found when considering all individuals (N = 155;

Supplementary Figure 8c).

To assess whether microbiota profiles impact subsequent YF-17D-induced vaccine
responses, we first ascertained that vaccination at day 0 had no impact on microbiota
profiles collected at day 56. No significant difference in overall microbiota composition
between day 56 samples from vaccinated compared to non-vaccinated subjects were
found (PERMANOVA-test, adjusted for living location, age and sex, R’ = 0.5%, p
= (.787; Figure 2d and Supplementary Figure 9a). Also, paired day 0 and day 56
samples of vaccinated individuals did not show a consistent direction of movement

(Supplementary Figure 9b-c, PERMANOVA-test, R’ = 2.3%, p = 0.422). Within-

and between-subject distances between sample pairs and permutation tests across

between-subject distances similarly indicated no statistically significant effect of
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vaccination (Supplementary Figure 9d-e). Therefore, day 56 samples were considered
representative of day 0 (i.e. before vaccination) and were used as such for downstream

analyses.

Next, yellow fever neutralizing antibodies (PRNTS5 at 4 weeks post-vaccination), were
linked to Shannon diversity estimates, adjusting for living location, the interaction
between living location and Shannon diversity, age and sex. Shannon diversity was
negatively associated with antibody titers in rural-living individuals (# = -0.345, p =
0.034), but positively in urban-living individuals (interaction term; £ = 0.496, p =
0.025; Supplementary Figure 8e). Similar results were found when considering

PRNTj5¢ at 6 months post-vaccination and PRNTOO titers.

Following, yellow fever neutralizing antibodies (PRNTso or PRNTgg) were related to
CSTs, showing that CST1 (enriched in rural living individuals) is linked to higher
antibody titers compared to CST2 (PRNTso; p = 0.005, Figure Sc and Supplementary

Figure 8f [PRNT90]). Of note, this association showed large model estimates and was
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highly significant, as opposed to initial comparisons between rural and urban living
individuals, indicating microbial signatures better explain antibody variation than
living location. Though antibody titers were higher 4 weeks post-vaccination,
individuals with CST1 showed a much stronger and faster drop over time (PRNTso; f
=-1.96,, p = 0.002) compared to CST2 (f =-0.02, p = 0.805; Figure 5d).

‘We found that within urban living individuals, there was a striking variation in antibody
titers (particularly PRNTs¢) linked to CSTs, with rural-like urbanites showing higher
PRNTSsp compared to urban living individuals with a CST2-profile (GMT 95%CI,
1,064 [723 — 1,565] vs 548 [381 — 787], p = 0.022, Figure Se and Supplementary
Figure 8g [PRNTy]). Furthermore, in rural-like urbanites, stronger waning was seen
(PRNTso at 6 months compared to 4 weeks post-vaccination; f = -0.502, p = 2.5 x
10%) compared to rural living individuals (8 = -0.116, p =0.065) and urbanites with
CST2-profile (# = -0.015, p =0.856, Figure 5f). Findings for PRNT were similar but
less outspoken (Supplementary Figure 10). Together, these findings indicate that
microbiota profiles might be an important driver of yellow fever neutralizing

antibodies in this population.

Differential abundance analyses at genus level (n = 109) revealed no significant
associations between specific genera and yellow fever neutralizing antibodies (PRNTso
or PRNT9o) at 4 weeks or 6 months post-vaccination (linear models, adjusting for either
1) living location, age and sex or 2) age and sex). This may indicate that the bacterial
community in its totality, rather than single genera, relates to yellow fever vaccine

immunogenicity.
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Figure S | Yellow fever neutralizing antibody titer variation across living location and with microbiota
profiles (V = 121). a-f) Boxplots (see legend Figure 2a-b) showing yellow neutralizing antibody titers
(PRNTs) in vaccinated individuals from whom a stool sample was collected (N = 121) at baseline (day 0,
d0), 4 weeks post-vaccination (day 28, d28) and 6 months post-vaccination (day 178, d178). a, c, e)
Participants were compared according to group (rural/urban living location; a) CST (c) and group/CST (i.e.
rural living individuals, rural-like urbanites [CST1] and urban living individuals [CST2]) (e). b, d, f) Boxplots
showing yellow neutralizing antibody titers (PRNTs) at 4 weeks post-vaccination (day 28, d28) compared
to 6 months post-vaccination (day 178, d178) for group (rural/urban living location; b), CST (d) and
group/CST (f). Diamond-shaped data points and color values at the bottom of the plot denote logo-base
geometric mean titers. Statistical analyses were performed using a generalized linear mixed effects model
with logj-transformed PRNT;s)-values as outcome, group, CST or group/CST, time point, the interaction
between group, CST or group/CST and time point, age and sex as fixed effects and participant ID as random
effects. Pairwise comparisons of estimated marginal means between groups were computed at each time point
(a, c and d) or between day 28 and day 178 for each group (b, d and f). Values under the limit of detection

(<10) were assumed to have a value of 5.
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Discussion

Here, we assessed the associations between rural or urban living location, gut
microbiota profiles and yellow fever vaccine responses. We identified striking
differences in microbiota community composition between rural and urban living
individuals, which appeared in part related to dietary habits. Gut microbiota profile
variation was linked to yellow fever vaccine immunogenicity and waning, at least at a

microbiota community, but not a genus-level.

We show that rural living individuals harbor a gut microbiota enriched for
Succinivibrio,  Treponema and  Prevotella, which is consistent with
literature[20,26,28,39], and likely explained by variation in dietary habits. Higher
abundance of these microbiota members has been associated with the digestion of
plant-rich diets and the production of short-chain fatty acids[24,40,41]. Indeed, we
found that Tanzanians living in rural settings consume more grain-based food products
such as ugali (maize stiff porridge), vegetables and local beer made by a mix of
fermented bananas and finger millet[26]. Strikingly, within those living in rural areas,
local beer consumption in particular was associated with a higher abundance of
Prevotella, suggesting it may be a particularly important driver of the rural microbiota

signature.

Urban living individuals exhibited a higher abundance of Bacteroides,
Parabacteroides, Enterobacteriaceae and Bifidobacterium, which may be related to the
consumption of a more carbohydrate-rich diet, again largely aligning with
literature[27,31,42]. Interestingly, approximately half of the urban living individuals
showed a high abundance of Prevotella, which we identified as characteristic of the
rural microbial signature. The microbiota composition of this subgroup of urban living
individuals co-clustered with rural living individuals based on their microbial make-up.
Despite that, these rural-like urbanites showed a different dietary consumption pattern
from both rural living individuals and their urban counterparts, with high consumption
of beans and peas (rich in proteins, carbohydrates and dietary fibers) and lower rates of

potato and rice consumption. Within the urban population we found that frequent
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consumption of ugali (maize stiff porridge) is related to a reduced abundance of
Eubacterium siraeum. Eubacterium siraeum has previously been linked to the
consumption of a Western diet and systemic inflammation[43], possibly indicating that

ugali consumption limits the establishment of microbes related to industrialization.

Genera associated with rural or urban living location were classified as either
BloSSUM or VANISH taxa. The distinction between these taxa has been based on
previous work comparing the gut microbiome of a Tanzanian population of Hadza
hunter-gatherers to that of populations living industrialized lifestyles[22]. Although
rural living individuals in our study showed a lack of industrialized lifestyle-associated
BloSSUM taxa, we did not observe a significant enrichment for VANISH taxa,
suggesting that indeed the population of rural living individuals recruited in our study
is possibly in transition between traditional and industrialized lifestyles. Conversely, a
clear signature of Westernized microbiota profiles was detected in urban living

individuals, indicated by significant enrichment of BloSSUM taxa. Apart from diet,

there may be other host and environmental factors contributing to the observed

differences in microbiota composition between rural and urban living individuals.

Chapter 6

Among others, agricultural activities, such as livestock farming[44,45], and
environmental exposures, including indoor cooking, wood stove cooking or exposure
to pollutants, may impact microbiota composition[46]. Helminth infections have
previously been linked to microbiota changes[47-50], but since helminth infection
prevalence was low in our rural cohort (4.3%), we presume this was not a main driver
of rural urban differences in our study. We detected slightly higher yellow fever
neutralizing antibody responses 4 weeks post-vaccination in participants living in rural
compared to urban settings. The difference was statistically significant in the
microbiota sub-cohort, but not in the total vaccinated cohort. At 6 months, titers
remained higher in rural settings. This is not in line with the general hypothesis that
vaccine immunogenicity in rural populations is lower than urban urban-living
individuals, especially within LMICs, which has been observed for a wide range of
vaccines[6,51]. Yellow fever vaccine, which is highly effective, has previously been
used to model human immune responses to vaccines in general. As such, several studies

assessed yellow fever vaccine immunogenicity, showing lower antibody titers and rapid

179



Chapter 6

waning in Ugandan compared to Swiss individuals and lower seroprevalence rates in
rural Ghanaian compared to urban Malian infants[52,53]. In both studies, the observed
differences in immunogenicity are relatively small compared to other vaccines, such as
for malaria[54,55], and may be obscured by between-country differences. Moreover,
discordant results have been reported in some studies assessing factors associated with
yellow fever vaccine immunogenicity[56,57]. Regardless, a recent study in Uganda
(POPVAC)[58], did show higher yellow fever vaccine antibody titers in urban living
individuals compared to individuals living in rural settings, which is in contrast with
our findings and at least in part could be explained by the high helminth and malaria
infection prevalence in the Ugandan study. Also, the rural sites sampled in our study
are relatively developed compared to other rural sites in Tanzania and some other East
African countries, with better access to health care and nutrition[59,60]. Last, rural
individuals in our study live at high altitude, which induces a hypoxic state, as reflected
by their high hemoglobin levels. We speculate this causes an increase of transcriptional
factor hypoxia-inducible factor (HIF), which induces metabolic and phenotypic
changes in B cells and boosts B cell differentiation and antigen switching, thus resulting
in higher antibody titers in these rural individuals[61-64]. We found that especially
within urban living individuals, a rural-like microbiota profile was related to relatively
higher antibody titers, but stronger waning, as opposed to a more Prevotella-depleted,
industrialized microbial community composition. Despite this, no significant
associations were detected between specific genera and yellow fever vaccine-induced
neutralizing antibody titers. This lack of genus-level associations could be explained
by insufficient statistical power or limited sequencing resolution from 16S-rRNA-
sequencing. Alternatively, it may suggest that the overall bacterial community, rather
than individual genera, is linked to yellow fever vaccine immunogenicity. The
microbiota has been suggested to potentiate vaccine responses by providing adjuvating
signals, although this seems most relevant to vaccines other than yellow fever vaccine,
which has endogenous adjuvants and is therefore able to engage with toll-like receptors
(TLRs) and RIG-1 receptors itself>2. Alternatively, we speculate higher yellow fever
antibody titers observed in rural living individuals and rural-like urbanites could be
related to increased consumption of fiber-rich diets which enriches for short-chain fatty

acid (SCFA)-producing bacteria, such as Prevotella/40]. In B cells, SCFAs increase
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acetyl-CoA and metabolic activity, resulting in increased antibody production[65].
Indeed, a study showed that mice fed with a diet low in dietary fibers had lower
production of SCFAs and a reduced specific antibody response towards pathogens[65].
It is possible that the microbiota-associated increase in antibody titers observed in rural
individuals in our study has been obscured in other rural populations by factors such as

a high prevalence of helminth infections and other infections such as malaria.

Although the gut microbiota of rural and urban living individuals in LMICs has been
described previously, there remains a significant gap in the literature regarding gut
microbiota profiles from LMIC populations currently transitioning from traditional to
industrialized lifestyles. Our work expands on this topic, but also furthers our
understanding on microbiome-host associations in the context of yellow fever
vaccination. Our study also has limitations, such as the use of 16S-rRNA sequencing
rather than shotgun sequencing. Additionally, as this was primarily an observational
study aimed at identifying associations between the gut microbiome and the yellow

fever vaccine responses, we could not assess causal effects. Also, we cannot exclude

the possibility that (unmeasured) microbiota-independent factors (e.g. altitude, genetic

variation and historic microbial exposures) drive vaccine immunogenicity, although the
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observed variation within the urban subgroup advocates against this. Fungal and viral
microbiota may covary with the bacterial microbiota and explain the residual variation
in vaccine responses we identified. We lacked longitudinal stool samples for most
participants, as most samples were collected post-vaccination, which may have
influenced the findings. However, our extensive analyses, also leveraging the paired
samples we had available, indicated no major impact of the vaccine on the gut
microbiota. This warrants our assumption that the microbiota measured post-

vaccination is reflective of the baseline microbiota in these individuals.

