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Voorwoord

De studie van het leven, biologie, fascineerde mij zodanig dat ik erdoor gedreven raakte.
Hierbij speelde de enthousiaste begeleiding van docenten aan de Universiteit Leiden een
belangrijke rol. De mogelijkheid om tijdens mijn studie andere vakgebieden te verkennen,
heeft mijn enthousiasme verder aangewakkerd en mij verder gevormd tot de wetenschapper
die ik nu ben.

Als wetenschapper ben ik het meest geboeid door datgene waar ik het minst van weet.
Tijdens mijn studie biologie leidde dit mij naar de wereld van geleedpotigen en die van
cleanrooms, en tijdens mijn promotieonderzoek bestudeerde ik de ecologie van het humane
microbioom. Dit traject gaf mij de kans om veel inspirerende mensen te ontmoeten en
degenen die ik al kende nog meer te gaan waarderen. Dit proefschrift zou niet bestaan
zonder de gezamenlijke inspanning van deze diverse groep geweldige mensen.

Allereerst wil ik Hans Bogaards en Elisa Beninca bedanken. Hans was mijn mentor en
begeleidde mij in mijn ontwikkeling als onderzoeker. Hij stelde cruciale vragen die mij verder
hielpen, zowel over het onderwerp en mijn werk als over mijn persoonlijke groei. Elisa was
naast een fijne supervisor ook een goede vriendin tijdens mijn promotie, iemand met wie ik
in vertrouwen kon praten. Van haar heb ik geleerd kritisch te zijn over mijn werk, het draait
niet om kwantiteit maar om kwaliteit. Onze reis naar Kaapstad, Zuid-Afrika, behoort tot een
van de hoogtepunten van mijn leven, dus ook daarvoor wil ik haar bedanken.

Mijn promotor Ewout Steyerberg wil ik bedanken omdat hij mij, eerst als leidinggevende

en later als promotor, het vertrouwen gaf dat ik van waarde ben. Ook maakte hij mijn
promotietraject eenvoudiger door snel te reageren en zaken effectief op te lossen. Hierbij
werd hij ondersteund door de secretaresses Lies, Leonie en Aubry, die ik wil noemen vanwege
hun vriendelijkheid en hulpvaardigheid.

Ik wil in het bijzonder enkele collega’s bedanken voor hun waardevolle bijdragen aan dit
proefschrift. Allereerst Marten Scheffer en Egbert van Nes, die voor mij een grote bron van
inspiratie waren. Zij lieten mij zien hoe plezierig wetenschap kan zijn en hoe waardevol het is
wanneer onderzoekers elkaar aanvullen, want wetenschap doe je nooit alleen. Daisy Jonkers,
John Penders, Liz Terveer, Josbert Keller en Andrea van der Meulen-de Jong wil ik bedanken
voor het delen van hun kennis en data. Tijdens mijn promotie besefte ik hoe kostbaar data

is en hoeveel werk eraan voorafgaat. Dominika Sajbenova en Sam Nooij dank ik voor onze
samenwerking, waarin ik ondervond hoe leerzaam het is om samen te groeien terwijl we de
uitdagingen van ons onderzoek aangingen. Bernard Cazelles, Susana Fuentes, Sudarshan
Shetty en Gianluca Galazzo ben ik dankbaar voor de inzichten, feedback en methodologische
kennis die zij met mij hebben gedeeld.

Door de beperking in het aantal woorden kan ik helaas niet al mijn andere betrokken collega’s
bij naam noemen. Toch wil ik mijn waardering uiten voor iedereen die ik ontmoette aan

de Universiteit Leiden, het LUMC, het RIVM, Wageningen University & Research, Maastricht
UMC+, Amsterdam UMC, UMC Utrecht en via cursussen en congressen. lk hoop dat

eenieder die betrokken is bij mijn academische pad zich aangesproken voelt. Ik wil iedereen
nadrukkelijk bedanken voor het verrijken van mijn kennis en vaardigheden en voor het
hartelijke welkom in de fascinerende wereld van wetenschap en microbioom.
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Graag wil ik de onderzoeksgroepen CMAT (LUMC) en Modellering (RIVM) bedanken voor
de mogelijkheid om aan de leerzame overleggen deel te nemen en voor de prettige
samenwerking.

