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Chapter 5

ABSTRACT

Immune system and vaccine responses vary across geographical locations
worldwide, not only between high and low-middle income countries (LMICs),
but also between rural and urban populations within the same country.
Lifestyle factors such as housing conditions, exposure to microorganisms
and parasites and diet are associated with rural-and urban-living. However,
the relationships between these lifestyle factors and immune profiles
have not been mapped in detail. Here, we profiled the immune system
of 100 healthy Tanzanians living across four rural/urban areas using
mass cytometry. We developed a lifestyle score based on an individual's
household assets, housing condition and recent dietary history and studied
the association with cellular immune profiles. Seventeen out of 80 immune
cell clusters were associated with living location or lifestyle score, with eight
identifiable only using lifestyle score. Individuals with low lifestyle score,
most of whom live in rural settings, showed higher frequencies of NK cells,
plasmablasts, atypical memory B cells, T helper 2 cells, regulatory T cells
and activated CD4+ T effector memory cells expressing CD38, HLA-DR and
CTLA-4. In contrast, those with high lifestyle score, most of whom live in
urban areas, showed a less activated state of the immune system illustrated
by higher frequencies of naive CD8+ T cells. Using an elastic net machine
learning model, we identified cellular immune signatures most associated
with lifestyle score. Assuming a link between these immune profiles
and vaccine responses, these signatures may inform us on the cellular
mechanisms underlying poor responses to vaccines, but also reduced
autoimmunity and allergies in low- and middle-income countries.
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INTRODUCTION

Variation in the immune system have been observed across populations in
low and middle-income countries (LMIC) in Africa and Asia and those living
in high-income countries (HIC) in Europe and the USA [1-6]. In addition,
immune system variation has been observed within countries, such as in
rural compared to urban areas in Senegal [2], Tanzania [7] and Indonesia
[1]. The immune system of rural-living individuals in LMICs shows higher
memory, activated and regulatory immune profiles, characterized by among
others regulatory T cells and T helper 2 cells (Th2 cells), compared to urban-
living individuals [1, 2, 8, 9]. At the same time, reduced vaccine performance
has been observed in populations living in LMICs, in particular in rural areas
[4, 10, 11]. Moreover, it is known that in these same populations, there are
less diseases of affluence, such as allergies or auto-immunities, where
unchecked inflammation is a strong contributor [4, 11-19].

Several factors determine the immune profile of an individual, including
genetic and demographic factors, such as age and sex, as well as
environmental factors, including exposure to microorganisms and
parasites, type of housing and dietary history [20, 21]. While genetics plays
an important role in immune system variation during early childhood, this
influence wanes with age due to cumulative exposure to environmental
factors, including pathogens [20, 22, 23]. This has been illustrated in
individuals chronically infected with helminths, who exhibit skewed baseline
immune profiles, characterized by higher frequencies of Th2, regulatory
T cells and higher expression of activation and inhibitory markers such
as cytotoxic T lymphocyte-associated protein 4 (CTLA-4), HLA-DR and
programmed cell death protein 1 (PD-1) on T cells [24-26]. Furthermore,
individuals infected with cytomegalovirus (CMV) show a disproportionately
higher activation state of the immune system and an increased frequency
of memory cells [27, 28].

Socioeconomic status (SES) is intertwined with housing quality, nutritional
status and access to healthcare [29, 30]. These factors contribute to infection
risk and, therefore, propel the vicious circle of infection/infestation, which
strongly impacts the immune system [18, 29-33]. The type of diet can also
be linked to variation in immune profile, as was demonstrated in a recent
study in Tanzania [7]. In this study, rural-living Tanzanians harbored a more
anti-inflammatory immune profile that correlated with higher levels of plant-
derived flavonoid apigenin found in food mostly eaten in rural settings
[7]. Therefore, taken together, there is evidence for links between living
environments such as housing, exposure to microorganisms and parasites,
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SES including individual assets and diet and immune system variation in
LMICs.

Although the immune profiles of urban- and rural-living individuals
have been directly compared, a more granular assessment of lifestyles
irrespective of living location is lacking, as individuals living in rural areas
may exhibit an urban lifestyle and vice versa. We hypothesized that a
more refined measurement of lifestyle including housing status, assets
(e.g. car, bicycle motorcycle or radio), and dietary history (i.e. frequency of
consumption of common dietary products) will allow us to better explain
immune variation previously related to rural or urban living location.
Especially, we aim to more precisely define immune signatures in individuals
exhibiting immune hypo-responsiveness. Such information can have an
impact on both communicable and non-communicable diseases, as a poor
immune response to vaccines will affect susceptibility to vaccine-preventable
infections, while poor responses to (self-)antigens can lead to fewer allergies
or autoimmune diseases in rural-living individuals.

Therefore, we not only used mass cytometry to obtain a highly granular
immune profile but also surveyed lifestyle variation among Tanzanian adults
recruited from two rural and two urban locations to maximize lifestyle
variation using a detailed questionnaire of housing conditions, assets
and recent dietary history. We present a lifestyle score based on these
questionnaire data, which places individuals on the spectrum ranging from
rural to urban lifestyle. We used this lifestyle score to explain immune profile
variation in Tanzanian adults living in rural and urban areas and contrasted
this with immune signatures from urban-living Europeans. In addition, we
utilized a machine learning model to define combined immune signatures
most strongly associated with the lifestyle score.

MATERIALS AND METHODS

Study design

This observational study was conducted between September and October
2022 as part of the CapTan study. A total of 203 healthy Tanzanian
participants aged between 18 to 35 years were included from two urban
locations (Urban Arusha and Urban Moshi) and two rural locations (Rural
Moshi and Mwanga) in northern Tanzania (Figure 1A).

The study was approved both at a local level by the Ethical Board of the

Kilimanjaro Christian Medical University College (No. 2588) and at the
national level by the Tanzania National Ethical Committee Board (NIMR/
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HQ/R.8a/Vol.IX/4089). In addition, samples collected from ten Dutch 18 to
30-year-old adults enrolled between January 2022 and September 2022 were
included in the TINO study (ClinicalTrials.gov, reference no. NCT06039527).
The study was approved by the Ethics Committee of Leiden University
Medical Center (NL77841.058.21).

Description of study areas

Arusha City (1400m above sea level; 617,631 inhabitants [34]) is the
administrative, business, commercial and educational centre of the Arusha
region, as itaccommodates most diplomatic and international activities. Due
to these important regional functions, there is high diversity in ethnicity,
economic status and lifestyle. Maasai, Meru and Chagga are the most
common ethnicities. Most people living in Arusha City have access to good
sanitation with the availability of clean, treated water. However, some people
are slum dwellers, i.e. living in the city but practicing a rural lifestyle. Most
people are self-employed or office employees in the government and private
sectors [34].

Kilimanjaro region has about 1.9 million inhabitants [34] across seven
different districts, three of which are included in this study (Moshi City, Rural
Moshi and Mwanga). Moshi City (referred to as Urban Moshi) (700-950m
above sea level; 331,733 inhabitants [34]) is the administrative, commercial
and educational center of the Kilimanjaro region. Most people live a Western
lifestyle and have good general sanitation and access to clean water. The
main ethnicities are Chagga and Pare. Formal business is the main activity,
followed by government and public employment, while few people are
involved in agricultural and entrepreneurial activities [34].

People in Rural Moshi (535,803 inhabitants [34]) are mainly involved in
agricultural activities. Some people have access to clean water, while few
use borehole water sources. People live in large family units and their main
economic activities are subsistence farming and animal husbandry. The
main ethnicity is Chagga and people follow Chagga traditions, such as
drinking local brew from banana/plantain.

The population of Mwanga district (684m above sea level; 148,763
inhabitants [34]) is mainly active in irrigation, subsistence farming and
animal husbandry. The primary water sources are boreholes, rivers and
dams, with only few people having access to tap water. Like Rural Moshi,
people live in large family units. The main ethnicity is Pare, with few Chagga.
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Europeans were recruited in the area around Leiden, an urban centre in The
Netherlands. European individuals were Dutch.