To further explore microbe-host interactions in the context of yellow fever vaccination,
future studies could include measurements of the cellular immune responses, which
have previously been shown to differ at least between HIC and LMIC-populations[52].
Taken together, we show strong differences in gut microbiota profiles between rural

and urban living individuals, with part of urban living individuals currently
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transitioning towards a more industrialized microbiota profile. Microbiota variation
within urban living individuals was associated with moderate variation in yellow fever
vaccine-induced neutralizing antibodies and antibody waning. These findings suggest
that gut microbiota profiles may impact vaccine responsiveness in a vaccine- and
context-dependent manner. Identifying adult subpopulations where microbiota
influences vaccine responsiveness creates opportunities for research on microbiota-

based interventions.

Methods

Study design

This is a prospective longitudinal cohort study (CapTan) in a healthy, 18-35-year-old
Tanzanian population recruited in a rural and urban Moshi, Northern Tanzania.
Volunteers were enrolled and randomized into a vaccine group receiving a single 0.5
mL intramuscular dose of the yellow fever vaccine (YF-17D, Sanofi-Pasteur) and a
control group. Randomization occurred by allocating every sixth individual to the
control group. No placebo was administered to the control group. Neither the volunteers
nor study personnel were blinded to group allocation. Plasma samples were collected
at baseline (pre-vaccination), day 28 (4 weeks post-vaccination), 56 (8 weeks post-
vaccination) and 178 (~6 months post-vaccination). Paired stool samples were collected
at baseline and on day 56 for 11 individuals. For 143 individuals, stools samples were
collected on day 56 only. All questionnaires and clinical samples were collected by a
well-trained study team consisting of medical doctors, nurses and laboratory scientists.
All samples were processed according to established standard operational procedures

and good clinical and laboratory practice principles.

The study protocol was approved by the Ethical Board of the Kilimanjaro Christian
Medical University College (No. 2588) and by the Tanzania National Ethical
Committee Board (NIMR/HQ/R.8a/Vol.IX/4089). The study was registered under The
Pan  African Clinical Trial Registry (PACTR) with trial number
PACTR202405738173023 on 03 May 2024. Data were collected in REDCap, a cloud-
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based electronic data collection system, with a server hosted at the Kilimanjaro Clinical

Research Institute (KCRI) in Tanzania.

Description of study areas

The study was conducted in rural and urban Moshi located in the Kilimanjaro region
(total population of 1.9 million (Figure 1a). The rural study area is at an elevation of
2,000-2,100 meters above sea level, while urban Moshi is at 700-950 meters above sea
level. The district of Moshi City (urban Moshi) is the administrative, commercial and
educational center of the Kilimanjaro region, having 331,733 inhabitants. Most people
practice a Western lifestyle with good general sanitation and access to clean water. The
main ethnicities are Chagga and Pare. Formal business is the main activity, followed
by government and public employment, while a small proportion of people are involved
in agricultural and entrepreneurial activities. Rural Moshi has about 535,803
inhabitants who are mainly involved in farming activities. Most people have access to

clean water, but a small proportion use borehole water sources. People live in large

family units, and their main economic activities are subsistence farming and animal

husbandry. The primary ethnicity is Chagga, and people follow Chagga traditions, such
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as drinking local brews made from banana or plantain.

Participant screening and enrollment

In rural Moshi, study information was given through community leaders and
announcements during mass gatherings in mosques, churches and village meetings. In
urban Moshi, study information was distributed using leaflets and through community
leaders, office announcements and university gatherings. Eligible participants (aged 18-
35 years and with permanent residency of a given location) were asked to enroll in the
study. Following informed consent, 233 participants were voluntarily screened for in-
and exclusion criteria. Exclusion criteria were having an acute or chronic disease
(including HIV, tuberculosis, cancer, cardiovascular disease, gastrointestinal diseases,
recurrent infections, liver, renal, endocrine or neurological disorders), >2 hospital

admissions times/year in the last year, chronic use of antibiotics or corticosteroids, use
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of other immunosuppressive drugs, recent receipt of another vaccine, lactation, positive
pregnancy test, history of blood product transfusion, hemoglobin level <8.5 g/dL,
testing positive HIV or malaria, low or high blood pressure (<90/60mmHg and
>140/90mmHg, respectively) or high blood glucose (=7.1mmol/L fasting or

>11.1mmol/L random glucose).

Participants were screened for HIV infection (SDBIOLINE HIV-1/2 3.0kit,
LOT:03ADGO020A), malaria (Malaria Ag p.f/Pan, Ref: 05FK60, LOT:05SEDGO18A)
and soil-transmitted helminth such as hookworms (Ancylostoma duodenale and
Necator americanus), Trichuris trichiura, Ascaris lumbricoides, Strongyloides
stercoralis and Schistosoma mansoni using Kato-Katz or POC-CCA (Schistosoma
mansoni and Schistosoma haematobium; butch no:220701075). Furthermore,
hemoglobin levels were measured (HemoCue Hb 301(CE:1450820055) and random
blood glucose was assessed (ACCU-CHECK glucose test strips, Roche Diabetic
care,06993761001). Weight and height were measured using a well-calibrated machine
(RGZ-160, made in China), and blood pressure was measured using
OMRON(SN:202111007949V). All individuals with abnormal laboratory or clinical
findings except those with parasitic infections received nurse counselling, referral, or
treatment before being excluded. Based on exclusion criteria, 48 of 233 participants

were excluded.

Lifestyle questionnaire

Questionnaires were adapted from the Tanzania Demographic and Health Survey and
Malaria Indicator Survey (TDHS-MIS) and a food history questionnaire previously
applied to a similar population[54,60]. We collected information on the water source,
toilet type, available cooking facilities and the materials used to construct the floor,
roof and walls of the house. We assessed exposure to livestock by collecting
information on the number of milk cows, cattle, goats, sheep, horses and poultry owned.
Inquiries were made on land ownership and possession of non-productive assets,
including radios, televisions, computers, refrigerators, ironing tools (whether powered

by charcoal or electricity), watches, motorcycles, trucks, animal-drawn carts,
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generators and motorboats. Using food questionnaires, data was collected on the
frequency of dietary products participants consume weekly, including ugali (maize stiff
porridge), plantain, banana, rice, potatoes, meat, fish, beans/peas, green vegetables,

fruits and locally brewed beer.

Microbiota profiling

Stool sample collection

Stool samples were collected at baseline and/or at day 56. For rural individuals, stool
samples were collected at the outpatient clinic or at home. For urban individuals, stool
was collected at the KCMC or at home. Feces were initially stored in a dry stool
container, before it was transferred into DNA/RNA Shield Fecal Collection (Zymo
Research, Irvine, California, USA) for transportation and storage (median [IQR] time
between stool production and storage in medium, 58.5 [15.0-113.0] minutes). Samples
were stored in a -80°C freezer at the KCMC (median [IQR] time between storage in

medium and storage in freezer, 120.5 [93.0-168.5 minutes]). Samples were transported

to The Netherlands on dry ice and stored at -80°C before further processing. Samples

of individuals who took antibiotics between study enrollment and stool sample
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collection at day 56 were excluded (n =9).

Bacterial DNA isolation

DNA was extracted from 250 pL diluted feces (in DNA/RNA Shield) by Repeated Bead
Beating (RBB) combined with purification using the chemagic DNA Stool 200 Kit H96
(Revvity, Waltham, Massachusetts, USA). Briefly, 250 puL diluted feces was
homogenized with 1.0 mL Lysis Buffer 1 of the chemagic DNA Stool 200 Kit H96 by
vortexing in a 2 mL tube (with screw cap) containing 0.5 g of sterile zirconia beads &
0.1mm (BioSpec, Cat. No. 11079101z). Cells were mechanically lysed on a FastPrep-
24™ 5@G Instrument (MP Bio, Irvine, California, USA) at 5.5 m/s for 3 cycles of 1
minute. Samples were subsequently centrifuged (16,000 x g 4°C, for 5 min) and the
supernatant was transferred to a new tube to which 30 puL Proteinase K was added,
mixed and incubated for 10 minutes at 70°C. Thereafter, samples were incubated for

another 5 minutes at 95°C followed by centrifugation for 5 minutes at high speed
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(13,000 rpm). Deep-well plates were filled with 800 puL of the supernatant (lysates) and
further isolation was done on a chemagic™ 360 instrument (Revvity, Waltham,
Massachusetts, USA) according to the manufacturer’s instructions. Finally, purified
DNA was quantified on a Qubit Fluorometer (Thermofischer Scientific, Waltham,
Massachusetts, USA) using the dsDNA HS Assay Kit (Invitrogen, Waltham,
Massachusetts, USA).

16S-rRNA gene amplicon sequencing

The variable regions of the V3-V4 of the bacterial 16S rRNA gene were PCR amplified
from each DNA sample in a single reaction workflow with simultaneous indexing and
target amplification using the EasySeq™ 16S Microbiome Library Prep Kit (NimaGen,
Nijmegen, the Netherlands) according to the manufacturer’s instructions. Amplicon
libraries were sequenced on an Illumina MiSeq instrument (Illumina, Eindhoven, The
Netherlands) (MiSeq Reagent Kit v3, 2 x 300 cycles, 10% PhiX) to generate paired-

end reads of 300 bases in length in both directions.

16S rRNA gene amplicon sequence data processing

Forward and reverse primers were removed using cutadapt v4.7%. Following, using
DADA2 (v1.28.0) paired-end sequences were filtered and trimmed (maxEE = 2,
truncLen = 240/210bp), denoised, merged (minOverlap = 10, maxMismatch = 0) and a
sequence table was constructed. Chimeras were identified and removed (method =
‘consensus’). After denoising and merging, any ASVs with a length of <350 or >500
bases were discarded. ASVs were annotated up to genus-level using the DADA2
implementation of the naive Bayesian classifier based on the SILVA v138.1 reference
database. Species-level annotations were added using the addSpecies()-function®’.
ASVs not assigned to the kingdom Archaea/Bacteria or annotated as Mitochondria

(family) or Chloroplast (class) were removed.

Yellow fever neutralizing antibody titer measurements
Blood sample collection and processing
Blood samples were collected were collected in SmL. EDTA tubes on day 0 (pre-

vaccination), day 28 (4 weeks post-vaccination; presumed peak in antibody titers) and
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day 178 (~6 months post-vaccination; detect delayed response/assess weaning status).
Blood samples were transported to a clinical laboratory for plasma separation through
centrifugation. Plasma samples were stored at -80°C within two hours. Samples were

shipped between institutions on dry ice.

Yellow fever plaque reduction neutralization tests

Plasma neutralizing antibodies against the yellow fever virus from all individuals were
quantified using plaque reduction neutralization tests (PRNTs). Results are presented
as PRNTso and PRNTYyy titers, which correspond to the reciprocal of the plasma dilution,
achieving a 50% and 90% reduction in virus plaque-forming units per 0.1 mL of the
reference 17D virus preparation, respectively. Assay quality control included
determining the 50% and 90% neutralization cut-off values for each assay via back

titration of the virus inoculum. Further details are provided elsewhere®.

Data analysis

All data preprocessing and statistics were performed in R v4.3.3 within R Studio

v2024.04.1+748 (Boston, MA). Microbiota-specific analyses and visualization,

Chapter 6

including alpha- and beta-diversity analyses and microbiota association tests were
performed using the microViz v0.12.1 R package®. All statistical tests were two-sided
and p-values were corrected for multiple testing using the Benjamini-Hochberg
procedure (referred to as pag-values). P-/p.q-values<0.05 were considered statistically

significant.

Baseline characteristics
Descriptives for baseline and lifestyle questionnaire data were generated using the

gtsummary v1.7.2 R package.

Lifestyle and food score

Lifestyle questionnaire data (N = 185) were mode imputed (missing values) and
subjected to either Multiple Correspondence Analysis (MCA) or Principal Component
Analysis (PCA) to calculate lifestyle and food score, respectively. Lifestyle score was

calculated by applying MCA to categorical questionnaire data (n = 38 manually curated
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lifestyle-related questions; 21 on assets, 11 on food and 6 on housing) (FactoMineR
v2.7 R package, MCA()-function; PC1 defined as ‘lifestyle score’). (Cumulative)
variable category contributions were extracted and shown. To calculate a food score,
variables capturing the frequency of consumption of dietary products (= 11; 0, 1, 2-4
or >5%/week) were converted into ordinal variables and used as input variables for a
PCA ordination (PCA()-function). Coordinates of samples and variable
categories/variables were visualized in biplots. For lifestyle score analyses,

(cumulative) variable category contributions were extracted and shown.

Alpha-diversity analysis

Diversity analyses were performed on unfiltered and non-rarefied raw read counts
(ASVs present in >2 samples). Shannon diversity was primarily used as a measure for
within-sample/alpha-diversity, leveraging both species richness and evenness (ASV-
and genus-level). In addition, we compared the number of observed ASVs or genera.
Statistical significance between groups was assessed using linear models with observed
richness or Shannon diversity as outcome, adjusting for vaccination status, age, sex and

sequencing depth.

