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General discussion and future 
perspectives

Main findings

In this thesis, we applied a theoretical framework and used methodologies derived from the 
field of ecology to investigate the dynamic properties and characteristics of the human gut 
microbiota. In this way, we aimed to contribute to a better understanding of the complex 
microbial ecosystem of the human gut and its association with inflammatory bowel disease 
(IBD) course (i.e., exacerbation or remission). Additionally, we examined microbial changes 
following an intervention with fecal microbiota transplantation (FMT). Addressing these aims 
requires a thorough examination of the human gut microbiome, its dynamics, and the key 
factors influencing the functioning of this microbial ecosystem. This dissertation contributes 
to these goals in several ways.

First, we studied the correspondence between correlation-based networks and the 
underlying network of ecological interactions. Our results demonstrated that correlations 
could indicate the presence of bacterial interactions, at least in a simulation setting. 
Interactions were recovered with precision exceeding recall, indicating that the likelihood of 
missing interactions was higher than the likelihood of finding false positive interactions 
when using correlations in cross-sectional abundance as their proxy. However, we also 
showed that asymmetric interaction types cannot be detected and that there are many 
factors that may worsen these results, such as measurement noise. Unfortunately, biomedical 
data are always subject to measurement errors, particularly in microbiota studies where 
data are obtained through sequencing processes.118 Furthermore, microbiota data are also 
influenced by host-specific variation in process parameters (process noise) and sampling 
under various (non-equilibrium) conditions, all of which will influence the inference, 
though not necessarily in an adverse way.423 Therefore, while correlations may hint at 
interactions, independent validation is needed to confirm their presence and to ensure that 
these correlations represent genuine biological interactions with meaningful implications. 
Until then, we should continue to refer to these correlations as associations rather than 
interactions. Moreover, in our second study we showed that wavelet clustering uncovers 
more diverse community structures compared to analyses based on temporal correlations. We 
revealed significant differences between these methods and suggested that the correlation-
based approaches might overlook certain dynamical aspects of microbial communities. This 
comparison highlights the potential of wavelet clustering to use the temporal fluctuations 
and complexity inherent in the human microbiota for characterizing community structure, 
offering a more nuanced understanding than correlation-based methods alone.

Second, our objective was to describe specific associations between microbial abundances 
and Crohn’s disease (CD), in particular with exacerbation of disease. In doing so, we made the 
analogy between the gut microbiota in an unhealthy host with an ecosystem under stress. 
We found that microbial diversity is reduced in the gut of CD patients, and that the process 
of diversity loss is irregular with respect to specific taxonomic groups. If this process of loss of 
species continues for an extended period, it may eventually lead to an unhealthy and possibly 
irreversible state. Moreover, in this study we showed that associations of relative bacterial 
abundances with CD can be different for subsets of individuals. A practical, though  
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undesirable implication of this finding is that it seems very difficult to pinpoint specific gut 
microbes as biomarkers or therapeutic targets for CD patients. 

Third, we studied bacterial associations with clinical treatment success of FMT in ulcerative 
colitis (UC) and investigated the succession of the microbiota during and after the treatment. 
By means of several analytical techniques, such as longitudinal modeling and cluster analysis, 
we identified potential associations between specific gut microbiota families and clinical 
outcomes. Our findings suggest that the success of FMT in UC patients may be linked to the 
control of Prevotellaceae, with potentially beneficial roles attributed to Lachnospiraceae 
and Ruminococcaceae. Notably, clustering analysis indicated that differences in the gut 
microbiota between responders and non-responders may manifest early during treatment. 
Moreover, successful FMT seems to be associated with a resilient gut community that is open 
to colonization by donor species, while maintaining the original community to some degree. 
This suggests that a balanced coexistence of host and donor species can induce a shift in 
which the recipient's microbiota evolves towards a healthier community.

Stability and variability in microbiota dynamics

Over the past 15 years, microbiological research has flourished, driven by technological 
advancements that have significantly expanded our knowledge concerning the ecology of 
gut microbiota and its relation to health and disease.424 The beneficial functions provided by 
our microbiomes offer potential for improving human health. Therefore, efforts have been 
made to understand the temporal variations in our microbiota to define ‘stable’ and 
‘(un)healthy’ dynamics.21, 45, 62 Early attempts to classify the gut microbiota introduced the 
concept of ‘enterotypes’, distinct clusters characterized by an enrichment of Bacteroides, 
Prevotella, or Ruminococcus.405 However, this early classification was only based on 
metagenomics from 39 individuals, and much larger studies have challenged the distinctness 
of these enterotypes, suggesting a more gradient-like distribution with varying levels of 
Prevotella and Bacteroides.233, 412, 425 