Participant screening and enroliment

In rural communities, study information was given through community
leaders and announcements during mass gatherings in mosques, churches
and during village meetings. In urban communities, study information
was distributed using leaflets and through community leaders, office
announcements and university gatherings. Eligible participants (age 18-35
years and permanent residency of a given location) were asked to enroll in
the study. Following informed consent, 230 participants were voluntarily
screened for in- and exclusion criteria. Exclusion criteria were pregnancy,
lactation, having acute or chronic diseases, being HIV-positive, recent
use of antibiotics, use of antimalarials and use of tuberculostatic drugs.
Participants were screened for HIV infection (SDBIOLINE HIV-1/2 3.0kit,
LOT:03ADGO020A), malaria (Malaria Ag p.f/Pan, Ref: 05FK60, LOT:05EDGO018A)
and soil-transmitted helminth such as hookworms (Ancylostoma duodenale
and Necator americanus), Trichuris trichiura, Ascaris lumbricoides,
Strongyloides stercoralis and Schistosoma mansoni using Kato-Katz or
Schistosoma haematobium (POC-CCA, butch no:220701075). Furthermore,
hemoglobin levels were measured (HemoCue Hb 301(CE:1450820055) and
random blood glucose was assessed (ACCU-CHECK glucose test strips, Roche
Diabetic care,06993761001). Weight and height were measured using a well-
calibrated machine (RGZ-160, made from China), and last, blood pressure was
measured using OMRON(SN:202111007949V). After nurse counseling, HIV-
positive individuals who had low or high blood pressure (<90/60mmHg and
>140/90mmHg, respectively) or had high blood glucose (=7.1mmol/L fasting
or 211.Tmmol/L random glucose) were excluded and guided for further
actions. People diagnosed with schistosomiasis or soil-transmitted helminth
infections were treated with praziquantel and albendazole, respectively
according to Tanzanian treatment guidelines. Based on exclusion criteria,
27 of 230 participants were excluded.

All questionnaires and clinical samples were collected by a trained study
team, consisting of medical doctors, nurses and laboratory scientists. Data
from Tanzanian individuals were collected using the cloud-based electronic
data collection system REDCap, with a server hosted at the Kilimanjaro
Clinical Research Institute in Tanzania. Data from Dutch participants were
collected in a Castor database, with a server hosted in The Netherlands.
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Lifestyle questionnaire

Questionnaires adopted from the Tanzania Demographic and Health Survey
and Malaria Indicator Survey (TDHS-MIS) and previously published work
conducted in Tanzania, focused on diet in relation to metabolic profiles and
inflammatory status [7, 54] were used to collect data on basic demographics,
wealth (house construction, general hygiene, land/animal/livestock/non-
productive asset ownership) and (recent) food history. Combined, the
collected information on wealth and food history was considered reflective
of one’s ‘lifestyle’. Among others, our questionnaire included questions on
the material used to construct the house's floor, roof and walls, the source
of water, the type of toilet and available cooking facilities. We assessed the
number of milk cows, cattle, goats, sheep, horses and poultry owned and
inquiries were made on land ownership and possession of non-productive
assets, such as radios, televisions, computers, refrigerators and ironing tools
(whether powered by charcoal or electricity), watches, motorcycles, trucks,
animal-drawn carts, generators and motorboats. As diet was recently found
to shape immune responses in a Tanzanian population [7], we additionally
collected data on recent food history. We specifically focused on the
frequency of various food types participants consume per week, including
ugali (stiff porridge), plantain, rice, potatoes, meat, fish, beans/peas, green
vegetables, cabbage, fruits and local beer.

PBMC isolation and cryopreservation

Blood was collected in sodium heparin tubes from 189 of 203 participants.
PBMC isolation and cryopreservation were performed as previously
described [1]. 27 Samples were excluded due to low blood quality, technical
problems during PBMC isolation or low cell counts. The remaining 162
cryopreserved PBMC samples were transported from Moshi, Tanzania,
to Leiden, The Netherlands, using a liquid nitrogen dry vapor shipper.
Out of these samples, we selected 100 individuals (25 per location) for
immune phenotyping based on age, sex and educational level. Apart from
these variables, baseline demographics for the total cohort and the mass
cytometry cohort were comparable (Table 1 and Table S1).

Mass cytometry antibody staining

Antibody panels were designed to phenotype immune cells ex vivo. Details
on antibodies used are listed in Table S4. Antibodies were conjugated to
metal using 100pg of purified antibody combined with either the Maxpar
X8 or MCP9 Antibody Labelling Kit (Fluidigm), as per the manufacturer’s
instructions. Conjugated antibodies were then stored in 200ul of Antibody
Stabilizer PBS (CANDOR Bioscience GmbH) at 4°C. Titration of all antibodies
was conducted on PBMC samples.
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On the day of staining, cryopreserved PBMCs were thawed with 20%
FCS/2mM Mg2+/1:10,000 benzonase/RPMI medium at 37°C and washed
twice with 10% FCS/RPMI medium. For phenotyping, 3 x 106 cells per
sample were prepared according to the Maxpar Nuclear Antigen Staining
Protocol V2 (Fluidigm). PBMCs were washed with Maxpar staining buffer and
centrifuged at 400g for 5 minutes in 5-ml Eppendorf tubes. Study samples
were randomized over seven batches and for each batch up to 17 samples
were barcoded. To barcode the samples, the cells were resuspended in
50pl of Maxpar staining buffer and 50pl of a barcode mix targeting (32-
microglobulin (B2M) was added to each sample, employing a 6-choose-3
scheme using 106cadmium (Cd), 110Cd, 111Cd, 112Cd, 114Cd and 116Cd.
After a 30-minute room temperature incubation and a wash with Maxpar
Staining Buffer, the cells were centrifuged, the supernatant was removed
and the cells were resuspended in Maxpar staining buffer and pooled into
one tube for each batch.

Subsequently, cells were treated with 5ml (about 0.17 0z) of 500x diluted Cell-
ID Intercalator-103Rh (Fluidigm) for 15 minutes to identify dead cells. After
washing with staining buffer, cells were incubated with 20pl Human TruStain
FcX Fc receptor blocking solution (BioLegend) and 130pl of staining buffer at
room temperature for 5 minutes. Next, 150pl of a freshly prepared surface
antibody cocktail was added for another 30-minute room-temperature
incubation. After a double wash with staining buffer, cells were fixed with
1.6% PFA in 5ml PBS for 10 minutes. Post-centrifugation, cells underwent
fixation and permeabilization using the eBioscience Foxp3/Transcription
Factor Staining Buffer Set from eBioscience, followed by incubation with
Human TruStain FcX receptor blocker. An intranuclear antibody cocktail was
then added and the cells were incubated for an additional 30 minutes. After
washing with permeabilization buffer and staining buffer, cells were fixed
with 1.6% PFA in 5ml PBS for 10 minutes. Finally, cells are stained with 1000x
diluted Cell-ID Intercalator-Ir (Fluidigm) in Maxpar Fix and Perm Buffer at
room temperature for 1Th and stored in RPMI 20% FCS 10% DMSO at -80°C
until acquisition.

Mass cytometry data acquisition

All barcoded samples within one batch were acquired simultaneously. Cells
were measured using a Helios mass cytometer (Fluidigm) and calibrated
as per Fluidigm’s guidelines. Before measurement, cells underwent
counting, washing with Milli-Q water, straining and then were suspended
at a concentration of 1.0 x 10¢ cells/ml in a solution containing 10% EQ Four
Element Calibration Beads from Fluidigm and Milli-Q water. Data acquisition
in mass cytometry was performed using dual-count mode and with noise
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reduction. Various channels were used, including those for antibody
detection, intercalators (103Rh, 191Ir, 193Ir), calibration beads (140Ce,
151Eu, 153Eu, 165H0, 175Lu) and for tracking background/contamination
(133Cs, 138Ba, 206Pb). Post-acquisition, the mass bead signal was used to
standardize short-term signal variations, using the EQ passport P13H2302
as a reference throughout each experiment. When necessary, normalized
FCS files were merged using Helios software, while retaining the beads.

Data analysis

All data preprocessing and statistics were performed in Rv4.2.2 and RStudio
Server v2022.03.999. All p-values were corrected for multiple testing using
the Benjamini-Hochberg procedure (and referred to as g-values). P-/g-
values<0.05 were considered statistically significant.

Data preprocessing

First, cells were automatically gated based on Gaussian parameters
(CyTOFClean R-package; v1.03beta; https://github.com/JimboMahoney/
cytofclean). Next, automatic gating was applied to select for intact/DNA+-
(1911r and 193Ir channels), CD45+- (89Y) and live cells (live/dead staining)
(openCyto v2.10.1 R-package). All automatically set gates were manually
inspected. Samples were compensated and debarcoded (CATALYST
v1.22.0 R-package). Data were transformed using a hyperbolic arcsinh-
transformation with a cofactor of 5 for downstream processing. Next,
reference samples collected from healthy European adults included in
each individual batch were used to train a CytoNorm-model (CytoNorm
v0.0.17 R-package; CytoNorm.train-function; nQ = 101; goal = ‘mean’; k = 10;
limit = 0-8). The trained model was applied to all samples, adjusting for batch
effects (CytoNorm.normalize-function).

Cell clustering

Cells were subjected to flowSOM-clustering (15 x 15 hexagonal grid;
rlen=100; kohonen v3.0.11 R-package), followed by metaclustering at k = 80
clusters using the hierarchical clustering (factoextra v1.0.7 R-package, hcut-
function, distance =‘ward.D2’). The clustering map was trained on 100k cells
per sample, the remaining cells were mapped to the trained map (predict.
kohonen-function). Cell clusters were annotated at subset-level by an expert
immunologist. Cell labels were further refined by incorporating markers that
exhibit variability within a given subset in the cell label.

