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 A B S T R A C T

The hysteretic snapping under transverse forcing of a compressed, buckled beam is fundamental for many 
devices and mechanical metamaterials. For a single-tip transverse pusher, an important limitation is that 
snapping requires the pusher to cross the longitudinal axis of the beam. Here, we show that dual-tip pushers 
allow early-onset snapping, where the beam snaps before the pusher reaches the longitudinal axis. As a 
consequence, we show that when a buckled beam under increased compression comes in contact with a dual-
tip pusher, it can snap to the opposite direction — this is impossible with a single-tip pusher. Additionally, 
we reveal a novel two-step snapping regime, in which the beam sequentially loses contact with the two tips 
of the dual-tip pusher. To characterize this class of snapping instabilities, we employ a systematic modal 
expansion of the beam shape. This expansion allows us to capture and analyze the transition from one-step to 
two-step snapping geometrically. Finally we demonstrate how to maximize the distance between the pusher 
and the beam’s longitudinal axis at the moment of snapping. Together, our work opens up a new avenue 
for quantitatively and qualitatively controlling and modifying the snapping of buckled beams, with potential 
applications in mechanical sensors, actuators, and metamaterials.
. Introduction

Snap-through instabilities are widely observed in nature. The Venus 
lytrap and carnivorous waterwheel plants capture prey through snap-
ing leaves [1–3]. Hummingbirds exploit a snap-through mechanism in 
heir beak to catch insects mid-flight [4]. Grasshoppers and click beetles 
everage similar mechanisms to power their leaps [5–7]. Similar snap-
hrough instabilities have been harnessed in mechanical metamaterials 
o realize a wide range of functionalities [8,9], including microflu-
dic passive valves [10], microlens shells [11], soft actuators [12], 
omponents of soft robots [13,14] and counter-snapping [15]. Often, 
nap-through is triggered by a transverse pusher that forces the beam 
nto an S-shaped configuration at the onset of snapping [16–18]. As 
 consequence, the pusher has to cross the beam’s longitudinal axis 
o induce snapping. This inherent geometric constraint limits design 
lexibility and hinders potential applications in fields such as in-material
omputing [19–25].
Here, we introduce a second pusher tip and demonstrate that dual-

ipped pushers enable early-onset snapping, where snapping occurs be-
ore the pusher would cross the longitudinal axis. This enhances design 
lexibility and permits snapping under compressive loading with a fixed 

∗ Corresponding author at: Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, PO Box 9504, Leiden, 2300 RA, The Netherlands.
E-mail address: meulblok@physics.leidenuniv.nl (C.M. Meulblok).

dual-tip pusher (Section 2). While rate-dependent effects – such as in-
ertial overshoot – might cause the onset of instability shift, we focus on 
quasistatic driving conditions with a dual-tip pusher to achieve precise 
control of the onset threshold and isolate the underlying mechanisms. 
For example, for such pushers, we uncover a novel two-step snap-through
mechanism, in which the beam passes through a stable intermediate 
state before fully snapping (Section 2). To elucidate the emergence of 
these behaviors, we develop a reduced-order numerical model based 
on a modal expansion of the beam shape ([17,18,26], Section 3). We 
use this model to visualize the deformation energy of the beam in 
a two-dimensional landscape, where transverse pushers translate to 
excluded zones, and where beam configurations in contact with the 
pusher reside precisely on the boundary of these zones. This allows a 
geometric interpretation of the stability and snap-through behavior of 
the beam. In particular, it reveals that the second pusher tip introduces 
additional local extrema in the energy landscape, which underlie both 
the early-onset and two-step snapping behavior (Section 4). Finally, 
we systematically map the snapping threshold as a function of the 
geometry of the dual-tip pusher, allowing precise control over the onset 
and nature of the instability (Section 4). Together, our work uncovers 
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Fig. 1. Phenomenology (a) Schematic of a slender beam with rest length 
𝐿0, compressed to end-to-end distance 𝐿. The dual-tip pusher is defined by 
the vertical location of its tips, 𝑍𝑡 and 𝑍𝑏, and their horizontal offset from 
the beam’s longitudinal axis, 𝑋𝑝. (b-c) Experimentally observed snap-through 
transitions induced by increasing compression using fixed dual-tip pushers and 
two values of 𝑍𝑏. (𝐿0 = 100 mm, 𝑇 = 3 mm, 𝑋𝑝 = −5 mm, 𝑍𝑡 = 2 mm; see SI 
for details). (b) One-step snapping at for 𝑍𝑏 = −16 mm, (i–iv: 𝜀 = 0.011, 0.022, 
0.027, and 0.028). (c) Two-step snapping for 𝑍𝑏 = −13 mm: here the beam 
loses contact with the tips sequentially (i–v: 𝜀 = 0.011, 0.025, 0.026, 0.028, 
and 0.029).

and characterizes a new class of snap-through behavior with potential 
applications in soft robots, smart sensors and actuators, metamaterials 
and in materia computing.

2. Phenomenology

We consider a slender beam under quasistatic compression in the 
presence of a dual-tip transverse pusher. The beams have rest length 
𝐿0 with rectangular cross-sections (in-plane thickness 𝑇 , out-of-plane 
thickness 𝑊 ) in the slender beam limit 𝑇 ≪ 𝑊 ≪ 𝐿0. Compression 
is applied by controlling the end-to-end distance 𝐿, defining the axial 
strain 𝜀 = (𝐿0 − 𝐿)∕𝐿0. The pusher consists of two vertically spaced 
tips located at vertical coordinates 𝑍𝑡 and 𝑍𝑏, both sharing a common 
horizontal coordinate 𝑋𝑏 (Fig.  1a).

