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From self-assembly and protein folding to combinatorial metamaterials, a key challenge in material design
is finding the right combination of interacting building blocks that yield targeted properties. Such structures are
fiendishly difficult to find—not only are they rare, but often the design space is so rough that gradients are useless
and direct optimization is hopeless. Here, we design ultrarare combinatorial metamaterials, capable of multiple
desired deformations, by introducing a twofold strategy that avoids the drawbacks of direct optimization. We
first combine convolutional neural networks with genetic algorithms to prospect for metamaterial designs with
a potential for high performance; in our case, these metamaterials have a high number of spatially extended
modes—they are pluripotent. Second, we exploit this library of pluripotent designs to generate metamaterials
with multiple target deformations, which we finally refine by strategically placing defects. Our multishape
metamaterials would be impossible to design through trial-and-error or standard optimization. Instead, our
data-driven approach is systematic and ideally suited to tackling the large and intractable combinatorial problems

that are pervasive in material science.
DOI: 10.1103/PhysRevResearch.7.023299

I. INTRODUCTION

Designing new materials requires efficient generation and
evaluation of candidate designs. For varying continuous pa-
rameters, such as the density of a material, the design
approach is well established: designs iterate through gradients
of an (approximate) objective function [1-19]. For designs
that require combining building blocks, no gradients exist.
Such combinatorial design problems are ubiquitous in science
and can be found, e.g., in protein design [20-22], combi-
natorial chemistry [23-25], DNA architectures [26,27], and
metamaterial design [28-31]. Without a gradient, design ap-
proaches typically rely on the structure of the design space,
e.g., by metaheuristics [32-34] or by machine learning search
strategies [35]. However, for problems with many local op-
tima that are uncorrelated to further improvements to the
objective function, i.e., that have a rugged design space, such
strategies often fail [36].

Such rugged design spaces are particularly prevalent
in mechanical metamaterials [37]—synthetic materials that
leverage geometric effects to achieve novel mechanical prop-
erties [38—44]—because designing their topology requires
carefully arranging deformable building blocks: an inherently
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combinatorial challenge. We focus here on oligomodal meta-
materials. These exhibit a small number of spatially textured
soft modes to achieve exceptional functionalities, such as
selective mechanical responses [45-50], nonlocal resonances
[51], multi-shape folding [52-59], and sequential energy-
absorption [60]. To design such metamaterials, combinatorial
strategies based on a small number of building blocks are ideal
as one can consider the deformations of individual building
blocks [Figs. 1(a) and 1(b)] [29,47]. However, desired combi-
nations of building blocks are like a jigsaw puzzle: rotating a
single puzzle piece can render the combination incompatible
[61]. This problem is emblematic of combinatorial design:
the design space is extremely rugged, explicit design rules
are unavailable, and evaluating the modes for each design is
computationally heavy. Consequently, the systematic design
of combinatorial metamaterials remains an open problem.
Here, we introduce a two-step data-driven approach to
design combinatorial metamaterials. To find rare designs with
desired modes, we initially search for designs with high
pluripotency: a statistical measure of a design’s ability to
deform (softly) over a diverse set of randomized target modes.
Crucially, pluripotency provides structure to the design space.
The total design approach consists of two steps: (i) prospect-
ing for a library of high pluripotency candidate designs using
a genetic algorithm (GA) guided by a convolutional neural
network (CNN) [Fig. 1(c)] and (ii) extracting and refining can-
didate designs to find a design with targeted modes [Fig. 1(d)].
We leverage pluripotency not as a goal but as a tool to
tackle rugged combinatorial design, enabling the design of
combinatorial metamaterials with multiple unique, targeted
deformations that are otherwise difficult to design.

Published by the American Physical Society
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(a) . (b) unit cell family of mechanical metamaterials with multiple soft modes
deformation mode g::::ig@ [47] [Figs. 1(a) and 1(b)] and demonstrate our approach by de-
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FIG. 1. Design approach for combinatorial metamaterials.
(a) The two-dimensional building block (left, gray) can be tiled
in four orientations and features two distinct zero modes (middle),
which we label CRS (top, cyan) and D (bottom, pink). We visualize
the mode structure of a deformed building block as a cyan or pink
square (right). (b) The building blocks of (a) combine into larger
5 x 5 unit cells (left) that feature intensive zero modes (middle). The
mode structure of such intensive modes is shown on the right. The
three unit cells (blue, pink, yellow) differ only by a single building
block from their neighbors, yet support an increasing number of
modes: each unit cell supports the zero modes of their top neighbors
in addition to the zero mode directly to the right of the unit cell. For
example, all possible unit cells support the top zero mode, which we
refer to as the counter-rotating squares (CRS) mode. (c) Step (i) of
our design approach uses a convolutional neural network (CNN) that
predicts the number of intensive modes b to guide a genetic search
algorithm (GA) to efficiently generate high b (high pluripotency)
designs. (d) In step (ii), the generated high-pluripotency designs are
added to a library. We then search and combine designs from this
library to find a design that closely matches a set of target deforma-
tions (red): this process is called extraction. Finally, our extracted
designs often require further refinement which we implement by
strategically introducing defects. The final refined design features
the desired target deformation modes while minimizing undesired
superfluous modes.

Our two-step approach is eminently suited to design oligo-
modal metamaterials with multiple target modes without
requiring design rules or continuous optimization. Previously,
combinatorial metamaterial design was limited to a single
target mode and known rules [29,56,62] or incorporated into
continuous strategies [63—68]. Specifically, we consider a

while minimizing superfluous modes. We stress that designing
such a material would be impossible through conventional
approaches. Beyond metamaterial design, we anticipate that
our approach will be applicable to a wide range of combina-
torial problems characterized by multiple, independent sets of
constraints to satisfy. Such problems can readily be found in
fields such as protein folding [22,69], self-assembly [70,71],
computer graphics [72,73], and molecular design [74].

II. MULTIMODAL METAMATERIAL AND DESIGN
STRATEGY

To test our design approach, we consider the spatial struc-
ture of zero modes—infinitesimal deformations that do not
stretch any bonds to first order—in a multimodal combi-
natorial metamaterial [Figs. 1(a) and 1(b)] [47,49,61], see
Appendix A for more details. We design this metamaterial’s
unit cells by tiling building blocks constructed from rigid bars
and hinges on a square lattice. Note that our building block
is essentially a five-bar linkage with two deformation modes
and four distinct orientations. The orientation of each building
block in a unit cell determines both the number and spatial
structure of the zero modes, leading to a rough design space
where changing a single building block can completely alter
the structures of the zero modes. By controlling the structure
and enumeration of zero modes in aperiodic multimode con-
figurations, we can design complex mechanical functionalities
that can be actuated as needed, with potential applications
in programmable materials, soft robotics and computing in
materia [47,49,51,60]. To design such spatially textured zero
modes, primarily discrete rule-based techniques have been de-
veloped [29,62,75]. However, the problem is that if such rules
cannot be derived, computational approaches appear hopeless
because of the sheer size of the design space and high sen-
sitivity of designs to changing building blocks. Additionally,
these techniques are limited to combinatorial metamaterials
that support a single spatially textured zero mode. The task
of designing oligomodal metamaterials that feature multiple
target modes is significantly harder and systematic techniques
are lacking.