Lifestyle score

Multiple correspondence analysis (MCA) was applied to categorical
questionnaire data (38 manually curated lifestyle-related questions; 21 on
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assets, 11 on food and 6 on housing) for all 203 Tanzanian participants
(FactoMineR v2.7 R-package, MCA-function). Missing values are imputed
using mode imputation. Principle component (PC) 1 was defined as 'lifestyle
score’, as this component, per definition, explained most variance across
lifestyle questionnaire data. Coordinates of samples and variable categories
were visualized in biplots. In addition, (cumulative) variable category
contributions for lifestyle score were extracted and shown.

Statistical analyses

To understand the overall structure of the data, cells were placed on a two-
dimensional t-distributed Stochastic Neighbor Embedding (t-SNE) map using
the Fit-SNE algorithm v1.2.1 (https://github.com/KlugerLab/Fit-SNE/blob/
master/fast_tsne.R). Fit-SNE was performed on a down-sampled dataset
including 1,500 cells per sample (max_iter = 1,000; learning rate = n cells/12;
perplexity = n cells/100).

To compare the frequency of cell clusters across rural and urban Tanzanian
locations, we employed a generalized linear mixed model (binomial = ‘family’;
link =‘logit’; Ime4 R-package v1.1-31). The number of cells in each cell cluster
(as a fraction of total CD45+ cells per sample) was considered the dependent
variable. We fit two models to assess the overall effect of location. Model
1 included (scaled) age and sex as fixed explanatory variables and ‘sample
ID" as a random intercept. ‘Sample ID" was included as a random effect to
deal with any under- or overdispersion due to the binomial model. Model
2 was the same as model 1, except that ‘location’ was added as a fixed
explanatory variable. ANOVA tests were used to assess whether location
(model 2) significantly improved model fit compared to model 1. Significant
models (after correction for multiple testing using Benjamini-Hochberg)
were subjected to pairwise comparisons between locations using the
emmeans v1.8.5 R-package (Tukey post hoc test). The associations between
cell cluster frequency and lifestyle score were also assessed using GLMMs,
including lifestyle score, (scaled) age and sex as fixed explanatory variables
and ‘sample ID’ as a random intercept. For sensitivity analyses, we fitted an
additional ‘combined’ GLMM, including both location and lifestyle (LS) (as
well as age (scaled) and sex) as fixed effects and sample ID as random effect.
Model fit (using Akaike Information Criterion [AIC]) of the ‘combined’ GLMM
was compared to same model, after removing either location or lifestyle
score, to assess the relative importance of these variables to performance
cluster-specific models.
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Elastic net machine learning modelling

To identify a combined immune ‘endotype’ most associated with variation
in lifestyle score, we fit an elastic net machine learning model (tidymodels
v1.1.1 R-package, glmnet-engine). Scaled age, sex and cell frequencies of
all 80 clusters were included as predictors and lifestyle score was included
as an outcome variable. Data was randomly split into train (80%) and test
(20%) data (stratified for living location). Model tuning was performed on
training data using 2,000 bootstrapped data samples, optimizing penalty
and mixture parameters. The best model was identified based on the
highest explained variance (R2) between observed and predicted lifestyle
score (penalty = 0.788, mixture = 0.1). The final model was applied to both
training and testing data to generate final estimates of model fit (R2).
Variable importance was assessed using the vip v0.4.1 R-package. Feature
stability was assessed by extracting all features from the models fitted with
the optimized tuning parameters across bootstrap datasets (n = 2,000). The
number of times a feature was selected was used as a measure for feature
stability.

RESULTS

Characteristics of the study population

The Tanzanian study population consisted of 203 adults recruited from
four geographical locations in northern Tanzania, including two urban
locations, Arusha and Moshi Urban and two rural locations, Moshi Rural
and Mwanga (Figure 1A). These four locations were categorized as rural
and urban based on the National Bureau of Statistics and the 2022 Census
[34]. Detailed information on housing, assets and food history was collected
using questionnaires [7, 35] (Figure 1B).

From these 203 individuals (Table S1), PBMC samples of 100 individuals
were included for mass cytometry analyses (n = 100; n = 25 from each site
in four sites) (Table 1). The median age was 25.0 years (interquartile range
[IQR], 23-29 years). The prevalence of parasitic infections was 7% and these
infections were detected only in individuals from rural areas (Table 1). As
a comparator cohort, PBMC samples from ten Dutch individuals recruited
in Leiden, The Netherlands (median age 29 [IQR 27-30], 50% female) were
acquired using mass cytometry (referred to as ‘urban European’).

Cellular immune profiles differ between rural- and urban-living
Tanzanian adults.

To characterize the cellular immune profiles between rural- and urban-living
individuals, peripheral blood mononuclear cells (PBMCs) were stained with a
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panel of 37 metal-tagged antibodies. The processed single-cell level dataset
contained 69.6 million live CD45+ cells, which allowed the identification of six
major immune lineages, including B cells, CD4+ T cells, CD8+ T cells, innate
lymphoid cells (ILCs), myeloid cells and unconventional T cells (including
y& T cells) (Figure 1C). Clustering analyses using self-organizing maps
(SOM), followed by hierarchical clustering resulted in 80 distinct immune
cell clusters (Figure S1 and Table S2). Cell clusters were annotated at
subset-level by an expert immunologist. Cell labels were further refined by
incorporating markers that exhibit variability within a given subset in the
cell label. Using Generalized Linear Mixed Models (GLMMs), we identified
nine clusters which were significantly different between the four locations,
after adjusting for age and sex (Figure 1D-E).

The CD4+ T cell lineage was composed of 28 cell clusters, of which 5
significantly differed across locations. Th2 cells (cluster 51) represented the
strongest rural signal, where we observed significantly higher frequencies
in rural-living locations (especially rural Moshi) compared to urban-living
individuals (median 0.7% of total CD45+ cells across rural sites compared
to 0.3% and 0.2% in urban Tanzanians and Europeans, respectively). Rural-
living individuals additionally showed a significantly higher frequencies of
three cell clusters of CD4+ T cells. These clusters included CD161dim PD-1dim
CTLA-4+ CD4+ T effector memory (Tem) cells (cluster 46), CD4+ Tem cells
expressing CD38, CD161, CTLA-4 and PD-1 (cluster 79) and HLA-DRdim PD-1+
KLRG-1+ CD4+ Tem cells (cluster 72). In contrast, the CD27+ CD28+ CD45R0O+
CD127+ CD4+ T central memory (Tcm) cell cluster (cluster 53) was higher in
urban compared to rural-living individuals (Figure 1E).

> Description figure 1. A) Map of study sites in Tanzania and in The Netherlands.
B) Graphical representation of sample numbers and the study design. C-D)
t-distributed Stochastic Neighbor Embedding (t-SNE) visualizations (n = 1500 random
cells/individual); cells are coloured according to lineage (C) or significant cell cluster
(D). E) Differential cell frequencies between rural and urban Tanzanian regions.
Boxplots represent the 25th and 75th percentiles (lower and upper boundaries
of boxes, respectively), the median (middle horizontal line) and measurements
that fall within 1.5 times the interquartile range (IQR; distance between 25th and
75th percentiles; whiskers). Only clusters showing a significant effect of ‘location’
(across Tanzanian sites) were shown. The significance of ‘location’ was assessed
using analysis of variance (ANOVA)-tests comparing a full (location, age [scaled]
and sex [fixed effects] and sample ID [random effect]) and a simpler model, which
was the same as the full model, except that we removed ‘location’ from the model.
ANOVA p-values were corrected for multiple testing using the Benjamini-Hochberg
method and referred to as g-values. Asterisks denote statistical significance (*, q <
0.05; ** g <0.01; *** g <0.001). The statistical significance of differences between
each location was assessed using the emmeans()-function (Tukey post hoc test).
Urban Europeans were included in the figure for visual comparisons and were not
included in statistical tests.
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Figure 1. Mass cytometry immune profiles differ across individuals living in
rural (Moshi Rural and Mwanga) and urban (Arusha and Moshi Urban) regions.
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Chapter 5

Within the CD8+ T cell lineage, 1 out of 15 CD8+ T cell clusters significantly
differed across locations. This cluster was characterized by recently
activated CD8+ Tem cells expressing CXCR3 and T-bet (cluster 11), which
showed higher frequencies in urban compared to both rural locations
(Figure 1E). Furthermore, within the gamma delta (y8) T cell lineage
(containing 7 clusters), naive y& T cells expressing CXCR3 (cluster 40) were
significantly higher in frequency in urban living compared to both rural-
living individuals. Finally, within the B cell lineage, we observed significantly
higher frequencies of classical naive B cells (cluster 34) and atypical memory
B cells expressing CD11c and Tbet (cluster 35) in rural- compared to urban-
living locations (Figure 1E). Six out of seven rural-associated clusters showed
visual evidence of a rural-urban-European gradient, where cell frequencies
showed a stepwise decrease from rural-to-urban and urban-to-European
sites, except for cluster 40 (naive y& T cells). On the other hand, gradients
were less clear for clusters enriched in urban Tanzanians.