The microbiota is acknowledged to be highly specific to individuals, displaying relative 
stability in adults, with regular fluctuations in the composition over time.45, 46, 51 These 
fluctuations suggest that long-term stability of human gut microbial communities is 
influenced by the tendency of the intestinal ecosystem to maintain internal stability 
(homeostasis), owing to the coordinated response to any stimulus that disturbs its normal 
condition.62 This prompts inquiries into whether fundamental ecosystem ‘rules’ governing 
microbiota (group)dynamics can be distilled from a collection of individual microbiota, and 
to what extent each represents a unique ecosystem with its own host-specific microbial 
dynamics (Figure 7.1).426 If microbiota dynamics were independent from the host, then the 
presence of the same species should result in the same relative proportions of those species, 
and interventions could be devised to regulate microbial states across different individuals.284 
On the other hand, if the dynamics are strongly host-specific, personalized interventions 
should be designed, considering not only the unique microbial state of an individual but 
also the specific host factors of the microbial ecosystem.46, 55, 59 However, studying this is very 
difficult due to the presence of latent or unknown parameters (related to lifestyle or diet 
for example) influencing microbiota composition.155 The factors contributing to microbiota 
variation are still not fully understood.57 
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Consequently, comparative analyses between patient and healthy cohorts yield many 
different dysbiotic states or sets of microbial biomarkers that are dependent on a specific 
comparison, and the definition of a normal healthy microbiota remains unsatisfactorily 
answered. Moreover, it is still unclear whether the structure of the gut microbial community 
shifts gradually within individuals or transitions between distinct community states, and 
whether such states are consistent among different individuals.233, 405, 427

Broader insights from the literature 

Part I - Ecological structure in the human gut microbiota 
Microbial interactions can yield diverse outcomes, ranging from positive impacts such as 
mutualism, where species exchange metabolic products to benefit each other, to negative 
impacts on participating species. These interactions shape community patterns and inhibit 
the outgrowth of certain species. In Chapter 2, we assessed the reliability of correlation-based 
methods for inferring microbial interaction networks. Unraveling the network of interactions 
within ecological systems, particularly in studies of the human microbiome, is challenging. 
Technical issues in constructing networks from sequencing data, such as compositionality 
and the predominance of zeros, combined with the influence of often unmeasured 
environmental factors, make the networks difficult to interpret and susceptible to potential 
biases.118 Additionally, data generated from assays may be censored by detection limits, 
causing species to remain undetected.203

Figure 7.1 - Illustration of microbial dynamics through ecological networks. 
Microbial dynamics are illustrated through an ecological network, wherein nodes symbolize 
species and edges depict interspecies interactions (green and red arrows denote positive 
and negative interactions, respectively). A) The underlying dynamics or networks are unique 
to each subject. B) Subjects within the same group exhibit shared dynamics or networks, 
which markedly differ from those of other groups. C) Different subjects display identical 
underlying dynamics or networks. Note that subjects can also differ in species composition 
or in the relative abundances of each species. This figure is based on Bashan et al. (2016).426

A Individual dynamics

B Group dynamics

C Host-independent 
dynamics



182Chapter 7 General discussion and future perspectives

Moreover, the presence of a third variable or species (e.g., bacteriophage) can influence the 
observed correlations, especially if the researcher fails to measure this linked species (Figure 
7.2). Correlation-based network analysis typically results in too many spurious edges.118 
Addressing these challenges has led to the development of various co-occurrence methods, 
such as CoNet, SparCC, and SPIEC-EASI.237, 253, 428 Interestingly, in evaluations, classical 
correlation measures often perform just as well as the more sophisticated algorithms.118, 429

Figure 7.2 - Interaction networks between three species. 
Direct interactions are indicated by a solid arrow, indirect interactions are 
given by a dashed arrow. A) The interactions utilize separate compounds, C1 
and C2, as mediators. Interaction chain: Species S1 influences S2, which in turn 
affects S3. B) In this scenario, S1 initiates a change where S2 and S3 interact only 
when S1 is present. Modified interaction: Species S1 influences both S2 and 
S3. Species S3 consumes mediator C1, altering the interaction between S2 and 
S3. C) Modified interaction: Both S1 and S3 contribute compound C1, which 
stimulates S2. S1 and S3 do not directly interact regardless of S2. This figure is 
based on Momeni et al. (2017).240
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To address potential confounding in pairwise interactions, we employed partial 
correlations in Chapter 2 to infer the correlation network. See Figure 7.3 for a comparison 
between plain and partial correlations in a real dataset. For most microbes, ecological 
interactions are poorly understood, necessitating the de novo construction of ecological 
interaction networks without guiding assumptions or a gold-standard set of interactions 
for validation.100, 111, 238, 251, 430, 431 Therefore, we used the generalized Lotka-Volterra (gLV) 
model with simulated interactions to study the correspondence between correlations 
and interactions.232 gLV models are widely employed in ecological studies to simulate the 
dynamics within bacterial communities.100, 111, 232, 254, 423, 432 This approach enabled us to define 
the species-species interaction terms and incorporate variations in model parameters to 
reflect the variability among hosts. The gLV model, while versatile, has drawbacks: it only 
describes pairwise interactions, disregards immigration and environmental effects, and 
maintains constant and additive interaction strengths.49, 57, 100, 232, 240, 433-435 In Chapter 3 we 
also used an ecological model. Here, we simulated the dynamics of four consumers and four 
resources to provide an additional dataset to evaluate the accuracy of wavelet clustering in 
contrast with clustering based on Spearman’s correlation.318-320

