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Species abundance correlations carry
limited information about microbial 
network interactions

Abstract

Unraveling the network of interactions in ecological communities is a daunting 
task. Common methods to infer interspecific interactions from cross-sectional data 
are based on co-occurrence measures. For instance, interactions in the human 
microbiome are often inferred from correlations between the abundances of bacterial 
phylogenetic groups across subjects. We tested whether such correlation-based 
methods are indeed reliable for inferring interaction networks. For this purpose, we 
simulated bacterial communities by means of the generalized Lotka-Volterra model, 
with variation in model parameters representing variability among hosts. Our results 
show that correlations can be indicative of the presence of bacterial interactions, 
but only when measurement noise is low relative to the variation in interaction 
strengths between hosts. Indication of interaction was affected by type of interaction 
network, process noise, and sampling under non-equilibrium conditions. The sign of 
a correlation mostly coincided with the nature of the strongest pairwise interaction, 
but this is not necessarily the case. For instance, under rare conditions of identical 
interaction strength, we found that competitive and exploitative interactions can 
result in positive as well as negative correlations. Thus, cross-sectional abundance 
data carry limited information on specific interaction types. Correlations in 
abundance may hint at interactions but require independent validation.

Introduction

The human body harbors an exceptional bacterial diversity.21 The composition of these 
bacterial communities is generally shaped by characteristics of the host and by the ecological 
dependencies among bacterial species themselves.8, 13, 245 These dependencies often occur 
through competitive or synergistic interactions, which may lead to a (mutual) decrease or 
increase in the abundance of interacting species.123 For instance, it is known that bacteria 
can interact with each other through excreted metabolites, which can function as an 
antimicrobial or as a food source.8, 246 Among other mechanisms, for example negative 
interactions take place when toxic compounds produced by one species harm other bacteria, 
whereas positive interactions occur when bacteria feed on the nutrients that are produced 
by others. Besides, many different forms of interactions exist, depending on the effects 
experienced by the species involved. Knowledge of interspecific interactions in the human 
microbiome is paramount to understand ecological processes and compositional changes in 
relation to health and disease.49, 190

Most human microbiome studies are limited to only a few samples in time, presenting mere 
‘snapshots’ of the microbial ecosystem, even if these samples are derived from hundreds of 
human hosts. 
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A common way to infer microbial networks from such cross-sectional data is by quantifying 
co-occurrence, e.g., through (partial) correlations, between bacterial phylogenetic groups. 
Several different conclusions have been derived from such endeavors, for example on 
species associations that reflect shared or overlapping niche preferences,247 microbial 
community structure,248, 249 the resilience of microbial communities to perturbations,100 
and keystone species in microbial networks.114 Currently there are several correlation-
based network tools available that can deal with the difficulties of microbiome data, such 
as compositionality.230, 250, 251 The potential of correlation-based approaches for uncovering 
microbial networks has been highlighted in previous research.252

Whether correlation-based networks represent meaningful ecological structure in microbial 
communities is, however, debated. Carr et al. (2019) showed that spurious correlations may 
occur due to the use of sequencing methods, data transformations, and the large number 
of unmeasured variables.216 Berry & Widder (2014) and Hirano & Takemoto (2019) assessed 
the performance of different co-occurrence methods for inferring interaction structure and 
found that their performance strongly depends on the underlying network properties, 
such as network size and density, and the number of samples used to construct the 
network.114, 229 Apart from the challenges of metagenomic-based abundance data and 
disagreement between various network tools, here we question whether correlations 
themselves are at all useful to distinguish between different ecological interaction types. 
Resource competition and metabolic cooperation have been successfully inferred within 
environmental microbiomes, by linking ecological distribution data to multi-species 
metabolic models and subsequent verification of putative interactions by means of 
experimental co-growth analysis.119 However, host-associated microbiomes often include 
non-culturable organisms, without information on nutrient requirements or metabolic 
function. Likewise, performance of correlation analysis in relation to alternative interaction 
types in the human microbiota is not well understood and deserves further investigation.

Correspondence of correlations with ecological interactions needs to be studied against 
a known ground truth, which can be achieved by means of simulation. Mathematical 
models have been used as ground truth in assessment of correlation network techniques 
before,253 but correlation networks have not been systematically investigated against 
distinct interaction types in dynamic models. This requires elucidation especially as the ‘true’ 
ecological networks governing microbiome dynamics are still unknown. For this purpose, 
we assessed the performance of correlation-based network reconstruction by simulating 
abundance data based on the generalized Lotka-Volterra (gLV) model. The gLV model 
describes the collective dynamics of multiple species by means of an interaction matrix that 
can modulate different types of interactions.232 The model is commonly used in microbiome 
studies for different aims: to simulate microbial communities under various interaction 
structures,232 to infer interaction structure from time series data,100 to forecast population 
dynamics after a perturbation,254 to infer the network topology from steady state samples,255 

and to identify the efficiency of intervention protocols in altering the state of a system via 
the addition or subtraction of microbial species.256 In ecology, gLV-type models have been 
questioned for their reliance on pairwise additive interactions, as well as for the strictly linear 
effects imposed on interspecific interactions. Nonetheless, from the perspective of network 
inference, it makes sense to first investigate gLV-type models, as their first-order description 
of ecological dependencies, specified through a pairwise interaction matrix, resembles the 
objective of correlation analysis and most network models.8
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In addressing how gLV-type interactions can be inferred from cross-sectional data, we mainly 
focus on the correspondence between the obtained correlation-based networks and the 
underlying network of ecological interactions. We specifically investigate how the inference 
of microbial interaction types is enabled by interindividual variation in population-dynamic 
parameters (e.g., species-specific carrying capacities, intrinsic growth rates, and strength 
of interspecific interactions) and how network reconstruction is affected by gLV model 
assumptions. We highlight several situations where correlations cannot distinguish microbial 
interaction types and therefore recommend careful interpretation and validation when 
inferring networks from cross-sectional abundance data.

Methods

Two-species Lotka-Volterra model with self-limitation
First, we investigated how interactions between two species of microbial populations are 
displayed in terms of correlations of abundances in the Lotka-Volterra model. For the sake of 
convenience, we use the term ‘species’, although in studies with real microbiota data it is often 
not possible to characterize the taxonomic abundances at species-level and therefore genera 
or higher taxonomic levels are often used instead.