Questionnaire data reveal differences in lifestyle between locations.
Within living locations, considerable variation in immune signatures was
observed. Therefore, to better capture immune variation across locations,
we developed a lifestyle score, which incorporates detailed questionnaire
data on assets (e.g. possession of a watch, television or car), housing (i.e.
materials used to construct the house) and food history (i.e. frequency of
consumption of dietary products) into a single score. To obtain the lifestyle
score, we applied Multiple Correspondence Analysis (MCA), a dimensionality
reduction method similar to Principle Component Analysis (PCA), but for
categorical data, which was applied to 38 questions (118 variable categories)
collected from all 203 participants (Table S3 and Figure S2). MCA clearly
separated individuals based on living location, especially across principal
component (PC) 1. Since the MCA was based on lifestyle questionnaire
data and PC1 per definition explains most variance, PC1 was referred to
as 'lifestyle score’, explaining 7.8% of the variation in the questionnaire
data (Figure 2A). Across the first two principal components, we found
that spread was highest in rural- compared to urban-living individuals
(variance 6.1%/5.1% and 11.3%/11.2% for PC1/PC2 scores across urban and
rural sites, respectively), indicating rural people have more heterogeneous
lifestyles (Figure 2B). Sensitivity analyses on condensed questionnaire data
(collapsing rare categories and removing uninformative variables) showed
that the relatively low percentage of variance explained by lifestyle score
and other high-ranking principle components (Figure S3A) is caused by the
inclusion of rarer variable categories. Removing these had no important
effect on the lifestyle score (Pearson r = 0.97, p-value < 2.2 x 10-16).
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We found that the lifestyle score was significantly associated with thirteen
of 80 cell clusters, while none of the other principal components (PC2-PC5)
showed any statistically significant associations with cell cluster frequencies
(Figure S3B), underscoring the validity and biological relevance of the
lifestyle score.

Next, we explored the most strongly contributing lifestyle score variables
across questionnaire categories, including housing conditions, assets and
food history. Overall, assets showed the highest cumulative contribution to
the lifestyle score (53.6%), followed by housing (30.3%) and food variables
(16.1%) (Figure 2D). Among the top 20 variables most strongly contributing
to PC1, factors such as having a house with an earth/sand floor, a mud
wall, no household electricity and a pit latrine as toilet were associated with
low lifestyle score. Additionally, the lack of assets such as an ironing tool,
refrigerator, computer, radio, car, television, or watch and not consuming
potatoes was associated with a low lifestyle score. Factors associated with a
high lifestyle score were a house with a flush toilet connected to a sewage/
septic tank, a separate room used as a kitchen and possessing assets such
as a car, a working computer and a refrigerator (Figure 2E).

Besides lifestyle score (PC1), we found that PC2 explained 4.1% of the
variance (Figure S3A) and showed the highest spread across individuals
living in rural Mwanga (variance across PC2 scores 15.0% compared to 2.9%-
7.0% in other sites) (Figure 2B). Similar to PC1, variables related to assets
were most important (cumulative contribution 66.0%), particularly those
related to livestock farming (Figure S3C). PC3 through PC5 explained 3.2-
3.5% of the variance (Figure S3A), generally showing a higher cumulative
contribution of food variables (40.3-49.4%) (Figure S3C) compared to PC1
and PC2.

Lifestyle score association tests reveal additional immune cell
clusters not previously linked to living location

We next assessed the association between lifestyle score and immune
cell frequencies using GLMMs, adjusting for age and sex. We first verified
that lifestyle score in individuals with matching mass cytometry data
(n =100), which was not significantly different from individuals without mass
cytometry data available (Figure S4).
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Figure 2. Multiple Correspondence Analysis (MCA) based on questionnaire data
to generate lifestyle score.

A) MCA was applied to categorical questionnaire data (38 manually curated
questions; 21 on assets, 11 on food and 6 on housing) (N = 203 individuals). Data
points are coloured based on location. Ellipses reflect the data spread at a level of
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confidence of 95%. Density plots show the distribution of PC1 (lifestyle score) (x-
axis) and PC2 (y-axis) score. B) Comparisons of PC1 (lifestyle score) and PC2 across
locations. Global significance was assessed using analysis of variance (ANOVA) and
post hoc tests between locations were performed using Tukey HSD tests. Asterisks
denote statistical significance (NS, non-significant; *, p < 0.05; **, p < 0.01; ***, p
< 0.001, p £ 0.0001). C) Coordinates of each variable category (a.-t.; see E) across
dimensions 1 and 2. Variable categories with similar profiles are grouped together. D)
Cumulative contributions (in percentage) of the variable categories by questionnaire
data category (i.e. housing, assets and food). E) Contributions (in percentage) of
variable categories to PC1 or lifestyle score. Bars are coloured based on whether a
variable was associated with a high (> zero) or low (< zero) lifestyle score.

Overall, 13 cell clusters were associated with lifestyle score, of which 8
clusters were not identified by previous analyses where we assessed
differences in immune profile between locations (Figure 3A and 3B). Indeed,
only one of these clusters (cluster 12; CD8+ naive) showed a trend towards
significance across locations (g = 0.055; Figure S5). In addition, we confirmed
5 out of 9 clusters which were previously found to significantly differ across
locations, which were Th2 cells (cluster 51; GLMM,; 3 = -0.66), two CD4+ Tem
clusters that were CTLA-4+ and/or CD161+ (cluster 79 and 46; 3 =-0.50 and
-0.28, respectively), atypical memory B cells (cluster 35; B =-0.37) (rural-
living location and low lifestyle score) and a CD8+ Tem cluster (cluster 11;
B =0.32) (urban-living location and high lifestyle score) (Figure 3C). The
additional clusters identified using the lifestyle score were two CD4+ Tem
cell clusters that were associated with low lifestyle score: HLA-DR+ PD-1+
CD4+ Tem (cluster 43; B = -0.38) and regulatory T cells (cluster 75; 3 = -0.35).
Furthermore, we identified a cluster of plasmablasts (cluster 57; 8 = -0.49),
which was enriched in those with low lifestyle score. Last, an innate immune
cell cluster of NK-cells (cluster 25; B =-0.68) was also linked to a low lifestyle
score (Figure 3D).

In contrast, within the CD8+ T cell lineage, we identified three clusters of
CD8+ T cells that were associated with high lifestyle score. These included
two CD8+ naive T cell clusters (cluster 12 and 21; B =0.38 and 0.39,
respectively) and a cluster of CD8+ Tem cells expressing CD161 and KLRG1
(cluster 38; B =0.59). In addition, we found a positive association between
higher frequencies of ILC2 (cluster 60; B =0.33) and a high lifestyle score
(Figure 3D). Sensitivity analyses, where we jointly modelled lifestyle score
and location and compared the model fit to simpler models (excluding either
lifestyle score or location), indicated that indeed using lifestyle score we can
detect an additional group of clusters which we could not have detected
with location alone (Figure S6).
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Figure 3. Lifestyle score is associated with specific immune cell clusters not
identified by comparisons across locations.
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< Description figure 3. A) Venn diagram indicating the number of cell clusters
that show differences in cell frequencies 1) across locations [Figure 1E], 2) both
across locations and lifestyle score [Figure 3C] and 3) only with lifestyle score [Figure
3D]. Eight cell clusters were uniquely associated with lifestyle score and were not
identified by comparisons across sampling locations. B) Volcano plot showing
differential frequency results. Results were derived from a GLMM with cell frequency
as outcome variable, lifestyle score, age (scaled) and sex as fixed effects and sample
ID as a random effect. Model estimates and corresponding Benjamini-Hochberg
(BH)-adjusted p-values (-logio(g-value)) were shown. Each point represents a cluster,
clusters with g-values<0.05 are coloured by association (high or low lifestyle score,
or only significantly associated with location). Shapes indicate whether lifestyle-
associated clusters were also detected by comparisons across sampling locations.
Each point is labelled with a cluster identifier. C-D) Scatter plots showing the
association between lifestyle score and cell frequency for C) clusters significantly
related to both location as well as lifestyle score and D) clusters uniquely related
to lifestyle score (i.e. clusters not identified as differentially abundant between
locations). Data points are coloured based on location. Lines represent linear fits
to the data and are included for visualization purposes only. Statistical significance
was assessed using a linear mixed model including lifestyle score, age (scaled) and
sex as fixed effects and sample ID as random effect. Additionally, we ran univariable
Spearman correlation tests, p-values were corrected for multiple testing using the
Benjamini-Hochberg method (g-value). Asterisks indicate clusters that significantly
differed between locations. Only cell clusters significant in GLMMs are shown.