We begin by examining the qualitative evolution of a buckled beam 
as it makes contact with a fixed dual-tip pusher, rigidly connected to 
the bottom plate, under increasing compression (Fig.  1). The beam 
is initialized in its left buckled state without contact with the pusher 
tips. As 𝜀 increases, the beam and pusher tips make contact, resulting 
in higher-order deformation modes. For 𝑍𝑏 = −16 mm, the beam 
deforms smoothly toward a critical configuration (Fig.  1bi–iii), and 
then experiences a single, abrupt snap-through instability (Fig.  1biii–
iv). For 𝑍𝑏 = −13 mm, the snap-through occurs in two-steps: first the 
beam loses contact with one tip and transitions to an intermediate state 
tip (Fig.  1ci–iii), and then it loses contact with both tips and snaps to 
the right-buckled configuration (Fig.  1civ–v).

We note that the emergence of snapping without the pusher crossing 
the beam’s longitudinal axis is linked to the moment applied by the pair 
of tips which forces the beam into a configuration unattainable with 
a single-tip pusher. A precise theoretical understanding of how these 
snap-through scenarios arise is the focus of the remainder of this paper.
2 
3. Theoretical modeling

Our strategy to model snapping induced by dual-tip pushers starts 
from a standard expansion of the beam shape. First, we observe and 
explain why the first three modes in this expansion are dominant and 
focus on these. Then, using the constraint of fixed beam-length, we 
map our beams to a two-dimensional energy landscape. The transverse 
pusher constraints translate to excluded zones, and beam configurations 
in contact with the pusher exactly lie on the boundary of these zones. 
As we show below, this facilitates a geometric interpretation of both 
one-step and two-step snapping, offering a clear physical understanding 
of these phenomena and their dependence of the pusher parameters.

In this section, we first derive the modal expansion (Section 3.1). We 
then introduce a two-dimensional visualization of the energy landscape 
(Section 3.2). We end this section by presenting a geometric picture 
for the evolution of the beam configuration, and illustrate this for a 
classical single-tip pusher (Section 3.3).

3.1. Modal expansion and beam model

We derive the modal expansion for the beam shape. We parametrize 
this shape with coordinates 𝑋(𝑍), and compress the beam via boundary 
conditions 𝑋(±𝐿∕2) = 0 and 𝑋′(±𝐿∕2) = 0. We focus on small 
deformations, neglect friction between beam and tips, and consider the 
beam as inextensible. The bending energy per unit width then reads: 

𝑏 =
𝐵
2 ∫

𝐿∕2

−𝐿∕2
𝐶(𝑍)2𝑑𝑍 , (1)

with bending modulus 𝐵 = 𝐸𝑡3∕12(1 − 𝜈2), Young’s modulus 𝐸, Poisson 
ratio 𝜈 and curvature of the beam 𝐶 = 𝑋′′(𝑍)∕(1 +𝑋′(𝑍))3∕2. Under 
the small strain approximation, the curvature can be written as 𝐶(𝑍) ≈
𝑋′′(𝑍).

We now impose two sets of constraints on this problem. First, 
inextensibility imposes that the length of the beam is conserved: 

∫

𝐿∕2

−𝐿∕2

√

1 +𝑋′(𝑍)2𝑑𝑍 = 𝐿0. (2)

Under the small strain approximation, Eq. (2) can be expanded to yield: 

𝐿 + 1
2 ∫

𝐿∕2

−𝐿∕2
𝑋′(𝑍)2𝑑𝑍 = 𝐿0. (3)

Second, the pusher tips constrains the local maximum deflection of the 
beam: 
⎧

⎪

⎨

⎪

⎩

𝑋(𝑍𝑡) < 𝑋𝑝 ,

𝑋(𝑍𝑏) < 𝑋𝑝.
(4)

Combining the energy and constraints, we obtain the Lagrangian of 
this system: 

[𝑋] = 𝐵
2 ∫

𝐿∕2

−𝐿∕2
𝑋′′(𝑍)2𝑑𝑍

−𝑃

(

𝐿 − 𝐿0 +
1
2 ∫

𝐿∕2

−𝐿∕2
𝑋′(𝑍)2𝑑𝑍

)

−𝐹𝑡
(

𝑋𝑝 −𝑋(𝑍𝑡)
)

− 𝐹𝑏
(

𝑋𝑝 −𝑋(𝑍𝑏)
)

,

(5)

where 𝑃 , 𝐹𝑡, 𝐹𝑏 are the Lagrange multipliers and can be interpreted, 
respectively, as the axial force and top and bottom transverse forces 
per unit width. Importantly, we note that Eq. (4) are inequalities, and 
we deal with these using the Karush–Kuhn–Tucker conditions [26].