The two-species Lotka-Volterra model is given by the following set of ordinary differential 
equations:

					     Eq. 2.1

					     Eq. 2.2

Here, Ni is the abundance of either species 1 or species 2 (with i = 1 or i = 2). The term ri is the 
intrinsic growth rate of each species, here normalized to 1 and 2 per time unit for species 1 
and 2, respectively. The effect of each species’ abundance on its own growth is defined in 
terms of the species-specific carrying capacities Ki, with αii = –Ki

–1 denoting intraspecific 
competition. We arbitrarily chose the carrying capacity for the first species to be higher 
than the carrying capacity for the second species (K1 = 1.5; K2 = 1.1), meaning intraspecific 
competition is less strong for species 1 compared to species 2. Furthermore, αij (i = 1, 2; j = 1, 2; 
i ≠ j) indicates the interspecific interactions (the effect of one species abundance on the growth 
of the other species). A positive αij (e.g., as in the case of mutualism) denotes a positive effect 
of species j on the growth of species i, a negative αij (e.g., as in the case of competition) means 
a negative effect of species j on the growth of species i (Appendix Figure 2.1). We assessed 
the effect of variation in the interspecific interaction parameters on correlation in equilibrium 
abundance between both species. For this purpose, the interspecific interaction strengths (α12 
and α21) were drawn randomly from two normal distributions with similar or different mean 
and similar or different standard deviations (σα). Moreover, we also investigated the situation 
where |α12| = |α21|. Note that it was not possible to achieve stable coexistence for every 
combination of α12 and α21. More information on the conditions for coexistence can be found 
in Box 2.1.

 = r1N1(1 – K1  N1 + α12N2)
 dN1

 dt
-1

 = r2N2(1 – K2  N2 + α21N1)
 dN2

 dt
-1
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Box 2.1 - Coexistence in a two-species Lotka-Volterra model with self-limitation. 
The conditions for coexistence in the two-species Lotka-Volterra model with self-limitation 
can be derived by setting both growth equations to zero and investigating what parameter 
combinations yield N1 > 0 as well as N2 > 0. Here, N1 denotes the equilibrium abundance of 
species 1 and N2 denotes the equilibrium abundance of species 2. Writing these conditions in 
terms of N1 as functions of N2 gives the following: 

					       		  Eq. 2.A

 					     		  Eq. 2.B

The joint equilibrium abundance of both species (N1, N2) is determined by ƒ1(N2) = ƒ2(N2). 
Equation 2.A shows that species 1 grows to its carrying capacity K1 in the absence of 
interspecific interactions, i.e., if α12 = 0. Likewise, α12 > 0 allows species 1 to grow to higher 
abundance in the presence of species 2 than determined by its own carrying capacity, 
whereas α12 < 0 leads to a reduced abundance of species 1 in the presence of species 2. 
Similar relations hold for the abundance of species 2 in the presence of species 1, depending 
on α21. From Equation 2.B, it can also be derived that N1 > 0 is only compatible with N2 being 
above its carrying capacity K2 if at the same time α21 > 0, whereas N2 being below K2 requires 
α21 < 0.

Joint inspection of Equations 2.A and 2.B also establishes the following, more subtle, 
conditions for coexistence:

1	 If α12 > 0 and α21 > 0, e.g., in case of mutualism, ƒ2 has a negative intercept
in the Cartesian (N2, N1) coordinate system (Figure 2.A - panel A). As both functions have 
a positive slope in this situation, and ƒ1 always has a positive intercept, ƒ2 must have a 
stronger slope than ƒ1 for both to intersect in the positive quadrant. This boils down 
to          > α12K1, or equivalently α21α12 < α11α22, as Ki = -      by definition. This means that the 
product of interspecific mutualism needs to be smaller than the product of intraspecific 
competition for both species to co-exist, otherwise there is no control of population 
growth.

2	 If α12 < 0 and α21 < 0, e.g., in case of competition, both functions have positive
intercept and negative slope (Figure 2.A - panel B). Intersection in the positive quadrant 
requires the function with the larger intercept to intersect the abscissa, i.e., the N2 axis 
where N1 = 0, at a smaller value than the function with the smaller intercept. Thus, this 
requires |α21| >      and |α12| >      , with ƒ2 having the larger intercept, or alternatively, 
|α21| <      and |α12| <      , with ƒ2 having the larger intercept. In the first instance, interspecific 
competition is stronger than intraspecific competition, whereas in the second instance, 
interspecific competition is less strong than intraspecific competition. It turns out that only 
the last of these conditions yields a stable equilibrium, meaning that the abundances of 
both species return to equilibrium after small displacements.

 N1 > 0     N1 = ƒ1(N2) = K1 + α12K1N2 = 0 
 dN1

 dt ^

 N2 > 0     N1 = ƒ2(N2) = –= 0 
 dN2

 dt
1

 α21
^ + 1

 (α21K2) N2

1
 α21K2

1
 αii

-

1
 K1

1
 K21

 K1

1
 K2
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3	 If α12 < 0 and α21 > 0, e.g., in case of exploitation of species 1 by species 2, ƒ1 has a positive 
intercept and negative slope, whereas ƒ2 still has a negative intercept and positive slope 
(Figure 2.A - panel C). Intersection in the positive quadrant requires ƒ1 to intersect the 
abscissa at a larger value than K2, the point where ƒ2 intersects the abscissa. The condition 
for coexistence thus becomes |α12| <      , or equivalently α12 < α22, meaning that the parasite 
should exert stronger inhibitory effect on its own growth than on that of the exploited 
species.

4	 Conversely, in case of exploitation of species 2 by species 1, i.e., if α12 > 0 and α21 < 0, 
both ƒ1 and ƒ2 have a positive intercept, but ƒ1 now has a positive slope whereas ƒ2 has a 
negative slope (Figure 2.A - panel D). Intersection in the positive quadrant then requires ƒ1 
to have a smaller intercept than ƒ2. The condition for coexistence thus becomes |α21| <      , 
or equivalently α21 < α11, again meaning that the parasite should exert stronger inhibitory 
effect on its own growth than on that of the exploited species.
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Figure 2.A - Zero-growth isoclines (‘null-clines’) in the 
two-species Lotka-Volterra model. Visualization of the effect 
of species 1 and 2 abundances on each other in the Cartesian (N2, N1) 
coordinate system. Here, ƒ1 denotes the isocline of zero growth of 
species 1, i.e., ƒ1(N1) (in dark blue), and f2 denotes the isocline of zero 
growth of species 2, i.e., ƒ2(N1) (in light blue). Their point of intersection 
represents the joint equilibrium abundance of both species, i.e., (N1, N2). 
Throughout K1 = 1.5 and K2 = 1.1. Parameters for the various scenarios: 
α12 = 0.3 and α21 = 0.6 under mutualism; α12 = –0.6 and α21 = –0.4 under 
competition; α12 = –0.6 and α21 = 0.4 under exploitative interaction 
type 1; and α12 = 0.6 and α21 = –0.4 under exploitative interaction type 2.
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The additional requirement for stable coexistence is that the two-species system should be 
locally stable around the equilibria (N1, N2), which can be formalized in terms of the Jacobian 
matrix of the Lotka-Volterra model evaluated at (N1, N2). This amounts to determining the 
trace and determinant of the matrix of the partial derivatives of the growth equations 
regarding either species, i.e.,

         r1 - 2r1N1 / K1 + r1α12N2 	              r1α12N1                   		
							       Eq. 2.C	       	
	 r2α21N2 		  r2 - 2r2N2 / K2 + r2α21N1

It can be verified that the conditions for coexistence stated under mutualism and exploitative 
interactions yield equilibria that are locally stable, just as the last of the conditions under 
competition. We will not derive these conditions here, as these are covered by textbooks on 
theoretical ecology.257 

In summary, the two-species Lotka-Volterra model with self-limitation has the following 
possibilities for stable coexistence (Table 2.A):

Table 2.A - Conditions for stable coexistence in the two-species Lotka-
Volterra model.