Beta-diversity analysis

Beta-diversity analyses were performed on centered-log-ratio [CLR]-transformed
genus-level abundance matrices. CLR-transformed abundances were used in principal
components analysis (PCA) to visualize major patterns of microbiota variation.
Associations between rural/urban living location, host and environmental variables
(age, sex, helminth infection status, highest level of education, body mass index (BMI),
lifestyle and food scores (PC1 and PC2), vaccination status and technical variables
(sequencing depth) were explored by multivariable Permutational Multivariate
Analysis of Variance (Aitchison-distance matrix; PERMANOVA), adjusting for living
location, vaccination, age and sex as appropriate. For variables for which collinearity
with living location was expected (i.e. lifestyle/food scores, helminth infection status
and sex), models were adjusted for vaccination, age and sex (dropping living location).

Paired day 0 and day 56 samples from vaccinated individuals were tested for
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differences between time points (indicating a vaccination effect) using a

PERMANOVA with permutations restricted within participant.

Microbiota clustering

Microbiota profiles (n = 154 samples) were clustered into Community State Types
(CSTs) by fitting a Dirichlet Multinomial model (DirichletMultinomial v1.46.0 R-
package; dmn()-function). Genus-level count data were taken as input and models were
fitted with 1 to 10 components. The optimal number of Dirichlet components was
determined by inspecting measures of fit (Laplace, AIC and BIC). Species associated
with either CST1 or CST2 were identified using differential abundance analyses

(MaAsLin2; no adjustment for covariates, see below).

Food-variable association tests
To assess the association between food variables (frequency of consumption of dietary

products per week) and living location and living location/CST (including rural-like

urban individuals), we used logistic regression analysis, adjusting for all other food

variables and sex.

Chapter 6

Differential abundance analysis

Differentially abundant taxa between groups were identified using linear models, like
the implementation in the MaAsLin2 framework (default parameters; log,-
normalisation)®. For each comparison genera present at >0.1% relative abundance in
>10% of samples were selected. We explored the associations between 1) rural/urban
living location (adjusted for vaccination status, age and sex), 2) CST1 and CST2 (no
adjustment for covariates), 3) urban (urban + CST2)/rural living individuals and rural-
like urbanites (urban + CSTI1) (no adjustment for covariates), 4) food variables
(stratified by living location; adjusted for other food variables and sex), and 5) logio-
transformed yellow fever neutralizing antibodies (adjusted for living location, age and
sex or age and sex) and relative abundances of individual taxa. When comparing >2
groups (e.g. urban/rural/rural-like urbanites), estimates and p-values for each pairwise
comparison between groups (e.g. urban vs rural) were extracted using the emmeans

v1.8.5 R-package. p-values were adjusted per rank, term and contrast, as appropriate,
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and resulting BH-adjusted p-values of below 0.05 were considered statistically

significant.

BloSSUM and VANISH taxa

Classification into BloSSUM  (bloom or selected in societies of
urbanization/modernization) and VANISH (volatile and/or associated negatively with
industrialized societies of humans) taxa was based on a publication describing gut
microbiota profiles in a non-industrialized population of Hadza hunter-gatherers. Lists
of BIoSSUM and VANISH taxa were extracted from the publication and collapsed at
genus-level. Genera classified as both BloSSUM- and VANISH-associated were
dropped. For differentially abundant genera associated with rural/urban living or
CST1/CST2, we tested for significant enrichment of either BloSSUM or VANISH taxa

using Fisher’s Exact tests.

Multimodal analyses

Based on visual inspection of stacked bar plots, we manually selected several genera
for which the (multimodal) distribution of relative abundance was assessed in a post-
hoc analysis using the multimode R-package. The number of modes was determined
using the nmodes()-function, based on inspection of a stairs plot across a range of

density bandwidths. Mode location was determined by the locmodes()-function.

Yellow fever neutralizing antibody titers

Logio-base geometric mean yellow fever neutralizing antibody titers (PRNTso and
PRNTYyo) at baseline (pre-vaccination), day 28 (4 weeks post-vaccination) and at day
178 (~6 months post-vaccination) were calculated. Values under the limit of detection
(<10) were assumed to have a value of 5. Statistical analyses were performed using a
generalized linear mixed effects model with logio-transformed PRNTs5o/PRNTgp-values
as outcome, group, CST or group/CST, time point, the interaction between group, CST
or group/CST and time point, age and sex as fixed effects and participant ID as random

effects. Pairwise comparisons of estimated marginal means between groups were
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computed at each time point or between day 28 and day 178 for each group (emmeans

v1.10.0 R package).

Data availability
16S-rRNA sequencing data from this study are available from NCBI under BioProject

accession number PRINA1141956. Other data are available from the corresponding

author upon reasonable request.
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Supplementary Figure

N = 233 screened

N = 185 randomized
e 94 Urban Moshi: 78 YF; 16 control
e 97 Rural Moshi: 77 YF; 14 control

N = 156 with stool sample*
e 73 Urban Moshi: 58 YF; 15 control
e 82 Rural Moshi: 72 YF; 10 control

N = 143 with stool sample
¢ 68 Urban Moshi: 54 YF; 14 control
e 75 Rural Moshi: 67 YF; 8 control

n=154 samples

e 22 d0 + d56 sample: 16 YF; 6 control
e 132 d56 sample; 113 YF; 19 control

n =154 samples sequenced

Supplementary Figure 1 | Flowchart of volunteer recruitment, randomization and stool sample collection.

N = number of volunteers; n = number of samples. YF = Yellow Fever; d0 = day O/baseline sample; d56 = day 56
sample. Low Hb, Hb < 8.5 g/dL; low blood pressure, blood pressure <90/60mmHg; high blood pressure, blood
pressure >140/90mmHg. Non-permanent residency indicates individuals who upon further questioning had not lived

at a given location for their whole life. *1 volunteer without recorded group/vaccine status at the moment of sample

shipment.

198

N = 48 excluded:
N=16 low Hb
N =12 non-permanent
residency
N =7 high blood pressure
N =5 low blood pressure
N =2 pregnant
N =6 no show

N =29 no stool sample

N =9 antibiotic usage

N =3 only dO sample
N = 1 vaccine status unknown*
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Supplementary Figure 2 | Heatmap visualizing lifestyle questionnaire data. NV = 185 participants.

Values represent the number of participants. Colors indicate the percentage of the total. Comparisons between groups

( rural/urban living) were performed using Fisher’s exact or chi-squared tests. Asterisks denote statistical significance

(NS, non-significant; *, p < 0.05; **, p <0.01; *** p <0.001, p<0.0001). See Supplementary Table 2.
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Supplementary Figure 3 | Multiple Correspondence Analysis (MCA) based on questionnaire data to generate

lifestyle score.

a) MCA was applied to categorical questionnaire data (38 manually curated questions; 21 on assets, 11 on food and 6

on housing) (N = 185 individuals). Data points are colored based on location Ellipses reflect the data spread at a 95%

confidence level. Density plots show the distribution of PC1 (lifestyle score) (x-axis) and PC2 (y-axis) score. b)

Differences in lifestyle scores (PC1/PC2) between rural and urban living individuals. See legend Figure 2a-b.

Statistical significance between groups was assessed using linear models with lifestyle score as outcome, adjusting

for age and sex. ¢) Cumulative contributions (in percentage) of the variable categories by questionnaire data category
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(i.e. housing, assets and food). d, f) Coordinates of each variable category most strongly contributing to PC1 (d) or
PC2 (f) across dimensions 1 and 2. e, g) Contributions (in percentage) of variable categories to €) PC1 or lifestyle
score or g) PC2 (based on lifestyle variables). Bars are colored based on PC1/PC2 scores as appropriate. h) Difference
in lifestyle score across the overall cohort (N = 185) compared to the microbiota subcohort (N = 143), stratified by
urban/rural living location. Statistical significance between groups was assessed using a linear model with lifestyle

score as outcome.
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Supplementary Figure 4 | Principal component analysis (PCA) based on food variables to generate a food score.
a) PCA was applied to 11 food-related variables (encoded as ordinal variables) (N = 185 individuals). Data points are
colored based on location. Ellipses reflect the data spread at a 95% confidence level. b) Differences in food scores
(PC1/PC2) between rural and urban living individuals. See legend Figure 2a-b. Statistical significance between groups
was assessed using linear models with food score as outcome, adjusting for age and sex. c) Relation between PC2
food score and reporting rate of food variables (expressed as the mean ordinal value across 11 food variables for each
individual). d) Association between food variables and living location (rural/urban; N = 185). Statistical significance
was assessed using a logistic regression analysis with group as outcome and all food variables and sex as predictors.
For each food variable, model estimates are depicted along the x-axis (colored points). Colors indicate the group with
which a given food variable is positively associated with. Whiskers denote 95% confidence intervals (Cls; Wald-

method). Asterisks denote statistical significance (*, p < 0.05; **, p <0.01; ***, p <0.001).
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Supplementary Figure 5 | Boxplots of genera associated with rural/urban living location.
Only genera with p,; < 5 % 10® and logo,FC <-1.5 or >1.5 are shown. Statistical significance between groups
(rural/urban living) was assessed using linear models with genus-level abundance as outcome, adjusting for

vaccination status, age and sex. See legend Figure 2a-b.
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Supplementary Figure 6 | Microbiota profiles cluster in distinct Community State Types (CSTs) using
Dirichlet-multinomial modelling (DMM).
a) DMM goodness-of-fit (AIC, BIC and Laplace) for £ = 1-10 mixture components. For each goodness-of-fit measure,

the optimal number of components is denoted using a colored arrow. b) Heatmap showing the relative abundance of
the 30 most abundant genera for each sample. Samples are ordered based on living location; within living location
samples are ordered according to Bray-Curtis dissimilarities (based on genus-level relative abundance) between
samples. Taxa are ordered based on using hierarchical clustering (Euclidean distance) with optimal leaf ordering. Top
horizontal bars indicate 1) living location, 2) CST allocation and 3) living location and CST membership combined.
Urban living individuals belonging to CST1 were classified as rural-like urbanites since rural individuals almost
exclusively clustered in CST1. For these comparisons, ‘Urban’ denotes urban individuals belonging to CST2. c-f2 x
2 tables showing the number of VANISH (c, ) or BloSSUM taxa (d, f) across CST1- and CST2-associated taxa.

Statistical significance was assessed using Fisher’s Exact tests.
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Supplementary Figure 7 | Differential abundance analyses urban/rural living individuals and rural-like
urbanites.

a-c) Volcano plots visualizing genera enriched in a) urban (urban + CST2) living individuals compared to rural-like
urbanites, b) rural-like urbanites compared to rural living individuals and c¢) urban (urban + CST2) compared to rural
living individuals. Statistical significance between groups (rural/urban living/rural-like urbanites) was assessed using
linear models with genus-level abundance as outcome (no adjustment for covariates). Model estimates and p-values
for each contrast were extracted using the emmeans R-package. P-values were adjusted for multiple testing for each
contrast. Genera with p,q< 0.05 and log,-fold change (FC) <-1.5 or >1.5 are colored and genera with a p,4; < 0.001
(), Pugi< 0.05 (b) or p,gi< 1 x 107 (c) and log,FC <-1.5 or >1.5 were annotated. The shape of the data points indicates
whether these genera were previously considered to belong to VANISH (volatile and/or associated negatively with

industrialized societies of humans) or BloSSUM (bloom or selected in societies of urbanization/modernization) taxa.
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Supplementary Figure 8 | Yellow fever neutralizing antibody titer variation across living location and with
microbiota profiles.

a-f) Boxplots (see legend Figure 2a-b) showing yellow neutralizing antibody titers (a; PRNTSso and b-f; PRNTo) in all
vaccinated individuals (N = 155, a-c) and in those from whom a stool sample was collected (N = 121, d-f) at baseline
(day 0, d0), 4 weeks post-vaccination (day 28, d28) and 6 months post-vaccination (day 178, d178). Boxplots show
comparisons according to group (rural/urban living location; a-b), CST (e) and group/CST (i.e. rural living individuals,
rural-like urbanites [CST1] and urban living individuals [CST2]) (f). ¢c) Boxplots showing yellow neutralizing
antibody titers (PRNTS5) at 4 weeks post-vaccination (day 28, d28) compared to 6 months post-vaccination (day 178,
d178) for group (rural/urban living location). Diamond-shaped data points and color values at the bottom of the plot
denote logo-base geometric mean titers. Statistical analyses were performed using a generalized linear mixed effects
model with logo-transformed PRNTso/PRNToo-values as outcome, group, CST or group/CST, time point, the
interaction between group, CST or group/CST and time point, age and sex as fixed effects and participant ID as random
effects. Pairwise comparisons of estimated marginal means between groups were computed at each time point (a-b, d-
f) or between day 28 and day 178 for each group (c). Values under the limit of detection (<10) were assumed to have

a value of 5.
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Supplementary Figure 9 | Association between YF-17D vaccination on gut microbiota profiles.

