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5 Voorwoord

Voorwoord

De studie van het leven, biologie, fascineerde mij zodanig dat ik erdoor gedreven raakte. 
Hierbij speelde de enthousiaste begeleiding van docenten aan de Universiteit Leiden een 
belangrijke rol. De mogelijkheid om tijdens mijn studie andere vakgebieden te verkennen, 
heeft mijn enthousiasme verder aangewakkerd en mij verder gevormd tot de wetenschapper 
die ik nu ben.

Als wetenschapper ben ik het meest geboeid door datgene waar ik het minst van weet. 
Tijdens mijn studie biologie leidde dit mij naar de wereld van geleedpotigen en die van 
cleanrooms, en tijdens mijn promotieonderzoek bestudeerde ik de ecologie van het humane 
microbioom. Dit traject gaf mij de kans om veel inspirerende mensen te ontmoeten en 
degenen die ik al kende nog meer te gaan waarderen. Dit proefschrift zou niet bestaan 
zonder de gezamenlijke inspanning van deze diverse groep geweldige mensen.

Allereerst wil ik Hans Bogaards en Elisa Benincà bedanken. Hans was mijn mentor en 
begeleidde mij in mijn ontwikkeling als onderzoeker. Hij stelde cruciale vragen die mij verder 
hielpen, zowel over het onderwerp en mijn werk als over mijn persoonlijke groei. Elisa was 
naast een fijne supervisor ook een goede vriendin tijdens mijn promotie, iemand met wie ik 
in vertrouwen kon praten. Van haar heb ik geleerd kritisch te zijn over mijn werk, het draait 
niet om kwantiteit maar om kwaliteit. Onze reis naar Kaapstad, Zuid-Afrika, behoort tot een 
van de hoogtepunten van mijn leven, dus ook daarvoor wil ik haar bedanken.

Mijn promotor Ewout Steyerberg wil ik bedanken omdat hij mij, eerst als leidinggevende 
en later als promotor, het vertrouwen gaf dat ik van waarde ben. Ook maakte hij mijn 
promotietraject eenvoudiger door snel te reageren en zaken effectief op te lossen. Hierbij 
werd hij ondersteund door de secretaresses Lies, Leonie en Aubry, die ik wil noemen vanwege 
hun vriendelijkheid en hulpvaardigheid.

Ik wil in het bijzonder enkele collega’s bedanken voor hun waardevolle bijdragen aan dit 
proefschrift. Allereerst Marten Scheffer en Egbert van Nes, die voor mij een grote bron van 
inspiratie waren. Zij lieten mij zien hoe plezierig wetenschap kan zijn en hoe waardevol het is 
wanneer onderzoekers elkaar aanvullen, want wetenschap doe je nooit alleen. Daisy Jonkers, 
John Penders, Liz Terveer, Josbert Keller en Andrea van der Meulen-de Jong wil ik bedanken 
voor het delen van hun kennis en data. Tijdens mijn promotie besefte ik hoe kostbaar data 
is en hoeveel werk eraan voorafgaat. Dominika Šajbenová en Sam Nooij dank ik voor onze 
samenwerking, waarin ik ondervond hoe leerzaam het is om samen te groeien terwijl we de 
uitdagingen van ons onderzoek aangingen. Bernard Cazelles, Susana Fuentes, Sudarshan 
Shetty en Gianluca Galazzo ben ik dankbaar voor de inzichten, feedback en methodologische 
kennis die zij met mij hebben gedeeld. 

Door de beperking in het aantal woorden kan ik helaas niet al mijn andere betrokken collega’s 
bij naam noemen. Toch wil ik mijn waardering uiten voor iedereen die ik ontmoette aan 
de Universiteit Leiden, het LUMC, het RIVM, Wageningen University & Research, Maastricht 
UMC+, Amsterdam UMC, UMC Utrecht en via cursussen en congressen. Ik hoop dat 
eenieder die betrokken is bij mijn academische pad zich aangesproken voelt. Ik wil iedereen 
nadrukkelijk bedanken voor het verrijken van mijn kennis en vaardigheden en voor het 
hartelijke welkom in de fascinerende wereld van wetenschap en microbioom. 
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Graag wil ik de onderzoeksgroepen CMAT (LUMC) en Modellering (RIVM) bedanken voor 
de mogelijkheid om aan de leerzame overleggen deel te nemen en voor de prettige 
samenwerking.

Daarnaast wil ik mijn medepromovendi bedanken voor de inspiratie die ik vond in hun 
proefschriften en voor hun warme gezelschap. Dat gaf mij het gevoel er niet alleen voor te 
staan.

Voordat mijn PhD-onderzoeken en daarmee dit proefschrift waren voltooid, vond ik een 
nieuwe baan in het UMC Utrecht. In de groep van Maaike van Mourik kreeg ik de kans om 
aan een interessant en belangrijk project te werken. Het combineren van mijn nieuwe baan 
met het afronden van het proefschrift was een uitdaging. Ik ben Maaike dankbaar voor haar 
begrip in deze periode.

Dankzij de liefdevolle aanmoedigingen van mijn oma, en de steun van mijn moeder, mijn 
zusjes Eveline, Marianne, Rosaline en Caroline, en ook van Marianne Vysma, die met zorg 
de hoofdstukken nalazen en mij hielpen fouten te verbeteren en de samenvatting te 
verhelderen, kon ik dit proefschrift tot een goed einde brengen. En natuurlijk dankzij mijn 
vader, die de opmaak verzorgde en mij daarmee niet alleen veel tijd bespaarde, maar ook een 
prachtig proefschrift schonk. Aan mijn familie: hartelijk dank voor alle steun, betrokkenheid 
en hulp.

Mijn vrienden, onder wie paranimfen Dominique en Danielle, bleven altijd betrokken en 
boden hun hulp aan. Bovendien gaven de gezellige feestjes en etentjes mij nieuwe energie. 
Daardoor kon ik weer lange uren achter mijn bureau doorbrengen, samen met mijn kat Sam 
als aangenaam gezelschap.

Jasper, jouw vertrouwen en onvoorwaardelijke steun waren mijn houvast en jouw liefde 
betekent alles voor mij. Dank je dat je er altijd voor me bent.
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General introduction and thesis outline

Complex systems

Complex systems encompass a diverse array of phenomena and processes, from financial 
markets and climate patterns to the microbial communities in our gut. Their challenges 
involve apparently intractable and often unpredictable problems, such as organizational 
transformation, political conflict, climate change, disruptions in infrastructure, and recurring 
infections.1, 2 Complex systems evolve over time, and changes can manifest as gradual trends 
or fast fluctuations.3, 4 Occasionally, the system might undergo a complete transformation 
into a new state. For example, a pathogenic species in the Caribbean coral reef caused a mass 
mortality event in the sea urchin Diadema antillarum. This loss had dramatic consequences: 
without the grazing activity of the urchins, the reef was quickly overgrown by brown fleshy 
algae, fundamentally altering the entire structure of the community.2 Similarly, in the Sahel-
Sahara region, a gradual change in solar irradiation triggered an abrupt shift, transforming the 
landscape with dense vegetation into a desert environment.2 Moreover, interactions among 
species can lead to oscillations and even sometimes chaotic dynamics, by themselves5 or in 
response to environmental conditions.6 Consequently, in such systems, slight differences in 
initial conditions can lead to different outcomes with extinctions of varying magnitudes due 
to non-linear dynamics (Box 1.1). In contrast, systems may display resilience by recovering 
from disturbances and reverting to their previous state.7 

The individual components of a complex system often represent relatively simple processes. 
However, synchronization of activities among individual components can lead them to act 
as a cohesive unit with additional functionalities (Figure 1.1). A greater diversity of these 
components can display richer properties, functions, or behaviours, and enhanced resilience.1, 3, 4 
The theory of complex systems seeks to infer the underlying models and properties of their 
patterns and behaviours, as well as to develop tools and concepts for effectively modeling their 
interactions and dynamics. Because if we can understand the behaviour of complex systems, we 
can develop solutions to address their challenges, aiming for a resilient and adaptive future for 
our society and health. Achieving this requires interdisciplinary collaborations, where experts 
from diverse fields offer their perspectives. 

Box 1.1 - Tipping points in ecosystems. In the context of ecology, 
ecosystems experience shifts when confronted with alterations in factors 
such as food sources, climate fluctuations, or human interventions. When 
an ecosystem encounters an environmental change, there may be a 
noticeable shift in species composition and overall biodiversity. Similar to 
a game of Jenga, where removing individual blocks may not immediately 
affect the stability of the tower, small changes in a system might not 
have noticeable consequences until a critical tipping point is reached. 
However, once that tipping point is crossed, the system can experience 
a sudden and significant transformation, resembling the collapse of a 
Jenga tower when a crucial block is removed. This phenomenon is closely 
tied to the system’s high connectivity, where the failure of one element 
can impact the entire system, often leading to irreversible changes. 
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Figure 1.1 - Diagram illustrating the interactions and relationships 
within a complex system across different scales. In the human gut 
microbiota, emergence refers to the phenomenon where the overall functionality 
of the microbial community arises from the interactions among individual microbial 
species. The gut is home to trillions of microbial cells, including bacteria, viruses, fungi, 
and other microbes that interact with each other (bottom figure). The interactions 
between these diverse agents, that mutually affect each other, lead to the emergence 
of various functionalities and behaviours (middle figure) that contribute to digestion, 
nutrient absorption, and overall host health (top figure).8 The science of complexity 
shows that insights at one level (e.g., health outcomes) are influenced at another 
level (e.g., the interactions within a system), and that one cannot be fully understood 
without knowledge of the other, as they are interconnected in a continuous feedback 
loop. Therefore, complex systems such as the human gut microbiota are difficult to 
comprehend using traditional scientific analyses. Traditionally, experimental scientists 
have primarily focused on reducing complex systems to their individual elements, 
providing essential knowledge of the system’s components, but overlooking the 
significance of interactions between them. Interestingly, the global system is often 
not fully explained by or predictable with the knowledge of the component parts. 
However, the inverse is also true; without an understanding of the dynamics of the 
component parts, understanding of the whole system is unattainable. By considering 
the dynamics of a complex system as a whole, with both the internal and external 
forces, rather than merely the sum of its parts, new insights and theories can be 
developed.1, 9 This figure is based on Lewin (1999) and Parrott and Lange (2013).1, 10
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The research for this thesis was conducted by a multidisciplinary team of ecologists, 
microbiologists, bioinformaticians, statisticians, epidemiologists, and medical specialists who 
collaborated to explore new perspectives on the complex ecosystem of the gut microbiota 
and its relationship with human health and disease.

The human microbiome

The human body serves as an ecosystem for a multitude of microorganisms, with the 
gastro-intestinal (GI) tract being a particularly rich and diverse habitat.11-13 In 2022, it was 
estimated that there are about ten times more bacterial genomes in the human gut than 
there are genes in our own genome.14, 15 Actually, the body is not a single ecosystem; instead, 
it comprises multiple habitats, each with its own unique environment, which are likely 
interconnected with one another. The entire collection of microorganisms (commensals, 
mutualists, pathogens, and opportunists), encompassing bacteria, viruses, protozoa, archaea, 
and fungi, along with their cumulative genetic content, is collectively referred to as the 
microbiome, a concept introduced by Nobel Prize laureate Joshua Lederberg in 2001.16, 17 
A distinct term, the metagenome, encapsulates the combined genetic makeup of the 
microbes. The microbiota, in a narrower sense, refers to the assorted microbial species 
occupying specific niches, such as the ‘oral microbiota’ or the ‘gut microbiota’.17, 18 This thesis 
focuses on the bacteria in the human gut microbiota. 

Our understanding of the composition and functions of the microbiome has increased 
exponentially over the last 15 years. This has been mainly due to the new ‘omics’ technologies 
that have facilitated large-scale analyses of the phylogenetic and metabolic profiles of 
microbial communities.19-23 These insights have revealed the vital role that microbial 
communities play in human health, as they coexist symbiotically with the human host and 
contribute significantly to maintaining physiological balance. The human gut, for example, 
serves as a unique ecosystem, providing a nutrient-rich environment for its microbial 
communities. Many benefits of the human microbiome for the human host have already been 
identified, including the prevention of pathogenic bacteria and viruses through competition 
for metabolic resources, maintenance of metabolic balance, processing of nutrients (such as 
fiber digestion and vitamin synthesis), drug modification (affecting drug efficacy), and the 
maturation and regulation of gastrointestinal immune responses.20, 24-30 Moreover, the relation 
between microbes and various human health conditions has been shown for, among others: 
obesity, cardiovascular disease, Clostridioides difficile colitis, inflammatory bowel diseases 
(IBD), irritable bowel syndrome (IBS), non-alcoholic fatty liver disease, dental caries, asthma, 
autoimmune diseases (such as celiac disease, inflammatory arthritis, and primary sclerosing 
cholangitis), and sepsis.31-44

Every person harbors distinct and relatively stable microbial communities in and on their 
body.45 Stability means that samples collected over time from an individual exhibit greater 
similarity to each other compared to samples obtained from other individuals.22, 45-51 
Certain host factors, e.g., host genetics, age, diet, and medication use, cumulatively explain 
about 20% of the gut microbiota compositional variation.52-54 Despite the individual 
variability, a shared core microbiota with notably similar functional gene profiles can be 
detected in most healthy adults.21, 22 Stability appears to be an important ecosystem trait, 
persisting over several months or even years.22, 45, 46, 48-51
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However, natural fluctuations in community composition, featuring sporadic blooming 
of species, are normal in gut microbiota dynamics (Figure 1.2), reinforcing homeostatic 
interactions with the host.52, 55, 56 Environmental stimuli influence these fluctuations and 
the microbiome typically shows autoregressive dynamics, allowing it to recover after 
disturbances.46, 47, 57-59 An example of such stimuli is variation in nutrient availability, 
especially in the small intestine, as the colonic microbiota thrives on the breakdown 
of complex carbohydrates.60, 61 Additionally, significant factors such as antibiotic 
administration, travelling, or drastic dietary changes can prompt bacterial population 
levels to shift within one day.45, 46, 59, 62, 63 The extent to which the human gut microbiota 
subsequently absorbs disturbances, adapts to the changing conditions, and maintains its 
essential functions, characteristics, and structure depends on the resilience of the system.22 
Interestingly, substantial commonalities are found among seemingly divergent responses 
to disturbances.64-69

Figure 1.2 - Time series of the gut microbiota of one healthy male 
individual.46 The time series shows temporal fluctuations on shorter timescales 
and overall stability over extended periods.23

Blautia

Prevotella
Phascolarctobacterium

Roseburia

D
en

si
ty

Experiment time (days)

Genus

0 50 100 150 200 250 300 350 400 450

200

0

400

600

800

1000

1200

1400

1600

1800

Faecalibacterium
Lachnospira
Oscillospira
Parabacteroides



13Chapter 1 General introduction and thesis outline

The introduction of solid foods at four to six months after birth further shapes microbial 
composition, with effects varying based on dietary habits across different geographical 
regions.67, 75, 76 Also, the child’s living environment, including pets and siblings, impacts 
microbial development.64, 77-79 After colonization and the stabilization of the gut microbiota, 
individuals can maintain distinct core microbial communities for extended periods of 
time.22, 45, 46, 48-51 These stable physiological states are sustained by negative feedback loops, 
preserving homeostasis even when the gut environment undergoes changes (Figure 1.3).22, 23, 80 
The ability to adapt while being robust against changing environments may seem 
contradictory, but most complex systems are clearly adaptive and robust at the same time.3

Box 1.2 - Gut microbiota shaped by early colonizers and community 
dynamics. For the gut microbiota, it has been shown that the temporal 
development is not purely random; rather, it is partly deterministic (and to some 
extent predictable, i.e., succession), partially stochastic, and often contingent on the 
community’s previous states.81-87 This implies that the initial conditions, including 
environmental factors and the early colonizers (founder effect or pioneer species), 
have an impact on the later community dynamics as well as the time span needed 
to reach the adult state.23, 68, 88-95 The microbiota are built upon these early colonizers, 
as they facilitate the growth of certain species, while impeding the growth of 
others.86, 96 For example, the first colonizers entering the infant’s gut are facultative 
aerobic bacteria such as Proteobacteria members. They alter the environment 
through metabolic byproducts, creating new ecological niches that promote 
diversification.97 They pave the way by decreasing the oxygen concentration for 
subsequent colonization by anaerobic bacteria, such as Bacteroidota (formerly 
Bacteroidetes), Actinobacteria, and Bacillota (formerly Firmicutes) phyla.23, 70 Critical 
ecological drivers such as community interactions, immigration, niche filtering, 
stochasticity, environmental conditions (such as oxygen, moisture, and pH) and host 
characteristics (such as age, diet, and medication use) keep continuously shaping 
the patterns of microbial community dynamics.21, 49, 57, 67, 69, 75, 98-101

Ecology of the human gut microbiota

A child is born with almost no microbiome. Colonization by maternal and environmental 
bacteria occurs within days of birth, influenced by factors such as delivery mode, antibiotic 
exposure, and ecological drivers (Box 1.2).55, 64, 67, 68, 70, 71 Breastfeeding contributes directly to 
neonatal microbiota establishment through providing living bacteria (from the skin and milk 
of the mother) and indirectly through prebiotic nutrients and bioactive components.67, 72-75 

Human milk oligosaccharides (HMOs) promote the growth of beneficial species and strains 
of Bifidobacterium (a key early life microbe associated with improved development of the 
immune system) that produce enzymes to break down these complex sugars.71 
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However, if a system cannot recover from a significant perturbation, it might shift to 
an alternative stable state with distinct characteristics (Figure 1.3B). When this happens 
in the gut microbiota, the new state might have severe health implications for the human 
host.48, 102-106 Bistable abundance distributions, i.e., arising from species with population 
sizes going back and forth between high and low abundances with moderate abundances 
being underrepresented in sampling, can be indicative of alternative stable states.48, 102-107 
For example, the bimodal abundance patterns of Prevotella melaninogenica, Bacteroides 
fragilis, and two groups of uncultured Clostridiales were verified in independent sets of 
sampled individuals, who varied in dietary patterns, geographic regions, and DNA extraction 
methods. These bimodal patterns appeared unaffected by these factors; rather, they were 
associated with factors such as aging or weight loss.102 The discovery of bistable bacteria 
led them to be labelled as ‘tipping elements’ and possibly keystone species, i.e., organisms 
that have a disproportionate effect on community structure and function relative to their 
abundance. This prompted questions about whether the significant shifts in microbiota 
composition and function are associated with changes in the abundances of specific taxa 
or with a broader dysbiosis across the community.102, 108-110
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Consequently, detecting the keystone species has become a focus in microbiota research.111-114 
Mainly (specialist) primary degraders have the potential to manipulate and regulate 
community states as keystone species.115 For example, despite their low abundance, highly 
active sulfate reducing bacteria, in wetland ecosystems, as well as in the human gut, play a 
crucial role in important biogeochemical processes.116, 117 However, very few proposed hub 
taxa, suggested by statistical techniques, such as network analysis, have been experimentally 
confirmed as keystone species; therefore, the reliability of methods used to detect keystones 
remains uncertain.118

There are a multitude of (dynamic) species-species interactions within the gut microbiome, 
rooted in metabolic processes, such as cross-feeding (Figure 1.4).119-121 Interactions among 
species in human microbiota tend to repel potential invaders and prevent outgrowth 
of certain species. For example, genetically diverse Escherichia coli populations produce 
secondary carbon sources sustaining other community members and preventing colonization 
of species that could outcompete them.122 Moreover, antimicrobial production, space and 
nutrient competition, predation, and the trade-off between growth-maximizing organisms 
(r-strategists) and those adapted for resource competition (K-strategists) are mechanisms that 
reflect how organisms maximize nutrient uptake, often at the expense of other organisms.123-125 
The cumulative outcome involves the reconstruction of a network within the gut microbial 
ecosystem, facilitating the coexistence of a diverse bacterial community.

Interactions within ecological networks can engender diverse outcomes, encompassing 
positive impacts (‘win’), negative impacts (‘loss’), or no discernible impact on the participating 
species (Figure 1.4B). The interaction conferring benefits to both participants, such as 
two species that engage in the exchange of metabolic products (exhibit complementary 
auxotrophies), is called mutualism.126, 136 This win-win relationship also occurs, for instance, 
when bacteria from disparate taxonomic groups collaboratively construct a biofilm, bestowing 
antibiotic survival upon its constituents and facilitating co-colonization.137 The prominence of 
such interdependencies is underscored by their heightened relative abundance when both 
species are present.8 Commensalistic relationships denote scenarios where one partner accrues 
benefits without inducing either harm or assistance to the other. Such relationships frequently 
manifest in biodegradation contexts, where commensals derive sustenance from compounds 
generated by fellow community members, as evidenced in cellulose degradation processes 
(Figure 1.4A).138

Conversely, antagonistic relationships may stem from amensalism, parasitism, and 
competition.8 The inhibition of other species can occur through direct competition for 
resources (niche preemption) or by altering the habitat to reduce its suitability for other species 
(niche modification).96 Bacteria use effectors of direct antagonism, including quorum sensing 
molecules, quenching molecules, antibiotics, and toxic substances such as bacteriocins and 
metal ion binding proteins, to inhibit the growth of competitors, especially in dense cellular 
environments.139, 140 Classical loss-win dynamics, as materialized in parasitic relationships, are 
observed in the relation between bacteria and their bacteriophages.23 Many bacterial species 
may exhibit predatory behaviour to some extent.141 Pseudomonas fluorescens, for example, has 
been used as a biocontrol agent to control plant pathogens by antagonizing other microbes, 
including Myxococcus xanthus.142-144 This species secretes various antibiotics and produces toxic 
volatile compounds such as cyanide.143, 145 Because Pseudomonas fluorescens can then grow on 
nutrients derived from the cells it has killed, it can be categorized as a predator.141
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Figure 1.4 - A schematic representation of the gut, showing primary, secondary, 
and tertiary consumers and their potential interactions. A) At the start of the bacterial 
food chain are the bacteria that consume the primary nutrient sources, such as polysaccharides, 
oligosaccharides, proteins, sugars, and mucins secreted by the colonic epithelium.126-130 Primary 
species effectively colonize the epithelial mucosa due to their ability to degrade mucin. They can 
also break down dietary plant- and animal-derived carbohydrates, initiating a series of cross-
feeding interactions that support the growth of other bacteria, particularly those that rely on 
the breakdown of complex carbohydrates into simpler sugars for energy.131-135 They facilitate 
the growth of secondary species and indirectly promote the growth of tertiary species. Some 
tertiary species produce short-chain fatty acids, which are subsequently utilized by colonocytes 
for their growth, leading to increased mucin production. This positive feedback loop may 
enhance ecological recovery in terms of diversity and biomass. It is important to note that there 
is likely no strict distinction between primary producers and secondary cross-feeders, as many 
microorganisms may function as both and will probably take the opportunity to cross-feed 
or degrade nutrients whenever possible, depending on the available substrates. This figure is 
adapted from Chng et al. (2020).132 B) Cartoon illustrating the different interaction mechanisms. 
In competitive interactions, both species experience a negative effect. An example is when one 
or both species produce toxic compounds that are harmful to the other species as well as to 
themselves. Amensalism is a one-sided negative interaction. Amensalism occurs when a species 
causes harm to another species, without benefit or harm to itself. Parasitism occurs when one 
species benefits from another species at the expense of the other. Commensalism is a one-sided 
positive interaction. This type of interaction occurs when one species benefits from another 
without affecting it. In mutualistic interactions, both species experience a positive effect. An 
example is when one species feeds on the metabolites excreted by another species, thereby 
cleaning the ‘waste’ from the environment. 
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An illustration of microorganism competition (a loss-loss relationship) was given by Gause, 
already in the 1930s when he conducted a series of co-culturing experiments.146 In his 
observations, he found that some species pairs, which thrived on their own, cannot coexist 
with constant population values. He showed one species (Paramecium aurelia) taking control 
over the other species (Paramecium caudatum) when they were grown together. Even if one 
organism ultimately ‘wins’ by securing more resources, the energy and resources spent in 
the competitive process could have been used for growth, reproduction, or other survival 
functions. Therefore, both species suffer initially during the competition, and eventually, 
the less competitive species is driven to extinction in that environment. This formed the 
foundation for Gause’s law of competitive exclusion, asserting that species with similar 
ecological niches mutually preclude each other’s survival.146, 147 The deterministic nature 
of competitive dynamics of microbial communities, particularly within newly established 
ecosystems, has long been a topic of debate among ecologists. One theoretical framework 
that has emerged in this context is neutral niche theory. The neutral niche theory assumes 
that communities in certain niches are built only by random draws, driven by stochastic 
colonization, where the gut niches are likely to be filled by random ‘winners’, as in a lottery 
scenario, instead of predictable winners.84, 87 

Amensalism, a situation where one partner is harmed without benefitting the other, can be 
seen in scenarios when a microbial species produces metabolic by-products that change 
the environment to the detriment of other microorganisms, such as the acidification caused 
by lactobacilli activity.148, 149 Previous experimental investigations have substantiated that 
antagonistic interactions are more likely among closely related species sharing analogous 
metabolic pathways.137, 150

Gut microbiota associations with health and disease

The interplay between humans and gut microbiota has been shaped over more than a 
billion years of coevolution, resulting in a symbiotic relationship similar to a holobiont or 
superorganism. As a result, the intestinal microbiota contribute to various health functions, 
including the maturation and ongoing training of the host immune response.20, 151, 152 
Detrimental changes in the gut microbiota’s characteristics (abundance, metagenomic 
function, diversity, and composition), collectively referred to as ‘dysbiosis’, can weaken 
the intestinal barrier, leading to the colonization or outgrowth of organisms, increased 
inflammation, immune dysregulation, and metabolic issues, thus compromising human 
health (Figure 1.3).19, 22, 92, 153-159 Note that dysbiosis remains poorly defined, largely due 
to significant interindividual variability within patients and across different diseases, 
which complicates the establishment of a clear definition for a healthy and unhealthy gut 
microbiota. To measure dysbiosis, several indices have been proposed.160 However, the 
proposed measures are not widely adopted and may not fully capture the complexities of 
dysbiosis.

One of the early milestone papers on the relation between the microbiota and disease is a 
study by Turnbaugh et al. published in 2009.161 Here, the authors showed that obese mice had 
a gut microbiota with increased capability for energy harvest from the diet. Also, they linked 
the gut microbiota to the pathophysiology of obesity through a series of experiments. This 
included transplanting feces from obese mice into gnotobiotic mice, which led to a greater 
increase in body fat than when gnotobiotic mice received a fecal microbiota transplantation
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from lean mice. This study not only found a correlation between the gut microbiota and 
disease, but also showed a causal link between the two. Subsequently, the study triggered 
a global interest in the role of the gut microbiome in human health and disease.161

Advancements driven by initiatives such as the Human Microbiome Project (HMP) and 
European Metagenomics of the Human Intestinal Tract (MetaHIT) have harnessed vast 
sequencing datasets to illustrate the structure and function of the healthy core microbiota.21, 162 
Defining the healthy microbiota is extremely difficult, as healthy gut microbiota are 
characterized by substantial interindividual variation. In the gut, however, healthy microbiota 
are associated with bacterial diversity, as they exhibit lower susceptibility to invasion, suppress 
the outgrowth of harmful species, and demonstrate greater resilience to perturbations.91, 163 
Intriguingly, while the human gut microbiota’s compositional diversity is substantial, functional 
gene profiles remain strikingly similar across individuals.22 This similarity was first reported in 
a study of 18 females who shared more than 93% of the enzyme-level functional groups, and 
was later confirmed in a much larger population by the HMP and MetaHIT data.21, 162, 164 This 
functional similarity among distinct microbiota profiles underscores the significance of function 
over species identity. However, variations in species could impact functional effectiveness, as 
seen with variations in short chain fatty acid synthesis.19, 22, 165, 166 Understanding the dynamics 
of the gut microbiota can guide strategies to increase the resilience of healthy states or 
counteract unhealthy ones (Figure 1.3B). Overall, the idea is that it is beneficial to have a diverse 
gut microbiome, which provides metabolic flexibility while reducing the risk of infections and 
the development of inflammatory diseases (Box 1.3).

Microbial shifts have been associated with disease activity in gastrointestinal inflammatory 
disorders such as IBD, encompassing Crohn’s disease (CD) and ulcerative colitis (UC). Most 
IBD patients suffer from periods of flares of inflammation with a severe impact on patients’ 
quality of life. Although the exact cause of the disease and its exacerbation remain unclear, it is 
considered to result from complex interactions between an altered intestinal immune response 
to commensal bacteria, shifts in the intestinal microbiota, and external environmental factors 
in a genetically susceptible host.169, 170 The gut microbiota of individuals with ileal CD shares 
similarities with that of infants: both are characterized by reduced diversity, elevated levels of 
Ruminococcus gnavus and Enterobacteriaceae, and an under-representation of the genera that 
are prevalent in healthy adults, including Faecalibacterium prausnitzii and Roseburia.22, 33, 171-174

Box 1.3 - Gastrointestinal diseases and microbial dysbiosis. A proposed 
hypothesis for the development of gastrointestinal diseases delineates a 
multi-step mechanism involving factors that trigger mucosal abnormalities 
and inflammation, microbial dysbiosis, morphological and functional changes, 
and interindividual microbial transfer as a continuous pathogenic cycle.20, 151 
For example, Clostridioides difficile, the main causative agent of nosocomial 
diarrhea, is an anaerobic, gram-positive, spore-forming bacillus.167 Clostridioides 
difficile may outcompete other species, especially in a dysbiotic microbiome 
after antibiotic use, leading to colonization of the gut and subsequently to 
disease.34 Recurrence of infections is not solely attributed to the reduction in 
diversity following antibiotic use, but there are also distinct bacterial signatures 
linked to recurrent colitis. These include a decrease in beneficial bacteria 
(e.g., Faecalibacterium prausnitzii) and an increase in strains from for example 
Lachnospiraceae, Coprococcus, Ruminococcus, and several Clostridium species.168 
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Additionally, microbial variations have been observed relating to heightened Bacteroides spp. 
and diminished Clostridium coccoides.175-180 However, these associations vary among studies, 
likely due to the heterogeneity of CD, differences in sequencing technologies, and the 
interindividual microbiota variability.154, 181, 182

Microbiome-related therapies, including prebiotics, probiotics, and fecal microbiota 
transplantation (FMT), aim to transition the patients’ microbiome from a dysbiotic to a healthy 
state.183-185 Although many probiotic strains demonstrate strong survival during passage 
through the gastrointestinal tract and retain metabolic activity, most human studies indicate 
they have very short-term persistence and minimal influence on the resident microbiota 
composition. In contrast, FMTs (transplanting healthy donor fecal matter into the patient's 
gut) seem to be more effective at changing an existing gut microbiota, yet the underlying 
processes leading to recovery remain largely unexplored and not well understood.95, 186-188 
The current thought is that the succession in the recovery process seems to start with an 
increase in facultative anaerobes and aerotolerant bacteria (similar to the development of the 
microbiota in an infant’s gut), possibly because of temporary changes in redox potential, and 
then the re-establishment of obligate anaerobes.22 FMT has demonstrated success in treating 
recurrent Clostridioides difficile infection, curing up to 85% of the patients, but its application 
in other diseases yields contrasting results.189, 190 For IBD, the remission rate after FMT is 45%, 
though relapses occur in a certain proportion of patients.191 Repeated FMT administrations 
seem to be needed to alter the chronic dysbiosis in the IBD patients' microbiota and allow 
for lasting changes.192-195 Also, associated factors such as age, sex, donor characteristics 
(e.g., donor gut microbiota diversity), pretreatment, and antibiotic use influence FMT 
outcomes, underscoring the interplay between the host, the host microbiota, and the donor 
microbiota.189, 193-200 

Approaches and challenges in analysing microbiota datasets

Samples from the gut microbiota provide a glimpse into the abundant diversity within the 
colon, revealing the multifaceted microbial ecosystem of the gastrointestinal tract.61, 201 
The most commonly used sample type for analysis of the gut microbiota is feces. Alternative 
sampling methods include taking biopsies during endoscopy or rectal swabbing. The 
advantage of rectal swabbing is that it relies on standardized protocols, whereas fecal sample 
collection often depends on individuals collecting the feces samples themselves at home, 
which can introduce variability. Both fecal sampling and rectal swabbing are also much 
less invasive than taking a biopsy. Moreover, a lower microbiota diversity is often found in 
samples obtained by a biopsy compared to fecal or rectal samples, which is probably caused 
by the bowel preparation beforehand, making this the least preferred method. Still, fecal 
samples or rectal swabs may miss specific microbial communities found in other (earlier) parts 
of the colon. For example, differences in microbial composition between rectal swabs and 
biopsies from the sigmoid colon suggest that distinct microbial communities exist in these 
areas. Rectal swabs may capture species suited to the transitional zone between anaerobic 
and more aerobic environments, while the squamous epithelium near the anal canal may host 
different microbes than the columnar epithelium further in the colon. Interestingly, UC often 
begins in this transitional zone, advancing inward from there.202
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Driven by the challenge that over 99% of gut microbes are difficult to culture in a laboratory 
setting, researchers developed methods to study these microorganisms directly within 
their natural environment, primarily through sequencing the 16S ribosomal RNA (rRNA) 
gene. The advent of high-throughput sequencing has revolutionized the study of microbial 
communities, providing valuable insights into their compositions. Its relatively low cost has 
made it a widely used method for assessing gut microbiota.203 This approach targets a specific 
region of the 16S rRNA gene that is unique to bacteria and present in all bacterial species 
containing multiple conserved and variable regions. The more conserved regions are useful to 
determine the higher-ranking taxa, whereas the more variable regions can help in identifying 
lower-ranking taxa, such as genera.204 In short, after samples are collected, Polymerase 
Chain Reaction (PCR) amplification of the rRNA genes is applied, with primers amplifying the 
target gene for a wide range of microorganisms. Next, the PCR products are sequenced. The 
resultant sequence reads can be clustered into, for example, operational taxonomical units 
(OTUs), amplicon sequence variants (ASVs), or metagenomic-based operational taxonomic 
units (mOTUs). These units are then aligned to a reference database and annotated into 
taxonomic names.205-209 

Note that a lot of bias originates from the sequencing technique and the misclassification 
of sequencing reads.118, 210 Therefore, positive and negative controls are commonly 
processed along with the real samples.111, 211-213 Negative controls allow assessing potential 
contamination, and positive controls (mock communities) allow the assessment of bias 
and variability among different runs (batch effects).214 Taxonomy annotation employs 
the Linnaean classification system, encompassing three domains: Bacteria, Archaea, and 
Eukaryota, with prokaryotic microorganisms largely categorized within Bacteria and 
Archaea. The specificity increases through kingdom, phylum, class, order, family, genus, 
and species classifications. The technique of 16S rRNA gene sequencing allows accurate 
taxonomic classification up to the genus level, but lacks reliable species-level or functional 
information.19 For a comprehensive assessment, to species or even strain or genotype level, 
deeper exploration through whole genome (shotgun) sequencing (WGS) is imperative. This 
higher-resolution approach uncovers the functional genes of microbial communities but is 
considerably more expensive compared to amplicon sequencing. Even further, for a more 
detailed understanding, proteomics and metabolomics can determine the biochemical 
associations between microbial taxa (and human host). Proteomics provides information 
on the proteins present, including their structures and functions, while metabolomics offers 
insights into the metabolites in the sample.

Microbiota data are often manifested in matrices with the samples as rows and the taxa as 
columns. It is important to note that the interpretation of these data is complicated by several 
statistical challenges.215 First of all, most datasets are comprised of more features (columns) 
than objects (rows), which makes classical statistics challenging. Secondly, species-abundance 
distributions exhibit a pronounced long-tail pattern, with many low-abundance taxa 
appearing in only a small fraction of samples.216 Consequently, microbiota abundance data 
also frequently faces zero-inflation (i.e., the matrices are highly sparse) due to true absences 
or undetected presences when the abundance falls below detection limits.215, 217, 218 However, 
possibly the biggest challenge is that the count measurements obtained are not viewed as 
‘true’ count data, instead only relative abundances are available.215, 219 Because, regardless of 
the amount of information available in the DNA sample, the output of a sequencing analysis 
is constrained by the limitations and sequencing depth of the platform used.219, 220
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Sequencing instruments are limited to delivering reads up to their capacity, with each sample 
constrained by the available slots and the molar concentration loaded in the sequencing 
machine.221 Therefore, the total read count observed in a high-throughput sequencing run 
is a fixed size, resulting in a random sample of the relative abundance of the molecules in 
the sample. This is explicitly acknowledged when microbiota datasets are mathematically 
transformed or converted to relative abundance values (Box 1.4).201, 215, 219, 222

A common goal in microbiome research is to understand the relationships, ecological stability, 
and dynamic behaviours of the microbiota communities and to unravel their impact on health 
and disease. An important decision in study design involves whether to gather repeated 
measurements from the same individuals or to allocate resources to sample from more 
subjects at a single time point. Often, it is not possible to collect repeated samples from many 
subjects. This is due to the high costs associated with longitudinal sampling and, particularly 
in medical studies, the burden it places on patients to return for follow-up visits. The choice to 
gather repeated samples or not should hinge on the study’s objective. Cross-sectional designs, 
with one sample per subject, are suited for examining differences in microbiota composition 
in association with health or disease.22, 62 In contrast, longitudinal designs are preferred for 
studying disease-course dynamics, treatment effects in randomized controlled studies, and 
temporal fluctuations within the microbial community.46, 52, 225, 226 Consequently, to distinguish 
intra-individual gut microbiota fluctuations from disease or treatment specific signals, robust 
assessment of microbial features demands repeated sampling.

Box 1.4 - The impact of data transformations in microbial 
ecology research. Rarefaction aims to rectify discrepancies in total 
reads per sample. However, rarefaction sacrifices statistical power 
and fails to really address the compositionality issues, as it involves 
subsampling to the lowest read depth across samples.214, 222 Alternatives 
to rarefaction all involve some type of transformation, the most common 
of which are scaling, log-ratio transformations, or converting the 
abundance count of each taxon into proportions or relative abundances 
that sum up to one for each sample.201, 215, 219, 220, 222-224 However, this 
brings another challenge, as it is quite possible that a significant change 
in the relative abundance of a species is observed, while the absolute 
number does not change. In microbial ecology studies, this phenomenon 
is important to consider when analysing shifts in species composition 
within a population or ecosystem. Imagine a simplified scenario with only 
two species, A and B, in a microbial community. Initially, there are 100 
individuals of species A and 100 individuals of species B, making the total 
population size 200. This results in a 50% relative abundance for both 
species (100/200). Now, an environmental change or intervention occurs 
that favors the growth of species A, causing it to double in number to 
200 individuals. Species B, however, remains at 100 individuals. The total 
population size is now 300 (200 of A and 100 of B). Despite the absolute 
number of species B remaining the same, the relative abundance of 
species B has decreased to 33% (100/300), while the relative abundance 
of species A has increased to 67% (200/300). 
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Working with longitudinal microbiota data is challenged by many difficulties, including 
inconsistent sampling frequencies, varying numbers of subjects per phenotype, or varying 
numbers of samples per subject. 

Realizing the importance of the gut microbiome for health and disease has encouraged the 
development of methods and tools for its analysis and modeling. Techniques encompass, 
among others, visualization, (temporal) clustering, network analyses, longitudinal and time 
series models. Co-occurrence based methods, based on e.g., Pearson’s and Spearman’s 
correlation measures, are quite popular for network inference due to their ease of use.227, 228 
While measures of co-occurrence, such as correlations, are powerful tools for generating 
hypotheses, caution is advised when assigning biological meaning to them.216, 220, 229 Graph 
theory has gained prominence for its ability to depict microbial community structures, 
capturing the potential interrelations among a multitude of species, possibly highlighting 
potential keystone species and subcommunities.8 In these graphical representations, nodes 
typically represent biological features, such as microbial taxa, genes, metabolites, or even 
environmental and host factors.112, 223 Edges signify correlations between nodes, but they 
are often too easily interpreted as biological relationships. Edges between microbial taxa 
might result from direct interactions, such as competition, secretion of substances, immune 
modulation, or from mere co-occurrence without any direct biological meaning, e.g., due to 
shared preferences, nutrient availability, or similar responses to environmental factors.8, 230 

Ordination analysis (e.g., principal component analysis (PCA), principal coordinates analysis 
(PCoA), and non-metric multidimensional scaling (NMDS)) reduces data with many variables 
(high dimensionality) to a set of two or three dimensions.220, 231 PCA identifies linear 
relationships and projects data onto orthogonal axes, PCoA uses distance matrices for non-
linear relationships, and NMDS preserves the rank order of distances for data visualization. 
Ordination analyses are tools used for visualizing and comparing microbial community 
differences. In ordination plots, microbial communities are depicted as points, with sequential 
samples linked by arrows. These arrows illustrate the system’s trajectory through the phase 
space.232, 233 Samples with similar bacterial communities tend to cluster closer together, 
whereas those with distinct compositions are positioned further apart.234 Clustering 
techniques can then be applied to identify groups of points that share greater similarity with 
each other compared to points in other clusters.235 Note that applying a clustering technique 
after dimension reduction by ordination analysis neglects significant information. Therefore, 
it is recommended to cluster samples based on the original data, as, for example, by Dirichlet 
multinomial mixture models. This is a clustering technique that is well-suited for multivariate 
relative indices and establishes relationships between patient samples by identifying 
similarities among them. This method has been used before in, for example, uncovering 
patterns within the microbiota development of infant cohorts.236 
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Box 1.5 - Models for microbial community dynamics. Dynamical systems 
theory is a well-established mathematical framework used to describe behaviour 
and evolution of complex systems over time.237 The development and analyses of 
dynamical models allows a better understanding and prediction of community 
dynamics and engineering of community properties.232, 237 The generalized Lotka-
Volterra (gLV) framework is a popular choice, benefitting from a deep theoretical 
understanding.100, 114, 238, 239 However, the validity of this approach is under debate, 
due to the model’s reliance on strong assumptions, such as leveraging quasi-
linearity in interaction terms. While pairwise models, such as the gLV models, 
focus on the increase and decrease of abundance of local species, mechanistic 
models consider interaction mediators as state variables.240 For example, if a 
certain species releases a compound which stimulates another species growth 
upon consumption, then a mechanistic model tracks abundances of both species 
and also the concentrations of the compound. Genome-scale metabolic models 
(GEMs) or constraint-based reconstruction and analysis (COBRA) models show 
great potential for modeling the metabolism of microbial communities.237, 241-244 
Note that mechanistic models often exclude molecular details, such as the 
processes by which chemical signals are received and processed by recipients, 
as well as the subsequent effects these signals have on the recipients’ behaviour 
or function.240 Ideally, models could also include the physical and chemical 
environment, as this is a very important part of the species' environment.

An alternative method for analysing microbiota data is to parameterize mathematical models 
of community dynamics using longitudinal data. However, the high-dimensional aspect 
of the microbial communities remains challenging for fitting dynamical models to data. 
Moreover, constructing such models requires substantial prior knowledge of the system, 
which is seldom available. An alternative approach is to construct a system that captures the 
core characteristics of the system’s elements. The time development of a dynamical system 
will in this case be described by a set of ordinary differential equations (ODEs) that define 
the principles governing the system’s dynamics (Box 1.5).232 However, high-dimensionality is 
again a challenge for these types of models. Most existing modeling approaches consider a 
few species at a time and fail to capture the true multivariate nature of the data. Also, they 
have high computational costs and low prediction accuracy.217 In general, when selecting a 
model, one must choose a balance between realism (the complexity of the system) and the 
ability to systematically and comprehensively analyse the microbial system with regard to the 
study’s objectives.232
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Aim and outline of the thesis

In this thesis, we aim to bridge the gap between microbiological, ecological, and clinical 
concepts, which may help to better understand microbial dynamics, microbial involvement in 
inflammatory bowel disease (IBD), and treatment success in fecal microbiota transplantation 
(FMT). Specific aims addressed in this thesis are:

1	 Characterize ecological structure in the human gut microbiota
Here we aim to unravel the correspondence between correlation-based networks and 
the underlying network of ecological interactions. Human microbiota networks are often 
characterized by pairwise correlation-based methods, applied to a few sampling points 
in time. Such characterization implicitly assumes that the microbial system tends towards 
a stable equilibrium. However, temporal ecological microbiota dynamics challenge the 
assumptions of prevailing correlation-based methods and provide leads for alternative 
characterizations. 

