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ABSTRACT

Immune system and vaccine responses vary across geographical locations 
worldwide, not only between high and low-middle income countries (LMICs), 
but also between rural and urban populations within the same country. 
Lifestyle factors such as housing conditions, exposure to microorganisms 
and parasites and diet are associated with rural-and urban-living. However, 
the relationships between these lifestyle factors and immune profiles 
have not been mapped in detail. Here, we profiled the immune system 
of 100 healthy Tanzanians living across four rural/urban areas using 
mass cytometry. We developed a lifestyle score based on an individual’s 
household assets, housing condition and recent dietary history and studied 
the association with cellular immune profiles. Seventeen out of 80 immune 
cell clusters were associated with living location or lifestyle score, with eight 
identifiable only using lifestyle score. Individuals with low lifestyle score, 
most of whom live in rural settings, showed higher frequencies of NK cells, 
plasmablasts, atypical memory B cells, T helper 2 cells, regulatory T cells 
and activated CD4+ T effector memory cells expressing CD38, HLA-DR and 
CTLA-4. In contrast, those with high lifestyle score, most of whom live in 
urban areas, showed a less activated state of the immune system illustrated 
by higher frequencies of naïve CD8+ T cells. Using an elastic net machine 
learning model, we identified cellular immune signatures most associated 
with lifestyle score. Assuming a link between these immune profiles 
and vaccine responses, these signatures may inform us on the cellular 
mechanisms underlying poor responses to vaccines, but also reduced 
autoimmunity and allergies in low- and middle-income countries.

INTRODUCTION

Variation in the immune system have been observed across populations in 
low and middle-income countries (LMIC) in Africa and Asia and those living 
in high-income countries (HIC) in Europe and the USA [1-6]. In addition, 
immune system variation has been observed within countries, such as in 
rural compared to urban areas in Senegal [2], Tanzania [7] and Indonesia 
[1]. The immune system of rural-living individuals in LMICs shows higher 
memory, activated and regulatory immune profiles, characterized by among 
others regulatory T cells and T helper 2 cells (Th2 cells), compared to urban-
living individuals [1, 2, 8, 9]. At the same time, reduced vaccine performance 
has been observed in populations living in LMICs, in particular in rural areas 
[4, 10, 11]. Moreover, it is known that in these same populations, there are 
less diseases of affluence, such as allergies or auto-immunities, where 
unchecked inflammation is a strong contributor [4, 11-19].

Several factors determine the immune profile of an individual, including 
genetic and demographic factors, such as age and sex, as well as 
environmental factors, including exposure to microorganisms and 
parasites, type of housing and dietary history [20, 21]. While genetics plays 
an important role in immune system variation during early childhood, this 
influence wanes with age due to cumulative exposure to environmental 
factors, including pathogens [20, 22, 23]. This has been illustrated in 
individuals chronically infected with helminths, who exhibit skewed baseline 
immune profiles, characterized by higher frequencies of Th2, regulatory 
T cells and higher expression of activation and inhibitory markers such 
as cytotoxic T lymphocyte-associated protein 4 (CTLA-4), HLA-DR and 
programmed cell death protein 1 (PD-1) on T cells [24-26]. Furthermore, 
individuals infected with cytomegalovirus (CMV) show a disproportionately 
higher activation state of the immune system and an increased frequency 
of memory cells [27, 28].

Socioeconomic status (SES) is intertwined with housing quality, nutritional 
status and access to healthcare [29, 30]. These factors contribute to infection 
risk and, therefore, propel the vicious circle of infection/infestation, which 
strongly impacts the immune system [18, 29-33]. The type of diet can also 
be linked to variation in immune profile, as was demonstrated in a recent 
study in Tanzania [7]. In this study, rural-living Tanzanians harbored a more 
anti-inflammatory immune profile that correlated with higher levels of plant-
derived flavonoid apigenin found in food mostly eaten in rural settings 
[7]. Therefore, taken together, there is evidence for links between living 
environments such as housing, exposure to microorganisms and parasites, 
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SES including individual assets and diet and immune system variation in 
LMICs.

Although the immune profiles of urban- and rural-living individuals 
have been directly compared, a more granular assessment of lifestyles 
irrespective of living location is lacking, as individuals living in rural areas 
may exhibit an urban lifestyle and vice versa. We hypothesized that a 
more refined measurement of lifestyle including housing status, assets 
(e.g. car, bicycle motorcycle or radio), and dietary history (i.e. frequency of 
consumption of common dietary products) will allow us to better explain 
immune variation previously related to rural or urban living location. 
Especially, we aim to more precisely define immune signatures in individuals 
exhibiting immune hypo-responsiveness. Such information can have an 
impact on both communicable and non-communicable diseases, as a poor 
immune response to vaccines will affect susceptibility to vaccine-preventable 
infections, while poor responses to (self-)antigens can lead to fewer allergies 
or autoimmune diseases in rural-living individuals.

Therefore, we not only used mass cytometry to obtain a highly granular 
immune profile but also surveyed lifestyle variation among Tanzanian adults 
recruited from two rural and two urban locations to maximize lifestyle 
variation using a detailed questionnaire of housing conditions, assets 
and recent dietary history. We present a lifestyle score based on these 
questionnaire data, which places individuals on the spectrum ranging from 
rural to urban lifestyle. We used this lifestyle score to explain immune profile 
variation in Tanzanian adults living in rural and urban areas and contrasted 
this with immune signatures from urban-living Europeans. In addition, we 
utilized a machine learning model to define combined immune signatures 
most strongly associated with the lifestyle score.

MATERIALS AND METHODS

Study design
This observational study was conducted between September and October 
2022 as part of the CapTan study. A total of 203 healthy Tanzanian 
participants aged between 18 to 35 years were included from two urban 
locations (Urban Arusha and Urban Moshi) and two rural locations (Rural 
Moshi and Mwanga) in northern Tanzania (Figure 1A).

The study was approved both at a local level by the Ethical Board of the 
Kilimanjaro Christian Medical University College (No. 2588) and at the 
national level by the Tanzania National Ethical Committee Board (NIMR/

HQ/R.8a/Vol.IX/4089). In addition, samples collected from ten Dutch 18 to 
30-year-old adults enrolled between January 2022 and September 2022 were 
included in the TINO study (ClinicalTrials.gov, reference no. NCT06039527). 
The study was approved by the Ethics Committee of Leiden University 
Medical Center (NL77841.058.21).

Description of study areas
Arusha City (1400m above sea level; 617,631 inhabitants [34]) is the 
administrative, business, commercial and educational centre of the Arusha 
region, as it accommodates most diplomatic and international activities. Due 
to these important regional functions, there is high diversity in ethnicity, 
economic status and lifestyle. Maasai, Meru and Chagga are the most 
common ethnicities. Most people living in Arusha City have access to good 
sanitation with the availability of clean, treated water. However, some people 
are slum dwellers, i.e. living in the city but practicing a rural lifestyle. Most 
people are self-employed or office employees in the government and private 
sectors [34].

Kilimanjaro region has about 1.9 million inhabitants [34] across seven 
different districts, three of which are included in this study (Moshi City, Rural 
Moshi and Mwanga). Moshi City (referred to as Urban Moshi) (700-950m 
above sea level; 331,733 inhabitants [34]) is the administrative, commercial 
and educational center of the Kilimanjaro region. Most people live a Western 
lifestyle and have good general sanitation and access to clean water. The 
main ethnicities are Chagga and Pare. Formal business is the main activity, 
followed by government and public employment, while few people are 
involved in agricultural and entrepreneurial activities [34].

People in Rural Moshi (535,803 inhabitants [34]) are mainly involved in 
agricultural activities. Some people have access to clean water, while few 
use borehole water sources. People live in large family units and their main 
economic activities are subsistence farming and animal husbandry. The 
main ethnicity is Chagga and people follow Chagga traditions, such as 
drinking local brew from banana/plantain.

The population of Mwanga district (684m above sea level; 148,763 
inhabitants [34]) is mainly active in irrigation, subsistence farming and 
animal husbandry. The primary water sources are boreholes, rivers and 
dams, with only few people having access to tap water. Like Rural Moshi, 
people live in large family units. The main ethnicity is Pare, with few Chagga.
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Europeans were recruited in the area around Leiden, an urban centre in The 
Netherlands. European individuals were Dutch.