a) Principal component analysis (PCA) biplot using CLR-transformed genus-level microbiota features across day 56
samples. Data points, ellipses and side plots are colored based on vaccination status. See legend Figure 1C. R’ and
statistical significance of the association between vaccination status and the overall microbiota composition was
assessed using PERMANOVA-test (1,000 permutations), while adjusting for living location, age and sex. b) Principal
coordinate analysis of vaccinated volunteers with paired (day 0 — day 56) stool samples (N = 8, n = 16). Arrows
indicate direction of ‘movement’ across PC1 and PC2 from day 0 to day 56. c) Boxplots (see legend Figure 2a-b)
showing the distance from day 0 to day 56 across PC1-PC7. d) Within-subject distances (day 0 — day 56) between
vaccinated (N = 8) and non-vaccinated individuals (N = 3) compared to between-subject distances (day 56). Distances
between subjects were calculated for subjects with matching group (rural/urban living) and vaccination status (yes/no
YF-17D vaccination). Up to 50 distances per stratum (rural — vaccine, urban — vaccine, rural — no vaccine and urban
— no vaccine) were randomly selected (n = 28 distances were selected for rural — no vaccine). Statistical significance
was assessed using a Student’s t-test with Aitchison distance as dependent variable and vaccine status as independent
variable. ) Permutation test based on subsampled between-subject distances between paired vaccinated and non-
vaccinated subjects (n = 8 and n = 3, respectively). Histogram and line plot indicate the density distribution of p-values

across 5,000 iterations. The ‘true’ observed within-subject p-value is shown in dark red.
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Supplementary Figure 10 | Change in yellow fever neutralizing antibody titers at day 28 compared to day 178.
a-c) Boxplots (see legend Figure 2a-b) showing yellow neutralizing antibody titers (PRNTq) at 4 weeks post-
vaccination (day 28, d28) compared to 6 months post-vaccination (day 178, d178) for rural compared to urban living
individuals (a), CST1 compared to CST2 (b) and group/CST (i.e. rural living individuals, rural-like urbanites [CST1]
[RLU] and urban living individuals [CST2]) (¢) (N = 121). Diamond-shaped data points and color values at the bottom
of the plot denote log;o-base geometric mean titers. Statistical analyses were performed using a generalized linear
mixed effects model with log-transformed PRNTy,-values as outcome, group, CST or group/CST, time point, the
interaction between group, CST or group/CST and time point, age and sex as fixed effects and participant ID as random
effects. Pairwise comparisons of estimated marginal means between day 28 and day 178 were computed for each

group. Values under the limit of detection (<10) were assumed to have a value of 5.

Chapter 6

207



Chapter 6

Supplementary tables

Supplementary Table 1 | Baseline characteristics of the study population (V= 185).

Variable Overall, N =185 Urban Moshi, NV Rural Moshi, N = p-value
=94 91
Female sex 84 (45%) 50 (53%) 34 (37%) 0.031
Age 23.7(21.2,27.5) 23.6(21.8,26.1) 23.9(20.3,29.7) 0.813
Age categories 0.022
18-25 115 (62%) 66 (70%) 49 (54%)
26-36 70 (38%) 28 (30%) 42 (46%)
BMI 22.5(20.0,25.1) 23.6 (204, 26.4) 22.1(19.9, 24.6) 0.076
BMI classification 0.228
<18.5 20 (11%) 9 (9.6%) 11 (12%)
18.5-24.9 118 (64%) 55 (59%) 63 (69%)
25.0-29.9 34 (18%) 22 (23%) 12 (13%)
>30 13 (7.0%) 8 (8.5%) 5 (5.5%)
Systolic blood pressure 116 (105, 124) 111 (102, 121) 120 (110, 129) 0.002
(mmHg)
Diastolic blood pressure 71 (65, 78) 70 (64, 76) 72 (67,79) 0.125
(mmHg)
Hemoglobin level g/dl 15.00 (13.70, 14.45 (12.70, 15.40 (14.20, <0.001
16.20) 15.88) 16.50)
Random blood sugar, mmol- 5.20 (4.80, 5.80) 5.30 (4.90, 6.00) 4.90 (4.70, 5.45) <0.001
1A/\
Highest level of education <0.001
Primary 52 (28%) 2 (2.1%) 50 (55%)
Secondary 85 (46%) 47 (50%) 38 (42%)
College 21 (11%) 20 (21%) 1(1.1%)
University 27 (15%) 25 (27%) 2 (2.2%)
Helminth infection® 8 (4.3%) 0 (0%) 8 (8.8%) 0.003
Insurance status 80 (43%) 77 (82%) 3 (3.3%) <0.001
Occupation <0.001
Farming 39 (21%) 13 (14%) 26 (29%)
Elementary occupation 59 (32%) 10 (11%) 49 (54%)
Student 3 (1.6%) 3 (3.2%) 0 (0%)
Employed/business owner 75 (41%) 64 (68%) 11 (12%)
Not employed 1 (0.5%) 0 (0%) 1(1.1%)
Other 8 (4.3%) 4 (4.3%) 4 (4.4%)
Received yellow fever vaccine 155 (84%) 78 (83%) 77 (85%) 0.763

N = 185 participants. Values represent number of participants (percentage of total) and median (interquartile range
[IQRY]) for categorical and continuous variables, respectively. Comparisons between locations were performed using
Fisher’s exact, chi-squared and Mann—Whitney U-test for categorical and continuous variables, respectively. *Stool
was tested for helminths using the Kato-Katz method, testing for Schistosoma mansoni, Ascaris lumbricoides,

hookworm and Trichuris trichuria. Additionally, urine was tested for Schistosoma haematobium and Schistosoma

mansoni using the POC-CCA method.
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Supplementary Table 2 | Descriptives of lifestyle score variables (V = 185).

Characteristic Urban Moshi, N =94 Rural Moshi, N =91 p-value
House floor <0.001
Hard floor (tile, cement, concrete, wood) 94 (100%) 74 (81%)
Soil/sand 0 (0%) 17 (19%)
House walls <0.001
Cement, brick or stone 94 (100%) 71 (78%)
Cane, palm, trunks, bamboo 0 (0%) 14 (15%)
Mud (with poles) 0 (0%) 6 (6.6%)
House roof 0.497
Roof tiles 2 (2.1%) 0 (0%)
Metal sheets 92 (98%) 91 (100%)
Water source 0.156
Tap water (piped through house or at yard) 92 (98%) 83 (91%)
Public standpipe 1(1.1%) 1(1.1%)
Spring 1(1.1%) 4 (4.4%)
Pond-water or stream 0 (0%) 2 (2.2%)
Other 0 (0%) 1 (1.1%)
Toilet facility <0.001
Flush to piped sewage or septic tank 63 (67%) 18 (20%)
Pour flush latrine 30 (32%) 43 (47%) \g
Pit latrine 1 (1.1%) 30 (33%) E
Cooking place <0.001 ©)
In a separate room used as kitchen 59 (63%) 14 (15%)
In a separate building used as kitchen 32 (34%) 77 (85%)
In a room used for living or sleeping 3 (3.2%) 0 (0%)
Total number of milk cows 0.036
None 77 (82%) 68 (75%)
1-4 11 (12%) 22 (24%)
5-9 5(5.3%) 1(1.1%)
10+ 1(1.1%) 0 (0%)
Total number of other cattle 0.004
None 93 (99%) 81 (89%)
1-4 1(1.1%) 10 (11%)
5-9 0 (0%) 0 (0%)
10+ 0 (0%) 0 (0%)
Total number of horses >0.999
None 94 (100%) 91 (100%)
1-4 0 (0%) 0 (0%)
5-9 0 (0%) 0 (0%)
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10+ 0 (0%) 0 (0%)
Total number of goats <0.001

None 86 (91%) 37 (41%)

1-4 3(3.2%) 35 (38%)

5-9 3(3.2%) 17 (19%)

10+ 2 (2.1%) 2 (2.2%)
Total number of sheep 0.273

None 92 (98%) 86 (95%)

1-4 2 (2.1%) 5(5.5%)

5-9 0 (0%) 0 (0%)

10+ 0 (0%) 0 (0%)
Total number of chicken/poultry <0.001

None 39 (41%) 23 (25%)

1-4 3(3.2%) 13 (14%)

5-9 5(5.3%) 20 (22%)

10+ 47 (50%) 35(38%)
Agricultural land (hectares) <0.001

None 47 (50%) 67 (74%)

1-4 29 (31%) 23 (25%)

5-9 7 (7.4%) 1(1.1%)

10+ 11 (12%) 0 (0%)
Connected to electricity 94 (100%) 60 (66%) <0.001
Working radio 90 (96%) 74 (81%) 0.002
Working television 92 (98%) 44 (48%) <0.001
Working computer 76 (81%) 5(5.5%) <0.001
‘Working refrigerator 84 (89%) 7(7.7%) <0.001
‘Working rechargeable battery or generator 41 (44%) 31 (34%) 0.183
An iron (charcoal/electric) 91 (97%) 51 (56%) <0.001
Watch 92 (98%) 45 (49%) <0.001
Mobile phone 94 (100%) 90 (99%) 0.492
Bicycle 41 (44%) 7 (7.7%) <0.001
Motorcycle 29 (31%) 13 (14%) 0.007
Animal drawn cart 2 (2.1%) 0 (0%) 0.497
Car or truck 70 (74%) 11 (12%) <0.001
Boat with a motor 1 (1.1%) 0 (0%) >0.999
Ugali (maize stiff porridge) (x/week) <0.001

(1} 10 (11%) 0 (0%)

1 39 (41%) 5(5.5%)

2-4 40 (43%) 65 (71%)

>5 5(5.3%) 21 (23%)
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Plantain (x/week) 0.134
0 17 (18%) 7 (7.7%)
1 63 (67%) 68 (75%)
2-4 8 (8.5%) 12 (13%)
=5 6 (6.4%) 4 (4.4%)
Banana (x/week) 0.001
0 5(5.3%) 0 (0%)
1 52 (55%) 32 (35%)
2-4 27 (29%) 45 (49%)
=5 10 (11%) 14 (15%)
Rice (x/week) <0.001
0 0 (0%) 0 (0%)
1 3(3.2%) 35(38%)
2-4 22 (24%) 45 (49%)
=5 68 (73%) 11 (12%)
Missing 1 0
Potatoes (x/week) <0.001
0 2 (2.1%) 5(5.5%)
1 25 (27%) 67 (74%)
2-4 31 (33%) 17 (19%)
>5 36 (38%) 2 (2.2%)
Meat (%/week) 0.007
0 0 (0%) 0 (0%)
1 8 (8.5%) 14 (15%)
2-4 44 (47%) 56 (62%)
>5 42 (45%) 21 (23%)
Fish (x/week) <0.001
0 2 (2.1%) 0 (0%)
1 61 (65%) 39 (43%)
2-4 20 (21%) 45 (49%)
=5 11 (12%) 7(7.7%)
Beans/peas (x/week) <0.001
0 5(5.3%) 0 (0%)
1 12 (13%) 40 (44%)
2-4 28 (30%) 37 (41%)
=5 49 (52%) 13 (14%)
Missing 0 1
Green vegetables (x/week) 0.347
0 0 (0%) 0 (0%)
1 6 (6.5%) 4 (4.4%)
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2-4 29 (31%) 21 (23%)
>5 58 (62%) 65 (72%)
Missing 1 1
Fruits (x/week) <0.001
0 0 (0%) 0 (0%)
1 3 (3.2%) 27 (30%)
2-4 24 (26%) 18 (20%)
=5 67 (71%) 46 (51%)
Locally brewed beer (x/week) <0.001
0 68 (73%) 41 (46%)
1 22 (24%) 13 (14%)
2-4 0 (0%) 10 (11%)
>5 3 (3.2%) 26 (29%)
Missing 1 1

N = 185 participants. Values represent number of participants (percentage of total). Comparisons between locations

were performed using Fisher’s exact or chi-squared tests. All variables (n = 38 variables), after mode imputation, were

used to construct the lifestyle score. See Supplementary Figure 2.

Supplementary Table 3 | Baseline characteristics of the rural-like urbanites compared to other urban living

individuals (N = 69).