2	 Describe associations between gut microbial abundances and IBD
For this aim, we analyse fecal samples derived from Crohn’s disease (CD) patients. CD, a 
type of IBD, has been associated with atypical microbiota composition and metagenomic 
function. However, results from the literature on microbial associations with IBD have 
not been consistent, especially with respect to disease activity. This could be because the 
process of changing from a healthy to an unhealthy microbiota may not always follow 
a deterministic pattern. It could be unique per patient. We provide a possible solution 
by studying associations across a spectrum of individual patient responses to disease 
activity. 

3	 Examine ecological microbiota determinants associated with 
	 FMT treatment success

FMT has emerged as a promising treatment for microbiota-related intestinal disorders, 
but its effectiveness in patients with ulcerative colitis (UC), another type of IBD, is still 
limited. To characterize microbiota determinants of clinical remission, we examined 
longitudinal associations between bacterial families and clinical response to FMT. It was 
previously assumed that successful grafting of donor-derived microbes is associated with 
clinical remission, but this donor-centric view has recently been questioned. Therefore, 
we also investigate whether donor-derived, newly emerging, or host-associated species 
are linked to patients achieving clinical remission after FMT treatment.
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This thesis starts with methodological considerations dedicated to the characterization 
of microbial interactions and communities. Thereafter, our studies have a more clinical 
application. 

In Chapter 2 we use a mathematical model as a ground truth to simulate bacterial 
communities. We specifically investigate how microbial network inference is related to 
interindividual variation in population-dynamic parameters and different types of networks 
of microbial interactions. In addition, we assess the impact of sample size or measurement 
noise on the performance of correlation-based network reconstruction. 

In Chapter 3, we apply a technique that clusters time series based on similarities in their 
dynamical patterns, so-called wavelet clustering analysis. This technique, almost unknown in 
the microbiota field, provides insight into the dynamic relationships between members of the 
microbial community. This allows for an alternative characterization of community structures 
as compared to the commonly used correlation-based methods.

In Chapter 4 we apply quantile regression, an extension of the general linear model that 
allows for investigation of relationships across different quantiles of the distribution of 
a response variable. The idea behind this method is that not all individuals are equally 
responsive to disease-induced changes in terms of abundance of specific bacterial groups. 
We test especially whether associations between relative abundances of specific families with 
CD can be found relative to healthy controls and for different disease courses (i.e., remission 
vs. exacerbation). 

In Chapters 5 and 6 we investigate a longitudinal dataset of UC patients who underwent FMT 
treatment. In Chapter 5 we employ several multivariate analyses to examine associations 
between bacterial families and FMT treatment success: a Dirichlet multinomial mixture model, 
longitudinal mixed models, and PCA with Aitchison distances. In Chapter 6 we map the 
ecological dynamics in the gut microbiota during and after the FMT treatment. We categorize 
all the species in ecological groups based on their origin (already present in the host pre-FMT, 
derived from the donor, or introduced as a novel species that was neither present in the host 
nor donor) and investigate their patterns of presence and absence, as well as their relative 
abundance over time. 

All findings are summarized and placed in the broader context of existing literature in 
Chapter 7.
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Species abundance correlations carry
limited information about microbial 
network interactions

Abstract

Unraveling the network of interactions in ecological communities is a daunting 
task. Common methods to infer interspecific interactions from cross-sectional data 
are based on co-occurrence measures. For instance, interactions in the human 
microbiome are often inferred from correlations between the abundances of bacterial 
phylogenetic groups across subjects. We tested whether such correlation-based 
methods are indeed reliable for inferring interaction networks. For this purpose, we 
simulated bacterial communities by means of the generalized Lotka-Volterra model, 
with variation in model parameters representing variability among hosts. Our results 
show that correlations can be indicative of the presence of bacterial interactions, 
but only when measurement noise is low relative to the variation in interaction 
strengths between hosts. Indication of interaction was affected by type of interaction 
network, process noise, and sampling under non-equilibrium conditions. The sign of 
a correlation mostly coincided with the nature of the strongest pairwise interaction, 
but this is not necessarily the case. For instance, under rare conditions of identical 
interaction strength, we found that competitive and exploitative interactions can 
result in positive as well as negative correlations. Thus, cross-sectional abundance 
data carry limited information on specific interaction types. Correlations in 
abundance may hint at interactions but require independent validation.

Introduction

The human body harbors an exceptional bacterial diversity.21 The composition of these 
bacterial communities is generally shaped by characteristics of the host and by the ecological 
dependencies among bacterial species themselves.8, 13, 245 These dependencies often occur 
through competitive or synergistic interactions, which may lead to a (mutual) decrease or 
increase in the abundance of interacting species.123 For instance, it is known that bacteria 
can interact with each other through excreted metabolites, which can function as an 
antimicrobial or as a food source.8, 246 Among other mechanisms, for example negative 
interactions take place when toxic compounds produced by one species harm other bacteria, 
whereas positive interactions occur when bacteria feed on the nutrients that are produced 
by others. Besides, many different forms of interactions exist, depending on the effects 
experienced by the species involved. Knowledge of interspecific interactions in the human 
microbiome is paramount to understand ecological processes and compositional changes in 
relation to health and disease.49, 190

Most human microbiome studies are limited to only a few samples in time, presenting mere 
‘snapshots’ of the microbial ecosystem, even if these samples are derived from hundreds of 
human hosts. 
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A common way to infer microbial networks from such cross-sectional data is by quantifying 
co-occurrence, e.g., through (partial) correlations, between bacterial phylogenetic groups. 
Several different conclusions have been derived from such endeavors, for example on 
species associations that reflect shared or overlapping niche preferences,247 microbial 
community structure,248, 249 the resilience of microbial communities to perturbations,100 
and keystone species in microbial networks.114 Currently there are several correlation-
based network tools available that can deal with the difficulties of microbiome data, such 
as compositionality.230, 250, 251 The potential of correlation-based approaches for uncovering 
microbial networks has been highlighted in previous research.252

Whether correlation-based networks represent meaningful ecological structure in microbial 
communities is, however, debated. Carr et al. (2019) showed that spurious correlations may 
occur due to the use of sequencing methods, data transformations, and the large number 
of unmeasured variables.216 Berry & Widder (2014) and Hirano & Takemoto (2019) assessed 
the performance of different co-occurrence methods for inferring interaction structure and 
found that their performance strongly depends on the underlying network properties, 
such as network size and density, and the number of samples used to construct the 
network.114, 229 Apart from the challenges of metagenomic-based abundance data and 
disagreement between various network tools, here we question whether correlations 
themselves are at all useful to distinguish between different ecological interaction types. 
Resource competition and metabolic cooperation have been successfully inferred within 
environmental microbiomes, by linking ecological distribution data to multi-species 
metabolic models and subsequent verification of putative interactions by means of 
experimental co-growth analysis.119 However, host-associated microbiomes often include 
non-culturable organisms, without information on nutrient requirements or metabolic 
function. Likewise, performance of correlation analysis in relation to alternative interaction 
types in the human microbiota is not well understood and deserves further investigation.

Correspondence of correlations with ecological interactions needs to be studied against 
a known ground truth, which can be achieved by means of simulation. Mathematical 
models have been used as ground truth in assessment of correlation network techniques 
before,253 but correlation networks have not been systematically investigated against 
distinct interaction types in dynamic models. This requires elucidation especially as the ‘true’ 
ecological networks governing microbiome dynamics are still unknown. For this purpose, 
we assessed the performance of correlation-based network reconstruction by simulating 
abundance data based on the generalized Lotka-Volterra (gLV) model. The gLV model 
describes the collective dynamics of multiple species by means of an interaction matrix that 
can modulate different types of interactions.232 The model is commonly used in microbiome 
studies for different aims: to simulate microbial communities under various interaction 
structures,232 to infer interaction structure from time series data,100 to forecast population 
dynamics after a perturbation,254 to infer the network topology from steady state samples,255 

and to identify the efficiency of intervention protocols in altering the state of a system via 
the addition or subtraction of microbial species.256 In ecology, gLV-type models have been 
questioned for their reliance on pairwise additive interactions, as well as for the strictly linear 
effects imposed on interspecific interactions. Nonetheless, from the perspective of network 
inference, it makes sense to first investigate gLV-type models, as their first-order description 
of ecological dependencies, specified through a pairwise interaction matrix, resembles the 
objective of correlation analysis and most network models.8
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In addressing how gLV-type interactions can be inferred from cross-sectional data, we mainly 
focus on the correspondence between the obtained correlation-based networks and the 
underlying network of ecological interactions. We specifically investigate how the inference 
of microbial interaction types is enabled by interindividual variation in population-dynamic 
parameters (e.g., species-specific carrying capacities, intrinsic growth rates, and strength 
of interspecific interactions) and how network reconstruction is affected by gLV model 
assumptions. We highlight several situations where correlations cannot distinguish microbial 
interaction types and therefore recommend careful interpretation and validation when 
inferring networks from cross-sectional abundance data.

Methods

Two-species Lotka-Volterra model with self-limitation
First, we investigated how interactions between two species of microbial populations are 
displayed in terms of correlations of abundances in the Lotka-Volterra model. For the sake of 
convenience, we use the term ‘species’, although in studies with real microbiota data it is often 
not possible to characterize the taxonomic abundances at species-level and therefore genera 
or higher taxonomic levels are often used instead.

The two-species Lotka-Volterra model is given by the following set of ordinary differential 
equations:

					     Eq. 2.1

					     Eq. 2.2

Here, Ni is the abundance of either species 1 or species 2 (with i = 1 or i = 2). The term ri is the 
intrinsic growth rate of each species, here normalized to 1 and 2 per time unit for species 1 
and 2, respectively. The effect of each species’ abundance on its own growth is defined in 
terms of the species-specific carrying capacities Ki, with αii = –Ki

–1 denoting intraspecific 
competition. We arbitrarily chose the carrying capacity for the first species to be higher 
than the carrying capacity for the second species (K1 = 1.5; K2 = 1.1), meaning intraspecific 
competition is less strong for species 1 compared to species 2. Furthermore, αij (i = 1, 2; j = 1, 2; 
i ≠ j) indicates the interspecific interactions (the effect of one species abundance on the growth 
of the other species). A positive αij (e.g., as in the case of mutualism) denotes a positive effect 
of species j on the growth of species i, a negative αij (e.g., as in the case of competition) means 
a negative effect of species j on the growth of species i (Appendix Figure 2.1). We assessed 
the effect of variation in the interspecific interaction parameters on correlation in equilibrium 
abundance between both species. For this purpose, the interspecific interaction strengths (α12 
and α21) were drawn randomly from two normal distributions with similar or different mean 
and similar or different standard deviations (σα). Moreover, we also investigated the situation 
where |α12| = |α21|. Note that it was not possible to achieve stable coexistence for every 
combination of α12 and α21. More information on the conditions for coexistence can be found 
in Box 2.1.

 = r1N1(1 – K1  N1 + α12N2)
 dN1

 dt
-1

 = r2N2(1 – K2  N2 + α21N1)
 dN2

 dt
-1
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Box 2.1 - Coexistence in a two-species Lotka-Volterra model with self-limitation. 
The conditions for coexistence in the two-species Lotka-Volterra model with self-limitation 
can be derived by setting both growth equations to zero and investigating what parameter 
combinations yield N1 > 0 as well as N2 > 0. Here, N1 denotes the equilibrium abundance of 
species 1 and N2 denotes the equilibrium abundance of species 2. Writing these conditions in 
terms of N1 as functions of N2 gives the following: 

					       		  Eq. 2.A

 					     		  Eq. 2.B

The joint equilibrium abundance of both species (N1, N2) is determined by ƒ1(N2) = ƒ2(N2). 
Equation 2.A shows that species 1 grows to its carrying capacity K1 in the absence of 
interspecific interactions, i.e., if α12 = 0. Likewise, α12 > 0 allows species 1 to grow to higher 
abundance in the presence of species 2 than determined by its own carrying capacity, 
whereas α12 < 0 leads to a reduced abundance of species 1 in the presence of species 2. 
Similar relations hold for the abundance of species 2 in the presence of species 1, depending 
on α21. From Equation 2.B, it can also be derived that N1 > 0 is only compatible with N2 being 
above its carrying capacity K2 if at the same time α21 > 0, whereas N2 being below K2 requires 
α21 < 0.

Joint inspection of Equations 2.A and 2.B also establishes the following, more subtle, 
conditions for coexistence:

1	 If α12 > 0 and α21 > 0, e.g., in case of mutualism, ƒ2 has a negative intercept
in the Cartesian (N2, N1) coordinate system (Figure 2.A - panel A). As both functions have 
a positive slope in this situation, and ƒ1 always has a positive intercept, ƒ2 must have a 
stronger slope than ƒ1 for both to intersect in the positive quadrant. This boils down 
to          > α12K1, or equivalently α21α12 < α11α22, as Ki = -      by definition. This means that the 
product of interspecific mutualism needs to be smaller than the product of intraspecific 
competition for both species to co-exist, otherwise there is no control of population 
growth.

2	 If α12 < 0 and α21 < 0, e.g., in case of competition, both functions have positive
intercept and negative slope (Figure 2.A - panel B). Intersection in the positive quadrant 
requires the function with the larger intercept to intersect the abscissa, i.e., the N2 axis 
where N1 = 0, at a smaller value than the function with the smaller intercept. Thus, this 
requires |α21| >      and |α12| >      , with ƒ2 having the larger intercept, or alternatively, 
|α21| <      and |α12| <      , with ƒ2 having the larger intercept. In the first instance, interspecific 
competition is stronger than intraspecific competition, whereas in the second instance, 
interspecific competition is less strong than intraspecific competition. It turns out that only 
the last of these conditions yields a stable equilibrium, meaning that the abundances of 
both species return to equilibrium after small displacements.

 N1 > 0     N1 = ƒ1(N2) = K1 + α12K1N2 = 0 
 dN1

 dt ^

 N2 > 0     N1 = ƒ2(N2) = –= 0 
 dN2

 dt
1

 α21
^ + 1

 (α21K2) N2

1
 α21K2

1
 αii

-

1
 K1

1
 K21

 K1

1
 K2
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3	 If α12 < 0 and α21 > 0, e.g., in case of exploitation of species 1 by species 2, ƒ1 has a positive 
intercept and negative slope, whereas ƒ2 still has a negative intercept and positive slope 
(Figure 2.A - panel C). Intersection in the positive quadrant requires ƒ1 to intersect the 
abscissa at a larger value than K2, the point where ƒ2 intersects the abscissa. The condition 
for coexistence thus becomes |α12| <      , or equivalently α12 < α22, meaning that the parasite 
should exert stronger inhibitory effect on its own growth than on that of the exploited 
species.

4	 Conversely, in case of exploitation of species 2 by species 1, i.e., if α12 > 0 and α21 < 0, 
both ƒ1 and ƒ2 have a positive intercept, but ƒ1 now has a positive slope whereas ƒ2 has a 
negative slope (Figure 2.A - panel D). Intersection in the positive quadrant then requires ƒ1 
to have a smaller intercept than ƒ2. The condition for coexistence thus becomes |α21| <      , 
or equivalently α21 < α11, again meaning that the parasite should exert stronger inhibitory 
effect on its own growth than on that of the exploited species.
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Figure 2.A - Zero-growth isoclines (‘null-clines’) in the 
two-species Lotka-Volterra model. Visualization of the effect 
of species 1 and 2 abundances on each other in the Cartesian (N2, N1) 
coordinate system. Here, ƒ1 denotes the isocline of zero growth of 
species 1, i.e., ƒ1(N1) (in dark blue), and f2 denotes the isocline of zero 
growth of species 2, i.e., ƒ2(N1) (in light blue). Their point of intersection 
represents the joint equilibrium abundance of both species, i.e., (N1, N2). 
Throughout K1 = 1.5 and K2 = 1.1. Parameters for the various scenarios: 
α12 = 0.3 and α21 = 0.6 under mutualism; α12 = –0.6 and α21 = –0.4 under 
competition; α12 = –0.6 and α21 = 0.4 under exploitative interaction 
type 1; and α12 = 0.6 and α21 = –0.4 under exploitative interaction type 2.
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The additional requirement for stable coexistence is that the two-species system should be 
locally stable around the equilibria (N1, N2), which can be formalized in terms of the Jacobian 
matrix of the Lotka-Volterra model evaluated at (N1, N2). This amounts to determining the 
trace and determinant of the matrix of the partial derivatives of the growth equations 
regarding either species, i.e.,

         r1 - 2r1N1 / K1 + r1α12N2 	              r1α12N1                   		
							       Eq. 2.C	       	
	 r2α21N2 		  r2 - 2r2N2 / K2 + r2α21N1

It can be verified that the conditions for coexistence stated under mutualism and exploitative 
interactions yield equilibria that are locally stable, just as the last of the conditions under 
competition. We will not derive these conditions here, as these are covered by textbooks on 
theoretical ecology.257 

In summary, the two-species Lotka-Volterra model with self-limitation has the following 
possibilities for stable coexistence (Table 2.A):

Table 2.A - Conditions for stable coexistence in the two-species Lotka-
Volterra model.

Type of interaction Condition Outcome

Mutualism
α12 > 0  α21 > 0 α12α21 < N1 > K1  N2 > K2

Competition
α12 < 0  α21 < 0 |α12| <        |α21| < N1 < K1  N2 < K2

Exploitative interaction type 1a

α12 < 0  α21 > 0 |α12| <  N1 < K1  N2 > K2

Exploitative interaction type 2b

α12 > 0  α21 < 0 |α21| < N1 > K1  N2 < K2

a Exploitative interaction type 1: species 1 is being exploited by species 2
b Exploitative interaction type 2: species 2 is being exploited by species 1

The condition for stable coexistence of competitors requires both species to have less effect 
on the growth of the other species than on itself. In case of an unstable equilibrium, either 
species will eventually outcompete the other; the species with an initial advantage will drive 
the other species to extinction, a condition referred to as competitive exclusion.258, 259 This 
will occur, for instance, when each species produces a substance which is toxic to the other 
species but relatively harmless to itself.

1
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Generalized host-specific Lotka-Volterra model
Microbial abundance is not only shaped by intra- and interspecific interactions, but also by 
host characteristics, for example lifestyle, diet, and age.260 Therefore, we investigated the 
performance of correlation-based network inference of microbial networks for a host-specific 
version of the gLV model. The host-specific gLV model is given by:

					     Eq. 2.3

Here, Ni,m is the abundance of each species i in host m, with i = 1, ..., s (s being the total 
number of bacterial species) and m = 1, ..., 300 (the total number of hosts). The terms ri,m 
and Ki,m are the intrinsic growth rates and the carrying capacities of each species i in host m. 
The carrying capacities are kept separated from the interaction matrix A which only contains 
interspecific interactions (namely, the pairwise terms αij), facilitating a one-to-one comparison 
with the correlation matrix.

Parameterization of the base case simulations
We started with a base case, and we added step by step variation to this case. Note that 
the base case parametrization does not reflect any particular real-world system. Rather, 
parameters were chosen in such a way to facilitate computation and promote coexistence 
among species. Variations to the base case parameters are shown later on, but also here, 
findings should be appreciated from a qualitative rather than quantitative viewpoint. In 
the base case, the number of bacteria equals ten. The species-specific growth rate ri and 
the species-specific carrying capacity Ki were randomly drawn from uniform distributions, 
respectively U(0.05, 0.1) and U(0, 1). The density of the interaction matrix A in the base 
case was chosen such that both sparsity of the interaction network and coexistence of 
the species was promoted in all simulations; in the base case, density was ¼ meaning that 
three out of four possible interactions were set to zero. Moreover, to ensure coexistence 
between species in the model we chose stronger intraspecific interactions than pairwise 
interspecific interactions. The species-specific parameters αij were drawn from a Gaussian 
mixture distribution, as follows. Half of the interactions were drawn from a negative normal 
distribution: αij ~ N(–0.25, 0.1); and the other half of the interactions were drawn from a 
positive normal distribution: αij ~ N(0.25, 0.1). All interactions were restricted to lie between 
–0.5 and 0.5, i.e., the normal distributions were truncated at –0.5 and 0.5. The parameters ri, 
Ki, and the interaction matrix A were randomly drawn 1000 times from the aforementioned 
distributions to obtain 1000 different parameter combinations. Hereafter, host-specific 
parameters were drawn from log-normal distributions around species-specific parameters, 
as follows:

ln(|αij,m|) ~ N(ln(|αij|), σα)
      ln(ri,m) ~ N(ln(ri), σr) 			   Eq. 2.4
      ln(Ki,m) ~ N(ln(Ki), σK)

Here, σα denotes the interindividual variability in interspecific interactions among the 300 
hosts (with σα = 0.25 in the base case), and |αij,m| denotes the absolute strength of interaction 
from species j on the growth of species i for each host m. Note that, for the sake of simplicity, 
the use of log-normal distributions was adopted to induce fold-changes around population 
means, where both the presence and the sign of interspecific interactions are kept constant

 = r
i,m

N
i,m

(1 – K
i,m

N
i,m

 + ∑ α
ij,m

N
j,m

) 
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across hosts. However, this may be untrue in real microbiota as many microbes can change 
metabolic pathways and therefore may switch between interaction types and interaction 
partners. In the base case model, the carrying capacities and growth rates were kept constant 
across hosts, meaning σr and σK were set equal to 0.

The simulation process yielded 300,000 time series (300 host-specific time series for each 
of the 1000 ten species networks). The running time of the model was chosen such that all 
species reached their equilibrium abundance. If at least one species did not survive (i.e., when 
its abundance dropped below 0.001), we rejected the simulation in favor of another randomly 
drawn parameter set. After sampling the abundances at equilibrium, we added independent 
and identically distributed noise υ to mimic uncertainty in measurements (with υ ~ U(–0.01, 
0.01) in the base case). This measurement noise can be thought of as representing, for 
example, sampling errors, environmental contamination, batch effects during sequencing, or 
annotation errors in reference genomes.261 Simulations were performed in R (R version 3.6.0; 
www.r-project.org). The gLV model was solved with the ‘lsoda’ function from the ‘deSolve’ R 
package (version 1.24) which uses a FORTRAN ODE solver written by Petzold & Hindmarsh 
(1995).262, 263 R code is available on the GitHub repository (susannepinto/gLV_microbiome).
A general overview of the base case simulation design is given in Figure 2.1.

Figure 2.1 - Representation of the workflow. In an interaction network, singular 
green and red arrows represent a commensalistic interaction and an amensalistic interaction, 
respectively, whereas double green arrows represent mutualism and double red arrows 
competition. A combination of a green and red arrow signifies an exploitative interaction. 
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See Appendix Figure 2.1 for more details. A) A random interaction matrix i. This interaction 
matrix is implemented in the gLV model, B) together with the intrinsic growth rates and carrying 
capacities of the species. C) All time series are (slightly) different due to the variation in the 
interaction strengths. D) The partial correlations are calculated from the abundances per species 
sampled from the 300 different hosts at equilibrium. Only the significant correlations and the 
lower part of the matrix are used for the comparison with the original interaction matrix i. 
Variations to the workflow were studied by adding for example a perturbation or process noise. 

Variations to the base case model
We studied multiple variations to the base case model. Similar to the base case simulations, 
we did 1000 simulations per variation. As a first variation, we added host-specific variability 
to the species-specific parameters ri and Ki using Equation 2.4, with σr = 0.25 and σK = 0.25.

Second, we varied the amount of measurement noise, from υ ~ U(–0.01, 0.01) (medium noise 
in the base case) to υ ~ U(–0.001, 0.001) (low noise), and to υ ~ U(–0.1, 0.1) (high noise). 
We also simulated time series with a different type of noise, namely varying magnitudes of 
process noise W (Appendix Figure 2.2). In contrast to measurement noise, which was added 
only to the sampled abundances, process noise was added to the gLV model such that within-
host population dynamics were perturbed at discrete time intervals Δt (Δt = 1 time unit). 
The time-varying process noise was drawn from a log-normal distribution to prevent the 
abundances from dropping below zero, i.e., ΔWi = ln(Ni,m(Δt)) – ln(Ni,m(t)) ~ N(ln(Ni,t), σW) (with 
σW ~ N(0, 1) for high process noise and σW ~ N(0, 0.1) for low process noise).

Further, we simulated data with interaction strengths drawn from a uniform (αij ~ U(–0.5, 0.5)) 
or unimodal (αij ~ N(0, 0.15)) distribution. As in the base case, the interaction strengths were 
restricted to lie between –0.5 and 0.5 (Appendix Figure 2.3).

We also analysed three different structures of microbial networks. First, we increased the 
number of species s from 10 to 30. To promote coexistence, we also reduced the density 
of the interaction matrix to 1/6. Secondly, we simulated a network based on a producer 
consumer relation between the species (Appendix Figure 2.4). Instead of random interaction 
networks (Appendix Figure 2.4A), the producer-consumer networks are based on a cross-
feeding structure between producers and consumers (with equal numbers of producers and 
consumers) (Appendix Figure 2.4B). Producers excrete metabolites which are consumed by 
the consumers. Because consumers remove the ‘waste’ from the producers, the presence 
of a consumer can also be beneficial for the producers. Therefore, between producers and 
consumers positive interactions are more likely to occur than negative interactions. For 
this purpose, we drew the consumer-producer interactions from the positive side of the 
Gaussian mixture distribution (αij ~ N(0.25, 0.1)). In contrast, among producers and consumers 
themselves, the interactions are predominantly negative as these species are more likely to 
compete for similar resources. For this purpose, we drew the interactions among producers 
and among consumers from the negative side of the Gaussian mixture distribution 
(αij ~ N(–0.25, 0.1)). Third, we simulated a microbial network with interaction hubs, i.e., a 
network containing species with unusually high numbers of ecological interactions compared 
to other species in the network (Appendix Figure 2.4C).264 Hub-species networks were created 
according to the Barabási-Albert model265 and implemented with the ‘barabasi.game’ function 
from the ‘igraph’ R package (version 1.2.11). In the network-generating algorithm, interactions 
are distributed according to a mechanism of preferential attachment. 
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Thus, species with interactions obtain a higher chance of getting more interactions, resulting 
in a few ‘hub-species’ with many interactions. We constructed two scale-free directed graphs 
(with power = 2), denoting ‘incoming’ and ‘outgoing’ interactions, and combined these to 
obtain a bidirected graph. Density was kept similar to the base case model (¼).

Next, we also investigated how network inference is affected by sample size by considering 
a scenario with 3000 instead of 300 hosts. We did this for the base case model with random 
interaction networks, as well as for the producer-consumer and hub-species networks 
described before.

Last, we investigated the effect of a perturbation on the performance of network inference. 
The populations were perturbed after 175 time units, with a perturbation that lasted for 50 
time units. The perturbation was modelled by taking a new set of random carrying capacities 
per species per sample. Due to the simulated perturbation, the equilibrium distribution 
shifted. After the perturbation, the species grew back to their original equilibrium. Sampling 
occurred before, during, or after the perturbation.

Assessment of correlation-based network inference 
With the simulated data at hand, we created a dataset with the abundances of the model 
species sampled at equilibrium for each host m. After adding measurement noise to the data, 
we inferred the correlations between species by calculating the Pearson’s partial correlation 
coefficients ρ between all abundances Ni across the m different hosts (Figure 2.1). We did 
not use plain correlations, because partial correlations have the advantage of controlling 
for confounding interactions (e.g., interactions between bacterial species affecting the 
abundance of a third species).227 Agreement between the partial correlation matrix and the 
interaction matrix A from the gLV model was assessed qualitatively, i.e., we only considered 
whether significant entries in the partial correlation matrix agreed with the interaction 
matrix in terms of nonzero entries with the same sign. We used the Benjamini-Hochberg 
procedure to control for the expected proportion of ‘false discoveries’ after calculating partial 
correlations between each pair of species.266 The results (true positives, true negatives, 
false positives, and false negatives) were stored in a confusion matrix (Table 2.1). Because a 
correlation matrix is symmetric and an interaction matrix A is not, we only used half of the 
partial correlation matrix (Figure 2.1D) to construct the confusion matrix. For a correctly 
classified interaction, either one or both interactions in the upper and lower part of the A 
matrix must have the same sign as in the lower part of the partial correlation matrix. This 
can produce a bias, because asymmetric interactions can result in a true positive result 
for correspondence of the correlation coefficient (ρ) with either interaction. For example, 
for exploitative interactions, both negative and positive correlations were classified as 
true positive results. Therefore, we tested the effect of this bias on the success of network 
inference by specifying the intended sign in correlation analysis, as the sign of the strongest 
interaction in each pair of species. Hence, for an exploitative interaction, only a positive or 
a negative correlation is correct, depending on the weights of the asymmetric interactions. 
We also tested the effect of this bias on the success of network inference by setting the rule 
that the sign of both interactions must be matched by the inferred correlation coefficient. 
Therefore, only mutualism and competition can be inferred correctly, as amensalism, 
commensalism, and exploitative interactions are asymmetric.
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Table 2.1. The confusion matrix as used in this study. 
The inferred partial correlation coefficient ρ (from the lower part of the partial 
correlation matrix) must have the same sign as one of the interactions in the interaction 
matrix A to be considered as a true positive finding in base case analysis.

Interaction in the A matrix from 
the model

Inferred partial correlation

Negativea Not significant Positivea

No interaction 0, 0 false positive true negative false positive

Mutualism +, + false positive false negative true positive

Competition –, – true positive false negative false positive

Commensalism +, 0 | 0, + false positive false negative true positive

Amensalism –, 0 | 0, – true positive false negative false positive

Exploitative interaction +, – | –, + true positive false negative true positive
a	 Only significant partial correlations (with p-value < 0.05) are considered after correction for 
	 multiple testing with Benjamini-Hochberg procedure.

Performance of network inference was evaluated using precision and recall, as well as a 
combination of both measures, called the F1-score.267 The precision is the fraction of correctly 
classified interactions among the total number of significantly predicted interactions (i.e., 
significant partial correlations) and the recall is the fraction of correctly classified interactions 
among the total number of non-zero interactions in the interaction matrix A. The F1-score (on 
a scale from 0 (no agreement) to 1 (perfect agreement)) is obtained as the harmonic mean of 
precision and recall, weighted equally, as given in the following equation:

				     	 Eq. 2.5

Results

Inference of asymmetric and symmetric interactions in a two-species system 
Correlations in abundances of the species in a two-species Lotka-Volterra model are shaped 
by the type of interaction involved. Figure 2.2 shows scatterplots of the abundances of two 
bacterial species for different interaction mechanisms over a range of different combinations 
of α12 and α21. Mutualistic interactions clearly yielded a positive correlation in abundance 
between the two species involved (Figures 2.2A and Appendix Figure 2.5). Competitive 
interactions generally yielded negative correlations (Figures 2.2B and Appendix Figure 2.5). 
However, under perfectly symmetric competition (when α12 = α21) we did find a positive 
correlation depending on interaction strength and carrying capacities of the species involved 
(Appendix Figure 2.5D - second panel). In the situation where one of the two species does 
not experience any benefits or limitations in growth from the other species, as is the case 
with commensalism and amensalism (i.e., α12 = 0 or α21 = 0), correlations are zero because one 
of the species will grow to its carrying capacity irrespective of the abundance of the other 
species (Figure 2.2C and 2.2D).

Correlations under exploitative interactions among bacteria, benefitting one but harming the 
other species, generally yielded positive correlations (Figures 2.2E and 2.2F, and Appendix 
Figure 2.5), but negative correlations were also found. 

F1 = 2 · precision · recall
precision + recallF1 = 2 · precision · recall
precision + recallF1 = 2 · precision · recall
precision + recall
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This happened when the exploitative benefit was of equal magnitude as the harm done 
to the other species (Appendix Figure 2.5D), or of similar mean magnitude but with more 
variation (e.g., species 1 is exploited by species 2; –α12 = α21 and σα12 << σα21 (exploitative 
interaction type 1) or species 2 is exploited by species 1; α12 = –α21 and σα21 << σα12 
(exploitative interaction type 2) (Appendix Figure 2.5B). However, if the exploitative benefit 
outweighs the harm done to the other species, exploitative interactions will generally yield 
positive correlations. It should also be noted that the two species were not exchangeable, 
because species 1 was given a weaker intraspecific interaction strength than species 2. 
Thus, in the absence of interspecific interactions, species 1 can reach a higher abundance at 
equilibrium. This means that, for the same interspecific interaction strength, the species with 
the higher carrying capacity exerts a stronger (negative) effect on the growth of the other 
species.

Figure 2.2 - Scatter plots between the abundances of two bacterial species for 
different interaction mechanisms. A) mutualism, B) competition, C) commensalism, D) 
amensalism, and E, F) exploitative interactions. The abundances of the two species N1 and N2 at 
equilibrium are shown as scatterplots and have been obtained by running the two-species 
Lotka-Volterra model, with K1 = 1.5; K2 = 1.1; r1 = 1; r2 = 2 and αij drawn randomly from normal 
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Network inference under various interaction types
Here, we used the base case model to assess the success rate of recovering a particular 
interaction type between pairs of species: amensalism, commensalism, exploitative 
interactions, mutualism, and competition (Appendix Figure 2.1). Figure 2.3A shows that 
correlations were more often found in mutualistic and competitive interactions, where 
interacting species experience the same qualitative effects from each other, than in 
amensalistic and commensalistic interactions, where only one species experiences an effect 
from the presence of another species. For exploitative interactions among bacteria, either a 
positive or negative correlation coefficient ρ could be found, with a success rate comparable 
to amensalistic and commensalistic interactions. Contrary to the results that included 
symmetric interactions, there was no difference between the successful inference of positive 
interactions over negative interactions in any interaction type (Figure 2.3B). For all interaction 
types, the sign of the significant correlation coefficient ρ found, mostly agreed with the sign 
of the interaction type (Figure 2.3). However, with the inferred correlations neither the type 
nor direction of the original interaction could be recovered.

distributions with identical means and standard deviations (α12 ~ N(|0.7|, 0.2), α21 ~ N(|0.7|, 0.2)). 
In the case of commensalism and amensalism: α12 ~ N(|0.7|, 0.2) and α21 = 0. The two species can 
co-exist under certain combinations of αij (Box 2.1). The grey polygon indicates the area where 
coexistence is possible. Note that the axes have different ranges in each subplot. Because the 
two species have different carrying capacities, the two situations of exploitative interactions are 
different; i.e., in case of exploitative interaction type 1 (species 1 is exploited by species 2) and in 
case of exploitative interaction type 2 (species 2 is exploited by species 1).

Figure 2.3 - The percentage of significant partial correlations (with sign matching 
interaction in either direction), as recovered from the base case model. 
A) For different types of pairwise interactions and B) for the different correlations.
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Network inference under various sources of process variability 
Next, we investigated how correct network inference was affected by several variations to 
the base case model (Figure 2.4 and Appendix Table 2.1). In all cases considered, interactions 
were recovered with precision exceeding recall. This means that the likelihood of missing an 
interaction (i.e., 1 – recall) was higher than the likelihood of finding a false interaction 
(i.e., 1 – precision), illustrating the effect of false discovery rate control.

Partial correlations corresponded to non-zero entries in the interaction matrix only when 
interindividual variation existed in the interaction parameters (αij) and/or carrying capacities (Ki) 
(Figure 2.4A and 2.4B). These parameters directly influence microbial abundance patterns, as 
interspecific interactions and carrying capacities determine the equilibrium of the gLV model. 
The intrinsic growth rate only determines the speed at which species reach their equilibrium, 
and this parameter is not informative for the equilibrium abundances. In fact, performance 
under interindividual variation in growth rates was just as bad as the performance under pure 
measurement noise with no variation in model parameters (Figure 2.4B).

Performance of correlation-based network inference was robust to measurement noise, if 
measurement noise was small compared to interindividual variation in process parameters 
(Figure 2.4C). When measurement noise became of the same magnitude as the variation 
in interspecific interactions, the F1-score deteriorated, and it was no longer possible to use 
correlations as a proxy for interactions (Figure 2.4C). We also checked whether adding process 
noise would affect the inference. We did observe a significant improvement of the inference 
from a model with process noise relative to only measurement noise (Figure 2.4C and 
Appendix Table 2.1).

Hereafter, we investigated the effect of drawing the interaction strengths from different types 
of distributions (Figure 2.4D and Appendix Figure 2.3). We did not observe a difference 
between the success rate of network inference under a Gaussian mixture distribution or 
uniform distribution, which were conditioned to have similar variances (Appendix Table 2.1). 
However, successful inference deteriorates with reduced interaction strength; success rates 
were better under a Gaussian mixture distribution or uniform distribution compared to a 
unimodal distribution around zero (with smaller variance) (Figure 2.4D). The weaker interactions 
have a smaller effect on equilibrium abundances of other species, which makes them harder to 
detect with correlation analysis.

Figure 2.4E shows the results for different network types. Increasing the number of species from 
10 to 30 had a significant negative effect on the success of the inference (Appendix Table 2.1), 
which was mainly due to reduced precision. Conversely, F1-scores were improved as compared 
to the base case when assuming a producer-consumer based network (Appendix Figure 2.4 and 
Appendix Table 2.1), on account of an improved recall. Inference in a network with interaction 
hubs (as explained in Appendix Figure 2.4) was significantly worse than in a random network, 
which could be attributed to a somewhat reduced recall.

Note that problems may arise with asymmetric relationships. When using the rule that pairwise 
correlations should match the strongest interaction between both species involved as the 
intended sign, we found only a slight non-significant reduction in F1-score as compared to the 
base case scenario (Figure 2.4F and Appendix Table 2.1).
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Figure 2.4 - Inference under various sources of process variability. For the 
different scenarios we show the precision, recall, and the F1-score. A) The base case model. 
B) Host-specific variation in the carrying capacities and intrinsic growth rates. C) Decreased 
and increased amount of measurement noise (υ) and the effect of process noise (W) 
(Appendix Figure 2.2). D) Interaction strengths drawn from a uniform and unimodal 
distribution (Appendix Figure 2.3). E) The results for a 30-species system, a network based on a 
producer-consumer structure and a network with interaction hubs (Appendix Figure 2.4). 
F) The effect of network inference when specifying the intended sign in correlation analysis, as 
the sign of the strongest interaction in each pair of species, or by setting the rule that the sign 
of both interactions must be matched by the inferred correlation coefficient (strict inference). 
G) Three scenarios with 3000 hosts, for the base case with random interaction networks as 
well as for the scenarios with structured (i.e., producer-consumer and hub-species) networks. 
Network inference was assessed by the F1-score, which measures agreement between the 
interaction matrix in the gLV model and the inferred partial correlation matrix on a scale from 
0 (no agreement) to 1 (perfect agreement) (according to the rules of Table 2.1). The dashed 
line indicates the median result from the base case model. The bars of the boxplots indicate 
the variability of the data outside the middle 50% (i.e., the lower 25% of scores and the upper 
25% of scores). All p-values are given in Appendix Table 2.1.
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Thus, pairwise interactions wherein the net effect on population growth is positive or 
negative are mostly picked up as such in correlation analysis. However, under the rule that 
mutual interactions must both be reflected in the sign of the correlations, asymmetric 
interactions cannot be recovered as correlations are symmetric. We indeed found much lower 
F1-scores when detection of asymmetric interactions was no longer considered as a true 
positive result after inferring a significant correlation coefficient ρ (either positive or negative) 
(Figure 2.4F).

Finally, we verified that network inference improved with increasing sample size. This applied 
to models with random as well as structured interaction networks (Figure 2.4G). In the base 
case, precision was somewhat reduced at increased sample size notwithstanding Benjamini-
Hochberg control. However, this was compensated by substantially improved recall, resulting 
in significantly increased F1-scores. Interestingly, precision stayed more or less constant 
at increased sample size in producer-consumer and hub-species networks, whereas recall 
improved but remained somewhat behind that of random networks.

Network inference under non-equilibrium conditions 
Figure 2.5 shows that the equilibrium assumption is not necessary for successful correlation-
based network inference. In fact, our results even suggest that a perturbation can positively 
affect the performance of network inference. Variation in the growth rates becomes 
significantly informative outside the equilibrium (Appendix Table 2.2). Also, variation in the 
interactions becomes even more informative when the population is still growing towards the 
equilibrium. Network inference is impaired only right after the start of a perturbation, when 
the population is still far from a new equilibrium, unless the interindividual variation is in the 
carrying capacities (Figure 2.5B). We also assessed the success of correlation-based inference 
when the sampling occurred randomly in time in relation to the perturbation. We found that 
the F1-score resembled an average of F1-scores across various sampling time points.

Discussion

Correlation-based network inference has been used in many studies and for many different 
types of human and environmental microbial communities.227 The reliability of the results 
with regards to true ecological dependencies has been criticized, to the extent that 
correlation analysis has been suggested to almost never reveal anything substantive about 
the biotic relationships between bacteria.216 However, the theoretical basis that enables 
ecological interactions to be inferred from cross-sectional abundance data remains poorly 
understood. Most of the previous research has focused on the reconstructed network 
properties or the difficulties pertaining to metagenomics-based abundance patterns, e.g., the 
compositionality of the data and the high proportion of zeros.216, 227, 268 While these difficulties 
are pervasive and merit further consideration, here, we question whether correlations are at 
all useful in distinguishing different interaction types in microbial networks.

We demonstrated multiple pitfalls when using correlation-based methods for inferring 
interactions. Some of those pitfalls are well known, as they relate to the inherent symmetry 
of correlation-based metrics and the frequent asymmetry of ecological interactions.216 

As a result, asymmetric interaction types (commensalism, amensalism, and exploitative 
interactions) cannot be recovered with an indication of the direction of interaction, which 
agrees with prior work done by Weiss et al. (2016).253 
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Figure 2.5 - The effect of a perturbation on correlation-based network 
inference. A) Example of a time series. Dashed lines represent sampling time points. 
Sampling was performed during the perturbation (t1 = green, t2 = yellow, t3 = blue, and 
t4 = grey) and at equilibrium (t5 = dark blue). Alternatively, sampling was performed 
randomly between t = 100 and t = 1000 (random = pink). B) Results (F1-scores) of network 
inference for sampling at various time points. After a perturbation all species grow back 
to their original equilibrium. The bars of the boxplots indicate the variability outside 
the middle 50% (i.e., the lower 25% of scores and the upper 25% of scores). Dashed 
lines represent median results of sampling during equilibrium. All p-values are given in 
Appendix Table 2.2.
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Symmetric interaction types, where species involved affect each other’s growth in a 
qualitatively similar way (competition and mutualism) can be recovered, although 
competitive interactions may also result in positive correlations, albeit in very rare cases 
where species have identical competitive strength. Likewise, we found that exploitative 
interactions generally induce positive correlations, especially in the likely circumstance 
where the exploitative benefit outweighs the harm to the exploited species. These findings 
might explain why empirical correlation-based networks have a relative shortage of negative 
correlations.119, 268, 269 It remains to be investigated whether the high frequency of positive 
edges in reconstructed networks is caused by methodologic limitations or whether the 
interspecific interactions in host-associated microbiota are primarily mutualistic.112, 136, 270, 271

Still, as illustrated by our analysis, correlations in microbial abundance across independently 
sampled hosts can be indicative of underlying ecological interactions under host-specific 
variation in microbial population dynamics. That is, if microbial groups of interest are 
omnipresent and their interactions are appropriately captured by generalized Lotka-Volterra 
(gLV) dynamics, the variation in population abundances should be driven by interindividual 
variability in population-dynamic parameters. In the context of the gLV model, the 
informative parameters are primarily related to intrinsic growth rates, carrying capacities, 
and strength of between-species interactions of microbial groups considered. A change in 
species abundances can be informative for the interactions among those species, as was also 
previously shown by Stone and Roberts (1991).272 It remains to be determined how much 
variability across individual hosts is driven by external forcing and by gradual differences in 
process related parameters relative to measurement noise. On one hand, it is well known 
that microbes adapt to host-specific environments, shaped by, among others, diet, lifestyle, 
hormonal regulation, and the immune system.260 As an example, increased abundance of a 
particular bacterial species at increased glucose intake levels might be reflective of increased 
resource availability (affecting carrying capacity and growth rate) or superior competitive 
strength (affecting interactions with other species).246 On the other hand, environmental 
drivers of bacterial growth can operate over different spatial and temporal scales and 
correlations in abundance can be reflective of shared environmental niches that have no 
meaning in terms of direct biotic interactions.21

Therefore, a correlation between the abundance of two species does not imply that those 
species are interacting.111 Many of the detected correlations may be caused by shared 
environmental preferences rather than species interactions.273 Such environmental filtering 
can mask putative between-species interactions as well as induce spurious correlations.216 
Also, co-occurring species may appear to be dependent on each other, while their 
co-occurrence can be explained by them actually sharing a similar dependency on a third 
species so that co-occurrence, and hence apparent dependencies drawn from that, may 
also be explained by higher-order interactions.274 Berry and Widder (2014) suggested that 
network interpretation is only possible if samples are derived from similar environments.114 
Our analysis suggests that network inference partially depends on a degree of heterogeneity 
in population-dynamic parameters. If differences in bacterial abundances between hosts 
are mainly due to measurement noise, their correlations are not informative of underlying 
interactions. In our simulations, with relative standard deviation in process-related parameters 
between hosts of about 25%, inference performed well as long as measurement noise had 
coefficients of variation well below 10% of the mean bacterial abundances. Strikingly, the 
inference of interactions was even improved when process noise was added. More research is 
needed to delineate the extent to which correlation analyses can be confounded by latent
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environmental drivers of microbial population dynamics, and how strongly one should 
condition on environmental or host homogeneity.