We scale out the compressive strain [18], introducing the rescaled 
parameters: 
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝑧 = 𝑍∕𝐿 = 𝑍∕(𝐿0(1 − 𝜖)),

𝑥 = 𝑋∕
(

𝐿
√

𝜖
)

,

𝑝 = 𝑃
𝐵∕𝐿2 ,

𝑓 = 𝐹 1
√ ,

(6)
⎩
𝐵∕𝐿2 𝜖



C.M. Meulblok et al. Extreme Mechanics Letters 80 (2025) 102407 
Fig. 2. Single-tip pusher. (a) Numerically computed beam configurations 𝑥(𝑧)
and corresponding (b) energy landscapes for a beam under fixed 𝜀, as a single-
tip pusher moves transversely from left to right at fixed height 𝑧𝑡 = 0.05. 
(i–iv) Snapshots are shown for 𝑥𝑝 = −0.65 , −0.21 , −0.03 , and 0.14. In the 
energy landscape, the cyan dot marks the current beam configuration and 
the white domain indicate the excluded zone imposed by the pusher. When 
the configuration is pushed passed the saddle point, the beam snaps to a 
new configuration (iv). (c) Squared mode amplitudes as a function of pusher 
distance 𝑥𝑝 for 𝑧𝑡 = 0.05, showing that most energy is concentrated in the 
first two modes. The snapshots of (a–b) are indicated on the 𝑥𝑝-axis. (d) Beam 
shapes and corresponding pusher position at the onset of snap-through for 
a range of values of 𝑧𝑡, which shows that in each case, the configuration just 
before snapping is purely S-shaped (light green beam) or S-shaped (dark green 
beam), independent of 𝑧𝑡. The sign of 𝑎2 is negative (𝑎2 = −1) if 𝑧𝑡 > 0 (black 
triangles, dark green beam), and positive (𝑎2 = 1) if 𝑧𝑡 < 0 (gray triangles, 
light green beam).  (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

leading to: 

[𝑥] = 1
2 ∫

1∕2

−1∕2
𝑥′′(𝑧)2𝑑𝑧

−𝑝

(

1
2 ∫

1∕2

−1∕2
𝑥′(𝑧)2𝑑𝑧 − 1

)

−𝑓𝑡(𝑥𝑝 − 𝑥(𝑧𝑡)) − 𝑓𝑏(𝑥𝑝 − 𝑥(𝑧𝑏)).

(7)

The advantage of this rescaling is that solutions for the buckled beam 
shape at different strains can be mapped onto each other using the 
rescaling. The price we pay is that the rescaled location of a fixed 
transverse pusher becomes strain dependent.

Finally, we perform an expansion of the beam shape on its first 
𝑚 modes, i.e., write 𝑥(𝑧) ≈

∑𝑚
1 𝑎𝑖𝜉𝑖(𝑧), with 𝜉𝑖 the 𝑖th order solution 

of the linearized Elastica problem with clamped-clamped boundary 
conditions [17]: 

⎧

⎪

⎨

⎪

⎩

𝜉𝑖 = − 2
𝑛 (1 −

cos(𝑛𝑧)
cos(𝑛∕2) ), for sin(𝑛∕2) = 0

𝜉𝑖 = − 2
𝑛 (

sin(𝑛𝑧)
sin(𝑛∕2) − 2𝑧), for tan(𝑛∕2) = 𝑛∕2,

(8)

where the values of 𝑛 are ordered in an increasing manner, and are 
assigned an index 𝑖 starting at 1. This projection significantly simplifies 
3 
Eq. (7): 

[𝑎1, 𝑎𝑖...𝑎𝑚] =
𝑚
∑

1
𝑛2𝑖 𝑎

2
𝑖 − 𝑝

( 𝑚
∑

1
𝑎2𝑖 − 1

)

−𝑓𝑡

(

𝑥𝑝 −
𝑚
∑

1
𝑎𝑖𝜉𝑖(𝑧𝑡)

)

− 𝑓𝑏

(

𝑥𝑝 −
𝑚
∑

1
𝑎𝑖𝜉𝑖(𝑧𝑏)

)

.

(9)

The problem now consists in finding the set of coefficients 𝑎𝑖 that 
minimizes ∑𝑚

1 𝑛2𝑖 𝑎
2
𝑖 , under the constraints 

∑𝑚
1 𝑎2𝑖−1 = 0 and ∑𝑚

1 𝑎𝑖𝜉𝑖(𝑧𝑘)−
𝑥𝑝 ≤ 0 (with 𝑘 = 𝑡, 𝑏).

3.2. Energy landscape

To visualize the elastic energy landscape, we truncate the modal ex-
pansion to include only the dominant modes. The modes are ordered by 
their energy contribution (Eq. (8)) and the minimal number of modes 
can be understood through a simple constraint-counting argument: the 
fixed length imposes one constraint, and each pusher tip adds another. 
Thus, a single-tip pusher requires at least two modes, while a dual-
tip pusher requires at least three to satisfy the equations of motion. 
We confirm both numerically and experimentally that three modes are 
sufficient to capture the beam’s evolution and that, when using more 
modes, the first three modes dominate the expansion (see SI).

We leverage the energy concentration in the first three modes, 
together with the inextensibility (length) constraint, to construct a 
strain-independent two-dimensional energy landscape for our beams. 
For a three-mode truncation, the length constraint imposes the nor-
malization condition: 𝑎21 + 𝑎22 + 𝑎23 = 1. This naturally motivates a 
parametrization using spherical coordinates (𝜃, 𝜙):
𝑎1 = cos 𝜃 cos𝜙 ,

𝑎2 = sin 𝜃 cos𝜙 ,

𝑎3 = sin𝜙 .

Within this coordinate system, we construct a two-dimensional energy 
landscape (Fig.  2b) that captures essential features of beam configura-
tions independent of the compressive strain 𝜀. First, the left and right 
buckled states of the beam have mode amplitudes (𝑎1, 𝑎2, 𝑎3) = (±1, 0, 0), 
which map to the stable fixed points at (𝜃, 𝜙) = (0, 0) and (𝜃, 𝜙) = (𝜋, 0). 
We stress that, due to the rescaling (Eq. (6)), these fixed points are 
invariant under variations of 𝜀. Second, the local energy minima are 
separated by an energy barrier that must be surmounted to induce 
a snap-through between the two buckled states; these correspond to 
saddle points that represent purely antisymmetric ‘S’-configurations 
((𝑎1, 𝑎2, 𝑎3) = (0,±1, 0), (𝜃, 𝜙) = (±𝜋∕2, 0)) (Fig.  2b). Third, the presence 
of transverse pushers imposes geometric constraints that restrict the 
beam’s accessible configurations, giving rise to excluded zones and, as 
we will show later, additional stable equilibria.