As a first step, we aim to design pluripotent metamaterials
that feature many spatially extended modes. Such modes span
the entire structure, allowing for a rich diversity of selectable
deformations while limiting the number of deformational de-
grees of freedom. For our metamaterials, the number of zero
modes, Ny (n), (see Appendix A 2 for how we calculate Ny,)
for an n x n tiling of unit cells (each containing k£ x k building
blocks) grows with n as

Ny = an+b, ey

where a and b are integers that correspond to the number
of modes in the unit cell that grow linearly or that remain
constant upon repeated tiling of the unit cell. We refer to
modes that count towards a as additive modes and modes
that count towards b as intensive modes. Additive modes are
necessarily spatially localized, while intensive modes have the
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FIG. 2. Statistical characterization of the design space. (a) Probability density function (pdf) for the number of intensive modes b obtained
through Monte Carlo sampling of 5 x 5 unit cells. (b) An increasing number of intensive modes b correlates to a higher average capacity
[Eq. (2)] or pluripotency P per design (blue circles). The pluripotency averaged over random designs (red squares) increases with b. The blue
shaded area represents a violin plot to visualize the distribution of P values. (c) The average probability (p(by b)) of finding a mutated unit cell
with by, intensive modes under point mutations for an initial unit cell with b; intensive modes. To highlight the low probability of transitioning
to a higher b, a logarithmic colormap (colorbar) is used, with zero (measured) probability denoted in black. (d) The average ratio r (red dashed
line, shaded area indicates the standard deviation) of mutated unit cells with by; < by averaged over random unit cells with by intensive modes
increases with by. The local r varies for individual unit cells (blue circles, where the size indicates the number of unit cells with the same r) and
appears multimodal in structure. This is likely a consequence of the different types of intensive modes: edge and global (see Appendix A S).
(e) Conceptual configuration space of a discrete combinatorial multimodal metamaterial problem. Areas of the same color represent designs
with the same b, where blue, pink, yellow, orange, and red correspond to areas with progressively increasing . Random point-mutations of
the design—rotating a single building block—generally lower the number of intensive modes b, most designs have a low b and we have few
examples of rare designs with higher values of b. Here, satisfying a hierarchy of conditions leads to increasingly low-dimensional subspaces

where b has larger values (left to right).

potential to span the entire metamaterial [49]. We previously
investigated the detection of rare unit cells with a > 1 using
CNNs, showed that these unit cells contain specific additive
‘strip” modes, and investigated their design and properties
[49,60,61]. In contrast, here we focus on rare pluripotent
designs with spatially extended zero modes, which requires
many intensive modes (large b) and no strip modes (a = 0).
For all designs, b > 1 due to the presence of the well-known
counter-rotating squares (CRS) mode [37,38,47,76-81]
[Fig. 2(a)], shown in the top row of Fig. 1(b). Yet, there are
no design rules for realizing larger values of b, illustrating the
need for the development of an effective search algorithm.
We use the deformation in each building block to char-
acterize the spatial structure of a zero mode M. We follow
a framework devised in earlier work [49], see Appendix A 3
for a brief description of the framework. In particular, we de-
compose the deformations of the constituent building blocks
m; into the trivial CRS deformation mcgrs and the nontrivial
deformation mp(c;), where ¢; denotes the orientation of build-
ing block i: m; = «; mcrs + Bi mp(c;), see Fig. 1(a) for the
deformed building blocks. We label building block deforma-
tions with 8 = 0 as CRS blocks and those with 8 # 0 as D
blocks [Fig. 1(a)]. Note that CRS blocks leave the angle of
the corner at the vertex of the outer square unchanged while
D blocks do not—the trivial CRS mode is composed solely of
CRS blocks [Fig. 1(b)]. To distinguish between areas in the

metamaterial that deform as the trivial CRS mode and those
that do not, we characterize the structure of zero modes by the
spatial distribution of CRS and D blocks, see Appendix A 4
for limitations to the types of structures this metamaterial can
support. We define a set of target modes {M} by its CRS and D
blocks, i.e., the target mode’s elements ri; are simply labeled
CRS or D [Fig. 1(d)]. Unlike our earlier work, we do not aim
to derive design rules. Instead, we use our two-step approach
to construct a design that supports the target modes.

To start our approach, we must quantify the pluripotency
of a given k x k design, which involves considering both a set
of zero modes of the material {M} and a set of targeted zero
modes {M}. We define the similarity between modes M and
M as the fraction of matching CRS and D blocks:

if /; = CRS

S Ry PYO )
S(M’M)Zk_zi;{ ifi; =D )

1 =48(Bi. 0),

where § represents the Kronecker delta and 7; is the element
of target mode M at building block i. The sum runs over all
k x k building blocks. We then define the capacity of a design
as the maximum similarity between the target mode and linear
combinations of the zero modes {M/} of the design:

C({M’}, M) = max,, |:S<ijMj,M):| —Ners, ()
J
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where w; are real-valued weights, j labels the weights and
modes, and Ncgs is the fraction of CRS blocks in the target
mode. We include Ncgs to set the minimal capacity to 0,
as a trivial linear combination of w = 0 is equal to Ncgs.
We calculate the capacity using constraint programming,
which aims to find the set of weights that maximize S (see
Appendix A6 for more details and Appendix F for pseu-
docode). We finally define the pluripotency P of a design as
the capacity C averaged over a randomized set of generated
target modes (M)

n 1 o
P({M}, {M"}) = N—TZC({M},M'), “

where Nt is the number of target modes in the set and 7 labels
each target mode. See Appendix A 7 for how we generate the
target modes.

Of course, the capacity is maximal for extremely floppy
designs, i.e., designs with an extremely large number of de-
formational degrees of freedom, but their excess zero modes
hinder their functionality [50]. Ultimately, we aim to construct
metamaterials which maximize C without any excess zero
modes, and our oligomodal combinatorial metamaterials are
ideally suited to do so [47].

We now show that designs with a larger number of inten-
sive modes b result in higher pluripotencies. We first generate
a random set of 100 target modes (see Appendix A7 for all
possible target modes). We then generate 10° random designs,
calculate b for each, and then calculate their pluripotency P
as described before. We find that the pluripotency steadily
increases with the number of intensive modes b of the design
[Fig. 2(b)]. Thus we take b as a proxy for pluripotency P,
because b is computationally cheaper to calculate than P.

I1I. HIGH PLURIPOTENCY DESIGNS

We now prospect for high pluripotency by searching for
designs with values of b that are larger than can be obtained
by random sampling. While we have indications for their
existence, we lack examples of such designs.

We first explore the design space of 5 x 5 unit cells, as
this size offers a good balance between spatial complexity,
the size of the design space, and the rarity of the number of
intensive modes b. We note that designs with large values of
b are increasingly rare [Fig. 2(a)], yet those are interesting
because they tend to be pluripotent [Fig. 2(b)].

Crucially, there is structure within the design space, which
we explore by characterizing the changes in the number
of intensive modes b under point mutations of the design
[Fig. 2(c)]. We define point mutations as a random change of
orientation of one of the building blocks. Comparing the num-
ber of intensive modes of the initial design, by, to the number
of the mutated design, by; we find that the most likely scenario
is that the number remains unchanged, i.e., by = by, showing
that designs with the same value of b are interconnected. The
next most likely scenario is that the number decreases by one,
i.e., by = by — 1, showing that designs with b zero modes are
typically surrounded in design space by designs with b — 1
zero modes. The rarest yet desired scenario is that the number
increases, i.e., by > by.

TABLE 1. Confusion matrix for the test set of the CNN with the
lowest validation loss.

predicted benn

1 2 3 4 5

1 105 767 47 0 0 0

2 418 37877 38 0 0

actual b 3 1 242 5101 16 0
4 0 0 66 383 3

5 0 0 1 5 17

To gain further insight, we explored the ratio r of neigh-
boring designs (designs that differ by a single building
block orientation) that have by < b;, and found that this
ratio increases with by, showing that subspaces with large
b have increasingly small dimensionality [Fig. 2(d)]. This
means that the subspaces of the design space with constant
b become progressively sparse and low-dimensional with in-
creasing b. We describe this hierarchical structure intuitively
as “needles-within-needles-within-needles in a haystack”
[Fig. 2(e)], which stands in stark contrast to the less structured,
jagged structure of the direct objective function in design
space.

