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Species abundance correlations carry
limited information about microbial
network interactions

Abstract

Unraveling the network of interactions in ecological communities is a daunting

task. Common methods to infer interspecific interactions from cross-sectional data
are based on co-occurrence measures. For instance, interactions in the human
microbiome are often inferred from correlations between the abundances of bacterial
phylogenetic groups across subjects. We tested whether such correlation-based
methods are indeed reliable for inferring interaction networks. For this purpose, we
simulated bacterial communities by means of the generalized Lotka-Volterra model,
with variation in model parameters representing variability among hosts. Our results
show that correlations can be indicative of the presence of bacterial interactions,

but only when measurement noise is low relative to the variation in interaction
strengths between hosts. Indication of interaction was affected by type of interaction
network, process noise, and sampling under non-equilibrium conditions. The sign of
a correlation mostly coincided with the nature of the strongest pairwise interaction,
but this is not necessarily the case. For instance, under rare conditions of identical
interaction strength, we found that competitive and exploitative interactions can
result in positive as well as negative correlations. Thus, cross-sectional abundance
data carry limited information on specific interaction types. Correlations in
abundance may hint at interactions but require independent validation.

Introduction

The human body harbors an exceptional bacterial diversity.?' The composition of these
bacterial communities is generally shaped by characteristics of the host and by the ecological
dependencies among bacterial species themselves.® '* 2% These dependencies often occur
through competitive or synergistic interactions, which may lead to a (mutual) decrease or
increase in the abundance of interacting species.’?* For instance, it is known that bacteria

can interact with each other through excreted metabolites, which can function as an
antimicrobial or as a food source.®2** Among other mechanisms, for example negative
interactions take place when toxic compounds produced by one species harm other bacteria,
whereas positive interactions occur when bacteria feed on the nutrients that are produced
by others. Besides, many different forms of interactions exist, depending on the effects
experienced by the species involved. Knowledge of interspecific interactions in the human
microbiome is paramount to understand ecological processes and compositional changes in
relation to health and disease.*® '*°

Most human microbiome studies are limited to only a few samples in time, presenting mere

‘snapshots’ of the microbial ecosystem, even if these samples are derived from hundreds of
human hosts.
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A common way to infer microbial networks from such cross-sectional data is by quantifying
co-occurrence, e.g., through (partial) correlations, between bacterial phylogenetic groups.
Several different conclusions have been derived from such endeavors, for example on
species associations that reflect shared or overlapping niche preferences,?*” microbial
community structure,?*® 2% the resilience of microbial communities to perturbations,’®

and keystone species in microbial networks."'* Currently there are several correlation-
based network tools available that can deal with the difficulties of microbiome data, such
as compositionality.?** 252" The potential of correlation-based approaches for uncovering
microbial networks has been highlighted in previous research.?*?

Whether correlation-based networks represent meaningful ecological structure in microbial
communities is, however, debated. Carr et al. (2019) showed that spurious correlations may
occur due to the use of sequencing methods, data transformations, and the large number
of unmeasured variables.?'® Berry & Widder (2014) and Hirano & Takemoto (2019) assessed
the performance of different co-occurrence methods for inferring interaction structure and
found that their performance strongly depends on the underlying network properties,
such as network size and density, and the number of samples used to construct the
network."*22° Apart from the challenges of metagenomic-based abundance data and
disagreement between various network tools, here we question whether correlations
themselves are at all useful to distinguish between different ecological interaction types.
Resource competition and metabolic cooperation have been successfully inferred within
environmental microbiomes, by linking ecological distribution data to multi-species
metabolic models and subsequent verification of putative interactions by means of
experimental co-growth analysis."'® However, host-associated microbiomes often include
non-culturable organisms, without information on nutrient requirements or metabolic
function. Likewise, performance of correlation analysis in relation to alternative interaction
types in the human microbiota is not well understood and deserves further investigation.

Correspondence of correlations with ecological interactions needs to be studied against

a known ground truth, which can be achieved by means of simulation. Mathematical
models have been used as ground truth in assessment of correlation network techniques
before,** but correlation networks have not been systematically investigated against
distinct interaction types in dynamic models. This requires elucidation especially as the ‘true’
ecological networks governing microbiome dynamics are still unknown. For this purpose,
we assessed the performance of correlation-based network reconstruction by simulating
abundance data based on the generalized Lotka-Volterra (gLV) model. The gLV model
describes the collective dynamics of multiple species by means of an interaction matrix that
can modulate different types of interactions.?*> The model is commonly used in microbiome
studies for different aims: to simulate microbial communities under various interaction
structures,?*? to infer interaction structure from time series data,'® to forecast population
dynamics after a perturbation,?* to infer the network topology from steady state samples,?**
and to identify the efficiency of intervention protocols in altering the state of a system via
the addition or subtraction of microbial species.?*° In ecology, gLV-type models have been
questioned for their reliance on pairwise additive interactions, as well as for the strictly linear
effects imposed on interspecific interactions. Nonetheless, from the perspective of network
inference, it makes sense to first investigate gLV-type models, as their first-order description
of ecological dependencies, specified through a pairwise interaction matrix, resembles the
objective of correlation analysis and most network models.?
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In addressing how gLV-type interactions can be inferred from cross-sectional data, we mainly
focus on the correspondence between the obtained correlation-based networks and the
underlying network of ecological interactions. We specifically investigate how the inference
of microbial interaction types is enabled by interindividual variation in population-dynamic
parameters (e.g., species-specific carrying capacities, intrinsic growth rates, and strength

of interspecific interactions) and how network reconstruction is affected by gLV model
assumptions. We highlight several situations where correlations cannot distinguish microbial
interaction types and therefore recommend careful interpretation and validation when
inferring networks from cross-sectional abundance data.

Methods

Two-species Lotka-Volterra model with self-limitation

First, we investigated how interactions between two species of microbial populations are
displayed in terms of correlations of abundances in the Lotka-Volterra model. For the sake of
convenience, we use the term ‘species’, although in studies with real microbiota data it is often
not possible to characterize the taxonomic abundances at species-level and therefore genera
or higher taxonomic levels are often used instead.

The two-species Lotka-Volterra model is given by the following set of ordinary differential

equations:

dN :

—t’=r1N1(1 - KN, +a,N,) Eq. 2.1
N N -KN N Eq.2.2
dt =r 2(1_ , Ny T4y, 1) q. 2.