Machine learning modelling links a combined immune endotype with
a lifestyle score

To investigate if a combination of immune cell clusters could be identified
that together is associated with a lifestyle score (‘immune endotype’), a
machine learning model (elastic net) was trained with lifestyle score as an
outcome and cell cluster frequencies, age and sex as the predictor variables.
Model training and hyperparameter tuning were performed on 80% of the
data (n = 80 individuals; 2,000 bootstrapped datasets) and the model was
tested on the remaining 20% of the data (n = 20 individuals) (Figure 4A). The
model was able to predict 44.1% and 29.6% of the variance in the training
and test data, respectively. Using feature importance analysis, we verified
11 of the 14 clusters that were previously associated with living location
and/or lifestyle score. Compared to previous analyses, the current model
is @ multivariable model, estimating the contribution of each cell cluster
to the prediction of lifestyle score while adjusting for all other cluster cell
frequencies. Therefore, using this complementary approach, we identified
three additional clusters, including CD8+ Tem cells expressing CD161 and
KLRG1 (cluster 37) associated with high lifestyles score, pDCs (cluster 58)
and yé T-cells (cluster 22) related to low lifestyle score (Figure 4B).
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Taken together the elastic net model unveiled a fairly stable (Figure 4C)
immune endotype characterized by Th2 cells, regulatory T cells, atypical
B memory cells, plasmablasts, NK, CTLA-4+ CD161+ CD4+ Tem, KLRG1+ y&
T-cells and plasmacytoid dendritic cells (pDCs) associated with a low lifestyle
score. Inversely, the immune profile characterized by CD8+ naive T cells,
CXCR3+ CD127+ CD8+ Tem, two CD8+ Tem CD161+ CD56dim KLRG1+ and
ILC2 is associated with a high lifestyle score (Figure 4B).

DISCUSSION

Here, we assessed the associations between location and/or lifestyle score
and cellular immune profiles measured by mass cytometry. We found that
seventeen of 80 clusters were associated with location or lifestyle score,
with eight identifiable only when using lifestyle score, illustrating the ability
of lifestyle score to capture immune variation. Indeed, individuals living in
rural areas may exhibit an urban lifestyle and vice versa. This was further
substantiated by applying a machine learning model, which identified a
combined immune signature associated with lifestyle score.

We found an association between low lifestyle score and expression of
activation markers such as CD38, HLA-DR and CTLA-4 on CD4+ Tem cells,
along with expansion of Th2 and an increased frequency of regulatory T cells
expressing CTLA-4. An increase in a specific memory T cell subsets might
indicate that fewer naive T cells are available for activation and expansion
upon encounter with a new antigen. Furthermore, expression of activation/
inhibitory markers on T cells can result in a reduced response to vaccines
and allergens but may also explain a lower prevalence of autoimmune
diseases in LMICs [19, 24, 36]. Indeed, in rural Senegalese, immune profiles
were enriched for HLA-DR-expressing CD4+ T cells compared to urban-living
individuals [2]. Previous studies comparing rural and urban populations in
Indonesia [1, 25] and Gabon [26, 37] found that immune profiles in rural-
living individuals, characterized by high frequencies of Th2 cells, T regulatory
cells expressing CTLA-4, HLA-DR, ICOS or CD161 and atypical memory B
cells, were strongly linked to (chronic) helminth infections [1, 25, 26].

In contrast to these previous studies, none of our participants tested
positive for malaria and the prevalence of current helminth infections was
very low. Therefore, we speculate that increased activation of CD4+ Tem
cells, along with expansion of Th2 and higher regulatory T cell frequencies,
may represent an immune footprint left behind by parasitic infection in
the past or even during childhood, as have been suggested by others [24,
38, 39].
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Figure 4. Machine learning model based on cell cluster frequencies can
partly reconstruct lifestyle score. A) Performance of an elastic net machine
learning model based on cell cluster frequencies (n = 80), age and sex trained to
predict lifestyle score. Observed compared to predicted lifestyle score based on
training (80%) and test data (20%; n =5 samples per location) are shown. Using
cell frequency data, we can explain ~30% of the variance in lifestyle scores (leave-
out test data). B) Feature importance of all features that remained in the model
after feature shrinkage/regularization. Clusters previously associated with either
location or lifestyle score (n =17) are indicated (*). Three clusters have not been
associated with location nor lifestyle score in previous analyses. C) Feature stability
across bootstraps. All features from the models fitted with the optimized tuning
parameters (penalty/mixture) were extracted. The number of times a feature was
selected across bootstrap samples serves as a score for stability of that feature
(maximum score = 2,000).
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Indeed, in 2005, the prevalence of schistosomiasis among school-aged
children in two different schools located in one of the rural areas included
in this study ranged between 34-70% with evidence for the presence of other
soil-transmitted infections in the same setting [40]. Thus, based on their
age, our study participants likely experienced a high burden of helminth
infections during childhood.

Alternatively, housing conditions related to a low lifestyle score (e.g. sand or
earth floors and mud-wall houses) may predispose to different commensals
or exposure to bacteria and fungi and their metabolites [41], some of which
have immunomodulatory properties. Poor housing conditions also attract
vectors like flies, lice, ticks, mites and mosquitoes, which may directly
activate the immune system through components present in their saliva,
even in the absence of disease transmission [31, 42]. Furthermore, rural-
living individuals closely live with livestock and as such are exposed to an
additional reservoir of micro-organisms and (zoonotic) pathogens [43].
Taken together, past (parasitic) infections or unmeasured variables, such
as the microbiome or exposure to vectors, are tightly linked to housing
conditions. These factors may drive lifestyle-related immune variation,
resulting in enrichment of Th2, regulatory T cells and activated T cells.

We found that individuals with low lifestyle score most of whom live in
rural settings, display a higher frequency of plasmablasts. Plasmablasts
are differentiated B cells with a short lifespan, which initiate early antibody
responses during infections [44-46]. However, due to their high metabolic
activity, the rapid development of short-lived plasmablasts can paradoxically
impair humoral immunity by slowing down germinal centre formation. This,
in turn may impair responsiveness to vaccines and reduce risk of developing
allergies and autoimmunity by limiting the generation of long-lived plasma
and memory B cells. Although this has been shown in the context of
malaria infection [47], which is not endemic in northern Tanzania, other
infectious diseases endemic in the area, may similarly induce high levels of
plasmablasts, including dengue [48].

Last, we identified an association between both naive CD8+ T cells and CD8+
Tem expressing CD161 and high lifestyle score. Although we lack immune
markers to confirm, CD161+CD8+ Tem encompasses mucosal-associated
invariant T cells (MAIT) cells. MAIT cells are abundant in blood and at mucosal
sites and can activate dendritic cells that promote T follicular helper cells to
induce mucosal antigen-specific IgA [49]. Therefore, the presence of such
cells in urban-living individuals might indicate the propensity to react more
strongly to antigens in a vaccine, allergens, or autoantigens. This aligns with
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the results of an earlier study indicating that healthy individuals residing
in urban Moshi had a higher pro-inflammatory cytokine response upon
pathogen challenge in an ex vivo PBMC stimulation assay compared to those
living in rural areas [7, 35]. Regarding the naive CD8+ T cells being enriched
in urban living, it has been noted that they allow new immune responses
to be mounted to both infections and vaccines [50]. Their higher frequency
in urban areas is in line with previous studies in Bangladeshi compared to
(urban living) North American children within the first three years of life [51]
as well as in Malawian compared to UK adults [52]. Reduced numbers of
naive CD8+ T cells was associated with a higher burden of intestinal worms
and viral infections (e.g. CMV) in children from Bangladesh compared to
those from the USA [3] and higher burden of CMV among Malawian adults
[52]. Similarly, we speculate that the association between high life score
and naive CD8+ T cells in our study is driven by reduced pathogen exposure
in people living in urban settings due to differences in daily activities and
hygiene practices compared to rural-living individuals.

The strengths of this study include the use of mass cytometry data in
combination with the availability of detailed information on housing, assets
and food history. Condensing this information into a single score allowed
us to train a machine learning model to identify a distinct group of cell
clusters (termed ‘immune endotype’), which was strongly associated with
lifestyle score variation. Previous studies in HICs indicated that baseline
(gene-expression-based) immune endotypes exhibiting a strong pro-
inflammatory profile are predictive of improved vaccine responses in young
adults across multiple vaccines [53]. In a similar fashion, we speculate the
immune endotypes identified in this study are linked to vaccine responses
in populations living in rural or urban Africa. As such, further phenotyping of
immune endotypes in varied populations, not limited to HIC, using protein-
based single-cell modalities such as mass cytometry, may deepen our
understanding of variation in vaccine responses or reactivity to allergens
or autoantigens and their underlying mechanisms. At the same time, using
lifestyle scores opens opportunities for public health experts to screen
individuals prone to, for example, vaccine hypo-responsiveness, informing
policymakers on preventative measures, such as repeated vaccination.
These interventions could target these high-risk individuals, potentially
improving vaccine efficacy and public health outcomes. Since those
mounting reduced vaccine responses are the very same individuals that also
show lower responses to allergens and auto-antigens, immune phenotyping
may also unveil new ways to prevent non-communicable diseases in urban-
living individuals. Our study also has limitations. Among others, we did not
assess cellular immune function through stimulation assays. In addition,
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future studies establishing direct links between low lifestyle score and
responses to vaccines, allergens and autoantigens would be of great value.