Daarnaast wil ik mijn medepromovendi bedanken voor de inspiratie die ik vond in hun
proefschriften en voor hun warme gezelschap. Dat gaf mij het gevoel er niet alleen voor te
staan.

Voordat mijn PhD-onderzoeken en daarmee dit proefschrift waren voltooid, vond ik een
nieuwe baan in het UMC Utrecht. In de groep van Maaike van Mourik kreeg ik de kans om
aan een interessant en belangrijk project te werken. Het combineren van mijn nieuwe baan
met het afronden van het proefschrift was een uitdaging. Ik ben Maaike dankbaar voor haar
begrip in deze periode.

Dankszij de liefdevolle aanmoedigingen van mijn oma, en de steun van mijn moeder, mijn
zusjes Eveline, Marianne, Rosaline en Caroline, en ook van Marianne Vysma, die met zorg

de hoofdstukken nalazen en mij hielpen fouten te verbeteren en de samenvatting te
verhelderen, kon ik dit proefschrift tot een goed einde brengen. En natuurlijk dankzij mijn
vader, die de opmaak verzorgde en mij daarmee niet alleen veel tijd bespaarde, maar ook een
prachtig proefschrift schonk. Aan mijn familie: hartelijk dank voor alle steun, betrokkenheid
en hulp.

Mijn vrienden, onder wie paranimfen Dominique en Danielle, bleven altijd betrokken en
boden hun hulp aan. Bovendien gaven de gezellige feestjes en etentjes mij nieuwe energie.
Daardoor kon ik weer lange uren achter mijn bureau doorbrengen, samen met mijn kat Sam
als aangenaam gezelschap.

Jasper, jouw vertrouwen en onvoorwaardelijke steun waren mijn houvast en jouw liefde
betekent alles voor mij. Dank je dat je er altijd voor me bent.
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General introduction and thesis outline

Complex systems

Complex systems encompass a diverse array of phenomena and processes, from financial
markets and climate patterns to the microbial communities in our gut. Their challenges
involve apparently intractable and often unpredictable problems, such as organizational
transformation, political conflict, climate change, disruptions in infrastructure, and recurring
infections.”? Complex systems evolve over time, and changes can manifest as gradual trends
or fast fluctuations.>* Occasionally, the system might undergo a complete transformation
into a new state. For example, a pathogenic species in the Caribbean coral reef caused a mass
mortality event in the sea urchin Diadema antillarum. This loss had dramatic consequences:
without the grazing activity of the urchins, the reef was quickly overgrown by brown fleshy
algae, fundamentally altering the entire structure of the community.? Similarly, in the Sahel-
Sahara region, a gradual change in solar irradiation triggered an abrupt shift, transforming the
landscape with dense vegetation into a desert environment.? Moreover, interactions among
species can lead to oscillations and even sometimes chaotic dynamics, by themselves® or in
response to environmental conditions.® Consequently, in such systems, slight differences in
initial conditions can lead to different outcomes with extinctions of varying magnitudes due
to non-linear dynamics (Box 1.1). In contrast, systems may display resilience by recovering
from disturbances and reverting to their previous state.”

Box 1.1 - Tipping points in ecosystems. In the context of ecology,
ecosystems experience shifts when confronted with alterations in factors
such as food sources, climate fluctuations, or human interventions. When
an ecosystem encounters an environmental change, there may be a
noticeable shift in species composition and overall biodiversity. Similar to
a game of Jenga, where removing individual blocks may not immediately
affect the stability of the tower, small changes in a system might not
have noticeable consequences until a critical tipping point is reached.
However, once that tipping point is crossed, the system can experience

a sudden and significant transformation, resembling the collapse of a
Jenga tower when a crucial block is removed. This phenomenon is closely
tied to the system’s high connectivity, where the failure of one element
can impact the entire system, often leading to irreversible changes.

