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General introduction and thesis outline

Complex systems

Complex systems encompass a diverse array of phenomena and processes, from financial 
markets and climate patterns to the microbial communities in our gut. Their challenges 
involve apparently intractable and often unpredictable problems, such as organizational 
transformation, political conflict, climate change, disruptions in infrastructure, and recurring 
infections.1, 2 Complex systems evolve over time, and changes can manifest as gradual trends 
or fast fluctuations.3, 4 Occasionally, the system might undergo a complete transformation 
into a new state. For example, a pathogenic species in the Caribbean coral reef caused a mass 
mortality event in the sea urchin Diadema antillarum. This loss had dramatic consequences: 
without the grazing activity of the urchins, the reef was quickly overgrown by brown fleshy 
algae, fundamentally altering the entire structure of the community.2 Similarly, in the Sahel-
Sahara region, a gradual change in solar irradiation triggered an abrupt shift, transforming the 
landscape with dense vegetation into a desert environment.2 Moreover, interactions among 
species can lead to oscillations and even sometimes chaotic dynamics, by themselves5 or in 
response to environmental conditions.6 Consequently, in such systems, slight differences in 
initial conditions can lead to different outcomes with extinctions of varying magnitudes due 
to non-linear dynamics (Box 1.1). In contrast, systems may display resilience by recovering 
from disturbances and reverting to their previous state.7 

The individual components of a complex system often represent relatively simple processes. 
However, synchronization of activities among individual components can lead them to act 
as a cohesive unit with additional functionalities (Figure 1.1). A greater diversity of these 
components can display richer properties, functions, or behaviours, and enhanced resilience.1, 3, 4 
The theory of complex systems seeks to infer the underlying models and properties of their 
patterns and behaviours, as well as to develop tools and concepts for effectively modeling their 
interactions and dynamics. Because if we can understand the behaviour of complex systems, we 
can develop solutions to address their challenges, aiming for a resilient and adaptive future for 
our society and health. Achieving this requires interdisciplinary collaborations, where experts 
from diverse fields offer their perspectives. 

Box 1.1 - Tipping points in ecosystems. In the context of ecology, 
ecosystems experience shifts when confronted with alterations in factors 
such as food sources, climate fluctuations, or human interventions. When 
an ecosystem encounters an environmental change, there may be a 
noticeable shift in species composition and overall biodiversity. Similar to 
a game of Jenga, where removing individual blocks may not immediately 
affect the stability of the tower, small changes in a system might not 
have noticeable consequences until a critical tipping point is reached. 
However, once that tipping point is crossed, the system can experience 
a sudden and significant transformation, resembling the collapse of a 
Jenga tower when a crucial block is removed. This phenomenon is closely 
tied to the system’s high connectivity, where the failure of one element 
can impact the entire system, often leading to irreversible changes. 
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Figure 1.1 - Diagram illustrating the interactions and relationships 
within a complex system across different scales. In the human gut 
microbiota, emergence refers to the phenomenon where the overall functionality 
of the microbial community arises from the interactions among individual microbial 
species. The gut is home to trillions of microbial cells, including bacteria, viruses, fungi, 
and other microbes that interact with each other (bottom figure). The interactions 
between these diverse agents, that mutually affect each other, lead to the emergence 
of various functionalities and behaviours (middle figure) that contribute to digestion, 
nutrient absorption, and overall host health (top figure).8 The science of complexity 
shows that insights at one level (e.g., health outcomes) are influenced at another 
level (e.g., the interactions within a system), and that one cannot be fully understood 
without knowledge of the other, as they are interconnected in a continuous feedback 
loop. Therefore, complex systems such as the human gut microbiota are difficult to 
comprehend using traditional scientific analyses. Traditionally, experimental scientists 
have primarily focused on reducing complex systems to their individual elements, 
providing essential knowledge of the system’s components, but overlooking the 
significance of interactions between them. Interestingly, the global system is often 
not fully explained by or predictable with the knowledge of the component parts. 
However, the inverse is also true; without an understanding of the dynamics of the 
component parts, understanding of the whole system is unattainable. By considering 
the dynamics of a complex system as a whole, with both the internal and external 
forces, rather than merely the sum of its parts, new insights and theories can be 
developed.1, 9 This figure is based on Lewin (1999) and Parrott and Lange (2013).1, 10

Locally interacting (heterogeneous) components,
e.g., bacterial species

Emergent higher level entities,
e.g., meta-communities/ populations

Global level entity with complex adaptive 
behaviour, e.g., the human gut

Fe
ed

ba
ck

 lo
op

s 
(p

os
iti

ve
 a

nd
 n

eg
at

iv
e)

Changes in 
  the external 
environment



11Chapter 1 General introduction and thesis outline

The research for this thesis was conducted by a multidisciplinary team of ecologists, 
microbiologists, bioinformaticians, statisticians, epidemiologists, and medical specialists who 
collaborated to explore new perspectives on the complex ecosystem of the gut microbiota 
and its relationship with human health and disease.