3.3. Evolution

We now show how the landscape reveals the evolution of beam 
shapes under increasing compression or transverse motion of the
pusher. We use a combination of gradient descent and sequential least 
squares programming methods to solve the model. First, the beam is in 
one of its free, buckled configurations. Then, as the pusher moves or 
𝜀 is increased, the excluded zones evolve accordingly and eventually 
reach this configuration; the beam then makes contact with the pusher. 
Further increasing the driving leads to an overlap between the excluded 
zone and the free, buckled configuration. The system evolves, and the 
beam deforms due to its contact with the pusher. In such cases, the 
configuration lies either on the boundary of an excluded zone (single 
contact) or at the intersection of two such boundaries (dual contact). 
As long as these configurations represent local minima in the allowed 
part of the energy landscape, the beam is stable, but upon further 
pushing or compressing, such minima become unstable and the beam 
configuration snaps to another stable configurations.
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We now illustrate this picture for a beam at fixed compression, 
transversely pushed by a single-tip pusher (Fig.  2a–b). We initialize the 
beam in the left buckled state (Fig.  2ai, bi). This configuration becomes 
inaccessible when the tip makes contact with the beam, creating an 
excluded zone that increases as 𝑥𝑝 increases (Fig.  2aii, bii). Pushing 
further, the configuration reaches the saddle point corresponding to 
a mirrored S-shaped (or S-shaped) beam (Fig.  2aiii, biii), after which 
the beam discontinuously snaps and evolves to the oppositely buckled 
configuration (Fig.  2aiv, biv) [16–18].

Our simulations show that most of the elastic energy is stored in 
the first two modes of deformation: as the beam is transversely pushed 
(𝑥𝑝 increases) the amplitude of the first mode decreases, while the 
amplitude of the second mode increases, the third mode remaining 
essentially at zero (Fig.  2c). When 𝑎22 = 1, the configuration of the 
beam suddenly changes and 𝑎2 jumps to zero, 𝑎1 to −1: snap-through 
occurred and 𝑥𝑝 = 𝑥∗ (Fig.  2c). Varying the 𝑧𝑡 position of the pusher 
does not qualitatively change this picture: with a single tip pusher the 
beam evolve along the 𝜙 = 0 line, such that the unstable point lies 
at (𝜃 = 𝜋∕2, 𝜙 = 0). Hence, with a single tip pusher, snap-through 
occurs when the beam reaches either a S-shape or S-shape (𝑎1 = 0). This 
requires the pusher-tip to reach the longitudinal axis of beam (when 
𝑧𝑡 = 0)1 or push beyond this longitudinal axis (when 𝑧𝑡 ≠ 0; see Fig. 
2d) [16–18]. Hence, using a single tip pusher, snapping can be retarded, 
but cannot have an early-onset.

4. Early-onset and two-step snapping with dual-tip pushers

We now use our model to explore the beam evolution for dual-
tip pushers. We consider three different driving scenarios. In the first 
two, the vertical tip positions are fixed in the rescaled beam coordi-
nates, which is theoretically simpler; we consider snapping induced 
by transverse pusher motion (scenario one), and by increased beam 
compression in the presence of a fixed pusher (scenario two). We also 
consider the experimentally more realistic third scenario, where the 
vertical tip positions are fixed in the lab-frame. We systematically vary 
the pusher parameters to obtain a detailed overview of the acceleration 
of the snapping, and where one-step and two-step snapping occur. We 
then perform the same analysis for scenario two and three (Section 4.3). 
While differing in details, we find that the overall mechanisms and even 
characteristic parameter ranges in all scenarios are closely related.

4.1. Three driving scenarios

In the first scenario, the beam is kept under constant compressive 
strain 𝜀, while the pusher moves horizontally towards the beam (Fig. 
3a). In this case, 𝑧𝑏 and 𝑧𝑡 remain constant during driving, and the 
problem is symmetric under swapping 𝑧𝑡 ↔ −𝑧𝑏. In the second and third 
scenario, the snapping is driven by increasing the axial compression 
of the beam, and the transverse position of the pusher is fixed in the 
labframe, so that 𝑥𝑝 varies as 𝑋𝑝∕(𝐿

√

𝜀) = (𝑋𝑝∕𝐿0) ⋅ 1∕((1 − 𝜀)
√

𝜀)
(Eq. (6)).

Furthermore, in the second scenario, we consider the theoretical 
simple case that 𝑧𝑏 and 𝑧𝑡 have fixed values. This implies that, in the 
labframe, the vertical pusher tip positions vary with the compression as 
𝑍𝑡,𝑏 = (1−𝜀)𝐿0𝑧𝑡,𝑏. In this scenario the swapping symmetry (𝑧𝑡 ↔ −𝑧𝑏) is 
preserved (Fig.  3b). In the third scenario, we consider the experimental 
situation that the bottom plate and pusher positions are fixed in the 
labframe, so that 𝑍𝑡 and 𝑍𝑝 are constants. Identifying the bottom and 
top vertical coordinate of the beam as −𝐿0∕2 and −𝐿0∕2 + 𝐿 in the 
labframe, and −1/2 and 1/2 in the rescaled frame, we find that 𝑧𝑡 =
𝑍𝑡∕𝐿+ 𝜀∕(2(1− 𝜀)) and 𝑧𝑏 = 𝑍𝑏∕𝐿+ 𝜀∕(2(1− 𝜀)). Hence, in this scenario 
the swapping symmetry is broken (Fig.  3c).