To find rare high b designs, we first turn our attention to
a computationally effective method to estimate b. A straight-
forward calculation of b requires determining the number of
zero modes as function of the number of unit cells n, which
is computationally demanding [82,83]. Inspired by the earlier
success of convolutional neural networks (CNNSs) in classi-
fying designs with a > 1, we now set out to use CNNs to
estimate b [61]. In contrast to our previous work, the un-
derlying structure in design space is hierarchical in nature
[Fig. 2(e)]. It is unclear, a priori, whether the CNN can effec-
tively capture this hierarchical structure, especially as samples
with increasing b become increasingly sparse in the training
set. We train our CNN using training data obtained by Monte
Carlo sampling of the design space for 5 x 5 unit cells and
calculating b from the values of Ny (n) for n € {2, 3, 4} (see
Appendix B 3 for details on the training procedure). We test
our trained network on a new set of designs that were not
used to train the network. We report a low root mean squared
error (RMSE) of RMSE = 0.075 over this test set. Crucially,
despite the sparsity of designs with a high number of intensive
modes b in the training set, we find that the CNN remains
accurate for high b in the test set (Table I). In particular, the
output of the CNN, benn, is consistently close to the actual
number of intensive modes b, albeit with a slight underesti-
mation bias. Crucially, our CNN is two orders of magnitude
faster and is readily parallelizable [61]. Thus the CNN is able
to quickly and accurately detect the needles for low b; whether
it can identify ultrarare designs with large b remains an open
question at this point.

Finally, we now employ a combination of a genetic al-
gorithm (GA) with the trained CNN to iteratively progress
towards designs with a high number of intensive modes b (see
Appendix C for details on our GA implementation). GAs are
a standard tool for searching combinatorial spaces and have
been successfully applied to design metamaterials [12,84,85].
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The primary computational bottleneck in GAs is the evalua-
tion of the desired property. To overcome this bottleneck, we
use our trained CNNs. Without our CNNs, the computation
time of evaluation increases by a factor 390 and exploration
of the design space is unfeasible. However, finding designs
with a high b requires the CNNs to accurately identify de-
signs with b values beyond those represented in the training
set.

Specifically, we use the GA to find designs with a target
number of intensive modes b7 by maximizing the fitness

1
1+ (benn — br)?

This fitness is iteratively maximized over a group of designs
by combining promising designs and changing orientations
of randomly chosen building blocks. Each iteration is termed
a generation g (see Appendix C for a detailed description).
Surprisingly, starting from a Monte Carlo sampled set of
unit cell designs, the GA consistently reaches its maximum
fitness relatively quickly, even when by exceeds the range
of the training data, i.e., by > 6 [Fig. 3(a)]. Even though
the CNN overestimates the number of intensive modes, a
significant fraction of these designs indeed features b > 6
[Fig. 3(b)].

Hence, our combination of GA and CNN is able to identify
extremely rare designs with high pluripotency (e.g., up to b =
9). We estimate that such designs represent only a fraction on
the order of 10~ of the total design space [86]; yet combining
GA and CNNs allows us to find these within minutes on a
desktop computer. We believe that the hierarchical ‘needles-
within-needles’ structure of the design space is crucial. First,
it allows the GA, by a combination of local and nonlocal
exploration, to incrementally increase b (see Appendix C 1 for
how our GA explores design space, and Appendix C3 for a
quantitative comparison to local search algorithms); second,
we believe that this underlying structure allows the CNN to
extrapolate beyond its training data. Hence, we have carried
out the first step of our design strategy, by optimizing a gen-
eral quantity—pluripotency—that has structure in the design
space, rather than directly optimizing an essentially random
specific objective function.

f &)

IV. DESIGNING FOR TARGET DEFORMATIONS

We now transform our candidate designs, which have a
high pluripotency based on their capacity for random targets,
into a specific design with a high capacity for specific targets
{M}. This is step (ii) of our design strategy, which itself
proceeds in two substeps, which we refer to as extract and
refine.

In the extracting step, we first generate a library of 1000
pluripotent “base” designs and use these to generate a much
larger space of designs [Fig. 4(a)]. This enables us to identify
the combination of modes in the library that most effectively
matches the desired mode structures. We set the target for the
number of intensive modes for the base designs as by = 7,
and find that the distribution of their actual values of b is
centered around b = 6 [Fig. 4(b)]. Next, we compute all corre-
sponding zero modes, remove the trivial CRS mode and most
edge modes [modes containing single-block-wide strip(s) of
D blocks located at the edge of the metamaterial in a back-
ground of CRS blocks, see Appendix D for how we remove
such modes), thus obtaining the spatially extended zero modes
of each design [Fig. 4(a)].

To expand our search space, we use these computed modes
to systematically generate new designs by identifying com-
binations of modes that can be supported by the new design.
Specifically, we generate a very large number of high pluripo-
tency designs (“clique designs”) as follows. We define two
modes as compatible when they have no D blocks with dif-
ferent orientations at the same site [Fig. 4(c)]. We construct
a graph where the nodes represent the modes and the edges
indicate pairs of compatible modes. We then determine the
maximal cliques—sets of nodes such that every two con-
stituent nodes are adjacent (clique) that cannot be extended by
adding additional nodes (maximal)—of this graph using the
Bron-Kerbosch algorithm [88]. Cliques correspond to sets of
compatible zero modes [Fig. 4(c)]. Crucially, while each base
design corresponds to a clique, the large number of additional
maximal cliques stem from multiple base designs. For each of
these, we can rationally combine the relevant base designs to
create a new design (the clique design) that precisely gener-
ates the modes in the additional clique (see Appendix D for
how we combine designs) [Fig. 4(c)—4(d)].

These additional designs significantly expand the search
space: the number of maximal cliques exceeds the number of
initial designs by a factor 70, and many of these correspond to
designs with a high clique size and thus a corresponding high
pluripotency [Fig. 4(e)]. Then, to extract a design we select the
maximal clique with the highest capacity C [Eq. (3)] with re-
spect to the target modes {M}, and consolidate the constituent
designs into a new, highest-capacity, single candidate design
that supports all modes in the clique [Fig. 4(d)].

To test the capabilities of this large set of designs, we define
100 random targets and study the success rate of finding a
design that contains a set of modes that perfectly match a
target (C = 1). For single randomized target deformations we
successfully find a design in all cases; for two randomized
target deformations, we find designs in 82 cases. Hence, ex-
tending the design space with maximal cliques allows us to
find designs that satisfy multiple target deformations with a
high probability.
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FIG. 4. Extracting and refining high pluripotency designs. (a) We use 1000 GA-generated designs (left), calculate their mode structures
(right), and discard the common CRS mode (all blue) and simple edge modes (single-block-wide strip(s) of D blocks located at the edge), as
indicated by the grayed-out mode structures. The remaining modes are organized in a graph. (b) Top: histogram of the true number of intensive
modes b (blue left bars) and additive modes a (red right bars) for 1000 GA-generated base designs with a target of by = 7. Bottom: histogram
of the number of modes Ny, (green bars) after discarding the common CRS mode and edge modes (see Appendix D) per base design in the
library. The total number of modes is significantly reduced after this discarding. (c) Individual modes from distinct base designs (indicated by
color) are represented as nodes in a graph. Nodes are connected by edges if the corresponding modes are compatible. Each maximal clique
(fully connected nodes enclosed in gray area) corresponds to a new clique design [see (d)] that supports all constituent modes. (d) The clique
in (c) comprises modes from two base designs (purple and orange) which we combine into a new clique design (gray) that supports all three
modes in the clique. (e) Histogram of maximal clique sizes (number of nodes) in the library. We note that a larger clique size corresponds to a
higher number of modes and thus a higher (average) pluripotency P [Fig. 2(b)]. (f) Introducing a defect (extra rigid bar, red) to a building block
(bottom left) prohibits the D mode (top right, pink) while retaining the CRS mode (bottom right, cyan). Arrows indicate supported modes. (g)
Strategic placement of a defect (red) prohibits an undesired mode structure (top right) while retaining the desired target mode structure (bottom
right). (h) Normalized histograms of the number of superfluous modes [87] for 100 designs found in our library with the highest cumulative
capacity [Eq. (3)] for Ny (colorbar) randomized target deformations before (top) and after (bottom) strategically adding defects (refining). We
neglect the trivial global CRS mode, as we are free to remove this mode by adding a single extra horizontal or vertical rigid bar.