Here, N, is the abundance of either species 1 or species 2 (with i =1 ori = 2). The term r, is the
intrinsic growth rate of each species, here normalized to 1 and 2 per time unit for species 1

and 2, respectively. The effect of each species’abundance on its own growth is defined in
terms of the species-specific carrying capacities K, with a, = -K ' denoting intraspecific
competition. We arbitrarily chose the carrying capacity for the first species to be higher

than the carrying capacity for the second species (K, = 1.5; K, = 1.1), meaning intraspecific
competition is less strong for species 1 compared to species 2. Furthermore, a; (i=1,2,j=1,2
i #j) indicates the interspecific interactions (the effect of one species abundance on the growth
of the other species). A positive a; (e.g., as in the case of mutualism) denotes a positive effect
of species j on the growth of species i, a negative a; (e.g., as in the case of competition) means
a negative effect of species j on the growth of species i (Appendix Figure 2.1). We assessed

the effect of variation in the interspecific interaction parameters on correlation in equilibrium
abundance between both species. For this purpose, the interspecific interaction strengths (a,,
and a,,) were drawn randomly from two normal distributions with similar or different mean
and similar or different standard deviations (o,). Moreover, we also investigated the situation
where |a,,| =
combination of a,, and a,,. More information on the conditions for coexistence can be found
in Box 2.1.

|a,,|- Note that it was not possible to achieve stable coexistence for every
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Box 2.1 - Coexistence in a two-species Lotka-Volterra model with self-limitation.
The conditions for coexistence in the two-species Lotka-Volterra model with self-limitation
can be derived by setting both growth equations to zero and investigating what parameter
combinations yield N, > 0 as well as N, > 0. Here, N, denotes the equilibrium abundance of
species 1 and N, denotes the equilibrium abundance of species 2. Writing these conditions in
terms of N, as functions of N, gives the following:

dnN
dt1 =0AN,>0->N, =f(N)=K +a,KN, Eq.2.A
dn 1 1

h _ N = - Eq.2.B
dt 0AN,>0—-N, =7£,(N,) » + @,K) N, q

The joint equilibrium abundance of both species (N, N,) is determined by £,(N,) = £,(N,).
Equation 2.A shows that species 1 grows to its carrying capacity K, in the absence of
interspecific interactions, i.e,, if a,, = 0. Likewise, a,, > 0 allows species 1 to grow to higher
abundance in the presence of species 2 than determined by its own carrying capacity,
whereas a,, < 0 leads to a reduced abundance of species 1 in the presence of species 2.
Similar relations hold for the abundance of species 2 in the presence of species 1, depending
on a,,. From Equation 2.B, it can also be derived that N, > 0 is only compatible with N, being
above its carrying capacity K, if at the same time a,, > 0, whereas N, being below K, requires
a,, <0.

Joint inspection of Equations 2.A and 2.B also establishes the following, more subtle,
conditions for coexistence:

1 Ifa,>0anda, >0,e.g.,in case of mutualism, £, has a negative intercept
in the Cartesian (N,, N,) coordinate system (Figure 2.A - panel A). As both functions have
a positive slope in this situation, and £, always has a positive intercept, f, must have a
stronger slope than £, for both to intersect in the positive quadrant. This boils down
to a1K >a, K, orequivalentlya,a,,<a,a,,asK=-4 L by definition. This means that the
product of interspecific mutualism needs to be smaIIer than the product of intraspecific
competition for both species to co-exist, otherwise there is no control of population

growth.

2 Ifa,<0anda, <0, e.g., in case of competition, both functions have positive
intercept and negative slope (Figure 2.A - panel B). Intersection in the positive quadrant
requires the function with the larger intercept to intersect the abscissa, i.e., the N, axis
where N, =0, at a smaller value than the function with the smaller intercept. Thus this
requrres |a | >% K and |a,,| > K % with 7, having the larger intercept, or alternatively,
|a,, | <+ K and la,,| <+ K ,Wrthf having the larger intercept. In the first instance, interspecific
competition is stronger than |ntraspeC|ﬁc competition, whereas in the second instance,
interspecific competition is less strong than intraspecific competition. It turns out that only
the last of these conditions yields a stable equilibrium, meaning that the abundances of
both species return to equilibrium after small displacements.
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3 Ifa,<0anda, >0, e.g, in case of exploitation of species 1 by species 2, , has a positive
intercept and negative slope, whereas £, still has a negative intercept and positive slope
(Figure 2.A - panel Q). Intersection in the positive quadrant requires f, to intersect the
abscissa at a larger value than K, the point where £, intersects the abscissa. The condition
for coexistence thus becomes |a,,| < ,1(—2, or equivalently a,, < a,,, meaning that the parasite
should exert stronger inhibitory effect on its own growth than on that of the exploited
species.

4 Conversely, in case of exploitation of species 2 by species 1, i.e., ifa,,>0and a,, <0,
both f, and £, have a positive intercept, but £, now has a positive slope whereas £, has a
negative slope (Figure 2.A - panel D). Intersection in the positive quadrant then requires £,
to have a smaller intercept than £,. The condition for coexistence thus become%jazJ S
or equivalently a,, < a,,, again meaning that the parasite should exert stronger inhibitory
effect on its own growth than on that of the exploited species.

N'I NZ N'I NZ
A Mutualism .(— B Competition ﬁ;
—
2
1.5
- - K
= =1
0.5
0 a8
0.5 1 1.5 2
NZ
c Exploitative N, N, Exploitative N, N,
interaction interaction
type 1 — type 2 >
2 2 /
1.54K; 1547
= E
0.5 0.5
0 2 0+ s
o 05 1 15 2 0 05 1 15 2
N2 NZ

Figure 2.A - Zero-growth isoclines (‘null-clines’) in the
two-species Lotka-Volterra model. Visualization of the effect

of species 1 and 2 abundances on each other in the Cartesian (N, N,)
coordinate system. Here, 1, denotes the isocline of zero growth of
species 1, 1., £,(N,) (in dark blue), and f, denotes the isocline of zero
growth of species 2, i.e, £,(N,) (in light blue). Their point of intersection
represents the joint equilibrium abundance of both species, i.e., (N, N,).
Throughout K, = 1.5 and K,= 1.1. Parameters for the various scenarios:
a,,=03and a, = 0.6 under mutualism; a,, =-0.6 and a,, = 0.4 under
competition; a,, = -0.6 and a,, = 0.4 under exploitative interaction
type 1;and a,, = 0.6 and a,, = -0.4 under exploitative interaction type 2.

Chapter2 34 Correlations carry limited information about network interactions



The additional requirement for stable coexistence is that the two-species system should be
locally stable around the equilibria (N,, N,), which can be formalized in terms of the Jacobian
matrix of the Lotka-Volterra model evaluated at (N,, N,). This amounts to determining the
trace and determinant of the matrix of the partial derivatives of the growth equations
regarding either species, i.e.,
r- 2I’1ﬁ1 / K1 + r1a1zﬁz r1a1zﬁ1
Eq. 2.C
r,a, N, r,-2r,N,/ K, +r,a, N,
It can be verified that the conditions for coexistence stated under mutualism and exploitative
interactions yield equilibria that are locally stable, just as the last of the conditions under
competition. We will not derive these conditions here, as these are covered by textbooks on
theoretical ecology.?*”

In summary, the two-species Lotka-Volterra model with self-limitation has the following
possibilities for stable coexistence (Table 2.A):

Table 2.A - Conditions for stable coexistence in the two-species Lotka-

Volterra model.