1 For the symmetric situation where 𝑧𝑡 = 0, whether the energy minimum 
ends up the S-shape or S-shape is set by spontaneous symmetry breaking, and 
the energy minimum remains at the line 𝜙 = 0; whereas for 𝑧𝑡 ≠ 0 the shape 
is deterministically selected [16–18].
4 
Fig. 3. Three scenarios. (a) In scenario one, the beam is kept at constant 
compression 𝜀 while the pusher moves transversely. (b) In scenario two, the 
beam is compressed, the horizontal position of the pusher tips is fixed, and 
the vertical positions of the pusher tips are varied in the labframe so that 
their rescaled heights 𝑧𝑏 and 𝑧𝑡 are fixed. (c) In scenario three, the beam is 
compressed while the horizontal and vertical positions of the pusher tips are 
fixed in the labframe.

Fig. 4. Examples of the initial, final (dashed) and critical configuration just 
before snapping (full). (a) For (𝑧𝑡, 𝑧𝑏) = (0.16,−0.03) the snapping occurs in 
one step at 𝑥∗𝑝 = −0.26 – both tips lose contact simultaneously. In addition, as 
𝑧𝑡 > |𝑧𝑏|, the top pusher tip contacts the beam first, forcing a S-shaped beam. 
(b) For (𝑧𝑡, 𝑧𝑏) = (0.10,−0.03) the snapping occurs in two steps, with the second 
step at 𝑥∗𝑝 = −0.22 – the tips lose contact sequentially. Similar to (a) the top 
pusher tip contacts the beam first yielding a S-shaped beam. (c–d) When we 
swap 𝑧𝑡 ↔ −𝑧𝑏, we observe S-shaped beams.

4.2. Transversely moving pusher: Driving scenario one

We now discuss the snap-through behavior when the beam is under 
constant compression and the pusher is moved transversely (Fig.  3a). 
When both tips are above (or below) 𝑧 = 0, only the tip closest to 𝑧 = 0
makes contact with the beam, yielding a behavior analogous to that 
of a single-tip pusher (Fig.  2). We therefore focus on the case where 
𝑧𝑡 > 0 and 𝑧𝑏 < 0, so that both tips contact the beam. We consider 
a left-buckled beam, and denote the minimal horizontal location of a 
pusher, 𝑥∗𝑝 , that allows for snapping. For appropriate tip positions, we 
observe early-onset snapping (𝑥∗𝑝 < 0). Concomitant with this novel 
behavior, the beam shapes are more complex and require a third mode 
to accurately describe the deformation.

4.2.1. One-step and two-step snapping
As function of the locations of the pusher tips, two qualitatively 

distinct types of snapping emerge. The snap-through consist of either
one step, where both tips lose contact simultaneously (Fig.  4a), or two 
steps, where contact between tips and beam is lost sequentially (Fig. 
4b). Each scenario may occur with the beam adopting either an S-
shaped configuration (with 𝑎2 > 0) or a S-shaped configuration (with 
𝑎2 < 0; Fig.  4a–d).

The S and S configurations are related by top-down symmetry, 
and are selected by the (broken) symmetry of the pusher (i.e., when 
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Fig. 5. Evolution of beam configuration for driving scenario one. (a–b) One-step snapping for (𝑧𝑡, 𝑧𝑏) = (0.03,−0.16) with 𝑥𝑝 = [−0.55,−0.34,−0.26,−0.25]
in (i–iv), respectively; (a) Energy landscape (left) with configuration denoted as blue dots and excluded zones as gray areas, and corresponding real-space 
configuration (right). (b) The energy along the curve of inherent minima. When the solution becomes unstable (iii–iv), the nearby solution with 𝜙 = 0 is 
unstable, so that the beam loses contact with both pushers and evolves to the right-buckled configuration. (c–d) Two-step snapping for (𝑧𝑡, 𝑧𝑏) = (0.03,−0.10) with 
𝑥𝑝 = [−0.55,−0.34,−0.22,−0.21] in (i–iv), respectively. When the solution becomes unstable (ii), the nearby solution with 𝜙 = 0 is also stable, leading to the beam 
losing contact with only one tip, and a subsequent snapping at larger compression (iii–iv). (e–f) Bifurcation diagrams illustrating the minima and maxima of 
the curve of inherent minima in blue and red dashed lines. Fold bifurcations are marked with black dots, and snapping events with red arrows. The real-space 
configuration of each stable branch at the gray dashed line (𝑥𝑝 = −0.35) are shown on the right. Each branch (labeled by the polygons) is identified by which 
pusher tip has contact with the beam. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
|𝑧𝑏| ≠ 𝑧𝑡).2 In these asymmetric cases, the pusher tip closest to the 
center (𝑧 = 0) first comes into contact with the beam and selects the 
sign of 𝑎2; for |𝑧𝑏| > 𝑧𝑡, the beam adopts an S-shape with 𝑎2 > 0 (Fig. 
4a–b), while for |𝑧𝑏| < 𝑧𝑡 it assumes an S-shape with 𝑎2 < 0 (Fig.  4c–d).

