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ARTICLE INFO ABSTRACT

Keywords: The hysteretic snapping under transverse forcing of a compressed, buckled beam is fundamental for many
Buckling devices and mechanical metamaterials. For a single-tip transverse pusher, an important limitation is that
Snapping ) B . o snapping requires the pusher to cross the longitudinal axis of the beam. Here, we show that dual-tip pushers
:nap'thrOUgh instability geometric nonlinearity allow early-onset snapping, where the beam snaps before the pusher reaches the longitudinal axis. As a
eams

consequence, we show that when a buckled beam under increased compression comes in contact with a dual-
tip pusher, it can snap to the opposite direction — this is impossible with a single-tip pusher. Additionally,
we reveal a novel two-step snapping regime, in which the beam sequentially loses contact with the two tips
of the dual-tip pusher. To characterize this class of snapping instabilities, we employ a systematic modal
expansion of the beam shape. This expansion allows us to capture and analyze the transition from one-step to
two-step snapping geometrically. Finally we demonstrate how to maximize the distance between the pusher
and the beam’s longitudinal axis at the moment of snapping. Together, our work opens up a new avenue
for quantitatively and qualitatively controlling and modifying the snapping of buckled beams, with potential

applications in mechanical sensors, actuators, and metamaterials.

1. Introduction

Snap-through instabilities are widely observed in nature. The Venus
flytrap and carnivorous waterwheel plants capture prey through snap-
ping leaves [1-3]. Hummingbirds exploit a snap-through mechanism in
their beak to catch insects mid-flight [4]. Grasshoppers and click beetles
leverage similar mechanisms to power their leaps [5-7]. Similar snap-
through instabilities have been harnessed in mechanical metamaterials
to realize a wide range of functionalities [8,9], including microflu-
idic passive valves [10], microlens shells [11], soft actuators [12],
components of soft robots [13,14] and counter-snapping [15]. Often,
snap-through is triggered by a transverse pusher that forces the beam
into an S-shaped configuration at the onset of snapping [16-18]. As
a consequence, the pusher has to cross the beam’s longitudinal axis
to induce snapping. This inherent geometric constraint limits design
flexibility and hinders potential applications in fields such as in-material
computing [19-25].

Here, we introduce a second pusher tip and demonstrate that dual-
tipped pushers enable early-onset snapping, where snapping occurs be-
fore the pusher would cross the longitudinal axis. This enhances design
flexibility and permits snapping under compressive loading with a fixed

dual-tip pusher (Section 2). While rate-dependent effects — such as in-
ertial overshoot — might cause the onset of instability shift, we focus on
quasistatic driving conditions with a dual-tip pusher to achieve precise
control of the onset threshold and isolate the underlying mechanisms.
For example, for such pushers, we uncover a novel two-step snap-through
mechanism, in which the beam passes through a stable intermediate
state before fully snapping (Section 2). To elucidate the emergence of
these behaviors, we develop a reduced-order numerical model based
on a modal expansion of the beam shape ([17,18,26], Section 3). We
use this model to visualize the deformation energy of the beam in
a two-dimensional landscape, where transverse pushers translate to
excluded zones, and where beam configurations in contact with the
pusher reside precisely on the boundary of these zones. This allows a
geometric interpretation of the stability and snap-through behavior of
the beam. In particular, it reveals that the second pusher tip introduces
additional local extrema in the energy landscape, which underlie both
the early-onset and two-step snapping behavior (Section 4). Finally,
we systematically map the snapping threshold as a function of the
geometry of the dual-tip pusher, allowing precise control over the onset
and nature of the instability (Section 4). Together, our work uncovers
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Fig. 1. Phenomenology (a) Schematic of a slender beam with rest length
L,, compressed to end-to-end distance L. The dual-tip pusher is defined by
the vertical location of its tips, Z, and Z,, and their horizontal offset from
the beam’s longitudinal axis, X,. (b-c) Experimentally observed snap-through
transitions induced by increasing compression using fixed dual-tip pushers and
two values of Z;. (L, = 100 mm, 7 = 3 mm, X, = =5 mm, Z, = 2 mm; see SI
for details). (b) One-step snapping at for Z, = —16 mm, (i-iv: € = 0.011, 0.022,
0.027, and 0.028). (c) Two-step snapping for Z, = —13 mm: here the beam
loses contact with the tips sequentially (i-v: ¢ = 0.011, 0.025, 0.026, 0.028,
and 0.029).

and characterizes a new class of snap-through behavior with potential
applications in soft robots, smart sensors and actuators, metamaterials
and in materia computing.