Type of interaction Condition Outcome
Mutualism : B B
a,>0Aa, >0 a0, < KK) N,> K, AN,> K,
Competition 1 1 - B
a,<0Aa, <0 Ja,| <TZA la, | < K N, <K, AN,<K,
Exploitative interaction type 1° 1 - -
a,<0Aa,>0 |a1z|<72 N, <K, AN,>K,
Exploitative interaction type 2° 1 - -
a,>0Aa, <0 |021|<T] N,>K AN, <K,

2 Exploitative interaction type 1: species 1 is being exploited by species 2
b Exploitative interaction type 2: species 2 is being exploited by species 1

The condition for stable coexistence of competitors requires both species to have less effect
on the growth of the other species than on itself. In case of an unstable equilibrium, either
species will eventually outcompete the other; the species with an initial advantage will drive
the other species to extinction, a condition referred to as competitive exclusion.?*®2*° This
will occur, for instance, when each species produces a substance which is toxic to the other
species but relatively harmless to itself.
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Generalized host-specific Lotka-Volterra model

Microbial abundance is not only shaped by intra- and interspecific interactions, but also by
host characteristics, for example lifestyle, diet, and age.?® Therefore, we investigated the
performance of correlation-based network inference of microbial networks for a host-specific
version of the gLV model. The host-specific gLV model is given by:

dNr'm -1 <
g =r N 0-K'N +%a N ) Eq.2.3
,m i,m mm ,m / -1 m jm
Jj#i

Here, N, is the abundance of each species i in host m, withi=1, .., s (s being the total
number of bacterial species) and m =1, ..., 300 (the total number of hosts). The terms r,

and K, are the intrinsic growth rates and the carrying capacities of each species i in host m.
The carrying capacities are kept separated from the interaction matrix A which only contains
interspecific interactions (namely, the pairwise terms av), facilitating a one-to-one comparison
with the correlation matrix.

Parameterization of the base case simulations

We started with a base case, and we added step by step variation to this case. Note that
the base case parametrization does not reflect any particular real-world system. Rather,
parameters were chosen in such a way to facilitate computation and promote coexistence
among species. Variations to the base case parameters are shown later on, but also here,
findings should be appreciated from a qualitative rather than quantitative viewpoint. In
the base case, the number of bacteria equals ten. The species-specific growth rate r, and
the species-specific carrying capacity K, were randomly drawn from uniform distributions,
respectively U(0.05, 0.1) and U(0, 1). The density of the interaction matrix A in the base
case was chosen such that both sparsity of the interaction network and coexistence of

the species was promoted in all simulations; in the base case, density was % meaning that
three out of four possible interactions were set to zero. Moreover, to ensure coexistence
between species in the model we chose stronger intraspecific interactions than pairwise
interspecific interactions. The species-specific parameters a, were drawn from a Gaussian
mixture distribution, as follows. Half of the interactions were drawn from a negative normal
distribution: a, ~ N(-0.25, 0.1); and the other half of the interactions were drawn from a
positive normal distribution: a~ N(0.25, 0.1). All interactions were restricted to lie between
-0.5and 0.5, i.e., the normal distributions were truncated at -0.5 and 0.5. The parameters r,
K, and the interaction matrix A were randomly drawn 1000 times from the aforementioned
distributions to obtain 1000 different parameter combinations. Hereafter, host-specific
parameters were drawn from log-normal distributions around species-specific parameters,
as follows:

In(a,,.)) ~ N(In(|a,]), 0,)

In(r, ) ~N(In(r), o) Eq.2.4

In(K,,) ~ N(In(K), 0,)
Here, o, denotes the interindividual variability in interspecific interactions among the 300
hosts (with o, = 0.25 in the base case), and |aij’m| denotes the absolute strength of interaction
from species j on the growth of species i for each host m. Note that, for the sake of simplicity,
the use of log-normal distributions was adopted to induce fold-changes around population
means, where both the presence and the sign of interspecific interactions are kept constant
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across hosts. However, this may be untrue in real microbiota as many microbes can change
metabolic pathways and therefore may switch between interaction types and interaction
partners. In the base case model, the carrying capacities and growth rates were kept constant
across hosts, meaning 0, and o, were set equal to 0.

The simulation process yielded 300,000 time series (300 host-specific time series for each

of the 1000 ten species networks). The running time of the model was chosen such that all
species reached their equilibrium abundance. If at least one species did not survive (i.e., when
its abundance dropped below 0.001), we rejected the simulation in favor of another randomly
drawn parameter set. After sampling the abundances at equilibrium, we added independent
and identically distributed noise v to mimic uncertainty in measurements (with v ~ U(-0.01,
0.01) in the base case). This measurement noise can be thought of as representing, for
example, sampling errors, environmental contamination, batch effects during sequencing, or
annotation errors in reference genomes.?' Simulations were performed in R (R version 3.6.0;
www.r-project.org). The gLV model was solved with the ‘Isoda’ function from the ‘deSolve’ R
package (version 1.24) which uses a FORTRAN ODE solver written by Petzold & Hindmarsh
(1995).252:2%3 R code is available on the GitHub repository (susannepinto/gLV_microbiome).

A general overview of the base case simulation design is given in Figure 2.1.

Add multiplicative noise to the
— interaction strengths (a,-j)

dN,
1 1
drlm_r:m im KlmNym+Zaljm jm

le

1 .., 10 species
=1,2,..,300 hosts

1
2
3
4 wv
5 r—“g
8 o) —
7 L C
T S|
8 @ o
9 ©

o

Sample and add noise (v)

1]2]3]4]s[e[7]8]9]10

Figure 2.1 - Representation of the workflow. In an interaction network, singular
green and red arrows represent a commensalistic interaction and an amensalistic interaction,
respectively, whereas double green arrows represent mutualism and double red arrows
competition. A combination of a green and red arrow signifies an exploitative interaction.
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See Appendix Figure 2.1 for more details. A) A random interaction matrix i. This interaction
matrix is implemented in the gLV model, B) together with the intrinsic growth rates and carrying
capacities of the species. C) All time series are (slightly) different due to the variation in the
interaction strengths. D) The partial correlations are calculated from the abundances per species
sampled from the 300 different hosts at equilibrium. Only the significant correlations and the
lower part of the matrix are used for the comparison with the original interaction matrix /.
Variations to the workflow were studied by adding for example a perturbation or process noise.