Second, we refine. We note that most of our designs orig-
inate from large cliques which feature many modes, most of
which are superfluous with respect to the target modes. Cru-
cially, removing undesired modes is much easier than adding
desired modes: a mode requires a careful selection of building
blocks to deform compatibly, while changing a single building
block can be sufficient to prohibit the mode. We thus eliminate
superfluous modes by introducing point defects in our design
[Figs. 4(f) and 4(g)]. Specifically, by adding an extra diagonal
bar, each building block can be prevented from deforming in
the D mode and can only deform as a CRS block [Fig. 4(f)].
We iterate this procedure until we can no longer transform D
blocks to CRS blocks, or until only the desired modes are left.
This approach drastically reduces the number of superfluous
modes [Fig. 4(h)].

Together, this two-step strategy allows us to obtain targeted
pluripotent designs with few superfluous modes: For a single
target deformation mode, we are able to completely eliminate
any superfluous modes [87]. For two target deformations,
most refined designs feature a single superfluous mode, and
the number of designs with a higher number of intensive
modes rapidly tapers off. Thus we are able to find extremely
rare designs that exhibit target deformations while minimizing
the number of superfluous deformations.

V. SCALING UP

We now show how we can extend our approach to obtain
larger designs by stitching together 5 x 5 designs. Specif-
ically, we showcase our design approach by example: we
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FIG. 5. Combining designs for larger target deformations. (a) Strategy for combining designs in four substeps. In step i, the two target
modes (highlighted with a red border) are split (step ii) into separate sets of target modes for the top and bottom 5 x 5 designs. In step iii,
the maximal cliques are ranked by the average capacity [Eq. (3)] for each set of target modes. In step iv, we progress iteratively through
combinations of the highest-ranking designs until a combination with a sufficiently high capacity with respect to the two target modes of step
(1) is found. This final design is mirrored and refined to form the final 10 x 10 design of (b). (b) The refined (defects are highlighted in red)
10 x 10 design for the target smiley and frowny zero modes. (c) The design of (b) supports two zero modes with structures resembling a smiley
and frowny face. (d) Refined 10 x 10 design for the target A and U zero modes. (¢) The design of (d) supports two deformation modes with

structures resembling the letters A and U.

create two 10 x 10 metamaterials that each support two zero
modes with spatially complex structures: one resembling a
smiley and frowny face, and another resembling the letters A
and U.

We demonstrate this strategy first for the smiley/frowny
design target. We start by using symmetries to reduce the
two targeted 10 x 10 mode structures into two 5 x 10 target
modes [Figs. 5(a)(i)]; these can be split into a 5 x 5 top with
one zero mode, and a 5 x 5 bottom with two zero modes
[Fig. 5(a)(ii)]. As before, for each of these, we determine and
rank all maximal cliques [Fig. 5(a)(iii)]. The nontrivial step
is to combine the top and bottom: in general, combining two
unit cells prohibits certain modes due to incompatible kine-
matic constraints at the interface. Therefore we iterate over
the next-highest ranked combinations if the combined design
is not satisfactory [Fig. 5(a)(iv)]. Using this approach, we
find a successful 5 x 10 design; and using mirror symmetry,
this yields a 10 x 10 design that features a mode structure
resembling a smiley and frowny face [Figs. 5(b) and 5(c)].
For more details on our scaling-up method, see Appendixes D
and F for pseudocode.

In addition to the smiley and frowny modes, we find seven
superfluous modes [87]. We refine this design by strategically
adding five extra rigid bars which reduces the number of
superfluous modes to two [Fig. 4(g)]. We suggest that this
design is an excellent starting point for further refinement to
eliminate all spurious modes, e.g., by replacing a few building

blocks with newly designed building blocks that only feature
a single, complex deformation.

We follow the same procedure to find a design that features
modes whose structures resemble the letters A and U, spelling
Au for gold. Our best design features 11 superfluous modes,
in addition to the two desired modes; by adding five rigid bars
the number of superfluous modes is reduced to six [Fig. 5(e)].
Thus our design strategy allows us to find extremely rare
designs with multiple desired modes within an otherwise in-
tractable design space.

VI. DISCUSSION

Combining building blocks to create structures with de-
sired properties is notoriously difficult as the design space
is too vast to fully explore. Without access to underlying
design rules, directly navigating such spaces with a strongly
discontinuous objective function to find designs with desired
properties is hopeless. In this paper, we introduced a gen-
eral strategy to find ultrarare designs using pluripotency: a
statistical measure that quantifies performance over a class
of problems. In short, our approach exploits the hierarchi-
cal structure of pluripotency in the design space to generate
a library of many high pluripotency designs. Subsequently,
we select and refine from this library to reach the final, ul-
trarare design that satisfies the desired properties. Splitting
the design problem into two parts, typically optimization
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of (1) the geometry and (2) the continuous parametric de-
sign parameters, is a common strategy [64,66,89,90]. In
contrast, our approach is gradient-free and leverages a mul-
timodal property—pluripotency—which makes it uniquely
well-suited for designing oligomodal combinatorial metama-
terials.

Our approach opens up new exciting avenues for combi-
natorial design. For example, our approach can be readily
applied to metamaterial design for a plethora of different
building block designs, allowing for much faster exploration
of the vast, largely unexplored design space of metamaterial
geometries. Moreover, we foresee applications beyond the
field of metamaterials. Self-assembling systems, for exam-
ple, require the right set of building blocks to achieve the
desired end geometry—which is hard without access to as-
sembly rules [70,91,92]. Additionally, information processing
in designer matter can be described by a set of hysteretic
elements—how to order and tune interactions between these
elements to achieve complex memory properties is an open
challenge [93-95].
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APPENDIX A: METAMATERIAL

In this work, we focus on a combinatorial metamaterial
built by tiling building blocks to form k x k unit cells which
are periodically repeated to tile a larger n x n metamaterial
[Fig. 6(a)]. This metamaterial is composed of a collection of
rigid bars and hinges. Note that the building block is essen-
tially a five-bar linkage. The building block thus features two
zero modes: infinitesimal deformations that do not stretch any
of the bonds up to first order. We choose the basis zero modes
to be the CRS mode mcrs and D mode mp(c) [Fig. 1(a)],
where ¢ is the orientation of the building block. Note that
only the D mode depends on the orientation of the building
block. This particular basis allows us (i) to easily distinguish
between the trivial CRS deformation and other deformations
in the metamaterial and (ii) to identify where to strategically
place defects.