The human microbiome

The human body serves as an ecosystem for a multitude of microorganisms, with the 
gastro-intestinal (GI) tract being a particularly rich and diverse habitat.11-13 In 2022, it was 
estimated that there are about ten times more bacterial genomes in the human gut than 
there are genes in our own genome.14, 15 Actually, the body is not a single ecosystem; instead, 
it comprises multiple habitats, each with its own unique environment, which are likely 
interconnected with one another. The entire collection of microorganisms (commensals, 
mutualists, pathogens, and opportunists), encompassing bacteria, viruses, protozoa, archaea, 
and fungi, along with their cumulative genetic content, is collectively referred to as the 
microbiome, a concept introduced by Nobel Prize laureate Joshua Lederberg in 2001.16, 17 
A distinct term, the metagenome, encapsulates the combined genetic makeup of the 
microbes. The microbiota, in a narrower sense, refers to the assorted microbial species 
occupying specific niches, such as the ‘oral microbiota’ or the ‘gut microbiota’.17, 18 This thesis 
focuses on the bacteria in the human gut microbiota. 

Our understanding of the composition and functions of the microbiome has increased 
exponentially over the last 15 years. This has been mainly due to the new ‘omics’ technologies 
that have facilitated large-scale analyses of the phylogenetic and metabolic profiles of 
microbial communities.19-23 These insights have revealed the vital role that microbial 
communities play in human health, as they coexist symbiotically with the human host and 
contribute significantly to maintaining physiological balance. The human gut, for example, 
serves as a unique ecosystem, providing a nutrient-rich environment for its microbial 
communities. Many benefits of the human microbiome for the human host have already been 
identified, including the prevention of pathogenic bacteria and viruses through competition 
for metabolic resources, maintenance of metabolic balance, processing of nutrients (such as 
fiber digestion and vitamin synthesis), drug modification (affecting drug efficacy), and the 
maturation and regulation of gastrointestinal immune responses.20, 24-30 Moreover, the relation 
between microbes and various human health conditions has been shown for, among others: 
obesity, cardiovascular disease, Clostridioides difficile colitis, inflammatory bowel diseases 
(IBD), irritable bowel syndrome (IBS), non-alcoholic fatty liver disease, dental caries, asthma, 
autoimmune diseases (such as celiac disease, inflammatory arthritis, and primary sclerosing 
cholangitis), and sepsis.31-44

Every person harbors distinct and relatively stable microbial communities in and on their 
body.45 Stability means that samples collected over time from an individual exhibit greater 
similarity to each other compared to samples obtained from other individuals.22, 45-51 
Certain host factors, e.g., host genetics, age, diet, and medication use, cumulatively explain 
about 20% of the gut microbiota compositional variation.52-54 Despite the individual 
variability, a shared core microbiota with notably similar functional gene profiles can be 
detected in most healthy adults.21, 22 Stability appears to be an important ecosystem trait, 
persisting over several months or even years.22, 45, 46, 48-51



12Chapter 1 General introduction and thesis outline

However, natural fluctuations in community composition, featuring sporadic blooming 
of species, are normal in gut microbiota dynamics (Figure 1.2), reinforcing homeostatic 
interactions with the host.52, 55, 56 Environmental stimuli influence these fluctuations and 
the microbiome typically shows autoregressive dynamics, allowing it to recover after 
disturbances.46, 47, 57-59 An example of such stimuli is variation in nutrient availability, 
especially in the small intestine, as the colonic microbiota thrives on the breakdown 
of complex carbohydrates.60, 61 Additionally, significant factors such as antibiotic 
administration, travelling, or drastic dietary changes can prompt bacterial population 
levels to shift within one day.45, 46, 59, 62, 63 The extent to which the human gut microbiota 
subsequently absorbs disturbances, adapts to the changing conditions, and maintains its 
essential functions, characteristics, and structure depends on the resilience of the system.22 
Interestingly, substantial commonalities are found among seemingly divergent responses 
to disturbances.64-69

Figure 1.2 - Time series of the gut microbiota of one healthy male 
individual.46 The time series shows temporal fluctuations on shorter timescales 
and overall stability over extended periods.23
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The introduction of solid foods at four to six months after birth further shapes microbial 
composition, with effects varying based on dietary habits across different geographical 
regions.67, 75, 76 Also, the child’s living environment, including pets and siblings, impacts 
microbial development.64, 77-79 After colonization and the stabilization of the gut microbiota, 
individuals can maintain distinct core microbial communities for extended periods of 
time.22, 45, 46, 48-51 These stable physiological states are sustained by negative feedback loops, 
preserving homeostasis even when the gut environment undergoes changes (Figure 1.3).22, 23, 80 
The ability to adapt while being robust against changing environments may seem 
contradictory, but most complex systems are clearly adaptive and robust at the same time.3

Box 1.2 - Gut microbiota shaped by early colonizers and community 
dynamics. For the gut microbiota, it has been shown that the temporal 
development is not purely random; rather, it is partly deterministic (and to some 
extent predictable, i.e., succession), partially stochastic, and often contingent on the 
community’s previous states.81-87 This implies that the initial conditions, including 
environmental factors and the early colonizers (founder effect or pioneer species), 
have an impact on the later community dynamics as well as the time span needed 
to reach the adult state.23, 68, 88-95 The microbiota are built upon these early colonizers, 
as they facilitate the growth of certain species, while impeding the growth of 
others.86, 96 For example, the first colonizers entering the infant’s gut are facultative 
aerobic bacteria such as Proteobacteria members. They alter the environment 
through metabolic byproducts, creating new ecological niches that promote 
diversification.97 They pave the way by decreasing the oxygen concentration for 
subsequent colonization by anaerobic bacteria, such as Bacteroidota (formerly 
Bacteroidetes), Actinobacteria, and Bacillota (formerly Firmicutes) phyla.23, 70 Critical 
ecological drivers such as community interactions, immigration, niche filtering, 
stochasticity, environmental conditions (such as oxygen, moisture, and pH) and host 
characteristics (such as age, diet, and medication use) keep continuously shaping 
the patterns of microbial community dynamics.21, 49, 57, 67, 69, 75, 98-101