In conclusion, in this study we comprehensively assessed the association
between immune profiles and location and lifestyle variables in a LMIC.
Additional cell clusters were detected through a more refined measurement
of lifestyle. Follow-up studies should therefore focus on the links between
lifestyle score, immune signature and functional immune responses,
particularly in populations where vaccine responses are expected to be
reduced and in populations with the highest prevalence of diseases linked
to exaggerated immune responses to allergens and autoantigens.
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Table S1. Baseline characteristics of the study population (N = 203).
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Table S1. Baseline characteristics of the study population (N = 203) - continued

Variable Overall, Urban Urban Rural Rural p-value
N =203 Arusha, Moshi, Moshi, Mwanga,
N =57 N =47 N =46 N=53
Sex, female 100 (49%) 40 (70%) 26 (55%) 18 (39%) 16 (30%) <0.001
Age 25.0 25.0 25.0 26.0 24.0 0.165
(22.0,29.5) (22.0,30.0) (23.0,27.0) (22.3,31.0) (21.0,27.0)
Age categories 0.259
18-25 116 (57%)  30(53%) 30(64%) 22(48%) 34 (64%)
26-36 87 (43%) 27 (47%) 17 (36%) 24 (52%) 19 (36%)
BMI 22.6 22.2 239 22.4 22.3 0.183
(20.5,25.6) (19.9,25.8) (22.2,26.1) (20.7,25.0) (20.3,25.3)
Missing 1 1 0 0 0
BMI 0.585
classification
<18.5 13 (6.4%) 6 (11%) 3(6.4%) 3(6.5%) 1(1.9%)
18.5-24.9 130 (64%) 34 (61%) 27 (57%)  31(67%) 38 (72%)
25.0-29.9 39 (19%) 10 (18%) 11 (23%) 10 (22%) 8 (15%)
>30 20 (9.9%) 6 (11%) 6 (13%) 2(4.3%) 6 (11%)
Missing 1 1 0 0 0
Systolic blood 120 110 110 126 122 <0.001
pressure (110,128)  (109,120) (103,120) (118,130) (120, 130)
(mmHg)
Missing 1 1 0 0 0
Diastolic blood 73 (68,80) 70(67,79) 70(64,78) 78(72,81) 76(70,80) 0.001
pressure
(mmHg)
Missing 1 1 0 0 0
Hemoglobin 14.50 13.90 13.70 15.25 15.80 <0.001
level g/dI (13.35, (13.10, (12.30, (14.03, (14.00,
16.40) 15.00) 15.30) 16.58) 17.00)
Random 5.00 4.80 5.15 5.50 4.70 0.002
blood sugar, (4.50,5.80) (4.40,5.50) (4.53,5.85) (4.75,6.20) (3.90, 5.50)
mmol-1AA
Missing 1 0 1 0 0
Highest level of education <0.001
Primary 50 (25%) 4 (7.0%) 2 (4.3%) 27 (59%) 17 (32%)
Secondary 74 (36%) 18 (32%) 11 (23%) 19 (41%) 26 (49%)
College 40 (20%) 27 (47%) 6 (13%) 0 (0%) 7 (13%)

Variable Overall, Urban Urban Rural Rural p-value
N =203 Arusha, Moshi, Moshi, Mwanga,
N =57 N =47 N =46 N=53
University 39 (19%) 8 (14%) 28 (60%)  0(0%) 3(5.7%)
Malaria 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Missing 1 0 1 0 0
Helminth 8 (3.9%) 0 (0%) 0 (0%) 6 (13%) 2 (3.8%) 0.002
infection®
Schistosomiasis® 7 (3.5%) 2 (3.6%) 1(2.1%) 4 (8.9%) 0 (0%) 0.098
Missing 3 2 0 1 0
Insurance 51 (25%) 24 (42%) 23 (50%) 0 (0%) 4 (7.5%) <0.001
status
Missing 1 0 1 0 0
Occupation <0.001
Farming 32 (16%) 2 (3.5%) 1(2.1%) 23 (50%) 6 (11%)
Elementary 60 (30%) 14 (25%) 7 (15%) 13 (28%) 26 (49%)
occupation
Student 47 (23%) 12 (21%) 23 (49%) 2 (4.3%) 10 (19%)
Employed/ 34 (17%) 15 (26%) 9 (19%) 4 (8.7%) 6 (11%)
business
owner
Not 30 (15%) 14 (25%) 7 (15%) 4 (8.7%) 5(9.4%)
employed

N =203 participants. Values represent number of participants (percentage of total) and
median (interquartile range [IQR]) for categorical and continuous variables, respectively.
Comparisons between locations were performed using Fisher’s exact, chi-squared and Mann-
Whitney U-test for categorical and continuous variables, respectively. 2Stool was tested for
helminths using the Kato-Katz method, testing for Schistosoma haematobium, Schistosoma
mansoni, Ascaris Lumbricoides, hookworm and Trichuris trichuria. ® Tested for schistosomiasis
using the POC-CCA method, testing for Schistosoma haematobium and Schistosoma mansoni.

Table S2. Overview of identified cell clusters.
See Supplemental Videos and Spreadsheets.
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Table S3. Descriptives of lifestyle score variables. Table S3. Descriptives of lifestyle score variables - continued.
Characteristic Urban Urban Rural Rural p-value Characteristic Urban Urban Rural Rural p-value
Arusha, Moshi, Moshi, Mwanga, Arusha, Moshi, Moshi, Mwanga,
N =57 N =47 N =53 N =46 N =57 N =47 N =53 N =46
House floor <0.001 None 51 (89%) 43 (91%) 40 (75%) 40 (87%)
Hard floor (tile, cement, 57 (100%) 47 (100%) 44 (83%) 33 (72%) 1-4 6 (11%) 1(2.1%) 11 (21%) 2 (4.3%)
concrete, wood) 59 0 (0%) 2(43%)  1(1.9%) 1(2.2%)
Earth/sand 0 (0%) 0 (0%) 9 (17%) 13 (28%) 10+ 0 (0%) 1(2.1%) 1(1.9%) 3 (6.5%)
House walls <0.001 Total number of other <0.001
Cement, brick or stone 56 (98%) 46 (100%) 42 (79%) 39 (85%) cattle
Cane, palm, trunks, 0 (0%) 0 (0%) 1(1.9%) 0 (0%) None 56 (98%) 46 (98%) 45 (85%) 39 (85%)
bamboo 1-4 1(1.8%) 1(Q1%)  8(15%) 2 (4.3%)
Mud (with poles) 1(1.8%) 0 (0%) 10 (19%) 7 (15%) 5.9 0 (0%) 0 (0%) 0 (0%) 1(2.2%)
Missing 0 1 0 10+ 0 (0%) 0 (0%) 0 (0%) 4 (8.7%)
House roof e Total number of horses >0.999
Roof tiles 2(3.5%)  2(4.3%)  0(0%) 0(0%) None 57(100%) 47 (100%) 53 (100%) 46 (100%)
Metal sheets 55 (96%) 45 (96%) 53 (100%) 45 (98%) 1-4 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Other 0 (0%) 0 (0%) 0 (0%) 1(2.2%) 5.9 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Water source <0.001 10+ 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Tap water 51 (89%) 45 (96%) 33 (62%) 13 (28%) Total number of goats <0.001
Public standpipe 3(5.3%) 1(2.1%) 12 (23%) 10 (22%) None 53 (93%) 39 (83%) 29 (55%) 30 (65%)
Protected tube well or 3 (5.3%) 0 (0%) 3(5.7%) 20 (43%) 1-4 3(5.3%) 3 (6.4%) 12 (23%) 7 (15%)
bore hole ’ ’
. 5-9 0 (0%) 2 (4.3%) 11 (21%) 5(11%)
Spring 0 (0%) 1(2.1%) 5 (9.4%) 0 (0%)
10+ 1(1.8%) 3 (6.4%) 1(1.9%) 4 (8.7%)
Pond-water or stream 0 (0%) 0 (0%) 0 (0%) 3(6.5%)
X . Total number of sheep 0.031
Toilet facility <0.001
. None 55 (96%) 46 (98%) 52 (98%) 38 (83%)
Flush to piped sewage 41 (72%) 42 (89%) 17 (32%) 3(6.5%)
or septic tank 1-4 0(0%) 0 (0%) 1(1.9%)  2(4.3%)
Pour flush latrine 14 (25%) 1(2.1%) 18 (34%) 36 (78%) 539 1(1.8%) 1(2.1%) 0 (0%) 3 (6.5%)
Pit latrine 2(3.5%)  4(8.5%)  18(34%)  7(15%) 10+ 10.8%)  0(0%) 0(0%) 3(6.5%)
Cooking place <0.001 Total number of chicken/poultry <0.001
In a separate room 32(56%)  31(66%) 14(26%)  5(11%) None 33(58%)  18(38%)  8(15%) 19 (41%)
used as kitchen 1-4 2 (3.5%) 2 (4.3%) 2 (3.8%) 5 (11%)
In a separate building 17 (30%) 9 (19%) 38 (72%) 37 (80%) 5-9 6 (11%) 5(11%) 11 (21%) 5(11%)
used as kitchen 10+ 16 (28%) 22 (47%)  31(60%) 17 (37%)
In a room used for 8 (14%) 5 (11%) 1(1.9%) 2 (4.3%) Missing 0 0 1 0
living or sleeping Agricultural land 0.439
Outdoors 0 (0%) 2(43%)  0(0%) 2 (4.3%) (hectares)
Total number of milk 0.012 N T
COws
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Table S3. Descriptives of lifestyle score variables - continued.