1. Statical determinacy

Generally, the structural integrity of a frame of N joints
and Np rigid bars is captured in the Maxwell-Calladine index

(2) metamaterial design (b) zero modes
building block unit cell real structure
ole
N
e
A g

metamaterial

n

FIG. 6. Metamaterial design and zero modes. (a) Building blocks
(top left) combine into a k = 5 unit cell (top right) to forman =2
metamaterial (bottom). (b) Examples of the three types of zero mode
structures: (i) strip modes (top); (ii) edge modes (middle); (iii) global
modes (bottom).

theorem in d dimensions [99,100]:

Ny —Ngy=dN — Ny —3=7P, (A1)

where Ny, and Ng are the number of nontrivial zero modes and
states of self-stress respectively. We consider two-dimensional
frames, i.e., d = 2. Because Ng is non-negative, the Maxwell
count P is a lower bound for the number of modes, i.e.,
Ny = P. Counter-intuitively, frames with intensive modes
must be hyperstatic (P < 0) for a sufficiently large periodic
tiling of the unit cell frame. To see this, we note that for
an n X n tiling of the unit cell frame, P(n) is a polynomial
in n of maximum degree 2. To yield an intensive number
of modes Ny, we require the number of states of self-stress
Ng(n) to cancel all but the constant term of P(n). We note that
states of self-stress are always localized with open boundary
conditions, such that Ng(n) o n? in two dimensions. Thus we
require P(n) o« —n? to yield oligomodal frames.

To see if our metamaterial satisfies this condition, we de-
termine the metamaterial’s Maxwell count:

P = —(nk)* + 4nk +2 (A2)

for an x n tiling of a k x k unit cell. These tilings are strictly
hyperstatic for nk > 2 4+ +/6 & 4.4. In our paper, where we
focus on unit cells of size k = 5, every tiling is hyperstatic.
Thus, to yield intensive modes, the number of states of
self-stress should scale as Ng o (nk)?> — 4nk and cancel the
quadratic and linear terms of P. We find that Ny, = an + b,
thus the quadratic term always cancels. The linear scaling and
offset of the number of states of self-stress Ny with n then
determines the exact values of a and b in Ny, (n) and depends
on the orientations of the building blocks.

2. Calculating the number of zero modes

We determine the number of zero modes Ny, of a design
in two steps. First, we construct the compatibility matrix C of
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the design’s corresponding bar-joint framework. This matrix
maps the deformations of the joints to elongations of the bars
[100,101]. Zero modes are infinitesimal deformations of the
joints that do not stretch any of the bonds up to first order.
Mathematically, the dimension of the kernel or null-space of
the compatibility matrix C corresponds to the number of zero
modes. Thus, in our second step, we calculate this dimension-
ality using rank-revealing QR (rrQR) decomposition [82,83].
The time complexity of this algorithm is O(n*) for n x n
matrices.

To calculate the coefficients a and b from our mode-scaling
relation [Eq. (1)], we use 1rQR to calculate the number of
modes Ny (n) for n x n tilings of unit cells with open bound-
ary conditions in the range n € {1, 2, 3, 4}. We use Ny (3)
and Ny, (4) to determine the slope a and offset b. We use 1M
5 x 5 unit cells drawn from an uniform discrete distribution
to obtain the distribution of b shown in Fig. 2(a).

To obtain Figs. 2(b) and 2(c), we selected at most 1000
designs per initial number of intensive modes b; from the set
of Monte Carlo sampled designs. For by = 5 and b; = 6, there
are fewer than 1000 designs available, instead we use only 311
and 8 designs, respectively. For each of the selected designs,
we infer the number of strip modes a and intensive modes
b for the 75 designs that differ from the selected design by
a single building block mutation. We determine the ratio of
mutated designs with by intensive modes to the total number
of neighboring designs for each design and average over all
designs for a given initial number of intensive modes by to
obtain the probability density function p(by|by). Similarly, we
define the ratio r for a design with by modes as the fraction of
all mutated designs with by; < by.

3. Determining the structure of a zero mode

A building block can deform with any linear combination
of the two independent basis modes: m = amcgrs + Bmp. We
classify building blocks by these zero modes: if a block de-
forms with 8 = 0, it is a CRS block, and if a block deforms
with 8 #£ 0, it is a D block. In earlier work, we showed that
there are limitations on the spatial structure of zero modes
in tilings of these building blocks: regions of adjacent CRS
blocks must always be rectangular of shape [49].

To determine the structure of zero modes supported by
a given design in terms of CRS and D blocks, a simple
calculation of the kernel of the compatibility matrix C is no
longer sufficient. Instead, we directly solve for the kinematic
degrees of freedom of the building block: & and §. These kine-
matic degrees of freedom effectively describe the infinitesimal
change in each of the five free interior angles of the build-
ing block to first order. The kinematic constraints between
neighboring building blocks can be described as constraints of
adjacent angles of building blocks. For more technical details
on this representation of modes, we refer to our paper [49].

In short, we solve for each building block’s kinematic
constraints by composing a large integer matrix of all kine-
matic constraints between building blocks and use the Python
package sympy [102] to find the null space of this matrix.
This yields a set of rational vectors that form a basis for all
valid zero modes in the design and translate directly to the
kinematic degrees of freedom « and S. Thus this method

@ (q,b)=(0,3) ®) " (a,5) = (0,5)

1.0 1.0
0.8 0.8
0.6 D) 0.6 S
el et
0.4, 0478,
0.2 0.2
0.0 0.0

FIG. 7. Spatial distribution of the probility density function (pdf)
of D blocks for 2 x 2 tilings of random 5 x 5 unit cells with a = 0
additive modes and b = 3 (a) or b = 5 (b) intensive modes.

allows us to determine the structure of zero modes for a given
metamaterial design in terms of CRS and D blocks. The code
for this is freely available on our public GitLab [96].

4. Limitations to the structure of zero modes

In previous work, we have showed that there are limita-
tions on the structure of zero modes [49]. Most importantly,
we have shown that areas of adjacent CRS blocks must be
rectangular of shape, i.e., their boundaries feature only convex
corners. This constraint strongly limits the possible mode
structures in our metamaterial. In particular, we distinguish
between three types of zero modes: (i) strip modes, (ii) edge
modes, and (iii) global modes [Fig. 6(b)]. Each of these mode
types are defined by the spatial ordering of CRS and D blocks.
Specifically, strip modes feature a horizontal or vertical strip
of D blocks that spans the entire material sandwiched between
two areas of CRS. Edge modes feature a strip of D blocks that
borders the edge(s) of the material, the bulk are CRS blocks.
Global modes feature D blocks throughout the entire material.

Additionally, these types of zero modes correspond to
a change in the scaling of the number of nontrivial zero
modes Ny (n) = an + b. Note that we exclude the three trivial
zero modes corresponding to translation and rotation of rigid
bodies in two dimensions. Strip-modes are translationally in-
variant in one direction, resulting in a linear increase of Ny
and a contribution to the slope a. In contrast, edge and global
modes are not translationally invariant: such modes corre-
spond to an offset of Ny, and thus contribute to the number
of intensive modes b.

5. Distribution of edge and global modes

The codimension of the subspace of designs with b inten-
sive modes appears multimodal in distribution, especially for
larger b. This is most likely due to the different types of modes
that contribute to b: edge modes and global modes. For low
b, most intensive modes are edge modes [Fig. 7(a)]. As b
increases, global modes become more prevalent [Fig. 7(b)].
The reason for this is twofold. First, edge modes consisting
of a single line of D blocks require less building blocks with
specific orientations than global modes that contain more
D blocks (recall that the CRS mode is independent of the
building block orientation). Thus random unit cells are more
likely to contain edge modes than global modes. Second, the
number of edge modes is limited by the number of edges of
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the metamaterial. Thus, for sufficiently large number of inten-
sive modes b, there is a higher probability of global modes.
The codimension is related to the probability to prohibit an
intensive mode by changing the orientation of a randomly
selected building block. The type of mode influences this
probability. In general, modes with more D blocks are easier
to prohibit as the D mode is sensitive to the orientation of the
building block. Additionally, building blocks at the edge are
less kinematically restricted than building blocks in the bulk
[49], making them more robust to changes of orientation.