4.2.2. One-step snapping: energy landscape interpretation
We first analyze the emergence of the one-step scenario. We exam-

ine the energy landscape associated with the S-shaped beam3 (Figs.  4c 
and 5a). Starting from the left buckled state at (𝜃, 𝜙) = (0, 0), the dual-
tip pusher is transversely moved from left to right. Upon contact, the 
two tips create excluded zones in the energy landscape (Fig.  5ai).

In the absence of the excluded zones, all energy minima lie along 
the 𝜙 = 0 line (𝜕𝜙𝐸(𝜃, 𝜙)|𝜃 = 0 at 𝜙 = 0). However, in the presence 
of the excluded zones, additional stable points can be found along the 
boundary, and their stability is determined by the energy variation 
along these edges. Hence, all stable configurations reside along a curve 
that combines the relevant edges of the excluded zones and the 𝜙 = 0
line; we refer to this curve as the curve of inherent minima (dashed line 
in Fig.  5ai, bi).

When the beam makes contact with both tips of the pusher, the 
configuration becomes trapped in a local energy minimum located at 

2 When |𝑧𝑏| = 𝑧𝑡, the top-down symmetry is preserved, and the beam 
assumes a symmetric ‘‘W’’-shape, snapping only after reaching a near-pure 
mode-three configuration [18].

3 The evolution of an S-shaped beam follows by symmetry.
5 
the intersection of two excluded zones, which – unlike the single tip 
case – enables the beam to explore configurations beyond the 𝜙 = 0 line 
(Fig.  5ai). As 𝑥𝑝 increases, the excluded zones expand and the beam 
initially remains trapped at their intersection (Fig.  5aii–aiii, bii–biii). 
However, this minimum eventually becomes unstable as the gradient 
turns negative (open circles in Fig.  5aiv, biv). This triggers the snap-
through transition to the right-buckled configuration, where we note 
that in this case 𝑥∗𝑝 < 0, i.e. snapping occurs before the pusher reaches 
the longitudinal axis of the beam (Fig.  5aiv, biv).

4.2.3. Two-step snapping: energy landscape interpretation
In the two-step snapping scenario, the initial evolution is similar to 

the one-step case: the two tips trap the beam in a local energy minimum 
situated at the intersection of the two excluded zones (Fig.  5ci, di). The 
key difference is that when this local minimum loses stability, another 
local minimum exists that traps the beam at the intersection of one 
excluded zone and the 𝜙 = 0 line (Fig.  5cii–ciii, dii–diii). Here, the beam 
is still in contact with one of the pusher tips, and only by increasing 𝑥𝑝, 
the configuration reaches the saddle point at (𝜃, 𝜙) = (0, 𝜋∕2) and the 
beams snaps (Fig.  5civ, div).

Crucially, this second step is governed entirely by the pusher tip 
last in contact with the beam which is the tip located farthest from 
the middle (largest |𝑧|). As a result, varying the position of the other 
pusher tip has no influence on the onset of this transition. Despite being 
driven by a single pusher tip, this second transition occurs before the tip 
crosses the beam’s longitudinal axis. This behavior is markedly different 
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Fig. 6. Snapping in driving scenario one. (a) State diagram for the four 
different scenarios as a function of (𝑧𝑡, 𝑧𝑏). S-shaped (blue) and S-shaped 
(red) configurations obey a mirror symmetry along the line 𝑧𝑡 = −𝑧𝑏. One-
step snapping is indicated in dark blue or red, two-step in light color. (b) 
Critical distance to snapping 𝑥∗𝑝 as a function of (𝑧𝑡, 𝑧𝑏) (squares denote one-
step snapping, circles two-step snapping).  (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this 
article.)

from the standard single-tip scenario and arises from the reversed shape 
of the beam and the corresponding reversed sign of 𝑎2. This reversed 
shape is caused by the tip that is closest to the center, and that, at this 
point of the evolution, is no longer in contact with the beam. Hence, 
although only the bottom tip is in contact with the beam at the onset 
of snapping, the beam is effectively constrained in the ‘unnatural’ S-
shaped configuration throughout this last stage of the evolution (see 
Figs.  2aii–aiii, 4d and 5c–d).

4.2.4. Bifurcation diagrams
We can further represent the difference between one-step and two-

steps snapping, by tracking the extrema along the curve of inherent 
minima as a function of 𝑥𝑝 for both scenarios (Fig.  5e–f). The snapping 
in the one-step scenario and the first step of the two-step scenario 
correspond to the same instability. However, the key difference is that 
in the one-step scenario this initial transition evolves to the 𝜃 = 𝜋
configuration, whereas in the two-step scenario an intermediate state 
is reached (Fig.  5f). Together, these scenarios underscore that one-step 
and two-step snapping arise from the presence of multiple local energy 
extrema introduced by the second pusher tip.

4.2.5. Snapping threshold
Finally, we systematically investigate the influence of the tip

heights, 𝑧𝑡 and 𝑧𝑏, on the snapping phenomenology and the critical 
snapping threshold to the right-buckled state 𝑥∗𝑝 (Fig.  6). As expected, 
the data obeys mirror symmetry along the line 𝑧𝑡 = −𝑧𝑏, which delimits 
S-shaped and S-shaped scenarios (red and blue, respectively). We also 
observe that two-step snapping occurs within a small region of 𝑧𝑡, 𝑧𝑏
parameters, where both are small; for larger 𝑧𝑡, 𝑧𝑏, one-step snapping 
is observed . The threshold 𝑥∗𝑝 is most negative near the boundary 
of these two regions and can reach values of the order of −0.3 (Fig. 
6(b)). Finally, while 𝑥∗𝑝 < 0 for a large range of 𝑧 parameters, pusher 
parameters with a large gap between their tips (e.g., 𝑧𝑡 = 0.2, 𝑧𝑏 =
−0.21) may lead to single step snapping with 𝑥∗𝑝 > 0. Nevertheless, we 
note that 𝑥∗𝑝 for a dual-tip pusher is always less than for a single-tip 
pusher at either similar 𝑧𝑡 or similar 𝑧𝑏. We conclude that early-onset 
snapping is a robust and tuneable feature when buckled beams are 
transversely pushed by a dual-tip pusher.