2. Phenomenology

We consider a slender beam under quasistatic compression in the
presence of a dual-tip transverse pusher. The beams have rest length
L, with rectangular cross-sections (in-plane thickness 7', out-of-plane
thickness W) in the slender beam limit T < W < L,. Compression
is applied by controlling the end-to-end distance L, defining the axial
strain ¢ = (L, — L)/L,. The pusher consists of two vertically spaced
tips located at vertical coordinates Z, and Z,, both sharing a common
horizontal coordinate X, (Fig. 1a).

We begin by examining the qualitative evolution of a buckled beam
as it makes contact with a fixed dual-tip pusher, rigidly connected to
the bottom plate, under increasing compression (Fig. 1). The beam
is initialized in its left buckled state without contact with the pusher
tips. As ¢ increases, the beam and pusher tips make contact, resulting
in higher-order deformation modes. For Z, = —16 mm, the beam
deforms smoothly toward a critical configuration (Fig. 1bi-iii), and
then experiences a single, abrupt snap-through instability (Fig. 1biii-
iv). For Z, = —13 mm, the snap-through occurs in two-steps: first the
beam loses contact with one tip and transitions to an intermediate state
tip (Fig. 1ci-iii), and then it loses contact with both tips and snaps to
the right-buckled configuration (Fig. 1civ—v).

We note that the emergence of snapping without the pusher crossing
the beam’s longitudinal axis is linked to the moment applied by the pair
of tips which forces the beam into a configuration unattainable with
a single-tip pusher. A precise theoretical understanding of how these
snap-through scenarios arise is the focus of the remainder of this paper.
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3. Theoretical modeling

Our strategy to model snapping induced by dual-tip pushers starts
from a standard expansion of the beam shape. First, we observe and
explain why the first three modes in this expansion are dominant and
focus on these. Then, using the constraint of fixed beam-length, we
map our beams to a two-dimensional energy landscape. The transverse
pusher constraints translate to excluded zones, and beam configurations
in contact with the pusher exactly lie on the boundary of these zones.
As we show below, this facilitates a geometric interpretation of both
one-step and two-step snapping, offering a clear physical understanding
of these phenomena and their dependence of the pusher parameters.

In this section, we first derive the modal expansion (Section 3.1). We
then introduce a two-dimensional visualization of the energy landscape
(Section 3.2). We end this section by presenting a geometric picture
for the evolution of the beam configuration, and illustrate this for a
classical single-tip pusher (Section 3.3).

3.1. Modal expansion and beam model

We derive the modal expansion for the beam shape. We parametrize
this shape with coordinates X (Z), and compress the beam via boundary
conditions X(+L/2) = 0 and X'(+L/2) = 0. We focus on small
deformations, neglect friction between beam and tips, and consider the
beam as inextensible. The bending energy per unit width then reads:

B (L
& == / C(2)%dz , (€))
2 Jop

with bending modulus B = Ef3/12(1 — v?), Young’s modulus E, Poisson
ratio v and curvature of the beam C = X" (Z)/(1 + X'(Z))*/2. Under
the small strain approximation, the curvature can be written as C(Z) ~
X"(2).

We now impose two sets of constraints on this problem. First,
inextensibility imposes that the length of the beam is conserved:

L/2
/ V1+X'(Z2dZ = L. (2)
-L/2
Under the small strain approximation, Eq. (2) can be expanded to yield:
L/2

X'(ZYdZ = Ly, 3)
-L/2

1
L+~
2

Second, the pusher tips constrains the local maximum deflection of the
beam:

X(Z)< X, ,
(€]
X(Z,) < X,
Combining the energy and constraints, we obtain the Lagrangian of
this system:

B L2
£[X]=E/ ) X"(2Ydz
—L/2

L/2
—P(L—LO+1/ X’(Z)2d2> Q)
2/

—F (X, = X(Z) - F, (X, - X(Zp)),

where P, F,, F, are the Lagrange multipliers and can be interpreted,
respectively, as the axial force and top and bottom transverse forces
per unit width. Importantly, we note that Eq. (4) are inequalities, and
we deal with these using the Karush-Kuhn-Tucker conditions [26].

We scale out the compressive strain [18], introducing the rescaled
parameters:

z=Z/L=Z/(Ly(l -¢)).