Variations to the base case model

We studied multiple variations to the base case model. Similar to the base case simulations,
we did 1000 simulations per variation. As a first variation, we added host-specific variability
to the species-specific parameters r,and K, using Equation 2.4, with 0 = 0.25 and 0, = 0.25.

Second, we varied the amount of measurement noise, from v ~ U(-0.01, 0.01) (medium noise
in the base case) to v ~ U(-0.001, 0.001) (low noise), and to u ~ U(-0.1, 0.1) (high noise).

We also simulated time series with a different type of noise, namely varying magnitudes of
process noise W (Appendix Figure 2.2). In contrast to measurement noise, which was added
only to the sampled abundances, process noise was added to the gLV model such that within-
host population dynamics were perturbed at discrete time intervals At (At = 1 time unit).

The time-varying process noise was drawn from a log-normal distribution to prevent the
abundances from dropping below zero, i.e, AW, =In(N, ) = In(N, ) ~N(In(N,), 0,) (with
0,,~ N(0, 1) for high process noise and g, ~ N(0, 0.1) for low process noise).

Further, we simulated data with interaction strengths drawn from a uniform (a,.j. ~U(-0.5,0.5))
or unimodal (a,-,- ~N(0, 0.15)) distribution. As in the base case, the interaction strengths were
restricted to lie between -0.5 and 0.5 (Appendix Figure 2.3).

We also analysed three different structures of microbial networks. First, we increased the
number of species s from 10 to 30. To promote coexistence, we also reduced the density

of the interaction matrix to %. Secondly, we simulated a network based on a producer
consumer relation between the species (Appendix Figure 2.4). Instead of random interaction
networks (Appendix Figure 2.4A), the producer-consumer networks are based on a cross-
feeding structure between producers and consumers (with equal numbers of producers and
consumers) (Appendix Figure 2.4B). Producers excrete metabolites which are consumed by
the consumers. Because consumers remove the ‘waste’ from the producers, the presence

of a consumer can also be beneficial for the producers. Therefore, between producers and
consumers positive interactions are more likely to occur than negative interactions. For

this purpose, we drew the consumer-producer interactions from the positive side of the
Gaussian mixture distribution (aU ~N(0.25, 0.1)). In contrast, among producers and consumers
themselves, the interactions are predominantly negative as these species are more likely to
compete for similar resources. For this purpose, we drew the interactions among producers
and among consumers from the negative side of the Gaussian mixture distribution

(a,-,- ~ N(=0.25, 0.1)). Third, we simulated a microbial network with interaction hubs, i.e., a
network containing species with unusually high numbers of ecological interactions compared
to other species in the network (Appendix Figure 2.4C).?** Hub-species networks were created
according to the Barabasi-Albert model?*> and implemented with the ‘barabasi.game’ function
from the ‘igraph’R package (version 1.2.11). In the network-generating algorithm, interactions
are distributed according to a mechanism of preferential attachment.
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Thus, species with interactions obtain a higher chance of getting more interactions, resulting
in a few ‘hub-species’ with many interactions. We constructed two scale-free directed graphs
(with power = 2), denoting ‘incoming’ and ‘outgoing’interactions, and combined these to
obtain a bidirected graph. Density was kept similar to the base case model (V).

Next, we also investigated how network inference is affected by sample size by considering
a scenario with 3000 instead of 300 hosts. We did this for the base case model with random
interaction networks, as well as for the producer-consumer and hub-species networks
described before.

Last, we investigated the effect of a perturbation on the performance of network inference.
The populations were perturbed after 175 time units, with a perturbation that lasted for 50
time units. The perturbation was modelled by taking a new set of random carrying capacities
per species per sample. Due to the simulated perturbation, the equilibrium distribution
shifted. After the perturbation, the species grew back to their original equilibrium. Sampling
occurred before, during, or after the perturbation.

Assessment of correlation-based network inference

With the simulated data at hand, we created a dataset with the abundances of the model
species sampled at equilibrium for each host m. After adding measurement noise to the data,
we inferred the correlations between species by calculating the Pearson’s partial correlation
coefficients p between all abundances N, across the m different hosts (Figure 2.1). We did
not use plain correlations, because partial correlations have the advantage of controlling
for confounding interactions (e.g., interactions between bacterial species affecting the
abundance of a third species).??” Agreement between the partial correlation matrix and the
interaction matrix A from the gLV model was assessed qualitatively, i.e., we only considered
whether significant entries in the partial correlation matrix agreed with the interaction
matrix in terms of nonzero entries with the same sign. We used the Benjamini-Hochberg
procedure to control for the expected proportion of ‘false discoveries’ after calculating partial
correlations between each pair of species.?*® The results (true positives, true negatives,

false positives, and false negatives) were stored in a confusion matrix (Table 2.1). Because a
correlation matrix is symmetric and an interaction matrix A is not, we only used half of the
partial correlation matrix (Figure 2.1D) to construct the confusion matrix. For a correctly
classified interaction, either one or both interactions in the upper and lower part of the A
matrix must have the same sign as in the lower part of the partial correlation matrix. This
can produce a bias, because asymmetric interactions can result in a true positive result

for correspondence of the correlation coefficient (p) with either interaction. For example,
for exploitative interactions, both negative and positive correlations were classified as

true positive results. Therefore, we tested the effect of this bias on the success of network
inference by specifying the intended sign in correlation analysis, as the sign of the strongest
interaction in each pair of species. Hence, for an exploitative interaction, only a positive or

a negative correlation is correct, depending on the weights of the asymmetric interactions.
We also tested the effect of this bias on the success of network inference by setting the rule
that the sign of both interactions must be matched by the inferred correlation coefficient.
Therefore, only mutualism and competition can be inferred correctly, as amensalism,
commensalism, and exploitative interactions are asymmetric.
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Table 2.1. The confusion matrix as used in this study.
The inferred partial correlation coefficient p (from the lower part of the partial

correlation matrix) must have the same sign as one of the interactions in the interaction
matrix A to be considered as a true positive finding in base case analysis.

Interaction in the A matrix from Inferred partial correlation

the model Negative: Not significant | Positive:
No interaction 0,0 false positive | true negative false positive
Mutualism + + false positive | false negative true positive
Competition - - true positive | false negative false positive
Commensalism +,0|0,+ | false positive | false negative true positive
Amensalism -, 0]0,- | true positive | false negative false positive
Exploitative interaction |+ -|-, + | true positive | false negative true positive

2 Only significant partial correlations (with p-value < 0.05) are considered after correction for
multiple testing with Benjamini-Hochberg procedure.