Participant screening and enrollment
In rural communities, study information was given through community 
leaders and announcements during mass gatherings in mosques, churches 
and during village meetings. In urban communities, study information 
was distributed using leaflets and through community leaders, office 
announcements and university gatherings. Eligible participants (age 18-35 
years and permanent residency of a given location) were asked to enroll in 
the study. Following informed consent, 230 participants were voluntarily 
screened for in- and exclusion criteria. Exclusion criteria were pregnancy, 
lactation, having acute or chronic diseases, being HIV-positive, recent 
use of antibiotics, use of antimalarials and use of tuberculostatic drugs. 
Participants were screened for HIV infection (SDBIOLINE HIV-1/2 3.0kit, 
LOT:03ADG020A), malaria (Malaria Ag p.f/Pan, Ref: 05FK60, LOT:05EDG018A) 
and soil-transmitted helminth such as hookworms (Ancylostoma duodenale 
and Necator americanus), Trichuris trichiura, Ascaris lumbricoides, 
Strongyloides stercoralis and Schistosoma mansoni using Kato-Katz or 
Schistosoma haematobium (POC-CCA, butch no:220701075). Furthermore, 
hemoglobin levels were measured (HemoCue Hb 301(CE:1450820055) and 
random blood glucose was assessed (ACCU-CHECK glucose test strips, Roche 
Diabetic care,06993761001). Weight and height were measured using a well-
calibrated machine (RGZ-160, made from China), and last, blood pressure was 
measured using OMRON(SN:202111007949V). After nurse counseling, HIV-
positive individuals who had low or high blood pressure (≤90/60mmHg and 
≥140/90mmHg, respectively) or had high blood glucose (≥7.1mmol/L fasting 
or ≥11.1mmol/L random glucose) were excluded and guided for further 
actions. People diagnosed with schistosomiasis or soil-transmitted helminth 
infections were treated with praziquantel and albendazole, respectively 
according to Tanzanian treatment guidelines. Based on exclusion criteria, 
27 of 230 participants were excluded.

All questionnaires and clinical samples were collected by a trained study 
team, consisting of medical doctors, nurses and laboratory scientists. Data 
from Tanzanian individuals were collected using the cloud-based electronic 
data collection system REDCap, with a server hosted at the Kilimanjaro 
Clinical Research Institute in Tanzania. Data from Dutch participants were 
collected in a Castor database, with a server hosted in The Netherlands.

Lifestyle questionnaire
Questionnaires adopted from the Tanzania Demographic and Health Survey 
and Malaria Indicator Survey (TDHS-MIS) and previously published work 
conducted in Tanzania, focused on diet in relation to metabolic profiles and 
inflammatory status [7, 54] were used to collect data on basic demographics, 
wealth (house construction, general hygiene, land/animal/livestock/non-
productive asset ownership) and (recent) food history. Combined, the 
collected information on wealth and food history was considered reflective 
of one’s ‘lifestyle’. Among others, our questionnaire included questions on 
the material used to construct the house’s floor, roof and walls, the source 
of water, the type of toilet and available cooking facilities. We assessed the 
number of milk cows, cattle, goats, sheep, horses and poultry owned and 
inquiries were made on land ownership and possession of non-productive 
assets, such as radios, televisions, computers, refrigerators and ironing tools 
(whether powered by charcoal or electricity), watches, motorcycles, trucks, 
animal-drawn carts, generators and motorboats. As diet was recently found 
to shape immune responses in a Tanzanian population [7], we additionally 
collected data on recent food history. We specifically focused on the 
frequency of various food types participants consume per week, including 
ugali (stiff porridge), plantain, rice, potatoes, meat, fish, beans/peas, green 
vegetables, cabbage, fruits and local beer.

PBMC isolation and cryopreservation
Blood was collected in sodium heparin tubes from 189 of 203 participants. 
PBMC isolation and cryopreservation were performed as previously 
described [1]. 27 Samples were excluded due to low blood quality, technical 
problems during PBMC isolation or low cell counts. The remaining 162 
cryopreserved PBMC samples were transported from Moshi, Tanzania, 
to Leiden, The Netherlands, using a liquid nitrogen dry vapor shipper. 
Out of these samples, we selected 100 individuals (25 per location) for 
immune phenotyping based on age, sex and educational level. Apart from 
these variables, baseline demographics for the total cohort and the mass 
cytometry cohort were comparable (Table 1 and Table S1).

Mass cytometry antibody staining
Antibody panels were designed to phenotype immune cells ex vivo. Details 
on antibodies used are listed in Table S4. Antibodies were conjugated to 
metal using 100µg of purified antibody combined with either the Maxpar 
X8 or MCP9 Antibody Labelling Kit (Fluidigm), as per the manufacturer’s 
instructions. Conjugated antibodies were then stored in 200µl of Antibody 
Stabilizer PBS (CANDOR Bioscience GmbH) at 4°C. Titration of all antibodies 
was conducted on PBMC samples.
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On the day of staining, cryopreserved PBMCs were thawed with 20% 
FCS/2mM Mg2+/1:10,000 benzonase/RPMI medium at 37°C and washed 
twice with 10% FCS/RPMI medium. For phenotyping, 3 × 106 cells per 
sample were prepared according to the Maxpar Nuclear Antigen Staining 
Protocol V2 (Fluidigm). PBMCs were washed with Maxpar staining buffer and 
centrifuged at 400g for 5 minutes in 5-ml Eppendorf tubes. Study samples 
were randomized over seven batches and for each batch up to 17 samples 
were barcoded. To barcode the samples, the cells were resuspended in 
50μl of Maxpar staining buffer and 50μl of a barcode mix targeting β2-
microglobulin (B2M) was added to each sample, employing a 6-choose-3 
scheme using 106cadmium (Cd), 110Cd, 111Cd, 112Cd, 114Cd and 116Cd. 
After a 30-minute room temperature incubation and a wash with Maxpar 
Staining Buffer, the cells were centrifuged, the supernatant was removed 
and the cells were resuspended in Maxpar staining buffer and pooled into 
one tube for each batch.

Subsequently, cells were treated with 5ml (about 0.17 oz) of 500× diluted Cell-
ID Intercalator-103Rh (Fluidigm) for 15 minutes to identify dead cells. After 
washing with staining buffer, cells were incubated with 20µl Human TruStain 
FcX Fc receptor blocking solution (BioLegend) and 130µl of staining buffer at 
room temperature for 5 minutes. Next, 150µl of a freshly prepared surface 
antibody cocktail was added for another 30-minute room-temperature 
incubation. After a double wash with staining buffer, cells were fixed with 
1.6% PFA in 5ml PBS for 10 minutes. Post-centrifugation, cells underwent 
fixation and permeabilization using the eBioscience Foxp3/Transcription 
Factor Staining Buffer Set from eBioscience, followed by incubation with 
Human TruStain FcX receptor blocker. An intranuclear antibody cocktail was 
then added and the cells were incubated for an additional 30 minutes. After 
washing with permeabilization buffer and staining buffer, cells were fixed 
with 1.6% PFA in 5ml PBS for 10 minutes. Finally, cells are stained with 1000× 
diluted Cell-ID Intercalator-Ir (Fluidigm) in Maxpar Fix and Perm Buffer at 
room temperature for 1h and stored in RPMI 20% FCS 10% DMSO at -80°C 
until acquisition.

Mass cytometry data acquisition
All barcoded samples within one batch were acquired simultaneously. Cells 
were measured using a Helios mass cytometer (Fluidigm) and calibrated 
as per Fluidigm’s guidelines. Before measurement, cells underwent 
counting, washing with Milli-Q water, straining and then were suspended 
at a concentration of 1.0 × 106 cells/ml in a solution containing 10% EQ Four 
Element Calibration Beads from Fluidigm and Milli-Q water. Data acquisition 
in mass cytometry was performed using dual-count mode and with noise 

reduction. Various channels were used, including those for antibody 
detection, intercalators (103Rh, 191Ir, 193Ir), calibration beads (140Ce, 
151Eu, 153Eu, 165Ho, 175Lu) and for tracking background/contamination 
(133Cs, 138Ba, 206Pb). Post-acquisition, the mass bead signal was used to 
standardize short-term signal variations, using the EQ passport P13H2302 
as a reference throughout each experiment. When necessary, normalized 
FCS files were merged using Helios software, while retaining the beads.

Data analysis
All data preprocessing and statistics were performed in R v4.2.2 and RStudio 
Server v2022.03.999. All p-values were corrected for multiple testing using 
the Benjamini-Hochberg procedure (and referred to as q-values). P-/q-
values<0.05 were considered statistically significant.

Data preprocessing
First, cells were automatically gated based on Gaussian parameters 
(CyTOFClean R-package; v1.03beta; https://github.com/JimboMahoney/
cytofclean). Next, automatic gating was applied to select for intact/DNA+-
(191Ir and 193Ir channels), CD45+- (89Y) and live cells (live/dead staining) 
(openCyto v2.10.1 R-package). All automatically set gates were manually 
inspected. Samples were compensated and debarcoded (CATALYST 
v1.22.0 R-package). Data were transformed using a hyperbolic arcsinh-
transformation with a cofactor of 5 for downstream processing. Next, 
reference samples collected from healthy European adults included in 
each individual batch were used to train a CytoNorm-model (CytoNorm 
v0.0.17 R-package; CytoNorm.train-function; nQ = 101; goal = ‘mean’; k = 10; 
limit = 0-8). The trained model was applied to all samples, adjusting for batch 
effects (CytoNorm.normalize-function).