Ecology of the human gut microbiota

A child is born with almost no microbiome. Colonization by maternal and environmental 
bacteria occurs within days of birth, influenced by factors such as delivery mode, antibiotic 
exposure, and ecological drivers (Box 1.2).55, 64, 67, 68, 70, 71 Breastfeeding contributes directly to 
neonatal microbiota establishment through providing living bacteria (from the skin and milk 
of the mother) and indirectly through prebiotic nutrients and bioactive components.67, 72-75 

Human milk oligosaccharides (HMOs) promote the growth of beneficial species and strains 
of Bifidobacterium (a key early life microbe associated with improved development of the 
immune system) that produce enzymes to break down these complex sugars.71 
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However, if a system cannot recover from a significant perturbation, it might shift to 
an alternative stable state with distinct characteristics (Figure 1.3B). When this happens 
in the gut microbiota, the new state might have severe health implications for the human 
host.48, 102-106 Bistable abundance distributions, i.e., arising from species with population 
sizes going back and forth between high and low abundances with moderate abundances 
being underrepresented in sampling, can be indicative of alternative stable states.48, 102-107 
For example, the bimodal abundance patterns of Prevotella melaninogenica, Bacteroides 
fragilis, and two groups of uncultured Clostridiales were verified in independent sets of 
sampled individuals, who varied in dietary patterns, geographic regions, and DNA extraction 
methods. These bimodal patterns appeared unaffected by these factors; rather, they were 
associated with factors such as aging or weight loss.102 The discovery of bistable bacteria 
led them to be labelled as ‘tipping elements’ and possibly keystone species, i.e., organisms 
that have a disproportionate effect on community structure and function relative to their 
abundance. This prompted questions about whether the significant shifts in microbiota 
composition and function are associated with changes in the abundances of specific taxa 
or with a broader dysbiosis across the community.102, 108-110
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Consequently, detecting the keystone species has become a focus in microbiota research.111-114 
Mainly (specialist) primary degraders have the potential to manipulate and regulate 
community states as keystone species.115 For example, despite their low abundance, highly 
active sulfate reducing bacteria, in wetland ecosystems, as well as in the human gut, play a 
crucial role in important biogeochemical processes.116, 117 However, very few proposed hub 
taxa, suggested by statistical techniques, such as network analysis, have been experimentally 
confirmed as keystone species; therefore, the reliability of methods used to detect keystones 
remains uncertain.118

There are a multitude of (dynamic) species-species interactions within the gut microbiome, 
rooted in metabolic processes, such as cross-feeding (Figure 1.4).119-121 Interactions among 
species in human microbiota tend to repel potential invaders and prevent outgrowth 
of certain species. For example, genetically diverse Escherichia coli populations produce 
secondary carbon sources sustaining other community members and preventing colonization 
of species that could outcompete them.122 Moreover, antimicrobial production, space and 
nutrient competition, predation, and the trade-off between growth-maximizing organisms 
(r-strategists) and those adapted for resource competition (K-strategists) are mechanisms that 
reflect how organisms maximize nutrient uptake, often at the expense of other organisms.123-125 
The cumulative outcome involves the reconstruction of a network within the gut microbial 
ecosystem, facilitating the coexistence of a diverse bacterial community.

Interactions within ecological networks can engender diverse outcomes, encompassing 
positive impacts (‘win’), negative impacts (‘loss’), or no discernible impact on the participating 
species (Figure 1.4B). The interaction conferring benefits to both participants, such as 
two species that engage in the exchange of metabolic products (exhibit complementary 
auxotrophies), is called mutualism.126, 136 This win-win relationship also occurs, for instance, 
when bacteria from disparate taxonomic groups collaboratively construct a biofilm, bestowing 
antibiotic survival upon its constituents and facilitating co-colonization.137 The prominence of 
such interdependencies is underscored by their heightened relative abundance when both 
species are present.8 Commensalistic relationships denote scenarios where one partner accrues 
benefits without inducing either harm or assistance to the other. Such relationships frequently 
manifest in biodegradation contexts, where commensals derive sustenance from compounds 
generated by fellow community members, as evidenced in cellulose degradation processes 
(Figure 1.4A).138