(6)
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Fig. 2. Single-tip pusher. (a) Numerically computed beam configurations x(z)
and corresponding (b) energy landscapes for a beam under fixed ¢, as a single-
tip pusher moves transversely from left to right at fixed height z, = 0.05.
(i-iv) Snapshots are shown for x, = -0.65, —0.21, —0.03, and 0.14. In the
energy landscape, the cyan dot marks the current beam configuration and
the white domain indicate the excluded zone imposed by the pusher. When
the configuration is pushed passed the saddle point, the beam snaps to a
new configuration (iv). (c¢) Squared mode amplitudes as a function of pusher
distance x, for z, = 0.05, showing that most energy is concentrated in the
first two modes. The snapshots of (a-b) are indicated on the X,-axis. (d) Beam
shapes and corresponding pusher position at the onset of snap-through for
a range of values of z,, which shows that in each case, the configuration just
before snapping is purely S-shaped (light green beam) or 2-shaped (dark green
beam), independent of z,. The sign of a, is negative (a, = —1) if z, > 0 (black
triangles, dark green beam), and positive (a, = 1) if z, < 0 (gray triangles,
light green beam). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

leading to:

12
Lix]= = / x"(z)%dz
2 )

1/2
_p<l/ x/(z)zdz—1> @
2Jp
=[fi(xp = x(2))) = fp(x, = x(z3)).

The advantage of this rescaling is that solutions for the buckled beam
shape at different strains can be mapped onto each other using the
rescaling. The price we pay is that the rescaled location of a fixed
transverse pusher becomes strain dependent.

Finally, we perform an expansion of the beam shape on its first
m modes, i.e., write x(z) ~ Z'l" a;&,(z), with & the ith order solution
of the linearized Elastica problem with clamped-clamped boundary
conditions [17]:

6,’ - _2(1 _ cos(nz)

>

n cos(n/2)

& = —%(;:‘((n"/zz)) —2z), for tan(n/2) =n/2,

for sin(n/2) =0
(8)

where the values of n are ordered in an increasing manner, and are
assigned an index i starting at 1. This projection significantly simplifies
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1 1
The problem now consists in finding the set of coefficients g; that
minimizes Y} n?a?, under the constraints Y1 a>~1 = 0 and }.1" a,£,(z,)—
x, <0 (with k = 1,b).

3.2. Energy landscape

To visualize the elastic energy landscape, we truncate the modal ex-
pansion to include only the dominant modes. The modes are ordered by
their energy contribution (Eq. (8)) and the minimal number of modes
can be understood through a simple constraint-counting argument: the
fixed length imposes one constraint, and each pusher tip adds another.
Thus, a single-tip pusher requires at least two modes, while a dual-
tip pusher requires at least three to satisfy the equations of motion.
We confirm both numerically and experimentally that three modes are
sufficient to capture the beam’s evolution and that, when using more
modes, the first three modes dominate the expansion (see SI).

We leverage the energy concentration in the first three modes,
together with the inextensibility (length) constraint, to construct a
strain-independent two-dimensional energy landscape for our beams.
For a three-mode truncation, the length constraint imposes the nor-
malization condition: a? + @ + aj = 1. This naturally motivates a

1 2
parametrization using spherical coordinates (9, ¢):

a; = cosfcosg,
a, = sinfcos¢ ,
ay = sing .

Within this coordinate system, we construct a two-dimensional energy
landscape (Fig. 2b) that captures essential features of beam configura-
tions independent of the compressive strain e. First, the left and right
buckled states of the beam have mode amplitudes (a,, a,, a3) = (x1,0,0),
which map to the stable fixed points at (0, ¢) = (0,0) and (0, ¢) = (x,0).
We stress that, due to the rescaling (Eq. (6)), these fixed points are
invariant under variations of . Second, the local energy minima are
separated by an energy barrier that must be surmounted to induce
a snap-through between the two buckled states; these correspond to
saddle points that represent purely antisymmetric ‘S’-configurations
((ay,ay,a3) = (0,%1,0), (0, ¢) = (=x/2,0)) (Fig. 2b). Third, the presence
of transverse pushers imposes geometric constraints that restrict the
beam’s accessible configurations, giving rise to excluded zones and, as
we will show later, additional stable equilibria.