Cell clustering
Cells were subjected to flowSOM-clustering (15 × 15 hexagonal grid; 
rlen=100; kohonen v3.0.11 R-package), followed by metaclustering at k = 80 
clusters using the hierarchical clustering (factoextra v1.0.7 R-package, hcut-
function, distance = ‘ward.D2’). The clustering map was trained on 100k cells 
per sample, the remaining cells were mapped to the trained map (predict.
kohonen-function). Cell clusters were annotated at subset-level by an expert 
immunologist. Cell labels were further refined by incorporating markers that 
exhibit variability within a given subset in the cell label.

Lifestyle score
Multiple correspondence analysis (MCA) was applied to categorical 
questionnaire data (38 manually curated lifestyle-related questions; 21 on 
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assets, 11 on food and 6 on housing) for all 203 Tanzanian participants 
(FactoMineR v2.7 R-package, MCA-function). Missing values are imputed 
using mode imputation. Principle component (PC) 1 was defined as ‘lifestyle 
score’, as this component, per definition, explained most variance across 
lifestyle questionnaire data. Coordinates of samples and variable categories 
were visualized in biplots. In addition, (cumulative) variable category 
contributions for lifestyle score were extracted and shown.

Statistical analyses
To understand the overall structure of the data, cells were placed on a two-
dimensional t-distributed Stochastic Neighbor Embedding (t-SNE) map using 
the Fit-SNE algorithm v1.2.1 (https://github.com/KlugerLab/Fit-SNE/blob/
master/fast_tsne.R). Fit-SNE was performed on a down-sampled dataset 
including 1,500 cells per sample (max_iter = 1,000; learning rate = n cells/12; 
perplexity = n cells/100).

To compare the frequency of cell clusters across rural and urban Tanzanian 
locations, we employed a generalized linear mixed model (binomial = ‘family’; 
link = ‘logit’; lme4 R-package v1.1-31). The number of cells in each cell cluster 
(as a fraction of total CD45+ cells per sample) was considered the dependent 
variable. We fit two models to assess the overall effect of location. Model 
1 included (scaled) age and sex as fixed explanatory variables and ‘sample 
ID’ as a random intercept. ‘Sample ID’ was included as a random effect to 
deal with any under- or overdispersion due to the binomial model. Model 
2 was the same as model 1, except that ‘location’ was added as a fixed 
explanatory variable. ANOVA tests were used to assess whether location 
(model 2) significantly improved model fit compared to model 1. Significant 
models (after correction for multiple testing using Benjamini-Hochberg) 
were subjected to pairwise comparisons between locations using the 
emmeans v1.8.5 R-package (Tukey post hoc test). The associations between 
cell cluster frequency and lifestyle score were also assessed using GLMMs, 
including lifestyle score, (scaled) age and sex as fixed explanatory variables 
and ‘sample ID’ as a random intercept. For sensitivity analyses, we fitted an 
additional ‘combined’ GLMM, including both location and lifestyle (LS) (as 
well as age (scaled) and sex) as fixed effects and sample ID as random effect. 
Model fit (using Akaike Information Criterion [AIC]) of the ‘combined’ GLMM 
was compared to same model, after removing either location or lifestyle 
score, to assess the relative importance of these variables to performance 
cluster-specific models.

Elastic net machine learning modelling
To identify a combined immune ‘endotype’ most associated with variation 
in lifestyle score, we fit an elastic net machine learning model (tidymodels 
v1.1.1 R-package, glmnet-engine). Scaled age, sex and cell frequencies of 
all 80 clusters were included as predictors and lifestyle score was included 
as an outcome variable. Data was randomly split into train (80%) and test 
(20%) data (stratified for living location). Model tuning was performed on 
training data using 2,000 bootstrapped data samples, optimizing penalty 
and mixture parameters. The best model was identified based on the 
highest explained variance (R2) between observed and predicted lifestyle 
score (penalty = 0.788, mixture = 0.1). The final model was applied to both 
training and testing data to generate final estimates of model fit (R2). 
Variable importance was assessed using the vip v0.4.1 R-package. Feature 
stability was assessed by extracting all features from the models fitted with 
the optimized tuning parameters across bootstrap datasets (n = 2,000). The 
number of times a feature was selected was used as a measure for feature 
stability.

RESULTS

Characteristics of the study population
The Tanzanian study population consisted of 203 adults recruited from 
four geographical locations in northern Tanzania, including two urban 
locations, Arusha and Moshi Urban and two rural locations, Moshi Rural 
and Mwanga (Figure 1A). These four locations were categorized as rural 
and urban based on the National Bureau of Statistics and the 2022 Census 
[34]. Detailed information on housing, assets and food history was collected 
using questionnaires [7, 35] (Figure 1B).

From these 203 individuals (Table S1), PBMC samples of 100 individuals 
were included for mass cytometry analyses (n = 100; n = 25 from each site 
in four sites) (Table 1). The median age was 25.0 years (interquartile range 
[IQR], 23-29 years). The prevalence of parasitic infections was 7% and these 
infections were detected only in individuals from rural areas (Table 1). As 
a comparator cohort, PBMC samples from ten Dutch individuals recruited 
in Leiden, The Netherlands (median age 29 [IQR 27-30], 50% female) were 
acquired using mass cytometry (referred to as ‘urban European’).

Cellular immune profiles differ between rural- and urban-living 
Tanzanian adults.
To characterize the cellular immune profiles between rural- and urban-living 
individuals, peripheral blood mononuclear cells (PBMCs) were stained with a 
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panel of 37 metal-tagged antibodies. The processed single-cell level dataset 
contained 69.6 million live CD45+ cells, which allowed the identification of six 
major immune lineages, including B cells, CD4+ T cells, CD8+ T cells, innate 
lymphoid cells (ILCs), myeloid cells and unconventional T cells (including 
γδ T cells) (Figure 1C). Clustering analyses using self-organizing maps 
(SOM), followed by hierarchical clustering resulted in 80 distinct immune 
cell clusters (Figure S1 and Table S2). Cell clusters were annotated at 
subset-level by an expert immunologist. Cell labels were further refined by 
incorporating markers that exhibit variability within a given subset in the 
cell label. Using Generalized Linear Mixed Models (GLMMs), we identified 
nine clusters which were significantly different between the four locations, 
after adjusting for age and sex (Figure 1D-E).

The CD4+ T cell lineage was composed of 28 cell clusters, of which 5 
significantly differed across locations. Th2 cells (cluster 51) represented the 
strongest rural signal, where we observed significantly higher frequencies 
in rural-living locations (especially rural Moshi) compared to urban-living 
individuals (median 0.7% of total CD45+ cells across rural sites compared 
to 0.3% and 0.2% in urban Tanzanians and Europeans, respectively). Rural-
living individuals additionally showed a significantly higher frequencies of 
three cell clusters of CD4+ T cells. These clusters included CD161dim PD-1dim 
CTLA-4+ CD4+ T effector memory (Tem) cells (cluster 46), CD4+ Tem cells 
expressing CD38, CD161, CTLA-4 and PD-1 (cluster 79) and HLA-DRdim PD-1+ 
KLRG-1+ CD4+ Tem cells (cluster 72). In contrast, the CD27+ CD28+ CD45RO+ 
CD127+ CD4+ T central memory (Tcm) cell cluster (cluster 53) was higher in 
urban compared to rural-living individuals (Figure 1E).

> Description figure 1. A) Map of study sites in Tanzania and in The Netherlands. 
B) Graphical representation of sample numbers and the study design. C-D) 
t-distributed Stochastic Neighbor Embedding (t-SNE) visualizations (n = 1500 random 
cells/individual); cells are coloured according to lineage (C) or significant cell cluster 
(D). E) Differential cell frequencies between rural and urban Tanzanian regions. 
Boxplots represent the 25th and 75th percentiles (lower and upper boundaries 
of boxes, respectively), the median (middle horizontal line) and measurements 
that fall within 1.5 times the interquartile range (IQR; distance between 25th and 
75th percentiles; whiskers). Only clusters showing a significant effect of ‘location’ 
(across Tanzanian sites) were shown. The significance of ‘location’ was assessed 
using analysis of variance (ANOVA)-tests comparing a full (location, age [scaled] 
and sex [fixed effects] and sample ID [random effect]) and a simpler model, which 
was the same as the full model, except that we removed ‘location’ from the model. 
ANOVA p-values were corrected for multiple testing using the Benjamini-Hochberg 
method and referred to as q-values. Asterisks denote statistical significance (*, q ≤ 
0.05; **, q ≤ 0.01; ***, q ≤ 0.001). The statistical significance of differences between 
each location was assessed using the emmeans()-function (Tukey post hoc test). 
Urban Europeans were included in the figure for visual comparisons and were not 
included in statistical tests.