The individual components of a complex system often represent relatively simple processes.
However, synchronization of activities among individual components can lead them to act

as a cohesive unit with additional functionalities (Figure 1.1). A greater diversity of these
components can display richer properties, functions, or behaviours, and enhanced resilience." **
The theory of complex systems seeks to infer the underlying models and properties of their
patterns and behaviours, as well as to develop tools and concepts for effectively modeling their
interactions and dynamics. Because if we can understand the behaviour of complex systems, we
can develop solutions to address their challenges, aiming for a resilient and adaptive future for
our society and health. Achieving this requires interdisciplinary collaborations, where experts
from diverse fields offer their perspectives.
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Figure 1.1 - Diagram illustrating the interactions and relationships
within a complex system across different scales. In the human gut
microbiota, emergence refers to the phenomenon where the overall functionality

of the microbial community arises from the interactions among individual microbial
species. The gut is home to trillions of microbial cells, including bacteria, viruses, fungi,
and other microbes that interact with each other (bottom figure). The interactions
between these diverse agents, that mutually affect each other, lead to the emergence
of various functionalities and behaviours (middle figure) that contribute to digestion,
nutrient absorption, and overall host health (top figure).2 The science of complexity
shows that insights at one level (e.g., health outcomes) are influenced at another
level (e.g., the interactions within a system), and that one cannot be fully understood
without knowledge of the other, as they are interconnected in a continuous feedback
loop. Therefore, complex systems such as the human gut microbiota are difficult to
comprehend using traditional scientific analyses. Traditionally, experimental scientists
have primarily focused on reducing complex systems to their individual elements,
providing essential knowledge of the system’s components, but overlooking the
significance of interactions between them. Interestingly, the global system is often
not fully explained by or predictable with the knowledge of the component parts.
However, the inverse is also true; without an understanding of the dynamics of the
component parts, understanding of the whole system is unattainable. By considering
the dynamics of a complex system as a whole, with both the internal and external
forces, rather than merely the sum of its parts, new insights and theories can be
developed.’® This figure is based on Lewin (1999) and Parrott and Lange (2013)."°

Chapter 1 10 General introduction and thesis outline



The research for this thesis was conducted by a multidisciplinary team of ecologists,
microbiologists, bioinformaticians, statisticians, epidemiologists, and medical specialists who
collaborated to explore new perspectives on the complex ecosystem of the gut microbiota
and its relationship with human health and disease.

The human microbiome

The human body serves as an ecosystem for a multitude of microorganisms, with the
gastro-intestinal (Gl) tract being a particularly rich and diverse habitat.""* In 2022, it was
estimated that there are about ten times more bacterial genomes in the human gut than
there are genes in our own genome.’ '* Actually, the body is not a single ecosystem; instead,
it comprises multiple habitats, each with its own unique environment, which are likely
interconnected with one another. The entire collection of microorganisms (commensals,
mutualists, pathogens, and opportunists), encompassing bacteria, viruses, protozoa, archaea,
and fungi, along with their cumulative genetic content, is collectively referred to as the
microbiome, a concept introduced by Nobel Prize laureate Joshua Lederberg in 2001.7% "7

A distinct term, the metagenome, encapsulates the combined genetic makeup of the
microbes. The microbiota, in a narrower sense, refers to the assorted microbial species
occupying specific niches, such as the ‘oral microbiota’ or the ‘gut microbiota’'” '® This thesis
focuses on the bacteria in the human gut microbiota.

Our understanding of the composition and functions of the microbiome has increased
exponentially over the last 15 years. This has been mainly due to the new ‘omics’ technologies
that have facilitated large-scale analyses of the phylogenetic and metabolic profiles of
microbial communities.’®? These insights have revealed the vital role that microbial
communities play in human health, as they coexist symbiotically with the human host and
contribute significantly to maintaining physiological balance. The human gut, for example,
serves as a unique ecosystem, providing a nutrient-rich environment for its microbial
communities. Many benefits of the human microbiome for the human host have already been
identified, including the prevention of pathogenic bacteria and viruses through competition
for metabolic resources, maintenance of metabolic balance, processing of nutrients (such as
fiber digestion and vitamin synthesis), drug modification (affecting drug efficacy), and the
maturation and regulation of gastrointestinal immune responses.?*243° Moreover, the relation
between microbes and various human health conditions has been shown for, among others:
obesity, cardiovascular disease, Clostridioides difficile colitis, inflammatory bowel diseases
(IBD), irritable bowel syndrome (IBS), non-alcoholic fatty liver disease, dental caries, asthma,
autoimmune diseases (such as celiac disease, inflammatory arthritis, and primary sclerosing
cholangitis), and sepsis.>'**