Our results have been obtained using the gLV model. While the gLV model has been very 
popular in microbiome research because of its manageability, it has several drawbacks. In 
ecology, the gLV model has been criticized for the absence of trophic levels within the model.275 
This is in contrast to most classical ecological (e.g., plant-herbivore or predator-prey) systems, 
where direct consumption and predation offer more opportunity for top-down regulation, 
possibly obscuring interactions in co-occurrence patterns.276 But trophic levels are probably 
not so relevant in the human microbiome as bacteria mainly interact with each other through 
excreted metabolites.8 Furthermore, the interactions between bacteria might be much more 
complex than the additive and pairwise interactions that the gLV model assumes. Momeni 
et al. (2017) claimed that pairwise modeling will often fail to predict microbial dynamics, as 
many interactions occur through chemical production pathways (such as cross-feeding and 
nutrient competition) involving more than two species.240 Correlation analysis fails to capture 
the resulting higher-order interactions, for which more advanced techniques, e.g., graphical 
models, might be more appropriate.277 It is unclear how well directed links predicted by these 
methods recover true ecological interaction types. Often, they require more prior knowledge of 
the network of microbial interactions, time series, or more fine-grained data on the pathways of 
interaction. Moreover, microbial networks can be bidirected and cyclic,119 which poses problems 
for inference of directionality and type of interactions from mere cross-sectional data. More 
classical methods of separating direct from indirect interactions, e.g., path analysis,278 rely on 
testing of specific alternative causal hypotheses, which can only be considered as a next step in 
network inference. To shed more light on causal pathways, there is a need in microbial ecology 
for models that can describe the full set of metabolite concentrations, metabolic fluxes, and 
species abundances within a community.120 Based on metabolic modeling, Freilich et al. (2011) 
concluded that cooperative interactions are relatively rare among free-living bacteria and, if 
present, are often unidirectional. Machado et al. (2021) suggested that mutualistic interactions 
are much more common among host-associated bacteria, that often form highly cooperative 
communities and have smaller genomes and fewer metabolic genes compared to other species. 
Cooperative communities are resilient to nutrient change and adaptable to a wide variety of 
different environments, including the human body.119, 274 Metabolic modeling is still challenging 
and heavily based on a priori assumptions, but is also a rapidly developing field that may prove 
useful for computational validation of correlation-based interaction networks.279

In addition, the gLV model disregards important biological processes, such as adaptation (for 
instance, switching of mutualistic partners due to for example horizontal gene transfer280), 
that may affect the topology of ecological networks, rather than the strength of ecological 
interactions in a network. Furthermore, the gLV model displays dynamics that are characterized 
by strong equilibrium attractors. Many studies have shown the occurrence of complex dynamics 
as alternative stable states,105 oscillations, and chaos in experimental,6, 281, 282 but also in field 
studies,6 with ecological communities. Whether this also applies to the bacterial communities 
inhabiting the human body is still unknown, due to the paucity of long-term human 
microbiome studies. However, a study among a thousand Western individuals has suggested 
the existence of tipping elements in the intestinal microbiome102 indicating the possible 
presence of alternative attractors in the dynamics of gut microbiome communities.97, 283
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As a general critique, the use of simulated data based on gLV dynamics raises the question to 
what extent the necessary model assumptions (and therefore the results) are representative 
for the human microbiome. Of course, real data are much more complex than simulated 
data. To reiterate, our base case parametrization does not reflect any particular real-world 
system, and findings should be appreciated from a qualitative rather than quantitative 
viewpoint. Even so, while models can only serve as very crude approximations, the main 
features of model-based analysis might still hold, as demonstrated by Freilich et al. (2018).273 
They compared a well-resolved, empirically defined interaction network of species in the 
rocky intertidal zone in central Chile to a reconstructed network based on the co-occurrence 
of those species. There are similarities in their findings to our results. For example, they 
found that weak interactions are missed more often than interactions above a certain 
threshold. They also concluded that the ability to correctly detect a true link varies across 
different interaction types, and that positive interactions are better detected than negative 
interactions. Interestingly, in line with our results, they also found that negative interactions 
are misclassified as positive interactions more often than vice versa. 

In our simulation studies, the chance of finding false interactions was well under control using 
partial correlations with adjustment for multiple testing. It should be noted that application 
of correlation-based network reconstruction to real-world high-throughput microbial 
abundance data typically requires additional constraints for control of false discovery rates. 
Real-world microbiome data have some specific challenges which may negatively affect the 
success of correlation-based network inference. The compositionality of the data, the diversity 
of species (with many rare species) and the density of interactions make these networks 
harder to predict and apparent correlations more likely to appear.229, 250 Various correlation-
based methods, often free of charge and provided as pre-programmed packages are available 
to handle these challenges. However, Weiss et al. (2016) showed that with the same data, 
there is much disagreement between the inferred networks generated by different tools.253 
Thus, even if correlations are a useful proxy of microbial interactions, performance of network 
inference in high-dimensional settings will also strongly depend on the specific network 
modeling approach taken.

To summarize, correlation-based methods are particularly insensitive for the detection of 
asymmetric interactions (such as exploitative interactions, amensalism, or commensalism), 
as direction of interaction cannot be recovered from co-occurrence data. Still, they may 
perform well when applied to networks that are dominated by mutualistic and competitive 
interactions, as in producer-consumer systems. Applicability of correlation-based network 
inference to readily available microbiome data thus depends on the type of interactions that 
govern microbiome dynamics, which likely depends on each application. To conclude, our 
study suggests that hypotheses about microbial interactions, generated with correlation-
based methods, should be questioned with domain-specific knowledge. We highlight again 
the careful interpretation and validation that is required.
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Appendices of Chapter 2

Appendix Table 2.1 - Mann-Whitney U test results for the 
F1-scores of the base case model and for the F1-scores of 
the model with different sources of process variability. 
Significant results are highlighted in bold and blue.

Scenario p-value

Variation in all parameters < 0.001

Variation in carrying capacities < 0.001

Variation in growth rates < 0.001

No variation in parameters < 0.001

Low measurement noise < 0.001

High measurement noise < 0.001

Low process noise < 0.001

High process noise < 0.001

Uniform distribution > 0.05

Unimodal distribution < 0.001

30 species system < 0.001

Producer-consumer network < 0.001

Hub-species network < 0.001

Inference of intended sign > 0.05

Strict inference < 0.001

Base case (3000 hosts) < 0.001

Producer-consumer network (3000 hosts) < 0.001

Hub-species network (3000 hosts) < 0.001
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Appendix Table 2.2 - Mann-Whitney U test results for the F1-scores of the 
samples taken outside equilibrium relative to those taken at equilibrium (t5 
in Figure 2.5) and for the F1-scores of the samples taken randomly. 
Significant results are highlighted in bold and blue.

Variation in interactions

Time point p-value

Random < 0.001

t1 < 0.001

t2 < 0.001

t3 < 0.001

t4 < 0.001

Variation in carrying capacities

Time point p-value

Random > 0.05

t1 < 0.001

t2 < 0.001

t3 < 0.001

t4 < 0.001

Variation in growth rates

Time point p-value

Random < 0.001

t1 < 0.001

t2 < 0.001

t3 < 0.001

t4 < 0.001
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Appendix Figure 2.1 - Cartoon illustrating the different interaction 
mechanisms.  A) In mutualistic interactions, both species experience a positive 
effect. An example is when a species feeds on the metabolites excreted by the other 
species. B) In competitive interactions both species experience a negative effect. An 
example is when both species produce toxic compounds that are harmful to the other 
species as well as to themselves. C) Commensalism is a one-sided positive interaction. 
This type of interaction occurs when one species is beneficial to another species, 
without benefit or harm to itself. D) Amensalism is a one-sided negative interaction. 
Amensalism occurs when a species causes harm to another species, without benefit 
or harm to itself. E) Exploitative interactions occur when one species derives a benefit 
from another species at the expense of the latter, such as when one species kills and 
subsequently consumes the other. Red arrows represent negative interactions, green 
arrows represent positive interactions, and grey arrows indicate no interactions.
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Appendix Figure 2.2 - The effect of process noise (W) on the within host 
population dynamics. Process noise was added by means of the ‘events’ function from the 
‘deSolve’ R package.263 The time-varying noise was drawn from a log-normal distribution to 
prevent the abundances from dropping below zero, i.e., ΔWi = ln(Ni,m(Δt)) – ln(Ni,m(t)) ~ N(ln(Ni,t), σW) 
at every timestep, Δt = 1. A) Simulated time series without process noise, B) with low process 
noise (σW ~ N(0, 0.1)), and C) high process noise (σW ~ N(0, 1)).
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Appendix Figure 2.3 - Distributions of interaction strengths in three different 
scenarios. A) The interaction strengths in the base case follow a Gaussian mixture distribution. 
Half of the interactions were drawn from a negative normal distribution: αij ~ N(–0.25, 0.1); and 
the other half of the interactions were drawn from a positive normal distribution: αij ~ N(0.25, 
0.1). B) The interaction strengths in Figure 2.4D-1 follow a uniform distribution (αij ~ U(–0.5, 0.5)). 
C) The interaction strengths in Figure 2.4D-2 follow a unimodal distribution (αij ~ N(0, 0.15)). 
All interactions were restricted to lie between –0.5 and 0.5, i.e., the normal distributions were 
truncated at –0.5 and 0.5.
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Appendix Figure 2.4 - Network structures used in the different case studies. 
A) An example of a random network and its corresponding interaction matrix. B) An example 
of a structured network with interaction modules and its corresponding interaction matrix. The 
modular networks are based on a cross-feeding structure between producers and consumers 
(with equal numbers of producers and consumers). Between producers (Pi ; i = 1:5) and consumers 
(Cj ; j = 1:5), positive interactions (indicated in green) are more likely to occur, because metabolites 
excreted by the producers are consumed by the consumer species. Among producers or among 
consumers, the interactions are predominantly negative (indicated in red) as these species 
are more likely to compete for similar resources. C) An example of a structured network with 
interaction hubs and its corresponding interaction matrix. The hub-species network contains 
species (Hi) with unusually high numbers of ecological interactions compared to other species in 
the network. This can occur when some species perform a central role in the microbial ecosystem, 
for example when a hub-species produces a metabolite that is required for growth by many other 
species.
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Appendix Figure 2.5 - The effect of αij on the correlations between the 
abundances of two bacterial species for different interaction mechanisms. 
The two species can co-exist under certain combinations of αij (Box 2.1). The abundances of the 
two species N1 and N2 at equilibrium are shown as scatterplots and were obtained by running 
the two-species Lotka-Volterra model with K1 = 1.5, K2 = 1.1, r1 = 1, r2 = 2, and αij drawn randomly 
from normal distributions with different combinations of means and standard deviations. 
In A) the two distributions have different means and standard deviations: α12 ~ N(|0.5|, 0.1) and 
α21 ~ N(|0.7|, 0.2). In B) the distributions have identical means, but different standard deviations: 
α12 ~ N(|0.5|, 0.2) and α21 ~ N(|0.5|, 0.1). For exploitative interactions we also show the situations 
that negative correlations can occur when the exploitative benefit displays much more variation 
than the harm to the other species, i.e., α12 ~ N(–0.5, 0.01) and α21 ~ N(0.5, 0.2) for exploitative 
interaction type 1, and α12 ~ N(0.5, 0.2) and α21 ~ N(–0.5, 0.01) for exploitative interaction type 
2. In C) interactions are randomly drawn from distributions with different means and identical 
standard deviations: α12 ~ N(|0.6|, 0.1) and α21 ~ N(|0.3|, 0.1). In D) the interactions have identical 
strengths for the two species, namely |α12| = |α21|. The mutualistic interactions are drawn from 
the distribution α12 = α21 ~ U(0, 2.5), for competition and exploitative interactions we show two 
different scenarios, namely |α12| = |α21| ~ U(|0.4|, |2.5|) (upper graph) and |α12| = |α21| ~ U(0, |0.4|) 
(lower graph). Because the two species have different carrying capacities, the two situations of 
exploitative interactions are different. The grey polygon indicates the area where coexistence is 
possible. Note that the ranges of the axes are different in each subplot.
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Wavelet clustering analysis as a tool for 
characterizing community structure in the 
human microbiota

Abstract

Human microbiota research is helped by the characterization of microbial networks, 
as these may reveal key microbes that can be targeted for beneficial health effects. 
Prevailing methods of microbial network characterization are based on measures of 
association, often applied to limited sampling points in time. Here, we demonstrate 
the potential of wavelet clustering, a technique that clusters time series based on 
similarities in their spectral characteristics. We illustrate this technique with synthetic 
time series and apply wavelet clustering to densely sampled human gut microbiota 
time series. We compare our results with hierarchical clustering based on temporal 
correlations in abundance, within and across individuals, and show that the cluster 
trees obtained using either method are significantly different in terms of elements 
clustered together, branching structure, and total branch length. By capitalizing on 
the dynamic nature of the human microbiota, wavelet clustering reveals community 
structures that remain obscured in correlation-based methods.

Introduction

The human microbiota is the collective of microbial communities living on the various 
surfaces of the human body. These communities consist of microorganisms which do not 
live in isolation but interact with each other and with their human host.252, 284 In the past 
decade, thanks to advances in sequencing techniques and data analyses, an increasing 
number of studies have attempted to gain ecological insights from microbiota abundance 
data, e.g., by reconstructing networks of interacting species with the nodes representing the 
microorganisms and the edges representing the dependencies between them.285 

Most of the studies that aim to reconstruct the network of interacting species are based on 
measures of co-occurrence, e.g., using correlations between pairs of species as proxies of 
between-species dependencies.8, 250, 286 Despite the popularity of such methods in microbiota 
studies,230, 250, 251 their usefulness in describing community structure is still a matter of 
debate.114, 229, 287 While these co-occurrence studies are often performed on a relatively large 
number of individuals, they are limited to one or a few sampling points in time, presenting 
a mere snapshot of the dynamic microbiota. Other methods infer the ecological network 
by fitting an a priori chosen population-dynamic model to time series data of the microbial 
community.100, 254, 288 These methods have the limitation that the inferred community 
structures strongly rely upon the assumptions that are intrinsic to the chosen model, and 
require considerable prior knowledge of the community of interest. There are also examples 
where the ecological interactions are inferred from repeated measurements around steady 
states.255 This circumvents the need for a priori specification of a population dynamic 
model but makes the implicit assumption that the microbial system tends towards a stable 
equilibrium.
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However, many experimental and field studies have shown the presence of complex 
dynamics in ecological communities, such as alternative stable states,2, 97, 105 oscillations, 
and chaos,5, 6, 281, 282 questioning the steady states assumptions for the human microbiota. 
These dynamics are driven by a complex interplay between intrinsic factors (e.g., interaction 
mechanisms between organisms such as competition, mutualism, and parasitism) and 
external perturbations (e.g., environmental conditions and interventions).6, 289, 290 Complex 
dynamics are also likely to occur in the human microbiota, because the bacterial communities 
living in our body are characterized by a plethora of interactions291 and are also affected by 
external perturbations (e.g., diet, use of antibiotics, and travel patterns).59, 292, 293 A study with 
a thousand healthy western individuals suggested the existence of tipping elements in the 
intestinal microbiota,102 reflecting the presence of alternative attractors and the possibility 
of more complex microbiota dynamics. The presence of complex dynamics in the human 
microbiota has not yet been demonstrated, probably due to the paucity of long and dense 
time series of the human microbiota. However, the study with one of the longest time series 
of human microbiota measurements available shows strong variability in the abundance of 
the bacteria over time, indicating that the human microbiota might not be at the presumed 
steady state.46 

To advance our ecological understanding of the human microbiota, methodology is needed 
that can exploit the temporal information in microbiota time series data without a priori 
knowledge of data generating mechanisms or steady-state assumptions. In the last decade, 
many methods have been developed to model the abundances of compositionally sampled 
data with the purpose of either fitting or predicting the temporal dynamics of the microbiota 
communities.294-296 Here, we perform wavelet clustering analysis, a technique that clusters 
time series based on similarities in their periodical patterns.297 This technique, which is 
commonly applied in climate and engineering studies,298 more recently gained popularity in 
ecological,290 and epidemiological studies.299-301 Wavelet clustering analysis has only recently 
been applied to time series derived from 16S rRNA gene amplicon data to reveal coastal 
plankton community structure,302 but, to our knowledge, our study is the first application 
to human gut microbiota data. The novelty of the wavelet clustering approach, relative to 
prevailing co-occurrence or time series methodologies in human microbiota research, is that 
it is able to characterize community structure on the basis of collective temporal behaviour 
of the microbiota, without directly fitting a dynamic model or reconstructing the network of 
interacting species. 

We illustrate wavelet clustering first with synthetic time series and then with densely 
sampled time series of human gut microbiota data from a male and female subject.46 For 
both examples, we compare our results with clustering obtained on the basis of correlations 
in bacterial abundances over time. Our results show that correlation-based clustering is 
significantly different from clustering using wavelets. Wavelet clustering uncovered more 
diverse community structures and retained more of the differences between the male and 
the female subject compared to methods using temporal correlation. The results of this 
work highlight how the choice of method determines the type of communities found in 
microbiota data analysis. This is particularly important, considering that most of the putative 
microbiota communities, and their associations with a particular disease state or physical host 
condition, strongly rely on prevailing correlation-based methods or steady-state assumptions. 
Our results suggest that wavelet clustering readily capitalizes on the dynamic nature of the 
human microbiota and reveals more diverse community structures than those based on 
temporal correlations or associations.
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Methods

Wavelet analysis
Wavelet analysis makes use of a periodic function (the mother-wavelet). The relative 
importance of periodicities (wavelet power) is then plotted in contour plots as a function of 
time (wavelet power spectra). Here, we use as mother-wavelet the Morlet wavelet, which is 
particularly suited for detecting periodicities.298, 303 Significance of the detected periodicities 
is assessed using a Markov surrogate significance test.304 Statistical significance is assessed 
by testing against the null hypothesis that observed periodicities are identical to those 
generated by a stochastic Markov process, characterized by the same mean, the same 
variance, the same distribution of values and the same short-term autocorrelation structure. 
More detailed information on wavelet analysis is provided elsewhere.6, 305-307

Wavelet clustering
The wavelet spectra are compared using a procedure based on the maximum covariance 
analysis.297 To be more precise, as described in Rouyer, Fromentin et al. (2008), the distance 
matrix is computed based on leading patterns and singular vectors obtained using 
matrix decomposition analysis.297 Matrix decomposition analysis relies on a singular value 
decomposition performed on the covariance matrix between two wavelet power spectra. 
This enables construction of a distance matrix based on the wavelet power spectra. Only 
periodicities with a confidence higher than 90% have been considered in the computation 
of the dissimilarity matrix. Wavelet analysis and wavelet clustering were performed using 
wavelet software written in Matlab which is available at Bernard Cazelles' research page 
(www.biologie.ens.fr/~cazelles/bernard/Research.html).297

Comparison among cluster trees
We quantified similarities between cluster trees using the Bk statistic (i.e., Fowlkes-Mallows 
index).308 The Bk statistic measures the degree of similarity between two hierarchical clusters. 
Consider two hierarchical trees C1 and C2, each with the same number of elements n and 
partition each tree to produce k = 2, …, n–1 subclusters for each tree. For each value of k we 
can compute the quantity mi,j which quantifies the number of objects in common between 
the ith cluster of C1, and the jth cluster of C2. The statistic Bk is then defined:

					     Eq. 3.1

where:

					     Eq. 3.2
		
					     Eq. 3.3

					     Eq. 3.4

Bk is calculated for all the k partitions and Bk takes values between 0 and 1; Bk = 1 indicates 
that k subclusters in each tree correspond completely whereas Bk = 0 indicates that the 
subclusters in each tree don’t correspond at all. 
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Details on the Bk statistic are described in Fowlkes et al. (1983).308 The Bk statistic has been 
calculated using the ‘dendextend’ R package.309 The computed values of Bk are then plotted as 
a function of k. The significance of the Bk values is tested against the null hypothesis that the 
two cluster trees are not related. A one-sided rejection line (with significance level of 5%) is 
drawn based on the asymptotic distribution of Bk values, for each k, under the null hypothesis 
of no relation between the clusters.

Calculation of total branch length
The total branch length was calculated by summing the lengths of connecting segments in 
the tree using the ‘treeheight’ function of the ‘vegan’ R package.310

Microbiota data
In our analysis, we used previously published time series of the gut microbiota of two healthy 
subjects, one male and one female, on which fecal samples have been taken for 15 and 6 
months, respectively.46 The V4 variable region of the 16S rRNA gene was amplified by PCR 
and sequenced on an Illumina Genome Analyzer IIx. In the original paper of Caporaso et al. 
(2011)46 the raw sequences were clustered in Operational Taxonomic Units (OTU) using the 
Quantitative Insights Into Microbial Ecology (QIIME) pipeline. However, recent studies have 
shown that the use of OTUs is more prone to produce noisy features which are artifacts of 
sequencing errors.208 Nowadays, the use of Amplicon Sequence Variants (ASV) data has been 
shown to be more reliable than OTU’s.208 

Following the same line, here we used the ASV gut microbiota data of Caporaso et al. (2011) 
which is available at the Earth Microbiota Project (EMP) platform (earthmicrobiome.org).46 
The ASV data provided at the EMP platform have been generated from the raw sequence data 
with the Deblur pipeline311 and the detailed protocol is provided in Thompson et al. (2017).312 
The data for human microbiota time series was obtained from ‘emp_deblur_150bp.release1.
biom’ by filtering to keep only samples from the Qiita study ID 5501. 

We removed singletons and ASV sequences assigned to mitochondria and chloroplasts. We 
assembled the taxa at the genus level and this yielded 578 unique genera. For both the male 
and female subject, we first removed samples with less than 500 reads, then we transformed 
the time series to relative abundances and then we made a selection of genera, using a 
bootstrapping method313 with a prevalence value of 25% and a relative abundance threshold 
value of 0.005 (i.e., select the genera in which the relative abundance has a value higher 
than 0.005 in at least 25% of the samples). We disregarded the taxa that were not identified 
as uniquely defined genera. This yielded a total of 19 genera for the male subject and of 12 
genera for the female subject. The aim of our analysis is to compare clusters (and techniques 
to obtain these clusters) among the two different subjects. Therefore, we considered in our 
analysis the genera that were present in at least one subject, yielding a total of 19 genera 
for each subject. Processing of the data from ASV to the core-microbiota taxa was done 
using the ‘phyloseq’314 and ‘microbiota’313 R packages. Subsequently, we applied a centered 
log-ratio (CLR) transformation to the relative abundance time series using the ‘compositions’ 
R package.315 The CLR transformed time series of the selected genera are shown in Figure 
3.2. Wavelet analysis requires equidistance between subsequent datapoints, therefore we 
interpolated the time series of both subjects using cubic Hermite interpolation to obtain data 
with equidistant time intervals of 1.6 days (the mean time interval of the original data of the 
male subject is 1.6 days and the female subject is 1.5 days), yielding a total of 336 data points 
for the male subject and of 131 data points for the female subject.
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Before performing wavelet analysis to the data, the microbiota CLR transformed time series 
were rescaled using a Box-Cox transformation to suppress sharp peaks, homogenize the 
variance and approximate a normal distribution. For each time series the optimal parameter 
of the Box-Cox transformation has been estimated by optimizing the normal probability plot 
correlation coefficient using the ‘EnvStats’ R package (see Appendix Figure 3.1).316

Results

Wavelet cluster analysis
Wavelet analysis enables investigation of time series characterized by different periodicities 
and is particularly suited for time series which are not stationary, as applies to many biological 
systems. We first illustrate this technique using synthetic time series (Figure 3.1A left hand 
side). Consider for instance time series 1 and 2: they are stationary and oscillate at the same 
periodicity of eight days, but in antiphase. They are therefore characterized by the same 
wavelet spectrum: a significant period of eight days (orange area inside the black dotted line) 
occurring along the entire time span of 100 days. The average wavelet spectrum, which is an 
estimation of the classical Fourier spectrum, is also identical among the two time series (see 
plot at the far most right-hand side). If one considers time series 7 and 8, one may see that 
they are showing opposite patterns. Time series 7 oscillates fast at a periodicity of about four 
days in the first 50 days and then slows down and oscillates at a periodicity of about 20 days 
in the second half of the time series. Time series 8 is doing exactly the opposite, it oscillates 
slowly with a periodicity of about 20 days in the first half of the time series and then oscillates 
with a periodicity of about four days in the second half of the time series. While the average 
wavelet spectrum is identical for both time series, the wavelet spectra are showing opposite 
patterns and are therefore able to depict the differences between the temporal behaviour in 
the oscillations of the two time series (Figure 3.1A). 

The wavelet spectra are then compared using a procedure based on maximum covariance 
analysis which enables construction of a distance matrix based on the wavelet power 
spectra.297 The constructed distance matrix is used to build a cluster tree based on the 
WARD agglomeration criterion (Figure 3.1B).317 For comparison, we also constructed a 
Spearman dissimilarity matrix calculated as d = 1 − ρ (where ρ is the correlation coefficient), 
using all data points in the time series pairs. The Spearman dissimilarity matrix is also used 
to construct a cluster tree based on the WARD agglomeration criterion (Figure 3.1C). We 
compare the wavelet clustering with a clustering based on Spearman’s correlation, because 
the latter is a common method used in microbiota studies to infer relationships between 
microorganisms.253 One may immediately observe substantial differences between the trees 
obtained with the two different methods (Figure 3.1B and 3.1C). The time series are clustered 
differently within the trees according to the two methods, but also branching structure and 
the total length of the branches is noticeably different.

Time series 1 and 2 are close together in the wavelet cluster tree (Figure 3.1B), but they fall 
apart in the Spearman cluster tree (Figure 3.1C). The first results from the fact that the two 
time series have identical wavelet spectra, which indicates that the time series oscillate at the 
same periodicity. However, they are considered dissimilar in correlation analysis, because the 
time series are in antiphase (i.e., the peaks of one time series coincide with the troughs of the 
other time series and vice versa). 
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Figure 3.1 - Illustration of wavelet clustering analysis with synthetic time 
series. A) Wavelet analysis of synthetic time series: synthetic time series (left hand side) 
characterized by different periodicities; wavelet spectra (right hand side) and average 
wavelet spectra (far right) of the synthetic time series. Color codes represent wavelet 
power and range from low (white) to high (red). Black dotted lines enclose the 5% 
significance areas computed using a Markov surrogate significance test. The solid black 
line delimits the cone of influence, where edge effects become important. Clustering 
of the synthetic time series based on two methods. In B), clustering is based on the 
wavelet spectra. The cluster tree is constructed by grouping the time-frequency patterns 
of the time series using maximum covariance analysis. In C), clustering is based on 
Spearman’s correlations calculated for each pair of time series. The correlations are used 
to compute the dissimilarity matrix which is used to cluster the data. For both methods 
the hierarchical clustering of the time series is performed using the WARD agglomeration 
criterion. D) Comparison of the hierarchical clusters obtained using the Bk statistic.308 Black 
dots represent the Bk values plotted against the k number of clusters in which each tree 
has been partitioned. Red line represents the one-sided rejection region based on the 
asymptotic distribution of Bk values, for each k, under the null hypothesis of no relation 
between the clusters (significance α = 5%).
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Similarly, time series 5 and 8 cluster together in the wavelet tree but they fall apart in the 
Spearman cluster tree. Both time series 5 and 8 oscillate slowly at a periodicity of about 13 
and 20 days, respectively, in the first part of the time series but then oscillate faster (at a 
periodicity of about four days) in the second part of the time series. Therefore, their wavelet 
spectra are very similar. 

If the synthetic time series would represent the dynamical behaviour of microorganisms, 
one would conclude from the Spearman cluster tree that microorganisms 1 and 2 (or 5 and 
8) are not or only weakly related, because when one microorganism is highly abundant then 
the other one has very low abundance (and the other way around). The wavelet clustering 
instead shows that these microorganisms are strongly connected because they oscillate with 
similar periodicities and therefore share the same dynamical properties, which may point to 
ecological interdependence e.g., through parasitic interactions or neutral niche competition. 

In addition to visual inspection, we used the Bk statistic to quantify the similarity in cluster 
trees constructed with the two methods.308 The Bk statistic assesses the chance-corrected 
proportion of items that two cluster trees have in common, as a function of the number of 
subclusters k that the two trees are partitioned into. Plotting Bk versus k gives a quantitative 
representation of the similarity between two cluster trees (black dots in Figure 3.1D). The red 
line represents the 95% rejection region under the null hypothesis of no relation between the 
trees. For all partitions k, the blacks dots fall below the red line, hence we cannot conclude 
that the trees calculated with the wavelets and the Spearman’s correlations for the synthetic 
time series are significantly related. 

In Box 3.1 we give an additional demonstration of wavelet clustering analysis applied to the 
outputs of an ecological model of four consumers and four resources. In this case, wavelet 
clustering accurately captures the competitive coupled dynamics between consumers and 
resources, whereas clustering based on Spearman’s correlation does not (Figure 3.A - panels D 
and E in Box 3.1).

Application to human microbiota data
We tested our approach, as illustrated for the synthetic time series, on real data of microbiota 
communities. We used previously published gut microbiota time series of two healthy 
subjects, one male and one female, from whom fecal samples had been collected for 15 and 
6 months, respectively.46 We considered the data at genus level and we selected the same 
19 genera for the male and the female subject. A detailed description of the data and of the 
selection criterion is provided in the methods.
 
Time series of the selected genera for the male and the female subject are shown in 
Figure 3.2. CLR transformed relative abundances over time show remarkable fluctuations. 
Some genera (e.g., Lachnospira and Roseburia in the male subject; Bacteroides in both 
subjects) show a clear wax and wane in their dynamical pattern. There are other genera 
(e.g., Campylobacter and Finegoldia in the female subject) that show more spiky dynamics, 
dominated by low CLR transformed relative abundances, but with few very high peaks.
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Figure 3.2 - Gut microbiota time series of CLR transformed relative 
abundances for selected genera. Male (upper graphs) and female (lower graphs) 
subject. The time series show clear fluctuations. Note the distinct time axes in the male and 
the female subject.

−8
−4

0
4

0
2
4
6

−5
0
5

−8
−4

0
4

−9
−6
−3

0
3

−5.0
−2.5

0.0
2.5
5.0

−5
0
5

−7.5
−5.0
−2.5

0.0
2.5

2
3
4
5

−4
0
4

−5
0
5

−6
−3

0
3
6

−5
0
5

2
4
6

−9
−6
−3

0
3

2
4
6

1
2
3
4
5

−10
−5

0
5

−5
0
5

−10
−5

0
5

−8
−4

0
4

−5
0
5

−10
−5

0
5

−5
0
5

−2
0
2
4

−8
−4

0
4

−5
0
5

0.0
2.5
5.0

−5
0
5

−5
0
5

0.0
2.5
5.0
7.5

−10
−5

0
5

−5
0

−2
0
2
4

−5

0

5

−10
−5

0
5

−5
0
5

0 100 200 300 400

0 100 200 300 400 0 100 200 300 400

Ce
nt

er
ed

 lo
g-

ra
tio

 (C
LR

) t
ra

ns
fo

rm
ed

 re
la

tiv
e 

ab
un

da
nc

es

Male subject

0 50 100 150

0 50 100 150 0 50 100 150

Time

Female subject

Anaerococcus Anaerostipes Bacteroides

Blautia Campylobacter Coprococcus

Escherichia Faecalibacterium Finegoldia

Lachnospira Oscillospira Parabacteroides

Peptoniphilus Phascolarctobacterium Porphyromonas

Prevotella Roseburia Ruminococcus

Sutterella

Anaerococcus Anaerostipes Bacteroides

Blautia Campylobacter Coprococcus

Escherichia Faecalibacterium Finegoldia

Lachnospira Oscillospira Parabacteroides

Peptoniphilus Phascolarctobacterium Porphyromonas

Prevotella Roseburia Ruminococcus

Sutterella

−7.5
−5.0
−2.5

0.0
2.5
5.0

64Chapter 3 Wavelet clustering analysis for characterizing community structure



Box 3.1 - Wavelet clustering applied to the dynamics of four consumers feeding 
on four resources. In this section we give an extra demonstration of the potential of 
wavelet clustering by performing the analysis on the outputs of a simplified ecological model 
describing the dynamics of four consumers and four resources. The model is a modified 
version of the previously published model of Vandermeer of two species feeding on two 
resources.318-320

The model reads as follows:

					     Eq. 3.A
			 

					     Eq. 3.B	

					     Eq. 3.C

						    
					     Eq. 3.D

for i = 1, 2 and k = 3, 4 and i ≠ j and k ≠ l, where Ci and Ck are the abundances or densities of 
the ith and the kth consumers, respectively, and Ri and Rk denote those of the ith and the kth 
resources. The parameters ri and rk represent the intrinsic growth rates of the ith and the kth 
resource, respectively. m is the mortality rate of the consumers, αij is the competition coefficient 
between resource 1 and 2, αkl is the competition coefficient between resource 3 and 4, a is 
the resource consumption rate, b is the functional response parameter (with higher values 
denoting diminished response in consumer growth at a given resource abundance), and K is 
the carrying capacity of each resource, which we assume for simplicity to be the same for all 
four resources.

The model consists of two separated food webs of two consumers each feeding on one 
resource (Figure 3.A - panel A). Consumer C1 feeds on resource R1, consumer C2 feeds on 
resource R2 and the two resources R1 and R2 negatively interact with a parameter α12. Similarly, 
consumer C3 feeds on resource R3, consumer C4 feeds on resource R4, and the two resources R3 
and R4 negatively interact with a parameter α34. In Figure 3.A (panel B left hand site) are shown 
the temporal dynamics of the four consumers and the four resources. We applied wavelet 
analysis to all eight of the time series (Figure 3.A - panel B right hand side) and we used this 
information to build the cluster tree (Figure 3.A - panel C). Wavelet clustering identifies two 
big subclusters: subcluster 1 with consumers C3 and C4 and resources R3 and R4, and subcluster 
2 with consumers C1 and C2 and resources R1 and R2. Wavelet clustering successfully identifies 
the two separated food webs. In addition, inside each cluster we observe that each consumer 
is clustered together with its own resource (C1 with R1, C2 with R2, C3 with R3, and C4 with R4). For 
comparison we build a tree based on Spearman’s correlation (Figure 3.A - panel D). In contrast 
to wavelet clustering, clustering based on Spearman’s correlation is not able to identify neither 
the two distinct food webs, neither the pairs of consumers-resources. Clustering based on 
Spearman’s correlation is substantially different from clustering based on wavelets as it is 
shown by the corresponding Bk plot (Figure 3.A - panel E).
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Figure 3.A - Application of wavelet clustering to the outputs of a model with 
four consumers feeding on four resources. A) The model consists of two separated 
food webs of two consumers on two resources. The two resources within each food web 
negatively interact with a competition coefficient α. B) (Left) Outputs of the resources-
consumers model. Simulations have been run for 2000 time units. The plots shown here covers 
the last 1000 time units of the simulation. Parameters: K = 1; a = 2; b = 1.3; m = 0.1; r1 = 0.2; 
r2 = 0.4; r3 = 0.8; r4 = 1.2; α12 = 0.8; α34 = 0.4; (Right) Wavelet spectra and average wavelet spectra 
(far right) of the model outputs. Color codes represent wavelet power and range from low 
(white) to high (red). Black dotted lines enclose the 5% significance areas computed using a 
Markov surrogate significance test. The solid black line delimits the cone of influence, where 
edge effects become important. C) Clustering based on the wavelet spectra. The cluster tree 
is constructed by grouping the time-frequency patterns of the time series using maximum 
covariance analysis. D) Clustering based on Spearman’s correlations calculated for each pair 
of time series. The correlations are used to compute the dissimilarity matrix which is used to 
cluster the data. For both methods the hierarchical clustering of the time series is performed 
using the WARD agglomeration criterion. E) Comparison of the hierarchical clusters obtained 
using the Bk statistics. Black dots represent the Bk values plotted against the k number of 
clusters in which each tree has been partitioned. Red line represents the one-sided rejection 
region based on the asymptotic distribution of Bk values, for each k, under the null hypothesis 
of no relation between the clusters (significance α = 5%).
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To capture possible similarities in the dynamical patterns of the bacteria, we applied wavelet 
analysis to each of the bacterial time series in both subjects. Wavelet spectra detected 
several significant periodicities in the fluctuations of bacteria both for the male (Figure 3.3) 
and the female subject (Figure 3.4). A first visual inspection of the spectra already reveals 
similarities between the dynamical patterns of the bacteria. For instance, in the male subject 
(Figure 3.3), Porphyromonas, Phascolarctobacterium, and Peptoniphilus show common 
periodicities of about 30–40 days co-occurring for approximately 100 days at the end of the 
time series. In addition, Campylobacter and Roseburia clearly show common periodicities of 
64 days occurring approximately in the last 150 days of the time series, whereas Blautia and 
Coprococcus share this periodicity at the beginning of the time series. Common patterns 
are less clear in the female subject (Figure 3.4), though some similar periodicities can be 
identified. For instance, many genera show the same periodicity of about 60 days occurring 
along the entire length of the time series.

Figure 3.3 - Wavelet analysis of time series for selected genera in the male 
subject. For each genus the wavelet spectrum (left) and the average wavelet spectrum 
(right) are computed. Color codes represent wavelet power and range from low (white) to 
high (red). Black dotted lines enclose the 5% significance areas computed using a Markov 
surrogate significance test. The solid black line delimits the cone of influence, where edge 
effects become important.
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With the wavelet spectra at hand, we built trees based on the wavelet distance matrix as 
described for the synthetic time series. Both the clusters based on wavelet spectra for the 
male and the female subject show a clear partition in two subgroups (Figure 3.5A and 3.5B). 
The clusters based on Spearman’s correlations for the male and the female subjects are also 
characterized by two main subclusters (Figure 3.5C and 3.5D). Although there are few bacteria 
that are clustered together with both methods (i.e., Peptoniphilus, Finegoldia, Porphyromonas, 
and Anaerococcus in the male subject), the two methods yield very different clusters. For 
instance, Bacteroides and Prevotella are clustered together in the male subject with the 
wavelet method, but they are in two different clusters in the male subject with the correlation 
method. The case of Prevotella and Bacteroides resembles the example of signals 1 and 2 (or 
5 and 8) illustrated before: two time series with similar dynamical properties are clustered 
together based on wavelets but are considered not related by the correlation method.

Also, visual comparison of the clusters obtained using wavelets (Figure 3.5A and 3.5B) with 
the clusters obtained by pairwise correlations (Figure 3.5C and 3.5D) reveals substantial 
differences between the two methods in the positioning of branches within the two 
subclusters and in the total length of the branches. 

Figure 3.4 - Wavelet analysis of time series for selected genera in the 
female subject. For each genus the wavelet spectrum (left) and the average wavelet 
spectrum (right) are computed. Color codes represent wavelet power and range from low 
(white) to high (red). Black dotted lines enclose the 5% significance areas computed using 
a Markov surrogate significance test. The solid black line delimits the cone of influence, 
where edge effects become important.
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Of note, total branch length (see ‘Methods’) is substantially higher in the wavelet cluster 
tree as compared to the tree based on Spearman’s correlations (male subject: 80.9 vs. 27.6; 
female subject: 70.0 vs. 21.9). Further visual comparison of the trees based on wavelets 
among the two subjects also reveals that the members of each subcluster are substantially 
different between the male and the female subject (compare Figure 3.5A with Figure 3.5B). 
In contrast, comparison of the cluster trees based on correlations shows that many bacteria 
that are clustered together in the male subject are also clustered together in the female 
subject (compare Figure 3.5C with Figure 3.5D).

Figure 3.5 - Clustering for the male and female subjects based on 
different methods. Cluster tree obtained using the dissimilarity matrix obtained 
from the wavelet clustering analysis for A) the male subject and B) the female subject. 
Cluster tree obtained using the dissimilarity matrix obtained from the Spearman’s 
correlation matrix for C) the male subject and D) the female subject.
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To further quantify the similarities between subjects and methods we calculated the Bk 
statistic as we did for the synthetic time series. For low values of k, the dots in Figure 3.6A 
and 3.6C fall below the 95% rejection line. Thus, wavelet clustering and Spearman's clustering 
are not significantly related when the community is partitioned into a limited number of 
subclusters, and this holds for both the male and female subject. This is likely because the 
wavelet clustering method accounts for other features (i.e., the spectral characteristics of 
the bacterial dynamics and their time evolution) than the correlation-based methods, which 
only consider quantities averaged over the whole series. For higher values of k, the dots 
sometimes fall above the rejection line (Figure 3.6A and 3.6C), meaning that wavelet clustering 
and Spearman's clustering get significantly related at some higher resolution when certain 
subclusters become apparent. For comparison (Figure 3.6B and 3.6D) we also applied the Bk 
statistic to correlation-based trees constructed with the Spearman’s correlation and with the 
Pearson’s correlation coefficient (trees not shown). For all k partitions (except the maximum 
partition for the male subject), the trees calculated with these two correlation methods are 
instead, as it could be expected, significantly related.

Finally, we also assessed the similarity between the two subjects. Interestingly, we found no 
evidence for related wavelet clusters between the male and female subjects, as all dots fall 
below the 95% rejection line irrespective the number of k partitions (Figure 3.6E). In contrast, 
in the Bk plot of the Spearman’s correlation-based clustering, the majority of dots fall above 
the 95% rejection line (Figure 3.6F), indicating significantly related clusters for almost all 
subpartitions between the male and female subject. This suggests that wavelet clustering not 
only uncovers more diverse community structures within individuals, but might also be more 
sensitive towards subtle differences in community structures across individuals.

Discussion

Developments in high-throughput sequencing have improved our ability to track the temporal 
variability of microbial communities. This has led to an increase in longitudinal data from a 
variety of different microbiota ranging from wastewater,321 marine,322-324 freshwater,325 and 
terrestrial326, 327 environments. These time series offer unprecedented opportunities to gain 
ecological insights into microbial community dynamics and the mechanisms governing them, 
and to track the response of the microbial systems to external perturbations.

Ideally, long time series are required to capture the periodic patterns of microbial dynamics 
and reveal community structures. Unfortunately, only few of such datasets exist in human 
microbiota studies.46, 59, 328, 329 This probably reflects the relative difficulty to repeatedly sample 
the human microbiota in comparison to a natural field habitat (e.g., sampling strongly relies 
on the consent of the host to provide sampling material at a regular basis). As a result, the 
majority of studies on human microbial community structures have relied on sparse data and 
methods based on co-occurrence, which may have produced biased associations, e.g., towards 
positive correlations.253, 268, 269 Clearly, there is a need to shift from a static to a dynamical 
approach, that takes into account the temporal development of bacterial communities and 
can shed new light on microbial community structure.50 This also has bearing on the ability to 
employ microbiota data for clinical practice, as more and more studies move from association 
to prediction of disease course, e.g., exacerbation of inflammatory bowel disease (IBD),330 
and treatment response in Clostridioides difficile infection.190
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Figure 3.6 - Comparison of hierarchical clusters using the Bk statistic.308 
Black dots represent the Bk values plotted against the k number of clusters in which the 
tree has been partitioned. Red line represents the one-sided rejection region based on the 
asymptotic distribution of Bk values, for each k, under the null hypothesis of no relation 
between the clusters (significance α = 5%). A) Comparison of the tree based on wavelets and 
the tree based on Spearman’s correlations for the male subject. B) Comparison of the tree 
based on Pearson’s correlations and the tree based on Spearman’s correlations for the male 
subject. C) Comparison of the tree based on wavelets and the tree based on Spearman’s 
correlations for the female subject. D) Comparison of the tree based on Pearson’s correlations 
and the tree based on Spearman’s correlations for the female subject. E) Comparison of the 
trees based on wavelets for the male and female subject. F) Comparison of the trees based 
on Spearman’s correlations for the male and female subject.
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Interestingly, our reanalysis of the widely used Caporaso et al. (2011) data reveals some novel 
important patterns.46 The trees obtained with the two different methods show significant 
differences in the way microbial genera are clustered together. For instance, there are cases 
where pairs of bacteria are clustered together in the male and female subject when using 
correlations, but not when using wavelets. For example, according to wavelet analysis Blautia 
and Coprococcus only cluster together in the male subject, and Phascolarctobacterium, 
Roseburia, and Bacteroides only in the female subject, whereas these genera are clustered 
together in both subjects with the correlation-based method. In general, similarity of the 
cluster trees between subjects seems to be stronger with the correlation-based method than 
with wavelet clustering, for which we found no evidence for significant relations between the 
male and female trees. Tree correspondence according to clustering method within subjects 
was more ambiguous, as similarity also depends on tree resolution. This emphasizes how 
sensitive the clustering is to the type of method chosen.