Figure 1. Mass cytometry immune profiles differ across individuals living in 
rural (Moshi Rural and Mwanga) and urban (Arusha and Moshi Urban) regions. 
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Within the CD8+ T cell lineage, 1 out of 15 CD8+ T cell clusters significantly 
differed across locations. This cluster was characterized by recently 
activated CD8+ Tem cells expressing CXCR3 and T-bet (cluster 11), which 
showed higher frequencies in urban compared to both rural locations 
(Figure 1E). Furthermore, within the gamma delta (γδ) T cell lineage 
(containing 7 clusters), naïve γδ T cells expressing CXCR3 (cluster 40) were 
significantly higher in frequency in urban living compared to both rural-
living individuals. Finally, within the B cell lineage, we observed significantly 
higher frequencies of classical naive B cells (cluster 34) and atypical memory 
B cells expressing CD11c and Tbet (cluster 35) in rural- compared to urban-
living locations (Figure 1E). Six out of seven rural-associated clusters showed 
visual evidence of a rural-urban-European gradient, where cell frequencies 
showed a stepwise decrease from rural-to-urban and urban-to-European 
sites, except for cluster 40 (naïve γδ T cells). On the other hand, gradients 
were less clear for clusters enriched in urban Tanzanians.

Questionnaire data reveal differences in lifestyle between locations.
Within living locations, considerable variation in immune signatures was 
observed. Therefore, to better capture immune variation across locations, 
we developed a lifestyle score, which incorporates detailed questionnaire 
data on assets (e.g. possession of a watch, television or car), housing (i.e. 
materials used to construct the house) and food history (i.e. frequency of 
consumption of dietary products) into a single score. To obtain the lifestyle 
score, we applied Multiple Correspondence Analysis (MCA), a dimensionality 
reduction method similar to Principle Component Analysis (PCA), but for 
categorical data, which was applied to 38 questions (118 variable categories) 
collected from all 203 participants (Table S3 and Figure S2). MCA clearly 
separated individuals based on living location, especially across principal 
component (PC) 1. Since the MCA was based on lifestyle questionnaire 
data and PC1 per definition explains most variance, PC1 was referred to 
as ‘lifestyle score’, explaining 7.8% of the variation in the questionnaire 
data (Figure 2A). Across the first two principal components, we found 
that spread was highest in rural- compared to urban-living individuals 
(variance 6.1%/5.1% and 11.3%/11.2% for PC1/PC2 scores across urban and 
rural sites, respectively), indicating rural people have more heterogeneous 
lifestyles (Figure 2B). Sensitivity analyses on condensed questionnaire data 
(collapsing rare categories and removing uninformative variables) showed 
that the relatively low percentage of variance explained by lifestyle score 
and other high-ranking principle components (Figure S3A) is caused by the 
inclusion of rarer variable categories. Removing these had no important 
effect on the lifestyle score (Pearson r = 0.97, p-value < 2.2 × 10-16).

We found that the lifestyle score was significantly associated with thirteen 
of 80 cell clusters, while none of the other principal components (PC2-PC5) 
showed any statistically significant associations with cell cluster frequencies 
(Figure S3B), underscoring the validity and biological relevance of the 
lifestyle score.

Next, we explored the most strongly contributing lifestyle score variables 
across questionnaire categories, including housing conditions, assets and 
food history. Overall, assets showed the highest cumulative contribution to 
the lifestyle score (53.6%), followed by housing (30.3%) and food variables 
(16.1%) (Figure 2D). Among the top 20 variables most strongly contributing 
to PC1, factors such as having a house with an earth/sand floor, a mud 
wall, no household electricity and a pit latrine as toilet were associated with 
low lifestyle score. Additionally, the lack of assets such as an ironing tool, 
refrigerator, computer, radio, car, television, or watch and not consuming 
potatoes was associated with a low lifestyle score. Factors associated with a 
high lifestyle score were a house with a flush toilet connected to a sewage/
septic tank, a separate room used as a kitchen and possessing assets such 
as a car, a working computer and a refrigerator (Figure 2E).

Besides lifestyle score (PC1), we found that PC2 explained 4.1% of the 
variance (Figure S3A) and showed the highest spread across individuals 
living in rural Mwanga (variance across PC2 scores 15.0% compared to 2.9%-
7.0% in other sites) (Figure 2B). Similar to PC1, variables related to assets 
were most important (cumulative contribution 66.0%), particularly those 
related to livestock farming (Figure S3C). PC3 through PC5 explained 3.2-
3.5% of the variance (Figure S3A), generally showing a higher cumulative 
contribution of food variables (40.3-49.4%) (Figure S3C) compared to PC1 
and PC2.

Lifestyle score association tests reveal additional immune cell 
clusters not previously linked to living location
We next assessed the association between lifestyle score and immune 
cell frequencies using GLMMs, adjusting for age and sex. We first verified 
that lifestyle score in individuals with matching mass cytometry data 
(n = 100), which was not significantly different from individuals without mass 
cytometry data available (Figure S4).
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Figure 2. Multiple Correspondence Analysis (MCA) based on questionnaire data 
to generate lifestyle score.
A) MCA was applied to categorical questionnaire data (38 manually curated 
questions; 21 on assets, 11 on food and 6 on housing) (N = 203 individuals). Data 
points are coloured based on location. Ellipses reflect the data spread at a level of 

confidence of 95%. Density plots show the distribution of PC1 (lifestyle score) (x-
axis) and PC2 (y-axis) score. B) Comparisons of PC1 (lifestyle score) and PC2 across 
locations. Global significance was assessed using analysis of variance (ANOVA) and 
post hoc tests between locations were performed using Tukey HSD tests. Asterisks 
denote statistical significance (NS, non-significant; *, p ≤ 0.05; **, p ≤ 0.01; ***, p 
≤ 0.001, p ≤ 0.0001). C) Coordinates of each variable category (a.-t.; see E) across 
dimensions 1 and 2. Variable categories with similar profiles are grouped together. D) 
Cumulative contributions (in percentage) of the variable categories by questionnaire 
data category (i.e. housing, assets and food). E) Contributions (in percentage) of 
variable categories to PC1 or lifestyle score. Bars are coloured based on whether a 
variable was associated with a high (> zero) or low (< zero) lifestyle score.

Overall, 13 cell clusters were associated with lifestyle score, of which 8 
clusters were not identified by previous analyses where we assessed 
differences in immune profile between locations (Figure 3A and 3B). Indeed, 
only one of these clusters (cluster 12; CD8+ naïve) showed a trend towards 
significance across locations (q = 0.055; Figure S5). In addition, we confirmed 
5 out of 9 clusters which were previously found to significantly differ across 
locations, which were Th2 cells (cluster 51; GLMM; β = -0.66), two CD4+ Tem 
clusters that were CTLA-4+ and/or CD161+ (cluster 79 and 46; β = -0.50 and 
-0.28, respectively), atypical memory B cells (cluster 35; β = -0.37) (rural-
living location and low lifestyle score) and a CD8+ Tem cluster (cluster 11; 
β = 0.32) (urban-living location and high lifestyle score) (Figure 3C). The 
additional clusters identified using the lifestyle score were two CD4+ Tem 
cell clusters that were associated with low lifestyle score: HLA-DR+ PD-1+ 
CD4+ Tem (cluster 43; β = -0.38) and regulatory T cells (cluster 75; β = -0.35). 
Furthermore, we identified a cluster of plasmablasts (cluster 57; β = -0.49), 
which was enriched in those with low lifestyle score. Last, an innate immune 
cell cluster of NK-cells (cluster 25; β = -0.68) was also linked to a low lifestyle 
score (Figure 3D). 

In contrast, within the CD8+ T cell lineage, we identified three clusters of 
CD8+ T cells that were associated with high lifestyle score. These included 
two CD8+ naïve T cell clusters (cluster 12 and 21; β = 0.38 and 0.39, 
respectively) and a cluster of CD8+ Tem cells expressing CD161 and KLRG1 
(cluster 38; β = 0.59). In addition, we found a positive association between 
higher frequencies of ILC2 (cluster 60; β = 0.33) and a high lifestyle score 
(Figure 3D). Sensitivity analyses, where we jointly modelled lifestyle score 
and location and compared the model fit to simpler models (excluding either 
lifestyle score or location), indicated that indeed using lifestyle score we can 
detect an additional group of clusters which we could not have detected 
with location alone (Figure S6).
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Figure 3. Lifestyle score is associated with specific immune cell clusters not 
identified by comparisons across locations. 

< Description figure 3. A) Venn diagram indicating the number of cell clusters 
that show differences in cell frequencies 1) across locations [Figure 1E], 2) both 
across locations and lifestyle score [Figure 3C] and 3) only with lifestyle score [Figure 
3D]. Eight cell clusters were uniquely associated with lifestyle score and were not 
identified by comparisons across sampling locations. B) Volcano plot showing 
differential frequency results. Results were derived from a GLMM with cell frequency 
as outcome variable, lifestyle score, age (scaled) and sex as fixed effects and sample 
ID as a random effect. Model estimates and corresponding Benjamini-Hochberg 
(BH)-adjusted p-values (-log10(q-value)) were shown. Each point represents a cluster, 
clusters with q-values<0.05 are coloured by association (high or low lifestyle score, 
or only significantly associated with location). Shapes indicate whether lifestyle-
associated clusters were also detected by comparisons across sampling locations. 
Each point is labelled with a cluster identifier. C-D) Scatter plots showing the 
association between lifestyle score and cell frequency for C) clusters significantly 
related to both location as well as lifestyle score and D) clusters uniquely related 
to lifestyle score (i.e. clusters not identified as differentially abundant between 
locations). Data points are coloured based on location. Lines represent linear fits 
to the data and are included for visualization purposes only. Statistical significance 
was assessed using a linear mixed model including lifestyle score, age (scaled) and 
sex as fixed effects and sample ID as random effect. Additionally, we ran univariable 
Spearman correlation tests, p-values were corrected for multiple testing using the 
Benjamini-Hochberg method (q-value). Asterisks indicate clusters that significantly 
differed between locations. Only cell clusters significant in GLMMs are shown.