Type of interaction Condition Outcome

Mutualism
α12 > 0  α21 > 0 α12α21 < N1 > K1  N2 > K2

Competition
α12 < 0  α21 < 0 |α12| <        |α21| < N1 < K1  N2 < K2

Exploitative interaction type 1a

α12 < 0  α21 > 0 |α12| <  N1 < K1  N2 > K2

Exploitative interaction type 2b

α12 > 0  α21 < 0 |α21| < N1 > K1  N2 < K2

a Exploitative interaction type 1: species 1 is being exploited by species 2
b Exploitative interaction type 2: species 2 is being exploited by species 1

The condition for stable coexistence of competitors requires both species to have less effect 
on the growth of the other species than on itself. In case of an unstable equilibrium, either 
species will eventually outcompete the other; the species with an initial advantage will drive 
the other species to extinction, a condition referred to as competitive exclusion.258, 259 This 
will occur, for instance, when each species produces a substance which is toxic to the other 
species but relatively harmless to itself.

1
 (K1K2)

1
 K2

1
 K2

1
 K1

1
 K1
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Generalized host-specific Lotka-Volterra model
Microbial abundance is not only shaped by intra- and interspecific interactions, but also by 
host characteristics, for example lifestyle, diet, and age.260 Therefore, we investigated the 
performance of correlation-based network inference of microbial networks for a host-specific 
version of the gLV model. The host-specific gLV model is given by:

					     Eq. 2.3

Here, Ni,m is the abundance of each species i in host m, with i = 1, ..., s (s being the total 
number of bacterial species) and m = 1, ..., 300 (the total number of hosts). The terms ri,m 
and Ki,m are the intrinsic growth rates and the carrying capacities of each species i in host m. 
The carrying capacities are kept separated from the interaction matrix A which only contains 
interspecific interactions (namely, the pairwise terms αij), facilitating a one-to-one comparison 
with the correlation matrix.

Parameterization of the base case simulations
We started with a base case, and we added step by step variation to this case. Note that 
the base case parametrization does not reflect any particular real-world system. Rather, 
parameters were chosen in such a way to facilitate computation and promote coexistence 
among species. Variations to the base case parameters are shown later on, but also here, 
findings should be appreciated from a qualitative rather than quantitative viewpoint. In 
the base case, the number of bacteria equals ten. The species-specific growth rate ri and 
the species-specific carrying capacity Ki were randomly drawn from uniform distributions, 
respectively U(0.05, 0.1) and U(0, 1). The density of the interaction matrix A in the base 
case was chosen such that both sparsity of the interaction network and coexistence of 
the species was promoted in all simulations; in the base case, density was ¼ meaning that 
three out of four possible interactions were set to zero. Moreover, to ensure coexistence 
between species in the model we chose stronger intraspecific interactions than pairwise 
interspecific interactions. The species-specific parameters αij were drawn from a Gaussian 
mixture distribution, as follows. Half of the interactions were drawn from a negative normal 
distribution: αij ~ N(–0.25, 0.1); and the other half of the interactions were drawn from a 
positive normal distribution: αij ~ N(0.25, 0.1). All interactions were restricted to lie between 
–0.5 and 0.5, i.e., the normal distributions were truncated at –0.5 and 0.5. The parameters ri, 
Ki, and the interaction matrix A were randomly drawn 1000 times from the aforementioned 
distributions to obtain 1000 different parameter combinations. Hereafter, host-specific 
parameters were drawn from log-normal distributions around species-specific parameters, 
as follows:

ln(|αij,m|) ~ N(ln(|αij|), σα)
      ln(ri,m) ~ N(ln(ri), σr) 			   Eq. 2.4
      ln(Ki,m) ~ N(ln(Ki), σK)

Here, σα denotes the interindividual variability in interspecific interactions among the 300 
hosts (with σα = 0.25 in the base case), and |αij,m| denotes the absolute strength of interaction 
from species j on the growth of species i for each host m. Note that, for the sake of simplicity, 
the use of log-normal distributions was adopted to induce fold-changes around population 
means, where both the presence and the sign of interspecific interactions are kept constant

 = r
i,m

N
i,m

(1 – K
i,m

N
i,m

 + ∑ α
ij,m

N
j,m

) 
 dNi,m

 dt
-1

S

j = 1
j ≠ i
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across hosts. However, this may be untrue in real microbiota as many microbes can change 
metabolic pathways and therefore may switch between interaction types and interaction 
partners. In the base case model, the carrying capacities and growth rates were kept constant 
across hosts, meaning σr and σK were set equal to 0.

The simulation process yielded 300,000 time series (300 host-specific time series for each 
of the 1000 ten species networks). The running time of the model was chosen such that all 
species reached their equilibrium abundance. If at least one species did not survive (i.e., when 
its abundance dropped below 0.001), we rejected the simulation in favor of another randomly 
drawn parameter set. After sampling the abundances at equilibrium, we added independent 
and identically distributed noise υ to mimic uncertainty in measurements (with υ ~ U(–0.01, 
0.01) in the base case). This measurement noise can be thought of as representing, for 
example, sampling errors, environmental contamination, batch effects during sequencing, or 
annotation errors in reference genomes.261 Simulations were performed in R (R version 3.6.0; 
www.r-project.org). The gLV model was solved with the ‘lsoda’ function from the ‘deSolve’ R 
package (version 1.24) which uses a FORTRAN ODE solver written by Petzold & Hindmarsh 
(1995).262, 263 R code is available on the GitHub repository (susannepinto/gLV_microbiome).
A general overview of the base case simulation design is given in Figure 2.1.

Figure 2.1 - Representation of the workflow. In an interaction network, singular 
green and red arrows represent a commensalistic interaction and an amensalistic interaction, 
respectively, whereas double green arrows represent mutualism and double red arrows 
competition. A combination of a green and red arrow signifies an exploitative interaction. 
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See Appendix Figure 2.1 for more details. A) A random interaction matrix i. This interaction 
matrix is implemented in the gLV model, B) together with the intrinsic growth rates and carrying 
capacities of the species. C) All time series are (slightly) different due to the variation in the 
interaction strengths. D) The partial correlations are calculated from the abundances per species 
sampled from the 300 different hosts at equilibrium. Only the significant correlations and the 
lower part of the matrix are used for the comparison with the original interaction matrix i. 
Variations to the workflow were studied by adding for example a perturbation or process noise. 

Variations to the base case model
We studied multiple variations to the base case model. Similar to the base case simulations, 
we did 1000 simulations per variation. As a first variation, we added host-specific variability 
to the species-specific parameters ri and Ki using Equation 2.4, with σr = 0.25 and σK = 0.25.