4.3. Compression-driven snapping

We now consider driving scenarios two and three, in which the 
transverse position of the pusher is fixed (i.e., 𝑋𝑝 is constant), and 
snapping is induced by increasing the axial compression 𝜀 of the 
beam. In both scenarios, we consider transverse positions 𝑋 ∕𝐿 =
𝑝 0
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[−0.01,−0.03,−0.05] and quasistatically increase 𝜀 until 𝜀 < 0.12 to 
remain in the small strain approximation. In both cases, early-onset 
snap-through can be triggered, following similar one-step and two-step 
responses.

4.3.1. Driving scenario two
We first consider the case in which we fix the rescaled vertical 

pusher positions, and systematically explore snapping for a range of 𝑧𝑡
and 𝑧𝑏 (Fig.  7a–d). Both one-step and two-step snapping responses are 
observed, and the results respect mirror (swap) symmetry (Fig.  7b–d). 
In contrast to driving scenario one, a region without snapping emerges 
(gray zones in Fig.  7); when the fixed horizontal position is too far 
away from the longitudinal axis of the beam, no snapping can occur. 
This non-snapping region can be inferred from the data from scenario 
one (Fig.  6b); a necessary condition for snapping in scenario two is 
that (|𝑋𝑃 |∕𝐿0) < (1 − 𝜀)

√

𝜀|𝑥∗𝑝|, where 𝑥𝑝 ∗ is deduced in scenario 
one. Note that this expression implies that the farther the pusher is 
from the beam, the greater the compressive strain 𝜀 required to trigger 
snap-through — consistent with the trends observed in Fig.  7.

4.3.2. Driving scenario three
Finally, we examine the geometry where the pusher heights are 

rigidly connected to the stationary bottom plate. We again find a wide 
range of configurations that trigger early-onset one-step and two-step 
snapping (Fig.  7f–h). As expected, the swap/mirror symmetry is broken 
and its skewness increases with 𝑋𝑝. Consequently, compression often 
leads to snapping configurations where the bottom tip comes closer 
to the center of the beam than the top tip.  Furthermore, we experi-
mentally verified the numerical predictions and find good qualitative 
agreement (see Appendix  B). Hence, despite  the added complexity of 
this geometry, the general trends of snapping are similar to those seen 
in scenario one and two.

5. Conclusion

We investigated the snapping behavior of slender buckled beams 
due to transverse forcing with two-tipped pushers. Crucially, we
showed that the introduction of a second pusher tip significantly 
enriches the deformation space, enabling both early-onset snapping 
and two-step snapping. Our strategy opens a new route to advanced 
snapping, including in parameter regimes that were hitherto inacces-
sible, with applications in soft robots, smart sensors and in materia
computing [27].

While our analysis is quasistatic, dynamic effects can influence 
snap-through behavior. Inertial and rate-dependent effects – such as 
a delayed bifurcation and inertial overshoot – may shift the onset of 
snapping or alter the sequence of configurations [18,28,29], potentially 
enhancing or suppressing early-onset and two-step snapping. A detailed 
quantitative treatment of these effects for dual-tip actuation is left for 
future work. 

CRediT authorship contribution statement

Colin M. Meulblok: Writing – review & editing, Writing – original 
draft, Visualization, Methodology, Investigation, Formal analysis, Con-
ceptualization. Hadrien Bense: Writing – review & editing, Writing – 
original draft, Visualization. M. Caelen: Writing – review & editing, 
Methodology, Investigation. Martin van Hecke: Writing – review & 
editing, Writing – original draft, Supervision, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.



C.M. Meulblok et al. Extreme Mechanics Letters 80 (2025) 102407 
Fig. 7. Snap-through characterization for strain-driven beams. (a–d) Driving scenario two, in which the rescaled vertical positions of the pusher tips, 𝑧𝑡 and 
𝑧𝑏, are constant throughout compression. (b–d) State diagrams (i) and critical strains 𝜀∗ (ii), for 𝑋𝑃 ∕𝐿0 = −0.01, −0.03, and −0.05, respectively. (e–h) Driving 
scenario three, in which the dimensional tip heights are fixed in the labframe. (f–h) Corresponding state diagrams (i) and critical snap-through strains 𝜀∗ (ii). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix A. Experimental mode decomposition

To validate our assertion that the first three modes are dominant in 
describing the beam shape, we perform a modal decomposition of the 
beam configuration in the representative experiments shown in Fig.  1.