Every person harbors distinct and relatively stable microbial communities in and on their
body.* Stability means that samples collected over time from an individual exhibit greater
similarity to each other compared to samples obtained from other individuals.?? 4
Certain host factors, e.g., host genetics, age, diet, and medication use, cumulatively explain
about 20% of the gut microbiota compositional variation.’?>* Despite the individual
variability, a shared core microbiota with notably similar functional gene profiles can be
detected in most healthy adults.?" 2 Stability appears to be an important ecosystem trait,
persisting over several months or even years.?> 4> 464851
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However, natural fluctuations in community composition, featuring sporadic blooming

of species, are normal in gut microbiota dynamics (Figure 1.2), reinforcing homeostatic
interactions with the host.*>*> ¢ Environmental stimuli influence these fluctuations and
the microbiome typically shows autoregressive dynamics, allowing it to recover after
disturbances.*® %7 75° An example of such stimuli is variation in nutrient availability,
especially in the small intestine, as the colonic microbiota thrives on the breakdown

of complex carbohydrates.*®¢' Additionally, significant factors such as antibiotic
administration, travelling, or drastic dietary changes can prompt bacterial population
levels to shift within one day.*“¢5% 626 The extent to which the human gut microbiota
subsequently absorbs disturbances, adapts to the changing conditions, and maintains its
essential functions, characteristics, and structure depends on the resilience of the system.?
Interestingly, substantial commonalities are found among seemingly divergent responses
to disturbances.®*¢°
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Figure 1.2 - Time series of the gut microbiota of one healthy male
individual.* The time series shows temporal fluctuations on shorter timescales
and overall stability over extended periods.?*
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Ecology of the human gut microbiota

A child is born with almost no microbiome. Colonization by maternal and environmental
bacteria occurs within days of birth, influenced by factors such as delivery mode, antibiotic
exposure, and ecological drivers (Box 1.2).7>6467.6870.71 Breastfeeding contributes directly to
neonatal microbiota establishment through providing living bacteria (from the skin and milk
of the mother) and indirectly through prebiotic nutrients and bioactive components.®’- 7275
Human milk oligosaccharides (HMOs) promote the growth of beneficial species and strains
of Bifidobacterium (a key early life microbe associated with improved development of the
immune system) that produce enzymes to break down these complex sugars.”’

Box 1.2 - Gut microbiota shaped by early colonizers and community
dynamics. For the gut microbiota, it has been shown that the temporal
development is not purely random; rather, it is partly deterministic (and to some
extent predictable, i.e., succession), partially stochastic, and often contingent on the
community’s previous states.®’*” This implies that the initial conditions, including
environmental factors and the early colonizers (founder effect or pioneer species),
have an impact on the later community dynamics as well as the time span needed
to reach the adult state.?* % #9° The microbiota are built upon these early colonizers,
as they facilitate the growth of certain species, while impeding the growth of
others.?®° For example, the first colonizers entering the infant’s gut are facultative
aerobic bacteria such as Proteobacteria members. They alter the environment
through metabolic byproducts, creating new ecological niches that promote
diversification.”” They pave the way by decreasing the oxygen concentration for
subsequent colonization by anaerobic bacteria, such as Bacteroidota (formerly
Bacteroidetes), Actinobacteria, and Bacillota (formerly Firmicutes) phyla.?*7° Critical
ecological drivers such as community interactions, immigration, niche filtering,
stochasticity, environmental conditions (such as oxygen, moisture, and pH) and host
characteristics (such as age, diet, and medication use) keep continuously shaping
the patterns of microbial community dynamics.?! 4% 7. 67.69,75, 98101

The introduction of solid foods at four to six months after birth further shapes microbial
composition, with effects varying based on dietary habits across different geographical
regions.®”7>7¢ Also, the child’s living environment, including pets and siblings, impacts
microbial development.®*77-7° After colonization and the stabilization of the gut microbiota,
individuals can maintain distinct core microbial communities for extended periods of

time.?> 5464851 These stable physiological states are sustained by negative feedback loops,
preserving homeostasis even when the gut environment undergoes changes (Figure 1.3).2% 238
The ability to adapt while being robust against changing environments may seem
contradictory, but most complex systems are clearly adaptive and robust at the same time.?
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However, if a system cannot recover from a significant perturbation, it might shift to
an alternative stable state with distinct characteristics (Figure 1.3B). When this happens

in the gut microbiota, the new state might have severe health implications for the human

host.* 1921% Bjstable abundance distributions, i.e., arising from species with population

sizes going back and forth between high and low abundances with moderate abundances

being underrepresented in sampling, can be indicative of alternative stable states.* 102197