Second, we varied the amount of measurement noise, from υ ~ U(–0.01, 0.01) (medium noise 
in the base case) to υ ~ U(–0.001, 0.001) (low noise), and to υ ~ U(–0.1, 0.1) (high noise). 
We also simulated time series with a different type of noise, namely varying magnitudes of 
process noise W (Appendix Figure 2.2). In contrast to measurement noise, which was added 
only to the sampled abundances, process noise was added to the gLV model such that within-
host population dynamics were perturbed at discrete time intervals Δt (Δt = 1 time unit). 
The time-varying process noise was drawn from a log-normal distribution to prevent the 
abundances from dropping below zero, i.e., ΔWi = ln(Ni,m(Δt)) – ln(Ni,m(t)) ~ N(ln(Ni,t), σW) (with 
σW ~ N(0, 1) for high process noise and σW ~ N(0, 0.1) for low process noise).

Further, we simulated data with interaction strengths drawn from a uniform (αij ~ U(–0.5, 0.5)) 
or unimodal (αij ~ N(0, 0.15)) distribution. As in the base case, the interaction strengths were 
restricted to lie between –0.5 and 0.5 (Appendix Figure 2.3).

We also analysed three different structures of microbial networks. First, we increased the 
number of species s from 10 to 30. To promote coexistence, we also reduced the density 
of the interaction matrix to 1/6. Secondly, we simulated a network based on a producer 
consumer relation between the species (Appendix Figure 2.4). Instead of random interaction 
networks (Appendix Figure 2.4A), the producer-consumer networks are based on a cross-
feeding structure between producers and consumers (with equal numbers of producers and 
consumers) (Appendix Figure 2.4B). Producers excrete metabolites which are consumed by 
the consumers. Because consumers remove the ‘waste’ from the producers, the presence 
of a consumer can also be beneficial for the producers. Therefore, between producers and 
consumers positive interactions are more likely to occur than negative interactions. For 
this purpose, we drew the consumer-producer interactions from the positive side of the 
Gaussian mixture distribution (αij ~ N(0.25, 0.1)). In contrast, among producers and consumers 
themselves, the interactions are predominantly negative as these species are more likely to 
compete for similar resources. For this purpose, we drew the interactions among producers 
and among consumers from the negative side of the Gaussian mixture distribution 
(αij ~ N(–0.25, 0.1)). Third, we simulated a microbial network with interaction hubs, i.e., a 
network containing species with unusually high numbers of ecological interactions compared 
to other species in the network (Appendix Figure 2.4C).264 Hub-species networks were created 
according to the Barabási-Albert model265 and implemented with the ‘barabasi.game’ function 
from the ‘igraph’ R package (version 1.2.11). In the network-generating algorithm, interactions 
are distributed according to a mechanism of preferential attachment. 
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Thus, species with interactions obtain a higher chance of getting more interactions, resulting 
in a few ‘hub-species’ with many interactions. We constructed two scale-free directed graphs 
(with power = 2), denoting ‘incoming’ and ‘outgoing’ interactions, and combined these to 
obtain a bidirected graph. Density was kept similar to the base case model (¼).

Next, we also investigated how network inference is affected by sample size by considering 
a scenario with 3000 instead of 300 hosts. We did this for the base case model with random 
interaction networks, as well as for the producer-consumer and hub-species networks 
described before.

Last, we investigated the effect of a perturbation on the performance of network inference. 
The populations were perturbed after 175 time units, with a perturbation that lasted for 50 
time units. The perturbation was modelled by taking a new set of random carrying capacities 
per species per sample. Due to the simulated perturbation, the equilibrium distribution 
shifted. After the perturbation, the species grew back to their original equilibrium. Sampling 
occurred before, during, or after the perturbation.

Assessment of correlation-based network inference 
With the simulated data at hand, we created a dataset with the abundances of the model 
species sampled at equilibrium for each host m. After adding measurement noise to the data, 
we inferred the correlations between species by calculating the Pearson’s partial correlation 
coefficients ρ between all abundances Ni across the m different hosts (Figure 2.1). We did 
not use plain correlations, because partial correlations have the advantage of controlling 
for confounding interactions (e.g., interactions between bacterial species affecting the 
abundance of a third species).227 Agreement between the partial correlation matrix and the 
interaction matrix A from the gLV model was assessed qualitatively, i.e., we only considered 
whether significant entries in the partial correlation matrix agreed with the interaction 
matrix in terms of nonzero entries with the same sign. We used the Benjamini-Hochberg 
procedure to control for the expected proportion of ‘false discoveries’ after calculating partial 
correlations between each pair of species.266 The results (true positives, true negatives, 
false positives, and false negatives) were stored in a confusion matrix (Table 2.1). Because a 
correlation matrix is symmetric and an interaction matrix A is not, we only used half of the 
partial correlation matrix (Figure 2.1D) to construct the confusion matrix. For a correctly 
classified interaction, either one or both interactions in the upper and lower part of the A 
matrix must have the same sign as in the lower part of the partial correlation matrix. This 
can produce a bias, because asymmetric interactions can result in a true positive result 
for correspondence of the correlation coefficient (ρ) with either interaction. For example, 
for exploitative interactions, both negative and positive correlations were classified as 
true positive results. Therefore, we tested the effect of this bias on the success of network 
inference by specifying the intended sign in correlation analysis, as the sign of the strongest 
interaction in each pair of species. Hence, for an exploitative interaction, only a positive or 
a negative correlation is correct, depending on the weights of the asymmetric interactions. 
We also tested the effect of this bias on the success of network inference by setting the rule 
that the sign of both interactions must be matched by the inferred correlation coefficient. 
Therefore, only mutualism and competition can be inferred correctly, as amensalism, 
commensalism, and exploitative interactions are asymmetric.
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Table 2.1. The confusion matrix as used in this study. 
The inferred partial correlation coefficient ρ (from the lower part of the partial 
correlation matrix) must have the same sign as one of the interactions in the interaction 
matrix A to be considered as a true positive finding in base case analysis.

Interaction in the A matrix from 
the model

Inferred partial correlation

Negativea Not significant Positivea

No interaction 0, 0 false positive true negative false positive

Mutualism +, + false positive false negative true positive

Competition –, – true positive false negative false positive

Commensalism +, 0 | 0, + false positive false negative true positive

Amensalism –, 0 | 0, – true positive false negative false positive

Exploitative interaction +, – | –, + true positive false negative true positive
a	 Only significant partial correlations (with p-value < 0.05) are considered after correction for 
	 multiple testing with Benjamini-Hochberg procedure.

Performance of network inference was evaluated using precision and recall, as well as a 
combination of both measures, called the F1-score.267 The precision is the fraction of correctly 
classified interactions among the total number of significantly predicted interactions (i.e., 
significant partial correlations) and the recall is the fraction of correctly classified interactions 
among the total number of non-zero interactions in the interaction matrix A. The F1-score (on 
a scale from 0 (no agreement) to 1 (perfect agreement)) is obtained as the harmonic mean of 
precision and recall, weighted equally, as given in the following equation:

				     	 Eq. 2.5

Results

Inference of asymmetric and symmetric interactions in a two-species system 
Correlations in abundances of the species in a two-species Lotka-Volterra model are shaped 
by the type of interaction involved. Figure 2.2 shows scatterplots of the abundances of two 
bacterial species for different interaction mechanisms over a range of different combinations 
of α12 and α21. Mutualistic interactions clearly yielded a positive correlation in abundance 
between the two species involved (Figures 2.2A and Appendix Figure 2.5). Competitive 
interactions generally yielded negative correlations (Figures 2.2B and Appendix Figure 2.5). 
However, under perfectly symmetric competition (when α12 = α21) we did find a positive 
correlation depending on interaction strength and carrying capacities of the species involved 
(Appendix Figure 2.5D - second panel). In the situation where one of the two species does 
not experience any benefits or limitations in growth from the other species, as is the case 
with commensalism and amensalism (i.e., α12 = 0 or α21 = 0), correlations are zero because one 
of the species will grow to its carrying capacity irrespective of the abundance of the other 
species (Figure 2.2C and 2.2D).