3.3. Evolution

We now show how the landscape reveals the evolution of beam
shapes under increasing compression or transverse motion of the
pusher. We use a combination of gradient descent and sequential least
squares programming methods to solve the model. First, the beam is in
one of its free, buckled configurations. Then, as the pusher moves or
€ is increased, the excluded zones evolve accordingly and eventually
reach this configuration; the beam then makes contact with the pusher.
Further increasing the driving leads to an overlap between the excluded
zone and the free, buckled configuration. The system evolves, and the
beam deforms due to its contact with the pusher. In such cases, the
configuration lies either on the boundary of an excluded zone (single
contact) or at the intersection of two such boundaries (dual contact).
As long as these configurations represent local minima in the allowed
part of the energy landscape, the beam is stable, but upon further
pushing or compressing, such minima become unstable and the beam
configuration snaps to another stable configurations.
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We now illustrate this picture for a beam at fixed compression,
transversely pushed by a single-tip pusher (Fig. 2a-b). We initialize the
beam in the left buckled state (Fig. 2ai, bi). This configuration becomes
inaccessible when the tip makes contact with the beam, creating an
excluded zone that increases as X, increases (Fig. 2aii, bii). Pushing
further, the configuration reaches the saddle point corresponding to
a mirrored S-shaped (or 2-shaped) beam (Fig. 2aiii, biii), after which
the beam discontinuously snaps and evolves to the oppositely buckled
configuration (Fig. 2aiv, biv) [16-18].

Our simulations show that most of the elastic energy is stored in
the first two modes of deformation: as the beam is transversely pushed
(x, increases) the amplitude of the first mode decreases, while the
amplitude of the second mode increases, the third mode remaining
essentially at zero (Fig. 2c). When a% = 1, the configuration of the
beam suddenly changes and a, jumps to zero, a; to —1: snap-through
occurred and x, = x* (Fig. 2¢). Varying the z, position of the pusher
does not qualitatively change this picture: with a single tip pusher the
beam evolve along the ¢ = 0 line, such that the unstable point lies
at (8 = n/2,¢ = 0). Hence, with a single tip pusher, snap-through
occurs when the beam reaches either a S-shape or 2-shape (a; = 0). This
requires the pusher-tip to reach the longitudinal axis of beam (when
z, = 0)' or push beyond this longitudinal axis (when z, # 0; see Fig.
2d) [16-18]. Hence, using a single tip pusher, snapping can be retarded,
but cannot have an early-onset.

4. Early-onset and two-step snapping with dual-tip pushers

We now use our model to explore the beam evolution for dual-
tip pushers. We consider three different driving scenarios. In the first
two, the vertical tip positions are fixed in the rescaled beam coordi-
nates, which is theoretically simpler; we consider snapping induced
by transverse pusher motion (scenario one), and by increased beam
compression in the presence of a fixed pusher (scenario two). We also
consider the experimentally more realistic third scenario, where the
vertical tip positions are fixed in the lab-frame. We systematically vary
the pusher parameters to obtain a detailed overview of the acceleration
of the snapping, and where one-step and two-step snapping occur. We
then perform the same analysis for scenario two and three (Section 4.3).
While differing in details, we find that the overall mechanisms and even
characteristic parameter ranges in all scenarios are closely related.

4.1. Three driving scenarios

In the first scenario, the beam is kept under constant compressive
strain ¢, while the pusher moves horizontally towards the beam (Fig.
3a). In this case, z, and z, remain constant during driving, and the
problem is symmetric under swapping z, < —z,. In the second and third
scenario, the snapping is driven by increasing the axial compression
of the beam, and the transverse position of the pusher is fixed in the
labframe, so that x, varies as X,/(Ly/e) = (X,/Ly) - 1/((1 — €)/e)
(Eq. (6)).

Furthermore, in the second scenario, we consider the theoretical
simple case that z, and z, have fixed values. This implies that, in the
labframe, the vertical pusher tip positions vary with the compression as
Z,, = (1-€)Lyz, ;. In this scenario the swapping symmetry (z, & —z,;) is
preserved (Fig. 3b). In the third scenario, we consider the experimental
situation that the bottom plate and pusher positions are fixed in the
labframe, so that Z, and Z, are constants. Identifying the bottom and
top vertical coordinate of the beam as —L,/2 and —L;/2 + L in the
labframe, and —1/2 and 1/2 in the rescaled frame, we find that z, =
Z,/L+¢e/Q2(1—¢)) and z, = Z,/L+¢€/(2(1 —¢)). Hence, in this scenario
the swapping symmetry is broken (Fig. 3c).