Some scientists tend to approach mathematical models, also the ones used in Chapter 2 
and Chapter 3, with skepticism, wary that simplification might sacrifice realism. However, 
while models may simplify complex systems, they can also serve as invaluable tools for 
understanding phenomena that are otherwise difficult to grasp.1 For example, in Chapter 2, 
we would not have been able to judge the correctness of the correlation matrix without a 
simulated network that could be used as a ground truth. Models allow scientists to explore 
hypothetical scenarios, test theories, perform virtual experiments that are impossible or 
unethical in humans, make predictions, explain complex phenomena, thereby ultimately 
advance our understanding of the natural world. However, it is imperative to ensure 
that models are built upon correct assumptions as these can significantly impact model 
outcomes. 

Notably, many studies on microbial communities and their associations with specific 
disease courses or host conditions heavily rely on a steady-state assumption and the failure 
to account for non-steady-state dynamics could introduce biases in the findings, leading 
to an overemphasis on certain taxa while neglecting others that may be important in a 
non-steady-state context. The microbial interaction network is also likely dynamic, shaped 
by both negative and positive feedback loops. These feedbacks occur as an organism's 
metabolic activity alters its environment, influencing its own fitness, and the fitness of 
competing species, creating ecological niches that drive diversification.22 Therefore, the 
niches in the gut might be more comparable to a dynamic river ecosystem than to a more 
static ecosystem on land, as nutrient flows through the bowel, providing constant resources 
but also causing constant disturbances and reassembly of microbial communities and 
interactions.436

Future microbiome studies will benefit from larger cohorts, more frequent sampling, and 
longer follow-up periods to unravel the short- and long-term dynamics of gut microbial 
communities in real datasets. Longitudinal studies allow for investigating the consistency, 
or changes, of microbiota patterns over time. Following this, in Chapter 3, we applied a 
methodology unknown to the microbiome field, namely wavelet clustering analysis. This 
method clusters time series based on the similarity in their temporal dynamics of microbial 
communities.
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Figure 7.3 - Correlation matrices. Matrices are derived from the dataset 
presented in Chapter 4 of this thesis. A) Spearman’s correlation matrix displaying 
the pairwise correlations between bacterial families. The correlation matrix provides 
insights into the linear abundance relationships among variables. B) Spearman’s 
partial correlation matrix illustrating the partial correlations between the bacterial 
families. Partial correlations help to assess the unique association between bacteria, 
independent of the interrelated influence of other bacteria. Each cell represents 
the (partial) correlation coefficient between two variables, with color intensity 
indicating the strength and direction (e.g., blue is positive and red is negative) of the 
correlation. 
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Unlike prevailing co-occurrence methodologies, the novelty of wavelet clustering lies in its 
ability to characterize community structure based on the collective temporal behaviour of 
the microbiota, without directly fitting a dynamical model or reconstructing the network 
of interacting species. While traditional correlation-based methods may offer some, but 
limited or biased, insights, wavelet clustering enables the extraction of more information 
on dependencies within microbial communities and can reveal community structures that 
remain obscured in correlation-based methods.437 These findings underscore the critical role 
of longitudinal data and methodological choices in shaping the outcomes of microbiota data 
analysis.

Mapping ecological networks to predict (temporal) behaviours and discern assembly rules is 
motivated by the goal of gaining insights into the underlying dynamics that drive microbial 
ecosystems. Ultimately, this knowledge may be used to establish early warning signals, 
develop clinical prognostic models, and even engineer stable microbiomes with desired 
properties.438-440 The topology of the network often provides insights into the potential 
explanatory nodes for specific functional properties within the network, allowing for the 
identification of tightly interrelated modules of variables, such as communities.3 Additionally, 
knowledge of the interaction network not only aids in identifying key players within the 
network (i.e., keystone species) but also facilitates predictions on how microbial communities 
might respond to diverse stimuli or disturbances, such as alterations in diet or exposure to 
antibiotics.  