For example, the bimodal abundance patterns of Prevotella melaninogenica, Bacteroides

fragilis, and two groups of uncultured Clostridiales were verified in independent sets of

sampled individuals, who varied in dietary patterns, geographic regions, and DNA extraction

methods. These bimodal patterns appeared unaffected by these factors; rather, they were

associated with factors such as aging or weight loss.’*> The discovery of bistable bacteria
led them to be labelled as‘tipping elements’and possibly keystone species, i.e., organisms
that have a disproportionate effect on community structure and function relative to their

abundance. This prompted questions about whether the significant shifts in microbiota

composition and function are associated with changes in the abundances of specific taxa
or with a broader dysbiosis across the community.'0 108110
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A) Positive and negative feedback loops probably have a role in driving succession and
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unstable state, which may return to a previous stable state or shift to an alternative stable
state. This figure is adapted from Lozupone et al. (2012) and Sommer et al. (2017).2% 2
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Consequently, detecting the keystone species has become a focus in microbiota research.”"'*
Mainly (specialist) primary degraders have the potential to manipulate and regulate
community states as keystone species."’* For example, despite their low abundance, highly
active sulfate reducing bacteria, in wetland ecosystems, as well as in the human gut, play a
crucial role in important biogeochemical processes.''® "7 However, very few proposed hub
taxa, suggested by statistical techniques, such as network analysis, have been experimentally
confirmed as keystone species; therefore, the reliability of methods used to detect keystones
remains uncertain."'®

There are a multitude of (dynamic) species-species interactions within the gut microbiome,
rooted in metabolic processes, such as cross-feeding (Figure 1.4).""'?! Interactions among
species in human microbiota tend to repel potential invaders and prevent outgrowth

of certain species. For example, genetically diverse Escherichia coli populations produce
secondary carbon sources sustaining other community members and preventing colonization
of species that could outcompete them.’?> Moreover, antimicrobial production, space and
nutrient competition, predation, and the trade-off between growth-maximizing organisms
(r-strategists) and those adapted for resource competition (K-strategists) are mechanisms that
reflect how organisms maximize nutrient uptake, often at the expense of other organisms.'2*12>
The cumulative outcome involves the reconstruction of a network within the gut microbial
ecosystem, facilitating the coexistence of a diverse bacterial community.

Interactions within ecological networks can engender diverse outcomes, encompassing
positive impacts (‘win’), negative impacts (‘loss’), or no discernible impact on the participating
species (Figure 1.4B). The interaction conferring benefits to both participants, such as

two species that engage in the exchange of metabolic products (exhibit complementary
auxotrophies), is called mutualism.'?® 3¢ This win-win relationship also occurs, for instance,
when bacteria from disparate taxonomic groups collaboratively construct a biofilm, bestowing
antibiotic survival upon its constituents and facilitating co-colonization.”*” The prominence of
such interdependencies is underscored by their heightened relative abundance when both
species are present.® Commensalistic relationships denote scenarios where one partner accrues
benefits without inducing either harm or assistance to the other. Such relationships frequently
manifest in biodegradation contexts, where commensals derive sustenance from compounds
generated by fellow community members, as evidenced in cellulose degradation processes
(Figure 1.4A)."38

Conversely, antagonistic relationships may stem from amensalism, parasitism, and
competition.® The inhibition of other species can occur through direct competition for
resources (niche preemption) or by altering the habitat to reduce its suitability for other species
(niche modification).®® Bacteria use effectors of direct antagonism, including quorum sensing
molecules, quenching molecules, antibiotics, and toxic substances such as bacteriocins and
metal ion binding proteins, to inhibit the growth of competitors, especially in dense cellular
environments.'** '“° Classical loss-win dynamics, as materialized in parasitic relationships, are
observed in the relation between bacteria and their bacteriophages.?* Many bacterial species
may exhibit predatory behaviour to some extent.'*' Pseudomonas fluorescens, for example, has
been used as a biocontrol agent to control plant pathogens by antagonizing other microbes,
including Myxococcus xanthus.'**'* This species secretes various antibiotics and produces toxic
volatile compounds such as cyanide.'** '** Because Pseudomonas fluorescens can then grow on
nutrients derived from the cells it has killed, it can be categorized as a predator.’*!
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Figure 1.4 - A schematic representation of the gut, showing primary, secondary,
and tertiary consumers and their potential interactions. A) At the start of the bacterial
food chain are the bacteria that consume the primary nutrient sources, such as polysaccharides,
oligosaccharides, proteins, sugars, and mucins secreted by the colonic epithelium.'26'%° Primary
species effectively colonize the epithelial mucosa due to their ability to degrade mucin. They can
also break down dietary plant- and animal-derived carbohydrates, initiating a series of cross-
feeding interactions that support the growth of other bacteria, particularly those that rely on
the breakdown of complex carbohydrates into simpler sugars for energy.’*"'3* They facilitate
the growth of secondary species and indirectly promote the growth of tertiary species. Some
tertiary species produce short-chain fatty acids, which are subsequently utilized by colonocytes
for their growth, leading to increased mucin production. This positive feedback loop may
enhance ecological recovery in terms of diversity and biomass. It is important to note that there
is likely no strict distinction between primary producers and secondary cross-feeders, as many
microorganisms may function as both and will probably take the opportunity to cross-feed