Performance of network inference was evaluated using precision and recall, as well as a
combination of both measures, called the F -score.” The precision is the fraction of correctly
classified interactions among the total number of significantly predicted interactions (i.e.,
significant partial correlations) and the recall is the fraction of correctly classified interactions
among the total number of non-zero interactions in the interaction matrix A. The F -score (on
a scale from 0 (no agreement) to 1 (perfect agreement)) is obtained as the harmonic mean of
precision and recall, weighted equally, as given in the following equation:

F=2. precision - recall

1~ “ precision + recall Eq.2.5

Results

Inference of asymmetric and symmetric interactions in a two-species system
Correlations in abundances of the species in a two-species Lotka-Volterra model are shaped
by the type of interaction involved. Figure 2.2 shows scatterplots of the abundances of two
bacterial species for different interaction mechanisms over a range of different combinations
of a,, and a,,. Mutualistic interactions clearly yielded a positive correlation in abundance
between the two species involved (Figures 2.2A and Appendix Figure 2.5). Competitive
interactions generally yielded negative correlations (Figures 2.2B and Appendix Figure 2.5).
However, under perfectly symmetric competition (when a,, = a,,) we did find a positive
correlation depending on interaction strength and carrying capacities of the species involved
(Appendix Figure 2.5D - second panel). In the situation where one of the two species does
not experience any benefits or limitations in growth from the other species, as is the case
with commensalism and amensalism (i.e., a,, = 0 or a,, = 0), correlations are zero because one
of the species will grow to its carrying capacity irrespective of the abundance of the other
species (Figure 2.2C and 2.2D).

Correlations under exploitative interactions among bacteria, benefitting one but harming the

other species, generally yielded positive correlations (Figures 2.2E and 2.2F, and Appendix
Figure 2.5), but negative correlations were also found.
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This happened when the exploitative benefit was of equal magnitude as the harm done

to the other species (Appendix Figure 2.5D), or of similar mean magnitude but with more
variation (e.g., species 1 is exploited by species 2; -a,,=a,, and 0, , << g ,, (exploitative
interaction type 1) or species 2 is exploited by species 1;a,,=-a,, and o, <<0_,
(exploitative interaction type 2) (Appendix Figure 2.5B). However, if the exploitative benefit
outweighs the harm done to the other species, exploitative interactions will generally yield
positive correlations. It should also be noted that the two species were not exchangeable,
because species 1 was given a weaker intraspecific interaction strength than species 2.
Thus, in the absence of interspecific interactions, species 1 can reach a higher abundance at
equilibrium. This means that, for the same interspecific interaction strength, the species with
the higher carrying capacity exerts a stronger (negative) effect on the growth of the other
species.
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Figure 2.2 - Scatter plots between the abundances of two bacterial species for
different interaction mechanisms. A) mutualism, B) competition, C) commensalism, D)
amensalism, and E, F) exploitative interactions. The abundances of the two species N, and N, at
equilibrium are shown as scatterplots and have been obtained by running the two-species
Lotka-Volterra model, with K, = 1.5;K,=1.1;r = 1;7,=2 and a, drawn randomly from normal
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distributions with identical means and standard deviations (a,, ~ N(|0.7],0.2), a,, ~ N(|0.7|, 0.2)).
In the case of commensalism and amensalism: a,, ~ N(|0.7|, 0.2) and a,, = 0. The two species can
co-exist under certain combinations of a, (Box 2.1). The grey polygon indicates the area where
coexistence is possible. Note that the axes have different ranges in each subplot. Because the
two species have different carrying capacities, the two situations of exploitative interactions are
different; i.e, in case of exploitative interaction type 1 (species 1 is exploited by species 2) and in
case of exploitative interaction type 2 (species 2 is exploited by species 1).

Network inference under various interaction types

Here, we used the base case model to assess the success rate of recovering a particular
interaction type between pairs of species: amensalism, commensalism, exploitative
interactions, mutualism, and competition (Appendix Figure 2.1). Figure 2.3A shows that
correlations were more often found in mutualistic and competitive interactions, where
interacting species experience the same qualitative effects from each other, than in
amensalistic and commensalistic interactions, where only one species experiences an effect
from the presence of another species. For exploitative interactions among bacteria, either a
positive or negative correlation coefficient p could be found, with a success rate comparable
to amensalistic and commensalistic interactions. Contrary to the results that included
symmetric interactions, there was no difference between the successful inference of positive
interactions over negative interactions in any interaction type (Figure 2.3B). For all interaction
types, the sign of the significant correlation coefficient p found, mostly agreed with the sign
of the interaction type (Figure 2.3). However, with the inferred correlations neither the type
nor direction of the original interaction could be recovered.
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Figure 2.3 - The percentage of significant partial correlations (with sign matching
interaction in either direction), as recovered from the base case model.
A) For different types of pairwise interactions and B) for the different correlations.
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Network inference under various sources of process variability

Next, we investigated how correct network inference was affected by several variations to
the base case model (Figure 2.4 and Appendix Table 2.1). In all cases considered, interactions
were recovered with precision exceeding recall. This means that the likelihood of missing an
interaction (i.e., 1 - recall) was higher than the likelihood of finding a false interaction

(i.e., 1 — precision), illustrating the effect of false discovery rate control.

Partial correlations corresponded to non-zero entries in the interaction matrix only when
interindividual variation existed in the interaction parameters (av) and/or carrying capacities (K)
(Figure 2.4A and 2.4B). These parameters directly influence microbial abundance patterns, as
interspecific interactions and carrying capacities determine the equilibrium of the gLV model.
The intrinsic growth rate only determines the speed at which species reach their equilibrium,
and this parameter is not informative for the equilibrium abundances. In fact, performance
under interindividual variation in growth rates was just as bad as the performance under pure
measurement noise with no variation in model parameters (Figure 2.4B).

Performance of correlation-based network inference was robust to measurement noise, if
measurement noise was small compared to interindividual variation in process parameters
(Figure 2.4C). When measurement noise became of the same magnitude as the variation

in interspecific interactions, the F -score deteriorated, and it was no longer possible to use
correlations as a proxy for interactions (Figure 2.4C). We also checked whether adding process
noise would affect the inference. We did observe a significant improvement of the inference
from a model with process noise relative to only measurement noise (Figure 2.4C and
Appendix Table 2.1).

Hereafter, we investigated the effect of drawing the interaction strengths from different types
of distributions (Figure 2.4D and Appendix Figure 2.3). We did not observe a difference

between the success rate of network inference under a Gaussian mixture distribution or
uniform distribution, which were conditioned to have similar variances (Appendix Table 2.1).
However, successful inference deteriorates with reduced interaction strength; success rates
were better under a Gaussian mixture distribution or uniform distribution compared to a
unimodal distribution around zero (with smaller variance) (Figure 2.4D). The weaker interactions
have a smaller effect on equilibrium abundances of other species, which makes them harder to
detect with correlation analysis.