Characteristic Urban Urban Rural Rural p-value
Arusha, Moshi, Moshi, Mwanga,
N =57 N =47 N =53 N =46

None 39 (68%) 31 (67%) 38 (72%) 30 (65%)

1-4 12 (21%) 10 (22%) 14 (26%) 12 (26%)

5-9 4(7.0%) 2 (4.3%) 0 (0%) 4 (8.7%)

10+ 2 (3.5%) 3(6.5%) 1(1.9%) 0 (0%)
Missing 0 1 0 0
Connected to electricity 54 (96%) 46 (98%) 37 (70%) 32 (70%) <0.001
Missing 1 0 0 0
Working radio 49 (86%) 44 (94%) 42 (79%) 37 (80%) 0.185
Working television 51 (89%) 40 (85%) 22 (42%) 25 (54%) <0.001
Missing 0 0 1 0
Working computer 23 (40%) 37 (79%)  4(7.7%) 0 (0%) <0.001
Missing 0 0 1 0
Working refrigerator 34 (60%) 38 (81%) 8 (15%) 2 (4.3%) <0.001
Working rechargeable 8 (15%) 13 (28%) 4 (7.5%) 11 (24%) 0.035
battery or generator
Missing 2 0 0 1
An iron (charcoal/ 51 (89%) 42 (93%) 38 (72%) 20 (43%) <0.001
electric)
Missing 0 2 0 0
Watch 44 (77%) 44 (98%) 29 (55%) 14 (30%) <0.001
Missing 0 2 0 0
Mobile phone 55 (96%) 47 (100%) 53 (100%) 44 (96%) 0.283
Bicycle 11 (19%) 18 (38%) 4(7.7%) 28 (61%) <0.001
Missing 0 0 1 0
Motorcycle 21 (37%) 17 (37%) 12 (23%) 24 (52%) 0.026
Missing 0 1 0 0
Animal drawn cart 0 (0%) 1(2.2%) 0 (0%) 1(2.2%) 0.353
Missing 1 1 0 0
Car or truck 19 (33%) 30 (64%) 6 (11%) 1(2.2%) <0.001
Boat with a motor 0 (0%) 1(2.2%) 0 (0%) 1(2.2%) 0.353
Missing 0 1 1 1
Ugali (stiff porridge) (x/ <0.001
week)

0 0 (0%) 2 (4.3%) 0 (0%) 0 (0%)
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Table S3. Descriptives of lifestyle score variables - continued.

Characteristic Urban Urban Rural Rural p-value
Arusha, Moshi, Moshi, Mwanga,
N =57 N =47 N =53 N =46
6 (11%) 11 (23%) 2 (3.8%) 1(2.2%)
2-4 26 (46%) 23 (49%) 31 (58%) 13 (28%)
>5 24 (43%) 11 (23%) 20 (38%) 32 (70%)
Missing 1 0 0 0
Plantain (x/week) <0.001
0 19 (35%) 13 (28%) 16 (30%) 28 (62%)
1 27 (49%) 30 (64%) 25 (47%) 17 (38%)
2-4 5(9.1%) 1(2.1%) 10 (19%) 0 (0%)
>5 4 (7.3%) 3(6.4%) 2 (3.8%) 0 (0%)
Missing 2 0 0 1
Banana (x/week) 0.152
0 7 (13%) 4 (8.5%) 2 (3.8%) 10 (22%)
1 27 (48%) 22 (47%) 23 (43%) 23 (50%)
2-4 19 (34%) 18 (38%) 20 (38%) 10 (22%)
>5 3 (5.4%) 3 (6.4%) 8 (15%) 3 (6.5%)
Missing 1 0 0 0
Rice (x/week) <0.001
0 0 (0%) 0 (0%) 0 (0%) 0(0%)
1 4 (7.0%) 4 (8.5%) 19 (36%) 7 (15%)
2-4 25 (44%) 17 (36%) 28 (53%) 18 (39%)
>5 28 (49%) 26 (55%) 6 (11%) 21 (46%)
Potatoes (x/week) 0.005
0 1(1.8%) 0 (0%) 11 (21%) 3(6.7%)
1 26 (46%) 21 (45%) 28 (53%) 26 (58%)
2-4 21 (37%) 19 (40%) 11 (21%) 13 (29%)
>5 9 (16%) 7 (15%) 3(5.7%) 3(6.7%)
Missing 0 0 0 1
Meat (x/week) 0.008
0 1(1.8%) 1(2.1%) 0 (0%) 2 (4.3%)
1 13 (23%) 5 (11%) 16 (30%) 11 (24%)
2-4 29 (52%) 20 (43%) 31 (58%) 25 (54%)
>5 13 (23%) 21(45%)  6(11%) 8 (17%)
Missing 1 0 0 0
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Table S3. Descriptives of lifestyle score variables - continued. Table S4. Mass cytometry antibody panel.
Characteristic Urban Urban Rural Rural p-value Label Specificity Clone Supplier? Cat no Lot no End Working
Arusha, Moshi, Moshi, Mwanga, dilution dilution
N=57 N =47 N=53 N =46 By  CD45 HI30 Fluidigm 3089003B 2203476-08 200 100
Fish (x/week) <0.001 "S|n  CD278 C398.4A Biolegend 313502 22-02-2022 MK 100 50
0 0 (0%) 3 (6.4%) 2 (3.8%) 0 (0%) (ICOS)
25 (44%) 26 (55%) 24 (45%) 7 (15%) Wpr  CD196 GO34E3 Fluidigm 3141003A 2201583-11 100 50
24 23(40%)  15(32%)  26(49%) 13 (28%) (9959
142 i - -
55 9 (16%) 3 (6.4%) 1(1.9%) 26 (57%) Nd CD19 HIB19 Biolegend 302202 24-06-2020 500 250
3 i o o
Beans/peas (x/week) 0.005 3Nd (CDK11)7 104D2 Biolegend 313223 28-01-2020 500 250
c-Ki
0 2(3.5%) 1(2.1%) 1(1.9%) 0 (0%) o
“Nd CD4 RPA-T4 Fluidigm 3145001B 2202012-07 500 250
1 11 (19%) 8 (17%) 20 (38%) 3 (6.5%) o
“6Nd (CD8a RPA-T8 Fluidigm 3146001B 2108701-11 500 250
2-4 28 (49%) 21 (45%) 20 (38%) 18 (39%) .
47Sm (D183 GO025H7 Biolegend 353733 03-01-2018 100 50
>5 16 (28%) 17 (36%) 12 (23%) 25 (54%) (CXCR3)
green vegetables (x/ 0.625 “sNd D14 MSE2  Biolegend 301802  30-05-2022 200 100
wee
) “Sm CD25 2A3 Fluidigm 3149010B 2104640-07 500 250
0 0 (0%) 1(2.1%) 1(1.9%) 1(2.2%) B
(IL-2Ra)
1 4 (7.0%) 5 (11%) 1(1.9%) 2 (4.3%) 15°Nd CD185 J252D4 Biolegend 356902 10-09-2019 500 250
2-4 15 (26%) 10 (21%) 15 (28%) 16 (35%) (CXCR5)
>5 38 (67%) 31 (66%) 36 (68%) 27 (59%) STEu CD123 6H6 Fluidigm 3151001B 2112140-01 500 250
Fruits (x/week) 0.003 52Sm  TCRyS 11F2 Fluidigm 3152008B 2110581-20 200 100
0 0 (0%) 1(2.1%) 1(1.9%) 0 (0%) S3Eu CD7 CD7-6B7  Fluidigm 3153014B 0282010 200 100
1 9 (16%) 6 (13%) 21 (40%) 13 (28%) 54Sm CD163 GHI/61 Fluidigm 3154007B 3321818 100 50
2-4 15 (26%) 11 (23%) 16 (30%) 18 (39%) 55Gd CD45RA HI100 Fluidigm 3155011B 0492003 200 100
>5 33 (58%) 29 (62%) 15 (28%) 15 (33%) 16Gd CD294 BM16 Biolegend 350102 30-05-2022 100 50
Locally brewed beer (x/ 0.011 (CRTH2)
week) 58Gd CD122 TU27 Biolegend 339002 01-02-2022 500 250
0 47(82%)  40(85%)  33(62%)  41(89%) (IL-2Rb)
1 6 (11%) 6 (13%) 7 (13%) 1(2.2%) 159Th CD197 GO043H7 Biolegend 353237 11-09-2020 200 100
2-4 2 (3.5%) 1 (2.1%) 4 (7.5%) 1(2.2%) (CCR7)
61Dy  KLRG1 REA261 Miltenyi ~ 130-126-  01-02-2022 500 250
0 0 0 0
>5 2(3.5%) 0 (0%) 9 (17%) 3(6.5%) (MAFA) 458
N =203 participants. Values represent number of participants (percentage of total). 62Dy  CD11c Bu15 Fluidigm 3162005B 2111081-25 500 250
Compgrisons between !ocations were perfgrmed qsmg Fisher's exact or chl-squareq tests. 4Dy CD161 HP-3G10  Fluidigm 31640098 2111083-25 200 100
All variables (n =38 variables), after mode imputation, were used to construct the lifestyle 165 i
score. See Figure S2. Ho CD127 AO19D5  Biolegend 351302 24-09-2020 500 250
(IL-7Ra)
7Er  CD27 0323 Biolegend 302839 11-09-2019 500 250
8Er  HLA-DR L243 Biolegend 307651 01-02-2022 200 100
7°Er  CD3 UCHT1 Fluidigm 3170001B 169104 200 100
7Yb CD28 CD28.2 Biolegend 302902 01-02-2022 200 100
72Yp CD38 HIT2 Fluidigm 3172007B 2108738-17 200 100
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Table S4. Mass cytometry antibody panel - continued.