Conversely, antagonistic relationships may stem from amensalism, parasitism, and 
competition.8 The inhibition of other species can occur through direct competition for 
resources (niche preemption) or by altering the habitat to reduce its suitability for other species 
(niche modification).96 Bacteria use effectors of direct antagonism, including quorum sensing 
molecules, quenching molecules, antibiotics, and toxic substances such as bacteriocins and 
metal ion binding proteins, to inhibit the growth of competitors, especially in dense cellular 
environments.139, 140 Classical loss-win dynamics, as materialized in parasitic relationships, are 
observed in the relation between bacteria and their bacteriophages.23 Many bacterial species 
may exhibit predatory behaviour to some extent.141 Pseudomonas fluorescens, for example, has 
been used as a biocontrol agent to control plant pathogens by antagonizing other microbes, 
including Myxococcus xanthus.142-144 This species secretes various antibiotics and produces toxic 
volatile compounds such as cyanide.143, 145 Because Pseudomonas fluorescens can then grow on 
nutrients derived from the cells it has killed, it can be categorized as a predator.141
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Figure 1.4 - A schematic representation of the gut, showing primary, secondary, 
and tertiary consumers and their potential interactions. A) At the start of the bacterial 
food chain are the bacteria that consume the primary nutrient sources, such as polysaccharides, 
oligosaccharides, proteins, sugars, and mucins secreted by the colonic epithelium.126-130 Primary 
species effectively colonize the epithelial mucosa due to their ability to degrade mucin. They can 
also break down dietary plant- and animal-derived carbohydrates, initiating a series of cross-
feeding interactions that support the growth of other bacteria, particularly those that rely on 
the breakdown of complex carbohydrates into simpler sugars for energy.131-135 They facilitate 
the growth of secondary species and indirectly promote the growth of tertiary species. Some 
tertiary species produce short-chain fatty acids, which are subsequently utilized by colonocytes 
for their growth, leading to increased mucin production. This positive feedback loop may 
enhance ecological recovery in terms of diversity and biomass. It is important to note that there 
is likely no strict distinction between primary producers and secondary cross-feeders, as many 
microorganisms may function as both and will probably take the opportunity to cross-feed 
or degrade nutrients whenever possible, depending on the available substrates. This figure is 
adapted from Chng et al. (2020).132 B) Cartoon illustrating the different interaction mechanisms. 
In competitive interactions, both species experience a negative effect. An example is when one 
or both species produce toxic compounds that are harmful to the other species as well as to 
themselves. Amensalism is a one-sided negative interaction. Amensalism occurs when a species 
causes harm to another species, without benefit or harm to itself. Parasitism occurs when one 
species benefits from another species at the expense of the other. Commensalism is a one-sided 
positive interaction. This type of interaction occurs when one species benefits from another 
without affecting it. In mutualistic interactions, both species experience a positive effect. An 
example is when one species feeds on the metabolites excreted by another species, thereby 
cleaning the ‘waste’ from the environment. 
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An illustration of microorganism competition (a loss-loss relationship) was given by Gause, 
already in the 1930s when he conducted a series of co-culturing experiments.146 In his 
observations, he found that some species pairs, which thrived on their own, cannot coexist 
with constant population values. He showed one species (Paramecium aurelia) taking control 
over the other species (Paramecium caudatum) when they were grown together. Even if one 
organism ultimately ‘wins’ by securing more resources, the energy and resources spent in 
the competitive process could have been used for growth, reproduction, or other survival 
functions. Therefore, both species suffer initially during the competition, and eventually, 
the less competitive species is driven to extinction in that environment. This formed the 
foundation for Gause’s law of competitive exclusion, asserting that species with similar 
ecological niches mutually preclude each other’s survival.146, 147 The deterministic nature 
of competitive dynamics of microbial communities, particularly within newly established 
ecosystems, has long been a topic of debate among ecologists. One theoretical framework 
that has emerged in this context is neutral niche theory. The neutral niche theory assumes 
that communities in certain niches are built only by random draws, driven by stochastic 
colonization, where the gut niches are likely to be filled by random ‘winners’, as in a lottery 
scenario, instead of predictable winners.84, 87 

Amensalism, a situation where one partner is harmed without benefitting the other, can be 
seen in scenarios when a microbial species produces metabolic by-products that change 
the environment to the detriment of other microorganisms, such as the acidification caused 
by lactobacilli activity.148, 149 Previous experimental investigations have substantiated that 
antagonistic interactions are more likely among closely related species sharing analogous 
metabolic pathways.137, 150

Gut microbiota associations with health and disease

The interplay between humans and gut microbiota has been shaped over more than a 
billion years of coevolution, resulting in a symbiotic relationship similar to a holobiont or 
superorganism. As a result, the intestinal microbiota contribute to various health functions, 
including the maturation and ongoing training of the host immune response.20, 151, 152 
Detrimental changes in the gut microbiota’s characteristics (abundance, metagenomic 
function, diversity, and composition), collectively referred to as ‘dysbiosis’, can weaken 
the intestinal barrier, leading to the colonization or outgrowth of organisms, increased 
inflammation, immune dysregulation, and metabolic issues, thus compromising human 
health (Figure 1.3).19, 22, 92, 153-159 Note that dysbiosis remains poorly defined, largely due 
to significant interindividual variability within patients and across different diseases, 
which complicates the establishment of a clear definition for a healthy and unhealthy gut 
microbiota. To measure dysbiosis, several indices have been proposed.160 However, the 
proposed measures are not widely adopted and may not fully capture the complexities of 
dysbiosis.