Previous research has indicated that correlation-based networks likely capture only a fraction 
of the interactions occurring in microbiota, with strong symmetric interactions being more 
readily detected compared to weaker or asymmetric interactions.216, 235, 273 Correlation-based 
networks from cross-sectional data are commonly interpreted as representing interspecific 
interactions.227 Each significant link in a correlation network suggests a shared process 
affecting connected nodes; however, we should acknowledge that correlations do not 
always imply causation or biological meaning.3, 216 Densities may also vary as a result of an 
external factor that is not of biological interest.118 The presence of two species together in 
one sample, while absent in another, may not necessarily indicate an interaction between 
them. Instead, they could simply coexist because one sample was taken during a nutrient-rich 
period that supports the growth of both species independently, whereas the other sample 
may have been taken at a less favourable time, limiting the growth of both species. Therefore, 
incorporating additional information about influencing factors can provide a richer, more 
nuanced picture of the underlying dynamics within the microbiome. Moreover, as most 
microorganisms form biofilms, i.e., genetically diverse, surface-associated communities 
embedded in an extracellular polymeric matrix, bacteria primarily interact with others 
in their immediate neighborhood, with the strength of these interactions diminishing as 
distance increases.440, 441 Therefore, the spatial relationships between individual organisms 
should ideally also be considered in the network, including the nature and strength of their 
interactions based on their positions within the community.440 However, before delving into 
more complex network structures including extensive metadata, it is essential to first gain a 
thorough understanding of the ‘simpler’ networks to lay a solid foundation for future analyses.
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Part II - Gut microbiota and inflammatory bowel disease 
Given the involvement of the microbiome in numerous essential functions, it is not surprising 
that disturbances in microbiota composition (known as dysbiosis) have been linked to the onset 
and course of various diseases. Many associations found may not always be disease-specific but 
rather part of a non-specific, shared response to health or disease.200, 442 Chapter 4 and 
Chapter 5 of this thesis address the relationships between bacterial dysbiosis and the disease 
course of CD, which, along with UC, comprises the pathology of IBD. While CD can occur 
anywhere in the digestive system, UC is limited to the colon. Both diseases exhibit significant 
distinctions in microbiota compositions from one another, although less strongly than they 
differ from healthy subjects.372 However, the findings regarding disease exacerbation among 
CD or UC patients are often inconsistent and occasionally even contradictory. For example, 
previous studies have reported both lower and higher relative abundances of Bacteroides 
(Bacteroidaceae) in CD patients compared to healthy individuals.356-358 This discrepancy can 
be attributed in part to technical variations between studies such as differences in DNA 
extraction methods and sequencing depth, but they may also arise from variations in disease 
assessment or study populations, as well as potential confounding factors, such as medication 
use or lifestyle factors that remained unidentified.56, 171, 225, 443 Coupled with the interindividual 
variability of the microbiome in gastrointestinal disorders, the pursuit of shared biological 
signals proves challenging. Moreover, while many studies adopt a cross-sectional study design, 
longitudinal studies are needed for comparing active and inactive disease.231, 444 The knowledge 
gap with regards to consistent and specific dysbiosis signatures poses a challenge to reveal the 
role of gut microbiota in human diseases.  

In Chapter 4 we investigated the multifactorial involvement of specific microbial groups 
with CD compared to healthy individuals. Additionally, we also investigated associations 
between the relative abundances of specific bacterial families with disease course (remission 
vs. exacerbation) and disease activity markers (e.g., fecal calprotectin (FC), serum C-reactive 
protein (CRP), and Harvey Bradshaw index (HBI)) in repeatedly sampled CD patients.181 Given the 
variability among CD patients and the complex microbial interactions, associations with disease 
may only be weak when considering mean responses. Therefore, it requires robust analysis to 
uncover these associations, and quantile regression is a promising method given that potential 
relationships may only be apparent in lower or upper quantiles of relative abundances.361, 363 

We identified several significant associations between bacterial family abundances and CD, 
particularly when compared to healthy controls. CD patients exhibited distinct microbial 
profiles, with several families showing predominantly negative associations. While our 
results confirmed previously identified associations, including Erysipelotrichaceae, 
Peptostreptococcaceae, Prevotellaceae, Clostridiaceae, and Ruminococcaceae, we also 
uncovered novel associations with Coriobacteriaceae, Desulfovibrionaceae, Pasteurellaceae, 
Sutterellaceae, and Streptococcaceae.171, 177, 181, 356-358 Notably, Coriobacteriaceae displayed 
a shift in relative abundance across the disease course, with higher values at baseline in 
patients who later experienced exacerbation. Additionally, Streptococcaceae demonstrated 
increased abundance over time in patients with exacerbation, compared to both healthy 
controls and patients in remission. Conversely, Sutterellaceae was consistently lower in patients 
with exacerbation as well as those in remission compared to healthy controls. Interestingly, 
associations with disease activity were generally weaker. We also found that FC levels were 
negatively correlated with the abundance of Porpyromonadaceae and Verrucomicrobiaceae. 
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Prevotellaceae were among the most heterogeneous across individual patients. The genus 
Prevotella, which belongs to this family, is involved in saccharolytic fermentation and short-
chain fatty acid production. Prevotella is generally more prevalent in individuals from rural areas 
compared to urban populations, potentially due to the higher abundance of Prevotella phages 
and a diet lower in plant-derived complex carbohydrates in urban populations.445, 446 Additionally, 
Prevotella has been linked to inflammation in other diseases; for instance, Prevotella bivia is 
strongly associated with inflammation in bacterial vaginosis and an increased risk of HIV.447, 448 
In Chapter 5, we also observed associations with Prevotellaceae in UC patients undergoing FMT 
treatment. Non-responders to FMT showed an increase in Prevotellaceae abundance compared 
to patients who achieved clinical remission after FMT (i.e., responders). However, our data from 
Chapter 4 and Chapter 5 do not clarify whether these differences are driven by the disease or 
factors, such as dietary habits, environmental variables, or other unknown factors that could 
contribute to the outgrowth of Prevotellaceae in these patients. 