In addition, we also note differences in the pattern of branching and in the total branch 
length of the cluster trees. Studies have shown that the total length of the branches in a 
traits tree is indicative of the functional diversity in ecosystems.331 Analogously, total branch 
length can here be considered as an indicator of the diversity of community structure. While 
we are not considering functional traits here, we could speculate that the higher total length 
observed in the wavelet clustering of the microbiota time series is indicative of a higher 
diversity in community structure as compared to the correlation-based method. A likely 
explanation is that wavelet analysis is able to detect dependencies that are not apparent 
in correlations, whereas the reverse is not the case: highly correlated time series are still 
detectable in wavelet spectra. Thus, wavelet clustering can extract more information on the 
dependencies within microbial communities than is reflected in mere correlations.

Looking at the clusters identified by the wavelet method one can speculate about possible 
interaction mechanisms between the bacteria. For instance, in the male subject, two genera 
are observed together, Blautia and Coprococcus. Members of genus Blautia are known to 
produce acetate and lactate which is shown to support improved growth of Coprococcus 
in vitro.332 Coprococcus bacteria can convert lactate and acetate to butyrate, a short chain 
fatty acid that is associated with a healthy microbiota.333 This mutualistic mechanism could 
potentially lead to similar dynamical patterns and explain why these bacteria co-occur in 
the same cluster. Although these ‘potential’ interaction mechanisms are based on associative 
dynamical patterns of 16S rRNA gene sequence data they may provide ground for further 
investigation of these interactions in vitro and in vivo. In addition wavelet cluster analysis 
can be used as a starting point for investigation for time series causality inference methods 
such as Granger causality334, 335 or convergence-cross mapping.336, 337 For instance, there are 
methods that are able to estimate Granger’s causality from wavelet spectra of time series 
data.338, 339 Application to a complex system such as the microbiota has not yet been done 
and can be subject of investigation in future studies.

In ecological and epidemiological studies, wavelet analysis is often used to evaluate the 
effect of external factors, such as climatic or meteorological variables, on species or disease 
dynamics. Examples include studies which evaluate the effect of external factors on the 
spread of dengue fever,340 malaria,341 and cholera,342 or on the dynamics of communities of 
benthic organisms,6 marine343 and freshwater plankton,344 or fish.290, 345
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In an analogous way, when longitudinal studies on human microbiota dynamics become 
more widely available, metadata can be exploited using wavelet analysis to evaluate the 
effect of interventions, as for instance vaccination, the use of antimicrobials or probiotics, 
fecal microbiota transplantation, and cancer treatment.

The reader interested in using the wavelet clustering approach might wonder how many 
points are needed for applying such an analysis. The limits in the number of data points 
for wavelet analysis are similar to those of Fourier analysis and depend on the periodic 
components that one wants to highlight. For instance, Murdoch et al. (2002)346 suggest that 
with a minimum time series length of 25 time units one can identify periodicities between 
two time units (the Nyquist frequency) and 8–10 time units. Cazelles et al. (2012)300 are more 
conservative and they suggest time series with a minimum length of 30–40 time units which 
allows detection of a maximum periodicity equal to 20–25% of the total length of the time 
series. Another practical aspect is that wavelet analysis requires equidistant data. Although 
this might appear as a limiting factor, this requirement can easily be addressed. For instance, 
when possible, an experiment or a sampling strategy could be designed in such a way to 
obtain equidistant sampling points. If this is not possible, there are interpolation methods 
that can be used to obtain equidistant data. Different interpolation methods should be 
tested, and the interpolated data should be checked against the original data to see if the 
general dynamical behaviour is unaffected by the interpolation. This is the approach taken in 
this study. In addition, as for Fourier analysis, there are extensions of wavelet analysis that can 
be applied to non-equidistant data.347-351

In our study we analysed the time series of two individuals, and we compared the wavelet 
dendrograms of the two subjects using a pairwise metric. Ideally, new longitudinal human 
microbiota studies will track the joint dynamics of much more than two individuals. When 
time series of multiple subjects become available, one might want to compare dendrograms 
among classes of individuals (e.g., individuals of the same gender or patients versus healthy 
controls). Instead of a pairwise metric between individuals, our analysis could then be applied 
to consensus dendrograms between classes of individuals to assess how communities differ 
with respect to the condition of interest.352

To summarize, wavelet cluster analysis has the big advantage of accounting for non-
stationary dynamics which are often preponderant in biological systems. In addition, we 
show that it appears to be a sensitive method for recovering microbial community structure 
from densely sampled microbiota time series. By taking into account the spectral features 
of bacterial abundance and their time evolution that are ignored in methods focusing on 
co-occurrence at any one time point, wavelet clustering analysis is able to extract more 
information on the dependencies within microbial communities, and to uncover more diverse 
communities within and across individuals than conventional methods. The results show that 
interpretation of microbial networks and communities, inferred on the basis of only a few 
sampling points in time, should be done with care, and be compared to alternatives.
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Appendix Figure 3.1. Box-cox transformed CLR time series of selected genera 
in the male (upper graphs) and the female (lower graphs) subject. The relative 
abundance time series of both subjects have been interpolated using cubic Hermite interpolation 
to obtain data with equidistant time intervals of 1.6 days (the mean time interval of the original 
data of the male subject is 1.6 days and the female subject is 1.5 days), yielding a total of 336 
data points for the male subject and of 131 data points for the female subject. Subsequently, we 
applied a CLR transformation to the relative abundance time series using the ‘compositions’ 
R package.315 Before performing wavelet analysis on the data, the microbiota CLR transformed 
time series were rescaled using a Box-Cox transformation to suppress sharp peaks, homogenize 
the variance and approximate a normal distribution. For each time series the optimal parameter 
of the Box-Cox transformation has been estimated by optimizing the normal probability plot 
correlation coefficient using the ‘EnvStats’ R package.316
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Heterogeneous associations of gut 
microbiota with Crohn’s disease activity

Abstract

The multifactorial involvement of gut microbiota in Crohn’s disease (CD) necessitates 
robust analysis to uncover potential associations with specific microbes. CD has 
been linked to certain bacteria, but reported associations vary widely across studies. 
This inconsistency may result from heterogeneous associations across individual 
patients, resulting in no apparent or only weak relationships with the means of 
bacterial abundances. We investigated the relationship between bacterial relative 
abundances and disease activity in a longitudinal cohort of CD patients (n = 57) and 
healthy controls (n = 15). We applied quantile regression, a statistical technique 
that allows investigation of possible relationships outside the mean response. We 
found several significant and mostly negative associations with CD, especially in 
lower quantiles of relative abundance on family or genus level. Associations found 
by quantile regression deviated from the mean response in relative abundances of 
Coriobacteriaceae, Pasteurellaceae, Peptostreptococcaceae, Prevotellaceae, and 
Ruminococcaceae. For the family Streptococcaceae we found a significant elevation 
in relative abundance for patients experiencing an exacerbation relative to those 
who remained without self-reported symptoms or measurable inflammation. Our 
analysis suggests that specific bacterial families are related to CD and exacerbation, 
but associations vary between patients due to heterogeneity in disease course, 
medication history, therapy response, gut microbiota composition, and historical 
contingency. Our study underscores that microbial diversity is reduced in the gut of 
CD patients, but suggests that the process of diversity loss is rather irregular with 
respect to specific taxonomic groups. This novel insight may advance our ecological 
understanding of this complex disease.

Introduction

Crohn’s disease (CD) is a chronic inflammatory disorder that can affect any part of the 
digestive tract, but mostly involves the ileum and colon.353 The disease is characterized 
by periods of inflammation (exacerbation) interspersed by periods without symptoms 
(remission). During exacerbation, the patients are suffering from a range of different 
symptoms, including diarrhea, abdominal pain, bloody stool, fatigue, and weight loss. 
Prolonged inflammation can lead to severe complications, such as damage to the 
gastrointestinal tract and malnutrition.353 While the exact cause of CD is unknown, an 
inappropriate immune response against commensal gut bacteria, host genetics, and 
environmental factors are all thought to be involved in disease pathophysiology.354 The gut 
microbiota in CD patients is characterized by a reduced diversity and lower long-term stability 
as compared to healthy individuals.355 Also, shifts in abundance of specific bacterial genera or 
families have been associated with CD,356 its disease course,177 and disease activity.181 

Several studies have investigated relations between specific microbial groups and CD. 
Faecalibacterium prausnitzii (Ruminococcaceae), Clostridium leptum (Clostridiaceae), and
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Clostridium coccoides (Clostridiaceae) were found to be negatively associated with CD as 
well as disease activity.181, 356, 357 Conversely, the family Enterobacteriaceae was found to 
be positively associated with CD and with disease activity.171, 358 However, the patterns of 
association with specific microbes are not always consistent among studies. Within the 
Bacteroidaceae family conflicting results were found. For example, CD patients showed 
both lower relative abundances,356, 358 as well as higher relative abundances357 in Bacteroides 
(Bacteroidaceae) compared to healthy individuals.

The inconsistency in findings might be partly due to technical artifacts, such as differences 
between studies in sequencing methods to quantify gut microbiota composition and 
the compositional nature of data obtained by most next generation sequencing (NGS) 
techniques. Another explanation is that the heterogeneous responses among patients 
may derive from multifactorial dependencies, between microbial elements themselves and 
between gut microbiota and host factors, such as treatment with immunomodulatory drugs, 
lifestyle, and diet, but also in underlying disease characteristics such as disease location, 
severity, and epigenetic immune regulation.22, 359 This heterogeneity among patients is 
reflected by a strong variation in disease course, the response to medication, and the need 
for surgery among subgroups of patients.360 The involvement of specific bacterial groups 
in CD will likewise depend on multiple factors. Some of these factors can be accounted for 
when relating CD to gut microbiota composition, although correction relies on adequate 
model specification which is difficult in multi-factorial systems. Moreover, many factors 
which may strongly determine the observed relationships between bacterial abundance and 
CD activity have not been identified or are not routinely measured. One such factor is the 
order in which specific bacteria have been acquired throughout life. Rapid colonization by 
maternal and environmental bacteria occurs within days of birth and is unique per person. 
The temporal development of the microbiota is directed, implying that the growth of certain 
species precedes the growth of others, leading to the unique microbiomes in adult life. This 
historical contingency of gut microbiota might also influence how microbes react to future 
perturbations in that gut community.67

The multi-factorial involvement of specific microbial groups with CD necessitates robust 
analysis to uncover possible associations, as there may be no apparent or only weak 
relationships with the means of bacterial abundances. Here, we apply quantile regression, 
an extension of the general linear model that allows for investigation of relationships across 
different quantiles of the distribution of a response variable.361, 362 Quantile regression extends 
regression of the mean to the analysis of the entire conditional distribution of the response 
variable.362 Examining quantile regression functions across the entire range of quantiles 
provides a more complete view of the response variable distribution than achieved by 
standard regression analysis.361 The idea behind this method is that not all individuals are 
equally responsive to changes in abundance of specific bacterial groups, due to hidden bias 
and complex dependencies in ecological datasets.361 Quantile regression is less sensitive to 
outliers than conventional regression and is not dependent on homoscedastic errors.363 
In particular, we tested whether associations between relative abundances of specific 
families with CD can be found with a clinical diagnosis (i.e., remission vs. exacerbation), but 
also with specific markers (i.e., fecal calprotectin (FC), serum C-reactive protein (CRP), and 
the Harvey Bradshaw index (HBI)) of disease activity in repeatedly sampled CD patients and 
healthy controls.181
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Methods

Data and procedures
The study population has previously been described in Galazzo et al. (2019).181 A total of 57 
CD patients were included in this study. Demographic variables and subject characteristics 
are provided in Appendix Table 4.1 and medication use between visits is provided in 
Appendix Table 4.2. The CD patients formed a subset of the Inflammatory Bowel Disease 
South Limburg Cohort.169 As a reference group, 15 healthy cohort (HC) subjects, all without 
any gastrointestinal disease, gastrointestinal symptoms, or comorbidities, were recruited 
among the controls who participated in the Maastricht Irritable Bowel Syndrome (IBS) 
Cohort.364 Clinical data, blood, and feces were collected at two time points. The CD group 
comprised 22 remission-exacerbation (RE) patients with baseline sampling at time of 
remission and subsequent sampling during an exacerbation, and 35 remission-remission 
(RR) patients, with two subsequent samples while maintaining remission, i.e., without any 
flares in between subsequent samples. The median time between baseline and follow up 
samples was 14 (IQR 11–21), 20 (8–36), and 13 (12–16) weeks for RR patients, RE patients, 
and HCs, respectively (Appendix Table 4.2). All study subjects gave written informed consent 
prior to participation. Both studies have been approved by the Medical Ethics Committee of 
Maastricht University Medical Center and have been registered in the US National Library of 
Medicine (www.clinicaltrials.gov; NCT02130349 and NCT00775060, respectively). 

Fecal samples were collected at home, kept at room temperature, and brought to the hospital 
within 12 hours after defecation. Part of the fecal sample of the CD patients was sent to the 
laboratory of Clinical Chemistry for routine analysis of FC. The remaining part was aliquoted 
and frozen at −80°C for microbiota analysis. Disease activity was defined by FC, serum CRP, 
and HBI. Patients were included in the study when patients were in remission at baseline, i.e., 
FC < 100 μg/g and CRP < 5 mg/L or FC < 100 μg/g, CRP < 10 mg/L, and HBI ≤ 4. Exacerbation 
at the second time point was defined by FC > 250 μg/g or FC > 100 μg/g with at least a 
5-fold increase from baseline (Appendix Figure 4.1). The fecal microbiota composition was 
assessed by Illumina Miseq sequencing of the V4-region of the 16S rRNA gene. A detailed 
description of metagenomic DNA isolation, sequencing, and quality control is provided in 
the supplementary information of Galazzo et al. 2019.181 The 16S rRNA gene sequencing 
data are released in the European Nucleotide Archive. The accession number is: PRJEB62578 
(ERP147674). Information on microbial profiling and the selection of bacterial families for 
quantile regression analysis can be found in Box 4.1.

Box 4.1 - Data procedures and family selection. Data demultiplexing, length 
and quality filtering, and clustering of reads into Operational Taxonomic Units (OTUs) at 
97% sequence identity was done using the online Integrated Microbial Next Generation 
Sequencing (IMNGS) platform using default settings except for minimum and maximum 
length for amplicons, which were set at 100 and 500 bp, respectively.365 After quality 
filtering, binning, and removing unassigned reads, sequences were clustered in 640 
OTUs. Normalization was performed by dividing OTU counts per sample for their total 
count (sample depth) and then multiplying the obtained relative abundances by the 
lowest sample depth. OTU sequences assigned to chloroplasts were removed prior to the 
statistical analyses. Then, the 18 different families used in the main text were selected by 
removing rare reads (not seen more than three times in at least 20% of the samples). We 
also performed quantile regression on the remaining families (which were not selected 
by the base case threshold), these results are placed in the Appendices.
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Linear quantile regression mixed models (LQMM) 
The quantile regression model takes the form QY|X(τ) = Xβτ, where QY|X(τ) denotes the τth 
quantile of the response variable Y, which is predicted from a vector X of explanatory 
variables with quantile specific parameters βτ. The τth quantile is the inverse of the cumulative 
distribution function of Y, i.e., qY(τ) = Fy

-1 or reciprocally FY(qτ) = P(Y ≤ y) = τ; where τ  [0,1]. 
It denotes the smallest value where the probability of finding an even smaller value is less 
than or equal to τ, whereas the probability of finding a larger value is less than or equal to 
1 − τ.361 A parametric distribution is assumed for the deterministic part of the model, but the 
random error part does not assume any distributional form. Further information on inclusion 
of covariates and model building strategy is supplied in Box 4.2.

Box 4.2 - Model building strategy. The analysis was divided in three parts. First, 
we investigated whether the relative abundances of the bacterial families could be 
explained by the group to which each individual belongs (i.e., healthy control (HC), 
remission-remission (RR), or remission-exacerbation (RE)). We added the interaction 
with visit number, to allow for different temporal changes in bacterial relative 
abundance over time between healthy controls, CD patients who experienced an 
exacerbation at the second visit, and those who remained in remission. Secondly, 
we excluded the healthy individuals from the model and investigated whether 
the relative abundances of the bacteria could be explained by disease activity 
(i.e., remission vs. exacerbation) in the CD patient group. Thirdly, we additionally 
investigated if the relative abundances of the bacterial families could be related to a 
quantitative disease indicator (i.e., HBI, CRP, or FC) other than the clinical definition 
of disease activity (remission and exacerbation). The models contain two time points 
per individual. Therefore, we used a random intercept per patient as well as a random 
effect for the variable ‘visit number’, because temporal changes in bacterial family’s 
relative abundances may differ within patients, even when accounting for the fixed 
effect of disease trajectory (e.g., experiencing an exacerbation at the second visit).

Prior to the analyses, relative abundances were multiplied with 1000 and log-
transformed with the natural-log function assuming a lower detection limit of 100 
reads (which is 1/4th of the lowest measurable value in the data). Prior to variable 
selection, all models contained the variables sex (male vs. female), smoking (current, 
ex, or never), and age (centered around mean age of 39.6 years) (Appendix Table 4.1). 
The models for CD patient cohort data also contained the disease-specific variables 
disease location (colonic (C), ileal (I), or ileocolonic (IC)), age at diagnosis (younger 
than 40 years (0) or older than 40 years (1)), surgery (no (0) vs. yes (1)), disease 
phenotype (non-stricturing/non-penetrating vs. stricturing/penetrating), and current 
treatment (mesalazines (no (0) vs. yes (1)), thiopurines (no (0) vs. yes (1)), biologicals 
(no (0) vs. yes (1)), induction (no (0) vs. yes (1)), and proton pump inhibitors (PPI) (no 
(0) vs. yes (1))) (Appendix Table 4.1). Variable selection was performed by running all 
possible models and then selecting the model with the lowest Bayesian Information 
Criterion (BIC) in the 50% quantile. For the model with the disease indicators (HBI, 
CRP, and FC), variable selection was performed on a model that contained all three 
indicators. For the sake of comparison, the selected variables were also used in the 
separate models for HBI, CRP, and FC. FC was divided by 1000 to improve numerical 
precision in quantile regression. Moreover, HBI, CRP, and FC are measured on different 
scales, therefore the data was normalized beforehand to make the quantile regression 
model estimates comparable. For this purpose, the values for HBI, CRP, and FC were 
divided by the difference between the 5th and 95th percentiles.
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We used the ‘lqmm’ R package (version 1.5.5)366 of the R statistical analysis software 
(www.R-project.org) to perform the quantile regression analysis. Analyses were performed 
separately for each bacterial family. Although genus level might be preferred, this would 
have resulted in too many models. Therefore, we only looked at certain genus levels, when 
significant results were found at family level (within the base case selection as described 
in Box 4.1). To accommodate repeated sampling on the individual level, we employed a 
linear quantile mixed model (LQMM) framework. A mixed model contains both fixed effects 
and random effects, and can then account for correlation in repeated measurements from 
the same individual as these are likely to be more similar than observations from different 
individuals.367 We estimated the series of quantile regression functions from the 10th to the 
90th percent quantile. We used the Benjamini-Hochberg (BH) procedure per quantile to 
control for the expected proportion of ’false discoveries’ across microbial families.266 However, 
the BH procedure assumes independency in multiple testing, which is likely not the case in 
the gut microbiota. Therefore, the BH correction might provide too conservative estimates, 
and we choose to also report the unadjusted results.

Results

Differences in abundance between healthy individuals and CD patients 
We found several associations between the relative abundances of bacterial families with 
CD, and more specific with remission or disease exacerbation (Figure 4.1). The quantiles that 
were significantly associated with CD are different per bacterial family (Appendix Figure 4.2). 
For example, patients with baseline sampling at time of remission and subsequent sampling 
during an exacerbation (RE) displayed significantly distinct distributions in relative abundance 
in the family Coriobacteriaceae (Figure 4.2A), both at baseline (visit 1) and at the second visit, 
compared to the healthy control subjects (HC). At baseline, there was a positive association in 
the higher quantiles and over time (at time of exacerbation) there was a negative association 
in the lower quantiles. This means that the distribution of Coriobacteriaceae abundance 
among RE patients is skewed to higher values at baseline, but to lower values at the follow-up 
visit, as compared to healthy controls (see also Figure 4.1D). However, these effects were no 
longer significant after BH correction (Appendix Figure 4.3). For Coriobacteriaceae we also 
found a significant relation in the higher quantiles of patients in the RE group compared to 
the patients with two subsequent samples while maintaining remission (RR) (Appendix Figure 
4.4). Thus, a significant fraction of patients in the RE group had higher Coriobacteriaceae 
abundance than healthy individuals and RR patients at baseline. 

The family Erysipelotrichiaceae (Figure 4.2B) displayed negative associations in relative 
abundance over almost all quantiles (except the most upper quantiles) for both patient 
groups compared to the healthy controls. We still found significant differences after BH 
correction, but these were only present in the lowest quantiles (Appendix Figure 4.3). Looking 
at genus level, the genera Holdemania and Turicibacter both displayed a similar pattern of 
significant results (Appendix Figures 4.5 to 4.7). We did not find a significant difference among 
the patients in the RE and RR group (Appendix Figure 4.4). This implies that the relative 
abundance of Erysipelotrichiaceae is severely skewed to lower values in CD patients (see also 
Figure 4.1G). The same kind of relationship was also found for Ruminococcaceae (Figure 4.2D). 
Similar to Erysipelotrichiaceae, the associations were only found at baseline, suggesting that 
this is a characteristic of CD, but not related to disease activity.
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As another example, the relative abundances of Sutterellaceae among patients in the RE 
group were significantly skewed to lower values compared to both the healthy controls and 
the RR group patients (Figures 4.1P, 4.2F, and Appendix Figure 4.4). We also found a significant 
negative relation between the abundance of the family Pasteurellaceae in the RR group at 
baseline compared to the healthy controls (Figure 4.2C). For the family Streptococcaceae, 
we did not find many significant associations at baseline (except for one quantile), but the 
association for the RR x visit variable was significant for almost all quantiles (Figure 4.2E). This 
means that patients from the RR group experienced stronger increases in relative abundance 
of Streptococcaceae over time as compared to the healthy controls. 

Figure 4.1 - Violin plots of transformed relative abundances of base case 
bacterial families by group and time point. In green the healthy controls (HC), in blue 
the RR group, and in red the RE group, all visualized per time point (V1 = visit 1 and V2 = visit 2). 
Patients in the RE group are in remission during the first visit and experience an exacerbation 
during the second visit. The 50% quantile is shown with a black horizontal line. Genera are given 
in Appendix Figure 4.5 and families outside the base case criterion in Appendix Figure 4.8.
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We also found a significant difference between the RR and RE patient groups for the family 
Streptococcaceae, with the RE patients having elevated abundances across the entire quantile 
range (Appendix Figure 4.4, see also Figure 4.1 - panel O). In our data, Pasteurellaceae 
and Streptococcaceae both only consisted of one classified genus. When refining the 
analyses for these classified genera, we did not find significant results within Mannheimia 
(Pasteurellaceae) or Streptococcus (Streptococcaceae) (Appendix Figures 4.5 to 4.7).

Figure 4.2 - Examples of quantile regression profile plots for some 
of the base case families. A) Coriobacteriaceae, B) Erysipelotrichaceae, C) 
Pasteurellaceae, D) Ruminococcaceae, E) Streptococcaceae, and F) Sutterellaceae. 
The various dots represent sample estimates (y-axis) of differences in relative 
abundance compared to healthy controls across the 10th to the 90th percent 
quantile (x-axis). Differences at baseline (visit 1) are visualized in light blue (RR) and 
red (RE), while the interaction with visit number (in dark blue and orange) displays 
the difference in changes over time. The dotted line at zero indicates no difference 
compared to healthy controls. When the points are above the dotted line there is a 
positive effect of disease group on relative abundance, whereas points below the 
dotted line imply a negative effect of disease group on relative abundance at that 
particular quantile. Significant variables (p-value < 0.05) are indicated with a closed 
circle. The other base case families are in Appendix Figure 4.2.
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On top of the examples given in Figure 4.2, we also found that the relative abundances 
of Clostridiaceae, Desulfovibrionaceae, Peptostreptococcaceae, Prevotellaceae, and 
Rikenellaceae in CD patients were different from the relative abundances in the microbiota 
of healthy controls (Figure 4.3, Appendix Figure 4.2). These results, except for the families 
Prevotellaceae and Rikenellaceae, remained significant after BH correction (Appendix 
Figure 4.3). Most significant relations were negative and were found in the lower quantiles 
(Figure 4.3), meaning that CD patients more often displayed negatively than positively 
skewed abundance distributions (see also Figure 4.1). Besides, only a few associations 
between bacterial family abundance and covariates were found, with sex being the only 
significant covariate (males having higher abundances than females) (Figure 4.3). We also 
identified some significant associations in the families which fall under the sensitivity analyses 
of the families outside the base case selection criterion (Appendix Figure 4.8 to 4.10). 
We found that the relative abundances of Victivallaceae and Clostridiales fam. i.s. XI were 
different from the healthy controls for both the patients that stayed in remission and the 
patients that experienced an exacerbation. We also found significant results for the family 
Enterococcaceae for the patients that stayed in remission compared to the healthy controls 
and the families Actinomycetaceae and Lactobacillaceae for the patients that experienced an 
exacerbation at the second visit (Appendix Figure 4.9). However, these results disappeared 
after applying BH correction for multiple testing (Appendix Figure 4.10).

We compared our results from the LQMM models with the results obtained from an ordinary 
linear mixed-effects model (with similar variables as used in the LQMM models) using the 
‘lme’ function from the ‘nlme’ R package (version 3.1).368 Example code of the LQMM and LME 
models can be found on the GitHub repository (susannepinto/Quantile-Regression-CD). Most 
associations found by quantile regression could also be found with ordinary regression, as the 
mean response in the linear mixed-effects model provides somewhat of an average response 
over all quantiles. Nevertheless, some differences were also noticeable (Appendix Figure 4.11). 
For example, the family Coriobacteriaceae has a positive estimate in the higher quantiles 
for patients in the RE group relative to the healthy control group, which is not visible in 
the mean response (Appendix Figure 4.11D). Likewise, patients in the RR group displayed 
significant reductions in abundance in the lower to middle quantiles of Prevotellaceae and 
Streptococcaceae abundance, that were apparent in a reduced mean response, but without 
statistical significance. Conversely, the reduced mean responses regarding Ruminococcaceae 
in both RR and RE patients hide the fact that reductions only apply to lower and middle 
quantiles of abundance (Figure 4.1N and Appendix Figure 4.11N). Comparable findings were 
obtained for Pasteurellaceae and Peptostreptococcaceae. In some instances, linear mixed-
effects regression yielded imprecise (cf. Lachnospiraceae) or biased (cf. group × visit in 
Prevotellaceae) estimates as compared to quantile regression (Appendix Figure 4.11).

Gut microbiota changes in relation to Crohn’s disease activity
The relation between bacterial family abundance and disease activity (exacerbation) 
was mainly negative across the quantile range, indicating reduced abundance among 
RE patients as compared to RR patients at the second visit. However, this association was 
only statistically significant for upper quantiles of Coriobacteriaceae after adjustment for 
covariates (Figure 4.4). Instead, significant associations were revealed with several clinical 
variables (e.g., phenotype, surgery, proton pump inhibitors (PPI), and biologicals), suggesting 
that differences between RR and RE patients might have been confounded by disease-specific 
variables (Figure 4.4). 



87Chapter 4 Heterogeneous associations of gut microbiota with Crohn’s disease activity

Figure 4.3 - Heatmap of quantile regression estimates across quantiles 
of relative abundance for base case families and common variables. 
The model included all groups, i.e., healthy control (HC), remission-remission (RR), 
and remission-exacerbation (RE), with healthy controls as reference group. The 
red boxes indicate negative regression estimates, the blue boxes indicate positive 
regression estimates, and the empty boxes are the variables that were not selected 
during variable selection. Significant variables (p-value < 0.05) are indicated with an 
asterisk (‘*’), results adjusted with the BH procedure are given in Appendix Figure 4.3. 
Other families outside the base case criterion are given in Appendix Figure 4.9 and 
Appendix Figure 4.10.
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Figure 4.4 - Heatmap of quantile regression estimates across 
quantiles of relative abundance for base case families and clinical 
variables in CD patients only. The red boxes indicate negative regression 
estimates, the blue boxes indicate positive regression estimates, and the 
empty boxes are the variables that were not selected during variable selection. 
Significant variables (p-value < 0.05) are indicated with an asterisk (‘*’), results 
adjusted with the BH procedure are given in Appendix Figure 4.12.
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Of note, many associations with disease activity also disappeared after BH correction for 
multiple testing (Appendix Figure 4.12), but the finding that RE patients had elevated 
Streptococcaceae abundances across the entire quantile range (irrespective of visit number) 
remained significant; likewise, treatment with biologicals remained significantly associated 
with lower Streptococcaceae abundance (Figure 4.4 and Appendix Figure 4.12). Further 
results on genera and other families can be found in Appendix Figures 4.13 to 4.16. 

Bacterial relative abundances in relation to different disease activity indicators 
When comparing regression on clinically defined exacerbation with different indicators of 
disease activity, we found that especially FC levels gave distinct results compared to the 
other indicators (Figure 4.5 and Appendix Figure 4.17). For almost all bacterial families, we did 
not observe a signal (estimates around zero) for clinical status (remission or exacerbation), 
CRP, and HBI after correction for clinical variables. In contrast, the normalized estimates of 
FC were much stronger (Appendix Figure 4.17), and significantly negative across the entire 
quantile range for Porphyromonadaceae and Verrucomicrobiaceae (Figure 4.5). The results of 
Porphyromonadaceae still hold after BH correction (Appendix Figure 4.18D). Further results 
on genera and other families can be found in Appendix Figures 4.19 to 4.22.

Figure 4.5 - Quantile regression profile plots for different disease activity 
indicators and clinical variables in CD patients only. For the families: 
A) Bifidobacteriaceae, B) Coriobacteriaceae, C) Peptostreptococcaceae, D) Porphyromonadaceae, 
E) Rikenellaceae, and F) Verrucomicrobiaceae. Only families with significant results are given, 
the other families are in Appendix Figure 4.17. The dotted line at zero indicates no difference 
compared to healthy controls. When the points are above the dotted line there is a positive 
effect of disease group on relative abundance, whereas points below the dotted line imply a 
negative effect of disease group on relative abundance for that particular quantile. The regression 
estimates for clinical status, HBI, CRP, and FC were estimated in different models, therefore 
the data was normalized beforehand to make the regression coefficients comparable. For this 
purpose, the values for HBI, CRP, and FC were divided by the difference between the 5th and 95th 
percentiles. Significant variables (p-value < 0.05) are indicated with a closed circle, results adjusted 
with the BH procedure are given in Appendix Figure 4.18.
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Discussion

In this study, we investigated the possible associations between the relative abundance 
of specific bacterial families with CD and disease activity. We relied on quantile regression 
to uncover relationships that are not restricted to the mean response across CD patients. 
We found mainly negative associations with CD at family or genus level, especially in lower 
quantiles of relative bacterial abundance. These results are consistent with the frequently 
cited reduced microbial diversity in the gut of CD patients compared to healthy controls, but 
they also highlight that reductions for specific microbes are usually limited to a minority of 
patients. Thus, while CD coincides with a loss of microbial diversity in the gut, the process of 
diversity loss seems rather irregular with respect to specific taxonomic groups. 

Associations outside of the mean response can be a result of heterogeneity among CD 
patients and may arise from the complex interactions among members of the microbiota. 
Microbes alter the environment through metabolic by-products, creating new ecological 
niches that promote diversification. However, some metabolites may adversely affect the 
growth of other microorganisms.8 Whether systemic changes, such as those induced by CD, 
lead to niche reduction or expansion for a particular microbe probably depends as much on 
the characteristics of that particular microbe as on the microbial ecosystem of the individual 
host. If specific bacterial groups respond to disease or disease activity in some of the patients 
but not in others, their associations with CD or disease activity are more likely to be found in 
upper or lower quantiles than in the mean or median response across CD patients.

Interestingly, almost all significant associations we found were negative and applicable to 
the lower quantiles of bacterial abundance. While positive associations in upper quantiles 
have been attributed to unmeasured factors that limit the potential response to a positive 
stimulus,361 this opposite pattern is reminiscent of an ecosystem response to stress: the ability 
to maintain healthy bacterial abundances is gradually lost once the system gets close to a 
tipping point.97 The loss of some species in the microbial network can still be compensated 
for by other species with similar ecosystem functions (functional redundancy), but the loss 
of too many may lead to a loss of resilience and critical transition to an alternative stable 
state.104, 369 Although the existence of tipping points in the onset or exacerbation of CD has 
not been demonstrated, a large-scale study by Lahti et al. (2014) showed distinct bimodal 
abundance patterns of certain bacterial species (i.e., tipping elements) among healthy human 
hosts.102 These species were present in either a high or low abundance state, supporting 
the idea of alternative stable states in the human gut microbiota. Taken together, concepts 
of ecosystem resilience and critical transitions in the gut microbiota may explain why some 
individuals respond strongly to systemic changes, as induced by CD, while others display a 
more robust microbiota composition.22

Associations between the relative abundance of bacterial families and CD across the entire 
quantile range can also be identified with methods that focus on the mean response, such as 
ordinary linear regression. Families that exhibit such uniform responses could be considered 
to represent keystone bacterial groups, as their response to CD or disease activity is less 
dependent on other microbes or host factors as compared to families that are only responsive 
in some patients. This feature of robustness would be preferred for clinical diagnostics, 
prioritization for treatment, or monitoring of disease course, because guidelines can then be 
developed and used for all CD patients. However, it is also important to understand the less 
generic differences in the microbiota of CD patients because less robust associations may
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also shed light on etiology and progression of CD and may provide leads for personalized 
treatment strategies. This is especially important considering the heterogeneous disease course, 
therapy response, and potentially contributing factors to microbiota perturbations. Moreover, 
the results of our analysis might help to reconcile inconsistencies in previously published 
findings as regards involvement of specific bacterial families in CD.

Our results confirm previously identified associations of CD with the families Erysipelotrichaceae, 
Peptostreptococcaceae, Prevotellaceae, Rikenellaceae, Ruminococcaceae (e.g., Faecalibacterium 
prausnitzii), and Veillonellaceae.171, 181, 358 In addition, we also identified previously unreported 
associations between CD and the families Coriobacteriaceae, Desulfovibrionaceae, 
Streptococcaceae, and Sutterellaceae. Mixed results (both negative and positive associations) 
have been reported for the family Bacteroidaceae (e.g., Bacteroides fragilis).171, 357, 358 Our results 
suggest that these mixed results can be explained by a change in association (from positive to 
negative) across the quantile range. Likewise, we found a negative association with the family 
Pasteurellaceae when the patients were compared to healthy individuals, especially with 
regard to patients who remained in remission. This is in contrast with previous results showing 
a positive association between relative abundances of Pasteurellaceae and CD.171

Previous studies did not make use of quantile regression to identify possible associations 
between the microbiota and factors related to inflammation. Most studies compared samples 
based on their means or medians (by Student’s t-test, Mann-Whitney U test, or the analysis of 
variance), without taking into account the confounding effect of covariates, such as medication 
use or the age of the patient.173, 356-358 Other studies used methods that can take covariates into 
account, such as generalized linear regression models, but these still only consider the mean 
count or relative abundance and do not consider distinct associations across patients.171, 173, 175, 357 
Lastly, supervised classifiers (e.g., Random Forest) and clustering algorithms (e.g., agglomerative 
hierarchical clustering) are used to predict the presence or activity of disease by the pattern 
in relative abundance of many families at once.181 While these methods are not constrained 
by the strict assumptions of regression models, they have difficulties in dealing with repeated 
measurements and covariates. In addition, these methods require many patients, which are 
often not available in longitudinal clinical cohorts. 

A practical advantage of quantile regression is its usefulness in situations when assumptions of 
other methods are violated. For example, quantile regression does not require homoscedastic 
and normally distributed data. On the contrary, the method enables detection and 
description of changes in the conditional distribution of the response variable when there is 
heteroscedasticity, skewness, or kurtosis in the data.361 Another limitation of quantile regression 
is that it is hard to use for the purpose of prediction. Nevertheless, quantile regression is 
powerful when heterogeneous response distributions should be expected, e.g., if many 
interdependencies and potentially limiting factors play a role. If those co-factors are differently 
distributed among patients and not included in the model, they lead to (hidden) bias in 
conventional regression but can be dealt with in quantile regression.370

We found several significant associations of bacterial abundance with the presence of CD. 
However, associations with disease activity were less evident in our data. Although we found 
some differences between the two groups of CD patients, we only found significantly elevated 
abundances for Streptococcaceae (at baseline) and Coriobacteriaceae (during active disease) in 
patients experiencing an exacerbation relative to patients remaining in remission, and the latter 
effect disappeared after correction for multiple testing. 
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Multiple explanations are possible for the lack of significant associations between 
exacerbation and remission. Firstly, the microbiota of CD patients might not be responsive 
to exacerbation as compared to remission. Multiple studies underline our finding of no 
clear significant differences between remission and active disease.177, 181 In other words, the 
observed differences in bacterial abundances are disease-related community differences 
that even persist in the absence of active inflammation, and therefore this pattern is not 
significantly reflected between the disease states.371, 372 

However, most studies, including ours, also likely lacked the statistical power to find such 
potential differences. A second possibility is that potential associations are confounded 
with other factors that are likely to play a role in shaping the microbiota, such as disease 
severity,175 disease duration,177 disease location,173 treatments,373 and host characteristics 
(such as smoking).172 Treatments such as PPIs have been shown to change gut microbiota and 
individuals undergoing surgery will have been given antibiotics to prevent infection.373 Lastly, 
we might not have looked at the right taxonomic level, while the resolution of taxonomic 
profiling could impact the accuracy and specificity of our findings. Most differences are 
possibly present only at the species or strain levels, or may even require metabolic or 
functional analysis.21, 22, 172 Moreover, a change in relative abundance at taxonomic level 
might not reflect a change in ecosystem functioning, as expansion in certain species can 
compensate for the loss of another (functionally similar) species.22 Nonetheless, we did find 
stronger associations with fecal calprotectin than with the clinical definition of CD activity. 
This suggests that a quantitative measure of inflammation carries information about the 
microbial involvement in disease activity. As the level of fecal calprotectin is only a proxy 
of inflammation in the gut, the associations might become even clearer when specific 
immunological markers, or even hormones, would be used.

It is important to acknowledge several limitations that may impact the generalizability and 
interpretation of our findings. Firstly, our study was conducted within a relatively small 
cohort of CD patients (n = 57) and healthy controls (n = 15). While this cohort size allowed 
us to perform longitudinal analyses, it may limit the generalizability of our results to broader 
CD populations. Also, quantile regression is not insensitive to outliers, especially in the 
highest and lowest quantiles when there is not much data left for estimation, potentially 
affecting the robustness of our statistical analyses. With a larger dataset, one might consider 
a finer quantile division to obtain a smoother quantile regression profile, while with a 
smaller dataset, a coarser division would be more appropriate. Furthermore, as with any 
observational study, causation cannot be inferred from our results, and further mechanistic 
investigations are needed to elucidate whether there is a role of the highlighted bacterial 
families in CD pathogenesis. Lastly, the dynamic nature of the gut microbiota and potential 
temporal variations were not extensively explored in this study, which might have limited 
our ability to capture the full spectrum of microbial changes associated with CD over time. 
In light of these limitations, caution should be exercised when interpreting our results, and 
future research hopefully addresses these constraints through larger, more diverse cohorts 
and a finer taxonomic resolution to provide a more comprehensive understanding of the gut 
microbiota’s role in CD.

In this study, we showed that associations between CD with relative bacterial abundances can 
be different for subsets of individuals. Our findings revealed significant negative associations 
with CD for several bacterial families, such as Pasteurellaceae, Peptostreptococcaceae, 
Prevotellaceae, and Ruminococcaceae, highlighting their potential roles in CD pathogenesis. 
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Furthermore, the significant differences in the relative abundance of Sutterellaceae and 
Streptococcaceae among CD patients who experienced exacerbations, relative to those 
who maintained remission, had not been seen before and underscore the dynamic nature 
of microbial associations in relation to disease activity. The subtle variations observed in the 
family Coriobacteriaceae, which could not be seen in the mean response, further emphasize 
the complexity of these relationships. 

Importantly, our study underscores the heterogeneity of CD and its impact on gut microbiota, 
suggesting that associations may only become evident when considering patients’ diverse 
disease courses, medication histories, therapy responses, and gut microbiota compositions. 
Associations with specific bacterial families may only be detectable in a minority of patients, 
hence they cannot generally be considered to identify CD or disease activity. The novelty 
of our study lies in its rigorous approach to exploring associations in subsets of patients, 
acknowledging the heterogeneity between them. In such situations, quantile regression is a 
useful tool for distilling potential relationships that may remain unidentified by commonly 
used methods. We recommend its use in even larger cohorts, to gain a better understanding 
of CD in relation to the gut microbiota.

Appendices of Chapter 4

Appendix Table 4.1 - Clinical and demographic information of healthy 
controls and CD patients (RR and RE). 
Note that two samples per individual (n = 72 individuals) were collected (n = 144 
samples).

HC
(n = 30)

RR
(n = 70)

RE
(n = 44)

Overall
(n = 144)

Sex

  Female 14 (46.7%) 50 (71.4%) 24 (54.5%) 88 (61.1%)

  Male 16 (53.3%) 20 (28.6%) 20 (45.5%) 56 (38.9%)

Smoking

  Ex 4 (13.3%) 34 (48.6%) 20 (45.5%) 58 (40.3%)

  Never 26 (86.7%) 20 (28.6%) 20 (45.5%) 66 (45.8%)

  Current 0 (0%) 16 (22.9%) 4 (9.1%) 20 (13.9%)

Age

  Mean (SD) 26.7 (5.93) 42.6 (12.8) 43.6 (16.8) 39.6 (14.7)

  Median (min, max) 25.0 (20.0, 45.0) 43.0 (17.0, 67.0) 42.5 (19.0, 68.0) 38.5 (17.0, 68.0)

Disease locationa

  C NA 16 (22.9%) 14 (31.8%) 30 (20.8%)

  I NA 24 (34.3%) 14 (31.8%) 38 (26.4%)

  IC NA 30 (42.9%) 16 (36.4%) 46 (31.9%)

Age at diagnosisb

  A2 NA 62 (88.6%) 28 (63.6%) 90 (62.5%)

  A3 NA 8 (11.4%) 16 (36.4%) 24 (16.7%)

Table continued on next page
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Surgery

  0 30 (100%) 54 (77.1%) 36 (81.8%) 120 (83.3%)

  1 0 (0%) 16 (22.9%) 8 (18.2%) 24 (16.7%)

Phenotype

  0 NA 52 (74.3%) 24 (54.5%) 76 (52.8%)

  1 NA 18 (25.7%) 20 (45.5%) 38 (26.4%)

Mesalazines

  0 30 (100%) 60 (85.7%) 35 (79.5%) 125 (86.8%)

  1 0 (0%) 10 (14.3%) 9 (20.5%) 19 (13.2%)

Thiopurines

  0 30 (100%) 46 (65.7%) 28 (63.6%) 104 (72.2%)

  1 0 (0%) 24 (34.3%) 16 (36.4%) 40 (27.8%)

Biologicalsc

  0 30 (100%) 32 (45.7%) 15 (34.1%) 77 (53.5%)

  1 0 (0%) 38 (54.3%) 29 (65.9%) 67 (46.5%)

Induction

  0 30 (100%) 57 (81.4%) 36 (81.8%) 123 (85.4%)

  1 0 (0%) 13 (18.6%) 8 (18.2%) 21 (14.6%)

PPId

  0 30 (100%) 56 (80.0%) 28 (63.6%) 114 (79.2%)

  1 0 (0%) 14 (20.0%) 16 (36.4%) 30 (20.8%)

HBIe

  Mean (SD) NA 2.41 (2.95) 3.00 (3.39) 2.08 (2.97)

  Median (min, max) NA 1.00 (0, 11.0) 2.00 (0, 13.0) 1.00 (0, 13.0)

  Missing NA 0 (0%) 2 (4.5%) 2 (1.4%)

CRPf

  Mean (SD) NA 2.57 (2.05) 3.76 (3.28) 2.31 (2.61)

  Median (min, max) NA 2.00 (0.9, 11.0) 2.80 (0.9, 13.0) 1.40 (0, 13.0)

  Missing NA 5 (7.1%) 8 (18.2%) 13 (9.0%)

FCg

  Mean (SD) NA 28.6 (20.9) 290 (742) 102 (426)

  Median (min, max) NA 14.0 (14.0, 98.0) 110 (14.0, 4900) 15.0 (0, 4900)
a Disease location: colonic (C), ileal (I), or ileocolonic (IC)
b Age at diagnosis: younger than 40 years (A2) or older than 40 years (A3)
c All biological treatments concerned anti-TNF therapy
d PPI: proton pump inhibitors
e HBI: Harvey Bradshaw index (Appendix Figure 4.1)
f CRP: serum C-reactive protein (Appendix Figure 4.1)
g FC: fecal calprotectin (Appendix Figure 4.1)
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Appendix Table 4.2 - Medication use and time between sampling moments for 
remission and exacerbation samples.