Correlations under exploitative interactions among bacteria, benefitting one but harming the 
other species, generally yielded positive correlations (Figures 2.2E and 2.2F, and Appendix 
Figure 2.5), but negative correlations were also found. 

F1 = 2 · precision · recall
precision + recallF1 = 2 · precision · recall
precision + recallF1 = 2 · precision · recall
precision + recall
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This happened when the exploitative benefit was of equal magnitude as the harm done 
to the other species (Appendix Figure 2.5D), or of similar mean magnitude but with more 
variation (e.g., species 1 is exploited by species 2; –α12 = α21 and σα12 << σα21 (exploitative 
interaction type 1) or species 2 is exploited by species 1; α12 = –α21 and σα21 << σα12 
(exploitative interaction type 2) (Appendix Figure 2.5B). However, if the exploitative benefit 
outweighs the harm done to the other species, exploitative interactions will generally yield 
positive correlations. It should also be noted that the two species were not exchangeable, 
because species 1 was given a weaker intraspecific interaction strength than species 2. 
Thus, in the absence of interspecific interactions, species 1 can reach a higher abundance at 
equilibrium. This means that, for the same interspecific interaction strength, the species with 
the higher carrying capacity exerts a stronger (negative) effect on the growth of the other 
species.

Figure 2.2 - Scatter plots between the abundances of two bacterial species for 
different interaction mechanisms. A) mutualism, B) competition, C) commensalism, D) 
amensalism, and E, F) exploitative interactions. The abundances of the two species N1 and N2 at 
equilibrium are shown as scatterplots and have been obtained by running the two-species 
Lotka-Volterra model, with K1 = 1.5; K2 = 1.1; r1 = 1; r2 = 2 and αij drawn randomly from normal 
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Network inference under various interaction types
Here, we used the base case model to assess the success rate of recovering a particular 
interaction type between pairs of species: amensalism, commensalism, exploitative 
interactions, mutualism, and competition (Appendix Figure 2.1). Figure 2.3A shows that 
correlations were more often found in mutualistic and competitive interactions, where 
interacting species experience the same qualitative effects from each other, than in 
amensalistic and commensalistic interactions, where only one species experiences an effect 
from the presence of another species. For exploitative interactions among bacteria, either a 
positive or negative correlation coefficient ρ could be found, with a success rate comparable 
to amensalistic and commensalistic interactions. Contrary to the results that included 
symmetric interactions, there was no difference between the successful inference of positive 
interactions over negative interactions in any interaction type (Figure 2.3B). For all interaction 
types, the sign of the significant correlation coefficient ρ found, mostly agreed with the sign 
of the interaction type (Figure 2.3). However, with the inferred correlations neither the type 
nor direction of the original interaction could be recovered.

distributions with identical means and standard deviations (α12 ~ N(|0.7|, 0.2), α21 ~ N(|0.7|, 0.2)). 
In the case of commensalism and amensalism: α12 ~ N(|0.7|, 0.2) and α21 = 0. The two species can 
co-exist under certain combinations of αij (Box 2.1). The grey polygon indicates the area where 
coexistence is possible. Note that the axes have different ranges in each subplot. Because the 
two species have different carrying capacities, the two situations of exploitative interactions are 
different; i.e., in case of exploitative interaction type 1 (species 1 is exploited by species 2) and in 
case of exploitative interaction type 2 (species 2 is exploited by species 1).

Figure 2.3 - The percentage of significant partial correlations (with sign matching 
interaction in either direction), as recovered from the base case model. 
A) For different types of pairwise interactions and B) for the different correlations.
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Network inference under various sources of process variability 
Next, we investigated how correct network inference was affected by several variations to 
the base case model (Figure 2.4 and Appendix Table 2.1). In all cases considered, interactions 
were recovered with precision exceeding recall. This means that the likelihood of missing an 
interaction (i.e., 1 – recall) was higher than the likelihood of finding a false interaction 
(i.e., 1 – precision), illustrating the effect of false discovery rate control.

Partial correlations corresponded to non-zero entries in the interaction matrix only when 
interindividual variation existed in the interaction parameters (αij) and/or carrying capacities (Ki) 
(Figure 2.4A and 2.4B). These parameters directly influence microbial abundance patterns, as 
interspecific interactions and carrying capacities determine the equilibrium of the gLV model. 
The intrinsic growth rate only determines the speed at which species reach their equilibrium, 
and this parameter is not informative for the equilibrium abundances. In fact, performance 
under interindividual variation in growth rates was just as bad as the performance under pure 
measurement noise with no variation in model parameters (Figure 2.4B).

Performance of correlation-based network inference was robust to measurement noise, if 
measurement noise was small compared to interindividual variation in process parameters 
(Figure 2.4C). When measurement noise became of the same magnitude as the variation 
in interspecific interactions, the F1-score deteriorated, and it was no longer possible to use 
correlations as a proxy for interactions (Figure 2.4C). We also checked whether adding process 
noise would affect the inference. We did observe a significant improvement of the inference 
from a model with process noise relative to only measurement noise (Figure 2.4C and 
Appendix Table 2.1).

Hereafter, we investigated the effect of drawing the interaction strengths from different types 
of distributions (Figure 2.4D and Appendix Figure 2.3). We did not observe a difference 
between the success rate of network inference under a Gaussian mixture distribution or 
uniform distribution, which were conditioned to have similar variances (Appendix Table 2.1). 
However, successful inference deteriorates with reduced interaction strength; success rates 
were better under a Gaussian mixture distribution or uniform distribution compared to a 
unimodal distribution around zero (with smaller variance) (Figure 2.4D). The weaker interactions 
have a smaller effect on equilibrium abundances of other species, which makes them harder to 
detect with correlation analysis.

Figure 2.4E shows the results for different network types. Increasing the number of species from 
10 to 30 had a significant negative effect on the success of the inference (Appendix Table 2.1), 
which was mainly due to reduced precision. Conversely, F1-scores were improved as compared 
to the base case when assuming a producer-consumer based network (Appendix Figure 2.4 and 
Appendix Table 2.1), on account of an improved recall. Inference in a network with interaction 
hubs (as explained in Appendix Figure 2.4) was significantly worse than in a random network, 
which could be attributed to a somewhat reduced recall.