Interestingly, nearly all significant associations found with quantile regression in Chapter 4 
were negative and primarily observed in the lower quantiles of the bacterial abundances. While 
positive associations in upper quantiles have been linked to unmeasured factors constraining 
the potential response to positive stimuli,361 this contrasting trend resembles an ecosystem 
responding to stress: as the system nears a tipping point, the ability to sustain healthy bacterial 
abundances gradually diminishes.97 However, the loss of certain species within the microbial 
network can be compensated for by others with similar ecosystem functions (functional 
redundancy). This redundancy enhances resilience, ensuring the continuity of essential functions 
important to the host, such as butyrate production.62, 449 Consequently, when solely studying 
the compositional profile, the actual functional output of a system presumed to be in 'dysbiosis' 
might be normal, and vice versa; lack of significant differences in abundance doesn't necessarily 
indicate a healthy state as the species may lack essential functional genes.450 However, an 
excessive loss of species may reduce resilience and cause a critical transition to an alternative 
stable state.104, 369 A study setup including proteins secreted by the microbiome would provide 
insights into how dysbiosis is expressed on the functional level. For instance, in a CD case-
control study, a lack of species capable of consuming hydrogen sulfide was identified as a key 
distinguishing microbiome feature of the disease.451 Other studies showed the role of butyrate, 
secreted by pathobionts such as Fusobacterium. While butyrate is typically beneficial, it may 
negatively affect the viability of the intestinal epithelium and potentially contribute to IBD 
pathogenesis.452, 453

Note that, from a statistical point of view, investigating numerous bacterial species across 
multiple patients poses a significant challenge regarding the multiple hypothesis testing 
problem. To construct a correlation network or investigate significant differences in microbiota 
composition, adjustments might be necessary to control for false discoveries. The choice 
between correction methods depends on the research goal; stricter corrections, such as the 
Bonferroni approach, may be preferred to demonstrate specific associations, while more general 
impressions may be sought with less stringent corrections, such as the Benjamini-Hochberg (BH) 
method. However, even the BH approach might still be too strict when applied to microbiota 
data, because these methods assume independence among bacterial abundances, which is 
not valid due to (biological) relationships between species (Figure 7.2 and Figure 7.3) and the 
compositional nature of the data. Ideally, correction methods should account for correlated 
species to provide more accurate results. However, there is no solution yet available; therefore, 
conclusions should be based on a comprehensive review of existing literature in addition to 
study findings and not on p-values alone.
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Part III - Ecological determinants of FMT treatment success
Concerning the treatment of dysbiosis, since a groundbreaking study in 2013, FMT has 
emerged as a treatment option for recurrent Clostridioides difficile infection (rCDI).190 However, 
rCDI remains the only condition for which FMT is widely accepted as a treatment. In all other 
indications where FMT has shown promise, its use remains experimental or is considered a last-
resort option.454 One of the challenges with FMT is its inconsistency in (microbiota composition) 
outcomes.455 This means that every person will react differently to certain bacteria and that 
diverse immune responses are activated across patients with different diseases.456 This variability 
raises significant safety concerns, because the microbiota could also be altered to an even more 
undesirable state in the recipient's gut.426, 457 Similarly, other therapies designed to modulate 
the microbiome, such as probiotics, have also been associated with adverse outcomes. The 
PROPATRIA study, a Dutch clinical trial conducted from 2003 to 2007, revealed that patients 
with acute pancreatitis who received probiotics had a higher mortality rate compared to the 
control group.458 However, it remains unclear whether the probiotics themselves or other factors 
contributed to this increased mortality. Therefore, a 'one-size-fits-all' treatment approach does 
not ensure safety and efficacy against multifaceted diseases, as evidenced by the inconsistent 
results of FMT trials for IBD and irritable bowel syndrome (IBS).197, 459-461 The interaction between 
two microbial consortia (donor and recipient) during FMT can be likened to a complex pulse 
perturbation. Possibly, the perturbation caused by bacterial components, metabolites, or 
bacteriophages may also mediate the effects of FMT. Especially as investigations into auto-FMT 
have also shown promising results in restoring gut microbiome composition.462, 463 Clearly, 
there is a need for a deeper understanding of the dynamics underlying the interaction between 
donor and recipient microbiota during FMT.464 This could ultimately lead to a safe and controlled 
modification from disturbed to desired phenotypes in the recipient.23

In the studies detailed in Chapter 5 and Chapter 6, we examined stool samples from 24 patients 
with mild to moderate UC undergoing FMT. Stool samples were collected at nine time points 
across the study period, allowing for a comprehensive assessment of gut microbiota dynamics 
during and post-FMT. Our longitudinal approach provided insights into weekly changes, a 
perspective often lacking in randomized controlled trials (RCTs) that focus primarily on clinical 
outcomes. Our results in Chapter 5 suggested that there is a potential for predicting clinical 
success of FMT treatment based on early microbiota analysis in the early phase of treatment, 
which would make it possible to adapt treatment strategies accordingly. However, developing a 
reliable predictive model for this purpose will require substantial additional effort.