One of the early milestone papers on the relation between the microbiota and disease is a 
study by Turnbaugh et al. published in 2009.161 Here, the authors showed that obese mice had 
a gut microbiota with increased capability for energy harvest from the diet. Also, they linked 
the gut microbiota to the pathophysiology of obesity through a series of experiments. This 
included transplanting feces from obese mice into gnotobiotic mice, which led to a greater 
increase in body fat than when gnotobiotic mice received a fecal microbiota transplantation
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from lean mice. This study not only found a correlation between the gut microbiota and 
disease, but also showed a causal link between the two. Subsequently, the study triggered 
a global interest in the role of the gut microbiome in human health and disease.161

Advancements driven by initiatives such as the Human Microbiome Project (HMP) and 
European Metagenomics of the Human Intestinal Tract (MetaHIT) have harnessed vast 
sequencing datasets to illustrate the structure and function of the healthy core microbiota.21, 162 
Defining the healthy microbiota is extremely difficult, as healthy gut microbiota are 
characterized by substantial interindividual variation. In the gut, however, healthy microbiota 
are associated with bacterial diversity, as they exhibit lower susceptibility to invasion, suppress 
the outgrowth of harmful species, and demonstrate greater resilience to perturbations.91, 163 
Intriguingly, while the human gut microbiota’s compositional diversity is substantial, functional 
gene profiles remain strikingly similar across individuals.22 This similarity was first reported in 
a study of 18 females who shared more than 93% of the enzyme-level functional groups, and 
was later confirmed in a much larger population by the HMP and MetaHIT data.21, 162, 164 This 
functional similarity among distinct microbiota profiles underscores the significance of function 
over species identity. However, variations in species could impact functional effectiveness, as 
seen with variations in short chain fatty acid synthesis.19, 22, 165, 166 Understanding the dynamics 
of the gut microbiota can guide strategies to increase the resilience of healthy states or 
counteract unhealthy ones (Figure 1.3B). Overall, the idea is that it is beneficial to have a diverse 
gut microbiome, which provides metabolic flexibility while reducing the risk of infections and 
the development of inflammatory diseases (Box 1.3).

Microbial shifts have been associated with disease activity in gastrointestinal inflammatory 
disorders such as IBD, encompassing Crohn’s disease (CD) and ulcerative colitis (UC). Most 
IBD patients suffer from periods of flares of inflammation with a severe impact on patients’ 
quality of life. Although the exact cause of the disease and its exacerbation remain unclear, it is 
considered to result from complex interactions between an altered intestinal immune response 
to commensal bacteria, shifts in the intestinal microbiota, and external environmental factors 
in a genetically susceptible host.169, 170 The gut microbiota of individuals with ileal CD shares 
similarities with that of infants: both are characterized by reduced diversity, elevated levels of 
Ruminococcus gnavus and Enterobacteriaceae, and an under-representation of the genera that 
are prevalent in healthy adults, including Faecalibacterium prausnitzii and Roseburia.22, 33, 171-174

Box 1.3 - Gastrointestinal diseases and microbial dysbiosis. A proposed 
hypothesis for the development of gastrointestinal diseases delineates a 
multi-step mechanism involving factors that trigger mucosal abnormalities 
and inflammation, microbial dysbiosis, morphological and functional changes, 
and interindividual microbial transfer as a continuous pathogenic cycle.20, 151 
For example, Clostridioides difficile, the main causative agent of nosocomial 
diarrhea, is an anaerobic, gram-positive, spore-forming bacillus.167 Clostridioides 
difficile may outcompete other species, especially in a dysbiotic microbiome 
after antibiotic use, leading to colonization of the gut and subsequently to 
disease.34 Recurrence of infections is not solely attributed to the reduction in 
diversity following antibiotic use, but there are also distinct bacterial signatures 
linked to recurrent colitis. These include a decrease in beneficial bacteria 
(e.g., Faecalibacterium prausnitzii) and an increase in strains from for example 
Lachnospiraceae, Coprococcus, Ruminococcus, and several Clostridium species.168 
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Additionally, microbial variations have been observed relating to heightened Bacteroides spp. 
and diminished Clostridium coccoides.175-180 However, these associations vary among studies, 
likely due to the heterogeneity of CD, differences in sequencing technologies, and the 
interindividual microbiota variability.154, 181, 182

Microbiome-related therapies, including prebiotics, probiotics, and fecal microbiota 
transplantation (FMT), aim to transition the patients’ microbiome from a dysbiotic to a healthy 
state.183-185 Although many probiotic strains demonstrate strong survival during passage 
through the gastrointestinal tract and retain metabolic activity, most human studies indicate 
they have very short-term persistence and minimal influence on the resident microbiota 
composition. In contrast, FMTs (transplanting healthy donor fecal matter into the patient's 
gut) seem to be more effective at changing an existing gut microbiota, yet the underlying 
processes leading to recovery remain largely unexplored and not well understood.95, 186-188 
The current thought is that the succession in the recovery process seems to start with an 
increase in facultative anaerobes and aerotolerant bacteria (similar to the development of the 
microbiota in an infant’s gut), possibly because of temporary changes in redox potential, and 
then the re-establishment of obligate anaerobes.22 FMT has demonstrated success in treating 
recurrent Clostridioides difficile infection, curing up to 85% of the patients, but its application 
in other diseases yields contrasting results.189, 190 For IBD, the remission rate after FMT is 45%, 
though relapses occur in a certain proportion of patients.191 Repeated FMT administrations 
seem to be needed to alter the chronic dysbiosis in the IBD patients' microbiota and allow 
for lasting changes.192-195 Also, associated factors such as age, sex, donor characteristics 
(e.g., donor gut microbiota diversity), pretreatment, and antibiotic use influence FMT 
outcomes, underscoring the interplay between the host, the host microbiota, and the donor 
microbiota.189, 193-200 