Note that problems may arise with asymmetric relationships. When using the rule that pairwise 
correlations should match the strongest interaction between both species involved as the 
intended sign, we found only a slight non-significant reduction in F1-score as compared to the 
base case scenario (Figure 2.4F and Appendix Table 2.1).
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Figure 2.4 - Inference under various sources of process variability. For the 
different scenarios we show the precision, recall, and the F1-score. A) The base case model. 
B) Host-specific variation in the carrying capacities and intrinsic growth rates. C) Decreased 
and increased amount of measurement noise (υ) and the effect of process noise (W) 
(Appendix Figure 2.2). D) Interaction strengths drawn from a uniform and unimodal 
distribution (Appendix Figure 2.3). E) The results for a 30-species system, a network based on a 
producer-consumer structure and a network with interaction hubs (Appendix Figure 2.4). 
F) The effect of network inference when specifying the intended sign in correlation analysis, as 
the sign of the strongest interaction in each pair of species, or by setting the rule that the sign 
of both interactions must be matched by the inferred correlation coefficient (strict inference). 
G) Three scenarios with 3000 hosts, for the base case with random interaction networks as 
well as for the scenarios with structured (i.e., producer-consumer and hub-species) networks. 
Network inference was assessed by the F1-score, which measures agreement between the 
interaction matrix in the gLV model and the inferred partial correlation matrix on a scale from 
0 (no agreement) to 1 (perfect agreement) (according to the rules of Table 2.1). The dashed 
line indicates the median result from the base case model. The bars of the boxplots indicate 
the variability of the data outside the middle 50% (i.e., the lower 25% of scores and the upper 
25% of scores). All p-values are given in Appendix Table 2.1.
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Thus, pairwise interactions wherein the net effect on population growth is positive or 
negative are mostly picked up as such in correlation analysis. However, under the rule that 
mutual interactions must both be reflected in the sign of the correlations, asymmetric 
interactions cannot be recovered as correlations are symmetric. We indeed found much lower 
F1-scores when detection of asymmetric interactions was no longer considered as a true 
positive result after inferring a significant correlation coefficient ρ (either positive or negative) 
(Figure 2.4F).

Finally, we verified that network inference improved with increasing sample size. This applied 
to models with random as well as structured interaction networks (Figure 2.4G). In the base 
case, precision was somewhat reduced at increased sample size notwithstanding Benjamini-
Hochberg control. However, this was compensated by substantially improved recall, resulting 
in significantly increased F1-scores. Interestingly, precision stayed more or less constant 
at increased sample size in producer-consumer and hub-species networks, whereas recall 
improved but remained somewhat behind that of random networks.

Network inference under non-equilibrium conditions 
Figure 2.5 shows that the equilibrium assumption is not necessary for successful correlation-
based network inference. In fact, our results even suggest that a perturbation can positively 
affect the performance of network inference. Variation in the growth rates becomes 
significantly informative outside the equilibrium (Appendix Table 2.2). Also, variation in the 
interactions becomes even more informative when the population is still growing towards the 
equilibrium. Network inference is impaired only right after the start of a perturbation, when 
the population is still far from a new equilibrium, unless the interindividual variation is in the 
carrying capacities (Figure 2.5B). We also assessed the success of correlation-based inference 
when the sampling occurred randomly in time in relation to the perturbation. We found that 
the F1-score resembled an average of F1-scores across various sampling time points.

Discussion

Correlation-based network inference has been used in many studies and for many different 
types of human and environmental microbial communities.227 The reliability of the results 
with regards to true ecological dependencies has been criticized, to the extent that 
correlation analysis has been suggested to almost never reveal anything substantive about 
the biotic relationships between bacteria.216 However, the theoretical basis that enables 
ecological interactions to be inferred from cross-sectional abundance data remains poorly 
understood. Most of the previous research has focused on the reconstructed network 
properties or the difficulties pertaining to metagenomics-based abundance patterns, e.g., the 
compositionality of the data and the high proportion of zeros.216, 227, 268 While these difficulties 
are pervasive and merit further consideration, here, we question whether correlations are at 
all useful in distinguishing different interaction types in microbial networks.

We demonstrated multiple pitfalls when using correlation-based methods for inferring 
interactions. Some of those pitfalls are well known, as they relate to the inherent symmetry 
of correlation-based metrics and the frequent asymmetry of ecological interactions.216 

As a result, asymmetric interaction types (commensalism, amensalism, and exploitative 
interactions) cannot be recovered with an indication of the direction of interaction, which 
agrees with prior work done by Weiss et al. (2016).253 
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Figure 2.5 - The effect of a perturbation on correlation-based network 
inference. A) Example of a time series. Dashed lines represent sampling time points. 
Sampling was performed during the perturbation (t1 = green, t2 = yellow, t3 = blue, and 
t4 = grey) and at equilibrium (t5 = dark blue). Alternatively, sampling was performed 
randomly between t = 100 and t = 1000 (random = pink). B) Results (F1-scores) of network 
inference for sampling at various time points. After a perturbation all species grow back 
to their original equilibrium. The bars of the boxplots indicate the variability outside 
the middle 50% (i.e., the lower 25% of scores and the upper 25% of scores). Dashed 
lines represent median results of sampling during equilibrium. All p-values are given in 
Appendix Table 2.2.

0

0.5

1.0

0.75

0.25

Ra
nd

om

t1 t2 t3 t4 t5

Ra
nd

om

F 1-s
co

re

Interaction strengths Carrying capacities Growth rates
Variation in:

Ra
nd

om

 

A
A

bu
nd

an
ce

s

Time

Producer

Type of species

Producer
Producer
Producer
Producer
Consumer
Consumer
Consumer
Consumer
Consumer

0.0

0.25

0.0 100 200 300 1000

B

Random
t1

t2

Timepoint

t3
t4
t5 

t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

t1 t2 t3 t4
t5

Random

1.0

1.25

0.5

0.75

46Chapter 2 Correlations carry limited information about network interactions



Symmetric interaction types, where species involved affect each other’s growth in a 
qualitatively similar way (competition and mutualism) can be recovered, although 
competitive interactions may also result in positive correlations, albeit in very rare cases 
where species have identical competitive strength. Likewise, we found that exploitative 
interactions generally induce positive correlations, especially in the likely circumstance 
where the exploitative benefit outweighs the harm to the exploited species. These findings 
might explain why empirical correlation-based networks have a relative shortage of negative 
correlations.119, 268, 269 It remains to be investigated whether the high frequency of positive 
edges in reconstructed networks is caused by methodologic limitations or whether the 
interspecific interactions in host-associated microbiota are primarily mutualistic.112, 136, 270, 271

Still, as illustrated by our analysis, correlations in microbial abundance across independently 
sampled hosts can be indicative of underlying ecological interactions under host-specific 
variation in microbial population dynamics. That is, if microbial groups of interest are 
omnipresent and their interactions are appropriately captured by generalized Lotka-Volterra 
(gLV) dynamics, the variation in population abundances should be driven by interindividual 
variability in population-dynamic parameters. In the context of the gLV model, the 
informative parameters are primarily related to intrinsic growth rates, carrying capacities, 
and strength of between-species interactions of microbial groups considered. A change in 
species abundances can be informative for the interactions among those species, as was also 
previously shown by Stone and Roberts (1991).272 It remains to be determined how much 
variability across individual hosts is driven by external forcing and by gradual differences in 
process related parameters relative to measurement noise. On one hand, it is well known 
that microbes adapt to host-specific environments, shaped by, among others, diet, lifestyle, 
hormonal regulation, and the immune system.260 As an example, increased abundance of a 
particular bacterial species at increased glucose intake levels might be reflective of increased 
resource availability (affecting carrying capacity and growth rate) or superior competitive 
strength (affecting interactions with other species).246 On the other hand, environmental 
drivers of bacterial growth can operate over different spatial and temporal scales and 
correlations in abundance can be reflective of shared environmental niches that have no 
meaning in terms of direct biotic interactions.21