! For the symmetric situation where z, = 0, whether the energy minimum
ends up the S-shape or 2-shape is set by spontaneous symmetry breaking, and
the energy minimum remains at the line ¢ = 0; whereas for z, # 0 the shape
is deterministically selected [16-18].
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Fig. 3. Three scenarios. (a) In scenario one, the beam is kept at constant
compression ¢ while the pusher moves transversely. (b) In scenario two, the
beam is compressed, the horizontal position of the pusher tips is fixed, and
the vertical positions of the pusher tips are varied in the labframe so that
their rescaled heights z, and z, are fixed. (c) In scenario three, the beam is
compressed while the horizontal and vertical positions of the pusher tips are
fixed in the labframe.

one-step two-step

(a) (b) j
S-shaped

(c) (d)

2-shaped

Fig. 4. Examples of the initial, final (dashed) and critical configuration just
before snapping (full). (a) For (z,,z,) = (0.16,—0.03) the snapping occurs in
one step at x* = —0.26 — both tips lose contact simultaneously. In addition, as
z, > |z,|, the top pusher tip contacts the beam first, forcing a S-shaped beam.
(b) For (z,, z,) = (0.10,—0.03) the snapping occurs in two steps, with the second
step at x; = —0.22 — the tips lose contact sequentially. Similar to (a) the top
pusher tip contacts the beam first yielding a S-shaped beam. (c-d) When we
swap z, <> —z;, we observe 2-shaped beams.

4.2. Transversely moving pusher: Driving scenario one

We now discuss the snap-through behavior when the beam is under
constant compression and the pusher is moved transversely (Fig. 3a).
When both tips are above (or below) z = 0, only the tip closest to z = 0
makes contact with the beam, yielding a behavior analogous to that
of a single-tip pusher (Fig. 2). We therefore focus on the case where
z, > 0 and z, < 0, so that both tips contact the beam. We consider
a left-buckled beam, and denote the minimal horizontal location of a
pusher, x7, that allows for snapping. For appropriate tip positions, we
observe early-onset snapping (x; < 0). Concomitant with this novel
behavior, the beam shapes are more complex and require a third mode
to accurately describe the deformation.

4.2.1. One-step and two-step snapping

As function of the locations of the pusher tips, two qualitatively
distinct types of snapping emerge. The snap-through consist of either
one step, where both tips lose contact simultaneously (Fig. 4a), or two
steps, where contact between tips and beam is lost sequentially (Fig.
4b). Each scenario may occur with the beam adopting either an S-
shaped configuration (with a, > 0) or a 2-shaped configuration (with
a, < 0; Fig. 4a—d).

The S and 2 configurations are related by top-down symmetry,
and are selected by the (broken) symmetry of the pusher (i.e., when



C.M. Meulblok et al.

Extreme Mechanics Letters 80 (2025) 102407

(d)

160

E (au)

;

n/2 Ty 3n/2 2n

n/2 Ty 3n/2 2n

5

E (au)
S

n2 m 0 3n/2 2n

n2 o 0 3n/2 2n

R

(iii)

>

/2 Ty 3n/2 2n

/2 Ty 3n/2 2n

(iv)

B
(=1
;

n/2 Ty 3n/2 2n

n2 m 9 3n/2 2n

Fig. 5. Evolution of beam configuration for driving scenario one. (a-b) One-step snapping for (z,,z,) = (0.03,-0.16) with x,

17775

n/2 Ty 3n/2 2nm
% .

= [-0.55,-0.34,-0.26,-0.25]

(f)
-1.0

o
0.5 I% a\, o °
F=q2f--rt &q _____ -
) 1

n2 n 0 3n/2 2nm

in (i-iv), respectively; (a) Energy landscape (left) with configuration denoted as blue dots and excluded zones as gray areas, and corresponding real-space

configuration (right). (b) The energy along the curve of inherent minima. When the solution becomes unstable (iii-iv), the nearby solution with ¢ =

0 is

unstable, so that the beam loses contact with both pushers and evolves to the right-buckled configuration. (c-d) Two-step snapping for (z,,z,) = (0.03,-0.10) with
x, = [-0.55,-0.34,-0.22, -0.21] in (i-iv), respectively. When the solution becomes unstable (ii), the nearby solution with ¢ = 0 is also stable, leading to the beam
losing contact with only one tip, and a subsequent snapping at larger compression (iii-iv). (e—f) Bifurcation diagrams illustrating the minima and maxima of
the curve of inherent minima in blue and red dashed lines. Fold bifurcations are marked with black dots, and snapping events with red arrows. The real-space
configuration of each stable branch at the gray dashed line (x, = —0.35) are shown on the right. Each branch (labeled by the polygons) is identified by which
pusher tip has contact with the beam. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

|zy| # z,).> In these asymmetric cases, the pusher tip closest to the
center (z = 0) first comes into contact with the beam and selects the
sign of a,; for |z,| > z,, the beam adopts an S-shape with a, > 0 (Fig.
4a-b), while for |z,| < z, it assumes an 2-shape with a, < 0 (Fig. 4c-d).