RR (n = 35) RE (n = 22)

Remission Remission Remission Exacerbation

Medicationa

  Mesalazine 5 (14.3%) 5 (14.3%) 4 (18.2%) 5 (22.7%)

  Thiopurines 11 (31.4%) 11 (31.4%) 9 (40.9%) 7 (31.8%)

  Biologicals 18 (51.4%) 19 (54.3%) 13 (59.1%) 15 (68.2%)

  Corticosteroids 1 (2.9%) 0 (0%) 1 (4.5%) 1 (4.5%)

  PPI 7 (20%) 7 (20%) 8 (36.4%) 8 (36.4%)

  Antibioticsb 1 (2.9%) 0 (0%) 1 (4.5%) 0 (0%)

Time between sampling 
moments (week, median, IQR)

14 (11–21) 20 (11–21)

a	 Six RR and five RE patients had a medication change between consecutive samples during the
study period. In the RR group, mesalazine was stopped by one patient, prednisone by one patient 
and biologicals by two patients, while one patient started mesalazine and one patient started 
with biologicals. In the RE group, two patients started with biologicals, two patients stopped with 
thiopurines, and one patient started with mesalazine.

b	Ciprofloxacin and cotrimoxazole were used two and one month prior to sample collection,
	 respectively.

Appendix Figure 4.1 - Disease indicators (FC, serum CRP, and HBI). 
Remission at baseline was defined by FC < 100 μg/g and CRP < 5 mg/L or 
FC < 100 μg/g, CRP < 10 mg/L, and HBI ≤ 4. Disease activity at the second visit 
was defined by FC, serum CRP, and HBI, i.e., FC > 250 μg/g or FC > 100 μg/g with 
at least a 5-fold increase from baseline. 
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Appendix Figure 4.2 - Quantile regression profile plots for all base case 
families. The various dots represent sample estimates (y-axis) of differences in relative 
abundance compared to healthy controls across the 10th to the 90th quantile (x-axis). 
Differences at baseline (visit 1) are visualized in light blue (RR) and red (RE), while 
the interaction with visit number (in dark blue and orange) displays the difference in 
changes over time. The dotted line at zero indicates no difference compared to healthy 
controls. When the points are above the dotted line there is a positive effect of disease 
group on relative abundance, whereas points below the dotted line imply a negative 
effect of disease group on relative abundance at that particular quantile. Significant 
variables (p-value < 0.05) are indicated with a closed circle.
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Sensitivity analyses: Differences in abundance between healthy individuals and 
CD patients

Appendix Figure 4.3 - Heatmap of quantile regression estimates across 
quantiles of the relative abundance for base case families and common 
variables, with p-values adjusted using the BH procedure. The red boxes 
are negative estimates, the blue boxes are positive estimates, and the empty boxes 
are the variables that were not selected during variable selection. Significant variables 
(p-value < 0.05 after BH adjustment) are indicated with an asterisk (‘*’).
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Appendix Figure 4.4 - Heatmap of quantile regression estimates across 
quantiles of the relative abundance for base case families and common 
variables, using the RR group as reference instead of the HC group. 
The red boxes are negative estimates, the blue boxes are positive estimates, and 
the empty boxes are the variables that were not selected during variable selection. 
Significant variables (p-value < 0.05) are indicated with an asterisk (‘*’).
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Appendix Figure 4.5 - Violin plots of transformed relative abundances 
for selected genera by group and time point. In green the healthy controls, 
in blue the RR group, and in red the RE group, all visualized per time point (V1 = visit 1 
and V2 = visit 2). Patients in the RE group are in remission during the first visit and 
experience an exacerbation during the second visit. The 50th quantile is shown with 
a black horizontal line.
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Appendix Figure 4.6 - Heatmap of quantile regression estimates across 
quantiles of the relative abundance for selected genera and common 
variables. The corresponding family names are placed in bold on the left. The red 
boxes are negative estimates, the blue boxes are positive estimates, and the empty 
boxes are the variables that were not selected during variable selection. Significant 
variables (p-value < 0.05) are indicated with an asterisk (‘*’).
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Appendix Figure 4.7 - Heatmap of quantile regression estimates across 
quantiles of the relative abundance for selected genera and common 
variables, with p-values adjusted using the BH procedure. The corresponding 
family names are placed in bold on the left. The red boxes are negative estimates, the blue 
boxes are positive estimates, and the empty boxes are the variables that were not selected 
during variable selection. Significant variables (p-value < 0.05 after BH adjustment) are 
indicated with an asterisk (‘*’).
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Appendix Figure 4.8 - Violin plots of transformed relative abundances 
for families outside the base case selection criterion by group and time 
point. In green the healthy controls, in blue the RR group, and in red the RE group, all 
visualized per time point (V1 = visit 1 and V2 = visit 2). Patients in the RE group are in 
remission during the first visit and experience an exacerbation during the second visit. 
The 50th quantile is shown with a black horizontal line.
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Appendix Figure 4.9 - Heatmap of quantile regression estimates across 
quantiles of the relative abundance for families outside the base case 
selection criterion and common variables. The red boxes are negative 
estimates, the blue boxes are positive estimates, and the empty boxes are the variables 
that were not selected during variable selection. Significant variables (p-value < 0.05) 
are indicated with an asterisk (‘*’).
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Appendix Figure 4.10 - Heatmap of quantile regression estimates across 
quantiles of the relative abundance for families outside the base case 
selection criterion and common variables, with p-values adjusted using 
the BH procedure. The red boxes are negative estimates, the blue boxes are positive 
estimates, and the empty boxes are the variables that were not selected during variable 
selection. Significant variables (p-value < 0.05 after BH adjustment) are indicated with an 
asterisk (‘*’).
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Appendix Figure 4.11 - Comparison of the LQMM analysis results (20%, 50%, 
and 80% quantiles) with linear mixed-effects model results. The point estimates, 
95% confidence intervals, and a reference line at 0 (in black) are shown. When the horizontal 
lines do not cross the vertical reference line, this means that the coefficients are significantly 
different (p-value < 0.05) from 0.
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Sensitivity analyses: Gut microbiota changes in relation to Crohn’s disease 
activity

Appendix Figure 4.12 - Heatmap of quantile regression estimates across 
quantiles of the relative abundance for base case families and clinical 
variables in CD patients only, with p-values adjusted using the BH 
procedure. The red boxes are negative estimates, the blue boxes are positive estimates, 
and the empty boxes are the variables that were not selected during variable selection. 
Significant variables (p-value < 0.05 after BH adjustment) are indicated with an asterisk (‘*’).
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Appendix Figure 4.13 - Heatmap of quantile regression estimates across 
quantiles of the relative abundance for selected genera and clinical 
variables in CD patients only. The corresponding family names are placed in bold 
on the left. The red boxes are negative estimates, the blue boxes are positive estimates, 
and the empty boxes are the variables that were not selected during variable selection. 
Significant variables (p-value < 0.05) are indicated with an asterisk (‘*’).
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Appendix Figure 4.14 - Heatmap of quantile regression estimates across 
quantiles of the relative abundance for selected genera and clinical 
variables in CD patients only, with p-values adjusted using the BH 
procedure. The corresponding family names are placed in bold on the left. The red 
boxes are negative estimates, the blue boxes are positive estimates, and the empty 
boxes are the variables that were not selected during variable selection. Significant 
variables (p-value < 0.05 after BH adjustment) are indicated with an asterisk (‘*’).
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Appendix Figure 4.15 - Heatmap of quantile regression estimates across 
quantiles of the relative abundance for families outside the base case 
selection criterion and clinical variables in CD patients only. The red boxes 
are negative estimates, the blue boxes are positive estimates, and the empty boxes 
are the variables that were not selected during variable selection. Significant variables 
(p-value < 0.05) are indicated with an asterisk (‘*’).
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Appendix Figure 4.16 - Heatmap of quantile regression estimates 
across quantiles of the relative abundance for families outside the 
base case selection criterion and clinical variables in CD patients only, 
with p-values adjusted using the BH procedure. The red boxes are negative 
estimates, the blue boxes are positive estimates, and the empty boxes are the variables 
that were not selected during variable selection. Significant variables (p-value < 0.05 
after BH adjustment) are indicated with an asterisk (‘*’).
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Sensitivity analyses: relative abundances of bacterial families in relation to 
different disease activity indicators

Appendix Figure 4.17 - Quantile regression profile plots for different 
disease activity indicators and clinical variables for all base case families 
in CD patients only. The estimates for clinical status, HBI, CRP, and FC were estimated 
in different models, therefore the data were normalized beforehand to make the models 
comparable. For this purpose, the values for HBI, CRP, and FC were divided by the 
difference between the 5th and 95th percentiles. Significant variables (p-value < 0.05) are 
indicated with a closed circle.
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Appendix Figure 4.18 - Quantile regression profile plots for different disease 
activity indicators and clinical variables for base case families in CD patients 
only, with p-values adjusted using the BH procedure. The estimates for clinical 
status, HBI, CRP, and FC were estimated in different models, therefore the data were 
normalized beforehand to make the models comparable. For this purpose, the values for HBI, 
CRP, and FC were divided by the difference between the 5th and 95th percentiles. Significant 
variables (p-value < 0.05 after BH adjustment) are indicated with a closed circle.
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Appendix Figure 4.19 - Quantile regression profile plots for different 
disease activity indicators and clinical variables for selected genera in 
CD patients only. The estimates for clinical status, HBI, CRP, and FC were estimated in 
different models, therefore the data were normalized beforehand to make the models 
comparable. For this purpose, the values for HBI, CRP, and FC were divided by the 
difference between the 5th and 95th percentiles. Significant variables (p-value < 0.05) are 
indicated with a closed circle.
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Appendix Figure 4.20 - Quantile regression profile plots for different disease 
activity indicators and clinical variables for selected genera in CD patients 
only, with p-values adjusted using the BH procedure. The estimates for clinical 
status, HBI, CRP, and FC were estimated in different models, therefore the data were normalized 
beforehand to make the models comparable. For this purpose, the values for HBI, CRP, and 
FC were divided by the difference between the 5th and 95th percentiles. Significant variables 
(p-value < 0.05 after BH adjustment) are indicated with a closed circle.
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Appendix Figure 4.21 - Quantile regression profile plots for different 
disease activity indicators and clinical variables for families outside the 
base case selection criterion in CD patients only. The estimates for clinical 
status, HBI, CRP, and FC were estimated in different models, therefore the data were 
normalized beforehand to make the models comparable. For this purpose, the values 
for HBI, CRP, and FC were divided by the difference between the 5th and 95th percentiles. 
Significant variables (p-value < 0.05) are indicated with a closed circle.

Victivallaceae

25 50 75

-2

-3

-1

0

Enterococcaceae

2

-2

0

Fusobacteriaceae

Clostridiales fam. i.s. XI

0

2.5

5

7.5

Neisseriaceae

0

1

0.5

-0.5

Actinomycetaceae

4

2

-2

Campylobacteraceae

0

4

2

Leuconostocaceae

0

0.5

-0.5

Puniceicoccaceae

25 50 75

Acidaminococcaceae

4

-4

Elusimicrobiaceae

Lactobacillaceae

0

10

Methanobacteriaceae

-1

1

-2

Succinivibrionaceae

0

25 50 75

-0.5

0.5

-1

A B C

D E F

G H I

J K L

M N

0

0

-2

-5

0

5

10

5

6

10

0

-4e-14

-3e-14

-2e-14

-1e-14

1e-14

-1

0

0

-4e-14

-3e-14

-2e-14

-1e-14

1e-14

Quantile

CRP

Indicator

Signi�cance

HBI

FC

Status 
(exacerbation)

Not signi�cant (p-value > 0.05)

Signi�cant (p-value < 0.05)

N
or

m
al

iz
ed

 re
gr

es
si

on
 c

oe
�

ci
en

t



116Chapter 4 Heterogeneous associations of gut microbiota with Crohn’s disease activity

Appendix Figure 4.22 - Quantile regression profile plots for different 
disease activity indicators and clinical variables for families outside the 
base case selection criterion in CD patients only, with p-values adjusted 
using the BH procedure. The estimates for clinical status, HBI, CRP, and FC were 
estimated in different models, therefore the data were normalized beforehand to make the 
models comparable. For this purpose, the values for HBI, CRP, and FC were divided by the 
difference between the 5th and 95th percentiles. Significant variables (p-value < 0.05 after 
BH adjustment) are indicated with a closed circle.

Quantile

CRP

Indicator

Signi�cance

HBI

Victivallaceae

25 50 75

-2

-3

-1

0

Enterococcaceae

2

-2

0

Fusobacteriaceae

FC

Clostridiales fam. i.s. XI

0

2.5

5

7.5

Neisseriaceae

0

1

0.5

-0.5

Status 
(exacerbation)

Not signi�cant (p-value > 0.05)

Signi�cant (p-value < 0.05)

Actinomycetaceae

4

2

-2

Campylobacteraceae

0

4

2

Leuconostocaceae

0

0.5

-0.5

Puniceicoccaceae

25 50 75

Acidaminococcaceae

4

-4

Elusimicrobiaceae

Lactobacillaceae

0

10

Methanobacteriaceae

-1

1

-2

Succinivibrionaceae

0

25 50 75

-0.5

0.5

-1

A B C

D E F

G H I

J K L

M N

0

0

-2

-5

0

5

10

5

6

10

0

-4e-14

-3e-14

-2e-14

-1e-14

1e-14

-1

0

0

-4e-14

-3e-14

-2e-14

-1e-14

1e-14

N
or

m
al

iz
ed

 re
gr

es
si

on
 c

oe
�

ci
en

t



117



Part III

Ecological determinants of 
FMT treatment success

118



119



1	 Department of Biomedical Data Sciences, Leiden University Medical Center, 		
	 Leiden, the Netherlands
2 	Centre for Infectious Disease Control, National Institute for Public Health 
	 and the Environment (RIVM), Bilthoven, the Netherlands
3 	Leiden University Center for Infectious Diseases (LUCID) Research, 
	 Leiden University Medical Center, Leiden, the Netherlands
4 	Netherlands donor Feces bank, Department of Medical Microbiology, 
	 Leiden University Medical Center, Leiden, the Netherlands 
5 	Department of Gastroenterology and Hepatology, Leiden University 
	 Medical Center, Leiden, the Netherlands
6 	Department of Gastroenterology, Haaglanden Medisch Centrum, 
	 The Hague, the Netherlands
7 	Department of Epidemiology and Data Science, Amsterdam UMC location 
	 Vrije Universiteit Amsterdam, Amsterdam, the Netherlands 
8 	Amsterdam Institute for Infection and Immunity (AI&I), Amsterdam UMC, 
	 Amsterdam, the Netherlands

* These authors contributed equally

J Crohns Colitis. 2025 Feb 4;19(2):jjae137. doi: 10.1093/ecco-jcc/jjae137.

Susanne Pinto1, Dominika Šajbenová1, Elisa Benincà2, Sam Nooij3, 
Elisabeth M. Terveer3, 4, Josbert J. Keller4, 5, 6, Andrea E. van der Meulen-de Jong5, 
Johannes A. Bogaards7, 8*, Ewout W. Steyerberg1*

Chapter 5

Dynamics of gut microbiota after FMT

120



121Chapter 5 Dynamics of gut microbiota after FMT

Dynamics of gut microbiota after fecal 
microbiota transplantation in ulcerative 
colitis: success linked to control of 
Prevotellaceae

Abstract

Fecal microbiota transplantation (FMT) is an experimental treatment for ulcerative 
colitis (UC). We aimed to study microbial families associated with FMT treatment 
success. We analysed stools from 24 UC patients treated with four weekly FMTs after 
randomization for pretreatment during three weeks with budesonide (n = 12) or 
placebo (n = 12). Stool samples were collected nine times pre-, during, and post-
FMT. Clinical and endoscopic response was assessed 14 weeks after initiation of the 
study using the full Mayo score. Early withdrawal due to worsening of UC symptoms 
was classified as non-response. Nine patients (38%) reached remission at week 14, 
and 15 patients had a partial response or non-response at or before week 14. With a 
Dirichlet multinomial mixture model we identified five distinct clusters based on the 
microbiota composition of 180 longitudinally collected patient samples and 27 donor 
samples. A Prevotellaceae-dominant cluster was associated with poor response to 
FMT treatment. Conversely, the families Ruminococcaceae and Lachnospiraceae 
were associated with a successful clinical response. These associations were already 
visible at the start of the treatment for a subgroup of patients and were retained in 
repeated measures analyses of family-specific abundance over time. Responders 
were also characterized by a significantly lower Simpson dominance compared 
to non-responders. The success of FMT treatment of UC patients appears to be 
associated with specific gut microbiota families, such as control of Prevotellaceae. 
Monitoring the dynamics of these microbial families could potentially be used to 
inform treatment success early during FMT. 

Introduction

Ulcerative colitis (UC) is a chronic inflammatory disorder affecting the colon. Symptoms 
experienced by patients during disease exacerbation include bloody stools, diarrhea, and 
abdominal pain.353 The etiology of UC is multifactorial, involving complex interplay between 
the host immune system, gut microbiota, and genetic and environmental factors.354, 355, 374 
UC patients exhibit reduced microbial diversity and alterations in the composition of their gut 
microbiota compared to healthy individuals.355, 375 Notably, a decrease in Bacillota (formerly 
Firmicutes), especially Clostridia (such as Clostridium, Roseburia, and Faecalibacterium), 
and Verrucomicrobia, along with an overgrowth of species from the Enterobacteriaceae 
family (such as Escherichia coli or Klebsiella spp.), have been observed.91, 196, 376, 377 Studies 
investigating associations with common Bacteroidota in the human gut, such as the 
Bacteroidaceae and Prevotellaceae families, have yielded conflicting results.196, 200, 356, 376-379
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The current approach to treat UC focuses on attenuating the hyperactive immune response 
using pharmaceutical drugs, such as local immune suppression with 5-aminosalicylates 
(5-ASA) or systemic immune suppression with prednisolone, thiopurines, biologics, or small 
molecules.196 However, many patients do not derive lasting benefits from these interventions 
and may even experience severe side effects.380 Fecal microbiota transplantation (FMT) 
has emerged as a promising alternative treatment for microbiota-associated disorders, 
particularly in the treatment of recurrent Clostridioides difficile infection.189, 190, 381 FMT involves 
transferring fecal matter from a healthy donor to a patient with the aim of modulating the 
microbiota composition towards a more favourable state. The effectiveness of FMT in UC is 
limited, with a lower response rate observed as compared to FMT treatment of Clostridioides 
difficile infection.193 A recent meta-analysis comprising six randomized controlled trials (RCT) 
reported a short-term clinical response in only half of the patients with active UC following 
FMT administration.193 The specific host factors influencing successful FMT response in UC are 
still unclear, and the donor characteristics that influence patient response to clinical success 
after FMT remain uncertain.23, 199 

A small pilot study in patients with Crohn’s disease suggests an additional value of FMT in 
maintaining remission after successful induction therapy with corticosteroids.380, 382 
Achieving or maintaining remission after FMT may be associated with engraftment of donor 
bacteria.382, 383 We hypothesized that reducing inflammation promotes engraftment of the 
healthy donor microbiota, which in turn may result in clinical improvement in inflammatory 
bowel disease (IBD). To further explore the effects of corticosteroids on engraftment and 
clinical response, we performed a randomized study investigating the effects of three weeks 
budesonide pretreatment prior to FMT in patients with UC. The primary analysis showed no 
association between pretreatment or overall engraftment with clinical response. This may be 
because the anti-inflammatory potential of budesonide is limited after three weeks. However, 
there was a significant donor-dependent effect on engraftment, although the study was not 
powered to detect differences regarding clinical endpoints.384 In the current study we aimed 
to further identify longitudinal associations between the microbiota composition and clinical 
response to FMT treatment. We explored differences in gut microbiota dynamics between 
patients with clinical remission and non-responders following FMT treatment.

Methods

The study population
For the current study we used the stool samples collected from 24 UC patients included in 
our previously described FMT trial (Appendix Table 5.1).384 Patients were randomly assigned 
to be pretreated daily for three weeks with oral budesonide (9 mg) or with a placebo, and 
for treatment with FMT suspensions from donor D07 or D08 (block randomization). Inclusion 
criteria included being at least 18 years old and having a confirmed diagnosis of mild to 
moderate UC, defined as a full Mayo score ranging from 4 to 9 (including a partial Mayo score 
and endoscopic sub score of 1 or 2). Exclusion criteria included, among others, proctitis, 
antibiotic use, surgery within the last 6 weeks, or received other treatments within 12 weeks 
prior to study entry. 

The following clinical and demographic information was collected for each patient in the 
study (Appendix Table 5.1): sex, age at baseline (years), donor ID (D07 or D08), pretreatment 
(placebo or budesonide), and clinical outcome at week 14.
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Patients who did not complete the study because of progressive symptoms or disease were 
considered treatment failures and classified as non-responders. At week 14, nine patients 
were in clinical and endoscopic remission (hereafter called responders), 14 patients were 
non-responders, and one patient was a partial responder. We included this last patient in the 
non-responder group. 

Clinical and laboratory procedures 
Patients received a weekly FMT for four times (at the end of weeks 3, 4, 5, and 6 after 
randomization) from the Netherlands Donor Feces Bank (NDFB), either from donor D07 or 
donor D08 following standard protocols for donor screening, sample collection, sample 
preparation, sample storage, and FMT infusion.385 The samples used for the different FMTs 
came from different donations. Before every FMT the patients fasted for at least six hours. 
A bowel lavage with two liters of macrogol solution (Kleanprep) was performed one day 
before the first FMT to cleanse the intestine. No changes in diet or medication were reported 
by the physician who monitored the patients during the study.

Stool samples of the patients were collected once at baseline, once after the pretreatment 
phase (but still before the FMT treatment), one week after every FMT (four times; designated 
Post-1 to Post-4), and three times as a follow-up, at 8, 10, and 14 weeks after randomization.384 
In total we collected 81 stool samples in the responder group (n = 9 patients) and 99 stool 
samples in the non-responder group (n = 15 patients). Stool samples of donors D07 and D08 
were collected regularly, and a total of 27 samples (n = 13 samples for donor D07 and n = 14 
samples for donor D08) were used for analysis. 

Microbiota composition
DNA was extracted from the collected stool samples (both from the donors and recipients) 
and sequenced by Diversigen (New Brighton, MN, USA) with the Illumina NovaSeq platform 
(100 bp single-end reads to a median depth of 2.9 million reads). Raw reads mapping 
to the human genome were removed using bowtie2 (version 2.4.2)386 and the GRCh37 
reference genome, and reads were quality-trimmed using fastp (version 0.20.1),387 both part 
of an in-house workflow (git.lumc.nl/snooij/metagenomics-preprocessing). The mOTUs3 
workflow (version 3.0.1) was used to generate taxonomic profiles.388, 389 Unassigned, human-
derived, Archaeal, and low-quality reads were removed from the data, which resulted in 93 
different families (i.e., 1552 unique mOTUs). The mOTUs3 database includes taxa based on 
metagenomic bins that have not been formally classified, which are listed as 'incertae sedis' 
(i.s.). Due to the sparsity of the data and the relatively small number of patients, the analyses 
performed at taxonomic genus rank lacked the statistical power needed to provide robust 
and reliable results. For this reason, the data were aggregated to family level prior to the 
statistical analysis. All analyses were performed using R software (R version 4.2.2) and R code 
is available on the GitHub repository (susannepinto/FECBUD_microbiome).

Differences in relative abundances of specific microbial families among responders and non-
responders were tested for statistical significance in repeated measures analyses, as described 
in the ‘longitudinal models of bacterial relative abundances’ section. The average relative 
abundances of the same bacterial families were calculated for each donor from multiple 
samples, considering the donor samples were not collected at the same time points as the 
patient samples. Differences between donor D07 and donor D08 were tested with Pearson's χ2 
test and p-values were corrected for multiple hypothesis testing with the Bonferroni method.
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Principal component analysis
We performed principal component analysis (PCA) on the Aitchison distances calculated 
between each pair of patient microbiota profiles. The Aitchison distance is often used in 
microbiota data because it takes into account the compositionality of the data.219, 390 The 
Aitchison distance involved each patient sample undergoing the centered log-ratio (CLR) 
transformation and then obtaining the Euclidean distance between each pair of samples, 
as implemented in the ‘microViz’ R package.391 

Dirichlet multinomial mixture models
We used the Dirichlet multinomial mixture (DMM) clustering algorithm to identify distinct 
clusters of samples based on their microbial abundance profiles. DMM assumes that 
the microbial abundances in each sample follow one of a given number of multinomial 
distributions, the number of which is determined by the assumed number of clusters in the 
data. We used the ‘dmn’ function from the ‘DirichletMultinomial’ R package to cluster patient 
and donor samples.392 The parameters of the different clusters are estimated by maximizing 
the likelihood of the observed data given the assumed model, with a Dirichlet prior for 
relative abundances of the bacterial families to facilitate parameter estimation and prevent 
overfitting. The prior consisted of a mixture of Dirichlets with k = 1, ..., K to represent the K 
clusters, with hyperparameters denoting cluster-specific weights and relative abundances. 
Next, the bacterial families in each cluster were ranked based on the posterior difference 
between the cluster in a multi-cluster solution versus a one-cluster model. A more detailed 
description of DMM models is presented elsewhere.393 Considering that the DMM clustering 
algorithm uses stochastic likelihood optimization with random initial parameter values, we 
performed the clustering algorithm 1000 times and chose the model with the lowest Laplace 
value, indicating a better parsimonious fit of the model to the data. 

Data were clustered according to a combination of patient and donor samples. As a sensitivity 
analysis, we also applied the algorithm in the following situations: patient samples only; 
patient samples excluding a patient who was placed in a distinct cluster relative to all other 
patients (patient 102); patient samples excluding patients who both had only two samples 
available (patients 109 and 117).

Longitudinal models of bacterial relative abundances
Mixed models were used to model the changes over time in relative abundance for each of 
the 15 most abundant bacterial families in the patient samples. Regarding the distribution of 
relative abundance, many families had a high proportion of zeros, resulting in right-skewed 
distributions. All abundances, except for Ruminococcaceae, were therefore transformed with 
an arcsine square root transformation to approximate normally distributed data. We modelled 
the relative abundances of the 15 selected bacterial families separately in 15 different 
longitudinal models with a linear mixed-effects model (LMM), possibly augmented with a 
zero-inflation component (ZILMM). The ‘lme4’ R package was used for constructing LMMs 
and the ‘glmmTMB’ R package was used for constructing ZILMMs.394, 395 To account for the 
correlation of repeated observations within each patient, both random slopes and random 
intercepts were considered as potential models for each bacterial family. Note that the 
dataset was too small for the specification of predictors in the zero-inflation component. To 
incorporate possible non-linearity in relative abundance trajectories over time into the model, 
a natural cubic spline (with the ‘ns’ function from the ‘splines’ R package) with a knot at 
week 8 (the beginning of the follow-up phase) was considered for all models. 
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Model preference was based on the lowest Akaike Information Criterion (AIC) and model 
diagnostics, judged by a QQ-plot and a plot of residuals against predicted values. All choices 
per family are given in Appendix Table 5.2.

The longitudinal models further included the variables: clinical outcome (non-responder 
vs. responder), time (possibly with a cubic spline), and an interaction with time and clinical 
outcome (non-responder vs. responder). The interaction determined whether there was a 
divergence in the relative abundance of a particular family between non-responders and 
responders, with statistical significance assessed by Wald tests.396 The inclusion of the patient-
specific variables donor (donor D07 vs. D08), pretreatment (budesonide vs. placebo), age, and 
sex (female vs. male) in the model was dependent upon testing their role as confounders or 
contribution to the model fit. This assessment involved examining whether their inclusion led 
to a greater than 15% change in the primary coefficients (notable influence on the model’s 
outcome) or a significant Likelihood Ratio Test (contribution of the variable to the model 
fit); with flexibility allowed for a variable to meet one of these criteria during the evaluation 
process.

Simpson dominance
Simpson dominance was used to summarize microbiota diversity of each sample. We 
calculated this measure (the sum of the squared relative abundances) with the ‘dominance’ 
function from the ‘microbiome’ R package.397 The Simpson dominance estimates the 
probability that two random entities taken from a sample represent the same bacterial 
family within a patient’s microbiota. Hence, a higher Simpson dominance means a higher 
concentration of species from the same family in the sample, which corresponds with a less 
diverse microbiota. To account for the correlation of repeated observations within each 
patient, the Simpson dominance was modelled with a random-intercepts LMM (with the 
‘lme’ function from the ‘nlme’ R package).398 A log transformation was applied to the Simpson 
dominance measure to correct for non-normality. The regression parameter of primary 
interest was the relationship between Simpson dominance and clinical response, either as a 
main effect (denoting baseline differences in diversity) or in interaction with time (denoting 
divergence in diversity between responders and non-responders over time). Additional 
parameters included the effects of sex and time. Similar to the longitudinal LMM of bacterial 
families, time was modelled as a continuous variable with a natural cubic spline (knot at 
week 8). The effects of pretreatment, donor, and age were negligible and therefore not 
included in the model. Wald tests were performed to test for statistical significance of the 
clinical response variables jointly in the model.

Results

Microbiota community composition of donors, responders, and non-responders
The fecal microbiota composition between the two donors was distinctly different (Figure 
5.1 and Appendix Figure 5.1). Donor D07 had a significantly higher relative abundance 
of the families Clostridiaceae, Clostridiales fam. i.s. (i.e., an unclassified family within the 
order Clostridiales), Ruminococcaceae, and Veillonellaceae compared with donor D08, 
whereas donor D08 had a significantly higher relative abundance of Bacillota fam. i.s. and 
Lachnospiraceae (Figure 5.1, Appendix Figure 5.1, and Appendix Table 5.3).
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Overall, the most abundant bacterial family in the patients was Ruminococcaceae. However, 
from the second time point onwards, the relative abundance of Prevotellaceae continued to 
increase in the microbiota of the non-responders. Prevotellaceae overtook Ruminococcaceae 
as the most abundant family for non-responders at Post-1 and remained the most abundant 
for the remaining time points (Figure 5.1, Appendix Figure 5.1, and Appendix Figure 5.2). 
Compared to the non-responders, Lachnospiraceae and Oscillospiraceae seemed to become 
more abundant in the responder group over time (Figure 5.1, Appendix Figure 5.1, and 
Appendix Figure 5.2).

PCA results for donors and patients
The first two components in PCA of patient and donor samples, based on the Aitchison 
distance, explained 24% of the total variation in the data (Figure 5.2). The samples of 
donor D08 clustered away from the patients’ samples, driven by a difference in the relative 
abundance of Lachnospiraceae (Figure 5.2). Patients treated with an FMT from donor D08 
showed a higher responder rate than those from donor D07 (Appendix Table 5.1). The 
difference in distance between non-responders and responders seemed to be explained by 
the relative abundance of Prevotellaceae (Figure 5.2). This applied particularly to the patients 
who received an FMT from donor D08 (Appendix Figure 5.3). Only a few patient samples 
seemed to traverse considerable Aitchison distance over time. Notably, the patients whose 
microbiota became more donor-like over time were more often non-responders (e.g., patients 
110 and 111) (Appendix Figure 5.4).

Figure 5.1. Average microbiota composition of the 15 most abundant 
bacterial families. Abundances were followed over time for the two donors, 
non-responders (NR), and responders (R). Here, the ‘other’ category includes all 
remaining bacterial families.
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Sample clustering with Dirichlet multinomial mixture models
Over 1000 iterations, a five-clusters model was selected as the best-fitting model (i.e., having 
the lowest Laplace value). Figure 5.3 and Appendix Figure 5.5 show that Ruminococcaceae was 
present in all clusters whereas Lachnospiraceae, Bacteroidaceae, and Clostridiales fam. i.s. were 
present in four of the five clusters. The relative abundances of those families in each cluster 
differed: clusters 1 and 4 were dominated by Ruminococcaceae and Lachnospiraceae, whereas 
clusters 2 and 5 were dominated by Ruminococcaceae and Clostridiales fam. i.s. Prevotellaceae 
was the only family almost defining an entire cluster (cluster 3).

Cluster 1 appeared to be associated with a successful clinical response, while cluster 3 
appeared to be associated with non-response (Figure 5.4). For the patient samples, 56% of 
responder samples were classified into cluster 1, and 38% into cluster 2, whereas 42% of 
non-responder samples were classified into cluster 3 (Figure 5.4B). All donor samples, except 
for one, were assigned to cluster 4 (Appendix Figure 5.6). Five non-responder patient samples 
were also assigned to cluster 4 (Figure 5.4A). This donor-dominated cluster disappeared 
in sensitivity analysis on patient samples only (Appendix Figure 5.7A), resulting in the 
reassignment of the corresponding patient samples to cluster 2. Patient 102 was responsible 
for the existence of a separate cluster (cluster 5), with all its measurements belonging to that 
cluster. Removal of this patient in a sensitivity analysis resulted in the disappearance of that 
cluster, with re-assignment of the other corresponding samples to cluster 2 (Appendix 
Figure 5.7B). Removing patients with only two measurements (patients 107 and 119) had a 
minor impact on the results (Appendix Figure 5.7C).

Figure 5.2. PCA plot with Aitchison distances in microbiota profiles, showing 
the distance between sample types. The PCA plots include data ellipses around 
the different groups and loading vectors of families to obtain an initial visualization about 
the extent of separation between non-responder, responder, and donor samples. The 
different symbols, closed circles, open circles, open triangles, and closed triangles, represent 
responders, non-responders, donor D07, and donor D08, respectively, while the different 
colors indicate the various groups (responders, non-responders, and donors).
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Out of 24 patients, nine patients (38%) remained in the same cluster for all of their provided 
samples (Figure 5.4A). An alluvial plot of patient samples showed the substantial changes 
in sample membership and cluster size throughout the clinical trial (Figure 5.4C). There 
was a mixture of non-responder and responder samples in cluster 1 at the beginning, with 
most samples at baseline being classified into cluster 1. There was then a shift toward more 
responder samples in cluster 1 from Pre-FMT onwards. Samples in cluster 1 were exclusively 
composed of responder samples at time points Post-4, Week 10, and Week 14. Cluster 3 was 
fully composed of non-responder samples after pretreatment and after every FMT treatment 
(Figure 5.4C).

Coloring samples by their cluster membership in the PCA plot of Aitchison distances showed 
separation among clusters 1, 2, and 3, with cluster 2 being the intermediate cluster (Appendix 
Figure 5.6). The Prevotellaceae vector was pointed in the direction of cluster 3, corresponding 
to a potential association between this cluster and non-response (Appendix Figure 5.6), 
possibly driven by the donor (Figure 5.2 and Appendix Figure 5.3). There appeared to be 
some separation between donor samples, a majority of which were in cluster 4, and patient 
samples. Donor D08 samples were close to cluster 1 samples. Meanwhile, donor D07 samples 
were positioned near cluster 2 samples (Appendix Figure 5.6). Finally, samples from cluster 5 
were tightly grouped together, likely because they all originated from the same patient.

Figure 5.3. Mean relative abundance of bacterial 
families in the five clusters. Clusters are detected by the 
Dirichlet multinomial mixture model.
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Mixed models of bacterial families
Responders and non-responders showed significantly different trajectories in relative 
abundance over time for the families Prevotellaceae, Lachnospiraceae, Ruminococcaceae, 
Oscillospiraceae, and Sutterellaceae (Figure 5.5, Appendix Table 5.2, and Appendix Figure 5.2). 
Prevotellaceae showed the greatest difference in trajectory between responders and non-
responders over time. Note that the preferred model for Prevotellaceae had a straightforward 
linear trajectory and used only the original time variable instead of splines. The family 
Prevotellaceae consisted of four named genera, of which Prevotella (especially Prevotella copri) 
was the most abundant (Appendix Figure 5.8). 

There were four families with a significant donor effect, namely Veillonellaceae, Rikenellaceae, 
Sutterellaceae, and Bifidobacteriaceae (Appendix Table 5.2). Notably, removal of the donor 
variable from the model for Sutterellaceae diminished the significance of the main effect 

Figure 5.4. Clustering of donor and patient samples. A) Cluster membership over time 
per patient for the non-responders (upper facet) and responders (lower facet). Lack of colored bar 
indicates that no stool sample was collected at that time point. B) Percentage of each cluster for 
non-responders and responders. C) Alluvial plot of patients distributed over the different clusters 
over time. This plot displays the distribution of clusters per time point and whether each cluster is 
comprised of only one clinical group (e.g., only non-responders) for every time point. A grey box 
means that the cluster at that time point contains both samples from responder and non-responder 
patients, a colored box only contain responder samples or only non-responder samples.
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related to clinical response. This observation underscores the role of the donor variable in 
influencing the association between Sutterellaceae and clinical response. Rikenellaceae and 
Bacillota fam. i.s. had a significant sex effect, Veillonellaceae had a significant pretreatment 
effect (Appendix Table 5.2). None of these other significant covariates altered the statistical 
significance of clinical response. This observation suggests that the estimated associations 
were not confounded by these covariates.

Simpson dominance
The steadily increasing relative abundance of Prevotellaceae in non-responders found before 
was reflected in the Simpson dominance. Simpson dominance was higher for non-responders 
compared to responders, especially throughout the follow-up period (Figure 5.6). There was 
a significant difference between the Simpson dominance in responder and non-responder 
patients (Wald test: p-value = 0.004). Our study was too small to determine whether this 
difference already existed at baseline or developed over time (Appendix Table 5.4). The LMM 
random-intercept model suggested that there was also a significant sex effect (Appendix 
Table 5.4). However, sex did not alter the statistical significance of clinical response. This 
observation suggests that the estimated associations were not confounded by the sex of the 
patients. 

Figure 5.5. Results of the mixed models. Only the families among the 15 most 
abundant families (Prevotellaceae, Lachnospiraceae, Ruminococcaceae, and Oscillospiraceae) 
for whom we found a significant effect in relation to clinical response with the Wald test 
are shown. The point estimates, 95% confidence intervals, and a reference line at zero are 
shown. When the horizontal lines do not cross the vertical reference line, this means that the 
coefficients are significantly different from 0. All p-values are given in Appendix Table 5.2.

−0.5 0.0 0.5
Coe�cient estimate

Prevotellaceae
Lachnospiraceae
Ruminococcaceae
Oscillospiraceae
Sutterellaceae

Variable name Spline

Sex [male relative to female]

1

Age

2

Pretreatment 
[placebo relative to budesonide]  

Donor [D08 relative to D07] 

Clinical outcome week 14 
[responder relative to non-responder]

Time

Time

Clinical outcome week 14 
[responder relative to non-responder]:time

Clinical outcome week 14 
[responder relative to non-responder]:time

1

2

Bacterial family



131Chapter 5 Dynamics of gut microbiota after FMT

Discussion

Inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) have been linked to 
alterations in both the composition and metagenomic function of the gut microbiota.355, 375 
In this study, we employed a wide range of analytical techniques to investigate potential 
associations between microbiota and clinical outcomes following FMT in UC patients. 
A subgroup of the cohort (9 of 24 patients) reached a successful combined clinical and 
endoscopic remission after the FMT treatment, and our results suggest that this response 
may be related to certain gut microbiota families. Specifically, longitudinal models and 
cluster analysis of repeatedly measured compositional data indicated that the success 
of FMT treatment of UC patients appears to be associated with control of Prevotellaceae. 
Conversely, our analyses also highlighted a potentially beneficial role of Lachnospiraceae 
and Ruminococcaceae in FMT treatment response. Furthermore, we identified several other 
bacterial families, including Oscillospiraceae and Sutterellaceae, that exhibited associations 
with clinical remission. The clustering results indicated that differences in the gut microbiota 
of responders versus non-responders might already be apparent early during the treatment. 
If this result can be confirmed by larger studies, clinical success may be predicted from 
early microbiota analysis after the first FMT treatment and mitigating actions, for example, 
stopping, personalizing, or changing the treatment, might be envisioned.

Donor-related microbiota characteristics may potentially impact the clinical efficacy of 
FMT.198 Intriguingly, we observed marked differences between the donors’ and the patients’ 
microbiota. Amongst patients who responded well to FMT, gut microbiota composition did 
not transition fully to resemble that of the donors at the end of follow-up.

Figure 5.6. Change in Simpson dominance calculated for non-responders 
and responders. The points indicate the individual measurements of the patients. 
The lines are the mean Simpson dominance per group.
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This contrasts with earlier studies that suggested that a donor-like microbiota is preferred 
after FMT treatment,23, 198, 199, 383 and suggests that some complementarity in microbiota 
compositions between donors and recipients is required for a successful clinical response.199, 200 
In other words, the complementarity of the donor-patient pairing seems more important to 
achieve clinical remission than attaining a donor-like microbiota. The samples of donor D08 
clustered closer to cluster 1 (associated with a successful clinical response), and the samples 
of donor D07 were closer to cluster 3 (indicating non-response). Note that an FMT from donor 
D08 resulted in relatively more treatment success in the patients than donor D07. Also, donor 
D08 seemed to have a more diverse microbiota than donor D07, although not statistically 
significant. Donor gut microbiome diversity has been associated with a higher clinical response 
before.399 In addition, higher post-FMT diversity has been associated with remission, suggesting 
that the variety of introduced organisms may promote recovery.23 It was already noted that 
donor D08 was the more successful donor; however, intriguingly, this was the donor with the 
least engraftment.384 This observation suggests that the persistent transfer of microbes may 
not be the prime reason for clinical success. Possibly, the transient exposure to an external 
microbial community might still induce a beneficial change in the recipient's gut environment. 
It is also possible that patients who received FMT from donor D08 had a more favourable 
starting state, while those who received FMT from donor D07 required stronger microbiota 
changes to move to a more favourable state. Further investigations are warranted to unravel 
the intricate dynamics underlying the observed outcomes.