Figure 2.4E shows the results for different network types. Increasing the number of species from
10 to 30 had a significant negative effect on the success of the inference (Appendix Table 2.1),
which was mainly due to reduced precision. Conversely, F,-scores were improved as compared
to the base case when assuming a producer-consumer based network (Appendix Figure 2.4 and
Appendix Table 2.1), on account of an improved recall. Inference in a network with interaction
hubs (as explained in Appendix Figure 2.4) was significantly worse than in a random network,
which could be attributed to a somewhat reduced recall.

Note that problems may arise with asymmetric relationships. When using the rule that pairwise
correlations should match the strongest interaction between both species involved as the
intended sign, we found only a slight non-significant reduction in F -score as compared to the
base case scenario (Figure 2.4F and Appendix Table 2.1).
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Figure 2.4 - Inference under various sources of process variability. For the
different scenarios we show the precision, recall, and the F -score. A) The base case model.

B) Host-specific variation in the carrying capacities and intrinsic growth rates. C) Decreased
and increased amount of measurement noise (uv) and the effect of process noise (W)
(Appendix Figure 2.2). D) Interaction strengths drawn from a uniform and unimodal
distribution (Appendix Figure 2.3). E) The results for a 30-species system, a network based on a
producer-consumer structure and a network with interaction hubs (Appendix Figure 2.4).

F) The effect of network inference when specifying the intended sign in correlation analysis, as
the sign of the strongest interaction in each pair of species, or by setting the rule that the sign
of both interactions must be matched by the inferred correlation coefficient (strict inference).
G) Three scenarios with 3000 hosts, for the base case with random interaction networks as
well as for the scenarios with structured (i.e., producer-consumer and hub-species) networks.
Network inference was assessed by the F -score, which measures agreement between the
interaction matrix in the gLV model and the inferred partial correlation matrix on a scale from
0 (no agreement) to 1 (perfect agreement) (according to the rules of Table 2.1). The dashed
line indicates the median result from the base case model. The bars of the boxplots indicate
the variability of the data outside the middle 50% (i.e., the lower 25% of scores and the upper
25% of scores). All p-values are given in Appendix Table 2.1.
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Thus, pairwise interactions wherein the net effect on population growth is positive or
negative are mostly picked up as such in correlation analysis. However, under the rule that
mutual interactions must both be reflected in the sign of the correlations, asymmetric
interactions cannot be recovered as correlations are symmetric. We indeed found much lower
F,-scores when detection of asymmetric interactions was no longer considered as a true
positive result after inferring a significant correlation coefficient p (either positive or negative)
(Figure 2.4F).

Finally, we verified that network inference improved with increasing sample size. This applied
to models with random as well as structured interaction networks (Figure 2.4G). In the base
case, precision was somewhat reduced at increased sample size notwithstanding Benjamini-
Hochberg control. However, this was compensated by substantially improved recall, resulting
in significantly increased F,-scores. Interestingly, precision stayed more or less constant

at increased sample size in producer-consumer and hub-species networks, whereas recall
improved but remained somewhat behind that of random networks.

Network inference under non-equilibrium conditions

Figure 2.5 shows that the equilibrium assumption is not necessary for successful correlation-
based network inference. In fact, our results even suggest that a perturbation can positively
affect the performance of network inference. Variation in the growth rates becomes
significantly informative outside the equilibrium (Appendix Table 2.2). Also, variation in the
interactions becomes even more informative when the population is still growing towards the
equilibrium. Network inference is impaired only right after the start of a perturbation, when
the population is still far from a new equilibrium, unless the interindividual variation is in the
carrying capacities (Figure 2.5B). We also assessed the success of correlation-based inference
when the sampling occurred randomly in time in relation to the perturbation. We found that
the F -score resembled an average of F,-scores across various sampling time points.

Discussion

Correlation-based network inference has been used in many studies and for many different
types of human and environmental microbial communities.??” The reliability of the results
with regards to true ecological dependencies has been criticized, to the extent that
correlation analysis has been suggested to almost never reveal anything substantive about
the biotic relationships between bacteria.?’® However, the theoretical basis that enables
ecological interactions to be inferred from cross-sectional abundance data remains poorly
understood. Most of the previous research has focused on the reconstructed network
properties or the difficulties pertaining to metagenomics-based abundance patterns, e.g., the
compositionality of the data and the high proportion of zeros.?'®227.26¢ While these difficulties
are pervasive and merit further consideration, here, we question whether correlations are at
all useful in distinguishing different interaction types in microbial networks.

We demonstrated multiple pitfalls when using correlation-based methods for inferring
interactions. Some of those pitfalls are well known, as they relate to the inherent symmetry
of correlation-based metrics and the frequent asymmetry of ecological interactions.?'®

As a result, asymmetric interaction types (commensalism, amensalism, and exploitative
interactions) cannot be recovered with an indication of the direction of interaction, which
agrees with prior work done by Weiss et al. (2016).2**
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Figure 2.5 - The effect of a perturbation on correlation-based network
inference. A) Example of a time series. Dashed lines represent sampling time points.
Sampling was performed during the perturbation (t, = green, t, = yellow, t, = blue, and

t, = grey) and at equilibrium (t, = dark blue). Alternatively, sampling was performed
randomly between =100 and t = 1000 (random = pink). B) Results (F -scores) of network
inference for sampling at various time points. After a perturbation all species grow back
to their original equilibrium. The bars of the boxplots indicate the variability outside

the middle 50% (i.e., the lower 25% of scores and the upper 25% of scores). Dashed

lines represent median results of sampling during equilibrium. All p-values are given in
Appendix Table 2.2.
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Symmetric interaction types, where species involved affect each other’s growth in a
qualitatively similar way (competition and mutualism) can be recovered, although
competitive interactions may also result in positive correlations, albeit in very rare cases
where species have identical competitive strength. Likewise, we found that exploitative
interactions generally induce positive correlations, especially in the likely circumstance
where the exploitative benefit outweighs the harm to the exploited species. These findings
might explain why empirical correlation-based networks have a relative shortage of negative
correlations."'* 268 25%|t remains to be investigated whether the high frequency of positive
edges in reconstructed networks is caused by methodologic limitations or whether the
interspecific interactions in host-associated microbiota are primarily mutualistic.’'? '36.270.271

Still, as illustrated by our analysis, correlations in microbial abundance across independently
sampled hosts can be indicative of underlying ecological interactions under host-specific
variation in microbial population dynamics. That is, if microbial groups of interest are
omnipresent and their interactions are appropriately captured by generalized Lotka-Volterra
(gLV) dynamics, the variation in population abundances should be driven by interindividual
variability in population-dynamic parameters. In the context of the gLV model, the
informative parameters are primarily related to intrinsic growth rates, carrying capacities,
and strength of between-species interactions of microbial groups considered. A change in
species abundances can be informative for the interactions among those species, as was also
previously shown by Stone and Roberts (1991).?7? It remains to be determined how much
variability across individual hosts is driven by external forcing and by gradual differences in
process related parameters relative to measurement noise. On one hand, it is well known
that microbes adapt to host-specific environments, shaped by, among others, diet, lifestyle,
hormonal regulation, and the immune system.?*® As an example, increased abundance of a
particular bacterial species at increased glucose intake levels might be reflective of increased
resource availability (affecting carrying capacity and growth rate) or superior competitive
strength (affecting interactions with other species).?* On the other hand, environmental
drivers of bacterial growth can operate over different spatial and temporal scales and
correlations in abundance can be reflective of shared environmental niches that have no
meaning in terms of direct biotic interactions.?!