6. Capacity of a set of modes

The capacity C({M/}, M) [Eq. (3)] of a set of basis zero
modes {M/} with respect to a target mode M is S(M*, M)
[Eq. (2)], where M* = Y~ w;M J is a linear combination of the
modes, and the set of weights w = {w;} maximizes S. To find
this set of weights, we use constraint programming.

Formally, we define our constraint satisfaction problem as
follows. We have a set of integer variables w = {w;} and
define a set of inequality constraints 1 = {/;} for each site i
where 3;8/ # 0 holds as

Y wiBl # 8,
(X, wiB) > =83, wB! <8}, ifs=CRS’
(A3)

ifi; =D

i =

where ,Bij is the coefficient of deformation mp (c{ ) of mode M/
at site i and §; is a non-negative integer variable. If g/ = 0 is
true for every j, site i in M* is always a CRS block regardless
of w and is thus excluded as a constraint. We use a constraint
programming solver that uses satisfiability methods [103].
The solver aims to find a set of weights w and § that satisfy
the constraints while minimizing the objective function

0=>Y 5.

Note that because §; is a non-negative integer, this objective
function is minimal if and only if §; = O for all i. The upper
constraint in Eq. (A3) ensures site i is a D block if §; = 0.
The lower constraint ensures site i is a CRS block if §; = 0.
The underlying idea is that by minimizing O, the algorithm
tries to find a set w for which most variables satisfy §; = 0.
When §; = 0 for all /, the mode M* has the same kind of block,
CRS or D, at site i as the target mode M. The final similarity
is then S(M*, M) [Eq. (2)] with M* = )", w;M/. The code
we used to calculate the capacity is publicly available [97].
Pseudocode of this algorithm is shown in algorithm 1.

(A4)

7. Randomized target deformations

To determine the pluripotency P of a design or a set of zero
modes, we calculate the average capacity C [Eq. (3)] for a set
of randomized target modes M. We define our target modes
M in terms of their structure: the spatial distribution of CRS
and D blocks. However, our metamaterial has limitations re-
garding the mode structures it can achieve. In previous work,
we demonstrated that any valid mode must be comprised
of rectangular patches of adjacent CRS blocks [49]. Thus,

to assess our designs fairly, we cannot simply generate any
random distribution of CRS and D blocks.

Instead, we generate viable target modes by generating a
horizontal and vertical strip of D blocks within a background
of CRS blocks. The position and width of these strips are
randomly drawn from a uniform distribution. Where the two
strips overlap, we replace the D blocks with CRS blocks.
This approach ensures that there are only rectangular patches
of adjacent CRS blocks present. Using this approach, we
generate 200 unique target modes. The 200 possible target
deformations are shown in Fig. 8.

APPENDIX B: PREDICTING THE NUMBER
OF INTENSIVE MODES

In contrast to our previous work [61], we now ask a neural
network to predict the number of intensive modes b. We train
our networks on 5 x 5 designs obtained from Monte Carlo
sampling of the space. We note that determining the mod-
escaling of these designs is computationally expensive, with
a time complexity that grows cubically with input size [82].
Before training, we preprocess the data.

1. Preprocessing

The configurational data of the unit cell designs is pre-
processed to a pixelated representation [see Fig. 9(a)] for
input to the neural network. We found that representing the
unit cell designs in this pixelated representation improved
convergence during training and better performance of the
trained networks over the validation sets. We believe that this
is due to the orientations of the building blocks being clearly
represented visually as opposed to simply representing the
orientations as integers in a matrix. Because each building
block is represented as a 2 x 2 square, we can choose where
the convolutional layer applies its filters more finely. This
allows us to let the networks “see” only the interactions be-
tween building blocks. Additionally, we use periodic padding
to pad the designs with an extra one pixel wide layer to allow
the network to see interactions between building blocks with
periodic boundary conditions.

2. Neural network architecture

Because our designs are spatially structured and local
interactions between building blocks drive compatible defor-
mations, CNNs are well-suited for predicting the number of
intensive modes b. The CNNs used in this work are composed
of three convolution layers for feature extraction, which are
connected to a fully-connected hidden layer, which in turn is
connected to a single-neuron output layer. Specifically, the
first convolution layer consists of twenty 2 x 2 filters with
a stride of (2, 2). As the convolution starts in the upper left
corner of the input image, the network convolves only 2 x 2
plaquettes between four building blocks. Each plaquette con-
tains a black pixel if one of the four constituent building
blocks is oriented such that it has its diagonal interior an-
gle within that plaquette [Fig. 9(a)]. As such, each plaquette
contains information on which building blocks share adjacent
diagonal corners and allow for possible compatible defor-
mations of those corners. We conjecture that restricting the
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FIG. 8. All 200 possible global target deformations generated using the method as described in the Appendix A 7.

network to see only these plaquettes helps achieve a better
and more robust performance.

The second and third convolution layers have 80 and 160
2 x 2 filters, respectively, with a stride of (1, 1). After each
convolution operation, we add a trainable bias vector and
apply a ReLu activation function on each element of the
convolved images. Note that we do not use pooling operations
in-between convolution layers. After the third convolution
layer, we flatten the convolved images and fully connect this
vector to a hidden layer of 1000 neurons. Again we add
a bias vector and apply the ReLu activation function. The

(a)

final layer consists of only a single neuron, and we do not
apply an activation function. We take the single output neuron
to be bcnn, Which we aim to be as close to the true b of
any input design as possible. We use Jax [104] to code our
networks.

3. Training the convolutional neural networks

To train the CNNs to predict the number of intensive modes
benn, We generate a set of unit cell designs X = {X;} and
their respective number of intensive modes b = {b;}. The

M ] e
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FIG. 9. Convolutional neural network (CNN) for metamaterial prediction. (a) To feed our metamaterial designs into a neural network, we
represent our designs as a black-and-white image. Building blocks are represented as 2 x 2 plaquettes of pixels, one black and three white
(left). 5 x 5 designs (bottom right) translate to 10 x 10 pixel images. Additionally, we pad these images using periodic boundary conditions
with one additional layer of pixels, so that we end up with a 12 x 12 pixel image (top right). (b) The pixel image of (a) forms the input for our
CNN, which consists of three convolutional layers, a single hidden layer and a single output node. (c) The training (solid line) and validation
(dashed line) mean squared error (MSE) over the training epochs for each fold (colorbar) in our tenfold cross-validation. Note that we used an
early stopping condition to prevent overfitting, resulting in different number of training epochs for the folds.
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combination of these designs and their corresponding num-
bers of intensive modes is referred to as the training set
D, = (X, b). The generated data is then divided into a training
(85%) and a test (15%) set. Specifically, the training set con-
tains 848898 samples and the set set contains 149982 samples.
Our CNNs are trained on imbalanced datasets—designs with
a large b become increasingly hard to find using Monte Carlo
sampling [Fig. 2(a)]. Both the training and test set follow the
same distribution of the number of intensive modes b; the
majority of samples have b = 1, while there are only four
samples with b = 6 in the training set.