This study provides novel evidence for a potential association between control of 
Prevotellaceae at a moderate abundance and favourable clinical outcomes following FMT 
in UC patients. In addition, the Simpson dominance measure suggests that Prevotellaceae 
constituted a sizable proportion of the microbiota in non-responsive FMT patients throughout 
the course of the clinical trial. Screening the patients (and donors) for Prevotellaceae before 
and during treatment, and matching donors to patients accordingly might improve the 
response rate. However, a previous study suggested that higher levels of Prevotella (a genus 
level within Prevotellaceae) may confer health benefits in UC patients after treatment. For 
instance, studies on UC patients who underwent drug and surgical treatments, excluding FMT, 
demonstrated that responders had higher baseline levels of Prevotella compared to non-
responders.378 Notably, a previous FMT trial on IBD patients did not report any detrimental 
effects of increased Prevotella abundance, despite observing a substantial increase in this 
bacterium in their patients after FMT treatment.200 They classified Prevotella as a colonizing 
bacterium, as its abundance in patients reached a level comparable to that in the donors. Of 
note, in our study, responders also maintained levels of Prevotellaceae comparable to donors, 
but in non-responders there was a clear overgrowth. The conflicting role of Prevotella in 
human health has been attributed to the high diversity within the Prevotella genus. While the 
majority of Prevotella species are commonly found in healthy individuals, certain strains may 
be implicated in disease pathogenesis.400, 401 For instance, Prevotella intestinalis has been shown 
to induce intestinal inflammation upon colonization in mice.379 Prevotella melaninogenica and 
Prevotella oralis have been characterized as tipping elements.402 This means that Prevotella 
stands out as a bimodal group, with either a high or low abundance state, and can be a pivotal 
driver in the context of microbial ecosystem stability. This finding was reiterated in a recent 
investigation into the involvement of gut microbiota families with Crohn’s disease activity, 
where we found that associations with Prevotellaceae were among the most heterogeneous 
across individual patients (see Chapter 4).403
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In contrast to Prevotellaceae, other bacterial families have shown associations with positive 
clinical outcomes. Specifically, the families Lachnospiraceae, Ruminococcaceae, and 
Oscillospiraceae have also been found to increase following FMT in patients with UC in 
other studies.195 Lachnospiraceae and Ruminococcaceae may play a role in modulating the 
immune response and inflammatory pathways in the colon.195 Earlier attempts to cluster 
the gut microbiota of healthy and unhealthy individuals showed clusters dominated by 
Bacteroides, Prevotella, and Ruminococcus.404-406 While our study identified clusters dominated 
by Prevotellaceae and Ruminococcaceae, we did not find clusters dominated by Bacteroides 
(i.e., Bacteroidaceae). This discrepancy could be due to differences in the study populations, 
or the specific methodologies used for microbiota analysis. Interestingly, contrary to previous 
literature, the expected increase in Clostridiaceae among responders was not observed in the 
present study. This discrepancy in Clostridiaceae abundance may be attributed to variations 
in FMT protocols employed across different clinical trials or the low number of patients in 
this study.407 In addition, in contrast to the present study, previous research has reported an 
increased abundance of Enterobacteriaceae in UC patients who did not respond to drug and 
surgical interventions, with higher levels being associated with mucosal inflammation.378 
Discrepancies in Enterobacteriaceae abundance may stem from differences in the types of UC 
treatments employed, for example, when FMT was not involved as a treatment modality.378 
In the context of FMT, a study involving IBD patients who underwent FMT revealed the 
presence of a dysbiotic Bacteroides cluster, as well as an Enterobacteriaceae cluster. Donors 
were subjected to cluster analysis and categorized into Prevotella or Bacteroides clusters. 
Interestingly, the clinical outcome of FMT varied depending on the cluster of both the 
patients and their respective donors.200 

The longitudinal study design of our trial, with protocolized data collection across all stages 
of FMT, enabled a uniquely fine-grained view of gut microbiota dynamics during and after 
FMT in UC patients. Our study allowed us to assess changes on an almost weekly basis. 
RCTs with a strong longitudinal component often involve a smaller number of patients with 
more frequent repeated measures, as compared to RCTs that focus on clinical outcomes. For 
example, in a recent clinical trial 42 patients provided a single stool sample for microbiota 
analysis before FMT, followed by another single sample after FMT.200 Another clinical trial 
included 12 patients who submitted stool samples weekly throughout their 12-week FMT 
treatment and at the 18-week follow-up.408 A limitation of our study is that the results 
of statistical analyses should be interpreted with caution due to multiple tests in a small 
number of patients. Yet, most associations found in cluster analysis were retained in repeated 
measures analyses where we also accounted for the correlation of repeated observations 
within each patient. Moreover, despite the relatively small number of patients (n = 24) and 
donors (n = 2), both DMM and PCA clustering utilize all 180 patient samples and 27 donor 
samples available, rather than considering observations per patient.

Microbiota data are compositional, high-dimensional, and often zero-inflated.217, 219 
Moreover, the intestinal microbiota exhibits complex interactions, including competition 
and cooperation, that form intricate networks.8, 252 These characteristics pose challenges to 
analytical methods, such as mixed models, which are commonly employed to investigate 
temporal variation and potential differences in bacterial abundance trajectories among 
clinical groups. Our analysis was limited by the individual modeling of each bacterial family, 
neglecting the interplay and interactions between families within the microbiota network. 
However, results obtained by supervised models of family-specific abundance over time were 
in line with results obtained by unsupervised methods (PCA and DMM clustering) that use
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community characteristics. Cluster analysis has been widely employed to explore the 
relationship between gut microbiota and conditions such as child gut development, 
depression, obesity, and IBD.200, 409-411 Conventionally, unsupervised methods are suitable 
for exploratory analyses.393 If the distinct clusters that we identified are confirmed in 
further larger-scale longitudinal analyses, this may lead to tailored diagnosis and treatment 
approaches based on specific cluster characteristics.412 In our study, this would, for example, 
mean that the FMT treatment is stopped or changed to another donor when patients are 
found to be in the Prevotellaceae-dominated cluster during the treatment. While clustering 
techniques provide valuable insights, it is important to recognize that they depend on various 
choices by the modeler, including cutoffs and priors, which may lead to different clustering 
results. 

Our study is admittedly rather exploratory in nature, but consistently revealed indications 
of a potential association between controlled abundances of Prevotellaceae with successful 
clinical and endoscopic remission following FMT treatment in UC patients. Moreover, we 
also highlighted a potential beneficial role of Lachnospiraceae and Ruminococcaceae. This 
provides a basis for new hypotheses regarding the role of gut microbiota in UC. Therapeutic 
interventions may be refined in the future, with early prediction of clinical outcomes and 
more personalized FMT treatments.

Appendices of Chapter 5

Appendix Table 5.1 - Clinical and demographic information of responders 
and non-responders.

Respondersa Non-respondersb

Number (Percentage) Number (Percentage)

Patients 9 (38%) 15 (63%)

Samples 81 (45%) 99 (55%)

     Missing 0 36 

Sex

     % Femalec 6 (67%) 6 (40%)

Pretreatment

     % Budesonidec 5 (56%) 8 (53%)

Donor

     % D07c 2 (22%) 10 (67%)

Mean (SD) Mean (SD)

Age 45 (17) 48 (16)
a Remission (i.e., response) was defined at week 14 as no symptoms (partial Mayo score of 2

with no individual sub score of > 2) and an endoscopic Mayo score 0–1.
b All other patients, including those with a partial response (a decrease of at least 3 points in the

partial Mayo score and at least 1 point at the endoscopic Mayo score) at week 14 and patients 
who left the study early, were classified as non-responders.

c Percentages calculated separately for responders and non-responders.



135Chapter 5 Dynamics of gut microbiota after FMT

Appendix Table 5.2 - Model choice and mixed models results for the 15 most 
abundant families. 
Significant results are obtained via a χ2 statistic (Wald test). Significant results are 
highlighted in bold and blue. Absence of a p-value means that the variable was not 
included in the model.
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Bacillota fam. i.s. LMM (random 
intercepts)

0.004 0.760 0.877 0.535 0.428

Bacteroidaceae LMM (random 
intercepts)

0.243 0.377 - 0.794 0.052

Bacteroidales fam. i.s. ZILMM (random 
intercepts)

0.182 - - - 0.546

Bifidobacteriaceae ZILMM (random 
intercepts)

0.230 - - 0.023 0.104

Clostridiaceae ZILMM (random 
intercepts)

0.377 0.694 - - 0.439

Clostridiales fam. i.s. ZILMM (random 
slopes)

0.197 0.280 0.821 0.629 0.909

Coriobacteriaceae ZILMM (random 
intercepts)

0.618 0.027 - 0.825 0.146

Eubacteriaceae LMM (random 
slopes)

0.509 0.701 0.499 0.337 0.661

Lachnospiraceae LMM (random 
intercepts)

0.059 0.904 0.640 0.734 0.014

Oscillospiraceae LMM (random 
intercepts)

0.459 0.135 0.550 0.233 0.020

Prevotellaceae LMM (random 
intercepts)

0.230 0.251 - - < 0.001

Rikenellaceae ZILMM (random 
intercepts)

< 0.001 0.061 - 0.038 0.181

Ruminococcaceaeb LMM (random 
intercepts)

0.963 0.708 0.891 0.381 0.011

Sutterellaceae ZILMM (random 
intercepts)

- - - 0.004 0.010

Veillonellaceae ZILMM (random 
slopes)

0.589 0.503 < 0.001 0.046 0.435

a Wald test on multiple parameters: Responders, Responders x time point (first and second
spline) 

b No transformation
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Appendix Table 5.3 - Significant differences in bacterial abundances 
between the two donors (for donor D07 n = 13 and for donor D08 n = 14 
samples). 
The results are obtained with the independence test. Significant results are highlighted 
in bold and blue.

Family Mean relative abundance p-valuea

Donor D07 Donor D08

Bacillota fam. i.s. 0.0072 0.0327 < 0.001

Bacteroidaceae 0.0265 0.0199 0.311

Bacteroidaceae fam. i.s. 0.0003 0.0002 0.722

Bifidobacteriaceae 0.0575 0.0575 0.100

Clostridiaceae 0.0572 0.0365 0.003

Clostridiales fam. i.s. 0.1033 0.0265 < 0.001

Coriobacteriaceae 0.0501 0.0660 0.144

Eubacteriaceae 0.0204 0.0367 0.060

Lachnospiraceae 0.1971 0.4755 < 0.001

Oscillospiraceae 0.0126 0.0024 0.006

Prevotellaceae 0.0314 0.0000 0.004

Ruminococcaceae 0.3183 0.1400 < 0.001

Sutterellaceae 0.0018 0.0027 0.371

Veillonellaceae 0.0582 0.0000 < 0.001
a After a Bonferroni correction in which the adjusted p-value threshold was 0.004

Appendix Table 5.4 - Regression coefficients and p-values of the Simpson 
dominance random-intercepts LMM. 
Significant results are highlighted in bold and blue.

Predictors Estimates Standard error p-value

(Intercept) –1.88 0.1 < 0.001

Sex (male relative to female) 0.27 0.09 0.01

Clinical outcome (responder 
relative to non-responder)

–0.14 0.13 0.30

Time (1st spline) 0.30 0.16 0.06

Time (2nd spline) 0.23 0.12 0.06

Clinical outcome (responder 
relative to non-responder) * 
Time (1st spline)

–0.2 0.24 0.07

Clinical outcome (responder 
relative to non-responder) * 
Time (2nd spline) 

–0.22 0.16 0.17
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Appendix Figure 5.1 - Composition of the 15 most abundant families in the 
donors and the patients’ microbiota over time. The 12 patients at the left-hand 
side of the plot (under the plot of donor D07) were treated with feces from donor D07. 
The 12 patients at the right-hand side of the plot (under the plot of donor D08) were 
treated with samples of donor D08. Patients with a blue title are responders, patients with 
a red title are non-responders.
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Appendix Figure 5.2 - Relative abundances over time of the 15 most abundant 
bacterial families. The points indicate the individual measurements of the patients. The lines 
are the mean relative abundances per group (responders in blue and non-responders in red). 
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Appendix Figure 5.3 - PCA plot with Aitchison distances in 
microbiota profiles differentiated per donor. The PCA plots include 
data ellipses around the different groups (e.g., blue for the responders, red 
for the non-responders, and grey for the donors) and a loading vector of 
Prevotellaceae to obtain an initial visualization about the extent of separation 
between responders, non-responders, and donor samples. The different symbols, 
closed circles, open circles, open triangles, and closed triangles, indicate 
responders, non-responders, donor D07, and donor D08, respectively.
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Appendix Figure 5.4 - Plot with Aitchison distances in microbiota profiles 
differentiated per patient and corresponding donor. Patients with a blue title 
are responders, patients with a red title are non-responders.
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Appendix Figure 5.5 - Importance of the contribution of different families 
to each cluster. A) Cluster 1, B) Cluster 2, C) Cluster 3, D) Cluster 4, and E) Cluster 5.
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Appendix Figure 5.6 - PCA plot with Aitchison distances in 
microbiota profiles for different clusters, showing the taxa that 
generally differ across the samples. The PCA plots include data ellipses 
around the different Dirichlet clusters and loading vectors of families to 
obtain an initial visualization about the extent of separation between patient 
(responders and non-responders) and donor samples. The different symbols, 
closed circles, open circles, open triangles, and closed triangles, indicate 
responders, non-responders, donor D07, and donor D08, respectively.
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Appendix Figure 5.7 - Sensitivity analyses of DMM models. A) patient 
samples only, B) patient samples excluding patient 102 (with a distinct microbiota 
from all other patients), and C) patient samples excluding patients 109 and 117 
(only two samples available for those patients).
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Appendix Figure 5.8 - Genera (panels A and B) and species (panels C and 
D) within the Prevotellaceae family. Relative abundances (panels A and C) and 
counts (panels B and D) are given.
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Ecological dynamics of donor and host 
microbial species in the treatment of 
ulcerative colitis with fecal microbiota 
transplantation

Abstract

Fecal microbiota transplantation (FMT) has emerged as a promising treatment for 
the chronic immune-mediated disease ulcerative colitis (UC). However, the ecological 
dynamics underlying clinical remission remain poorly understood. To investigate 
these dynamics, we analysed data from 24 UC patients treated with four rounds of 
FMT donated by two healthy donors. Microbiota samples from patients were collected 
at nine standardized time points before, during, and after treatment, covering a 
period of 14 weeks. Additionally, 27 donor samples were analysed. Species detected 
in the recipients’ gut microbiota were categorized into ecological categories based 
on their origin and temporal dynamics: species already present in the host pre-FMT, 
species derived from the donor, or novel species, i.e., absent before FMT in both host 
and donor samples but detected later. Overdispersed Poisson regression models with 
random effects were employed to model the number of species within each category 
over time. Furthermore, we investigated the change in relative abundance for species 
present in the host pre-FMT. The results revealed that host species with higher relative 
abundances prior to FMT were more likely to persist following FMT. Notably, patients 
who achieved combined clinical and endoscopic remission at week 14 retained a 
significantly higher number of host species compared to non-responders. In contrast, 
non-responders initially exhibited a higher colonization of donor species than 
responders, but colonization rate decreased significantly over time in non-responders. 
These findings suggest that clinical remission following FMT is associated with a 
resilient patient gut community, capable of controlled incorporation of donor species, 
without replacing resident species.
 

Introduction

Fecal microbiota transplantation (FMT) is the transfer of fecal matter, including gut 
microorganisms, from the intestine of a healthy donor to a diseased recipient with the goal 
of modulating the recipient’s disturbed microbiota.189, 190, 381 FMT has been demonstrated to be 
effective in recurrent Clostridioides difficile infection,189, 381 but the success rate is lower for more 
complex diseases, such as inflammatory bowel disease (IBD).193, 413 A possible cause for the 
lower success rate of FMT in complex diseases is the tendency of the recipient’s microbiota to 
revert to its original pre-FMT adverse state.23 Transition to a healthier state is likely helped by 
the successful colonization (engraftment) of donor-derived microorganisms. Therefore, it has 
been suggested that the success of FMT depends on the donor’s gut microbial diversity and 
composition.210, 399 The extent to which shifts in the patient’s microbiota towards the donor’s 
microbiota are beneficial for resolving gut disturbances remains unclear.23, 195, 200, 414 This donor-
centric view has been challenged, and the importance of the recipient and procedural factors 
to determine FMT outcomes has been highlighted.199, 415-417 
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In previous analyses of the FMT trial for ulcerative colitis (UC) we examined the engraftment 
of specific microbial species following FMT, and their associations with clinical remission (see 
also Chapter 5).384, 414 For this, we analysed the data from a randomized controlled trial (RCT) 
involving 24 UC patients treated with four rounds of FMT donated by two healthy donors. 
Interestingly, we observed that the rate of microbial engraftment did not correlate with 
successful clinical remission,384 a paradox also noted in a meta-analysis conducted by Schmidt 
et al. (2022) involving 316 FMT procedures.199 In their study, clinical success was not correlated 
with donor strain colonization or replacement of recipient species. Instead, recipient factors 
seemed to play a more important role in determining FMT outcomes than donor-related 
factors.199 The seemingly limited role of engraftment in predicting clinical outcome of FMT 
defies the super-donor hypothesis and necessitates deeper investigation into the ecological 
changes underlying clinical remission.

In this study, the role of donor and host microbial species in determining clinical outcome of 
FMT is investigated further by applying the conceptual framework introduced by Schmidt 
et al. (2022)199 to a longitudinal setting. We capitalize on a randomized controlled trial384 with 
dense repeated sampling to map the succession dynamics in the recipient’s gut microbiota 
of UC patients following FMT treatment in relation to clinical remission. Our analysis focuses 
on ecological dynamics on a species level, categorizing all taxa based on their origin and 
temporal presence: already present in the host before FMT, derived from the donor, or 
detected during or after the FMT therapies while absent in both the pre-FMT host and the 
donor.

Methods

The study population
A total of 24 adult patients experiencing mild to moderate exacerbations of UC were included 
in a double-blind randomized controlled trial conducted at LUMC.384 Written informed 
consent was obtained from all study participants prior to their participation. Demographic 
variables and subject characteristics are provided in Appendix Table 6.1, with further details 
on the study population and clinical characteristics provided by van Lingen et al. (2024) and 
in Box 6.1.384

Following pretreatment with either budesonide (n = 12) or placebo (n = 12), patients received 
four fecal transplants at weekly intervals. Donors (D07 and D08) were randomly assigned. 
FMTs were infused in the duodenum via a nasoduodenal tube or gastroscope.385 Stool 
samples were obtained before and after the pretreatment phase, before every FMT (four 
times), and 1 week, 4 weeks, and 8 weeks after treatment. At the end of the study, at week 
14, a sigmoidoscopy was performed to assess the endoscopic Mayo score. Remission (i.e., 
response) was defined at week 14 as no symptoms (partial Mayo score of 2 with no individual 
sub score of > 2) and an endoscopic Mayo score 0–1. Partial remission was defined as a 
decrease of at least 3 points at the partial Mayo score and at least 1 point at the endoscopic 
Mayo score. A total of nine patients achieved remission, and one patient achieved partial 
remission. Of the 14 non-responders, 10 patients left the study early (in total 2 patients did 
not finish all four FMT treatments) because their symptoms worsened.384, 414
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For this study, we defined a responder as a patient in remission after FMT (n = 9). Non-
responders were defined as having activity despite FMT (non-responders and partial 
responders, n = 15).

Microbiota data
DNA was extracted from the donor and recipient stool samples and shotgun sequenced with 
100 bp single-end reads to a median depth of 2.9 million reads by Diversigen (New Brighton, 
Minneapolis, USA) using the Illumina NovaSeq platform. Raw reads mapping to the human 
genome were removed using bowtie2 (version 2.4.2)386 and the GRCh37 reference genome 
and reads were quality-trimmed using fastp (version 0.20.1),387 both part of an in-house 
workflow (git.lumc.nl/snooij/metagenomics-preprocessing). The mOTUs3 workflow (version 
3.0.1) was used to generate taxonomic profiles.388, 389 Unassigned, human-derived, archaeal, 
and low-quality reads were removed from the data, which resulted in 1552 unique mOTUs. 
For the sake of simplicity, we use the term ‘species’ to refer to unique mOTUs throughout. 
The results table was then imported into R (version 4.2.2) for analysing the data, visualizing 
the results and performing the statistical tests. R code is available on the GitHub repository 
(susannepinto/FECBUD_microbiome).

Mapping ecological categories
Respectively 13 and 14 samples were available for donor D07 and donor D08. Note that 
every recipient received FMT material from only one of the donors. We could not match 
every recipient sample to a specific donor sample used for the FMT, because not every 
donor sample used for FMT was sequenced. Therefore, we created a dataset with the core 
microbiota for each donor. The core donor microbiota was defined as having its relative 
abundance higher than 0.1% in at least one sample. The core donor microbiota yielded 
120 and 84 unique species for donors D07 and D08, respectively. 

Subsequently, we created a presence or absence dataset of all species per recipient and 
per time point, and every species was assigned to an ecological category per recipient and 
per time point based on its origin and presence over time, according to the decision tree 
presented in Figure 6.1 (detailed explanation Box 6.2).

Box 6.1 - Patient inclusion criteria, treatment protocols, and study 
design. The patients were included in the study if they had a full Mayo score 
of 4–9 and a colonoscopy with a Mayo endoscopic sub score of 1–2 within 
four weeks before study entry. Patients were excluded from this study if they 
had used antibiotics (< 6 weeks), used oral corticosteroids (< 8 weeks), surgical 
treatment (< 12 weeks), treatment with any investigational drug in another trial 
(< 12 weeks), significant signs of active infectious gastro-enteritis or enterocolitis, 
or any other significant medical illnesses. During the study, the medication 
and diet of the patients was not changed. Patients randomly received daily 
treatment for three weeks with either 9 mg budesonide or a placebo drug 
(Appendix Table 6.1). One day before the first FMT a bowel lavage with two liters 
of Kleanprep (macrogol solution) was performed to cleanse the intestine. Before 
every fecal transplantation the patients did not eat for at least six hours. The 
fecal donor suspensions were provided by the Netherlands Donor Feces Bank 
(NDFB). Collected fecal samples were stored and prepared at the LUMC following 
standard protocols.385 Further details on the study population and clinical 
characteristics are provided by van Lingen et al. (2024).384
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Figure 6.1 - Decision tree used to assign species to ecological categories. The categories 
are based on the origin and presence of a species over time. First, the species was compared to the 
pre-FMT host samples, then to the core donor microbiota. Next, the presence or absence at all previous 
time points was considered to assign the species to an ecological category. Note that we ignored 
the first absence of a species when categorizing species as lost or as transient upon re-detection. 
In Sensitivity 1 we evaluated whether this choice had an impact on the results (Box 6.2).

Present in 
host at 

pre-FMT

Present 
in donor

Resident

Species loss

Host transient

Colonization

Novel loss

First time 
present in 
host at t

Colonization

Donor transient

*The �rst absence of a species (after being present) is ignored
Absent

Novel

Novel

Novel transient

False

Present in 
host at t* 

Present 
in host till 

t - 1* 

False

False

True

False

True

Present in 
host at t* 

True

False

Rejection

Present 
in host till 

t - 1* 

False

True

False

True

Present in 
host at t* 

True

Present 
in host till 

t - 1* 

Present 
in host till 

t - 1* 

True

False

True

False

First time 
present in 
host at t

True

False

False

True

True

150Chapter 6 Ecological dynamics of donor and host microbial species following FMT



Per recipient, for every species ever present at any time point in the recipient, or present 
in the microbiota of the associated donor, a comparison was made with the recipient’s 
pre-FMT sample and with the microbiota of the corresponding donor. All species present in 
the recipient’s pre-FMT sample were placed into a host category (Resident, Host transient, 
or Species loss), depending on the pattern of presence over time. If species were unique 
for the donor relative to the recipient’s pre-FMT samples, species were placed into a donor 
category (Colonization, Donor transient, or Rejection). If species were not present in the 
host pre-FMT or in the microbiota of the donor, they were classified as a novel species 
(Novel, Novel transient, or Novel loss). Within these broad categories, a species was further 
categorized as a stable (Resident, Colonization, or Novel), intermittent (Host transient, Donor 
transient, or Novel transient), or previous occupant (Species loss, Rejection, or Novel loss) 
in the microbiota, depending on the presence at that moment and at the previous time 
points. Because absence in microbiota data can also mean that the abundance was under the 
detection limit, in the base case we allowed, for each species, the occurrence of one single 
absence without direct consequences for categorization in the rest of the time series. Due 
to the way the categories are defined, some categories cannot occur at the first time points. 
For example, a donor-derived species first had to colonize the gut (colonization), then 
be absent for at least two time points (absence ignored (NA) and Rejection), and then be 
detected again to be categorized as a Donor transient species (Box 6.2).

In sensitivity analyses, we tested some variations to the base case criteria regarding the 
temporal information used for categorizing the species. In Sensitivity 1 we did not allow the 
occurrence of any absence when categorizing species into either of the host, donor, or novel 
categories (Figure 6.1). In Sensitivity 2 we only considered the presence or absence at the 
previous time point instead of all the previous time points (Appendix Figure 6.3). In contrast, 
in Sensitivity 3 the presence of species at all time points is considered in the categorization 
of species at a particular time point (Appendix Figure 6.4). Sensitivity 4 is the same as 
Sensitivity 3 but with the added criterion of not allowing the occurrence of any absence 
(Appendix Figure 6.4). In Box 6.2 examples on categorization of species and the differences 
between the sensitivity analyses are illustrated.
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Box 6.2 - Examples illustrating the categorization of the species in the base case 
and in the four sensitivity analyses.

Sensitivity analyses
In Sensitivity 1 we did not allow the occurrence of any single absence when categorizing 
species as lost or as transient upon re-detection (in either the host, donor, or novel 
categories). Secondly, in Sensitivity 2 we only considered the previous time point instead 
of all previous time points (Appendix Figure 6.3). Therefore, the species can switch more 
frequently between ecological categories. In Sensitivity 3 and in Sensitivity 4, we considered 
the full time series (also future points) before assigning them to a category with and without 
considering a single absence, respectively (Appendix Figure 6.4).

Species present in the host pre-FMT
In the base case scenario, a host species was present in one of the pre-FMT samples of 
the host (Example 6.1). The resident species has been present up to a specific time point, 
however, we have ignored a single absence of the species. If the species was absent for two 
or more time points up to the current one, the species was categorized as a host transient 
species. The third possible category for a host species is based on the absence of the species 
at a specific time point and is called ‘Species loss’.

Example 6.1 - A species present in the host pre-FMT can be categorized 
as Resident (Res), Host transient (HT), or Species loss (SL). 

Time point

Donor
Host 
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FMT

1 2 3 4 8 10 14
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A - Base case Res Res NA Res Res Res Res

B - Sensitivity 1 Res Res SL HT HT HT HT

C - Sensitivity 2 Res Res SL HT Res Res Res

D - Sensitivity 3 Res Res NA Res Res Res Res

E - Sensitivity 4 HT HT SL HT HT HT HT

Species identified in both the host pre-FMT and the donor are categorized as host species 
into the groups: Resident (Res), Host transient (HT), and Species loss (SL) (Example 6.2).
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Example 6.2 - A species both present in the host pre-FMT and in the 
donor will be categorized as a host species into: Resident (Res), Host 
transient (HT), or Species loss (SL).

Time point

Donor
Host 
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FMT
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A - Base case NA SL HT SL SL HT HT

B - Sensitivity 1 SL SL HT SL SL HT HT

C - Sensitivity 2 SL SL HT SL SL HT Res

D - Sensitivity 3 NA SL HT SL SL HT HT

E - Sensitivity 4 SL SL HT SL SL HT HT

Donor-derived species
A donor species is a species that was not detected in the host pre-FMT, and that was present 
in the core donor microbiota (Example 6.3). Again, there are three possible categories: 
Colonization, Donor transient, and Rejection. Species are categorized according to rules 
similar to how the host species are categorized (Colonization similar to Resident, Donor 
transient similar to Host transient, and Rejection similar to Species loss). However, a species 
can still be placed in the Colonization category after being absent for some time points, as it 
is possible that a species does not colonize directly after the first FMT, but that it needs time 
to establish in the gut. Note that also in this category a species is allowed and ignored if it is 
absent once, but only after being present.

Example 6.3 - A species not present in the host pre-FMT, but present in 
the donor can be categorized as Colonization (C), Donor transient (DT), 
or Rejection (Rej).

Time point

Donor
Host 
pre-
FMT

1 2 3 4 8 10 14

Pr
es

en
t

A
bs

en
t

Pr
es

en
t

Pr
es

en
t

A
bs

en
t

Pr
es

en
t

Pr
es

en
t

A
bs

en
t

Pr
es

en
t

A - Base case C C NA C C Rej DT

B - Sensitivity 1 C C Rej DT DT Rej DT

C - Sensitivity 2 C C Rej DT C Rej DT

D - Sensitivity 3 DT DT NA DT DT Rej DT

E - Sensitivity 4 DT DT Rej DT DT Rej DT
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Modeling the number of species across ecological categories
We modelled the number of species across ecological categories by means of overdispersed 
Poisson regression models with random effects to accommodate correlation between 
repeated measurements per recipient. For this, we employed a generalized linear 
mixed-effects model (GLMM) with a negative binomial family and a log-link using the 
‘glmer.nb’ function from the ‘lme4’ R package.395 The temporal evolution of the expected 
log-number of species in each category was modelled with a spline transformation of the 
original time variable (in weeks since start of FMT treatment). Estimates from the spline 
model were compared to those from a linear model in a sensitivity analysis, by modeling the 
expected log-number of species as a simple linear function of time. Possible differences in 
succession dynamics between responders and non-responders were investigated by adding 
the treatment response variable as a covariate to the model, and through specification of 
interaction terms with time and ecological category. Patient-specific variables, namely, donor 
(donor D07 vs. D08), pretreatment (budesonide vs. placebo), age, and sex (female vs. male), 
were included based upon their role as possible confounders.

Change in population abundances of host-derived species 
To explore the dynamics of host-derived species in response to FMT in more detail, we 
investigated the relative abundance over time for the species that were already present

Novel species
A novel species has not been present or was under the detection limit in the pre-FMT host 
samples, as well as in the core donor microbiota (Example 6.4). Similar to colonizing species, 
novel species can also enter the microbiota of the host later. However, where a donor species 
is in that case categorized as ‘Rejected’, the novel species is not categorized as ‘Novel loss’, but 
as ‘Absent’ and not taken into account in the analyses, until the species has been present once.

Example 6.4 - A species not present in either the host pre-FMT or 
the donor can be categorized as Novel (N), Novel transient (NT), or 
Novel lost (NL), from the moment the species appeared in the patient 
samples.

Time point

Donor
Host 
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FMT
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A - Base case - N N N NA N NL

B - Sensitivity 1 - N N N NL NT NL

C - Sensitivity 2 - N N N NL NT NL

D - Sensitivity 3 - NT NT NT NA NT NL

E - Sensitivity 4 - NT NT NT NL NT NL
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in the host pre-FMT. Results reveal the distribution of abundance differences at particular 
time points across subjects per ecological category for the species that were already present 
pre-FMT. In addition, we compared the baseline distributions among species that were 
later categorized as resident, host transient, and species lost among both responders and 
non-responders. Finally, we also calculated the differences in microbial abundance before 
and after FMT for all species that were present in the recipients’ pre-FMT samples. Because 
several non-responder patients quitted early during the study, we only included patients who 
completed all four rounds of FMT and had at least one post-FMT sample (n = 18 patients, of 
whom 9 were defined as responders) and used the last available post-FMT measurement when 
calculating the difference in relative abundance before and after FMT. Because the abundance 
distributions were right-skewed, we used a natural-log transformation of the abundances. 
Consequently, the abundance differences on the log scale can be interpreted as proportional 
differences on the original scale (in percentage differences). To assess the significance of these 
differences between responders and non-responders, linear mixed-effects models (LMM) were 
applied, accounting for the correlation of repeated observations within each patient (using the 
‘lmer’ function from the ‘lme4’ R package).395

Results

Succession of host-derived, donor-derived, and novel species following FMT
To study the succession dynamics of species during and after FMT in our UC cohort, we 
modelled the number of species across ecological categories and investigated differences 
between responders and non-responders (Figure 6.2). In these models, donor and sex were 
included as covariates, while pretreatment and age were not relevant as confounders. 
Appendix Figure 6.1 shows the specific parameter estimates of the model depicted in 
Figure 6.2.

At the start of the study, we observed a significantly higher number of host species in the 
resident categories (species that were present in the patient’s gut pre-FMT) among responders 
compared to non-responders, and this difference persisted over time (Figure 6.2A). Although 
the number of resident species declined over time in both responders and non-responders 
this decrease was not statistically significant. In contrast, the number of host transient species 
increased significantly over time in both patient groups (Figure 6.2B). Of note, this increase 
may be partly attributable to the definition of host-derived species being transient upon re-
detection after temporary absence. Non-responder patients exhibited a significantly greater 
loss of host species over time compared to responders, in whom the number of host species 
lost decreased significantly over time (Figure 6.2C). 

Conversely, non-responders were initially colonized by a significantly higher number 
of donor species compared to responders. However, the number of colonizing species in 
non-responders significantly declined over time, whereas it remained constant in responders 
(Figure 6.2D). The number of donor transient species was similar between the two patient 
groups at the start of the study and showed a significant increase over time, especially in 
non-responders. However, this category remained relatively small and differences according to 
treatment response were not significant (Figure 6.2E). The number of rejected donor species 
was higher at baseline and over time for non-responders compared to responders, however 
this difference also did not reach statistical significance (Figure 6.2F).
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The number of novel species detected post-FMT was similar for both responders and 
non-responders and remained constant in time (Figure 6.2G). The number of novel transient 
species increased significantly over time; this increase was more or less similar for both the 
responders and non-responders (Figure 6.2H). Initially, the responders lost significantly more 
novel species than the non-responders, but over time the latter group lost significantly more 
novel species than the responders (Figure 6.2, panel I).

We also found significant differences between responders and non-responders in the host 
transient and novel transient categories when applying a linear model instead of splines for 
the temporal evolution of the number of species in each category (Appendix Figure 6.2). 
It should be noted that these categories contained relatively few species, and the lack of 
statistical significance when using splines is likely explained by a reduced statistical power. 
Importantly, all differences between responders and non-responders identified by the spline 
model were retained in the linear model for category size (Appendix Figure 6.2).

Figure 6.2 – Temporal changes in the number of species per ecological 
category. Average trajectories among responders to the treatment are indicated with 
blue lines, average trajectories among non-responders with red lines. Individual patient 
trajectories are shown with grey lines. Note the different scaling of the y-axis per category. 
The model contained a random intercept per patient to account for repeated measurements. 
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Time was modelled with a spline. The levels of significance are reported above each plot 
and are indicated by asterisks (*** = p-value < 0.001; ** = p-value < 0.01; * = p-value < 0.05; 
NS = not significant).

Sensitivity analyses
We conducted four different sensitivity analyses concerning the categorization of the species. 
To illustrate the effect of categorization on the rates of change over time, we generated a 
plot of the average slope estimates according to each sensitivity analysis (Appendix Figures 
6.5 to 6.10). Sensitivity analysis 1 resulted in a slightly stronger decline in the number of 
species for the resident, colonization, and novel categories (Appendix Figures 6.5, 6.9, 
and 6.10). This outcome is a logical consequence of the criterion that a species can no longer 
be absent for a single time point. Consequently, the likelihood of a species moving to a 
different category (transient or loss) increased, since it was by definition not possible to return 
to the categories denoting stable presence over time. This resulted in transient categories 
having higher intercepts, but the average slopes remained unchanged for all other categories 
(Appendix Figures 6.5, 6.9, and 6.10). Similarly, for Sensitivity analysis 2, no substantial 
differences from the base case were found (Appendix Figures 6.6, 6.9, and 6.10). The most 
profound differences were noted in the slopes of the resident and transient categories. 
The slopes of the transient categories were smaller, especially for the host-derived species 
among non-responders (Appendix Figures 6.6, 6.9, and 6.10). Sensitivity analyses 3 and 4 
led to more stable patterns over time, especially for the resident category, as compared to 
both the base case scenario and the other sensitivity analyses (Appendix Figures 6.7 to 6.10). 
This stability can be attributed to the modifications in the category assignment criteria in 
Sensitivity analyses 3 and 4, where stable presence is defined at all time points. Consequently, 
fewer species were assigned to the resident, colonization, and novel categories and more to 
the transient categories (Box 6.2). 

Relative abundances of host resident species pre- and post-FMT
We further assessed changes in the relative abundance of species present in the gut prior 
to treatment to investigate whether the relative abundance pre-FMT is indicative of the 
category that a species will reach post-FMT. Host transient species displayed significantly 
lower relative abundances at all time points compared to resident species (Figure 6.3A and 
Appendix Table 6.2). In both responders and non-responders, recipient species with higher 
pre-FMT relative abundances were more likely to remain in the recipient’s gut and become 
resident species, compared to recipient species that were transient or lost (Figure 6.3B, 
Appendix Figure 6.11, and Appendix Table 6.2). Therefore, our findings show that initial 
microbiota composition is associated with post-FMT composition. The differences in relative 
abundance of host resident species between the pre-FMT measurement and the last available 
post-FMT measurement were centered around zero (Figure 6.3C). A positive difference 
indicates an increase in the relative abundance of resident species following FMT, while a 
negative difference denotes a decrease. Thus, approximately equal numbers of resident 
species showed either a positive or negative response to FMT. No significant differences were 
found between responders and non-responders regarding relative abundances of resident 
species in response to FMT (Figure 6.3C, Appendix Figure 6.12, and Appendix Table 6.2).
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Figure 6.3 - Comparison of relative abundances of species in different categories. 
A) Relative abundances of Resident (blue) and Host transient (red) species over time. Here, no 
distinction has been made between responders and non-responders. B) Relative abundance of host 
species at pre-FMT measurement. The relative abundances in species categorized as Resident, Host 
transient, and Species loss species between responders (blue) and non-responders (red) are not 
significant (Appendix Table 6.2). C) Difference in relative abundance in resident species between 
pre-FMT and last available post-FMT measurement for responders (blue) and non-responders (red). 
Significance was tested with linear mixed-models and shown in the plots (**** = p-value < 0.0001, 
*** = p-value < 0.001; ** = p-value < 0.01; * = p-value < 0.05; NS = not significant).
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Discussion

The success of FMT for UC is ultimately determined by whether the patient achieves clinical 
and endoscopic remission after treatment. It has been suggested that treatment success is 
related to the extent to which the recipient’s microbiota composition shifts towards that of 
the donor.399, 418 However, we found no evidence supporting this link, in line with several 
other studies.199, 200, 384, 414, 415 

We used an ecological framework of succession to investigate microbiota dynamics 
associated with clinical success of FMT. Microbial species were categorized as pre-existing in 
the host before FMT, donor-derived, or newly detected. We found that responders retained 
a higher number of host species compared to non-responders. Although non-responders 
initially exhibited colonization by more donor species than responders, this colonization 
in non-responders declined over time and eventually became equal to the levels observed 
in responders. These findings suggest that a successful clinical response to FMT may be 
facilitated by a microbiota receptive to colonization without compromising the resident 
microbiota. Additionally, non-responders lost substantially more novel species over time 
compared to responders, indicating that newly detected species failed to establish stably 
within the non-responder gut microbiota. This finding suggests less robust alterations in 
gut microbiota composition among non-responders. A successful FMT may induce a shift in 
which the recipient’s microbiota integrates donor and novel species, achieving a balanced 
coexistence to restore the gut microbial ecosystem. This observation aligns with earlier 
research.188, 199 Our study expands upon previous analyses using longitudinal analysis of UC 
patients, thereby providing a fine-grained view of the ecological dynamics over time of donor 
and host species following FMT.

FMT can be seen as a perturbation experiment on the gut microbiota, creating a dynamic 
interplay between donor and recipient communities, which may open ecological niches 
for other microorganisms.95, 199 The balance between the engraftment of beneficial 
microorganisms and competition with deleterious microorganisms in the recipient gut, 
combined with systemic host processes, such as the modulation of immune responses and 
the interaction with (external) environmental factors and genetic characteristics, could 
initiate clinical remission.413 The process of microbial invasion involves various challenges 
that incoming microorganisms need to overcome to establish colonization and influence the 
existing microbial community. It is important for the invading species to achieve sufficient 
metabolic activity in the gut to interact with the resident community. This interaction may 
also be achieved by transient species, indicating that permanent colonization is not always 
necessary.95 Analogous to nurturing an ecosystem such as a crop field through biological 
control, FMT necessitates the introduction of donor species with healthy functional 
properties to modify the recipient’s system rather than inducing wholesale changes that 
might lead to the extinction and replacement of existing microbial inhabitants. Therefore, 
the recipient microbiota must exhibit a degree of resilience, allowing it to integrate donor 
species without completely altering its composition. FMTs may also strengthen recipient 
species by introducing beneficial spores or metabolites, thereby enhancing the stability and 
functionality of the recipient’s own microbiota.103 The stability of the microbiota is maintained 
through controlled species loss, ensuring that introduced organisms integrate harmoniously 
with the pre-existing ecosystem.
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The outcome of FMT is influenced by a range of ecological processes, spanning from neutral 
or stochastic factors (e.g., donor propagule pressure) to adaptive or selective factors (e.g., 
niche competition and differentiation).199, 419 This indicates a complex mechanism of action 
of FMT in patients with UC, necessitating the establishment of a novel homeostasis between 
the donor and recipient microbiota. This complexity may also explain why prolonged FMT 
treatment with multiple donor infusions appears necessary in UC, as repeated exposure may 
be required to achieve an optimal balance between recipient and donor microbiota. This 
approach contrasts with the FMT treatment of recurrent Clostridioides difficile infections (rCDI), 
which is characterized by a depleted microbiota that can be effectively restored with a single 
infusion, with a cure rate of about 80%.190 

The success of FMT may not be reliant on resembling the donor’s microbiota, but rather 
on establishing a complementary relationship, emphasizing the importance of selecting 
donors whose microbiota optimally aligns with the recipient’s specific needs.399 Unlike the 
developmental stages of a child’s microbiota, the gut microbiota of a UC patient is already 
an established, independent microbial community. This pre-existing microbiota makes the 
introduction of new species and the induction of change considerably more challenging.67, 68 
Tailoring the selection of FMT donors to those enriched in taxa capable of restoring disturbed 
metabolic pathways in the recipient might enhance the effectiveness of FMT, particularly in 
metabolic dysfunction associated diseases.23, 200, 399 For example, incoming species that are 
metabolically complementary to the recipient’s community, by introducing novel functions 
or by occupying previously unfilled niches, may be more likely to colonize the resident 
community.87, 420 In addition, a high gut microbial diversity in the donor and low diversity in 
the recipient may further influence the success of colonization.1, 200

From an ecological perspective, our findings suggest that donor and recipient species can 
coexist. We might hypothesize that they occupy distinct metabolic niches. Moreover, we 
observed that species with a higher abundance prior to FMT (the main ‘founders’) are more 
likely to persist during the FMT than species with a lower abundance. This implies that the 
competitive strength of the resident species is related to their abundance, indicating that 
within each metabolic niche, communities are built by random winners, driven by stochastic 
colonization.84 This is in line with ecological studies showing that functional differences create 
opportunities for coexistence (niche theory). However, within each niche functionally similar 
species can coexist, and communities are structured to random stochastic rules (neutral 
theory).421 Within the gut microbiota, species often have overlapping functions, allowing 
them to replace each other and take over specific functional traits if one species is perturbed 
or removed.22

This study has several limitations. The first concerns the classification of patients into 
responders and non-responders. Patients who dropped out early due to worsening symptoms 
were classified as non-responders. Microbiota data were not collected for these patients, 
which potentially introduces bias into the results for the non-responder group. Moreover, 
the study concerns only 24 UC patients and the time series up to 14 weeks represents only 
a snapshot of the dynamic process of microbial succession. This sample size is too small to 
draw definite conclusions and further investigation into longer-term outcomes is necessary 
to gain a more comprehensive understanding.422 A third limitation is the sequencing 
depth (2.9 million 100 bp single-end Illumina reads), which does not allow for definitive 
determination of whether an absent species was actually absent in the host or donor, or 
simply undetected.87
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Also, the low sequencing resolution makes it impossible to determine whether the same 
strain present in the donor sample successfully colonized the recipient’s gut microbiota or 
whether the donor and host strains coexisted or were replaced following FMT. Lastly, we did 
not have data to directly link the unique donor sample used for FMT to the corresponding 
recipient samples. Therefore, we used the combined microbiota data, which may have led 
to the misclassification of some low-abundance colonizing species from the donor as novel 
species.

By applying an ecological perspective to FMT, our study sheds new light on the importance 
of ecological principles, such as succession of microorganisms and the resilience of the 
recipient’s system, in shaping therapeutic outcomes. Our study reveals the ecological 
dynamics of the gut microbiota during and after FMT in patients with UC, with a particular 
focus on the dynamics of recipient, donor, and novel species. Contrary to some previous 
studies, the overall engraftment of the donor microbiota did not emerge as the most 
important factor for FMT success in this study.399, 415 The key factor influencing the response 
may not be the overall engraftment of donor species, but rather the recipient’s ability 
to retain resident species while simultaneously enriching with novel and donor species. 
Thus, successful FMT hinges on fostering a microbiota shift that complements rather than 
compromises the existing ecosystem. This ecological interpretation aids in understanding 
the mechanism through which FMT may induce clinical remission and also underscores the 
nuanced interplay between donor and recipient microbiota essential for therapeutic efficacy.
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Appendices of Chapter 6

Appendix Table 6.1 - Clinical and demographic information of responders 
and non-responders.