Therefore, a correlation between the abundance of two species does not imply that those
species are interacting."" Many of the detected correlations may be caused by shared
environmental preferences rather than species interactions.?”? Such environmental filtering
can mask putative between-species interactions as well as induce spurious correlations.?'®
Also, co-occurring species may appear to be dependent on each other, while their
co-occurrence can be explained by them actually sharing a similar dependency on a third
species so that co-occurrence, and hence apparent dependencies drawn from that, may

also be explained by higher-order interactions.?’* Berry and Widder (2014) suggested that
network interpretation is only possible if samples are derived from similar environments.""*
Our analysis suggests that network inference partially depends on a degree of heterogeneity
in population-dynamic parameters. If differences in bacterial abundances between hosts

are mainly due to measurement noise, their correlations are not informative of underlying
interactions. In our simulations, with relative standard deviation in process-related parameters
between hosts of about 25%, inference performed well as long as measurement noise had
coefficients of variation well below 10% of the mean bacterial abundances. Strikingly, the
inference of interactions was even improved when process noise was added. More research is
needed to delineate the extent to which correlation analyses can be confounded by latent
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environmental drivers of microbial population dynamics, and how strongly one should
condition on environmental or host homogeneity.

Our results have been obtained using the gLV model. While the gLV model has been very
popular in microbiome research because of its manageability, it has several drawbacks. In
ecology, the gLV model has been criticized for the absence of trophic levels within the model.?”*
This is in contrast to most classical ecological (e.g., plant-herbivore or predator-prey) systems,
where direct consumption and predation offer more opportunity for top-down regulation,
possibly obscuring interactions in co-occurrence patterns.?’® But trophic levels are probably

not so relevant in the human microbiome as bacteria mainly interact with each other through
excreted metabolites.? Furthermore, the interactions between bacteria might be much more
complex than the additive and pairwise interactions that the gLV model assumes. Momeni

et al. (2017) claimed that pairwise modeling will often fail to predict microbial dynamics, as
many interactions occur through chemical production pathways (such as cross-feeding and
nutrient competition) involving more than two species.?*® Correlation analysis fails to capture
the resulting higher-order interactions, for which more advanced techniques, e.g., graphical
models, might be more appropriate.?’” It is unclear how well directed links predicted by these
methods recover true ecological interaction types. Often, they require more prior knowledge of
the network of microbial interactions, time series, or more fine-grained data on the pathways of
interaction. Moreover, microbial networks can be bidirected and cyclic,'"® which poses problems
for inference of directionality and type of interactions from mere cross-sectional data. More
classical methods of separating direct from indirect interactions, e.g., path analysis,?”® rely on
testing of specific alternative causal hypotheses, which can only be considered as a next step in
network inference. To shed more light on causal pathways, there is a need in microbial ecology
for models that can describe the full set of metabolite concentrations, metabolic fluxes, and
species abundances within a community.’?° Based on metabolic modeling, Freilich et al. (2011)
concluded that cooperative interactions are relatively rare among free-living bacteria and, if
present, are often unidirectional. Machado et al. (2021) suggested that mutualistic interactions
are much more common among host-associated bacteria, that often form highly cooperative
communities and have smaller genomes and fewer metabolic genes compared to other species.
Cooperative communities are resilient to nutrient change and adaptable to a wide variety of
different environments, including the human body.'" 2’ Metabolic modeling is still challenging
and heavily based on a priori assumptions, but is also a rapidly developing field that may prove
useful for computational validation of correlation-based interaction networks.?”®

In addition, the gLV model disregards important biological processes, such as adaptation (for
instance, switching of mutualistic partners due to for example horizontal gene transfer?),

that may affect the topology of ecological networks, rather than the strength of ecological
interactions in a network. Furthermore, the gLV model displays dynamics that are characterized
by strong equilibrium attractors. Many studies have shown the occurrence of complex dynamics
as alternative stable states,'® oscillations, and chaos in experimental,® 26" 222 but also in field
studies,® with ecological communities. Whether this also applies to the bacterial communities
inhabiting the human body is still unknown, due to the paucity of long-term human
microbiome studies. However, a study among a thousand Western individuals has suggested
the existence of tipping elements in the intestinal microbiome'®? indicating the possible
presence of alternative attractors in the dynamics of gut microbiome communities.®”- 2
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As a general critique, the use of simulated data based on gLV dynamics raises the question to
what extent the necessary model assumptions (and therefore the results) are representative
for the human microbiome. Of course, real data are much more complex than simulated
data. To reiterate, our base case parametrization does not reflect any particular real-world
system, and findings should be appreciated from a qualitative rather than quantitative
viewpoint. Even so, while models can only serve as very crude approximations, the main
features of model-based analysis might still hold, as demonstrated by Freilich et al. (2018).27*
They compared a well-resolved, empirically defined interaction network of species in the
rocky intertidal zone in central Chile to a reconstructed network based on the co-occurrence
of those species. There are similarities in their findings to our results. For example, they
found that weak interactions are missed more often than interactions above a certain
threshold. They also concluded that the ability to correctly detect a true link varies across
different interaction types, and that positive interactions are better detected than negative
interactions. Interestingly, in line with our results, they also found that negative interactions
are misclassified as positive interactions more often than vice versa.

In our simulation studies, the chance of finding false interactions was well under control using
partial correlations with adjustment for multiple testing. It should be noted that application
of correlation-based network reconstruction to real-world high-throughput microbial
abundance data typically requires additional constraints for control of false discovery rates.
Real-world microbiome data have some specific challenges which may negatively affect the
success of correlation-based network inference. The compositionality of the data, the diversity
of species (with many rare species) and the density of interactions make these networks
harder to predict and apparent correlations more likely to appear.??* #*° Various correlation-
based methods, often free of charge and provided as pre-programmed packages are available
to handle these challenges. However, Weiss et al. (2016) showed that with the same data,
there is much disagreement between the inferred networks generated by different tools.?*
Thus, even if correlations are a useful proxy of microbial interactions, performance of network
inference in high-dimensional settings will also strongly depend on the specific network
modeling approach taken.