It is plausible that differences in microbiota related to clinical success become apparent early 
during FMT treatment. The order in which species arrive can influence community succession 
(the predictable change in community composition over time), as early-arriving species can 
modify resources and environmental conditions, thereby affecting the establishment of later-
arriving species. These priority effects can lead to varying successional pathways within the 
gut ecosystem.83, 93 This concept is akin to plant ecosystems, where pioneer species prepare the 
environment for subsequent arrivals. For example, while a particular patch may not always host 
the same grass species, the presence of any grass helps create conditions that are conducive to 
the establishment of shrubs. Similarly, the growth of taller plants (regardless of specific species) 
facilitates the establishment of shade-tolerant species.96 Therefore, to understand how microbial 
species interactions shape community dynamics during succession after FMT, we need to 
focus not just on which species are present, but also on the role each species plays within the 
community.
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Several hypothetical outcomes of the FMT treatment are possible (Figure 7.4). First, the 
host communities may revert to their initial dysbiotic state if the perturbation is too weak 
and the dysbiotic state too strong. Therefore, the transferred microorganisms fail to change 
the microbiome or to establish themselves permanently. Second, due to intrinsic host or 
environmental factors, an alternative dysbiotic state may emerge, wherein the microbial 
community, although different in composition, possibly continues to perform detrimental 
ecosystem services. Third, an alternative healthy state may emerge, characterized by a 
novel microbiota composition with beneficial properties. Fourth, the microbiota changes 
to resemble the donor state, ideally incorporating the donor’s healthy functions.23

Figure 7.4 - Hypothetical outcomes of FMT treatment on microbiota 
composition. The interaction between two microbial consortia during FMT treatment 
may be likened to a complex pulse perturbation intended to transfer the functional 
properties of a donor microbiota to a recipient. Several potential outcomes can arise. 
First, one possibility is that the host microbiota returns to its original dysbiotic state 
(referred to as stable state A), as the introduced microorganisms fail to establish 
themselves permanently due to an insufficient perturbation. Second, the interaction 
may lead to the establishment of a completely new microbial community (referred to as 
stable state B), comprising species neither from the donor nor the original community. 
This novel community may arise due to a combination of factors such as niche availability, 
competitive exclusion, and environmental influences. Importantly, this new community 
could exhibit either beneficial or dysbiotic properties, depending on the specific 
composition and functional attributes of the newly established species. Third, due to 
intrinsic host or environmental factors, an alternative state is selected as the outcome 
(referred to as stable state C), comprising a mix of donor, patient, and new species. 
Fourth, resilience of the donor community (referred to as stable state D) in the new 
habitat could lead to a new interaction with long-term transfer of potential beneficial 
properties. This figure is adapted from Sommer et al. (2017).23
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In Chapter 6, we applied a methodology inspired by Schmidt et al. 2022 to the same dataset 
as the one used in Chapter 5 to investigate the extent to which a shift in the patient's 
microbiota towards the donor microbiota is beneficial for resolving dysbiosis in the patient’s 
gut.199 Engraftment has long been considered a key mechanism underlying the success 
of fecal microbiota transplantation.399 However, insights from earlier studies have raised 
questions about what happens to all the species involved during the succession phase 
of the treatment (during and after FMT).188, 199 Therefore, we categorized species within 
the recipient's gut microbiota into ecological groups based on their origin and presence 
over time: those either already present in the host before FMT, derived from the donor, 
or introduced as novel species (absent in both host pre-FMT and donor samples). Our 
findings revealed that responders retained more resident species and maintained a more 
constant level of colonization over time compared to non-responders. This suggests that a 
favourable response to FMT is facilitated by a microbiota receptive to colonization, without 
compromising the resident community.

Restoring the microbiota with an FMT treatment is a complex process, as different taxa 
recover or colonize to varying extents, with some failing to (re)establish entirely.58, 86, 226, 465 
This variability can be influenced by suppression and resource competition between 
invaders and resident species.87, 466-468 To mitigate the pressure from the resident species, 
a bowel lavage was performed prior to the first treatment, allowing for a more conducive 
environment for donor species to colonize. However, it is likely that the species that 
successfully colonize the gut after FMT are those closely related to the original inhabitants, 
as the gut environment provides a suitable niche for their growth.87, 188, 469 Even if the original 
species are replaced or supplemented by similar ones, the new microbes may potentially 
introduce new traits that alter the ecosystem’s functionality and metabolic output.95 
Moreover, if donor species may fail to establish, they might still be able to impact the 
recipient community's functioning and induce autonomous changes through interactions 
with resident members, for example by horizontal gene transfer or local metabolic activities 
while passing through.88, 95, 466, 467 It has been shown that in a fluctuating environment, rapid 
evolution can destabilize the long-term stability of interactions, potentially enhancing 
adaptability and resilience or disrupting microbial balance and health.470 Our study could not 
determine whether the species that reappear are leftover residents that regrew post-lavage, 
whether they gained additional functions, or whether they originated from the transplanted 
donor material if they are identical to the recipient species pre-FMT.