Respondersa Non-respondersb

Number (Percentage) Number (Percentage)

Patients 9 (38%) 15 (63%)

Samples 81 (45%) 99 (55%)

     Missing 0 36 

Sex

     % Femalec 6 (67%) 6 (40%)

Pretreatment

     % Budesonidec 5 (56%) 8 (53%)

Donor

     % D07c 2 (22%) 10 (67%)

Mean (SD) Mean (SD)

Age 45 (17) 48 (16)
a Remission (i.e., response) was defined at week 14 as no symptoms (partial Mayo score of 2

with no individual sub score of > 2) and an endoscopic Mayo score 0–1.
b All other patients, including those with a partial response (a decrease of at least 3 points in the

partial Mayo score and at least 1 point at the endoscopic Mayo score) at week 14 and patients 
who left the study early, were classified as non-responders.

c Percentages calculated separately for responders and non-responders.
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Appendix Table 6.2 - Model estimates and p-values for the differences in 
relative abundances. 
Results are visualized in Figure 6.3. Multiple models were used to test the differences. 
Significant results are highlighted in bold and blue.

A) Abundance differences per time point

Post-3

Intercept –5.72735 0.15259 –37.535 < 2e-16

Host transient –0.68310 0.08039 –8.497 < 2e-16

Post-4

Intercept –5.91299 0.10204 –57.95 < 2e-16

Host transient –0.83215 0.06461 –12.88 < 2e-16

Week 8

Intercept –5.95367 0.10251 –58.08 < 2e-16

Host transient –0.83115 0.05676 –14.64 < 2e-16

Week 10

Intercept –5.75390 0.18769 –30.66 3.73e-10

Host transient –0.84484 0.06146 –13.75 < 2e-16

Week 14

Intercept –5.90331 0.09321 –63.33 < 2e-16

Host transient –0.78173 0.05636 –13.87 < 2e-16

B) Relative abundance pre-FMT

Categories within responders

Intercept –5.48590 0.19461 –28.189 2.17e-09

Host transienta –0.63418 0.07692 –8.245 3.91e-16

Species lossa –0.71556 0.06999 –10.224 < 2e-16

Categories within non-responders

Intercept –5.60069 0.18367 –30.49 5.3e-10

Host transienta –0.72155 0.07792 –9.26 < 2e-16

Species lossa –0.80577 0.06514 –12.37 < 2e-16

Differences in Resident species between responders and non-responders

Intercept –5.6414 0.1732 –32.57 2.69e-16

State (Responders) 0.1314 0.2432 0.54 0.597

Differences in Host transient species between responders and non-responders

Intercept –6.3584 0.1989 –31.973 5.92e-16

State (Responders) 0.2003 0.2797 0.716 0.484  

Differences in Species loss species between responders and non-responders

Intercept –6.3788 0.2133 –29.902 1.34e-14

State (Responders) 0.1883 0.3053 0.617 0.546

C) Ratio relative host species abundances between responders and non-responders

Intercept 0.184309 0.152030 1.212 0.246

State (Responders) 0.006944 0.213633 0.033 0.975
a	 The difference between the host transient and species loss categories for responders and 
	 non-responders was tested in a separate model and was not significant (p-values were 0.303 
	 and 0.343 for responders and non-responders, respectively).
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Appendix Figure 6.1. Results of modeling (with a spline) the number of species 
per ecological category in the base case. The point estimates, 95% confidence intervals, 
and a reference line at 0 are shown. When the horizontal lines do not cross the vertical reference 
line, this means that the coefficients are significantly different from 0. The original time variable 
was modelled with a spline rescaled to denote time in weeks since the start of FMT. The model 
contained a random intercept per patient to account for repeated measurements.
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Appendix Figure 6.2 - Results of modeling (without a spline) the number of 
species per ecological category in the base case. The point estimates, 95% confidence 
intervals, and a reference line at 0 are shown. When the horizontal lines do not cross the vertical 
reference line, this means that the coefficients are significantly different from 0. Contrary to 
the base case, the original time variable was not modelled with a spline. Time was rescaled 
to denote time in weeks since the start of FMT. The model contained a random intercept per 
patient to account for repeated measurements.

Novel loss:time:State (Responders)
Novel transient:time:State (Responders)

Novel:time:State (Responders)
Rejection:time:State (Responders)

Donor transient:time:State (Responders)
Colonization:time:State (Responders)
Species loss:time:State (Responders)

Host transient:time:State (Responders)
Resident:time:State (Responders)

Novel loss:State (Responders)
Novel transient:State (Responders)

Novel:State (Responders)
Rejection:State (Responders)

Donor transient:State (Responders)
Colonization:State (Responders)
Species loss:State (Responders)

Host transient:State (Responders)
Resident:State (Responders)

Novel loss:time
Novel transient:time

Novel:time
Rejection:time

Donor transient:time
Colonization:time
Species loss:time

Host transient:time
Resident:time

Sex (Male)
Donor (Donor D08)

Novel loss
Novel transient

Novel
Rejection

Donor transient
Colonization
Species loss

Host transient
Resident

−10 0 10 20

Estimate

***
***
***
***

***
***

***

***

***
**

**
***

***
***

**
***
*
**

**
**

*

*

*
*

165Chapter 6 Ecological dynamics of donor and host microbial species following FMT



Appendix Figure 6.3 - Decision tree for Sensitivity 2 analysis to assign species to 
ecological categories according to different inclusion criteria as in the base case 
analysis. The categories are based on the origin and presence of a species over time. First, the 
species was compared to the pre-FMT host samples, then to the core donor microbiota. Next, the 
presence or absence at only the previous time point was considered to assign the species to an 
ecological category. Differences with the base case scenario, where all previous time points were 
considered, are indicated with a dotted line around the box (see also Box 6.2).
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Appendix Figure 6.4 - Decision tree for Sensitivity 3 and 4 analyses to assign 
species to ecological categories according to different criteria as in the base case 
analysis. The categories are based on the origin and presence of a species over time. First, the 
species was compared to the pre-FMT host samples, then to the core donor microbiota. Next, 
the presence or absence at all time points was considered to assign the species to an ecological 
category. Differences with the base case scenario, where only previous time points were 
considered, are indicated with a dotted line around the box (see also Box 6.2).
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Appendix Figure 6.5 – Temporal changes in the number of species per 
ecological category for Sensitivity 1. Average trajectories among responders to the 
treatment are indicated with blue lines, average trajectories among non-responders with 
red lines. Individual patient trajectories are shown with grey lines. Note the different scaling 
of the y-axes. The model contained a random intercept per patient to account for repeated 
measurements. Time was modelled with a spline. The levels of significance are reported 
above each plot and are indicated by asterisks (*** = p-value < 0.001; ** = p-value < 0.01; 
* = p-value < 0.05; NS = not significant).
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Appendix Figure 6.6 - Temporal changes in the number of species per 
ecological category for Sensitivity 2. Average trajectories among responders to the 
treatment are indicated with blue lines, average trajectories among non-responders with 
red lines. Individual patient trajectories are shown with grey lines. Note the different scaling 
of the y-axes. The model contained a random intercept per patient to account for repeated 
measurements. Time was modelled with a spline. The levels of significance are reported 
above each plot and are indicated by asterisks (*** = p-value < 0.001; ** = p-value < 0.01; 
* = p-value < 0.05; NS = not significant).
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Appendix Figure 6.7 - Temporal changes in the number of species per 
ecological category for Sensitivity 3. Average trajectories among responders to the 
treatment are indicated with blue lines, average trajectories among non-responders with 
red lines. Individual patient trajectories are shown with grey lines. Note the different scaling 
of the y-axes. The model contained a random intercept per patient to account for repeated 
measurements. Time was modelled with a spline. The levels of significance are reported 
above each plot and are indicated by asterisks (*** = p-value < 0.001; ** = p-value < 0.01; 
* = p-value < 0.05; NS = not significant).
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Appendix Figure 6.8 - Temporal changes in the number of species per 
ecological category for Sensitivity 4. Average trajectories among responders to 
the treatment are indicated with blue lines, average trajectories among non-responders 
with red lines. Individual patient trajectories are shown with grey lines. Note the different 
scaling of the y-axes. The model contained a random intercept per patient to account 
for repeated measurements. Time was modelled with a spline. The levels of significance 
are reported above each plot and are indicated by asterisks (*** = p-value < 0.001; 
** = p-value < 0.01; * = p-value < 0.05; NS = not significant).

Novel Novel transient Novel loss

Colonization Donor transient Rejection

Resident Host transient Species loss

Weeks since �rst FMT

Co
un

t

State
Non-responders
Responders

101 2 3 4 8 14 101 2 3 4 8 14 101 2 3 4 8 14

A B C

D E F

G H I

***
NS

*

***

50

100

150

200

0

50

100

150

0

50

100

20

40

60

80

0

10

20

30

0

10

20

30

40

0

50

100

150

200

250

0

50

100

150

0

20

40

NS

Sensitivity 4

Intercept responders
Slope

Slope responders

Intercept responders
Slope

Slope responders

NS
NS
NS

Intercept responders
Slope

Slope responders

NS
NS
NS

Intercept responders
Slope

Slope responders

NS
NS
NS

Intercept responders
Slope

Slope responders

NS
NS
NS

Intercept responders
Slope

Slope responders

NS
NS
NS

Intercept responders
Slope

Slope responders

NS
NS
NS

Intercept responders
Slope

Slope responders

NS
NS
NS

Intercept responders
Slope

Slope responders NS

171Chapter 6 Ecological dynamics of donor and host microbial species following FMT



Appendix Figure 6.9 - Average temporal changes in the number of species 
per ecological category for the base case (BC) and all Sensitivity analyses 
(S1, S2, S3, and S4). Upper plots are for responders (solid lines) and lower plots for 
non-responders (dashed lines) to the treatment. The model contained a random intercept 
per patient to account for repeated measurements. Time was modelled with a spline. 
The levels of significance are reported above each plot and are indicated by asterisks 
(*** = p-value < 0.001; ** = p-value < 0.01; * = p-value < 0.05; NS = not significant).
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Appendix Figure 6.10 - Distribution of the number of species per ecological 
category for the base case and all sensitivity analyses, estimated by 
overdispersed Poisson regression models with random effects and splines. 
The models contain random intercepts per patient to account for repeated measurements. 
The point estimates, 95% confidence intervals, and a reference line at 0 are shown. When 
the horizontal lines do not cross the vertical reference line, the coefficients are significantly 
different from 0. A - D) Model output is presented for variables grouped into four categories 
for clarity.
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Appendix Figure 6.11 - Histograms showing the relative abundances of host 
species (Resident, Host transient, and Species loss) pre-FMT. Only patients that 
completed the treatment and had at least one post-FMT sample are included in this plot. 
Because the data had skewed distributions, we used a natural-log transformation of the 
abundances to normalize the data and homogenize the variance.
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Appendix Figure 6.12 - Histograms showing the distribution of the differences 
in relative abundances (between pre- and post-FMT) of resident species. 
Only patients that completed the treatment and had at least one post-FMT sample are 
included in this plot. The striped vertical line indicates no change in abundance between 
pre- and post-FMT. Because the data had skewed distributions, we used a natural-log 
transformation of the abundances to normalize the data and homogenize the variance.
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General discussion and future 
perspectives

Main findings

In this thesis, we applied a theoretical framework and used methodologies derived from the 
field of ecology to investigate the dynamic properties and characteristics of the human gut 
microbiota. In this way, we aimed to contribute to a better understanding of the complex 
microbial ecosystem of the human gut and its association with inflammatory bowel disease 
(IBD) course (i.e., exacerbation or remission). Additionally, we examined microbial changes 
following an intervention with fecal microbiota transplantation (FMT). Addressing these aims 
requires a thorough examination of the human gut microbiome, its dynamics, and the key 
factors influencing the functioning of this microbial ecosystem. This dissertation contributes 
to these goals in several ways.

First, we studied the correspondence between correlation-based networks and the 
underlying network of ecological interactions. Our results demonstrated that correlations 
could indicate the presence of bacterial interactions, at least in a simulation setting. 
Interactions were recovered with precision exceeding recall, indicating that the likelihood of 
missing interactions was higher than the likelihood of finding false positive interactions 
when using correlations in cross-sectional abundance as their proxy. However, we also 
showed that asymmetric interaction types cannot be detected and that there are many 
factors that may worsen these results, such as measurement noise. Unfortunately, biomedical 
data are always subject to measurement errors, particularly in microbiota studies where 
data are obtained through sequencing processes.118 Furthermore, microbiota data are also 
influenced by host-specific variation in process parameters (process noise) and sampling 
under various (non-equilibrium) conditions, all of which will influence the inference, 
though not necessarily in an adverse way.423 Therefore, while correlations may hint at 
interactions, independent validation is needed to confirm their presence and to ensure that 
these correlations represent genuine biological interactions with meaningful implications. 
Until then, we should continue to refer to these correlations as associations rather than 
interactions. Moreover, in our second study we showed that wavelet clustering uncovers 
more diverse community structures compared to analyses based on temporal correlations. We 
revealed significant differences between these methods and suggested that the correlation-
based approaches might overlook certain dynamical aspects of microbial communities. This 
comparison highlights the potential of wavelet clustering to use the temporal fluctuations 
and complexity inherent in the human microbiota for characterizing community structure, 
offering a more nuanced understanding than correlation-based methods alone.

Second, our objective was to describe specific associations between microbial abundances 
and Crohn’s disease (CD), in particular with exacerbation of disease. In doing so, we made the 
analogy between the gut microbiota in an unhealthy host with an ecosystem under stress. 
We found that microbial diversity is reduced in the gut of CD patients, and that the process 
of diversity loss is irregular with respect to specific taxonomic groups. If this process of loss of 
species continues for an extended period, it may eventually lead to an unhealthy and possibly 
irreversible state. Moreover, in this study we showed that associations of relative bacterial 
abundances with CD can be different for subsets of individuals. A practical, though  
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undesirable implication of this finding is that it seems very difficult to pinpoint specific gut 
microbes as biomarkers or therapeutic targets for CD patients. 

Third, we studied bacterial associations with clinical treatment success of FMT in ulcerative 
colitis (UC) and investigated the succession of the microbiota during and after the treatment. 
By means of several analytical techniques, such as longitudinal modeling and cluster analysis, 
we identified potential associations between specific gut microbiota families and clinical 
outcomes. Our findings suggest that the success of FMT in UC patients may be linked to the 
control of Prevotellaceae, with potentially beneficial roles attributed to Lachnospiraceae 
and Ruminococcaceae. Notably, clustering analysis indicated that differences in the gut 
microbiota between responders and non-responders may manifest early during treatment. 
Moreover, successful FMT seems to be associated with a resilient gut community that is open 
to colonization by donor species, while maintaining the original community to some degree. 
This suggests that a balanced coexistence of host and donor species can induce a shift in 
which the recipient's microbiota evolves towards a healthier community.

Stability and variability in microbiota dynamics

Over the past 15 years, microbiological research has flourished, driven by technological 
advancements that have significantly expanded our knowledge concerning the ecology of 
gut microbiota and its relation to health and disease.424 The beneficial functions provided by 
our microbiomes offer potential for improving human health. Therefore, efforts have been 
made to understand the temporal variations in our microbiota to define ‘stable’ and 
‘(un)healthy’ dynamics.21, 45, 62 Early attempts to classify the gut microbiota introduced the 
concept of ‘enterotypes’, distinct clusters characterized by an enrichment of Bacteroides, 
Prevotella, or Ruminococcus.405 However, this early classification was only based on 
metagenomics from 39 individuals, and much larger studies have challenged the distinctness 
of these enterotypes, suggesting a more gradient-like distribution with varying levels of 
Prevotella and Bacteroides.233, 412, 425 

The microbiota is acknowledged to be highly specific to individuals, displaying relative 
stability in adults, with regular fluctuations in the composition over time.45, 46, 51 These 
fluctuations suggest that long-term stability of human gut microbial communities is 
influenced by the tendency of the intestinal ecosystem to maintain internal stability 
(homeostasis), owing to the coordinated response to any stimulus that disturbs its normal 
condition.62 This prompts inquiries into whether fundamental ecosystem ‘rules’ governing 
microbiota (group)dynamics can be distilled from a collection of individual microbiota, and 
to what extent each represents a unique ecosystem with its own host-specific microbial 
dynamics (Figure 7.1).426 If microbiota dynamics were independent from the host, then the 
presence of the same species should result in the same relative proportions of those species, 
and interventions could be devised to regulate microbial states across different individuals.284 
On the other hand, if the dynamics are strongly host-specific, personalized interventions 
should be designed, considering not only the unique microbial state of an individual but 
also the specific host factors of the microbial ecosystem.46, 55, 59 However, studying this is very 
difficult due to the presence of latent or unknown parameters (related to lifestyle or diet 
for example) influencing microbiota composition.155 The factors contributing to microbiota 
variation are still not fully understood.57 
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Consequently, comparative analyses between patient and healthy cohorts yield many 
different dysbiotic states or sets of microbial biomarkers that are dependent on a specific 
comparison, and the definition of a normal healthy microbiota remains unsatisfactorily 
answered. Moreover, it is still unclear whether the structure of the gut microbial community 
shifts gradually within individuals or transitions between distinct community states, and 
whether such states are consistent among different individuals.233, 405, 427

Broader insights from the literature 

Part I - Ecological structure in the human gut microbiota 
Microbial interactions can yield diverse outcomes, ranging from positive impacts such as 
mutualism, where species exchange metabolic products to benefit each other, to negative 
impacts on participating species. These interactions shape community patterns and inhibit 
the outgrowth of certain species. In Chapter 2, we assessed the reliability of correlation-based 
methods for inferring microbial interaction networks. Unraveling the network of interactions 
within ecological systems, particularly in studies of the human microbiome, is challenging. 
Technical issues in constructing networks from sequencing data, such as compositionality 
and the predominance of zeros, combined with the influence of often unmeasured 
environmental factors, make the networks difficult to interpret and susceptible to potential 
biases.118 Additionally, data generated from assays may be censored by detection limits, 
causing species to remain undetected.203

Figure 7.1 - Illustration of microbial dynamics through ecological networks. 
Microbial dynamics are illustrated through an ecological network, wherein nodes symbolize 
species and edges depict interspecies interactions (green and red arrows denote positive 
and negative interactions, respectively). A) The underlying dynamics or networks are unique 
to each subject. B) Subjects within the same group exhibit shared dynamics or networks, 
which markedly differ from those of other groups. C) Different subjects display identical 
underlying dynamics or networks. Note that subjects can also differ in species composition 
or in the relative abundances of each species. This figure is based on Bashan et al. (2016).426

A Individual dynamics

B Group dynamics

C Host-independent 
dynamics
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Moreover, the presence of a third variable or species (e.g., bacteriophage) can influence the 
observed correlations, especially if the researcher fails to measure this linked species (Figure 
7.2). Correlation-based network analysis typically results in too many spurious edges.118 
Addressing these challenges has led to the development of various co-occurrence methods, 
such as CoNet, SparCC, and SPIEC-EASI.237, 253, 428 Interestingly, in evaluations, classical 
correlation measures often perform just as well as the more sophisticated algorithms.118, 429

Figure 7.2 - Interaction networks between three species. 
Direct interactions are indicated by a solid arrow, indirect interactions are 
given by a dashed arrow. A) The interactions utilize separate compounds, C1 
and C2, as mediators. Interaction chain: Species S1 influences S2, which in turn 
affects S3. B) In this scenario, S1 initiates a change where S2 and S3 interact only 
when S1 is present. Modified interaction: Species S1 influences both S2 and 
S3. Species S3 consumes mediator C1, altering the interaction between S2 and 
S3. C) Modified interaction: Both S1 and S3 contribute compound C1, which 
stimulates S2. S1 and S3 do not directly interact regardless of S2. This figure is 
based on Momeni et al. (2017).240
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To address potential confounding in pairwise interactions, we employed partial 
correlations in Chapter 2 to infer the correlation network. See Figure 7.3 for a comparison 
between plain and partial correlations in a real dataset. For most microbes, ecological 
interactions are poorly understood, necessitating the de novo construction of ecological 
interaction networks without guiding assumptions or a gold-standard set of interactions 
for validation.100, 111, 238, 251, 430, 431 Therefore, we used the generalized Lotka-Volterra (gLV) 
model with simulated interactions to study the correspondence between correlations 
and interactions.232 gLV models are widely employed in ecological studies to simulate the 
dynamics within bacterial communities.100, 111, 232, 254, 423, 432 This approach enabled us to define 
the species-species interaction terms and incorporate variations in model parameters to 
reflect the variability among hosts. The gLV model, while versatile, has drawbacks: it only 
describes pairwise interactions, disregards immigration and environmental effects, and 
maintains constant and additive interaction strengths.49, 57, 100, 232, 240, 433-435 In Chapter 3 we 
also used an ecological model. Here, we simulated the dynamics of four consumers and four 
resources to provide an additional dataset to evaluate the accuracy of wavelet clustering in 
contrast with clustering based on Spearman’s correlation.318-320

Some scientists tend to approach mathematical models, also the ones used in Chapter 2 
and Chapter 3, with skepticism, wary that simplification might sacrifice realism. However, 
while models may simplify complex systems, they can also serve as invaluable tools for 
understanding phenomena that are otherwise difficult to grasp.1 For example, in Chapter 2, 
we would not have been able to judge the correctness of the correlation matrix without a 
simulated network that could be used as a ground truth. Models allow scientists to explore 
hypothetical scenarios, test theories, perform virtual experiments that are impossible or 
unethical in humans, make predictions, explain complex phenomena, thereby ultimately 
advance our understanding of the natural world. However, it is imperative to ensure 
that models are built upon correct assumptions as these can significantly impact model 
outcomes. 

Notably, many studies on microbial communities and their associations with specific 
disease courses or host conditions heavily rely on a steady-state assumption and the failure 
to account for non-steady-state dynamics could introduce biases in the findings, leading 
to an overemphasis on certain taxa while neglecting others that may be important in a 
non-steady-state context. The microbial interaction network is also likely dynamic, shaped 
by both negative and positive feedback loops. These feedbacks occur as an organism's 
metabolic activity alters its environment, influencing its own fitness, and the fitness of 
competing species, creating ecological niches that drive diversification.22 Therefore, the 
niches in the gut might be more comparable to a dynamic river ecosystem than to a more 
static ecosystem on land, as nutrient flows through the bowel, providing constant resources 
but also causing constant disturbances and reassembly of microbial communities and 
interactions.436

Future microbiome studies will benefit from larger cohorts, more frequent sampling, and 
longer follow-up periods to unravel the short- and long-term dynamics of gut microbial 
communities in real datasets. Longitudinal studies allow for investigating the consistency, 
or changes, of microbiota patterns over time. Following this, in Chapter 3, we applied a 
methodology unknown to the microbiome field, namely wavelet clustering analysis. This 
method clusters time series based on the similarity in their temporal dynamics of microbial 
communities.
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Figure 7.3 - Correlation matrices. Matrices are derived from the dataset 
presented in Chapter 4 of this thesis. A) Spearman’s correlation matrix displaying 
the pairwise correlations between bacterial families. The correlation matrix provides 
insights into the linear abundance relationships among variables. B) Spearman’s 
partial correlation matrix illustrating the partial correlations between the bacterial 
families. Partial correlations help to assess the unique association between bacteria, 
independent of the interrelated influence of other bacteria. Each cell represents 
the (partial) correlation coefficient between two variables, with color intensity 
indicating the strength and direction (e.g., blue is positive and red is negative) of the 
correlation. 
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Unlike prevailing co-occurrence methodologies, the novelty of wavelet clustering lies in its 
ability to characterize community structure based on the collective temporal behaviour of 
the microbiota, without directly fitting a dynamical model or reconstructing the network 
of interacting species. While traditional correlation-based methods may offer some, but 
limited or biased, insights, wavelet clustering enables the extraction of more information 
on dependencies within microbial communities and can reveal community structures that 
remain obscured in correlation-based methods.437 These findings underscore the critical role 
of longitudinal data and methodological choices in shaping the outcomes of microbiota data 
analysis.

Mapping ecological networks to predict (temporal) behaviours and discern assembly rules is 
motivated by the goal of gaining insights into the underlying dynamics that drive microbial 
ecosystems. Ultimately, this knowledge may be used to establish early warning signals, 
develop clinical prognostic models, and even engineer stable microbiomes with desired 
properties.438-440 The topology of the network often provides insights into the potential 
explanatory nodes for specific functional properties within the network, allowing for the 
identification of tightly interrelated modules of variables, such as communities.3 Additionally, 
knowledge of the interaction network not only aids in identifying key players within the 
network (i.e., keystone species) but also facilitates predictions on how microbial communities 
might respond to diverse stimuli or disturbances, such as alterations in diet or exposure to 
antibiotics.  

Previous research has indicated that correlation-based networks likely capture only a fraction 
of the interactions occurring in microbiota, with strong symmetric interactions being more 
readily detected compared to weaker or asymmetric interactions.216, 235, 273 Correlation-based 
networks from cross-sectional data are commonly interpreted as representing interspecific 
interactions.227 Each significant link in a correlation network suggests a shared process 
affecting connected nodes; however, we should acknowledge that correlations do not 
always imply causation or biological meaning.3, 216 Densities may also vary as a result of an 
external factor that is not of biological interest.118 The presence of two species together in 
one sample, while absent in another, may not necessarily indicate an interaction between 
them. Instead, they could simply coexist because one sample was taken during a nutrient-rich 
period that supports the growth of both species independently, whereas the other sample 
may have been taken at a less favourable time, limiting the growth of both species. Therefore, 
incorporating additional information about influencing factors can provide a richer, more 
nuanced picture of the underlying dynamics within the microbiome. Moreover, as most 
microorganisms form biofilms, i.e., genetically diverse, surface-associated communities 
embedded in an extracellular polymeric matrix, bacteria primarily interact with others 
in their immediate neighborhood, with the strength of these interactions diminishing as 
distance increases.440, 441 Therefore, the spatial relationships between individual organisms 
should ideally also be considered in the network, including the nature and strength of their 
interactions based on their positions within the community.440 However, before delving into 
more complex network structures including extensive metadata, it is essential to first gain a 
thorough understanding of the ‘simpler’ networks to lay a solid foundation for future analyses.
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Part II - Gut microbiota and inflammatory bowel disease 
Given the involvement of the microbiome in numerous essential functions, it is not surprising 
that disturbances in microbiota composition (known as dysbiosis) have been linked to the onset 
and course of various diseases. Many associations found may not always be disease-specific but 
rather part of a non-specific, shared response to health or disease.200, 442 Chapter 4 and 
Chapter 5 of this thesis address the relationships between bacterial dysbiosis and the disease 
course of CD, which, along with UC, comprises the pathology of IBD. While CD can occur 
anywhere in the digestive system, UC is limited to the colon. Both diseases exhibit significant 
distinctions in microbiota compositions from one another, although less strongly than they 
differ from healthy subjects.372 However, the findings regarding disease exacerbation among 
CD or UC patients are often inconsistent and occasionally even contradictory. For example, 
previous studies have reported both lower and higher relative abundances of Bacteroides 
(Bacteroidaceae) in CD patients compared to healthy individuals.356-358 This discrepancy can 
be attributed in part to technical variations between studies such as differences in DNA 
extraction methods and sequencing depth, but they may also arise from variations in disease 
assessment or study populations, as well as potential confounding factors, such as medication 
use or lifestyle factors that remained unidentified.56, 171, 225, 443 Coupled with the interindividual 
variability of the microbiome in gastrointestinal disorders, the pursuit of shared biological 
signals proves challenging. Moreover, while many studies adopt a cross-sectional study design, 
longitudinal studies are needed for comparing active and inactive disease.231, 444 The knowledge 
gap with regards to consistent and specific dysbiosis signatures poses a challenge to reveal the 
role of gut microbiota in human diseases.  

In Chapter 4 we investigated the multifactorial involvement of specific microbial groups 
with CD compared to healthy individuals. Additionally, we also investigated associations 
between the relative abundances of specific bacterial families with disease course (remission 
vs. exacerbation) and disease activity markers (e.g., fecal calprotectin (FC), serum C-reactive 
protein (CRP), and Harvey Bradshaw index (HBI)) in repeatedly sampled CD patients.181 Given the 
variability among CD patients and the complex microbial interactions, associations with disease 
may only be weak when considering mean responses. Therefore, it requires robust analysis to 
uncover these associations, and quantile regression is a promising method given that potential 
relationships may only be apparent in lower or upper quantiles of relative abundances.361, 363 

We identified several significant associations between bacterial family abundances and CD, 
particularly when compared to healthy controls. CD patients exhibited distinct microbial 
profiles, with several families showing predominantly negative associations. While our 
results confirmed previously identified associations, including Erysipelotrichaceae, 
Peptostreptococcaceae, Prevotellaceae, Clostridiaceae, and Ruminococcaceae, we also 
uncovered novel associations with Coriobacteriaceae, Desulfovibrionaceae, Pasteurellaceae, 
Sutterellaceae, and Streptococcaceae.171, 177, 181, 356-358 Notably, Coriobacteriaceae displayed 
a shift in relative abundance across the disease course, with higher values at baseline in 
patients who later experienced exacerbation. Additionally, Streptococcaceae demonstrated 
increased abundance over time in patients with exacerbation, compared to both healthy 
controls and patients in remission. Conversely, Sutterellaceae was consistently lower in patients 
with exacerbation as well as those in remission compared to healthy controls. Interestingly, 
associations with disease activity were generally weaker. We also found that FC levels were 
negatively correlated with the abundance of Porpyromonadaceae and Verrucomicrobiaceae. 
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Prevotellaceae were among the most heterogeneous across individual patients. The genus 
Prevotella, which belongs to this family, is involved in saccharolytic fermentation and short-
chain fatty acid production. Prevotella is generally more prevalent in individuals from rural areas 
compared to urban populations, potentially due to the higher abundance of Prevotella phages 
and a diet lower in plant-derived complex carbohydrates in urban populations.445, 446 Additionally, 
Prevotella has been linked to inflammation in other diseases; for instance, Prevotella bivia is 
strongly associated with inflammation in bacterial vaginosis and an increased risk of HIV.447, 448 
In Chapter 5, we also observed associations with Prevotellaceae in UC patients undergoing FMT 
treatment. Non-responders to FMT showed an increase in Prevotellaceae abundance compared 
to patients who achieved clinical remission after FMT (i.e., responders). However, our data from 
Chapter 4 and Chapter 5 do not clarify whether these differences are driven by the disease or 
factors, such as dietary habits, environmental variables, or other unknown factors that could 
contribute to the outgrowth of Prevotellaceae in these patients. 

Interestingly, nearly all significant associations found with quantile regression in Chapter 4 
were negative and primarily observed in the lower quantiles of the bacterial abundances. While 
positive associations in upper quantiles have been linked to unmeasured factors constraining 
the potential response to positive stimuli,361 this contrasting trend resembles an ecosystem 
responding to stress: as the system nears a tipping point, the ability to sustain healthy bacterial 
abundances gradually diminishes.97 However, the loss of certain species within the microbial 
network can be compensated for by others with similar ecosystem functions (functional 
redundancy). This redundancy enhances resilience, ensuring the continuity of essential functions 
important to the host, such as butyrate production.62, 449 Consequently, when solely studying 
the compositional profile, the actual functional output of a system presumed to be in 'dysbiosis' 
might be normal, and vice versa; lack of significant differences in abundance doesn't necessarily 
indicate a healthy state as the species may lack essential functional genes.450 However, an 
excessive loss of species may reduce resilience and cause a critical transition to an alternative 
stable state.104, 369 A study setup including proteins secreted by the microbiome would provide 
insights into how dysbiosis is expressed on the functional level. For instance, in a CD case-
control study, a lack of species capable of consuming hydrogen sulfide was identified as a key 
distinguishing microbiome feature of the disease.451 Other studies showed the role of butyrate, 
secreted by pathobionts such as Fusobacterium. While butyrate is typically beneficial, it may 
negatively affect the viability of the intestinal epithelium and potentially contribute to IBD 
pathogenesis.452, 453

Note that, from a statistical point of view, investigating numerous bacterial species across 
multiple patients poses a significant challenge regarding the multiple hypothesis testing 
problem. To construct a correlation network or investigate significant differences in microbiota 
composition, adjustments might be necessary to control for false discoveries. The choice 
between correction methods depends on the research goal; stricter corrections, such as the 
Bonferroni approach, may be preferred to demonstrate specific associations, while more general 
impressions may be sought with less stringent corrections, such as the Benjamini-Hochberg (BH) 
method. However, even the BH approach might still be too strict when applied to microbiota 
data, because these methods assume independence among bacterial abundances, which is 
not valid due to (biological) relationships between species (Figure 7.2 and Figure 7.3) and the 
compositional nature of the data. Ideally, correction methods should account for correlated 
species to provide more accurate results. However, there is no solution yet available; therefore, 
conclusions should be based on a comprehensive review of existing literature in addition to 
study findings and not on p-values alone.
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Part III - Ecological determinants of FMT treatment success
Concerning the treatment of dysbiosis, since a groundbreaking study in 2013, FMT has 
emerged as a treatment option for recurrent Clostridioides difficile infection (rCDI).190 However, 
rCDI remains the only condition for which FMT is widely accepted as a treatment. In all other 
indications where FMT has shown promise, its use remains experimental or is considered a last-
resort option.454 One of the challenges with FMT is its inconsistency in (microbiota composition) 
outcomes.455 This means that every person will react differently to certain bacteria and that 
diverse immune responses are activated across patients with different diseases.456 This variability 
raises significant safety concerns, because the microbiota could also be altered to an even more 
undesirable state in the recipient's gut.426, 457 Similarly, other therapies designed to modulate 
the microbiome, such as probiotics, have also been associated with adverse outcomes. The 
PROPATRIA study, a Dutch clinical trial conducted from 2003 to 2007, revealed that patients 
with acute pancreatitis who received probiotics had a higher mortality rate compared to the 
control group.458 However, it remains unclear whether the probiotics themselves or other factors 
contributed to this increased mortality. Therefore, a 'one-size-fits-all' treatment approach does 
not ensure safety and efficacy against multifaceted diseases, as evidenced by the inconsistent 
results of FMT trials for IBD and irritable bowel syndrome (IBS).197, 459-461 The interaction between 
two microbial consortia (donor and recipient) during FMT can be likened to a complex pulse 
perturbation. Possibly, the perturbation caused by bacterial components, metabolites, or 
bacteriophages may also mediate the effects of FMT. Especially as investigations into auto-FMT 
have also shown promising results in restoring gut microbiome composition.462, 463 Clearly, 
there is a need for a deeper understanding of the dynamics underlying the interaction between 
donor and recipient microbiota during FMT.464 This could ultimately lead to a safe and controlled 
modification from disturbed to desired phenotypes in the recipient.23

In the studies detailed in Chapter 5 and Chapter 6, we examined stool samples from 24 patients 
with mild to moderate UC undergoing FMT. Stool samples were collected at nine time points 
across the study period, allowing for a comprehensive assessment of gut microbiota dynamics 
during and post-FMT. Our longitudinal approach provided insights into weekly changes, a 
perspective often lacking in randomized controlled trials (RCTs) that focus primarily on clinical 
outcomes. Our results in Chapter 5 suggested that there is a potential for predicting clinical 
success of FMT treatment based on early microbiota analysis in the early phase of treatment, 
which would make it possible to adapt treatment strategies accordingly. However, developing a 
reliable predictive model for this purpose will require substantial additional effort.

It is plausible that differences in microbiota related to clinical success become apparent early 
during FMT treatment. The order in which species arrive can influence community succession 
(the predictable change in community composition over time), as early-arriving species can 
modify resources and environmental conditions, thereby affecting the establishment of later-
arriving species. These priority effects can lead to varying successional pathways within the 
gut ecosystem.83, 93 This concept is akin to plant ecosystems, where pioneer species prepare the 
environment for subsequent arrivals. For example, while a particular patch may not always host 
the same grass species, the presence of any grass helps create conditions that are conducive to 
the establishment of shrubs. Similarly, the growth of taller plants (regardless of specific species) 
facilitates the establishment of shade-tolerant species.96 Therefore, to understand how microbial 
species interactions shape community dynamics during succession after FMT, we need to 
focus not just on which species are present, but also on the role each species plays within the 
community.
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Several hypothetical outcomes of the FMT treatment are possible (Figure 7.4). First, the 
host communities may revert to their initial dysbiotic state if the perturbation is too weak 
and the dysbiotic state too strong. Therefore, the transferred microorganisms fail to change 
the microbiome or to establish themselves permanently. Second, due to intrinsic host or 
environmental factors, an alternative dysbiotic state may emerge, wherein the microbial 
community, although different in composition, possibly continues to perform detrimental 
ecosystem services. Third, an alternative healthy state may emerge, characterized by a 
novel microbiota composition with beneficial properties. Fourth, the microbiota changes 
to resemble the donor state, ideally incorporating the donor’s healthy functions.23

Figure 7.4 - Hypothetical outcomes of FMT treatment on microbiota 
composition. The interaction between two microbial consortia during FMT treatment 
may be likened to a complex pulse perturbation intended to transfer the functional 
properties of a donor microbiota to a recipient. Several potential outcomes can arise. 
First, one possibility is that the host microbiota returns to its original dysbiotic state 
(referred to as stable state A), as the introduced microorganisms fail to establish 
themselves permanently due to an insufficient perturbation. Second, the interaction 
may lead to the establishment of a completely new microbial community (referred to as 
stable state B), comprising species neither from the donor nor the original community. 
This novel community may arise due to a combination of factors such as niche availability, 
competitive exclusion, and environmental influences. Importantly, this new community 
could exhibit either beneficial or dysbiotic properties, depending on the specific 
composition and functional attributes of the newly established species. Third, due to 
intrinsic host or environmental factors, an alternative state is selected as the outcome 
(referred to as stable state C), comprising a mix of donor, patient, and new species. 
Fourth, resilience of the donor community (referred to as stable state D) in the new 
habitat could lead to a new interaction with long-term transfer of potential beneficial 
properties. This figure is adapted from Sommer et al. (2017).23

Post-FMT stable state D
(similar to donor)

Initial dysbiotic state

Perturbation
(i.e., FMT)

Post-FMT stable state C

Post-FMT stable state B

Post-FMT stable state A
(similar to recipient)
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In Chapter 6, we applied a methodology inspired by Schmidt et al. 2022 to the same dataset 
as the one used in Chapter 5 to investigate the extent to which a shift in the patient's 
microbiota towards the donor microbiota is beneficial for resolving dysbiosis in the patient’s 
gut.199 Engraftment has long been considered a key mechanism underlying the success 
of fecal microbiota transplantation.399 However, insights from earlier studies have raised 
questions about what happens to all the species involved during the succession phase 
of the treatment (during and after FMT).188, 199 Therefore, we categorized species within 
the recipient's gut microbiota into ecological groups based on their origin and presence 
over time: those either already present in the host before FMT, derived from the donor, 
or introduced as novel species (absent in both host pre-FMT and donor samples). Our 
findings revealed that responders retained more resident species and maintained a more 
constant level of colonization over time compared to non-responders. This suggests that a 
favourable response to FMT is facilitated by a microbiota receptive to colonization, without 
compromising the resident community.

Restoring the microbiota with an FMT treatment is a complex process, as different taxa 
recover or colonize to varying extents, with some failing to (re)establish entirely.58, 86, 226, 465 
This variability can be influenced by suppression and resource competition between 
invaders and resident species.87, 466-468 To mitigate the pressure from the resident species, 
a bowel lavage was performed prior to the first treatment, allowing for a more conducive 
environment for donor species to colonize. However, it is likely that the species that 
successfully colonize the gut after FMT are those closely related to the original inhabitants, 
as the gut environment provides a suitable niche for their growth.87, 188, 469 Even if the original 
species are replaced or supplemented by similar ones, the new microbes may potentially 
introduce new traits that alter the ecosystem’s functionality and metabolic output.95 
Moreover, if donor species may fail to establish, they might still be able to impact the 
recipient community's functioning and induce autonomous changes through interactions 
with resident members, for example by horizontal gene transfer or local metabolic activities 
while passing through.88, 95, 466, 467 It has been shown that in a fluctuating environment, rapid 
evolution can destabilize the long-term stability of interactions, potentially enhancing 
adaptability and resilience or disrupting microbial balance and health.470 Our study could not 
determine whether the species that reappear are leftover residents that regrew post-lavage, 
whether they gained additional functions, or whether they originated from the transplanted 
donor material if they are identical to the recipient species pre-FMT.
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Future directions for microbiome research in health and disease

The recognition of the microbiome's critical role in our health marks a significant shift from 
traditional clinical perspectives, which often view the body as a battleground between 
human cells and microbes (i.e., pathogens) to an understanding that embraces the complex 
ecological community context of the microbiome. A dysbiotic human gut microbiome can 
be likened to plant or animal communities in a highly disturbed environment, e.g., impacted 
by overfishing, (abrupt) climate change, habitat loss, ocean acidification, pollution, or an 
invasive species. Human interventions, such as generic antibiotic use, have demonstrated 
detrimental effects on both the microbiome and human health, mirroring the irreversible 
changes observed in disrupted ecosystems where pesticides are used instead of ecological 
management measures. Therefore, to overcome dysbiosis in complex chronic diseases, we can 
draw inspiration from strategies such as habitat restoration and targeted removal of invasive 
species, which have been successfully applied in large-scale biodiversity management. 
For chronic diseases, an ecological maintenance approach may be more effective than the 
traditional battlefield strategy.22, 226

The limitations of the traditional 'one-size-fits-all' treatment approach, based on broad 
population averages, have also become increasingly apparent due to the heterogeneity 
in genotypes and phenotypes of gastrointestinal diseases among human populations. For 
example, matching donors and recipients by lifestyle and diet could enhance the likelihood 
of transplanting species that are effective colonizers or providing the resident species with 
the necessary metabolites that support their growth and function, thereby potentially 
improving the recipient's microbiome more successfully. Potentially, a better FMT success can 
also be achieved through the administration of specific prebiotics alongside the microbes. By 
providing targeted substrates exclusively metabolized by preferred species, prebiotics could 
create an advantage for them.471, 472 Such an approach potentially strengthens the recipient's 
own microbiota and enriches it with species that naturally belong to the same community, 
leading to a more harmonious and effective community. However, the specific species that 
are most beneficial and those that are naturally suited to the community still need to be 
identified before this strategy can become a reality. As our understanding of the microbiome 
ecosystem advances, doctors will hopefully be equipped with precise disease prevention 
strategies and more effective treatments in the future.