Machine learning modelling links a combined immune endotype with 
a lifestyle score
To investigate if a combination of immune cell clusters could be identified 
that together is associated with a lifestyle score (‘immune endotype’), a 
machine learning model (elastic net) was trained with lifestyle score as an 
outcome and cell cluster frequencies, age and sex as the predictor variables. 
Model training and hyperparameter tuning were performed on 80% of the 
data (n = 80 individuals; 2,000 bootstrapped datasets) and the model was 
tested on the remaining 20% of the data (n = 20 individuals) (Figure 4A). The 
model was able to predict 44.1% and 29.6% of the variance in the training 
and test data, respectively. Using feature importance analysis, we verified 
11 of the 14 clusters that were previously associated with living location 
and/or lifestyle score. Compared to previous analyses, the current model 
is a multivariable model, estimating the contribution of each cell cluster 
to the prediction of lifestyle score while adjusting for all other cluster cell 
frequencies. Therefore, using this complementary approach, we identified 
three additional clusters, including CD8+ Tem cells expressing CD161 and 
KLRG1 (cluster 37) associated with high lifestyles score, pDCs (cluster 58) 
and γδ T-cells (cluster 22) related to low lifestyle score (Figure 4B).
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Taken together the elastic net model unveiled a fairly stable (Figure 4C) 
immune endotype characterized by Th2 cells, regulatory T cells, atypical 
B memory cells, plasmablasts, NK, CTLA-4+ CD161+ CD4+ Tem, KLRG1+ γδ 
T-cells and plasmacytoid dendritic cells (pDCs) associated with a low lifestyle 
score. Inversely, the immune profile characterized by CD8+ naïve T cells, 
CXCR3+ CD127+ CD8+ Tem, two CD8+ Tem CD161+ CD56dim KLRG1+ and 
ILC2 is associated with a high lifestyle score (Figure 4B).

DISCUSSION

Here, we assessed the associations between location and/or lifestyle score 
and cellular immune profiles measured by mass cytometry. We found that 
seventeen of 80 clusters were associated with location or lifestyle score, 
with eight identifiable only when using lifestyle score, illustrating the ability 
of lifestyle score to capture immune variation. Indeed, individuals living in 
rural areas may exhibit an urban lifestyle and vice versa. This was further 
substantiated by applying a machine learning model, which identified a 
combined immune signature associated with lifestyle score.

We found an association between low lifestyle score and expression of 
activation markers such as CD38, HLA-DR and CTLA-4 on CD4+ Tem cells, 
along with expansion of Th2 and an increased frequency of regulatory T cells 
expressing CTLA-4. An increase in a specific memory T cell subsets might 
indicate that fewer naïve T cells are available for activation and expansion 
upon encounter with a new antigen. Furthermore, expression of activation/
inhibitory markers on T cells can result in a reduced response to vaccines 
and allergens but may also explain a lower prevalence of autoimmune 
diseases in LMICs [19, 24, 36]. Indeed, in rural Senegalese, immune profiles 
were enriched for HLA-DR-expressing CD4+ T cells compared to urban-living 
individuals [2]. Previous studies comparing rural and urban populations in 
Indonesia [1, 25] and Gabon [26, 37] found that immune profiles in rural-
living individuals, characterized by high frequencies of Th2 cells, T regulatory 
cells expressing CTLA-4, HLA-DR, ICOS or CD161 and atypical memory B 
cells, were strongly linked to (chronic) helminth infections [1, 25, 26].

In contrast to these previous studies, none of our participants tested 
positive for malaria and the prevalence of current helminth infections was 
very low. Therefore, we speculate that increased activation of CD4+ Tem 
cells, along with expansion of Th2 and higher regulatory T cell frequencies, 
may represent an immune footprint left behind by parasitic infection in 
the past or even during childhood, as have been suggested by others [24, 
38, 39].

Figure 4. Machine learning model based on cell cluster frequencies can 
partly reconstruct lifestyle score. A) Performance of an elastic net machine 
learning model based on cell cluster frequencies (n = 80), age and sex trained to 
predict lifestyle score. Observed compared to predicted lifestyle score based on 
training (80%) and test data (20%; n = 5 samples per location) are shown. Using 
cell frequency data, we can explain ~30% of the variance in lifestyle scores (leave-
out test data). B) Feature importance of all features that remained in the model 
after feature shrinkage/regularization. Clusters previously associated with either 
location or lifestyle score (n = 17) are indicated (*). Three clusters have not been 
associated with location nor lifestyle score in previous analyses. C) Feature stability 
across bootstraps. All features from the models fitted with the optimized tuning 
parameters (penalty/mixture) were extracted. The number of times a feature was 
selected across bootstrap samples serves as a score for stability of that feature 
(maximum score = 2,000).
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Indeed, in 2005, the prevalence of schistosomiasis among school-aged 
children in two different schools located in one of the rural areas included 
in this study ranged between 34-70% with evidence for the presence of other 
soil-transmitted infections in the same setting [40]. Thus, based on their 
age, our study participants likely experienced a high burden of helminth 
infections during childhood.

Alternatively, housing conditions related to a low lifestyle score (e.g. sand or 
earth floors and mud-wall houses) may predispose to different commensals 
or exposure to bacteria and fungi and their metabolites [41], some of which 
have immunomodulatory properties. Poor housing conditions also attract 
vectors like flies, lice, ticks, mites and mosquitoes, which may directly 
activate the immune system through components present in their saliva, 
even in the absence of disease transmission [31, 42]. Furthermore, rural-
living individuals closely live with livestock and as such are exposed to an 
additional reservoir of micro-organisms and (zoonotic) pathogens [43]. 
Taken together, past (parasitic) infections or unmeasured variables, such 
as the microbiome or exposure to vectors, are tightly linked to housing 
conditions. These factors may drive lifestyle-related immune variation, 
resulting in enrichment of Th2, regulatory T cells and activated T cells.

We found that individuals with low lifestyle score most of whom live in 
rural settings, display a higher frequency of plasmablasts. Plasmablasts 
are differentiated B cells with a short lifespan, which initiate early antibody 
responses during infections [44-46]. However, due to their high metabolic 
activity, the rapid development of short-lived plasmablasts can paradoxically 
impair humoral immunity by slowing down germinal centre formation. This, 
in turn may impair responsiveness to vaccines and reduce risk of developing 
allergies and autoimmunity by limiting the generation of long-lived plasma 
and memory B cells. Although this has been shown in the context of 
malaria infection [47], which is not endemic in northern Tanzania, other 
infectious diseases endemic in the area, may similarly induce high levels of 
plasmablasts, including dengue [48].

Last, we identified an association between both naïve CD8+ T cells and CD8+ 
Tem expressing CD161 and high lifestyle score. Although we lack immune 
markers to confirm, CD161+CD8+ Tem encompasses mucosal-associated 
invariant T cells (MAIT) cells. MAIT cells are abundant in blood and at mucosal 
sites and can activate dendritic cells that promote T follicular helper cells to 
induce mucosal antigen-specific IgA [49]. Therefore, the presence of such 
cells in urban-living individuals might indicate the propensity to react more 
strongly to antigens in a vaccine, allergens, or autoantigens. This aligns with 

the results of an earlier study indicating that healthy individuals residing 
in urban Moshi had a higher pro-inflammatory cytokine response upon 
pathogen challenge in an ex vivo PBMC stimulation assay compared to those 
living in rural areas [7, 35]. Regarding the naïve CD8+ T cells being enriched 
in urban living, it has been noted that they allow new immune responses 
to be mounted to both infections and vaccines [50]. Their higher frequency 
in urban areas is in line with previous studies in Bangladeshi compared to 
(urban living) North American children within the first three years of life [51] 
as well as in Malawian compared to UK adults [52]. Reduced numbers of 
naïve CD8+ T cells was associated with a higher burden of intestinal worms 
and viral infections (e.g. CMV) in children from Bangladesh compared to 
those from the USA [3] and higher burden of CMV among Malawian adults 
[52]. Similarly, we speculate that the association between high life score 
and naive CD8+ T cells in our study is driven by reduced pathogen exposure 
in people living in urban settings due to differences in daily activities and 
hygiene practices compared to rural-living individuals.