191Chapter 7 General discussion and future perspectives

Future directions for microbiome research in health and disease

The recognition of the microbiome's critical role in our health marks a significant shift from 
traditional clinical perspectives, which often view the body as a battleground between 
human cells and microbes (i.e., pathogens) to an understanding that embraces the complex 
ecological community context of the microbiome. A dysbiotic human gut microbiome can 
be likened to plant or animal communities in a highly disturbed environment, e.g., impacted 
by overfishing, (abrupt) climate change, habitat loss, ocean acidification, pollution, or an 
invasive species. Human interventions, such as generic antibiotic use, have demonstrated 
detrimental effects on both the microbiome and human health, mirroring the irreversible 
changes observed in disrupted ecosystems where pesticides are used instead of ecological 
management measures. Therefore, to overcome dysbiosis in complex chronic diseases, we can 
draw inspiration from strategies such as habitat restoration and targeted removal of invasive 
species, which have been successfully applied in large-scale biodiversity management. 
For chronic diseases, an ecological maintenance approach may be more effective than the 
traditional battlefield strategy.22, 226

The limitations of the traditional 'one-size-fits-all' treatment approach, based on broad 
population averages, have also become increasingly apparent due to the heterogeneity 
in genotypes and phenotypes of gastrointestinal diseases among human populations. For 
example, matching donors and recipients by lifestyle and diet could enhance the likelihood 
of transplanting species that are effective colonizers or providing the resident species with 
the necessary metabolites that support their growth and function, thereby potentially 
improving the recipient's microbiome more successfully. Potentially, a better FMT success can 
also be achieved through the administration of specific prebiotics alongside the microbes. By 
providing targeted substrates exclusively metabolized by preferred species, prebiotics could 
create an advantage for them.471, 472 Such an approach potentially strengthens the recipient's 
own microbiota and enriches it with species that naturally belong to the same community, 
leading to a more harmonious and effective community. However, the specific species that 
are most beneficial and those that are naturally suited to the community still need to be 
identified before this strategy can become a reality. As our understanding of the microbiome 
ecosystem advances, doctors will hopefully be equipped with precise disease prevention 
strategies and more effective treatments in the future.

A recurring theme in microbiome research is the need for large, densely sampled 
temporal datasets encompassing individuals from diverse backgrounds and lifestyles. 
Such datasets would be instrumental in unraveling fundamental mechanisms governing 
ecosystem dynamics in health and disease. Furthermore, studying microbiomes from 
various geographical regions (e.g., Africa) is important for capturing the global diversity 
in microbiological research, as most studies to date have focused on the United States, 
Europe, and Asia.473 The unique environmental factors, dietary habits, and cultural practices 
in different regions in the world can significantly influence microbial composition and 
function.474 By incorporating diverse microbiomes into our research, we can enhance our 
understanding of microbial dynamics that could inform health strategies and identify 
important confounding variables that may influence health outcomes.
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Another way forward is to paint a more comprehensive picture of the microbial ecosystem 
with an integrative ecosystem biology approach that combines multiple omics technologies 
with host physiological data, and in depth knowledge of bacterial species behaviour and their 
(chemical) environment.3, 60, 152, 244, 440, 475 By examining fecal matter in more detail alongside 
dietary questionnaires or food diaries, we might be able to extract valuable information 
about the host's diet, offering more insights than what is typically available. Note that the 
presence of a nutrient in a fecal sample is often assumed to indicate its importance for the 
microbiome. However, it could also be present because the species have not utilized it, 
leaving it to be excreted in the feces. Additionally, simultaneous assessment of mediators 
of reciprocal host-microbe interactions, such as microbial metabolites and immunological 
parameters, holds promise for identifying causality, discerning what changes first and who 
or what influences whom at various points in time.121 At present, a significant question 
remains unanswered: whether the microbiota differs in various disease states because it 
causes these states, whether the microbiota differs as a consequence of the patients' disease 
state, or whether both are caused by the same external factors (for example altered diet or 
lifestyle). Mixing up association with causality can lead to an overestimation of the clinical 
relevance and impact of the microbiome on diseases.214 For example, bacteria associated with 
unhealthy microbiomes may not necessarily be those directly related to the disease; instead, 
they could merely be among the few species capable of thriving in a gut environment with 
reduced diversity (possibly due to chance as described by the neutral theory); or they may 
play a beneficial role by supporting the host in the restoration of the healthy microbial 
community.476