Experiments are preformed with a beam of length 𝐿0 = 100 ±
0.5 mm, in-plane thickness of 3 ± 0.5 mm and out-of-plane width 20 ±
0.5 mm. The beam is fabricated by casting two-component polyvinyl 
siloxane elastomer (Zhermack Elite double 22 with Young’s modules 
0.8 MPa and Poisson’s ratio ≈ 0.5) into a 3D-printed mold. After 
curing, the beam is removed and dusted with talc powder to minimize 
friction and prevent sticking. The transverse pushers are 3D printed 
and mounted on precision linear stages for accurate positioning and 
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alignment. Compression is applied using a custom-built apparatus de-
signed for precise uniaxial loading, featuring high parallelism between 
the top and bottom plates, with a misalignment of less than 6 × 10−4

radians [23]. The axial compression is controlled by a stepper motor 
with an accuracy ±0.01 mm and operated via an in-house LabView VI. 
Finally, the deformation of the beam is recorded using a CCD camera 
at 60 Hz with a resolution of ≈ 11pixels/mm. The beam shape is 
extracted using open source software (ImageJ), and fitted to obtain the 
amplitudes 𝑎𝑖 of the first six modes: 

𝑥𝑏(𝑧𝑏) ≈
6
∑

𝑖=1
𝑎𝑖𝜉𝑖(𝑎𝑏) . (A.1)

We investigate both the one-step and two-step snapping behavior, 
by initializing the beam in the left-buckled state at 𝜀 = 0.011 and 
quasistatically (rate 10−3min−1) increasing the strain to 𝜀 = 0.035. 
We find that the deformation energy is concentrated in the first three 
modes (Fig.  A.1), and note that after the first snapping event in the 
two-step scenario the energy is concentrated in the first two modes 
(Fig.  A.1b). For other pusher geometries we have observed a similar 
dominance of the first three modes. Hence, the experiments confirm 
the validity of truncating the modal expansion after the third mode.
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Fig. A.1. Modal evolution of the beam. (a) Amplitude of the first six modes 
𝑎1–𝑎6 for the one-step scenario shown in Fig.  1b (𝑥0𝑝 = 0.05, 𝑧0𝑡 = 0.02, and 
𝑧0𝑏 = −0.16). Note the difference in vertical scale between panels (i–iii) and 
(iv–vi). (b) Similar, for the two-step scenario shown in Fig.  1c (𝑥0𝑝 = 0.05, 
𝑧0𝑡 = 0.02, and 𝑧0𝑏 = −0.13).

Fig. B.2. Experimental verification. (a–b) Normalized amplitude of the first 
three modes, 𝑎1–𝑎3, from experiments (green circles) and numerical predictions 
(red dashed line). (a) One-step scenario from Fig.  1b (𝑥0𝑝 = 0.05, 𝑧0𝑡 = 0.02, and 
𝑧0𝑏 = −0.16). (b) Two-step scenario From Fig.  1c (𝑥0𝑝 = 0.05, 𝑧0𝑡 = 0.02, and 
𝑧0𝑏 = −0.13).

Appendix B. Experimental verification

To verify the numerical results, we compare the experiments pre-
sented in Fig.  1 with the corresponding numerical predictions. We 
show the normalized amplitudes of the first three modes (green circles, 
Fig.  B.2) overlaid with the numerical evolution (red dashed line, Fig. 
B.2). This shows good qualitative agreement for both the one-step 
and two-step scenario. The quantitative discrepancies can be attributed 
to: (i) friction between the pusher tips and the beam, (ii) the finite 
thickness of the beam, and (iii) the high sensitivity of the system to 
small positioning errors of the pusher tips. 

In addition, we experimentally explore various pusher configura-
tions and reproducibly find the two-step scenario across a wide range 
of pusher configurations. Even near the boundary between the one-step 
and two-step regimes, the two-step behavior persists, indicating that 
these intermediate states are stable, robust, and readily accessible. 
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Appendix C. Pusher boundary calculation

Here, we provide details regarding the calculation of the excluded 
zone(s) in the two-dimensional energy landscape of Fig.  5a,c. These 
excluded zones emerge due to the transverse pusher. The boundary of 
such a zone is given by: 

𝑥𝑝 =
𝑚
∑

𝑖=1
𝑎𝑖𝜉𝑖(𝑧𝑝) , (C.1)

where 𝑥𝑝 and 𝑧𝑝 are the transverse and longitudinal position of the 
pusher tip and 𝑎𝑖 is the amplitude of mode 𝑖 with shape 𝜉𝑖. Since 
∑𝑚

𝑖=1 𝑎
2
𝑖 = 1 and we take 𝑚 = 3, we parameterize 𝑎𝑖 using spherical 

coordinates (𝜃, 𝜙):
𝑎1 = cos 𝜃 cos𝜙 ,

𝑎2 = sin 𝜃 cos𝜙 ,

𝑎3 = sin𝜙 .

The boundary of the excluded zone thus follows: 
𝑥𝑝 = 𝜉1(𝑧𝑝) cos(𝜃) cos(𝜙) +⋯

𝜉2(𝑧𝑝) sin(𝜃) cos(𝜙) + 𝜉3(𝑧𝑝) sin(𝜙) .
(C.2)

Solving this for 𝜙 gives: 

tan(𝜙±) =
𝜉3(𝑧𝑝)𝑥𝑝 ± 𝐴

𝜉3(𝑧𝑝)
|𝜉3(𝑧𝑝)|

√

𝐴2 + 𝐵

𝜉3(𝑧𝑝)𝑥𝑝 ∓ |𝜉3(𝑧𝑝)|
√

𝐴2 + 𝐵
, (C.3)

with 𝐴 = 𝜉1(𝑧𝑝) cos(𝜃) + 𝜉1(𝑧𝑝) sin(𝜃) and 𝐵 = (𝜉3(𝑧𝑝) + 𝑥𝑝)(𝜉3(𝑧𝑝) − 𝑥𝑝). 

Data availability

Data will be made available on request.
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