We train the CNN to minimize the mean squared error
(MSE) between the CNN’s prediction bcny and the true b
using the Adam optimization algorithm [105]. We use tenfold
cross-validation to validate the robustness of our network
architecture and training procedure. The network with the
lowest mean squared error (MSE) over the validation set is
selected to be the primary network to use. Specifically, we use
a learning rate of 0.0005, train the network for 100 epochs and
use a batch size of 256. Additionally, we use L2 regularization
on the weights and biases. The architecture of our CNN is
shown schematically in Fig. 9(b). The training process for
each fold is shown in Fig. 9(c).

APPENDIX C: PROSPECTING PLURIPOTENT DESIGNS

We employ a genetic algorithm (GA) to explore our CNN
beyond its training scope and to prospect highly pluripotent
designs. Specifically, we utilize a GA where the fitness func-
tion [Eq. (5)] is estimated by a trained CNN. The goal of the
GA is to achieve a target number of intensive zero modes by .
To achieve this goal, the GA iteratively generates a population
of designs (the generation) in three steps: (i) sampling, (ii) fit-
ness evaluation, and (iii) update. Below, we give an overview
of these three steps.

In the first step, a fixed number of candidate designs is
randomly drawn from the discrete design space. In GA ter-
minology, this set of designs (population) is referred to as
generation 0. Only the very first generation is generated in
this manner. Second, we score and rank the designs based
on their fitness f [Eq. (5)]. This fitness is maximal when
the CNN’s prediction is equivalent to the target number of
intensive modes by. Finally, we use the ranking of designs
based on the fitness to generate a new population of designs—
the next generation. To efficiently explore the design space,
the GA combines and mutates designs. To this end, we em-
ploy several standard GA techniques. We select a group of
designs from the initial population based on a three-way ran-
dom tournament selection, and we always include the design
with the highest fitness (elitism). This group of designs forms
the “parents.” From this set of parents, we combine designs
using a custom crossbreeding scheme (see below), and we
clone to create an additional set of designs. This set of de-
signs also undergoes random mutations of building blocks
and produces the “children.” The combination of parents and
children then forms the next generation, maintaining the same
size as the previous generation. This procedure of fitness
evaluation and generation of a new population of designs is re-
peated until the fitness is maximized or a predefined criterion
is met.

In short, the GA is able to combine designs to generate
new designs with an average b, after which random muta-
tions eventually allow the GA to reach a high b. As GAs are
known to go through a lot of generations, the computational
bottleneck of such algorithms is typically the calculation of
the fitness for each new generation. To save computation time,
we use a CNN to calculate the fitness f [Eq. (5)].

In more detail, our genetic algorithm has a population size
of 100, of which 29 are selected to be parents using a three-
way tournament selection. Additionally, the fittest candidate
in the population is automatically selected to be one of the
parents, so that we have a total of 30 parents. To create a new
generation of 100 designs, we require 70 children. Of those
70 children, half are created using cross-breeding of randomly
selected pairs of parents. To combine the design of two parents
to create a new child, we use a Gaussian filter to filter a
random binary 5 x 5 mask, which we then binarize again to
create a mask where half of the elements are 0 and half are
1. This mask is then used to take part of the two parents and
combine them to create a new child [Fig. 10(a)]. The reason
we use this method over more standard methods, such as
k-point crossover or uniform crossover, is that we believe local
clusters of building blocks are important for intensive zero
modes. The other 35 children are taken by cloning randomly
selected parents. All building blocks in the children designs
have a chance of 10% to mutate to a different orientation.
Each of these different orientations are equally likely to be
selected. The combination of the parents and children after
mutation form the new generation of designs.

1. GA exploits nonlocal structure

To understand how the GA explores design space, we
investigate the two key exploration techniques of our GA. Un-
derlying the evolution of generations of designs are two main
processes: (i) cloning and (ii) crossbreeding [Fig. 10(b)]. Our
GA thus explores the design space in two ways: (i) the cloned
designs undergo local mutations. This is local exploration of
the design space surrounding the cloned parent design. (ii)
The crossbred designs are combinations of two parent designs
on top of local mutations. This is nonlocal exploration of the
design space.

The combination of both local and nonlocal exploration
are crucial for the success of the GA. To illustrate this, we
determine the minimal distance between between the design
X with the highest fitness of generation g + 1 and every other
design Y in generation g as

dnyin = minm<21 — 8(X; ;. Y, ,)>, (a1

iJ

where §(x, y) is the Kronecker delta function and X; ; is the
orientation of the building block at site (i, j) in design X.
Eq. (C1) thus captures the number of different building blocks
between design X of generation g+ 1 and the design Y in
generation g that is most similar to X. Nonlocal exploration
primarily plays a role for early generations when benn(g) is
likely to be small, which allows the GA to find designs of a
higher benn (Fig. 11(c)). For larger benn, in later generations,
local exploration is key.
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FIG. 10. Schematic representation of our genetic algorithm. (a) A CNN calculates the number of intensive modes beny for each design in

the generation. (a) A generation of designs (top) is ranked based on the

fitness f. Using a three-way tournament selection the algorithm selects

designs from the generation that, together with the fittest design in the generation, form the parents (right). From the parents, we generate
new designs in two ways: cloning and crossbreeding (bottom). In cloning, we simply make a copy of the parent design chosen at random.
In crossbreeding, we randomly select two parents that we combine using two-dimensional masks (black-and-white matrices). Additionally,

building blocks in these newly generated designs have the chance to

mutate into new orientations. The mutated designs form the children

(left) who, together with the parents, form the next generation. This iterative procedure continues until a sufficiently high fitness or stopping

condition is reached.

Intuitively, the GA is able to efficiently explore the design
space by first crossbreeding designs to quickly find designs
with a reasonably high number of intensive modes bcnn. This
is most likely a consequence of the fact that most designs with
alow number of intensive modes feature deformations that are
localized on the edge of the material. Such edge modes are
less sensitive to building block mutations than global modes
and thus crossbreeding is more likely to combine designs that
feature edge modes. Moreover, as the number of intensive
modes b increases the probability to inhibit any mode by
changing orientations increases, such that the crossbreeding
is more likely to result in a net conservation or decrease of
b. After b =5, the GA appears to rely on cloning to locally
explore around an ensemble of designs with high b to find rare
b + 1 designs. Thus, the GA is able to efficiently generate de-
signs that feature a large number of intensive modes b thanks

to both nonlocal and local exploration, resulting in successful
runs that generally converge.

2. Random walks

To both obtain starting designs for the random walks and
compare the evolution of GA designs, we perform and keep
track of a hundred GA runs with by = 7. We start a hundred
random walks from the final hundred designs with the highest
fitness, thus the starting b(s = 0) varies from 5 < b < 7.