Variable Overall, N =69 Rural-like Urban, N~ Urban, N=48  p-value
=21
Female sex 36 (52%) 6 (29%) 30 (63%) 0.009
Age 23.0(21.2,24.6) 23.1(21.8,24.6) 229 (21.2, 0.676
24.5)
Age categories >0.999
18-25 55 (80%) 17 (81%) 38 (79%)
26-36 14 (20%) 4 (19%) 10 (21%)
BMI 23.1(20.4,26.4) 23.8(20.7,26.3) 22.8(19.8, 0.825
26.5)
BMI classification 0.575
<18.5 6 (8.7%) 3 (14%) 3(6.3%)
18.5-24.9 42 (61%) 11 (52%) 31 (65%)
25.0-29.9 16 (23%) 6 (29%) 10 (21%)
>30 5(7.2%) 1 (4.8%) 4 (8.3%)
Systolic blood pressure 110 (102, 120) 110 (107, 120) 111 (100, 121) 0.481
(mmHg)
Diastolic blood pressure 70 (63, 76) 70 (60, 77) 70 (64, 75) 0.958
(mmHg)
Hemoglobin level g/dl 14.30 (12.60, 15.60) 14.90 (14.20, 15.80) 13.65 (12.43, 0.022
15.28
Random blood sugar, mmol- 5.30 (4.90, 6.00) 5.30 (5.10, 5.60) 5.30 (4.2’0, 0.759
177 6.00)
Highest level of education 0.593
Primary 2 (2.9%) 1 (4.8%) 1(2.1%)
Secondary 38 (55%) 10 (48%) 28 (58%)
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College 14 (20%) 4 (19%) 10 (21%)
University 15 (22%) 6 (29%) 9 (19%)
Insurance status 60 (87%) 18 (86%) 42 (88%) >0.999
Occupation 0.690
Farming 10 (14%) 2 (9.5%) 8 (17%)
Elementary occupation 7 (10%) 2 (9.5%) 5 (10%)
Employed/business owner 49 (71%) 17 (81%) 32 (67%)
Other 3 (4.3%) 0 (0%) 3(6.3%)
Received yellow fever 55 (80%) 15 (71%) 40 (83%) 0.332
vaccine

N = 69 urban living participants. Values represent number of participants (percentage of total) and median
(interquartile range [IQR]) for categorical and continuous variables, respectively. Comparisons between locations

were performed using Fisher’s exact, chi-squared and Mann—Whitney U-test for categorical and continuous variables,

respectively.
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Chapter 7

Summary

In Chapter 1, we introduced the factors associated with variation in the immune system and
the differences in immune responses to vaccines. Additionally, we outlined the main objective
of this thesis, the study designs, the geographical areas where the studies were conducted, and
the study populations recruited. An outline of the subsequent chapters of the thesis was also

provided.

In Chapter 2, we reviewed the significant challenge that vaccine hypo-responsiveness to
certain vaccines poses to global health, particularly due to the variability in vaccine efficacy
across different populations and geographical regions. This is especially pronounced in low-
and middle-income countries, where vaccines for diseases such as malaria, tuberculosis (TB)
and rotavirus often demonstrate reduced immunogenicity and, for some even effectiveness,
compared to those in high-income regions. Our review identified several contributing factors
to vaccine hypo-responsiveness, including environmental and lifestyle factors such as
exposure to microorganisms and parasites (such as HIV, CMV, malaria, helminths, and
environmental mycobacteria), variations in the microbiome (such as phage diversity,
commensal bacteria), and the presence of pro-inflammatory and anti-inflammatory metabolites

(for example, flavones).

We further explored the potential immunological mechanisms underlying poor responses to
vaccines including pre-existing immunity or cross-reactive antigens, persistent immune
activation, immune exhaustion, immune senescence, and alterations in tissue micro-
environments, such as in lymph nodes, and skewed immune responses. In addition, we
reviewed potential strategies to reverse or enhance vaccine responses. These strategies include
the change in the use of adjuvants and adjustments to vaccine regimens, reduction of
inflammation, application of checkpoint and MAPK inhibitors, modifications of lymphoid
stromal cells, and the use of monoclonal antibodies targeting TH2 cytokines and Treg-cells.
We concluded that the application of advanced omics technologies and further exploration of
the roles of immune metabolism and local microenvironments could provide deeper insights
into the mechanisms behind vaccine hypo-responsiveness. Such understanding is crucial for

the development of tailored vaccination strategies that can effectively overcome these barriers.
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As helminths seem to be important immune modulators, their prevalence in different
geographical areas might need to be assessed when studying vaccine responses. To achieve

this, sensitive and specific diagnostic tools are needed.

In chapter 3, we investigated the current prevalence of schistosomiasis among school-aged
children in Mwanga district, Tanzania, after nearly two decades of Mass Drug Administration
(MDA) with praziquantel. While urine microscopy remains the conventional gold standard for
diagnosing urinary schistosomiasis in endemic settings, its sensitivity is limited. Therefore, we
employed the Up-Converting Particle Lateral Flow Circulating Anodic Antigen (UCP-LF
CAA) test, known for its high sensitivity in detecting active infections but needs a laboratory-
based reading machine. We also explored the potential of using the Point-of-Care Circulating
Cathodic Antigen (POC-CCA) test and the micro-haematuria dipstick as combined diagnostic
tools in comparison to the UCP-LF CAA test.

Our findings indicated a moderate prevalence of schistosomiasis of 20.3% based on the UCP-
LF CAA test, which provided a more accurate reflection of the current disease burden than the
combined POC-CCA and micro-haematuria tests. The latter showed higher prevalence rates,
but the poor agreement with the UCP-LF CAA test, questions the reliability of the POC-CCA.
The POC-CCA test appears to show variability due to factors such as production batch
differences, variability in test sensitivity, and the subjective nature of the interpretation of the

results.

Our study underscores the persistent transmission of schistosomiasis in the region despite long-
term MDA efforts. It also emphasizes the need for improved diagnostic tools that can be
applied directly as a point-of-care test in the field without the need for any apparatus. Such a
test would need to be integrated into control strategies that consider local transmission
dynamics and socio-environmental factors. These advancements are crucial for achieving
more effective disease management and moving closer to the goal of schistosomiasis

elimination in endemic regions.

In Chapter 4, we investigated the association between lifestyle factors and cellular immune
profiles in healthy Tanzanian adults. The lifestyle score was developed based on household
assets, housing conditions, and dietary history. First, using rural-urban locations: we found

significant differences in immune cell frequencies between rural and urban participants. Rural
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participants exhibited higher frequencies of Th2-cells, atypical memory B-cells, and various
subsets of CD4+ T effector memory (Tem)-cells, including those expressing markers like
CD38, HLA-DR, PD-1, KLRG-1 and CTLA-4. Indicating a more activated and regulatory

immune state.

Importantly, the lifestyle score confirmed five immune cell clusters previously identified by
geographical location alone. These included clusters of Th2-cells, CD4+ Tem-cells, atypical
memory B-cells, and CD8+ Tem-cells. These clusters were predominantly associated with
rural living and a lower lifestyle score. Additionally, the lifestyle score identified eight unique
immune cell clusters that were not detected when considering geographical location alone.
Lower lifestyle scores were linked to higher frequencies of plasmablasts, regulatory T-cells,
and NK-cells, while higher lifestyle scores, typically associated with urban living, correlated
with increased frequencies of naive CD8+ T-cells and CD8+ Tem-cells expressing markers
like CD161 and KLRG-1. We concluded that lifestyle factors significantly shape cellular
immune profiles beyond the influence of geographical location alone. This enhanced
understanding of lifestyle-driven immune variation is crucial for improving vaccine responses
and managing immune-related diseases, particularly in diverse and low- and middle-income

populations.

In Chapter 5, Following the findings of immunological differences across geographical areas,
we were interested in the impact of these differences on vaccine responses. To this end, we
compared yellow fever vaccine immunogenicity in rural and urban Moshi. Immunogenicity
was measured using a clinically important neutralization assay, which allowed us to identify
protected and non-protected subjects. In addition, we measured antibodies against non-
structural protein 1 (NS1) using ELISA, providing a robust continuous dataset representing

vaccine immunogenicity.

In Chapter 6, we investigated the association of gut microbiota composition in rural- and
urban-living Tanzanian adults concerning the yellow fever vaccine antibody response. We
found significant differences in the gut microbiota composition between individuals living in
rural and urban areas. In rural Tanzanians, the gut microbiota was more diverse, with a higher
prevalence of genera such as Prevotella, Succinivibrio, and Treponema. Rural diets in this
study were characterized by a higher intake of traditional foods like ugali (a stiff porridge made

from maize), vegetables, and locally brewed beer, which altogether represent plant-based diets
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rich in fibres and complex carbohydrates. In contrast, urban Tanzanians displayed a gut
microbiota dominated by Bacteroides, Parabacteroides, and members of the
Enterobacteriaceae family. These bacterial genera are typically associated with diets high in
processed foods and refined carbohydrates, food consumed by most in urban areas for example
rice and potatoes in the form of chips. Interestingly, we identified a subset of urban individuals
with a microbiota composition resembling that of rural inhabitants, termed "rural-like urban"
individuals. These individuals consumed more beans and peas, foods high in proteins and
dietary fibres while consuming less rice and ugali, aligning their microbiota profiles more

closely with those of rural individuals.

Urban-living individuals were significantly enriched for BloSSUM taxa (bloom or selected in
societies of urbanization/modernization), while rural-living individuals lacked these genera,
with no significant enrichment of VANISH taxa (volatile and/or associated negatively with
industrialized societies of humans) in rural-associated genera. Regarding yellow fever vaccine
antibody titer, we found that rural individuals generally exhibited higher yellow fever
neutralizing antibody titers compared to their urban counterparts. Notably, within the urban
population, those with a rural-like microbiota profile showed higher initial antibody titers but
also experienced stronger waning over time, like the rural group. The findings indicate that the
gut microbiota, influenced partly by diet, might have the ability to modulate vaccine responses.
The study findings emphasize the potential for microbiota-targeted interventions, such as
dietary modifications, to improve vaccine efficacy, particularly in populations undergoing

rapid urbanization and dietary transitions.

In Chapter 7, we discussed the main findings of this thesis, focusing on a select few factors
associated with variations in the immune system and differences in immune responses to
vaccines. Additionally, we explored future perspectives and concluded with the main

conclusions of this thesis.
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General discussion

The role of diagnostic tools in understanding the immune system

In Chapter 3, of this thesis, we investigated the current prevalence of schistosomiasis among
school-aged children in Mwanga District, Tanzania, following nearly two decades of Mass
Drug Administration (MDA) with praziquantel. Utilizing the highly sensitive and specific Up-
Converting Particle Lateral Flow Circulating Anodic Antigen (UCP-LF CAA) test[1], we
found a schistosomiasis prevalence of 20.3%. This contrasts with a 65.3% prevalence detected
when combining the Point-of-Care Circulating Cathodic Antigen (POC-CCA) test and
microhematuria dipstick. These results suggest that schistosomiasis remains prevalent in the
area, indicating ongoing transmission. Furthermore, they underscore the importance of the
sensitivity and specificity of diagnostic tools in accurately assessing disease prevalence. The
lower prevalence detected by the ultra-sensitive CAA test[1] likely reflects a true decline from
the 51.8% average prevalence recorded in 2005 using the Kato-Katz egg method, which may
have underestimated the true burden of the disease due to its low sensitivity[2]. Indeed relying
on a single Kato-Katz test can lead to an underestimation of prevalence by as much as 50%][3].
This decline could be attributed to the ongoing mass drug administration (MDA) program,

which administers praziquantel annually to primary school-aged children.

To explore immunological differences between rural and urban settings, we extended our study
to adults from the same rural areas, as discussed in Chapter 4. In this adult population from
Mwanga, the prevalence of schistosomiasis was 4%, as determined by the Kato-Katz test and
POC-CCA. Given that adults are typically not included in the MDA programs, and their
primary economic activities such as agriculture or fishing involve water contact, the most
plausible contribution to their lower infection rates may be age-related acquired immunity[4].
Additionally, the lower sensitivity of the Kato-Katz test, especially in low-endemic areas
where egg output is low, might have underestimated the true prevalence[5]. Other factors
contributing to the observed low prevalence may include environmental changes, preventive
strategies, and increased self-deworming practices. Despite the low prevalence detected by
Kato-Katz and POC-CCA, we observed high frequencies of Th2-cells in the adult population,
suggesting that these individuals might still harbour schistosomiasis infections that were not
detected by Kato-Katz, or that the elevated Th2 response could result from previous/historical

infections or other lifestyle factors.
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These findings emphasize the critical role of high-quality diagnostic tools in accurately
estimating schistosomiasis prevalence and understanding the immunological variations
associated with the infection. Schistosomiasis-infected individuals typically exhibit elevated
Th2 responses, which decrease following treatment with anti-helminthic drugs, alongside other
immunological changes, including reductions in T regulatory cells [6, 7]. In studies such as
Human Controlled Infection Models (CHIMs) for schistosomiasis, the use of CAA tests has
proven invaluable in confirming infection and correlating antigen levels with specific immune

responses, thus linking immunological changes to infection dynamics[8].