Approaches and challenges in analysing microbiota datasets

Samples from the gut microbiota provide a glimpse into the abundant diversity within the 
colon, revealing the multifaceted microbial ecosystem of the gastrointestinal tract.61, 201 
The most commonly used sample type for analysis of the gut microbiota is feces. Alternative 
sampling methods include taking biopsies during endoscopy or rectal swabbing. The 
advantage of rectal swabbing is that it relies on standardized protocols, whereas fecal sample 
collection often depends on individuals collecting the feces samples themselves at home, 
which can introduce variability. Both fecal sampling and rectal swabbing are also much 
less invasive than taking a biopsy. Moreover, a lower microbiota diversity is often found in 
samples obtained by a biopsy compared to fecal or rectal samples, which is probably caused 
by the bowel preparation beforehand, making this the least preferred method. Still, fecal 
samples or rectal swabs may miss specific microbial communities found in other (earlier) parts 
of the colon. For example, differences in microbial composition between rectal swabs and 
biopsies from the sigmoid colon suggest that distinct microbial communities exist in these 
areas. Rectal swabs may capture species suited to the transitional zone between anaerobic 
and more aerobic environments, while the squamous epithelium near the anal canal may host 
different microbes than the columnar epithelium further in the colon. Interestingly, UC often 
begins in this transitional zone, advancing inward from there.202
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Driven by the challenge that over 99% of gut microbes are difficult to culture in a laboratory 
setting, researchers developed methods to study these microorganisms directly within 
their natural environment, primarily through sequencing the 16S ribosomal RNA (rRNA) 
gene. The advent of high-throughput sequencing has revolutionized the study of microbial 
communities, providing valuable insights into their compositions. Its relatively low cost has 
made it a widely used method for assessing gut microbiota.203 This approach targets a specific 
region of the 16S rRNA gene that is unique to bacteria and present in all bacterial species 
containing multiple conserved and variable regions. The more conserved regions are useful to 
determine the higher-ranking taxa, whereas the more variable regions can help in identifying 
lower-ranking taxa, such as genera.204 In short, after samples are collected, Polymerase 
Chain Reaction (PCR) amplification of the rRNA genes is applied, with primers amplifying the 
target gene for a wide range of microorganisms. Next, the PCR products are sequenced. The 
resultant sequence reads can be clustered into, for example, operational taxonomical units 
(OTUs), amplicon sequence variants (ASVs), or metagenomic-based operational taxonomic 
units (mOTUs). These units are then aligned to a reference database and annotated into 
taxonomic names.205-209 

Note that a lot of bias originates from the sequencing technique and the misclassification 
of sequencing reads.118, 210 Therefore, positive and negative controls are commonly 
processed along with the real samples.111, 211-213 Negative controls allow assessing potential 
contamination, and positive controls (mock communities) allow the assessment of bias 
and variability among different runs (batch effects).214 Taxonomy annotation employs 
the Linnaean classification system, encompassing three domains: Bacteria, Archaea, and 
Eukaryota, with prokaryotic microorganisms largely categorized within Bacteria and 
Archaea. The specificity increases through kingdom, phylum, class, order, family, genus, 
and species classifications. The technique of 16S rRNA gene sequencing allows accurate 
taxonomic classification up to the genus level, but lacks reliable species-level or functional 
information.19 For a comprehensive assessment, to species or even strain or genotype level, 
deeper exploration through whole genome (shotgun) sequencing (WGS) is imperative. This 
higher-resolution approach uncovers the functional genes of microbial communities but is 
considerably more expensive compared to amplicon sequencing. Even further, for a more 
detailed understanding, proteomics and metabolomics can determine the biochemical 
associations between microbial taxa (and human host). Proteomics provides information 
on the proteins present, including their structures and functions, while metabolomics offers 
insights into the metabolites in the sample.

Microbiota data are often manifested in matrices with the samples as rows and the taxa as 
columns. It is important to note that the interpretation of these data is complicated by several 
statistical challenges.215 First of all, most datasets are comprised of more features (columns) 
than objects (rows), which makes classical statistics challenging. Secondly, species-abundance 
distributions exhibit a pronounced long-tail pattern, with many low-abundance taxa 
appearing in only a small fraction of samples.216 Consequently, microbiota abundance data 
also frequently faces zero-inflation (i.e., the matrices are highly sparse) due to true absences 
or undetected presences when the abundance falls below detection limits.215, 217, 218 However, 
possibly the biggest challenge is that the count measurements obtained are not viewed as 
‘true’ count data, instead only relative abundances are available.215, 219 Because, regardless of 
the amount of information available in the DNA sample, the output of a sequencing analysis 
is constrained by the limitations and sequencing depth of the platform used.219, 220
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Sequencing instruments are limited to delivering reads up to their capacity, with each sample 
constrained by the available slots and the molar concentration loaded in the sequencing 
machine.221 Therefore, the total read count observed in a high-throughput sequencing run 
is a fixed size, resulting in a random sample of the relative abundance of the molecules in 
the sample. This is explicitly acknowledged when microbiota datasets are mathematically 
transformed or converted to relative abundance values (Box 1.4).201, 215, 219, 222

A common goal in microbiome research is to understand the relationships, ecological stability, 
and dynamic behaviours of the microbiota communities and to unravel their impact on health 
and disease. An important decision in study design involves whether to gather repeated 
measurements from the same individuals or to allocate resources to sample from more 
subjects at a single time point. Often, it is not possible to collect repeated samples from many 
subjects. This is due to the high costs associated with longitudinal sampling and, particularly 
in medical studies, the burden it places on patients to return for follow-up visits. The choice to 
gather repeated samples or not should hinge on the study’s objective. Cross-sectional designs, 
with one sample per subject, are suited for examining differences in microbiota composition 
in association with health or disease.22, 62 In contrast, longitudinal designs are preferred for 
studying disease-course dynamics, treatment effects in randomized controlled studies, and 
temporal fluctuations within the microbial community.46, 52, 225, 226 Consequently, to distinguish 
intra-individual gut microbiota fluctuations from disease or treatment specific signals, robust 
assessment of microbial features demands repeated sampling.