Therefore, a correlation between the abundance of two species does not imply that those 
species are interacting.111 Many of the detected correlations may be caused by shared 
environmental preferences rather than species interactions.273 Such environmental filtering 
can mask putative between-species interactions as well as induce spurious correlations.216 
Also, co-occurring species may appear to be dependent on each other, while their 
co-occurrence can be explained by them actually sharing a similar dependency on a third 
species so that co-occurrence, and hence apparent dependencies drawn from that, may 
also be explained by higher-order interactions.274 Berry and Widder (2014) suggested that 
network interpretation is only possible if samples are derived from similar environments.114 
Our analysis suggests that network inference partially depends on a degree of heterogeneity 
in population-dynamic parameters. If differences in bacterial abundances between hosts 
are mainly due to measurement noise, their correlations are not informative of underlying 
interactions. In our simulations, with relative standard deviation in process-related parameters 
between hosts of about 25%, inference performed well as long as measurement noise had 
coefficients of variation well below 10% of the mean bacterial abundances. Strikingly, the 
inference of interactions was even improved when process noise was added. More research is 
needed to delineate the extent to which correlation analyses can be confounded by latent
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environmental drivers of microbial population dynamics, and how strongly one should 
condition on environmental or host homogeneity.

Our results have been obtained using the gLV model. While the gLV model has been very 
popular in microbiome research because of its manageability, it has several drawbacks. In 
ecology, the gLV model has been criticized for the absence of trophic levels within the model.275 
This is in contrast to most classical ecological (e.g., plant-herbivore or predator-prey) systems, 
where direct consumption and predation offer more opportunity for top-down regulation, 
possibly obscuring interactions in co-occurrence patterns.276 But trophic levels are probably 
not so relevant in the human microbiome as bacteria mainly interact with each other through 
excreted metabolites.8 Furthermore, the interactions between bacteria might be much more 
complex than the additive and pairwise interactions that the gLV model assumes. Momeni 
et al. (2017) claimed that pairwise modeling will often fail to predict microbial dynamics, as 
many interactions occur through chemical production pathways (such as cross-feeding and 
nutrient competition) involving more than two species.240 Correlation analysis fails to capture 
the resulting higher-order interactions, for which more advanced techniques, e.g., graphical 
models, might be more appropriate.277 It is unclear how well directed links predicted by these 
methods recover true ecological interaction types. Often, they require more prior knowledge of 
the network of microbial interactions, time series, or more fine-grained data on the pathways of 
interaction. Moreover, microbial networks can be bidirected and cyclic,119 which poses problems 
for inference of directionality and type of interactions from mere cross-sectional data. More 
classical methods of separating direct from indirect interactions, e.g., path analysis,278 rely on 
testing of specific alternative causal hypotheses, which can only be considered as a next step in 
network inference. To shed more light on causal pathways, there is a need in microbial ecology 
for models that can describe the full set of metabolite concentrations, metabolic fluxes, and 
species abundances within a community.120 Based on metabolic modeling, Freilich et al. (2011) 
concluded that cooperative interactions are relatively rare among free-living bacteria and, if 
present, are often unidirectional. Machado et al. (2021) suggested that mutualistic interactions 
are much more common among host-associated bacteria, that often form highly cooperative 
communities and have smaller genomes and fewer metabolic genes compared to other species. 
Cooperative communities are resilient to nutrient change and adaptable to a wide variety of 
different environments, including the human body.119, 274 Metabolic modeling is still challenging 
and heavily based on a priori assumptions, but is also a rapidly developing field that may prove 
useful for computational validation of correlation-based interaction networks.279

In addition, the gLV model disregards important biological processes, such as adaptation (for 
instance, switching of mutualistic partners due to for example horizontal gene transfer280), 
that may affect the topology of ecological networks, rather than the strength of ecological 
interactions in a network. Furthermore, the gLV model displays dynamics that are characterized 
by strong equilibrium attractors. Many studies have shown the occurrence of complex dynamics 
as alternative stable states,105 oscillations, and chaos in experimental,6, 281, 282 but also in field 
studies,6 with ecological communities. Whether this also applies to the bacterial communities 
inhabiting the human body is still unknown, due to the paucity of long-term human 
microbiome studies. However, a study among a thousand Western individuals has suggested 
the existence of tipping elements in the intestinal microbiome102 indicating the possible 
presence of alternative attractors in the dynamics of gut microbiome communities.97, 283
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As a general critique, the use of simulated data based on gLV dynamics raises the question to 
what extent the necessary model assumptions (and therefore the results) are representative 
for the human microbiome. Of course, real data are much more complex than simulated 
data. To reiterate, our base case parametrization does not reflect any particular real-world 
system, and findings should be appreciated from a qualitative rather than quantitative 
viewpoint. Even so, while models can only serve as very crude approximations, the main 
features of model-based analysis might still hold, as demonstrated by Freilich et al. (2018).273 
They compared a well-resolved, empirically defined interaction network of species in the 
rocky intertidal zone in central Chile to a reconstructed network based on the co-occurrence 
of those species. There are similarities in their findings to our results. For example, they 
found that weak interactions are missed more often than interactions above a certain 
threshold. They also concluded that the ability to correctly detect a true link varies across 
different interaction types, and that positive interactions are better detected than negative 
interactions. Interestingly, in line with our results, they also found that negative interactions 
are misclassified as positive interactions more often than vice versa. 

In our simulation studies, the chance of finding false interactions was well under control using 
partial correlations with adjustment for multiple testing. It should be noted that application 
of correlation-based network reconstruction to real-world high-throughput microbial 
abundance data typically requires additional constraints for control of false discovery rates. 
Real-world microbiome data have some specific challenges which may negatively affect the 
success of correlation-based network inference. The compositionality of the data, the diversity 
of species (with many rare species) and the density of interactions make these networks 
harder to predict and apparent correlations more likely to appear.229, 250 Various correlation-
based methods, often free of charge and provided as pre-programmed packages are available 
to handle these challenges. However, Weiss et al. (2016) showed that with the same data, 
there is much disagreement between the inferred networks generated by different tools.253 
Thus, even if correlations are a useful proxy of microbial interactions, performance of network 
inference in high-dimensional settings will also strongly depend on the specific network 
modeling approach taken.