A recurring theme in microbiome research is the need for large, densely sampled 
temporal datasets encompassing individuals from diverse backgrounds and lifestyles. 
Such datasets would be instrumental in unraveling fundamental mechanisms governing 
ecosystem dynamics in health and disease. Furthermore, studying microbiomes from 
various geographical regions (e.g., Africa) is important for capturing the global diversity 
in microbiological research, as most studies to date have focused on the United States, 
Europe, and Asia.473 The unique environmental factors, dietary habits, and cultural practices 
in different regions in the world can significantly influence microbial composition and 
function.474 By incorporating diverse microbiomes into our research, we can enhance our 
understanding of microbial dynamics that could inform health strategies and identify 
important confounding variables that may influence health outcomes.
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Another way forward is to paint a more comprehensive picture of the microbial ecosystem 
with an integrative ecosystem biology approach that combines multiple omics technologies 
with host physiological data, and in depth knowledge of bacterial species behaviour and their 
(chemical) environment.3, 60, 152, 244, 440, 475 By examining fecal matter in more detail alongside 
dietary questionnaires or food diaries, we might be able to extract valuable information 
about the host's diet, offering more insights than what is typically available. Note that the 
presence of a nutrient in a fecal sample is often assumed to indicate its importance for the 
microbiome. However, it could also be present because the species have not utilized it, 
leaving it to be excreted in the feces. Additionally, simultaneous assessment of mediators 
of reciprocal host-microbe interactions, such as microbial metabolites and immunological 
parameters, holds promise for identifying causality, discerning what changes first and who 
or what influences whom at various points in time.121 At present, a significant question 
remains unanswered: whether the microbiota differs in various disease states because it 
causes these states, whether the microbiota differs as a consequence of the patients' disease 
state, or whether both are caused by the same external factors (for example altered diet or 
lifestyle). Mixing up association with causality can lead to an overestimation of the clinical 
relevance and impact of the microbiome on diseases.214 For example, bacteria associated with 
unhealthy microbiomes may not necessarily be those directly related to the disease; instead, 
they could merely be among the few species capable of thriving in a gut environment with 
reduced diversity (possibly due to chance as described by the neutral theory); or they may 
play a beneficial role by supporting the host in the restoration of the healthy microbial 
community.476

Future research could also aim to identify not only bacteria, but also other microbes such 
as Archaea, fungi, and viruses, while exploring their interactions with each other and with 
bacteria, as well as their potential roles in health and disease. This includes investigating 
phage therapy as a strategy to target specific bacteria or pathogens, as bacteriophages may 
regulate intestinal microbiota diversity through mechanisms such as the kill-the-winner 
principle (which targets the most abundant bacterial species) or by specifically eliminating 
a species of interest, thereby preventing, for example, the outgrowth of Prevotellaceae in UC 
patients.67, 477-479 Cross-domain networks may be important in understanding microbiome 
dynamics and ecosystem resilience, as there are many correlations with the bacterial 
microbiome and other domains.428 

It is important to find a balance between collecting extensive data and maintaining clarity 
and interpretability. Merely increasing sequencing efforts is insufficient; the analysis pipelines 
must also continuously evolve to accommodate the influx of new data types and quantities. 
Moreover, focusing on excessively granular data might lead to a loss of statistical power 
due to the large number of species or functions relative to the number of patients and the 
prevalence of rare taxa. Additionally, the fact that different bacterial species can perform the 
same functional role in different patients may require a much larger sample size or functional 
assay than is (currently) possible in microbiome studies.118, 168 On top of that, even the 'simple' 
networks with only bacteria generated from currently available data are challenging to grasp. 
Before introducing further complexity, we must step back to reflect on our research designs 
and develop strategies to effectively comprehend the influx of new information. 
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Finally, increasing the database of cultured microorganisms and annotated genes is needed 
for a comprehensive understanding of microbial function and for creating benchmark 
data to improve the evaluation of tool performance.118, 480 Without the information about, 
for example, functional redundancy, dormancy, and phenotypic plasticity, taxonomic 
data alone offers limited insights into ecosystem processes across space and time.425, 480, 481 
Fundamental research on gut microbiota, including culturing of isolates, remains important 
for understanding the interspecies interactions and bacterial behaviours and dynamics, as it 
provides species-specific knowledge.482 Mechanistic research in wet-lab and (animal) models 
is also imperative to validate the hypothesized mechanisms of species behaviours, not only 
for the most abundant ones, as they may not be the most important from an ecological point 
of view.483-488 However, replicating complex human gut microbiome interactions (in artificial 
gut models) poses significant challenges, despite all the current advances in the field, and 
warrants further improvements.118, 489-491 Ideally, establishing gold standards for microbiota 
data analysis and comprehensive reporting of (meta)data would enable more meaningful 
comparisons across studies, a call made over a decade ago but still largely unaddressed.492, 493

Concluding remarks

The journey of microbiome research reveals both the complexities and the promises for 
enhancing human health. As technology advances, so does our understanding of the 
microbiome. More fine-grained studies on the (gut) microbiome and its role in human 
health are needed to provide interpretation and meaning on the differences already found. 
Sophisticated technologies, such as Artificial Intelligence (AI), machine learning, and network 
analyses hold potential for identifying patterns within microbiota community data. However, 
those results should still be considered in light of past discoveries, established methods and 
models, and longstanding theories from multiple fields. When we combine (mathematical) 
modeling, theoretical knowledge, and experimental approaches, we gain a more 
comprehensive understanding of complex biological systems allowing us to validate results, 
do predictions, uncover underlying mechanisms, and refine our models for more accurate 
insights, as demonstrated throughout this thesis.

Collaborations across multidisciplinary groups, comprising, among others, (microbial) 
ecologists, healthcare professionals, complexity scientists, and bioinformaticians will 
further enrich our research field. Complex systems exist on a spectrum between order and 
randomness. Although one can get lost in the hairball of a complex network, knowledge 
from several fields can help. Understanding how systems respond to changes and return to 
stability enhances our grasp of the complex dynamics within the human gut microbiome. 
This knowledge can ultimately improve microbiome-modulating strategies and drive 
innovation of therapeutic strategies. Improved data sharing practices, including publishing 
raw data in a standardized fashion and statistical code will facilitate higher-quality meta-
analyses and the establishment of more robust microbial signatures for diseases.439, 494 
Unfortunately, data accessibility still poses a significant challenge in microbiota research, 
with researchers frequently withholding study-related data. While concerns about privacy 
and efforts required for data collection are understandable, limited data sharing impedes 
scientific advancement.495-500
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By recognizing that each step brings us closer to harnessing the microbiome’s potential to 
improve human health, we ensure continuous progress and discovery. To truly understand 
microbial dynamics, it is important to acknowledge that human time is vastly different from 
bacterial time. Bacteria perceive their environment, resources, and interactions on a much 
smaller spatial scale. They constantly adapt to their immediate surroundings and rapidly 
shifting communities. An (microbial) ecological perspective grounded in theory is essential 
to interpret the impact of the microbiome on our health and disease.
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English summary

The gut microbiota

The human body hosts countless microorganisms, with a significant portion residing in 
the digestive system. The bacteria and other microorganisms in our gut, such as fungi and 
viruses, are collectively referred to as the gut microbiota. A rich and diverse gut microbiota 
can contribute to good health in its host, for example, by suppressing harmful bacteria. 
Additionally, these bacteria assist with tasks such as nutrient digestion and training the 
immune system. The microorganisms constantly influence each other and their human host. 
Microbes adapt to the specific conditions of their host, with factors such as diet, lifestyle, 
hormonal regulation, and the immune system playing a role (Figure 1). As a result, the 
composition of the microbiota frequently changes, for instance, after foreign travel or during 
antibiotic treatment. Despite these adjustments, it is hoped that the microbiota does not 
lose its functions, ensuring, among other things, that the integrity of the intestinal wall 
remains intact.

Figure 1. Factors influencing the composition of the gut microbiota. 
While technical factors do not directly affect the composition of the gut microbiota 
itself, they do influence the types and the abundance of microorganisms that can 
be detected in fecal samples.
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The significant role of the gut microbiota in our health has led to extensive research into 
this ecosystem. Fecal samples are often collected to study the composition and diversity 
of gut bacteria using DNA analysis techniques such as 16S rRNA sequencing. However, 
technical factors, such as sample quality, the DNA extraction method used, and the choice 
of primers, can influence which species are detected and how they are represented in 
the results (Figure 1). Additionally, incomplete databases, the vast microbial diversity, 
the dynamic nature of the microbiota, and the limited knowledge about many species 
make these analyses particularly challenging. The resulting data are complex and require 
advanced methods for accurate interpretation.

The dynamics and stability of microbial communities, in relation to health and disease, can 
be studied using techniques such as network analyses and time series models. Network 
analyses map which bacteria frequently coexist within an ecosystem, providing clues about 
how microbes might influence and interact with each other. Time series models help track 
changes in microbial communities over time and uncover patterns. Studying the microbiota 
is challenging because it cannot be directly observed in the body, and often only a limited 
number of samples are available. A small number of samples, both in terms of participants 
and measurement points, complicates the identification of robust associations and makes it 
difficult to distinguish between individual variation and general patterns.

In the project ‘Ecology meets human health’, we first examined the reliability of network 
analyses and alternative methods for mapping relationships between microbes. Next, 
we combined clinical, microbiological, and ecological concepts to better understand 
how microbial dynamics are linked to intestinal diseases, specifically Crohn's disease and 
ulcerative colitis, as well as the success of fecal microbiota transplantation (FMT) as a 
treatment. In this context, we investigated the ecological factors that influence the gut 
microbiota and the functioning of this complex ecosystem.

Ecological structure in the gut microbiota

The gut ecosystem consists of numerous species whose presence depends on variations in 
the environment and functional needs, such as breaking down food, producing vitamins, 
or combating pathogens. Additionally, interactions often occur between bacteria, which 
can have positive (beneficial) or negative (detrimental) effects on the species involved. 
Understanding these interactions is crucial for grasping ecological processes and changes 
within the microbiota. Correlation methods are often used to map these networks.

In Chapter 2, we investigated the reliability of correlation methods for inferring interaction 
networks. For our research, we used the generalized Lotka-Volterra (gLV) model to simulate 
bacterial communities. This model provides insights into microbial dynamics without 
requiring actual gut microbiota samples and allows for the adjustment of parameters such 
as bacterial growth rates. Moreover, it enabled us to use a known interaction network as a 
reference, which is not possible with real samples. We examined the effects of interindividual 
variation (differences in microbiota composition between individuals) and sample size (the 
amount of available data) on the accuracy of network reconstructions. While correlations 
in microbial abundances often indicate ecological interactions, we demonstrated that 
measurement noise, such as variations in sample processing, complicates the detection of 
true interactions. 
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Furthermore, correlations do not differentiate specific interaction types, making laboratory 
verification necessary to understand these relationships. The gLV model offers valuable 
insights but also underscores the indispensable role of studies using real data. However, 
many human microbiota studies are snapshots in time, meaning apparent correlations can 
be driven by external factors, such as fluctuations in nutrients, without indicating actual 
interactions between species. Longitudinal studies, which track microbial communities over 
time, provide a much better basis for understanding consistency and patterns. Such datasets 
are scarce, likely due to practical challenges, such as repeated sampling, which depend 
heavily on the host's consent and willingness to participate in research.

In Chapter 3, we demonstrated how the microbiota changes over time and what information 
these variations reveal about relationships between species. To do this, we analysed time 
series data from two individuals collected by researcher Caporaso et al. in 2011. These two 
individuals submitted stool samples almost daily for a year, providing a clear view of the 
variation within the microbiota. Using wavelet clustering, we uncovered patterns in these 
data. Wavelet clustering has already been established in ecological and epidemiological 
studies, and it has also proven particularly suitable for non-stationary microbiota time series, 
providing greater insight into the collective temporal behaviour of bacteria compared to 
conventional correlation methods. With wavelet spectra, we constructed ‘trees’ that depicted 
relationships between bacterial species. These trees showed significant differences from 
those based on correlation methods, such as a greater total branch length (indicating higher 
functional diversity) and distinct subgroups. This highlights that wavelet clustering is more 
sensitive to subtle differences in community structures than correlation-based methods. 
Our findings underscore the importance of the method chosen by researchers for analysing 
microbiota data.

Gut microbiota and inflammatory bowel disease

The interaction between humans and the microbiota is the result of over a billion years of 
co-evolution, leading to a symbiotic relationship. Our microbes are involved in numerous 
essential functions, and disturbances in their species composition, known as dysbiosis, have 
been linked to various diseases. Dysbiosis can weaken the mucus layer in the gut wall, a 
protective layer that covers the inside of the intestines and helps keep harmful substances 
and microorganisms out of the body. This can lead to colonization by harmful organisms, an 
increased risk of inflammation, and metabolic disruptions, putting the host's health at risk 
(Figure 2). 

Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are 
chronic inflammations of the intestinal mucosa. These conditions are associated with an 
altered composition and diversity of the gut microbiota. In Chapters 4 to 6, we explore the 
relationships between bacterial dysbiosis and the disease progression in patients with IBD. 
Although much research has been conducted in this area, findings across studies have often 
been inconsistent. The differences in findings regarding the involvement of microbes in IBD 
can likely be attributed to technical variations in research methods and diversity among 
patients, including variations in disease assessment, medication use, and lifestyle factors. 
Additionally, the variability of the microbiota in gastrointestinal disorders, such as natural 
fluctuations in composition, makes it challenging to identify consistent biological signals. 
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In Chapter 4, we analysed stool samples from patients with Crohn's disease to describe 
associations between bacterial abundance and disease remission or exacerbation. We 
employed a quantile regression model to uncover relationships that go beyond the average 
response of all patients. Quantile regression allows for a more comprehensive view of the 
relationships between bacterial abundance and disease. Associations with specific bacterial 
families may only be observable in a minority of patients. While generic associations can 
also be identified using methods that focus on the average response, it is also essential 
to understand less common differences in the microbiota, as these may provide insight 
into personalized treatment approaches. We also correlated the relative abundance of 
bacterial families with known biomarkers of disease activity, such as fecal calprotectin and 
serum C-reactive protein. Our findings revealed significant negative associations between 
various bacterial families and disease, such as Pasteurellaceae and Ruminococcaceae. When 
comparing regressions with clinically defined exacerbation, we found that associations 
with fecal calprotectin were stronger than with other indicators. In summary, our research 
highlights the heterogeneity of Crohn's disease and its relationship with the gut microbiota. 

Ecological determinants of FMT treatment success

Microbiota-related therapies aim to intentionally alter the microbiota of patients to shift 
it from a dysbiotic to a healthy state. Fecal microbiota transplantation (FMT), commonly 
known as a stool transplant, is an experimental treatment in which fecal material, including 
the microbiota from healthy donors, is transferred to the patient to restore the disrupted 
microbiota. FMT has established itself as a promising treatment for microbiota-related 
conditions, particularly for the treatment of recurrent Clostridioides difficile infection. In 
ulcerative colitis, the success of FMT is determined by achieving clinical remission. 

Figure 2. Illustration of the difference between a gut with a healthy 
microbiota and a disrupted microbiota. A) A healthy gut microbiota is diverse and 
balanced. The mucus layer provides nourishment for the bacteria while also protecting the 
gut cells. B) When the balance is disrupted, some bacteria can overgrow and displace other 
bacteria. Then, the mucus layer can be damaged, allowing bacteria to harm the gut wall. 
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One of the challenges of FMT is the inconsistency in outcomes regarding the final 
composition of the patient's microbiota. This means that each person responds differently to 
certain donor bacteria and that various immune responses can be activated in patients with 
different conditions. Hypothetical outcomes include a return to the original dysbiotic state, 
an alternative dysbiotic state, a long-term change with beneficial properties, or a persistent 
shift to a healthy microbiota with donor species. In our study, we investigated the microbial 
families associated with the success of FMT treatment in ulcerative colitis. This allowed us to 
explore the dynamics of the gut microbiota. This longitudinal approach provided insight into 
weekly changes (Figure 3), a perspective often missing in randomized controlled trials that 
mainly focus on clinical outcomes. 

In Chapter 5, we studied the associations related to the clinical success of FMT in patients 
and the development of the microbiota during and after treatment. We used a wide range 
of analytical techniques to investigate potential associations between bacterial families 
and clinical outcomes, including ordination analysis, Dirichlet multinomial mixture analysis, 
and longitudinal modeling. The use of these approaches allowed us to identify significant 
differences in microbial composition and diversity between patients who benefited from the 
treatment and those who did not. For example, we found that the success of FMT in patients 
with ulcerative colitis seems to be associated with limited growth of Prevotellaceae and the 
presence of the families Lachnospiraceae and Ruminococcaceae. Monitoring the dynamics of 
these microbial families could potentially provide early insight into the success of treatment 
during FMT.

It is widely believed that the colonization of donor species in the recipient's microbiota 
is a key mechanism behind the success of FMT. An interesting finding from our research 
in Chapter 5 is that we found no indication of a shift in the microbial composition of the 
recipient towards the donor microbiota among patients with clinical success of FMT. In 
Chapter 6, we therefore examined whether the donor-centered view of FMT holds true by 
analysing whether microbiota dynamics are related to achieving remission in patients after 
FMT treatment.

Figure 3. Design of the FECBUD-study (data used in Chapters 5 and 6). Patients 
were first pre-treated for three weeks with budesonide (n = 12), a medication commonly used 
to reduce inflammation, or a placebo (n = 12), an inactive substance with no therapeutic effect. 
After that, the patients received four consecutive fecal transplants from a healthy donor provided 
by the Netherlands Donor Feces Bank (NDFB). Treatment evaluation took place after 10 and 14 
weeks from the start of the study. A subgroup of the patient group (9 out of 24 patients) achieved 
a successful combined clinical and endoscopic remission after the FMT treatment. Fecal samples 
from the patients were collected at the beginning of the study, after the pre-treatment, weekly 
after the fecal transplant, and at two, four, and eight weeks post-FMT. 

Week: 0 3 4 5 6 7 8 10 14

Budesonide/placebo

Clinical evaluation Clinical evaluation
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To do this, we categorized the species based on their origin and temporal presence: already 
present in the host before FMT, derived from the donor, or species newly introduced during 
the FMT treatment. We then modelled the number of species per category (host-associated, 
donor-derived, and novel) for patients who did or did not benefit from FMT. Our results 
show that patients who benefited from the treatment retained a higher number of host-
associated species compared to patients who did not benefit from the treatment. Although 
donor species initially colonized more extensively in patients who did not benefit from the 
treatment, this colonization decreased over time, aligning with the level seen in patients who 
did benefit from the treatment. This suggests that a successful clinical response to FMT may 
be facilitated by a microbiota that is receptive to colonization without compromising the 
resident microbiota. We also discovered that host species with higher relative abundances 
before FMT are better able to persist after FMT.

In conclusion

There are numerous environmental factors and habits (among others, diet and lifestyle) 
that influence the composition and function of microbes. This complexity can sometimes 
be overwhelming, but knowledge from various disciplines provides valuable insights. 
By understanding how systems respond to changes and regain balance, we deepen our 
knowledge of the complex dynamics within the human gut microbiota. These insights 
can improve microbiota-modulating strategies such as FMT and stimulate innovation in 
personalized therapeutic approaches. This leads to a new perspective, viewing the microbiota 
not just as a battleground against pathogenic microbes, but as a complex ecological 
community. Management strategies such as habitat restoration play an important role in this. 
To achieve this, extensive (longitudinal) datasets are needed that include a wide range of 
individuals with diverse backgrounds and lifestyles. Such data are essential for understanding 
the mechanisms that influence the dynamics of ecosystems in health and disease. In addition, 
suitable methods must be available to effectively investigate the complex microbiota data.

The limitations of a 'one-size-fits-all' approach are becoming increasingly evident, particularly 
due to the diversity, genotypes (genetic composition), and phenotypes (observable traits 
and characteristics) of the gut microbiota. This underscores the need for a more personalized 
approach in (clinical) scientific research. For instance, matching donor and recipient based 
on lifestyle and diet could increase the likelihood that transplanted bacteria successfully 
colonize and that the resident bacteria receive the right nutrients. This could contribute 
to a more effective improvement of the recipient’s microbiota, tailored to the patient's 
unique needs. However, to truly understand microbial functioning, we need to keep the 
ecological perspective of bacteria in mind. This means recognizing that bacteria perceive 
their environment, resources, and interactions on a much smaller spatial scale, constantly 
adapting to their immediate surroundings. This implies that even within a single sample, 
different bacteria can exhibit different behaviours, functions, or interactions. Additionally, 
within the gut microbiota, various bacteria often have overlapping functions. This means 
that if a certain species is disrupted or removed, other species can take over that function. 
This mechanism is crucial for maintaining a healthy gut microbiota and remains an area that 
has not been sufficiently researched. An ecological approach, grounded in theory, is essential 
for interpreting the impact of the microbiota on health or disease. This perspective allows 
us to better understand the complex interactions within the microbiota, which is vital for 
developing effective therapeutic strategies.
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Nederlandse samenvatting

De darmmicrobiota

Het menselijk lichaam herbergt als gastheer talloze micro-organismen, een groot deel 
daarvan bevindt zich in het spijsverteringsstelsel. De bacteriën en andere micro-organismen 
in onze darmen, zoals schimmels en virussen, worden samen de darmmicrobiota genoemd. 
Een rijke en diverse darmmicrobiota is in staat om bij te dragen aan een goede gezondheid 
van de gastheer, bijvoorbeeld door schadelijke bacteriën te onderdrukken. Daarnaast 
helpen de bacteriën ook bij de vertering van voedingsstoffen en het instrueren van het 
immuunsysteem. De micro-organismen beïnvloeden continu elkaar en hun menselijke 
gastheer. Microben passen zich aan de specifieke omstandigheden van hun gastheer aan, 
waarbij factoren zoals dieet, leefstijl, hormonale regulatie en het immuunsysteem een 
rol spelen (Figuur 1). Hierdoor verandert de samenstelling van de microbiota regelmatig, 
bijvoorbeeld na een buitenlandse reis of tijdens een antibioticabehandeling. Tijdens deze 
aanpassingen verliest de microbiota hopelijk geen functies, zodat de integriteit van de 
darmwand behouden blijft. 

Figuur 1. Factoren die van invloed zijn op de samenstelling van de 
darmmicrobiota. Hoewel de technische factoren niet de samenstelling van de 
darmmicrobiota zelf beïnvloeden, hebben deze wel effect op zowel de soorten als de 
hoeveelheid micro-organismen die kunnen worden gevonden in de fecale monsters.
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Doordat de darmmicrobiota zo belangrijk is voor onze gezondheid, wordt er uitgebreid 
onderzoek gedaan naar dit ecosysteem. Vaak worden ontlastingsmonsters verzameld om 
met DNA-analysetechnieken zoals 16S rRNA-sequencing de samenstelling en diversiteit van 
darmbacteriën te onderzoeken. Technische factoren, zoals de kwaliteit van het monster, de 
gebruikte DNA-extractiemethode en de keuze van primers, kunnen echter invloed hebben 
op welke soorten worden gedetecteerd en in welke mate ze worden gerepresenteerd in 
de resultaten (Figuur 1). Daarnaast maken incomplete databases, de enorme microbiële 
diversiteit, het dynamische karakter van de microbiota en de beperkte kennis over veel 
soorten de analyses extra uitdagend. De verkregen gegevens zijn hierdoor complex en 
vereisen geavanceerde methoden om nauwkeurig geïnterpreteerd te worden.

De dynamiek en stabiliteit van microbiële gemeenschappen, in relatie tot gezondheid 
en ziekte, is te onderzoeken met behulp van technieken zoals netwerkanalyses en 
tijdreeksmodellen. Netwerkanalyses brengen in kaart welke bacteriën vaak samen 
voorkomen binnen een ecosysteem. Dit kan een aanwijzing zijn voor hoe microben elkaar 
mogelijk beïnvloeden en samenwerken. Tijdreeksmodellen helpen om veranderingen in de 
microbiële gemeenschappen over de tijd te volgen en patronen te ontdekken. Het onderzoek 
van de microbiota is ook uitdagend, omdat het niet rechtstreeks in het lichaam kan worden 
bestudeerd en er vaak slechts een beperkt aantal monsters beschikbaar is. Een klein aantal 
monsters, zowel qua deelnemers als meetmomenten, bemoeilijkt het vaststellen van 
robuuste verbanden en maakt het lastig om onderscheid te maken tussen individuele variatie 
en algemene patronen. 

Binnen het project ‘Ecology meets human health’ onderzochten we eerst de betrouwbaarheid 
van netwerkanalyses en alternatieve methoden om de relaties tussen microben in kaart te 
brengen. Vervolgens combineerden we klinische, microbiologische en ecologische concepten 
om beter te begrijpen hoe microbiële dynamiek samenhangt met darmaandoeningen, 
specifiek de ziekte van Crohn en colitis ulcerosa, en met het succes van fecale microbiota-
transplantatie (FMT) als behandeling. Hierbij onderzochten we de ecologische factoren die de 
darmmicrobiota beïnvloeden en de werking van dit complexe ecosysteem bepalen. 

Ecologische structuren in de darmmicrobiota

Het darmecosysteem omvat tal van soorten waarvan het voorkomen afhankelijk is van 
variaties in de omgeving en functionele vereisten, zoals de afbraak van voedsel, productie 
van vitamines of de bestrijding van ziekteverwekkers. Daarnaast zijn er ook vaak interacties 
tussen bacteriën, die positieve (winst) of negatieve (verlies) effecten hebben op de 
betrokken soorten. Inzicht in deze onderlinge interacties is belangrijk voor het begrijpen van 
ecologische processen en veranderingen in de microbiota. Vaak worden correlatiemethoden 
gebruikt om het netwerk in kaart te brengen.

In Hoofdstuk 2 onderzochten we de betrouwbaarheid van correlatiemethoden bij het 
afleiden van de interactienetwerken. We hebben voor ons onderzoek het gegeneraliseerde 
Lotka-Volterra (gLV) model gebruikt om bacteriële gemeenschappen te simuleren. Dit model 
biedt inzicht in microbiële dynamieken zonder echte darmmicrobiota monsters nodig te 
hebben en maakt het mogelijk om parameters, zoals de groeisnelheid van de bacteriën, te 
variëren. Bovendien konden we een bekend interactienetwerk als referentie gebruiken, wat 
bij echte monsters niet mogelijk is.
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We onderzochten onder andere de invloed van interindividuele variatie (verschillen 
in microbiota-samenstelling tussen individuen) en steekproefgrootte (de hoeveelheid 
beschikbare gegevens) op de nauwkeurigheid van netwerkreconstructies. Hoewel correlaties 
in microbiële aantallen vaak indicatief zijn voor ecologische interacties, toonden we aan 
dat meetruis, zoals variaties in monsterverwerking, het waarnemen van echte interacties 
bemoeilijkt. Daarnaast onderscheiden correlaties niet specifieke interactietypen, waardoor 
verificatie met laboratoriumstudies noodzakelijk blijft om de relatie te begrijpen. Het 
gLV-model biedt waardevolle inzichten, maar benadrukt ook dat studies met echte 
data onmisbaar zijn. Veel microbiota studies bij mensen zijn echter momentopnames 
waardoor schijnbare correlaties veroorzaakt kunnen worden door externe factoren, zoals 
schommelingen in voedingsstoffen (nutriënten), zonder dat er sprake is van echte interacties 
tussen soorten. Longitudinale studies, die microbiële gemeenschappen door de tijd volgen, 
stellen ons veel meer in staat om consistentie en patronen beter te begrijpen. Er bestaan 
echter maar weinig van dergelijke datasets, waarschijnlijk door praktische uitdagingen 
zoals herhaalde monsterafnames, aangezien dit sterk afhankelijk is van de toestemming en 
bereidheid om mee te werken aan onderzoek van de gastheer.

In Hoofdstuk 3 hebben we aangetoond hoe de microbiota in de loop van de tijd verandert 
en welke informatie deze variaties bevatten over verbanden tussen soorten. Hiervoor 
analyseerden we de tijdseries van twee individuen, verzameld door onderzoeker Caporaso 
en zijn collega's in 2011. Deze twee mensen hebben gedurende een jaar bijna dagelijks 
hun ontlasting ingeleverd, waardoor de variatie in de microbiota goed zichtbaar wordt. Met 
wavelet clustering hebben we vervolgens de patronen onthuld in deze gegevens. Wavelet 
clustering, al bekend in ecologische en epidemiologische studies, bleek bijzonder geschikt 
voor niet-stationaire tijdseries van microbiota en bood meer inzicht in collectief temporeel 
gedrag van de bacteriën dan gangbare correlatiemethoden. Met de waveletspectra bouwden 
we ‘bomen’ die verbanden tussen bacteriesoorten laten zien. Deze toonden aanzienlijke 
verschillen met bomen gebaseerd op correlatiemethoden, zoals een grotere totale 
taklengte (wijzend op meer functionele diversiteit) en duidelijke subgroepen. Dit laat zien 
dat wavelet clustering gevoeliger is voor subtiele verschillen in gemeenschapsstructuren 
dan correlatiemethoden. Onze resultaten benadrukken het belang van de methode die de 
onderzoeker kiest voor het analyseren van microbiota gegevens. 

Darmmicrobiota en inflammatoire darmziekten

De interactie tussen mensen en de microbiota is het resultaat van meer dan een miljard jaar 
co-evolutie, wat heeft geleid tot een symbiotische relatie. Onze microben zijn betrokken 
bij tal van essentiële functies, waardoor verstoringen in hun soortensamenstelling, bekend 
als dysbiose, zijn gerelateerd aan verschillende ziekten. Dysbiose kan de mucuslaag in de 
darmwand verzwakken. Deze laag bedekt en beschermt de binnenkant van de darmen 
en helpt om schadelijke stoffen en micro-organismen buiten het lichaam te houden. 
Verzwakking van de mucuslaag kan leiden tot kolonisatie door schadelijke organismen, een 
verhoogd risico op ontstekingen en metabolische verstoringen. Dit brengt de gezondheid 
van de gastheer in gevaar (Figuur 2).
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Inflammatoire darmziekten, waaronder de ziekte van Crohn en colitis ulcerosa, zijn chronische 
ontstekingen van de slijmvliezen van het darmkanaal. Deze zijn geassocieerd met een 
afwijkende samenstelling en diversiteit van de darmmicrobiota. In Hoofdstuk 4 tot en met 6 
onderzoeken we de relaties tussen bacteriële dysbiose en het ziekteverloop van patiënten 
met inflammatoire darmziekten. In het verleden is hier al veel onderzoek naar gedaan, 
maar de resultaten tussen studies kwamen vaak niet met elkaar overeen. De verschillen 
in bevindingen over betrokkenheid van microben bij inflammatoire darmziekten kunnen 
waarschijnlijk worden toegeschreven aan technische variaties in onderzoeksmethoden 
en diversiteit tussen patiënten, inclusief variaties in ziektebeoordeling, medicatiegebruik 
en leefstijlfactoren. Daarnaast maakt ook de variabiliteit van de microbiota bij maag-darm 
aandoeningen, zoals natuurlijke fluctuaties in samenstelling, het uitdagend om consistente 
biologische signalen te identificeren.

In Hoofdstuk 4 analyseerden we ontlastingsmonsters van patiënten met de ziekte van Crohn 
om associaties te beschrijven tussen bacteriële abundantie en remissie of exacerbatie van 
de ziekte. We gebruikten een kwantiel regressie model om relaties bloot te leggen die niet 
beperkt zijn tot de gemiddelde respons van alle patiënten. Kwantiel regressie maakt het 
mogelijk om een completer beeld te krijgen van de relaties tussen bacteriële abundantie en 
ziekte. Associaties met specifieke bacteriële families zijn mogelijk alleen waarneembaar bij 
een minderheid van de patiënten. Generieke associaties kunnen ook worden vastgesteld 
met methoden die zich richten op de gemiddelde respons, maar het is ook belangrijk om 
de minder algemene verschillen in de microbiota te begrijpen, omdat ze inzicht zouden 
kunnen geven in gepersonaliseerde benaderingen van behandeling. We koppelden de 
relatieve abundantie van bacteriële families ook aan bekende biomarkers van ziekteactiviteit, 
zoals fecale calprotectine en serum C-reactief proteïne. Onze bevindingen onthulden vooral 
significante negatieve associaties tussen verschillende bacteriële families en de ziekte, zoals 
Pasteurellaceae en Ruminococcaceae. 

Figuur 2. Illustratie van het verschil tussen een darm met een 
gezonde microbiota en een verstoord microbiota. A) Een gezond 
darmmicrobiota is divers en in evenwicht. De mucus laag verzorgt de voeding 
voor de bacteriën en beschermt tegelijkertijd de darmcellen. B) Wanneer het 
evenwicht verstoord wordt kunnen sommige bacteriën uitgroeien en andere 
bacteriën verdrijven. Als het evenwicht verstoord is kan de mucuslaag worden 
aangetast, hierdoor kunnen bacteriën de darmwand beschadigen.
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Bij het vergelijken van regressies met klinisch gedefinieerde verergering ontdekten we 
dat de associaties met fecale calprotectine sterker waren dan met de andere indicatoren. 
Samenvattend benadrukt ons onderzoek de heterogeniteit van de ziekte van Crohn en de 
relatie daarvan met het darmmicrobiota. 

Ecologische bepalende factoren voor het succes van FMT-behandeling

Microbiota-gerelateerde therapieën zijn gericht op het doelgericht veranderen van de 
microbiota van patiënten, zodat deze van een dysbiotische naar een gezonde toestand gaan. 
Fecale microbiota-transplantatie (FMT), beter bekend als een poeptransplantatie, is een 
experimentele behandeling, waarbij fecaal materiaal, inclusief de microbiota van gezonde 
donoren aan de patiënt wordt overgebracht om het verstoorde microbiota te herstellen. 
FMT heeft zich gepositioneerd als een veelbelovende behandeling voor microbiota-
gerelateerde aandoeningen, vooral in de behandeling van terugkerende Clostridioides 
difficile-infectie. Bij colitis ulcerosa wordt het succes van FMT bepaald door het bereiken 
van klinische remissie. Een van de uitdagingen bij FMT is de inconsistentie in de uitkomsten 
met betrekking tot de uiteindelijke samenstelling van de microbiota in de patiënt. Dit 
betekent dat elke persoon anders reageert op bepaalde donor bacteriën en dat er diverse 
immuunreacties kunnen worden geactiveerd bij patiënten met verschillende aandoeningen. 
Hypothetische uitkomsten zijn onder andere een terugkeer naar de oorspronkelijke 
dysbiotische toestand, een alternatieve dysbiotische toestand, een langdurige verandering 
met gunstige eigenschappen, of een blijvende verschuiving naar een gezonde microbiota 
met donorsoorten. 

In ons onderzoek hebben we de microbiële families onderzocht die geassocieerd zijn met 
het succes van FMT-behandeling bij colitis ulcerosa. Hierdoor konden we de dynamiek 
van het darmmicrobiota onderzoeken. Deze longitudinale benadering bood inzicht in 
wekelijkse veranderingen (Figuur 3), een perspectief dat vaak ontbreekt in gerandomiseerde 
gecontroleerde proeven die voornamelijk gericht zijn op klinische uitkomsten. 

Figuur 3. Opzet van de FECBUD-studie (gegevens gebruikt in Hoofdstukken 5 
en 6). De patiënten werden eerst drie weken vooraf behandeld met budesonide (n = 12), een 
medicijn dat vaak wordt gebruikt om ontstekingen te verminderen, of een placebo (n = 12), 
een inactieve stof die geen therapeutische werking heeft. Daarna kregen de patiënten viermaal 
opeenvolgend van de Netherlands Donor Feces Bank (NDFB) een feces transplantatie van een 
gezonde donor. De evaluatie van de behandeling vond plaats na 10 en 14 weken na de start van 
de studie. Een subgroep van de patiëntengroep (9 van de 24 patiënten) bereikte een succesvolle 
gecombineerde klinische en endoscopische remissie na de FMT-behandeling. Fecesmonsters van 
de patiënten werden verzameld aan het begin van de studie, na de voorbehandeling, wekelijks 
na de feces transplantatie en twee, vier en acht weken na de FMT. 
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In Hoofdstuk 5 hebben we de associaties bestudeerd met betrekking tot het klinische 
succes van FMT bij patiënten en daarna de ontwikkeling van de microbiota tijdens en na de 
behandeling. We hebben een breed scala aan analytische technieken gebruikt om mogelijke 
associaties tussen bacteriële families en klinische uitkomsten te onderzoeken, waaronder een 
ordinatie analyse, Dirichlet multinomial mixture-analyse en longitudinale modellering. Het 
gebruik van deze benaderingen stelde ons in staat om significante verschillen in microbiële 
samenstelling en diversiteit te identificeren tussen patiënten die wel en geen baat hadden 
bij de behandeling. Zo vonden we dat het succes van FMT bij colitis ulcerosa patiënten lijkt 
samen te hangen met een beperkte groei van Prevotellaceae en de aanwezigheid van de 
families Lachnospiraceae en Ruminococcaceae. Het monitoren van de dynamiek van deze 
microbiële families zou mogelijk vroegtijdig inzicht kunnen geven in het succes van de 
behandeling tijdens FMT. 

Er wordt algemeen aangenomen dat kolonisatie van donorsoorten in de microbiota van de 
ontvanger een sleutelmechanisme is achter het succes van FMT. Een interessante bevinding 
van ons onderzoek in Hoofdstuk 5 is dat we geen indicatie vonden voor een verschuiving 
in de microbiële samenstelling van de ontvanger naar de donormicrobiota onder de 
patiënten met een klinisch succes van FMT. In Hoofdstuk 6 onderzochten we daarom of de 
donor-gecentreerde visie van FMT klopt, door te analyseren of de microbiota-dynamiek 
gerelateerd is aan het behalen van remissie bij patiënten na FMT-behandeling. Hiervoor 
categoriseerden we de soorten op basis van hun oorsprong en temporele aanwezigheid: 
al aanwezig in de gastheer vóór FMT, afgeleid van de donor, of nieuwe soorten die tijdens de 
FMT-behandeling werden geïntroduceerd. Daarna modelleerden we het aantal soorten per 
categorie (gastheer-geassocieerd, donor-afgeleid en nieuw) voor patiënten die wel of geen 
baat hadden bij FMT. Onze resultaten tonen aan dat de patiënten die baat hadden bij de 
behandeling een hoger aantal gastheersoorten behielden in vergelijking met patiënten die 
niet profiteerden van de behandeling. Hoewel donorsoorten aanvankelijk meer koloniseerden 
bij de patiënten die geen baat hadden bij de behandeling, nam deze kolonisatie in de loop 
van de tijd af, waardoor het niveau gelijk werd aan dat van de patiënten die wel baat hadden 
bij de behandeling. Dit suggereert dat een succesvolle klinische reactie op FMT mogelijk 
wordt vergemakkelijkt door een microbiota die receptief is voor kolonisatie zonder de 
residentiële microbiota in gevaar te brengen. We ontdekten ook dat gastheersoorten met 
hogere relatieve abundanties vóór FMT beter in staat zijn om na FMT te blijven bestaan. 
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Tot slot

Er zijn talrijke omgevingsfactoren en gewoonten (voeding, leefstijl, enzovoort) die 
de samenstelling en functie van microben beïnvloeden. Deze complexiteit kan soms 
overweldigend zijn, maar kennis uit verschillende disciplines biedt waardevolle inzichten. 
Door te begrijpen hoe systemen reageren op veranderingen en weer in balans komen, 
vergroten we onze kennis van de complexe dynamiek binnen de menselijke darmmicrobiota. 
Deze inzichten kunnen microbiota-modulerende strategieën zoals FMT verbeteren en 
innovatie in persoonlijke therapeutische benaderingen stimuleren. Dit leidt tot een nieuw 
perspectief, waarbij de microbiota niet alleen wordt gezien als een strijdtoneel tegen 
pathogene microben, maar als een complexe ecologische gemeenschap. Beheerstrategieën 
zoals habitatherstel spelen hierbij een belangrijke rol. Om dit te bereiken zijn er uitgebreide 
(longitudinale) datasets nodig die een breed scala aan individuen met diverse achtergronden 
en levensstijlen omvatten. Dergelijke gegevens zijn essentieel om de mechanismen te 
begrijpen die de dynamiek van ecosystemen in gezondheid en ziekte beïnvloeden. Daarnaast 
moeten er geschikte methoden beschikbaar zijn om de complexe microbiota-data effectief te 
kunnen onderzoeken.

De beperkingen van een 'one-size-fits-all'-benadering worden steeds duidelijker, vooral door 
de diversiteit, genotypen (de genetische samenstelling) en fenotypen (de waarneembare 
eigenschappen en kenmerken) van de darmmicrobiota. Dit benadrukt de noodzaak van een 
meer op maat gemaakte benadering in (klinisch) wetenschappelijk onderzoek. Bijvoorbeeld 
het afstemmen van donor en ontvanger op basis van leefstijl en dieet kan de kans vergroten 
dat getransplanteerde bacteriën zich effectief vestigen en dat de aanwezige bacteriën de 
juiste voedingsstoffen krijgen. Dit kan bijdragen aan een effectievere verbetering van de 
microbiota van de ontvanger, aangepast aan de unieke behoeften van de patiënt. Maar 
om echt inzicht te krijgen in het functioneren van microben, moeten we het ecologisch 
perspectief van bacteriën in de gaten houden. Dit houdt in dat we begrijpen dat bacteriën 
hun omgeving, hulpbronnen en interacties waarnemen op een veel kleinere ruimtelijke 
schaal, met constante aanpassing aan hun directe omgeving. Dit betekent dat zelfs binnen 
een enkele steekproef verschillende bacteriën verschillende gedragingen, functies of 
interacties kunnen vertonen. Bovendien hebben binnen de darmmicrobiota verschillende 
bacteriën vaak overlappende functies. Dit houdt in dat als een bepaalde soort wordt 
verstoord of verwijderd, andere soorten die functie kunnen overnemen. Dit mechanisme 
is cruciaal voor het behoud van een gezonde darmmicrobiota en hiernaar is nog te weinig 
onderzoek gedaan. Een ecologische benadering, geworteld in theorie, is essentieel om de 
impact van de microbiota op gezondheid of ziekte te interpreteren. Dit perspectief stelt ons 
in staat om de complexe interacties binnen de microbiota beter te begrijpen, wat cruciaal is 
voor het ontwikkelen van effectieve therapeutische strategieën.



228



Appendices

Curriculum Vitae

229



230Appendices Curriculum Vitae

Curriculum Vitae

Susanne Pinto was born on June 23, 1993, in Dordrecht, the Netherlands. She earned her 
Bachelor of Science degree in Biology at Leiden University in 2015. During her undergraduate 
studies, she conducted research on identifying larval Cholevinae (Coleoptera) species and 
developed an identification key for forensic entomology, aiding in post-mortem interval 
estimations. As part of her minor, she obtained a partial teaching qualification, which she later 
expanded to a full teaching degree during her master’s studies. Education has consistently 
held a central place in her life. Since 2006, she has volunteered as a youth guide in Biesbosch 
National Park. From 2013 to 2016, she trained as a licensed swimming instructor and taught 
young children as part of local rescue teams, of which she has been a member since 2011.

From 2015 to 2018, Susanne pursued a Master of Science in Biology, also at Leiden University, 
specializing in Evolution, Biodiversity, and Conservation. Her research focused on ecological 
topics, including using mites as indicators of environmental changes in the Beekbergerwoud, 
both before and after its clearing in 1871 and during its restoration from 2005 onward. 
She also investigated the relationship between urban green spaces and the presence of 
macro-fauna in pharmaceutical cleanrooms at the Leiden Bio Science Park, including the 
Leiden University Medical Center, where she later conducted her PhD research. During her 
master’s program, she broadened her studies with specializations in education and science 
communication and participated in the Leiden Leadership Programme of the Honours 
Academy. She especially appreciated the interdisciplinary interactions these tracks offered. 

After completing her master’s degree, Susanne pursued a PhD position that would combine 
her expertise in ecology with a focus on human health, while also providing opportunities 
to develop advanced data science and statistical skills. In September 2018, she started her 
PhD in the Department of Biomedical Data Science at Leiden University Medical Center. 
For the first two years, she was based at the Centre for Epidemiology and Surveillance of 
Infectious Diseases of the National Institute for Public Health and the Environment (RIVM), 
where dr. Hans Bogaards and dr. Elisa Benincà were her daily supervisors and closely guided 
her research. prof.dr. Ewout Steyerberg took on the role as her promotor during the COVID-19 
pandemic and remained in this role until the completion of her PhD. Alongside her research, 
Susanne mentored two students, including a master’s student, gaining valuable experience in 
teaching and supervision while deepening her appreciation for mentoring early researchers.



231Appendices Curriculum Vitae

In 2023, Susanne continued advancing her academic career while completing her thesis. She 
joined dr. Maaike van Mourik’s group at University Medical Center Utrecht (UMC Utrecht) to 
study automated outbreak detection systems.

Toward the end of her PhD, in 2024, Susanne was awarded a travel grant from the International 
Society for Microbial Ecology (ISME) and a grant from the Leiden University Fund (LUF)/ 
Slingelands Fund, which enabled her to attend her second ISME conference in Cape Town, 
South Africa. She had previously participated in the 2022 ISME18 conference in Lausanne, 
Switzerland. These conferences were major highlights of her academic journey, offering 
opportunities to present her research to an international audience, engage with leading 
experts in microbiome science, and gain new perspectives on global microbiome diversity.

In 2025, she returned to microbiome 
research as a postdoctoral researcher 
in the MetaHealth project under the 
supervision of prof.dr. Egija Zaura at the 
Department of Preventive Dentistry, 
Academic Centre for Dentistry Amsterdam 
(ACTA). Within this project, she also has 
the opportunity to supervise a PhD 
student while continuing to advance her 
own research and scientific learning.



Colofon

Thesis		  Ecology meets human health 
		  Studies on human gut microbiota in health and disease
Author		  Susanne Pinto
Cover & Layout	 Jan Pinto (janpinto.nl) 
Printing		 Ridderprint, Alblasserdam

The work in this thesis was financially supported by the Dutch Research Council (NWO) 
through the program Complexity in Health and Nutrition (NWO grant 645.001.002; 
www.nwo.nl/onderzoeksprogrammas/complexiteit), with co-funding by the National 
Institute for Public Health and the Environment (RIVM), the Netherlands.

© 2025, Susanne Pinto
All rights reserved. No parts of this thesis may be reproduced or transmitted in any form 
or by any means without prior permission from the author.

232