To summarize, correlation-based methods are particularly insensitive for the detection of
asymmetric interactions (such as exploitative interactions, amensalism, or commensalism),
as direction of interaction cannot be recovered from co-occurrence data. Still, they may
perform well when applied to networks that are dominated by mutualistic and competitive
interactions, as in producer-consumer systems. Applicability of correlation-based network
inference to readily available microbiome data thus depends on the type of interactions that
govern microbiome dynamics, which likely depends on each application. To conclude, our
study suggests that hypotheses about microbial interactions, generated with correlation-
based methods, should be questioned with domain-specific knowledge. We highlight again
the careful interpretation and validation that is required.
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Appendices of Chapter 2

Appendix Table 2.1 - Mann-Whitney U test results for the
F -scores of the base case model and for the F -scores of

the model with different sources of process variability.
Significant results are highlighted in bold and blue.

Scenario p-value
Variation in all parameters <0.001
Variation in carrying capacities <0.001
Variation in growth rates <0.001
No variation in parameters <0.001
Low measurement noise <0.001
High measurement noise <0.001
Low process noise <0.001
High process noise <0.001
Uniform distribution >0.05

Unimodal distribution <0.001
30 species system <0.001
Producer-consumer network <0.001
Hub-species network <0.001
Inference of intended sign >0.05

Strict inference <0.001
Base case (3000 hosts) <0.001
Producer-consumer network (3000 hosts) | <0.001
Hub-species network (3000 hosts) <0.001
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Appendix Table 2.2 - Mann-Whitney U test results for the F -scores of the

samples taken outside equil

ibrium relative to those taken at equilibrium (t,

in Figure 2.5) and for the F, -scores of the samples taken randomly.
Significant results are highlighted in bold and blue.

Variation in interactions

Time point p-value
Random <0.001
t, <0.001
t, <0.001
t, <0.001
t, <0.001
Variation in carrying capacities

Time point p-value
Random >0.05

t, <0.001
t, <0.001
t, <0.001
t, <0.001
Variation in growth rates

Time point p-value
Random <0.001
t, <0.001
t, <0.001
t, <0.001
t, <0.001
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Appendix Figure 2.1 - Cartoon illustrating the different interaction

mechanisms. A) In mutualistic interactions, both species experience a positive
effect. An example is when a species feeds on the metabolites excreted by the other
species. B) In competitive interactions both species experience a negative effect. An
example is when both species produce toxic compounds that are harmful to the other
species as well as to themselves. C) Commensalism is a one-sided positive interaction.

This type of interaction occurs when one species is beneficial to another species,

without benefit or harm to itself. D) Amensalism is a one-sided negative interaction.

Amensalism occurs when a species causes harm to another species, without benefit
or harm to itself. E) Exploitative interactions occur when one species derives a benefit
from another species at the expense of the latter, such as when one species kills and
subsequently consumes the other. Red arrows represent negative interactions, green
arrows represent positive interactions, and grey arrows indicate no interactions.
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Appendix Figure 2.2 - The effect of process noise (/) on the within host
population dynamics. Process noise was added by means of the ‘events’ function from the
‘deSolve’R package.?®* The time-varying noise was drawn from a log-normal distribution to

prevent the abundances from dropping below zero, i.e., AW, = In(N

r,m/At)) - ln(N,,mm) - N(ln(Ni,r)' o,)

at every timestep, At = 1. A) Simulated time series without process noise, B) with low process
noise (0,,~ N(0, 0.1)), and C) high process noise (o, ~ N(0, 1)).
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Appendix Figure 2.3 - Distributions of interaction strengths in three different
scenarios. A) The interaction strengths in the base case follow a Gaussian mixture distribution.
Half of the interactions were drawn from a negative normal distribution: a,~N(-0.25,0.1); and
the other half of the interactions were drawn from a positive normal distribution: a,~ N(0.25,
0.1). B) The interaction strengths in Figure 2.4D-1 follow a uniform distribution (a,~ U(=0.5,0.5).
C) The interaction strengths in Figure 2.4D-2 follow a unimodal distribution (@, ~N(0, 0.15)).

All interactions were restricted to lie between 0.5 and 0.5, i.e., the normal distributions were

truncated at =0.5 and 0.5.
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Appendix Figure 2.4 - Network structures used in the different case studies.

A) An example of a random network and its corresponding interaction matrix. B) An example

of a structured network with interaction modules and its corresponding interaction matrix. The
modular networks are based on a cross-feeding structure between producers and consumers
(with equal numbers of producers and consumers). Between producers (P ;i = 1:5) and consumers
(C;;j=1:5), positive interactions (indicated in green) are more likely to occur, because metabolites
excreted by the producers are consumed by the consumer species. Among producers or among
consumers, the interactions are predominantly negative (indicated in red) as these species

are more likely to compete for similar resources. C) An example of a structured network with
interaction hubs and its corresponding interaction matrix. The hub-species network contains
species (H) with unusually high numbers of ecological interactions compared to other species in
the network. This can occur when some species perform a central role in the microbial ecosystem,
for example when a hub-species produces a metabolite that is required for growth by many other
species.
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Appendix Figure 2.5 - The effect of a,on the correlations between the
abundances of two bacterial species for different interaction mechanisms.

The two species can co-exist under certain combinations of a, (Box 2.1). The abundances of the
two species N, and N, at equilibrium are shown as scatterplots and were obtained by running
the two-species Lotka-Volterra model with K =15, K, =1.1,r,=1,r,=2,and a, drawn randomly
from normal distributions with different combinations of means and standard deviations.

In A) the two distributions have different means and standard deviations: a,, ~ N(|0.5], 0.1) and
a,, ~ N(|0.7], 0.2). In B) the distributions have identical means, but different standard deviations:
a,, ~N(|0.5],0.2) and a,, ~ N(|0.5], 0.1). For exploitative interactions we also show the situations
that negative correlations can occur when the exploitative benefit displays much more variation
than the harm to the other species, i.e, a,, ~ N(-0.5,0.01) and a,, ~ N(0.5, 0.2) for exploitative
interaction type 1,and a,, ~N(0.5,0.2) and a,, ~ N(~=0.5, 0.01) for exploitative interaction type
2.In Q) interactions are randomly drawn from distributions with different means and identical
standard deviations: a,, ~ N(|0.6], 0.1) and a,, ~ N(|0.3], 0.1). In D) the interactions have identical
strengths for the two species, namely |a, | = |a,,|. The mutualistic interactions are drawn from
the distribution a,, = a,, ~ U(0, 2.5), for competition and exploitative interactions we show two
different scenarios, namely |a,,| = |a,,| ~ U(|0.4], |2.5]) (upper graph) and |a,,| = |a,,| ~ U(0, [0.4))
(lower graph). Because the two species have different carrying capacities, the two situations of
exploitative interactions are different. The grey polygon indicates the area where coexistence is
possible. Note that the ranges of the axes are different in each subplot.
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