3. Comparison to other methods

Our GA is able to find ultra-rare designs with a large num-
ber of intensive modes b, that is not possible using random
search as designs with high b become exponentially more rare
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FIG. 11. GA design space exploration. (a) Pdf for the design
with the highest fitness in a GA run to transition from bcnn(g) to
benn(g + 1) for iterative generations. For low benn(g) the GA is
more likely to transition to a higher bcnn. For high benn(g) the GA
struggles to quickly find designs with a larger bcnn(g + 1). Note that
benn (g) can never transition to a lower benn (g + 1) as the GA always
takes the design with the highest bcny to the next generation. (b) The
average minimal distance (d;,), where (.) denotes the average over
an ensemble of GA runs, for the fittest design in generation g+ 1
with benn(g+ 1) as a function of benn(g) of the fittest design in
generation g. As benn(g) increases, the distance (dni,) between the
fittest design in the next generation g+ 1 and all designs in genera-
tion g decreases.

with b. Alternatively, one could try to exploit the hierarchical
design space structure through a hill-climbing method. While
this approach succeeds sometimes, it fails an exponentially
larger fraction of the time for increasing target number of
intensive modes by [Figs. 12(a) and 12(b)]. This results in a

@ (b)
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FIG. 12. Comparison of hill-climbing and genetic algorithm.
(a) Success rate S of 10 000 hill-climbing runs to reach target number
of intensive modes b7 decreases exponentially. (b) The success rate
S of 10000 GA runs to reach br. (c) The average (blue circles) and
standard deviation (blue shaded area) of the number of evaluations of
the fitness function f for successful runs (N, )yccess t0 reach by using
hill climbing. The average number of evaluations per successive
run (N,) S (pink squares) increases exponentially with b7. (d) The
average (blue circles) and standard deviation (shaded area) of the
number of evaluations of the fitness function f for successful runs
(Ne)success Increases exponentially with br.

larger average number of evaluations of the fitness function f
for large by to make a successful run [Figs. 12(c) and 12(d)].
Compared to state-of-the-art generative methods, such as
variational autoencoders (VAE), generative adversarial neural
networks (GANSs), and normalizing flows, our method allows
for extrapolation outside the scope of the training set. These
generative methods all aim to approximate the (unknown) un-
derlying probability distributions of the training set—without
examples such methods are unable to generate designs with
the desired property.

APPENDIX D: COMBINING AND SELECTING DESIGNS
FOR TARGET DEFORMATIONS

Here, we describe our method to combine and select from a
set of 5 x 5 designs to form larger metamaterials that deform
close to desired target deformations. We start from a set of
designs generated in step (i) and compute the mode structures.
We aim to throw away edge modes. We do this by checking
the location of CRS sites; if the entire 4 x 4 inner square of
the 5 x 5 mode consists of CRS blocks, we assume it is an
edge mode and disregard it.

Next, we determine which modes are compatible with each
other. Here, compatible means that there exists a design that
can feature both modes. Modes are compatible if (1) there are
no overlapping D sites or (2) if for all overlapping D sites, the
building block orientations from the original designs are the
same. This means that all modes that originate from the same
design are compatible, as they should be. Surprisingly, modes
that originate from different designs can also be compatible.
By taking the building block orientations of the D sites for
both modes, we can create a design that features both modes,
as the orientation of CRS blocks is irrelevant. This procedure
yields a set of modes and pairs of modes that we label com-
patible. We represent this as a graph with nodes (modes) and
undirected edges (compatible).

To explore our set of modes for combinations that deform
close to a target deformation, we search the space of maxi-
mal cliques. Such cliques hold the largest set of compatible
modes, thus providing the design with the most deformational
freedom. We calculate the set of maximal cliques using the
Bron-Kerbosch algorithm with vertex ordering by first calcu-
lating the degeneracy ordering of the graph [88,106]. For any
given set of designs, we need to perform this calculation only
once and save the graph and maximal clique for subsequent
searches for target deformations.

To determine if a maximal clique of modes deforms closely
to target deformations, we calculate the capacity C [Eq. (3).
This score is calculated using a constraint programming
solver that uses satisfiablity methods [103] as described in
Appendix A 6.

To design larger metamaterials, such as the 10 x 10 de-
signs of Figs. 5(b) and 5(d), we split the larger target
deformation into local 5 x 5 deformations. We rank all max-
imal cliques based on their cumulative capacity C for each
5 x 5 subset. Then, we take a greedy search approach and
combine designs with the highest capacity for each 5 x 5 sub-
set and calculate the total capacity for the combined design.
If the total score in unsatisfactory (below a predefined thresh-
old), we iteratively try the next best designs for each 5 x 5
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ALGORITHM 1. Calculate capacity of set of modes with respect to target mode structure

Input: {M’}
M
Output: C
Initialize integer weight variables w
procedure GENERATECONSTRAINTS
I={
for /i; in M do
if 3,8/ # 0 then
if /71;; = D then
initialize non-negative integer variable §;
i <= 3 wiBl # 8
end if
if /7;; = CRS then
initialize non-negative integer variable §;
L {2, wiB) > —8,3,w;Bl <8}
end if Add /; to 1
end if
end for
end procedure
GENERATECONSTRAINTS
0« > 6
w, 8 < CPSATSolver (O,1)
M* N > ; w;M/ R
set Ncrs equal to number of CRS blocks in M
C < S(M*, M) — Ncxs

> set of zero modes
> target mode structure
> capacity

D> initialize empty list of constraints

> define objective function

> call constraint programming solver to minimize O while satisfying 1

> Calculate S using Eq. (2) in the Main Text

subset until we find a satisfactory total score. Pseudo-code of
the algorithm is shown in Algorithm 2.

APPENDIX E: PROHIBITING UNDESIRED ZERO MODES

To prohibit undesired zero modes, we strategically in-
troduce additional rigid bars to the metamaterial structure.
To determine the placement of these bars, we analyze the
modal structure of the desired and undesired zero modes. In
particular, if the undesired mode contains a D block where
the desired modes feature CRS blocks, we add a rigid bar

across the diagonal to transform the pentodal building block
shape to a square shape. This prohibits the building block
from deforming with the D mode, effectively prohibiting the
undesired mode without introducing any new (undesired) zero
modes.

APPENDIX F: PSEUDOCODES

Pseudocode for calculating the capacity C [Eq. (3)]] is
shown in Algorithm 1. Pseudocode for the extracting step of
step (ii) of our design approach, including the step to scale-up
to larger designs, is shown in Algorithm 2.

ALGORITHM 2. Find design that matches desired mode structures.

Input: X
{M}
Output: D
procedure MODELIST
M < {}
for X in X do
{M} <« CalculateModes(X)
Add {M}toM
end for
end procedure
procedure FILTEREDGEMODES
for M in M do
if inner 4 x 4 square of M is all CRS blocks then
Remove M from M
end if
end for
end procedure

> set of pluripotent generated 5 x 5 base designs

> set of target deformations, can be multiples of 5 x 5
> design

> Calculate zero modes for each design

> empty list of modes

> set of modes

> Add set to list

> check for edge modes
> for each mode in list
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ALGORITHM 2. (Continued.)

procedure DETERMINECOMPATIBILITY
A<«0
G« {M, A}
for each M’ in M do
for each M/ in M do
if M’ and M’ originate from same X then
Add edge (i, j)to A
else if Compatible(M!, M/) then
Add edge (i, j) to A
end if
end for
end for
end procedure
procedure FINDMAXIMALCLIQUES
Gp < DegeneracyOrdening(G)
U <« BronKerbosch(Gp)
end procedure
procedure RANKCLIQUES
R < {}
T« RandomizedTargets()
for each U in U do
Ny < Size(U)
r=0
for each T in T do
r<r+CuU,T)
end for
r < r/Ny
addrtoR
end for
Order U from high to low based on R
end procedure
procedure DESIGNMETAMATERIAL
D <0
€
while cumulative capacity C is below € do
Iterate through ranked cliques U per 5 x 5 subset
Turn each clique into 5 x 5 design
Combine 5 x 5 designs into design D

> empty adjacency matrix
> graph with modes as nodes

> check if compatible (see Appendix D)

> degeneracy ordering of G
> list of maximal cliques using Bron-Kerbosch algorithm

> empty list of capacities
> generate randomized target deformation modes

> number of modes in clique
> cumulative capacity

> calculate capacity C using Al. 1

D> average capacity

> empty design
> threshold

Calculate cumulative C of D with respect to each target mode in {M}

end while
end procedure
MODELIST
FILTEREDGEMODES
DETERMINECOMPATIBILITY
FINDMAXIMALCLIQUES
RANKCLIQUES
DESIGNMETAMATERIAL
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