4.2.2. One-step snapping: energy landscape interpretation

We first analyze the emergence of the one-step scenario. We exam-
ine the energy landscape associated with the 2-shaped beam?® (Figs. 4c
and 5a). Starting from the left buckled state at (6, ¢) = (0, 0), the dual-
tip pusher is transversely moved from left to right. Upon contact, the
two tips create excluded zones in the energy landscape (Fig. 5ai).

In the absence of the excluded zones, all energy minima lie along
the ¢ = 0 line (9,E(9, )|, = 0 at ¢ = 0). However, in the presence
of the excluded zones, additional stable points can be found along the
boundary, and their stability is determined by the energy variation
along these edges. Hence, all stable configurations reside along a curve
that combines the relevant edges of the excluded zones and the ¢ = 0
line; we refer to this curve as the curve of inherent minima (dashed line
in Fig. 5ai, bi).

When the beam makes contact with both tips of the pusher, the
configuration becomes trapped in a local energy minimum located at

2 When |z,| = z, the top-down symmetry is preserved, and the beam
assumes a symmetric “W”-shape, snapping only after reaching a near-pure
mode-three configuration [18].

3 The evolution of an S-shaped beam follows by symmetry.

the intersection of two excluded zones, which — unlike the single tip
case — enables the beam to explore configurations beyond the ¢ = 0 line
(Fig. 5ai). As x, increases, the excluded zones expand and the beam
initially remains trapped at their intersection (Fig. Saii-aiii, bii-biii).
However, this minimum eventually becomes unstable as the gradient
turns negative (open circles in Fig. 5aiv, biv). This triggers the snap-
through transition to the right-buckled configuration, where we note
that in this case x* < 0, i.e. snapping occurs before the pusher reaches
the longitudinal axis of the beam (Fig. 5aiv, biv).

4.2.3. Two-step snapping: energy landscape interpretation

In the two-step snapping scenario, the initial evolution is similar to
the one-step case: the two tips trap the beam in a local energy minimum
situated at the intersection of the two excluded zones (Fig. 5ci, di). The
key difference is that when this local minimum loses stability, another
local minimum exists that traps the beam at the intersection of one
excluded zone and the ¢ = 0 line (Fig. 5cii—ciii, dii-diii). Here, the beam
is still in contact with one of the pusher tips, and only by increasing x,,
the configuration reaches the saddle point at (6, ¢) = (0,7/2) and the
beams snaps (Fig. 5civ, div).

Crucially, this second step is governed entirely by the pusher tip
last in contact with the beam which is the tip located farthest from
the middle (largest |z|). As a result, varying the position of the other
pusher tip has no influence on the onset of this transition. Despite being
driven by a single pusher tip, this second transition occurs before the tip
crosses the beam’s longitudinal axis. This behavior is markedly different
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Fig. 6. Snapping in driving scenario one. (a) State diagram for the four
different scenarios as a function of (z,,z,). S-shaped (blue) and 2-shaped
(red) configurations obey a mirror symmetry along the line z, = —z,. One-
step snapping is indicated in dark blue or red, two-step in light color. (b)
Critical distance to snapping x; as a function of (z,,z,) (squares denote one-
step snapping, circles two-step snapping). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

from the standard single-tip scenario and arises from the reversed shape
of the beam and the corresponding reversed sign of a,. This reversed
shape is caused by the tip that is closest to the center, and that, at this
point of the evolution, is no longer in contact with the beam. Hence,
although only the bottom tip is in contact with the beam at the onset
of snapping, the beam is effectively constrained in the ‘unnatural’ 2-
shaped configuration throughout this last stage of the evolution (see
Figs. 2aii-aiii, 4d and 5c-d).

4.2.4. Bifurcation diagrams

We can further represent the difference between one-step and two-
steps snapping, by tracking the extrema along the curve of inherent
minima as a function of x, for both scenarios (Fig. 5e~f). The snapping
in the one-step scenario and the first step of the two-step scenario
correspond to the same instability. However, the key difference is that
in the one-step scenario this initial transition evolves to the § = =
configuration, whereas in the two-step scenario an intermediate state
is reached (Fig. 5f). Together, these scenarios underscore that one-step
and two-step snapping arise from the presence of multiple local energy
extrema introduced by the second pusher tip.