or degrade nutrients whenever possible, depending on the available substrates. This figure is
adapted from Chng et al. (2020).'*2 B) Cartoon illustrating the different interaction mechanisms.
In competitive interactions, both species experience a negative effect. An example is when one
or both species produce toxic compounds that are harmful to the other species as well as to
themselves. Amensalism is a one-sided negative interaction. Amensalism occurs when a species
causes harm to another species, without benefit or harm to itself. Parasitism occurs when one
species benefits from another species at the expense of the other. Commensalism is a one-sided
positive interaction. This type of interaction occurs when one species benefits from another
without affecting it. In mutualistic interactions, both species experience a positive effect. An
example is when one species feeds on the metabolites excreted by another species, thereby
cleaning the ‘waste’ from the environment.
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An illustration of microorganism competition (a loss-loss relationship) was given by Gause,
already in the 1930s when he conducted a series of co-culturing experiments.’* In his
observations, he found that some species pairs, which thrived on their own, cannot coexist
with constant population values. He showed one species (Paramecium aurelia) taking control
over the other species (Paramecium caudatum) when they were grown together. Even if one
organism ultimately ‘wins’ by securing more resources, the energy and resources spent in
the competitive process could have been used for growth, reproduction, or other survival
functions. Therefore, both species suffer initially during the competition, and eventually,
the less competitive species is driven to extinction in that environment. This formed the
foundation for Gause’s law of competitive exclusion, asserting that species with similar
ecological niches mutually preclude each other’s survival.'*® ' The deterministic nature

of competitive dynamics of microbial communities, particularly within newly established
ecosystems, has long been a topic of debate among ecologists. One theoretical framework
that has emerged in this context is neutral niche theory. The neutral niche theory assumes
that communities in certain niches are built only by random draws, driven by stochastic
colonization, where the gut niches are likely to be filled by random ‘winners; as in a lottery
scenario, instead of predictable winners.®* ¢’

Amensalism, a situation where one partner is harmed without benefitting the other, can be
seen in scenarios when a microbial species produces metabolic by-products that change
the environment to the detriment of other microorganisms, such as the acidification caused
by lactobacilli activity.'*® '*° Previous experimental investigations have substantiated that
antagonistic interactions are more likely among closely related species sharing analogous
metabolic pathways.'7 '%°

Gut microbiota associations with health and disease

The interplay between humans and gut microbiota has been shaped over more than a
billion years of coevolution, resulting in a symbiotic relationship similar to a holobiont or
superorganism. As a result, the intestinal microbiota contribute to various health functions,
including the maturation and ongoing training of the host immune response.?® 11152
Detrimental changes in the gut microbiota’s characteristics (abundance, metagenomic
function, diversity, and composition), collectively referred to as ‘dysbiosis, can weaken
the intestinal barrier, leading to the colonization or outgrowth of organisms, increased
inflammation, immune dysregulation, and metabolic issues, thus compromising human
health (Figure 1.3).'%-2292.15315 Note that dysbiosis remains poorly defined, largely due

to significant interindividual variability within patients and across different diseases,
which complicates the establishment of a clear definition for a healthy and unhealthy gut
microbiota. To measure dysbiosis, several indices have been proposed.’*® However, the
proposed measures are not widely adopted and may not fully capture the complexities of
dysbiosis.