Conversely, poor-quality diagnostic tools, whether due to variability in sensitivity, specificity,
or technical errors, can lead to missed infections or overestimation of prevalence. This can
obscure our understanding of the factors driving immune variation and hinder efforts to address
the impacts on vaccine response variation. Given the lower sensitivity of the Kato-Katz test,
particularly in low transmission areas, CAA tests provide a more reliable option for monitoring
schistosomiasis and understanding its immunopathology. Regarding the effect on vaccine
responses, future vaccine studies in areas endemic for helminth infections could investigate
whether current infection is associated with variation in vaccine responses. This could be done
by designing treatment studies in healthy adults, like the study conducted in Uganda, where
pregnant women and their children were dewormed, and their cytokine levels were

measured[9].

The association between lifestyle factors and cellular immune profiles

In Chapter 4, we examined the relationship between lifestyle factors and cellular immune
profiles in healthy Tanzanian adults. Our study revealed significant differences in immune cell
frequencies between rural and urban participants. Individuals from rural areas exhibited higher
frequencies of Th2-cells, memory CD4 T-cells, atypical memory B-cells, and increased
activation of these cells compared to their urban counterparts. Conversely, urban individuals
showed higher frequencies of naive gamma delta T-cells, CD4+ T central memory-cells, and
CXR3*, CD8" T-cells. These differences are likely due to current or past environmental
exposures, particularly to infections such as parasitic diseases. Individuals in rural settings are
more at risk of acquiring such infections due to socio-economic activities like agriculture,
fishing, and recreational activities (swimming), but also limited resources that mean exposure

to contaminated water and poor hygiene, all drivers of an activated immune system.
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Our findings align with other studies, such as those comparing rural and urban populations in
Senegal and Indonesia[6, 10]. In these studies, rural populations, particularly in Senegal, had
higher frequencies of Th2-cells, pro-inflammatory cytokines, memory CD4+ T-cells, and
memory B-cells, indicating a heightened immune response[10]. Similarly, rural individuals in
Indonesia exhibited an activated immune status, characterized by higher frequencies of Th2
and regulatory T-cells, mirroring some of our findings[6]. While previous studies have linked
these activated immune states to helminth infections, shown by a decrease in specific Th2 and
regulatory T-cells post-treatment[6, 7], the low prevalence of helminth infections in our study

prompted us to explore other factors contributing to the observed immune activation.

To further investigate the basis of these immunological differences, we assessed the
relationship between lifestyle scores and immune profiles. The lifestyle score was developed
based on household assets, housing conditions, and dietary history, capturing data on housing
(e.g., type of floor, wall materials, electricity connection, toilet facilities), asset ownership
(e.g., bicycles, cars, radios, TVs, refrigerators, computers), and dietary habits (e.g., types of
food consumed weekly). Using this lifestyle score, we were able to detect and confirm clusters
observed using the rural-urban scale. Additionally, this approach highlighted immune cell
clusters uniquely associated with lifestyle factors, which were not identified using the rural-
urban dichotomy. The question is why these clusters were not observed when considering the
rural-urban dichotomy. The identification of additional and unique cell clusters not observed
with the rural-urban gradient indicates that lifestyle factors, such as those used in our study,
offer a more granular understanding of immune profiles. For example, socio-economic status,
as reflected in asset ownership, has the potential to capture more subtle influences, such as the
impact of low socio-economic status on stress levels, nutrition, and environmental exposures,
which may have contributed to the additional clusters we identified. Furthermore, dietary

history, which can influence the immune system, likely plays a role in additional clusters.

We found that lower lifestyle scores were associated with higher frequencies of plasmablasts,
regulatory T-cells, and NK-cells. In contrast, higher lifestyle scores, typically linked to urban
living, correlated with increased frequencies of naive CD8+ T-cells and CD8+ Tem-cells
expressing markers such as CD161 and KLRG-1. These may include MAIT-cells, which are
commonly observed in urban environments; however, we were unable to confirm this due to

the absence of TCRva72.
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First, this indicates that individuals with lower lifestyle scores have an activated immune state,
given the very low prevalence of helminth infections, other factors, though not measured in
this thesis, such as viral infections like CMV[11], the presence of ectoparasites (e.g., ticks)[12],
fungal exposure in living environments and food[ 13, 14], nutrition[15, 16], and animal contact,
may partly explain the observed immune activation. Indeed, in our study housing conditions,
asset ownership (socio-economic status), diet, and nutritional history differed significantly
between rural and urban individuals. Upon further consideration, individuals with a higher
lifestyle score tend to exhibit a less activated immune state, characterized by a greater number
of naive T-cells. However, these individuals also possess an increased number of CD8+ Tem-
cells expressing CD161 and KLRG1. As previously mentioned, the possibility that these are
MAIT-cells cannot be ruled out. The CD161 marker is associated with enhanced cytotoxic
activities and shows high expression of IFN-y upon activation, which is observed in various
conditions such as viral infections and inflammatory states[17]. Conversely, KLRG1 serves as
an inhibitory marker capable of downregulating immune activation by suppressing
cytotoxicity, inhibiting cytokine production, or through other mechanisms[18-20]. Given that
urban individuals are generally less exposed to pathogens, aside from common seasonal viral
infections, this expression pattern may reflect a physiological mechanism aimed at controlling
inflammatory conditions, such as autoimmune diseases or latent infections such as CMV or
EBV. Urban living is associated with a higher risk of inflammatory conditions, including
allergies and autoimmune diseases[21, 22] suggesting that the body is in a constant state of

regulatory adjustment to mitigate these risks.

Vaccine hypo-responsiveness in a state context

In Chapter 5, we investigated whether vaccine responses differed between rural and urban
individuals. Contrary to the initial hypothesis, which proposed that urban individuals would
exhibit a stronger immune response due to potentially lower exposure to pathogens, better
healthcare access, healthier diets, and higher socioeconomic status, our study revealed that
rural individuals generally exhibited higher yellow fever-neutralizing antibody levels
compared to their urban counterparts. Given that rural populations are often expected to have
poorer responses to vaccines, these findings suggest that the variation in vaccine response is
context-dependent, and influenced by individual characteristics, the type of vaccine, and other

factors. In this case, rural individuals have shown better responses to vaccines, and possibly
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better protection, compared to those in urban settings. This challenges the assumption of
generalized vaccine hypo-responsiveness and highlights the complexity of immune responses

to vaccines, calling for a tailored approach in vaccination strategies.

Contradictory findings such as these have also been reported in other studies on yellow fever
vaccines. For example, a large trial involving individuals from North America and the United
Kingdom found no significant difference in yellow fever immunogenicity between young and
elderly populations[23-25]. Similarly, our findings contrast with several previous studies, such
as those comparing children vaccinated with yellow fever in rural Ghana and urban Mali[26],
and in Schistosoma-endemic areas of Uganda versus urban populations, where lower antibody
titers were observed in rural settings[27]. Additionally, a study comparing yellow fever-
vaccinated individuals between Uganda and Switzerland showed that Ugandan adults had

lower antibody levels than those in Switzerland[28].

The differences between our findings and those from other locations might be explained by
varying rates of pathogen exposure. Pathogen exposure is known to affect the immune system
and able to reduce vaccine efficacy[29]. In our study, rural individuals had no history of
malaria exposure and tested negative for malaria; there was also a very low prevalence of
parasitic infections, and we did not find for example schistosomiasis, a pathogen notorious for
its ability to modulate the immune system[30]. The difference between our study and that
conducted in Uganda might point towards a crucial role in the ability of parasitic infections to
profoundly affect the immune system and thereby responses to vaccines. Moreover, possibly
related to this, is that an optimal immunological age for immune priming is reached in our
young adults from rural areas, compared to the younger individuals, and adolescents studied
in Uganda where a stable level of immune activity enables a better vaccine response. The
differences in exposure to cross reactive pathogens might also be different between Tanzania
and Uganda. A direct comparison of the baseline immunological profiles of the Ugandan study
with ours might be able to shed light on the differences in YF vaccine responses across rural

and urban areas.

Another possible reason for the observed differences is the nature of the gut microbiome. Rural
individuals typically have a more diverse gut microbiome, which is becoming recognized as a
key factor influencing immune function and vaccine response. Unlike most other LMICs, the

gut microbiome of our study population might be more balanced due to better nutrition and a
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lower prevalence of pathogens that can cause enteropathy and affect vaccine response[31].
Rural living individuals have nutrient-rich diets due to the geographical location on the slopes
of Mount Kilimanjaro, a volcanic mountain with fertile soil and abundant water sources for
agriculture, supporting a variety of high-quality foods, including maize, bananas, beans, fruits
(avocado, mangoes) and green vegetables[32]. This difference in dietary history may have
contributed to the enhanced vaccine response observed. Other factors, such as better
socioeconomic status resulting from coffee sales and better access to healthcare services
compared to most other rural settings in African countries, can also influence the findings.

An interesting baseline difference between rural and urban individuals that might have
influenced the higher antibody levels was the haemoglobin level. Rural individuals had
significantly higher haemoglobin levels compared to urban individuals, which contrasts with
several findings in Africa, where lower haemoglobin levels have been reported in rural
compared to urban populations[33, 34], within the rural population, individuals with higher
haemoglobin levels were found to have higher antibody titers. This suggests that haemoglobin
levels might be a contributing factor to the variation in vaccine response Different factors, such
as nutrient type and high altitude, could explain this. Indeed rural individuals live in altitudes
ranging from 1800-2145 meters above sea level compared to 700-950 meters above sea level
in urban settings[35]. High altitude, which is associated with hypoxic conditions, can increase
the transcription factor hypoxia-inducible factor (HIF). This, in turn, induces metabolic and
phenotypic changes in B-cells, boosts B-cell differentiation[36-39], and enhances CD4+ T-cell
function[40]. The enhanced T-cell function promotes the production of cytokines, which are
important for antibody production and class switching by B-cells. Indeed, studies in animals
have shown that hypoxia-inducible factors in CD4+ T-cells are crucial for effective humoral
immunity, as they enhance glycolysis, and cytokine production, and regulate T-cell
subsets[40]. It would be interesting to measure HIF levels in the blood samples collected to

ascertain if there is a statistically significant difference between rural and urban populations.

Our findings exemplify the complexity of findings from population studies. For instance,
studies conducted in the same geographical areas as ours, showed a significant upregulation
of inflammatory genes, accompanied by higher ex-vivo cytokine levels among urban compared
with rural Tanzanians [41]. A genomic study comparing Tanzanians and Europeans revealed
that Tanzanian populations have an enrichment of the interferon pathway compared to

Europeans[42].
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In Chapter 2 of this thesis, we extensively reviewed those inflammatory pathways,
particularly those involving NF-kB and IRF7, that play a crucial role in predicting vaccine
responses[43]. In studies done mostly in Western populations, it is known that type 1 interferon
pathways are important and commonly upregulated shortly after vaccination, especially live

attenuated viral vaccines and during infections[44, 45].

Given these observations, it would be expected that urban individuals would have higher
antibody titers compared to rural individuals; however, this was not the case in our study.
Several factors could explain this, including environmental such as living altitude, and
microbial exposure. Interestingly, despite the observed enrichment of inflammatory pathways
among Tanzanians, studies have also found that these pathways are enriched with anti-
inflammatory cytokines like IL-10, highlighting that pro-inflammatory responses are
integrated with anti-inflammatory regulation[42]. This raises questions about whether
immunological studies conducted in Western contexts can be equally applicable to individuals
in low- and middle-income countries. Taken together, the higher antibody titers among rural
individuals suggest that vaccine response is a dynamic phenomenon, and no single hypothesis
so far could fully explain the observed differences. Furthermore, the status of hypo-
responsiveness in certain demographics, such as rural populations, the elderly, or infants, may
not be universally applicable. Therefore, we should approach this in a more context-dependent
manner, considering environmental factors, geographical location, characteristics of the
individuals studied, vaccine types and antigen specificities. This approach will help in

explaining findings and support context-based decision-making based on actual results.

Gut microbiome composition

In Chapter 5, we explored whether the gut microbiome differs between rural and urban
populations. Like the variations observed in vaccine responses and immunological profiles,
the gut microbiome also differed markedly between these settings. Our study revealed that
rural-living Tanzanians exhibited higher within-sample microbial diversity, evidenced by
greater Shannon diversity, a higher number of observed Amplicon Sequence Variants (ASVs),
and a greater variety of observed genera compared to their urban counterparts.
Compositionally, rural individuals were enriched with Succinivibrio, Treponema, and
Prevotellaceae (including Prevotella and Alloprevotella), while urban individuals showed

higher levels of Bacteroides and Parabacteroides. This indicates that rural Tanzanians have a
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more diverse and balanced microbial community and that there are distinct differences in gut
microbiota composition between rural and urban settings. Several factors could explain this
difference, including diet, environmental factors, and lifestyle factors such as housing and

animal contact.