The strengths of this study include the use of mass cytometry data in 
combination with the availability of detailed information on housing, assets 
and food history. Condensing this information into a single score allowed 
us to train a machine learning model to identify a distinct group of cell 
clusters (termed ‘immune endotype’), which was strongly associated with 
lifestyle score variation. Previous studies in HICs indicated that baseline 
(gene-expression-based) immune endotypes exhibiting a strong pro-
inflammatory profile are predictive of improved vaccine responses in young 
adults across multiple vaccines [53]. In a similar fashion, we speculate the 
immune endotypes identified in this study are linked to vaccine responses 
in populations living in rural or urban Africa. As such, further phenotyping of 
immune endotypes in varied populations, not limited to HIC, using protein-
based single-cell modalities such as mass cytometry, may deepen our 
understanding of variation in vaccine responses or reactivity to allergens 
or autoantigens and their underlying mechanisms. At the same time, using 
lifestyle scores opens opportunities for public health experts to screen 
individuals prone to, for example, vaccine hypo-responsiveness, informing 
policymakers on preventative measures, such as repeated vaccination. 
These interventions could target these high-risk individuals, potentially 
improving vaccine efficacy and public health outcomes. Since those 
mounting reduced vaccine responses are the very same individuals that also 
show lower responses to allergens and auto-antigens, immune phenotyping 
may also unveil new ways to prevent non-communicable diseases in urban-
living individuals. Our study also has limitations. Among others, we did not 
assess cellular immune function through stimulation assays. In addition, 

5



118 119

Lifestyle factors and cellular immune profilesChapter 5

future studies establishing direct links between low lifestyle score and 
responses to vaccines, allergens and autoantigens would be of great value.

In conclusion, in this study we comprehensively assessed the association 
between immune profiles and location and lifestyle variables in a LMIC. 
Additional cell clusters were detected through a more refined measurement 
of lifestyle. Follow-up studies should therefore focus on the links between 
lifestyle score, immune signature and functional immune responses, 
particularly in populations where vaccine responses are expected to be 
reduced and in populations with the highest prevalence of diseases linked 
to exaggerated immune responses to allergens and autoantigens.
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Supplementary material

Table S1. Baseline characteristics of the study population (N = 203).

Variable Overall, 
N = 203

Urban 
Arusha, 
N = 57

Urban 
Moshi, 
N = 47

Rural 
Moshi, 
N = 46

Rural 
Mwanga, 
N = 53

p-value

Sex, female 100 (49%) 40 (70%) 26 (55%) 18 (39%) 16 (30%) <0.001

Age 25.0
 (22.0, 29.5)

25.0 
(22.0, 30.0)

25.0 
(23.0, 27.0)

26.0 
(22.3, 31.0)

24.0 
(21.0, 27.0)

0.165

Age categories 0.259

18-25 116 (57%) 30 (53%) 30 (64%) 22 (48%) 34 (64%)

26-36 87 (43%) 27 (47%) 17 (36%) 24 (52%) 19 (36%)

BMI 22.6 
(20.5, 25.6)

22.2 
(19.9, 25.8)

23.9
(22.2, 26.1)

22.4 
(20.7, 25.0)

22.3 
(20.3, 25.3)

0.183

Missing 1 1 0 0 0

BMI 
classification

0.585

<18.5 13 (6.4%) 6 (11%) 3 (6.4%) 3 (6.5%) 1 (1.9%)

18.5-24.9 130 (64%) 34 (61%) 27 (57%) 31 (67%) 38 (72%)

25.0-29.9 39 (19%) 10 (18%) 11 (23%) 10 (22%) 8 (15%)

>30 20 (9.9%) 6 (11%) 6 (13%) 2 (4.3%) 6 (11%)

Missing 1 1 0 0 0

Systolic blood 
pressure 
(mmHg)

120 
(110, 128)

110 
(109, 120)

110
(103, 120)

126
(118, 130)

122
(120, 130)

<0.001

Missing 1 1 0 0 0

Diastolic blood 
pressure 
(mmHg)

73 (68, 80) 70 (67, 79) 70 (64, 78) 78 (72, 81) 76 (70, 80) 0.001

Missing 1 1 0 0 0

Hemoglobin 
level g/dl

14.50
 (13.35, 
16.40)

13.90 
(13.10, 
15.00)

13.70 
(12.30, 
15.30)

15.25 
(14.03, 
16.58)

15.80 
(14.00, 
17.00)

<0.001

Random 
blood sugar, 
mmol-1^^

5.00 
(4.50, 5.80)

4.80 
(4.40, 5.50)

5.15 
(4.53, 5.85)

5.50 
(4.75, 6.20)

4.70 
(3.90, 5.50)

0.002

Missing 1 0 1 0 0

Highest level of education <0.001

Primary 50 (25%) 4 (7.0%) 2 (4.3%) 27 (59%) 17 (32%)

Secondary 74 (36%) 18 (32%) 11 (23%) 19 (41%) 26 (49%)

College 40 (20%) 27 (47%) 6 (13%) 0 (0%) 7 (13%)

Table S1. Baseline characteristics of the study population (N = 203) - continued

Variable Overall, 
N = 203

Urban 
Arusha, 
N = 57

Urban 
Moshi, 
N = 47

Rural 
Moshi, 
N = 46

Rural 
Mwanga, 
N = 53

p-value

University 39 (19%) 8 (14%) 28 (60%) 0 (0%) 3 (5.7%)

Malaria 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Missing 1 0 1 0 0

Helminth 
infectiona

8 (3.9%) 0 (0%) 0 (0%) 6 (13%) 2 (3.8%) 0.002

Schistosomiasisb 7 (3.5%) 2 (3.6%) 1 (2.1%) 4 (8.9%) 0 (0%) 0.098

Missing 3 2 0 1 0

Insurance 
status

51 (25%) 24 (42%) 23 (50%) 0 (0%) 4 (7.5%) <0.001

Missing 1 0 1 0 0

Occupation <0.001

Farming 32 (16%) 2 (3.5%) 1 (2.1%) 23 (50%) 6 (11%)

Elementary 
occupation

60 (30%) 14 (25%) 7 (15%) 13 (28%) 26 (49%)

Student 47 (23%) 12 (21%) 23 (49%) 2 (4.3%) 10 (19%)

Employed/ 
business 
owner

34 (17%) 15 (26%) 9 (19%) 4 (8.7%) 6 (11%)

Not 
employed

30 (15%) 14 (25%) 7 (15%) 4 (8.7%) 5 (9.4%)

N = 203 participants. Values represent number of participants (percentage of total) and 
median (interquartile range [IQR]) for categorical and continuous variables, respectively. 
Comparisons between locations were performed using Fisher’s exact, chi-squared and Mann–
Whitney U-test for categorical and continuous variables, respectively. a Stool was tested for 
helminths using the Kato-Katz method, testing for Schistosoma haematobium, Schistosoma 
mansoni, Ascaris Lumbricoides, hookworm and Trichuris trichuria. b Tested for schistosomiasis 
using the POC-CCA method, testing for Schistosoma haematobium and Schistosoma mansoni.

Table S2. Overview of identified cell clusters.
See Supplemental Videos and Spreadsheets.
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Table S3. Descriptives of lifestyle score variables.

Characteristic Urban 
Arusha, 
N = 57

Urban 
Moshi, 
N = 47

Rural 
Moshi, 
N = 53

Rural 
Mwanga, 
N = 46

p-value

House floor <0.001

Hard floor (tile, cement, 
concrete, wood)

57 (100%) 47 (100%) 44 (83%) 33 (72%)

Earth/sand 0 (0%) 0 (0%) 9 (17%) 13 (28%)

House walls <0.001

Cement, brick or stone 56 (98%) 46 (100%) 42 (79%) 39 (85%)

Cane, palm, trunks, 
bamboo

0 (0%) 0 (0%) 1 (1.9%) 0 (0%)

Mud (with poles) 1 (1.8%) 0 (0%) 10 (19%) 7 (15%)

Missing 0 1 0 0

House roof 0.257

Roof tiles 2 (3.5%) 2 (4.3%) 0 (0%) 0 (0%)

Metal sheets 55 (96%) 45 (96%) 53 (100%) 45 (98%)

Other 0 (0%) 0 (0%) 0 (0%) 1 (2.2%)

Water source <0.001

Tap water 51 (89%) 45 (96%) 33 (62%) 13 (28%)

Public standpipe 3 (5.3%) 1 (2.1%) 12 (23%) 10 (22%)

Protected tube well or 
bore hole

3 (5.3%) 0 (0%) 3 (5.7%) 20 (43%)

Spring 0 (0%) 1 (2.1%) 5 (9.4%) 0 (0%)

Pond-water or stream 0 (0%) 0 (0%) 0 (0%) 3 (6.5%)

Toilet facility <0.001

Flush to piped sewage 
or septic tank

41 (72%) 42 (89%) 17 (32%) 3 (6.5%)

Pour flush latrine 14 (25%) 1 (2.1%) 18 (34%) 36 (78%)

Pit latrine 2 (3.5%) 4 (8.5%) 18 (34%) 7 (15%)

Cooking place <0.001

In a separate room 
used as kitchen

32 (56%) 31 (66%) 14 (26%) 5 (11%)

In a separate building 
used as kitchen

17 (30%) 9 (19%) 38 (72%) 37 (80%)

In a room used for 
living or sleeping

8 (14%) 5 (11%) 1 (1.9%) 2 (4.3%)

Outdoors 0 (0%) 2 (4.3%) 0 (0%) 2 (4.3%)

Total number of milk 
cows

0.012

Table S3. Descriptives of lifestyle score variables - continued.