4.2.5. Snapping threshold

Finally, we systematically investigate the influence of the tip
heights, z, and z,, on the snapping phenomenology and the critical
snapping threshold to the right-buckled state x, (Fig. 6). As expected,
the data obeys mirror symmetry along the line z, = —z,, which delimits
S-shaped and 2-shaped scenarios (red and blue, respectively). We also
observe that two-step snapping occurs within a small region of z,, z,
parameters, where both are small; for larger z,, z,, one-step snapping
is observed . The threshold x) is most negative near the boundary
of these two regions and can reach values of the order of —0.3 (Fig.
6(b)). Finally, while x, <0 for a large range of z parameters, pusher
parameters with a large gap between their tips (e.g., z, = 0.2,z, =
—0.21) may lead to single step snapping with x, > 0. Nevertheless, we
note that xy for a dual-tip pusher is always less than for a single-tip
pusher at either similar z, or similar z,. We conclude that early-onset
snapping is a robust and tuneable feature when buckled beams are
transversely pushed by a dual-tip pusher.

4.3. Compression-driven snapping

We now consider driving scenarios two and three, in which the
transverse position of the pusher is fixed (i.e., X, is constant), and
snapping is induced by increasing the axial compression ¢ of the
beam. In both scenarios, we consider transverse positions X,/L, =
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[-0.01,-0.03,-0.05] and quasistatically increase ¢ until ¢ < 0.12 to
remain in the small strain approximation. In both cases, early-onset
snap-through can be triggered, following similar one-step and two-step
responses.

4.3.1. Driving scenario two

We first consider the case in which we fix the rescaled vertical
pusher positions, and systematically explore snapping for a range of z,
and z, (Fig. 7a—d). Both one-step and two-step snapping responses are
observed, and the results respect mirror (swap) symmetry (Fig. 7b—d).
In contrast to driving scenario one, a region without snapping emerges
(gray zones in Fig. 7); when the fixed horizontal position is too far
away from the longitudinal axis of the beam, no snapping can occur.
This non-snapping region can be inferred from the data from scenario
one (Fig. 6b); a necessary condition for snapping in scenario two is
that (|Xpl|/Ly < (1 - s)\/glx;|, where x, * is deduced in scenario
one. Note that this expression implies that the farther the pusher is
from the beam, the greater the compressive strain ¢ required to trigger
snap-through — consistent with the trends observed in Fig. 7.

4.3.2. Driving scenario three

Finally, we examine the geometry where the pusher heights are
rigidly connected to the stationary bottom plate. We again find a wide
range of configurations that trigger early-onset one-step and two-step
snapping (Fig. 7f-h). As expected, the swap/mirror symmetry is broken
and its skewness increases with X,. Consequently, compression often
leads to snapping configurations where the bottom tip comes closer
to the center of the beam than the top tip. Furthermore, we experi-
mentally verified the numerical predictions and find good qualitative
agreement (see Appendix B). Hence, despite the added complexity of
this geometry, the general trends of snapping are similar to those seen
in scenario one and two.

5. Conclusion

We investigated the snapping behavior of slender buckled beams
due to transverse forcing with two-tipped pushers. Crucially, we
showed that the introduction of a second pusher tip significantly
enriches the deformation space, enabling both early-onset snapping
and two-step snapping. Our strategy opens a new route to advanced
snapping, including in parameter regimes that were hitherto inacces-
sible, with applications in soft robots, smart sensors and in materia
computing [27].

While our analysis is quasistatic, dynamic effects can influence
snap-through behavior. Inertial and rate-dependent effects — such as
a delayed bifurcation and inertial overshoot — may shift the onset of
snapping or alter the sequence of configurations [18,28,29], potentially
enhancing or suppressing early-onset and two-step snapping. A detailed
quantitative treatment of these effects for dual-tip actuation is left for
future work.
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Fig. 7. Snap-through characterization for strain-driven beams. (a-d) Driving scenario two, in which the rescaled vertical positions of the pusher tips, z, and
z,, are constant throughout compression. (b—d) State diagrams (i) and critical strains &* (ii), for X,/L, = —0.01, —0.03, and —0.05, respectively. (e-h) Driving
scenario three, in which the dimensional tip heights are fixed in the labframe. (f-h) Corresponding state diagrams (i) and critical snap-through strains £* (ii).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix A. Experimental mode decomposition

To validate our assertion that the first three modes are dominant in
describing the beam shape, we perform a modal decomposition of the
beam configuration in the representative experiments shown in Fig. 1.