Future research could also aim to identify not only bacteria, but also other microbes such 
as Archaea, fungi, and viruses, while exploring their interactions with each other and with 
bacteria, as well as their potential roles in health and disease. This includes investigating 
phage therapy as a strategy to target specific bacteria or pathogens, as bacteriophages may 
regulate intestinal microbiota diversity through mechanisms such as the kill-the-winner 
principle (which targets the most abundant bacterial species) or by specifically eliminating 
a species of interest, thereby preventing, for example, the outgrowth of Prevotellaceae in UC 
patients.67, 477-479 Cross-domain networks may be important in understanding microbiome 
dynamics and ecosystem resilience, as there are many correlations with the bacterial 
microbiome and other domains.428 

It is important to find a balance between collecting extensive data and maintaining clarity 
and interpretability. Merely increasing sequencing efforts is insufficient; the analysis pipelines 
must also continuously evolve to accommodate the influx of new data types and quantities. 
Moreover, focusing on excessively granular data might lead to a loss of statistical power 
due to the large number of species or functions relative to the number of patients and the 
prevalence of rare taxa. Additionally, the fact that different bacterial species can perform the 
same functional role in different patients may require a much larger sample size or functional 
assay than is (currently) possible in microbiome studies.118, 168 On top of that, even the 'simple' 
networks with only bacteria generated from currently available data are challenging to grasp. 
Before introducing further complexity, we must step back to reflect on our research designs 
and develop strategies to effectively comprehend the influx of new information. 
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Finally, increasing the database of cultured microorganisms and annotated genes is needed 
for a comprehensive understanding of microbial function and for creating benchmark 
data to improve the evaluation of tool performance.118, 480 Without the information about, 
for example, functional redundancy, dormancy, and phenotypic plasticity, taxonomic 
data alone offers limited insights into ecosystem processes across space and time.425, 480, 481 
Fundamental research on gut microbiota, including culturing of isolates, remains important 
for understanding the interspecies interactions and bacterial behaviours and dynamics, as it 
provides species-specific knowledge.482 Mechanistic research in wet-lab and (animal) models 
is also imperative to validate the hypothesized mechanisms of species behaviours, not only 
for the most abundant ones, as they may not be the most important from an ecological point 
of view.483-488 However, replicating complex human gut microbiome interactions (in artificial 
gut models) poses significant challenges, despite all the current advances in the field, and 
warrants further improvements.118, 489-491 Ideally, establishing gold standards for microbiota 
data analysis and comprehensive reporting of (meta)data would enable more meaningful 
comparisons across studies, a call made over a decade ago but still largely unaddressed.492, 493

Concluding remarks

The journey of microbiome research reveals both the complexities and the promises for 
enhancing human health. As technology advances, so does our understanding of the 
microbiome. More fine-grained studies on the (gut) microbiome and its role in human 
health are needed to provide interpretation and meaning on the differences already found. 
Sophisticated technologies, such as Artificial Intelligence (AI), machine learning, and network 
analyses hold potential for identifying patterns within microbiota community data. However, 
those results should still be considered in light of past discoveries, established methods and 
models, and longstanding theories from multiple fields. When we combine (mathematical) 
modeling, theoretical knowledge, and experimental approaches, we gain a more 
comprehensive understanding of complex biological systems allowing us to validate results, 
do predictions, uncover underlying mechanisms, and refine our models for more accurate 
insights, as demonstrated throughout this thesis.

Collaborations across multidisciplinary groups, comprising, among others, (microbial) 
ecologists, healthcare professionals, complexity scientists, and bioinformaticians will 
further enrich our research field. Complex systems exist on a spectrum between order and 
randomness. Although one can get lost in the hairball of a complex network, knowledge 
from several fields can help. Understanding how systems respond to changes and return to 
stability enhances our grasp of the complex dynamics within the human gut microbiome. 
This knowledge can ultimately improve microbiome-modulating strategies and drive 
innovation of therapeutic strategies. Improved data sharing practices, including publishing 
raw data in a standardized fashion and statistical code will facilitate higher-quality meta-
analyses and the establishment of more robust microbial signatures for diseases.439, 494 
Unfortunately, data accessibility still poses a significant challenge in microbiota research, 
with researchers frequently withholding study-related data. While concerns about privacy 
and efforts required for data collection are understandable, limited data sharing impedes 
scientific advancement.495-500



194Chapter 7 General discussion and future perspectives

By recognizing that each step brings us closer to harnessing the microbiome’s potential to 
improve human health, we ensure continuous progress and discovery. To truly understand 
microbial dynamics, it is important to acknowledge that human time is vastly different from 
bacterial time. Bacteria perceive their environment, resources, and interactions on a much 
smaller spatial scale. They constantly adapt to their immediate surroundings and rapidly 
shifting communities. An (microbial) ecological perspective grounded in theory is essential 
to interpret the impact of the microbiome on our health and disease.