Our findings align with broader research in this field, which consistently shows that rural
populations possess more diverse gut microbiomes[46-50]. Like our findings, other studies in
rural settings in Africa show higher microbial diversity, including a predominance of
Prevotella[50]. These microbes are known to produce short-chain fatty acids (SCFAs) like
butyrate and propionate, which play a crucial role in maintaining gut barrier integrity and
modulating immune responses, potentially enhancing vaccine efficacy[51-54]. However,
particularly in low- and middle-income settings, counterintuitive findings have been reported
in children who received Rotavirus vaccines, where higher microbial diversity was associated
with poor vaccine efficacy[55]. This could occur due to increased competition among
microbial species, where the abundance of beneficial microbes essential for optimal vaccine
response is affected, or due to the presence of potentially pathogenic species, which can cause
immune overstimulation or exhaustion, resulting in a lower vaccine response (Levine, 2010;
Lynn, 2022). For example, most oral vaccines rely on the gut’s immune system to elicit an
immune response, but the presence of more diverse microbes or a higher burden of enteric
pathogens may reduce the vaccine performance by competing for cell entry or receptor
binding[56]. This suggests that not only the quantity but also the balanced quality of the
microbial community is crucial for the survival of beneficial bacteria, which act as natural

adjuvants or sources of short-chain fatty acids.

Urban populations, on the other hand, showed an increased abundance of Bacteroides[57, 58]
, a strain that has been observed to displace Prevotella across generations[59, 60] . These
microbiota compositions are linked to reduced microbial diversity and increased inflammation,
which, in a vaccine context-dependent manner, can either enhance or impair immune function
and vaccine efficacy[61, 62]. The enrichment of Succinivibrio, Treponema, and
Prevotellaceae among rural Tanzanians echoes findings from studies on traditional

populations like the Hadza of Tanzania and immigrant populations in the USA[49, 60]

Like other low- and middle-income countries, Tanzania is undergoing rapid urbanization,

impacting lifestyle choices and environmental exposure regardless of whether people live in
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rural or urban areas. For example, rural individuals now have easier access to fast food or may
adopt urban lifestyles by cooking or consuming highly refined foods. These lifestyle changes,
along with environmental changes, can influence the gut microbiome and, consequently, the
immune system. Our study found that genera associated with urban living were notably
enriched for BloSSUM (bloom or selected in societies of urbanization/modernization) taxa,
indicating their adaptation to urbanized environments. This aligns with existing literature
showing that urbanization leads to the enrichment of microbial taxa adapted to processed foods
and reduced microbial diversity typically found in urban settings[59, 63, 64]. In contrast,
genera linked to rural living were not significantly enriched for VANISH (volatile and/or
associated negatively with industrialized societies of humans) taxa, suggesting that rural
individuals might be undergoing a transition, already departing from traditional microbial
profiles and reflecting early signs of exposure to urban lifestyles. This observation is supported
by studies showing that rural populations exposed to urbanized lifestyles exhibit a decrease in
microbiome diversity and an increase in taxa associated with urbanization[48, 65, 66]. This
transitional microbiome state in rural populations might suggest an intermediate immune
response to vaccines, potentially more effective than that of urban populations but not as robust

as that of traditional rural microbiomes.

In the same chapter 5, we assessed the impacts of dietary habits on microbiota composition.
The study of dietary habits and their impact on gut microbiota composition provides important
insights into how diet might influence vaccine efficacy. Samples were clustered into two
community state types (CSTs): CST1 was enriched for Prevotella, common in rural
individuals, and CST2 was enriched for Bacteroides, common in urban individuals.
Interestingly, ~ 93% of rural individuals remained in CST1, but urban individuals were split
between CST1 ~ 63% and CST2 ~37%. Urban individuals harbouring Prevotella were
classified as "rural-like urban" (urban+CST1), while those harbouring Bacteroides were
classified as "urban" (urban+CST2). This classification highlighted the heterogeneity among
individuals, regardless of their living locations. Based on dietary habits, individuals with rural-
like gut microbiota (CST1) consumed more fibre-rich and carbohydrate-rich diets, such as
ugali (stiff porridge) and locally made beer (mbege), and fewer starch-based foods like
potatoes and rice. Ugali in rural areas is made from whole grain maize flour, whereas in urban
areas it is made from refined maize flour, making it different in content; the rural ugali retains

the bran, germ, and endosperm, while the urban version has only the endosperm. The locally
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made beer, mbege, is made from fermented banana and finger millet; fermented foods are
created by encouraging the growth of beneficial microbes and the enzymatic breakdown of
food elements[67]. These food contents have been shown to result in the bioavailability of
nutrients, flavonoids, tannins, phytochemicals, bioactive compounds, and microbial
metabolites that are normally consumed as a rich source of probiotic microbes and are thought
to act as immunomodulatory compounds[68, 69]. Indeed, findings indicate that certain
fermented foods have the potential to promote gut immunity[68, 69]. Therefore, the influence
of fermented products, though they promise to modulate vaccine responses, warrants local
well-designed interventional studies. Regarding ‘rural-like urban’ individuals (urban+CST1),
they consumed more beans and peas, which was different from urban individuals
(urban+CST2) who consumed more rice, potatoes (chips), and refined ugali. The intermediate
state of the rural-like urban group suggests that the continued consumption of traditional, fiber-
rich foods like beans and peas, supports a more diverse gut microbiota and immune responses

similar to rural populations, but with components of urban microbiome.

Apart from diet, studies in animals have shown that living environments including housing
significantly influence the immune system. For instance, housing plays a crucial role in
shaping the gut microbiome of pigs early in life[70]. Individuals sharing an environment, such
as cohabiting parents, exhibit 50% less immunological variation compared to individuals in
the broader population[71]. Shared environments lead to similar immune profiles[72] and gut
microbiota among cohabiting individuals and their animals(e.g., dogs)[73]. Together, these
findings indicate that lifestyle factors significantly shape the immune system, potentially due
to shared environmental factors such as pathogens, microbiomes, animal contact and dietary
patterns. Therefore, information about lifestyle factors can help explain the factors not
accounted for when using the rural-urban dichotomy. Lifestyle factors can also better enhance
our understanding of the complexity of human-environment interactions, providing detailed

insights into human life.

Gut microbiome and antibody waning.

In Chapter 5, we assessed how the gut microbiome is associated with yellow fever antibody
titers over time. As mentioned already, rural individuals, overall, had higher antibody titers
compared to urban individuals. We also found that individuals with a rural-like gut

microbiome (CST1) living in rural areas had higher antibody levels compared to those with an
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urban-like microbiome (CST2) living in urban settings. Interestingly, individuals characterized
by a rural microbiome while living in an urban environment ("urban-like rural" or
urban+CST1) also had higher antibody levels than those with an urban-like microbiome
(CST2). However, these "urban-like rural" individuals experienced faster antibody waning
compared to the other groups. This accelerated waning among individuals with rural-like
microbiome characteristics in an urban setting could be due to the reduction of certain
beneficial microbes, which may impair the production of immune-enhancing metabolites like
short-chain fatty acids (SCFAs). SCFAs are important for antibody production, mutation, and
maturation. To the best of our knowledge, no studies have specifically investigated the
association between the gut microbiome and the yellow fever vaccine. However, studies on
other parenteral mRNA vaccines have shown that the gut microbiome can influence vaccine
response, potentially by facilitating SCFA production or acting as a natural adjuvant. For
example, the presence of bacterial species such as Eubacterium rectale and Roseburia faecis,
which produce butyrate (an SCFA that acts as a natural adjuvant), has been associated with
increased immunogenicity in recipients of the BNT162b2 mRNA COVID-19 vaccine[74].
Similarly, Bifidobacterium adolescentis has been linked to higher neutralizing antibodies in
CoronaVac vaccine recipients, enhancing immune protection through enriched carbohydrate
metabolic pathways[74]. Among children who received fermented formula milk alongside the
poliovirus vaccine, antibody levels correlated with the presence of Bifidobacterium longum or
Bifidobacterium infantis[75]. Therefore, the reduction of some of these beneficial bacteria may
contribute to the observed pattern. Metagenomic analysis could offer a more detailed
understanding of the pathways involved. The faster reduction of antibodies in the 'urban-like
rural' group is particularly noteworthy. Given that the Plaque Reduction Neutralization Test
(PRNT) is not selective for IgG alone, the early effects of other antibodies, such as IgM, may
also be observed. If this is the case, individuals experiencing a more rapid decline in antibody
levels may have generated higher amounts of IgM initially, which then decreased over time.
Indeed, IgM typically begins to wane around 15 days post-vaccination and can reach nearly
undetectable levels by 18 months[76]. Isotype-specific ELISA could be utilized to determine
whether there are differences in the induction of IgG and IgM. Waning is the key determinant
of the need for and frequency of revaccinations. Waning is also important in general
immunization programs, especially in endemic areas, because if antibody levels decline too
quickly, it may be unlikely to reach herd immunity. Faster yellow fever antibody waning has

been observed in rural or in LMIC when comparing rural and urban populations[26] or

230



General discussion and perspectives

between low- and middle-income countries and high-income countries[28]. However, this
observation has not been directly linked to the gut microbiome in the context of yellow fever
vaccine studies. It is important to note that for vaccines like the CoronaVac, the baseline gut
microbiome has been able to predict vaccine immunogenicity, particularly in individuals with
a high abundance of Bifidobacterium adolescentis, Bifidobacterium bifidum, and Roseburia
faecis [77]. Tt is also important to note that while humoral immunity is crucial, effective
immunity requires both humoral and cellular responses for complete protection against
disease. Therefore, it is essential to assess not only antibody levels but also the strength of

cellular immune responses.

Future perspectives

Exploring the role of diet on the microbiota and vaccine efficacy

Research into the microbiota's role in enhancing vaccine efficacy is an emerging and promising
field. There is a complex relationship between diet, microbiota, and the immune system.
Findings suggest that metabolites produced by the microbiota, along with specific dietary
components, such as those found in fermented food diets, can modulate immune responses[78].
To optimize immunization strategies, future research might focus on identifying pathways and
mechanisms through which the microbiota influences vaccine responses. In our research, we
found an association between diets rich in fibers or complex carbohydrates can influence the
gut microbiome. A promising approach could involve leveraging locally available diets, such
as fermented local beverages in Tanzania, which have been shown to have anti-inflammatory

effects[41].

Other dietary options, such as fermented milk, have shown promising potential in enhancing
vaccine responses, particularly for influenza vaccines[79] and Salmonella typhi Ty21a[80].
This opens the door for more rigorous exploration through well-designed, controlled trials. By
including larger, more diverse populations and evaluating its effects across a broader range of
vaccines, we can better understand the role of fermented local beverages in boosting immune
responses. In Tanzania, An ongoing study is investigating the impact of traditional plant-based
diets and fermented foods on alleviating immune metabolic dysregulation and enhancing
vaccine response in overweight and obese individuals[81]. In this study, one group receives a

fermented banana beverage, another follows a high plant-based diet, and a third consumes a
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normal diet[81]. These dietary interventions are administered alongside various vaccines to
assess whether they can improve immune responses. While this study has the potential to offer
valuable insights, its results are still pending. A limitation of our current study is the absence
of dietary intervention, and we are currently awaiting results from the Tanzania study, the
study in which participants, who received intervention are obese individuals, limiting
generalization[81]. Therefore, future research should aim to address this gap by integrating
dietary modifications alongside vaccination in a controlled cohort of normal-weight, healthy
individuals. Such an approach would facilitate the identification of specific dietary compounds
or metabolites that may modulate the immune system and enhance vaccine efficacy.
Longitudinal studies are particularly well-suited for this purpose, as they can provide
comprehensive insights into how various dietary factors influence the gut microbiome and,

consequently, impact immune responses to vaccines.

Investigating the role of hypoxia-inducible factors in immune function and vaccine

response at high altitude.

High-altitude hypoxia induces hypoxia-inducible factors (HIFs), HIFs affect both innate and
adaptive immune cells, including antigen-presenting cells, T-cells, and B lymphocytes, thereby
altering their phenotype and function[39]. However, the role of HIFs in vaccine responses
remains largely unexplored in humans. HIFs are known to cause significant metabolic and
phenotypic changes in B-cells, boosting B-cell differentiation and enhancing CD4+ T-cell
function[40]. These changes promote IFN-y or IL-4 cytokine production[40], which is crucial
for antibody production and class switching in B-cells, with the possibility of supporting robust
humoral immunity. Studies in animals have demonstrated that HIFs in CD4+ T-cells enhance
glycolysis, promote cytokine production, and regulate T-cell subsets, all of which are vital for

effective immune responses[40].

To better understand the effects of high altitude on immune function, it would be valuable to
measure HIF levels in blood samples collected from different altitude rural areas as well as
different altitude urban areas. By assessing whether there are statistically significant
differences in HIF expression between these populations, researchers could gain insights into
how environmental factors like altitude influence immune responses. This could have
important implications for tailoring public health strategies and vaccination programs in high-

altitude regions. Additionally, understanding the role of HIFs in immune modulation could
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open up new avenues for therapeutic interventions that harness these pathways to enhance the

immune response to vaccines.