Experiments are preformed with a beam of length L, = 100 +
0.5 mm, in-plane thickness of 3 + 0.5 mm and out-of-plane width 20 +
0.5 mm. The beam is fabricated by casting two-component polyvinyl
siloxane elastomer (Zhermack Elite double 22 with Young’s modules
0.8 MPa and Poisson’s ratio ~ 0.5) into a 3D-printed mold. After
curing, the beam is removed and dusted with talc powder to minimize
friction and prevent sticking. The transverse pushers are 3D printed
and mounted on precision linear stages for accurate positioning and

alignment. Compression is applied using a custom-built apparatus de-
signed for precise uniaxial loading, featuring high parallelism between
the top and bottom plates, with a misalignment of less than 6 x 10~
radians [23]. The axial compression is controlled by a stepper motor
with an accuracy +0.01 mm and operated via an in-house LabView VI.
Finally, the deformation of the beam is recorded using a CCD camera
at 60 Hz with a resolution of ~ 11 pixels/mm. The beam shape is
extracted using open source software (ImageJ), and fitted to obtain the
amplitudes g; of the first six modes:

6
xp(zp) ® Z a;&i(ap) -

i=1
We investigate both the one-step and two-step snapping behavior,
by initializing the beam in the left-buckled state at ¢ = 0.011 and
0.035.
We find that the deformation energy is concentrated in the first three
modes (Fig. A.1), and note that after the first snapping event in the
two-step scenario the energy is concentrated in the first two modes
(Fig. A.1b). For other pusher geometries we have observed a similar
dominance of the first three modes. Hence, the experiments confirm
the validity of truncating the modal expansion after the third mode.

(A1)

quasistatically (rate 10~ min~1) increasing the strain to ¢ =
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Fig. A.1. Modal evolution of the beam. (a) Amplitude of the first six modes
aj—ag for the one-step scenario shown in Fig. 1b (x) = 0.05, z) = 0.02, and
z‘; = —0.16). Note the difference in vertical scale between panels (i-iii) and
(iv—vi). (b) Similar, for the two-step scenario shown in Fig. 1c (xg = 0.05,

20 =0.02, and z) = —0.13).
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Fig. B.2. Experimental verification. (a-b) Normalized amplitude of the first
three modes, a,-a;, from experiments (green circles) and numerical predictions
(red dashed line). (a) One-step scenario from Fig. 1b (x‘; =0.05, z0 = 0.02, and
z) = —0.16). (b) Two-step scenario From Fig. 1c (x2 = 0.05, z0 = 0.02, and

20 =-0.13).

Appendix B. Experimental verification

To verify the numerical results, we compare the experiments pre-
sented in Fig. 1 with the corresponding numerical predictions. We
show the normalized amplitudes of the first three modes (green circles,
Fig. B.2) overlaid with the numerical evolution (red dashed line, Fig.
B.2). This shows good qualitative agreement for both the one-step
and two-step scenario. The quantitative discrepancies can be attributed
to: (i) friction between the pusher tips and the beam, (ii) the finite
thickness of the beam, and (iii) the high sensitivity of the system to
small positioning errors of the pusher tips.

In addition, we experimentally explore various pusher configura-
tions and reproducibly find the two-step scenario across a wide range
of pusher configurations. Even near the boundary between the one-step
and two-step regimes, the two-step behavior persists, indicating that
these intermediate states are stable, robust, and readily accessible.
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Appendix C. Pusher boundary calculation

Here, we provide details regarding the calculation of the excluded
zone(s) in the two-dimensional energy landscape of Fig. 5a,c. These
excluded zones emerge due to the transverse pusher. The boundary of
such a zone is given by:

m

X, = Z a;&i(zp) (Cn
i=1

where x, and z, are the transverse and longitudinal position of the

pusher tip and q; is the amplitude of mode i with shape ¢&;. Since
. al.2 = 1 and we take m = 3, we parameterize a; using spherical
coordinates (6, ¢):

a; = cosfcos¢,
a, = sinfcos¢ ,
a; =sing .

The boundary of the excluded zone thus follows:

x, = §(z,) cos(9) cos(¢) + -

. . (C.2)
&,(z,,) sin(0) cos(p) + &3(z,,) sin() .
Solving this for ¢ gives:
&%, £ A2 VA + B
tan(,) = - (C.3)

Ex(z))%, F 165z VAZ+ B
with A = ¢&(z,) cos(9) + &(z,)sin(9) and B = (&3(z,) + x,)(&3(2,) — x,,)-
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Data will be made available on request.
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