One of the early milestone papers on the relation between the microbiota and disease is a
study by Turnbaugh et al. published in 2009.'' Here, the authors showed that obese mice had
a gut microbiota with increased capability for energy harvest from the diet. Also, they linked
the gut microbiota to the pathophysiology of obesity through a series of experiments. This
included transplanting feces from obese mice into gnotobiotic mice, which led to a greater
increase in body fat than when gnotobiotic mice received a fecal microbiota transplantation
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from lean mice. This study not only found a correlation between the gut microbiota and
disease, but also showed a causal link between the two. Subsequently, the study triggered
a global interest in the role of the gut microbiome in human health and disease.'®'

Advancements driven by initiatives such as the Human Microbiome Project (HMP) and
European Metagenomics of the Human Intestinal Tract (MetaHIT) have harnessed vast
sequencing datasets to illustrate the structure and function of the healthy core microbiota.?' ¢
Defining the healthy microbiota is extremely difficult, as healthy gut microbiota are
characterized by substantial interindividual variation. In the gut, however, healthy microbiota
are associated with bacterial diversity, as they exhibit lower susceptibility to invasion, suppress
the outgrowth of harmful species, and demonstrate greater resilience to perturbations.”’ %
Intriguingly, while the human gut microbiota’s compositional diversity is substantial, functional
gene profiles remain strikingly similar across individuals.?? This similarity was first reported in

a study of 18 females who shared more than 93% of the enzyme-level functional groups, and
was later confirmed in a much larger population by the HMP and MetaHIT data.?’ % 1% This
functional similarity among distinct microbiota profiles underscores the significance of function
over species identity. However, variations in species could impact functional effectiveness, as
seen with variations in short chain fatty acid synthesis.’® 2% 1% 156 Understanding the dynamics
of the gut microbiota can guide strategies to increase the resilience of healthy states or
counteract unhealthy ones (Figure 1.3B). Overall, the idea is that it is beneficial to have a diverse
gut microbiome, which provides metabolic flexibility while reducing the risk of infections and
the development of inflammatory diseases (Box 1.3).

Box 1.3 - Gastrointestinal diseases and microbial dysbiosis. A proposed
hypothesis for the development of gastrointestinal diseases delineates a
multi-step mechanism involving factors that trigger mucosal abnormalities

and inflammation, microbial dysbiosis, morphological and functional changes,
and interindividual microbial transfer as a continuous pathogenic cycle.?® '*'

For example, Clostridioides difficile, the main causative agent of nosocomial
diarrhea, is an anaerobic, gram-positive, spore-forming bacillus.'” Clostridioides
difficile may outcompete other species, especially in a dysbiotic microbiome
after antibiotic use, leading to colonization of the gut and subsequently to
disease.* Recurrence of infections is not solely attributed to the reduction in
diversity following antibiotic use, but there are also distinct bacterial signatures
linked to recurrent colitis. These include a decrease in beneficial bacteria

(e.g., Faecalibacterium prausnitzii) and an increase in strains from for example
Lachnospiraceae, Coprococcus, Ruminococcus, and several Clostridium species.'®®

Microbial shifts have been associated with disease activity in gastrointestinal inflammatory
disorders such as IBD, encompassing Crohn’s disease (CD) and ulcerative colitis (UC). Most

IBD patients suffer from periods of flares of inflammation with a severe impact on patients’
quality of life. Although the exact cause of the disease and its exacerbation remain unclear, it is
considered to result from complex interactions between an altered intestinal immune response
to commensal bacteria, shifts in the intestinal microbiota, and external environmental factors
in a genetically susceptible host.'® '7°The gut microbiota of individuals with ileal CD shares
similarities with that of infants: both are characterized by reduced diversity, elevated levels of
Ruminococcus gnavus and Enterobacteriaceae, and an under-representation of the genera that
are prevalent in healthy adults, including Faecalibacterium prausnitzii and Roseburia.?* 171174
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Additionally, microbial variations have been observed relating to heightened Bacteroides spp.
and diminished Clostridium coccoides."”>'®* However, these associations vary among studies,
likely due to the heterogeneity of CD, differences in sequencing technologies, and the
interindividual microbiota variability.'>* '8! 182