To summarize, correlation-based methods are particularly insensitive for the detection of 
asymmetric interactions (such as exploitative interactions, amensalism, or commensalism), 
as direction of interaction cannot be recovered from co-occurrence data. Still, they may 
perform well when applied to networks that are dominated by mutualistic and competitive 
interactions, as in producer-consumer systems. Applicability of correlation-based network 
inference to readily available microbiome data thus depends on the type of interactions that 
govern microbiome dynamics, which likely depends on each application. To conclude, our 
study suggests that hypotheses about microbial interactions, generated with correlation-
based methods, should be questioned with domain-specific knowledge. We highlight again 
the careful interpretation and validation that is required.
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Appendices of Chapter 2

Appendix Table 2.1 - Mann-Whitney U test results for the 
F1-scores of the base case model and for the F1-scores of 
the model with different sources of process variability. 
Significant results are highlighted in bold and blue.

Scenario p-value

Variation in all parameters < 0.001

Variation in carrying capacities < 0.001

Variation in growth rates < 0.001

No variation in parameters < 0.001

Low measurement noise < 0.001

High measurement noise < 0.001

Low process noise < 0.001

High process noise < 0.001

Uniform distribution > 0.05

Unimodal distribution < 0.001

30 species system < 0.001

Producer-consumer network < 0.001

Hub-species network < 0.001

Inference of intended sign > 0.05

Strict inference < 0.001

Base case (3000 hosts) < 0.001

Producer-consumer network (3000 hosts) < 0.001

Hub-species network (3000 hosts) < 0.001
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Appendix Table 2.2 - Mann-Whitney U test results for the F1-scores of the 
samples taken outside equilibrium relative to those taken at equilibrium (t5 
in Figure 2.5) and for the F1-scores of the samples taken randomly. 
Significant results are highlighted in bold and blue.

Variation in interactions

Time point p-value

Random < 0.001

t1 < 0.001

t2 < 0.001

t3 < 0.001

t4 < 0.001

Variation in carrying capacities

Time point p-value

Random > 0.05

t1 < 0.001

t2 < 0.001

t3 < 0.001

t4 < 0.001

Variation in growth rates

Time point p-value

Random < 0.001

t1 < 0.001

t2 < 0.001

t3 < 0.001

t4 < 0.001
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Appendix Figure 2.1 - Cartoon illustrating the different interaction 
mechanisms.  A) In mutualistic interactions, both species experience a positive 
effect. An example is when a species feeds on the metabolites excreted by the other 
species. B) In competitive interactions both species experience a negative effect. An 
example is when both species produce toxic compounds that are harmful to the other 
species as well as to themselves. C) Commensalism is a one-sided positive interaction. 
This type of interaction occurs when one species is beneficial to another species, 
without benefit or harm to itself. D) Amensalism is a one-sided negative interaction. 
Amensalism occurs when a species causes harm to another species, without benefit 
or harm to itself. E) Exploitative interactions occur when one species derives a benefit 
from another species at the expense of the latter, such as when one species kills and 
subsequently consumes the other. Red arrows represent negative interactions, green 
arrows represent positive interactions, and grey arrows indicate no interactions.
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Appendix Figure 2.2 - The effect of process noise (W) on the within host 
population dynamics. Process noise was added by means of the ‘events’ function from the 
‘deSolve’ R package.263 The time-varying noise was drawn from a log-normal distribution to 
prevent the abundances from dropping below zero, i.e., ΔWi = ln(Ni,m(Δt)) – ln(Ni,m(t)) ~ N(ln(Ni,t), σW) 
at every timestep, Δt = 1. A) Simulated time series without process noise, B) with low process 
noise (σW ~ N(0, 0.1)), and C) high process noise (σW ~ N(0, 1)).
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Appendix Figure 2.3 - Distributions of interaction strengths in three different 
scenarios. A) The interaction strengths in the base case follow a Gaussian mixture distribution. 
Half of the interactions were drawn from a negative normal distribution: αij ~ N(–0.25, 0.1); and 
the other half of the interactions were drawn from a positive normal distribution: αij ~ N(0.25, 
0.1). B) The interaction strengths in Figure 2.4D-1 follow a uniform distribution (αij ~ U(–0.5, 0.5)). 
C) The interaction strengths in Figure 2.4D-2 follow a unimodal distribution (αij ~ N(0, 0.15)). 
All interactions were restricted to lie between –0.5 and 0.5, i.e., the normal distributions were 
truncated at –0.5 and 0.5.
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Appendix Figure 2.4 - Network structures used in the different case studies. 
A) An example of a random network and its corresponding interaction matrix. B) An example 
of a structured network with interaction modules and its corresponding interaction matrix. The 
modular networks are based on a cross-feeding structure between producers and consumers 
(with equal numbers of producers and consumers). Between producers (Pi ; i = 1:5) and consumers 
(Cj ; j = 1:5), positive interactions (indicated in green) are more likely to occur, because metabolites 
excreted by the producers are consumed by the consumer species. Among producers or among 
consumers, the interactions are predominantly negative (indicated in red) as these species 
are more likely to compete for similar resources. C) An example of a structured network with 
interaction hubs and its corresponding interaction matrix. The hub-species network contains 
species (Hi) with unusually high numbers of ecological interactions compared to other species in 
the network. This can occur when some species perform a central role in the microbial ecosystem, 
for example when a hub-species produces a metabolite that is required for growth by many other 
species.
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Appendix Figure 2.5 - The effect of αij on the correlations between the 
abundances of two bacterial species for different interaction mechanisms. 
The two species can co-exist under certain combinations of αij (Box 2.1). The abundances of the 
two species N1 and N2 at equilibrium are shown as scatterplots and were obtained by running 
the two-species Lotka-Volterra model with K1 = 1.5, K2 = 1.1, r1 = 1, r2 = 2, and αij drawn randomly 
from normal distributions with different combinations of means and standard deviations. 
In A) the two distributions have different means and standard deviations: α12 ~ N(|0.5|, 0.1) and 
α21 ~ N(|0.7|, 0.2). In B) the distributions have identical means, but different standard deviations: 
α12 ~ N(|0.5|, 0.2) and α21 ~ N(|0.5|, 0.1). For exploitative interactions we also show the situations 
that negative correlations can occur when the exploitative benefit displays much more variation 
than the harm to the other species, i.e., α12 ~ N(–0.5, 0.01) and α21 ~ N(0.5, 0.2) for exploitative 
interaction type 1, and α12 ~ N(0.5, 0.2) and α21 ~ N(–0.5, 0.01) for exploitative interaction type 
2. In C) interactions are randomly drawn from distributions with different means and identical 
standard deviations: α12 ~ N(|0.6|, 0.1) and α21 ~ N(|0.3|, 0.1). In D) the interactions have identical 
strengths for the two species, namely |α12| = |α21|. The mutualistic interactions are drawn from 
the distribution α12 = α21 ~ U(0, 2.5), for competition and exploitative interactions we show two 
different scenarios, namely |α12| = |α21| ~ U(|0.4|, |2.5|) (upper graph) and |α12| = |α21| ~ U(0, |0.4|) 
(lower graph). Because the two species have different carrying capacities, the two situations of 
exploitative interactions are different. The grey polygon indicates the area where coexistence is 
possible. Note that the ranges of the axes are different in each subplot.
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