Box 1.4 - The impact of data transformations in microbial 
ecology research. Rarefaction aims to rectify discrepancies in total 
reads per sample. However, rarefaction sacrifices statistical power 
and fails to really address the compositionality issues, as it involves 
subsampling to the lowest read depth across samples.214, 222 Alternatives 
to rarefaction all involve some type of transformation, the most common 
of which are scaling, log-ratio transformations, or converting the 
abundance count of each taxon into proportions or relative abundances 
that sum up to one for each sample.201, 215, 219, 220, 222-224 However, this 
brings another challenge, as it is quite possible that a significant change 
in the relative abundance of a species is observed, while the absolute 
number does not change. In microbial ecology studies, this phenomenon 
is important to consider when analysing shifts in species composition 
within a population or ecosystem. Imagine a simplified scenario with only 
two species, A and B, in a microbial community. Initially, there are 100 
individuals of species A and 100 individuals of species B, making the total 
population size 200. This results in a 50% relative abundance for both 
species (100/200). Now, an environmental change or intervention occurs 
that favors the growth of species A, causing it to double in number to 
200 individuals. Species B, however, remains at 100 individuals. The total 
population size is now 300 (200 of A and 100 of B). Despite the absolute 
number of species B remaining the same, the relative abundance of 
species B has decreased to 33% (100/300), while the relative abundance 
of species A has increased to 67% (200/300). 
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Working with longitudinal microbiota data is challenged by many difficulties, including 
inconsistent sampling frequencies, varying numbers of subjects per phenotype, or varying 
numbers of samples per subject. 

Realizing the importance of the gut microbiome for health and disease has encouraged the 
development of methods and tools for its analysis and modeling. Techniques encompass, 
among others, visualization, (temporal) clustering, network analyses, longitudinal and time 
series models. Co-occurrence based methods, based on e.g., Pearson’s and Spearman’s 
correlation measures, are quite popular for network inference due to their ease of use.227, 228 
While measures of co-occurrence, such as correlations, are powerful tools for generating 
hypotheses, caution is advised when assigning biological meaning to them.216, 220, 229 Graph 
theory has gained prominence for its ability to depict microbial community structures, 
capturing the potential interrelations among a multitude of species, possibly highlighting 
potential keystone species and subcommunities.8 In these graphical representations, nodes 
typically represent biological features, such as microbial taxa, genes, metabolites, or even 
environmental and host factors.112, 223 Edges signify correlations between nodes, but they 
are often too easily interpreted as biological relationships. Edges between microbial taxa 
might result from direct interactions, such as competition, secretion of substances, immune 
modulation, or from mere co-occurrence without any direct biological meaning, e.g., due to 
shared preferences, nutrient availability, or similar responses to environmental factors.8, 230 

Ordination analysis (e.g., principal component analysis (PCA), principal coordinates analysis 
(PCoA), and non-metric multidimensional scaling (NMDS)) reduces data with many variables 
(high dimensionality) to a set of two or three dimensions.220, 231 PCA identifies linear 
relationships and projects data onto orthogonal axes, PCoA uses distance matrices for non-
linear relationships, and NMDS preserves the rank order of distances for data visualization. 
Ordination analyses are tools used for visualizing and comparing microbial community 
differences. In ordination plots, microbial communities are depicted as points, with sequential 
samples linked by arrows. These arrows illustrate the system’s trajectory through the phase 
space.232, 233 Samples with similar bacterial communities tend to cluster closer together, 
whereas those with distinct compositions are positioned further apart.234 Clustering 
techniques can then be applied to identify groups of points that share greater similarity with 
each other compared to points in other clusters.235 Note that applying a clustering technique 
after dimension reduction by ordination analysis neglects significant information. Therefore, 
it is recommended to cluster samples based on the original data, as, for example, by Dirichlet 
multinomial mixture models. This is a clustering technique that is well-suited for multivariate 
relative indices and establishes relationships between patient samples by identifying 
similarities among them. This method has been used before in, for example, uncovering 
patterns within the microbiota development of infant cohorts.236 
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Box 1.5 - Models for microbial community dynamics. Dynamical systems 
theory is a well-established mathematical framework used to describe behaviour 
and evolution of complex systems over time.237 The development and analyses of 
dynamical models allows a better understanding and prediction of community 
dynamics and engineering of community properties.232, 237 The generalized Lotka-
Volterra (gLV) framework is a popular choice, benefitting from a deep theoretical 
understanding.100, 114, 238, 239 However, the validity of this approach is under debate, 
due to the model’s reliance on strong assumptions, such as leveraging quasi-
linearity in interaction terms. While pairwise models, such as the gLV models, 
focus on the increase and decrease of abundance of local species, mechanistic 
models consider interaction mediators as state variables.240 For example, if a 
certain species releases a compound which stimulates another species growth 
upon consumption, then a mechanistic model tracks abundances of both species 
and also the concentrations of the compound. Genome-scale metabolic models 
(GEMs) or constraint-based reconstruction and analysis (COBRA) models show 
great potential for modeling the metabolism of microbial communities.237, 241-244 
Note that mechanistic models often exclude molecular details, such as the 
processes by which chemical signals are received and processed by recipients, 
as well as the subsequent effects these signals have on the recipients’ behaviour 
or function.240 Ideally, models could also include the physical and chemical 
environment, as this is a very important part of the species' environment.