Characteristic Urban 
Arusha, 
N = 57

Urban 
Moshi, 
N = 47

Rural 
Moshi, 
N = 53

Rural 
Mwanga, 
N = 46

p-value

None 51 (89%) 43 (91%) 40 (75%) 40 (87%)

1-4 6 (11%) 1 (2.1%) 11 (21%) 2 (4.3%)

5-9 0 (0%) 2 (4.3%) 1 (1.9%) 1 (2.2%)

10+ 0 (0%) 1 (2.1%) 1 (1.9%) 3 (6.5%)

Total number of other 
cattle

<0.001

None 56 (98%) 46 (98%) 45 (85%) 39 (85%)

1-4 1 (1.8%) 1 (2.1%) 8 (15%) 2 (4.3%)

5-9 0 (0%) 0 (0%) 0 (0%) 1 (2.2%)

10+ 0 (0%) 0 (0%) 0 (0%) 4 (8.7%)

Total number of horses >0.999

None 57 (100%) 47 (100%) 53 (100%) 46 (100%)

1-4 0 (0%) 0 (0%) 0 (0%) 0 (0%)

5-9 0 (0%) 0 (0%) 0 (0%) 0 (0%)

10+ 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Total number of goats <0.001

None 53 (93%) 39 (83%) 29 (55%) 30 (65%)

1-4 3 (5.3%) 3 (6.4%) 12 (23%) 7 (15%)

5-9 0 (0%) 2 (4.3%) 11 (21%) 5 (11%)

10+ 1 (1.8%) 3 (6.4%) 1 (1.9%) 4 (8.7%)

Total number of sheep 0.031

None 55 (96%) 46 (98%) 52 (98%) 38 (83%)

1-4 0 (0%) 0 (0%) 1 (1.9%) 2 (4.3%)

5-9 1 (1.8%) 1 (2.1%) 0 (0%) 3 (6.5%)

10+ 1 (1.8%) 0 (0%) 0 (0%) 3 (6.5%)

Total number of chicken/poultry <0.001

None 33 (58%) 18 (38%) 8 (15%) 19 (41%)

1-4 2 (3.5%) 2 (4.3%) 2 (3.8%) 5 (11%)

5-9 6 (11%) 5 (11%) 11 (21%) 5 (11%)

10+ 16 (28%) 22 (47%) 31 (60%) 17 (37%)

Missing 0 0 1 0

Agricultural land 
(hectares)

0.439
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Table S3. Descriptives of lifestyle score variables - continued.

Characteristic Urban 
Arusha, 
N = 57

Urban 
Moshi, 
N = 47

Rural 
Moshi, 
N = 53

Rural 
Mwanga, 
N = 46

p-value

None 39 (68%) 31 (67%) 38 (72%) 30 (65%)

1-4 12 (21%) 10 (22%) 14 (26%) 12 (26%)

5-9 4 (7.0%) 2 (4.3%) 0 (0%) 4 (8.7%)

10+ 2 (3.5%) 3 (6.5%) 1 (1.9%) 0 (0%)

Missing 0 1 0 0

Connected to electricity 54 (96%) 46 (98%) 37 (70%) 32 (70%) <0.001

Missing 1 0 0 0

Working radio 49 (86%) 44 (94%) 42 (79%) 37 (80%) 0.185

Working television 51 (89%) 40 (85%) 22 (42%) 25 (54%) <0.001

Missing 0 0 1 0

Working computer 23 (40%) 37 (79%) 4 (7.7%) 0 (0%) <0.001

Missing 0 0 1 0

Working refrigerator 34 (60%) 38 (81%) 8 (15%) 2 (4.3%) <0.001

Working rechargeable 
battery or generator

8 (15%) 13 (28%) 4 (7.5%) 11 (24%) 0.035

Missing 2 0 0 1

An iron (charcoal/
electric)

51 (89%) 42 (93%) 38 (72%) 20 (43%) <0.001

Missing 0 2 0 0

Watch 44 (77%) 44 (98%) 29 (55%) 14 (30%) <0.001

Missing 0 2 0 0

Mobile phone 55 (96%) 47 (100%) 53 (100%) 44 (96%) 0.283

Bicycle 11 (19%) 18 (38%) 4 (7.7%) 28 (61%) <0.001

Missing 0 0 1 0

Motorcycle 21 (37%) 17 (37%) 12 (23%) 24 (52%) 0.026

Missing 0 1 0 0

Animal drawn cart 0 (0%) 1 (2.2%) 0 (0%) 1 (2.2%) 0.353

Missing 1 1 0 0

Car or truck 19 (33%) 30 (64%) 6 (11%) 1 (2.2%) <0.001

Boat with a motor 0 (0%) 1 (2.2%) 0 (0%) 1 (2.2%) 0.353

Missing 0 1 1 1

Ugali (stiff porridge) (×/
week)

<0.001

0 0 (0%) 2 (4.3%) 0 (0%) 0 (0%)

Table S3. Descriptives of lifestyle score variables - continued.

Characteristic Urban 
Arusha, 
N = 57

Urban 
Moshi, 
N = 47

Rural 
Moshi, 
N = 53

Rural 
Mwanga, 
N = 46

p-value

 1 6 (11%) 11 (23%) 2 (3.8%) 1 (2.2%)

2-4 26 (46%) 23 (49%) 31 (58%) 13 (28%)

≥5 24 (43%) 11 (23%) 20 (38%) 32 (70%)

Missing 1 0 0 0

Plantain (×/week) <0.001

0 19 (35%) 13 (28%) 16 (30%) 28 (62%)

1 27 (49%) 30 (64%) 25 (47%) 17 (38%)

2-4 5 (9.1%) 1 (2.1%) 10 (19%) 0 (0%)

≥5 4 (7.3%) 3 (6.4%) 2 (3.8%) 0 (0%)

Missing 2 0 0 1

Banana (×/week) 0.152

0 7 (13%) 4 (8.5%) 2 (3.8%) 10 (22%)

1 27 (48%) 22 (47%) 23 (43%) 23 (50%)

2-4 19 (34%) 18 (38%) 20 (38%) 10 (22%)

≥5 3 (5.4%) 3 (6.4%) 8 (15%) 3 (6.5%)

Missing 1 0 0 0

Rice (×/week) <0.001

0 0 (0%) 0 (0%) 0 (0%) 0 (0%)

1 4 (7.0%) 4 (8.5%) 19 (36%) 7 (15%)

2-4 25 (44%) 17 (36%) 28 (53%) 18 (39%)

≥5 28 (49%) 26 (55%) 6 (11%) 21 (46%)

Potatoes (×/week) 0.005

0 1 (1.8%) 0 (0%) 11 (21%) 3 (6.7%)

1 26 (46%) 21 (45%) 28 (53%) 26 (58%)

2-4 21 (37%) 19 (40%) 11 (21%) 13 (29%)

≥5 9 (16%) 7 (15%) 3 (5.7%) 3 (6.7%)

Missing 0 0 0 1

Meat (×/week) 0.008

0 1 (1.8%) 1 (2.1%) 0 (0%) 2 (4.3%)

1 13 (23%) 5 (11%) 16 (30%) 11 (24%)

2-4 29 (52%) 20 (43%) 31 (58%) 25 (54%)

≥5 13 (23%) 21 (45%) 6 (11%) 8 (17%)

Missing 1 0 0 0
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Table S3. Descriptives of lifestyle score variables - continued.