The importance of inclusive research

Our study underscores the crucial need for inclusive research that considers the diversity of
populations, particularly in understanding variations in immune responses and vaccine
effectiveness. It is increasingly evident that these variations extend beyond the differences
observed between high-income countries (HICs) and low- and middle-income countries
(LMICs)[10, 82]; significant differences are also present within geographically proximate
regions, such as urban versus rural settings. As demonstrated by our findings, populations
living only an hour apart can exhibit striking differences in immunological profiles and gut

microbiome composition, as well as subtle but notable differences in vaccine immunogenicity.

Nevertheless, our study was limited by its focus on specific populations and regions,
examining only two out of five districts in the region. This indicates the need for broader
research that includes a wider range of populations exposed to diverse environmental
conditions. Such research is vital not only for deepening our understanding of how various
factors influence immune profiles and vaccine responses but also for informing public health
strategies that address health disparities linked to distinct environments. Ultimately, this
approach could lead to more effective and equitable vaccination strategies, particularly through
the tailoring of vaccine formulations and immunization schedules to specific environmental

exXposures.

Prioritizing immune variation or its drivers

Deciding whether to focus future research on immune variation itself or the underlying drivers,
such as microbiome and metabolome variations, is pivotal for advancing our understanding of
immune responses to vaccines. Investigating immune variation directly provides immediate
insights into how immune responses differ among individuals and populations, which is highly
relevant for developing targeted immunization strategies. This approach helps identify specific
immune profiles associated with better vaccine responses or increased susceptibility to
infections, allowing for tailored interventions in diverse settings. However, this strategy may

overlook the root causes of these immune differences. Without understanding the drivers of
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immune variation, sustainable solutions to address differences in immune responses might

remain elusive.

On the other hand, focusing on the drivers of immune variation, such as the microbiome,
lifestyle factors, and metabolome, offers a more comprehensive understanding of the factors
influencing immune responses. These drivers interact with the host immune system in complex
ways, affecting everything from immune development to disease progression. For instance,
different microbes can harbour the same metabolic pathways, leading to similar biological
outcomes, and different environmental drivers can produce the same downstream immune
effects. This redundancy approach suggests that studying these drivers could help uncover
universal mechanisms underlying immune responses, potentially leading to broad-spectrum
interventions that are effective across diverse populations. However, this approach is not
without its challenges. The complexity of, for example, microbiome and metabolome, coupled
with their interactions with various environmental factors, makes it difficult to pinpoint
specific drivers of immune variation. Moreover, the same microbial or metabolic changes can
have different effects depending on the host’s genetic background, health status, and
environmental exposures, complicating the translation of these findings into actionable public
health strategies. Again, a more balanced approach, as I often refer to in the discussion of this
thesis, that integrates both immune variation and its drivers may provide the most robust

framework for understanding and enhancing immune responses across populations.

Combining advanced technology, data analysis, and integration to harness the individual

studies

Leveraging advanced technologies such as transcriptomics, metabolomics, epigenetic analyses
at the single-cell level, and high-dimensional cytometry presents unprecedented opportunities
to study immune variation and vaccine-specific immune responses in greater depth and
breadth. These technologies can uncover new immunological pathways and networks, paving

the way for designing more effective vaccines.

To maximize the potential of these advanced tools, it is crucial to utilize and expand
international collaborative networks, such as Hypovax Global (hypovax.org), which can
provide access to cutting-edge technologies and expertise. Additionally, investing in training

and capacity-building initiatives will empower local scientists to analyze and interpret complex
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datasets. Establishing local data servers or data sharing points and other data-sharing platforms
can address the challenges posed by the relative lack of infrastructure, that enables large-scale
data storage, processing, and analysis. This way, new PhD students can be recruited easily and
PhD students who finish their training can continue their work and contribute toward
understanding the variation in vaccine response. Moreover, standardizing protocols and
harmonizing data formats will ensure consistency and facilitate meta-analyses across studies.
Access to user-friendly bioinformatics tools, particularly open-source software with localized
adaptations, will further enhance the ability of researchers in LMICs to conduct advanced data

analyses, ultimately contributing to more robust and impactful scientific outcomes.

Conclusion

In conclusion, the work presented in this thesis contributes to the expanding body of literature
demonstrating that immune system variability exists between populations, as well as
differences in vaccine efficacy/immunogenicity, particularly when comparing rural and urban
populations. This research, uniquely based in Africa, highlights the importance of lifestyle
factors such as housing, asset ownership, and dietary history as key variables in understanding
immune system variation. These findings address gaps that a simplistic rural-urban dichotomy
would have missed. If applied carefully, a lifestyle score can provide immunologists,
vaccinologists, public health experts, and researchers with a deeper understanding of how these

factors influence immune function, and vaccine responses.

Furthermore, this thesis underscores the context-dependent nature of vaccine responses,
emphasizing the need for bidirectional hypotheses. This approach allows for more precise
mapping of the factors influencing vaccine hypo-responsiveness. Additionally, the association
between the gut microbiome and the faster, stronger antibody waning observed in individuals
with urban but rural-like characteristics suggests that the microbiome plays a crucial role in
immune response regulation. These findings, particularly the unexpectedly higher antibody
levels in rural populations and the accelerated antibody waning in urban individuals with rural-

like traits call for further research into the role of the microbiome.
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Nederlandse Samenvatting:

Het overkoepelende doel van dit proefschrift was het onderzoeken van de factoren die
samenhangen met variaties in het immuunsysteem en verschillen in vaccin responsen bij
Tanzaniaanse volwassenen, met behulp van geavanceerde technologieén zoals single-cell-
analyse via massa cytometrie en 16S rRNA-sequencing. Om dit te bereiken voerden we een
literatuurstudie en drie verschillende veldonderzoeken uit (twee cross-sectionele studies en één

studie met longitudinale follow-up).

Allereerst voerden we een literatuurstudie uit, gevolgd door twee cross-sectionele studies. De
eerste van deze twee richtte zich op het evalueren van de prevalentie en diagnostische
nauwkeurigheid van hulpmiddelen die worden gebruikt voor de diagnose van schistosomiasis
in een landelijke omgeving. Deze studie betrof meer dan 500 schoolgaande kinderen en leverde
cruciale inzichten op in de prevalentic van de ziekte in Tanzania en in de effectiviteit van
diagnostische methoden in een omgeving met beperkte middelen. De tweede cross-sectionele
studie had als doel de immunologische profielen van personen uit landelijke en stedelijke
gebieden te vergelijken en factoren te identificeren die bijdragen aan immuunvariatie. In deze
studie werden deelnemers geworven uit vier verschillende locaties - twee landelijke en twee
stedelijke - waar bloed-, ontlastings- en urinemonsters werden verzameld. Gedetailleerde
vragenlijsten registreerden individuele leefstijlfactoren zoals sociaal-economische status, dieet
en omgevingsblootstelling, wat hielp bij het verduidelijken van de intrinsieke en extrinsieke

oorzaken van immuunvariatie.

Een derde studie, een longitudinale cohortstudie, resulteerde al in twee wetenschappelijke
artikelen. Deze studie betrof de follow-up van personen uit twee van de geselecteerde
onderzoekslocaties, ¢én landelijke en één stedelijke. In totaal werden 185 deelnemers
geworven, gelijkmatig verdeeld tussen landelijke en stedelijke gebieden. Om de factoren te
onderzoeken die de vaccinrespons beinvloeden, werd beide groepen het gele koorts-vaccin
toegediend. Biologische monsters (bloed, ontlasting, urine) werden verzameld op meerdere
tijdstippen: voor de vaccinatie en op dag 2, 7, 14, 28, 56, 90 en 178 na vaccinatie. Daarnaast
werd gedetailleerde informatie over de leefstijl verzameld via vragenlijsten, met gegevens over
sociaal-economische factoren, dieet en andere relevante variabelen. Geavanceerde single-cell-

technologie, zoals massacytometrie, hielp bij het in kaart brengen van immuun-cel profielen
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met hoge resolutie, terwijl 16S rRNA-sequencing inzicht bood in de samenstelling van het

microbioom.

Belangrijkste bevindingen per hoofdstuk:

Hoofdstuk 1: Hier introduceerden we de factoren die samenhangen met variaties in het
immuunsysteem en de verschillen in immuunresponsen op vaccins. Daarnaast beschreven we
de belangrijkste doelstellingen van dit proefschrift, de onderzoeksopzet, de geografische
gebieden waar de studies zijn uitgevoerd, en de onderzochte populaties. In Hoofdstuk 2
bespraken we de aanzienlijke uitdaging die hypo-responsiviteit op vaccins vormt voor de
wereldwijde volksgezondheid, met name door de variabiliteit in effectiviteit van vaccins tussen
verschillende populaties en geografische regio’s. Dit probleem is vooral zichtbaar in landen
met een laag of midden inkomen, waar vaccins tegen ziekten zoals malaria, tuberculose (Tb)
en rotavirus vaak een verminderde immunogeniciteit en effectiviteit laten zien in vergelijking
met landen met een hoog inkomen. We identificeerden meerdere bijdragende factoren aan deze
hypo-responsiviteit, waaronder blootstelling aan micro-organismen en parasieten (zoals HIV,
CMYV, malaria, parasitaire wormen, en omgevings mycobacteri€n), variaties in het microbioom
(zoals faagdiversiteit en commensale bacterién), en de aanwezigheid van pro- en anti-
inflammatoire metabolieten (bijvoorbeeld flavonen). We onderzochten mogelijke
immunologische mechanismen achter verminderde vaccin responsen, waaronder pre-existente
immuniteit, persisterende immuunactivatie, immuun uitputting, en veranderingen in weefsel
micro-omgevingen, zoals in de lymfeklieren. Ook bespraken we potenti€le strategie€n om
vaccin responsen te verbeteren, zoals het aanpassen van adjuvantia, het wijzigen van vaccinatie
regimes, het verminderen van ontstekingsreacties, en het gebruik van monoklonale

antilichamen gericht tegen Th2-cytokines en Treg-cellen.

Hoofdstuk 3: We onderzochten de prevalentie van schistosomiasis bij scholieren in het
Mwanga-district, Tanzania, na bijna twee decennia van Mass Drug Administration (MDA) met
praziquantel. Hiervoor gebruikten we de Up-Converting Particle Lateral Flow Circulating
Anodic Antigen (UCP-LF CAA) test, bekend om =zijn hoge gevoeligheid. Daarnaast
onderzochten we de Point-of-Care Circulating Cathodic Antigen (POC-CCA) test en de
microhematurie-dipstick als diagnostische hulpmiddelen. Onze bevindingen toonden een
prevalentie van schistosomiasis van 20,3% op basis van de UCP-LF CAA-test, wat een

nauwkeuriger weergave van de ziektelast gaf dan de POC-CCA- en microhematurie-tests.
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Onze studie benadrukte de aanhoudende overdracht van schistosomiasis ondanks langdurige
MDA-inspanningen en de noodzaak van verbeterde diagnostische tools voor veldgebruik.
Hoofdstuk 4: We onderzochten de relatie tussen leefstijlfactoren en cellulaire
immuunprofielen bij gezonde Tanzaniaanse volwassenen. De leefstijlscores waren gebaseerd
op huishoudelijke bezittingen, woonsituatie en dieetgeschiedenis. We vonden significante
verschillen in immuuncel frequentie tussen landelijke en stedelijke deelnemers. Landelijke
deelnemers vertoonden hogere frequenties van Th2-cellen, atypische geheugen-B-cellen, en
CD4+ T-effector geheugencellen. Leefstijlfactoren bleken een significante invloed te hebben
op cellulaire immuunprofielen, onafhankelijk van de geografische locatic. Hoofdstuk 5: We
vergeleken de immunogeniciteit van het gele koorts-vaccin in landelijk en stedelijk Moshi.
Immunogeniciteit werd functioneel gemeten met een neutralisatietest, en titers van
antilichamen tegen niet-structureel eiwit 1 (NS1) werden gemeten met ELISA. Hoofdstuk 6:
We onderzochten de samenstelling van het darmmicrobioom bij Tanzaniaanse volwassenen uit
landelijke en stedelijke gebieden in relatie tot de antilichaamrespons op het gele koorts-vaccin.
We vonden significante verschillen in microbiota samenstelling tussen de twee groepen.
Landelijke deelnemers vertoonden een grotere microbiéle diversiteit, wat deels werd verklaard
door dieetverschillen. Hoofdstuk 7: We bespraken de belangrijkste bevindingen van dit
proefschrift, met aandacht voor de factoren die bijdragen aan variaties in het immuunsysteem
en verschillen in immuunresponsen op vaccins. Tot slot presenteerden we

toeckomstperspectieven en de algemene conclusies van dit onderzoek.
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