An alternative method for analysing microbiota data is to parameterize mathematical models 
of community dynamics using longitudinal data. However, the high-dimensional aspect 
of the microbial communities remains challenging for fitting dynamical models to data. 
Moreover, constructing such models requires substantial prior knowledge of the system, 
which is seldom available. An alternative approach is to construct a system that captures the 
core characteristics of the system’s elements. The time development of a dynamical system 
will in this case be described by a set of ordinary differential equations (ODEs) that define 
the principles governing the system’s dynamics (Box 1.5).232 However, high-dimensionality is 
again a challenge for these types of models. Most existing modeling approaches consider a 
few species at a time and fail to capture the true multivariate nature of the data. Also, they 
have high computational costs and low prediction accuracy.217 In general, when selecting a 
model, one must choose a balance between realism (the complexity of the system) and the 
ability to systematically and comprehensively analyse the microbial system with regard to the 
study’s objectives.232
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Aim and outline of the thesis

In this thesis, we aim to bridge the gap between microbiological, ecological, and clinical 
concepts, which may help to better understand microbial dynamics, microbial involvement in 
inflammatory bowel disease (IBD), and treatment success in fecal microbiota transplantation 
(FMT). Specific aims addressed in this thesis are:

1	 Characterize ecological structure in the human gut microbiota
Here we aim to unravel the correspondence between correlation-based networks and 
the underlying network of ecological interactions. Human microbiota networks are often 
characterized by pairwise correlation-based methods, applied to a few sampling points 
in time. Such characterization implicitly assumes that the microbial system tends towards 
a stable equilibrium. However, temporal ecological microbiota dynamics challenge the 
assumptions of prevailing correlation-based methods and provide leads for alternative 
characterizations. 

2	 Describe associations between gut microbial abundances and IBD
For this aim, we analyse fecal samples derived from Crohn’s disease (CD) patients. CD, a 
type of IBD, has been associated with atypical microbiota composition and metagenomic 
function. However, results from the literature on microbial associations with IBD have 
not been consistent, especially with respect to disease activity. This could be because the 
process of changing from a healthy to an unhealthy microbiota may not always follow 
a deterministic pattern. It could be unique per patient. We provide a possible solution 
by studying associations across a spectrum of individual patient responses to disease 
activity. 

3	 Examine ecological microbiota determinants associated with 
	 FMT treatment success

FMT has emerged as a promising treatment for microbiota-related intestinal disorders, 
but its effectiveness in patients with ulcerative colitis (UC), another type of IBD, is still 
limited. To characterize microbiota determinants of clinical remission, we examined 
longitudinal associations between bacterial families and clinical response to FMT. It was 
previously assumed that successful grafting of donor-derived microbes is associated with 
clinical remission, but this donor-centric view has recently been questioned. Therefore, 
we also investigate whether donor-derived, newly emerging, or host-associated species 
are linked to patients achieving clinical remission after FMT treatment.
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This thesis starts with methodological considerations dedicated to the characterization 
of microbial interactions and communities. Thereafter, our studies have a more clinical 
application. 

In Chapter 2 we use a mathematical model as a ground truth to simulate bacterial 
communities. We specifically investigate how microbial network inference is related to 
interindividual variation in population-dynamic parameters and different types of networks 
of microbial interactions. In addition, we assess the impact of sample size or measurement 
noise on the performance of correlation-based network reconstruction. 

In Chapter 3, we apply a technique that clusters time series based on similarities in their 
dynamical patterns, so-called wavelet clustering analysis. This technique, almost unknown in 
the microbiota field, provides insight into the dynamic relationships between members of the 
microbial community. This allows for an alternative characterization of community structures 
as compared to the commonly used correlation-based methods.

In Chapter 4 we apply quantile regression, an extension of the general linear model that 
allows for investigation of relationships across different quantiles of the distribution of 
a response variable. The idea behind this method is that not all individuals are equally 
responsive to disease-induced changes in terms of abundance of specific bacterial groups. 
We test especially whether associations between relative abundances of specific families with 
CD can be found relative to healthy controls and for different disease courses (i.e., remission 
vs. exacerbation). 

In Chapters 5 and 6 we investigate a longitudinal dataset of UC patients who underwent FMT 
treatment. In Chapter 5 we employ several multivariate analyses to examine associations 
between bacterial families and FMT treatment success: a Dirichlet multinomial mixture model, 
longitudinal mixed models, and PCA with Aitchison distances. In Chapter 6 we map the 
ecological dynamics in the gut microbiota during and after the FMT treatment. We categorize 
all the species in ecological groups based on their origin (already present in the host pre-FMT, 
derived from the donor, or introduced as a novel species that was neither present in the host 
nor donor) and investigate their patterns of presence and absence, as well as their relative 
abundance over time. 

All findings are summarized and placed in the broader context of existing literature in 
Chapter 7.