Label Specificity Clone Supplier® Cat no Lot no End Working
dilution dilution

73Yb CD45RO UCHL1 Biolegend 304239 11-09-2019 200 100

74Yb CD335 9E2 Biolegend 331902 22-12-2020 500 250
(NKp46)

7SLu  CD279 EH 12.2H7 Fluidigm 3175008B 2104621-07 500 250
(PD-1)

7¢Yb CD56 NCAM16.2 Fluidigm 3176008B 2202917-03 500 250

209B] CD16 3G8 Fluidigm 3209002B 2112429-15 200 100

aFluidigm, South San Francisco, CA, USA; BioLegend, San Diego, CA, USA; Miltenyi Biotech,
Bergisch Gladbach, Germany. CCR, CC chemokine receptor. CD, cluster of differentiation.
CRTH2, prostaglandin D2 receptor 2. CXCR, CXC chemokine receptor. HLA-DR, human
leukocyte antigen-D related. IL-2R, interleukin-2 receptor. IL2RB, Interleukin-2 receptor subunit
beta, IL2Ra, Interleukin-2 receptor subunit alpha, ICOS, inducible T-cell COStimulator, IL-7Ra,
interleukin-7 receptor alpha. KLRGT, killer cell lectin-like receptor subfamily G member 1. MAFA,
mast cell function-associated antigen. c-Kit, receptor tyrosine kinase, PD-1, programmed cell
death protein 1. TCR, T cell receptor.
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Figure S1. Heatmap showing median marker expression for each cluster.

Clusters were based on SOM and hierarchical clustering. Each tile depicts the median
expression of a given marker (rows) for a specific cluster (columns). The heatmap is
stratified based on cell lineage. The bottom heatmap indicates which clusters were
significantly associated with 1) location (Figure 1) and/or 2) lifestyle score (Figure 3).

House floor Total number of milk cows *  Ugali (stiff porridge) (x/week)
Hard floor (tile, cement, concrete, wood) N 10 0
Soil/sand 1
House walls i 2-4
Cement, brick or stone 0 3 25
Cane, palm, trunks, bamboo Total number of other cattle wex Plantain (x/week)
Mud (with poles) 7 None 0
House roof 1-4 1
Roof tiles 5-9 |8 2-4 8
Metal sheets - 55 45 53 45 10+ =5
Other - IR Total number of horses Banana (x/week)
Water source iy None 0

1-4 |G
5-9

Tap water

g
Public standpipe [E 2-4

Protected tube well or bore hole - 10+ =5
Spring Total number of goats Rice (x/week)

Pond-water or stream None 0

Toilet facility 1-4 1

5-9

Flush to piped sewage or septic tank ¥
Pour flush latrine

10+

Pit latrine - [ENNCIIRCI Total number of sheep Potatoes (x/week)

Cooking place e None 0

In a separate room used as kitchen 1

In a separate building used as kitchen 2-4
In a room used for living or sleeping =5 |

Outdoors Total number of chicken/poultry Meat (x/week)

None 0

1-4 1

5-9 2-4

N 10+ =5

v\»\“ R Agricultural land (hectares) Fish (x/week)

S @ None 0

Percentage P it 1-4 1

100% < 5-9 2-4

10+ - [ 25

- 75% Connected to electricity Beans/peas (x/week)

Working radio 0

50% Working television 1

Working computer 2-4

25% Working refrigerator
o

25

Working battery or Green vegetables (x/week)

An iron (charcoal/electric) 0

0% Watch 1
Mobile phone 2-4

Bicycle 25

Motorcycle Fruits (x/week)

Animal drawn cart -Ji8 0

Car or truck e 1

Boat with a motor - [ IEEE) s

=5
Locally brewed beer (x/week)
0

(\\?S 4740 41
R 1
S 2-4
25
o @
Sse®
AN
& {oro(\ @ 7}@
SO

Figure S2. Heatmap visualizing lifestyle questionnaire data.

N =203 participants. Values represent the number of participants. Colours indicate
the percentage of the total. Comparisons between locations were performed using
Fisher's exact or chi-squared tests. Asterisks denote statistical significance (NS, non-
significant; *, p < 0.05; **, p < 0.01; *** p < 0.001, p < 0.0001). See Table S3.
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Figure S3. MCA principal component variance explained, contributions and

cluster associations.

A) Variance explained (% of total) for PC1-PC5. B) Number of significant cell cluster
associations with PC1 (lifestyle score) to PC5 using modelling as described in the
legend of Figure 3. C) Cumulative contributions (in percentage) of the variable
categories by questionnaire data category (i.e. housing, assets and food, n =38

questions and n = 118 variable categories) for PC1-PC5.
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Figure S4. Boxplots showing lifestyle score for individuals with and without

mass cytometry immune profiles (n = 100).
P-value determined using Student's t-test.
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Figure S5. Cell frequencies of clusters uniquely related to lifestyle score

between locations.

Cell frequencies of clusters uniquely related to lifestyle score across rural and
urban Tanzanian regions and urban Europeans (Figure 3D). Boxplots represent
the 25th and 75th percentiles (lower and upper boundaries of boxes, respectively),
the median (middle horizontal line) and measurements that fall within 1.5 times the
interquartile range (IQR; distance between 25th and 75th percentiles; whiskers).
Significance of ‘location’ was assessed using analysis of variance (ANOVA)-tests
comparing a simple (age [scaled] and sex [fixed effects] and sample ID [random
effect]) and a full model (simple model with location as fixed effect added). P-values
were corrected for multiple testing using the Benjamini-Hochberg method and
referred to as g-values. Urban Europeans were included in the figure for visual
comparisons and were not included in statistical tests.
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Figure S6. Sensitivity analysis comparing location- and/or lifestyle-based
models.

For each of the clusters that was significant in either location- and/or lifestyle-
based models (n = 17), we additionally fitted a joint model, including both location
and lifestyle (LS) (as well as age [scaled] and sex) as fixed effects and sample ID
as random effect (GLMMys.ioc). Statistical significance of the combined effect of
location and lifestyle score was assessed by comparing GLMMs.oc to an ‘empty
model’ where both location and lifestyle score were removed using ANOVA (triangles
indicate significant models). Akaike Information Criterion (AIC) (measure of model
fit while accounting for model complexity) was compared between the ‘combined
model’ (AlCis.i0c) and the same model from which either lifestyle score (AlCi.) or
location (AICs) was removed. Clusters were grouped according to the statistics
shown in Figure 1 and Figure 3, i.e. location significant, LS significant or LS + location
significant clusters. Dropping location or lifestyle score from the combined model
for location significant and LS significant clusters, respectively, worsened the
combined model, indicating that location and lifestyle score were indeed related to
distinctimmune cell clusters. For most of the clusters in the LS + location significant
group, dropping either location or lifestyle score did not change model performance,
indicating that indeed here, location and lifestyle score may be more interrelated
and capture similar information.
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