Characteristic Urban 
Arusha, 
N = 57

Urban 
Moshi, 
N = 47

Rural 
Moshi, 
N = 53

Rural 
Mwanga, 
N = 46

p-value

Fish (×/week) <0.001

0 0 (0%) 3 (6.4%) 2 (3.8%) 0 (0%)

1 25 (44%) 26 (55%) 24 (45%) 7 (15%)

2-4 23 (40%) 15 (32%) 26 (49%) 13 (28%)

≥5 9 (16%) 3 (6.4%) 1 (1.9%) 26 (57%)

Beans/peas (×/week) 0.005

0 2 (3.5%) 1 (2.1%) 1 (1.9%) 0 (0%)

1 11 (19%) 8 (17%) 20 (38%) 3 (6.5%)

2-4 28 (49%) 21 (45%) 20 (38%) 18 (39%)

≥5 16 (28%) 17 (36%) 12 (23%) 25 (54%)

Green vegetables (×/
week)

0.625

0 0 (0%) 1 (2.1%) 1 (1.9%) 1 (2.2%)

1 4 (7.0%) 5 (11%) 1 (1.9%) 2 (4.3%)

2-4 15 (26%) 10 (21%) 15 (28%) 16 (35%)

≥5 38 (67%) 31 (66%) 36 (68%) 27 (59%)

Fruits (×/week) 0.003

0 0 (0%) 1 (2.1%) 1 (1.9%) 0 (0%)

1 9 (16%) 6 (13%) 21 (40%) 13 (28%)

2-4 15 (26%) 11 (23%) 16 (30%) 18 (39%)

≥5 33 (58%) 29 (62%) 15 (28%) 15 (33%)

Locally brewed beer (×/
week)

0.011

0 47 (82%) 40 (85%) 33 (62%) 41 (89%)

1 6 (11%) 6 (13%) 7 (13%) 1 (2.2%)

2-4 2 (3.5%) 1 (2.1%) 4 (7.5%) 1 (2.2%)

≥5 2 (3.5%) 0 (0%) 9 (17%) 3 (6.5%)

N = 203 participants. Values represent number of participants (percentage of total). 
Comparisons between locations were performed using Fisher’s exact or chi-squared tests. 
All variables (n = 38 variables), after mode imputation, were used to construct the lifestyle 
score. See Figure S2.

Table S4. Mass cytometry antibody panel.

Label Specificity Clone Suppliera Cat no Lot no End 
dilution

Working 
dilution

89Y CD45 HI30 Fluidigm 3089003B 2203476-08 200 100
115In CD278 

(ICOS)
C398.4A Biolegend 313502 22-02-2022 MK 100 50

141Pr CD196 
(CCR6)

G034E3 Fluidigm 3141003A 2201583-11 100 50

142Nd CD19 HIB19 Biolegend 302202 24-06-2020 500 250
143Nd CD117 

(c-Kit)
104D2 Biolegend 313223 28-01-2020 500 250

145Nd CD4 RPA-T4 Fluidigm 3145001B 2202012-07 500 250
146Nd CD8a RPA-T8 Fluidigm 3146001B 2108701-11 500 250
147Sm CD183 

(CXCR3)
G025H7 Biolegend 353733 03-01-2018 100 50

148Nd CD14 M5E2 Biolegend 301802 30-05-2022 200 100
149Sm CD25

(IL-2Ra)
2A3 Fluidigm 3149010B 2104640-07 500 250

150Nd CD185 
(CXCR5)

J252D4 Biolegend 356902 10-09-2019 500 250

151Eu CD123 6H6 Fluidigm 3151001B 2112140-01 500 250
152Sm TCRγδ 11F2 Fluidigm 3152008B 2110581-20 200 100
153Eu CD7 CD7-6B7 Fluidigm 3153014B 0282010 200 100
154Sm CD163 GHI/61 Fluidigm 3154007B 3321818 100 50
155Gd CD45RA HI100 Fluidigm 3155011B 0492003 200 100
156Gd CD294 

(CRTH2)
BM16 Biolegend 350102 30-05-2022 100 50

158Gd CD122 
(IL-2Rb)

TU27 Biolegend 339002 01-02-2022 500 250

159Tb CD197 
(CCR7)

G043H7 Biolegend 353237 11-09-2020 200 100

161Dy KLRG1 
(MAFA)

REA261 Miltenyi 130-126-
458

01-02-2022 500 250

162Dy CD11c Bu15 Fluidigm 3162005B 2111081-25 500 250
164Dy CD161 HP-3G10 Fluidigm 3164009B 2111083-25 200 100
165Ho CD127 

(IL-7Ra)
AO19D5 Biolegend 351302 24-09-2020 500 250

167Er CD27 O323 Biolegend 302839 11-09-2019 500 250
168Er HLA-DR L243 Biolegend 307651 01-02-2022 200 100
170Er CD3 UCHT1 Fluidigm 3170001B 169104 200 100
171Yb CD28 CD28.2 Biolegend 302902 01-02-2022 200 100
172Yb CD38 HIT2 Fluidigm 3172007B 2108738-17 200 100
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Table S4. Mass cytometry antibody panel - continued.

Label Specificity Clone Suppliera Cat no Lot no End 
dilution

Working 
dilution

173Yb CD45RO UCHL1 Biolegend 304239 11-09-2019 200 100
174Yb CD335 

(NKp46)
9E2 Biolegend 331902 22-12-2020 500 250

175Lu CD279 
(PD-1)

EH 12.2H7 Fluidigm 3175008B 2104621-07 500 250

176Yb CD56 NCAM16.2 Fluidigm 3176008B 2202917-03 500 250
209BI CD16 3G8 Fluidigm 3209002B 2112429-15 200 100

aFluidigm, South San Francisco, CA, USA; BioLegend, San Diego, CA, USA; Miltenyi Biotech, 
Bergisch Gladbach, Germany. CCR, CC chemokine receptor. CD, cluster of differentiation. 
CRTH2, prostaglandin D2 receptor 2. CXCR, CXC chemokine receptor. HLA-DR, human 
leukocyte antigen-D related. IL-2R, interleukin-2 receptor. IL2RB, Interleukin-2 receptor subunit 
beta, IL2Ra, Interleukin-2 receptor subunit alpha, ICOS, inducible T-cell COStimulator, IL-7Rα, 
interleukin-7 receptor alpha. KLRG1, killer cell lectin-like receptor subfamily G member 1. MAFA, 
mast cell function-associated antigen. c-Kit, receptor tyrosine kinase, PD-1, programmed cell 
death protein 1. TCR, T cell receptor.

Figure S1. Heatmap showing median marker expression for each cluster. 
Clusters were based on SOM and hierarchical clustering. Each tile depicts the median 
expression of a given marker (rows) for a specific cluster (columns). The heatmap is 
stratified based on cell lineage. The bottom heatmap indicates which clusters were 
significantly associated with 1) location (Figure 1) and/or 2) lifestyle score (Figure 3).

Figure S2. Heatmap visualizing lifestyle questionnaire data. 
N = 203 participants. Values represent the number of participants. Colours indicate 
the percentage of the total. Comparisons between locations were performed using 
Fisher’s exact or chi-squared tests. Asterisks denote statistical significance (NS, non-
significant; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001, p ≤ 0.0001). See Table S3.
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Figure S3. MCA principal component variance explained, contributions and 
cluster associations. 
A) Variance explained (% of total) for PC1-PC5. B) Number of significant cell cluster 
associations with PC1 (lifestyle score) to PC5 using modelling as described in the 
legend of Figure 3. C) Cumulative contributions (in percentage) of the variable 
categories by questionnaire data category (i.e. housing, assets and food, n = 38 
questions and n = 118 variable categories) for PC1-PC5.

Figure S4. Boxplots showing lifestyle score for individuals with and without 
mass cytometry immune profiles (n = 100). 
P-value determined using Student’s t-test.

Figure S5. Cell frequencies of clusters uniquely related to lifestyle score 
between locations.
 Cell frequencies of clusters uniquely related to lifestyle score across rural and 
urban Tanzanian regions and urban Europeans (Figure 3D). Boxplots represent 
the 25th and 75th percentiles (lower and upper boundaries of boxes, respectively), 
the median (middle horizontal line) and measurements that fall within 1.5 times the 
interquartile range (IQR; distance between 25th and 75th percentiles; whiskers). 
Significance of ‘location’ was assessed using analysis of variance (ANOVA)-tests 
comparing a simple (age [scaled] and sex [fixed effects] and sample ID [random 
effect]) and a full model (simple model with location as fixed effect added). P-values 
were corrected for multiple testing using the Benjamini-Hochberg method and 
referred to as q-values. Urban Europeans were included in the figure for visual 
comparisons and were not included in statistical tests.
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Figure S6. Sensitivity analysis comparing location- and/or lifestyle-based 
models. 
For each of the clusters that was significant in either location- and/or lifestyle-
based models (n = 17), we additionally fitted a joint model, including both location 
and lifestyle (LS) (as well as age [scaled] and sex) as fixed effects and sample ID 
as random effect (GLMMLS+loc). Statistical significance of the combined effect of 
location and lifestyle score was assessed by comparing GLMMLS+loc to an ‘empty 
model’ where both location and lifestyle score were removed using ANOVA (triangles 
indicate significant models). Akaike Information Criterion (AIC) (measure of model 
fit while accounting for model complexity) was compared between the ‘combined 
model’ (AICLS+loc) and the same model from which either lifestyle score (AICloc) or 
location (AICLS) was removed. Clusters were grouped according to the statistics 
shown in Figure 1 and Figure 3, i.e. location significant, LS significant or LS + location 
significant clusters. Dropping location or lifestyle score from the combined model 
for location significant and LS significant clusters, respectively, worsened the 
combined model, indicating that location and lifestyle score were indeed related to 
distinct immune cell clusters. For most of the clusters in the LS + location significant 
group, dropping either location or lifestyle score did not change model performance, 
indicating that indeed here, location and lifestyle score may be more interrelated 
and capture similar information.
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