Microbiome-related therapies, including prebiotics, probiotics, and fecal microbiota
transplantation (FMT), aim to transition the patients’ microbiome from a dysbiotic to a healthy
state.'®'% Although many probiotic strains demonstrate strong survival during passage
through the gastrointestinal tract and retain metabolic activity, most human studies indicate
they have very short-term persistence and minimal influence on the resident microbiota
composition. In contrast, FMTs (transplanting healthy donor fecal matter into the patient's
gut) seem to be more effective at changing an existing gut microbiota, yet the underlying
processes leading to recovery remain largely unexplored and not well understood.?> 186188
The current thought is that the succession in the recovery process seems to start with an
increase in facultative anaerobes and aerotolerant bacteria (similar to the development of the
microbiota in an infant’s gut), possibly because of temporary changes in redox potential, and
then the re-establishment of obligate anaerobes.?? FMT has demonstrated success in treating
recurrent Clostridioides difficile infection, curing up to 85% of the patients, but its application
in other diseases yields contrasting results.'® '*° For IBD, the remission rate after FMT is 45%,
though relapses occur in a certain proportion of patients.’' Repeated FMT administrations
seem to be needed to alter the chronic dysbiosis in the IBD patients' microbiota and allow

for lasting changes.’®*'%* Also, associated factors such as age, sex, donor characteristics

(e.g., donor gut microbiota diversity), pretreatment, and antibiotic use influence FMT
outcomes, underscoring the interplay between the host, the host microbiota, and the donor
microbiota.'® 193-200

Approaches and challenges in analysing microbiota datasets

Samples from the gut microbiota provide a glimpse into the abundant diversity within the
colon, revealing the multifaceted microbial ecosystem of the gastrointestinal tract.c’2°!

The most commonly used sample type for analysis of the gut microbiota is feces. Alternative
sampling methods include taking biopsies during endoscopy or rectal swabbing. The
advantage of rectal swabbing is that it relies on standardized protocols, whereas fecal sample
collection often depends on individuals collecting the feces samples themselves at home,
which can introduce variability. Both fecal sampling and rectal swabbing are also much

less invasive than taking a biopsy. Moreover, a lower microbiota diversity is often found in
samples obtained by a biopsy compared to fecal or rectal samples, which is probably caused
by the bowel preparation beforehand, making this the least preferred method. Still, fecal
samples or rectal swabs may miss specific microbial communities found in other (earlier) parts
of the colon. For example, differences in microbial composition between rectal swabs and
biopsies from the sigmoid colon suggest that distinct microbial communities exist in these
areas. Rectal swabs may capture species suited to the transitional zone between anaerobic
and more aerobic environments, while the squamous epithelium near the anal canal may host
different microbes than the columnar epithelium further in the colon. Interestingly, UC often
begins in this transitional zone, advancing inward from there.?*?
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Driven by the challenge that over 99% of gut microbes are difficult to culture in a laboratory
setting, researchers developed methods to study these microorganisms directly within

their natural environment, primarily through sequencing the 16S ribosomal RNA (rRNA)

gene. The advent of high-throughput sequencing has revolutionized the study of microbial
communities, providing valuable insights into their compositions. Its relatively low cost has
made it a widely used method for assessing gut microbiota.?®* This approach targets a specific
region of the 16S rRNA gene that is unique to bacteria and present in all bacterial species
containing multiple conserved and variable regions. The more conserved regions are useful to
determine the higher-ranking taxa, whereas the more variable regions can help in identifying
lower-ranking taxa, such as genera.?** In short, after samples are collected, Polymerase

Chain Reaction (PCR) amplification of the rRNA genes is applied, with primers amplifying the
target gene for a wide range of microorganisms. Next, the PCR products are sequenced. The
resultant sequence reads can be clustered into, for example, operational taxonomical units
(OTUs), amplicon sequence variants (ASVs), or metagenomic-based operational taxonomic
units (mOTUs). These units are then aligned to a reference database and annotated into
taxonomic names.?%>-2%°

Note that a lot of bias originates from the sequencing technique and the misclassification
of sequencing reads.""®2'° Therefore, positive and negative controls are commonly
processed along with the real samples.''"2'"-2'3 Negative controls allow assessing potential
contamination, and positive controls (mock communities) allow the assessment of bias

and variability among different runs (batch effects).?’* Taxonomy annotation employs

the Linnaean classification system, encompassing three domains: Bacteria, Archaea, and
Eukaryota, with prokaryotic microorganisms largely categorized within Bacteria and
Archaea. The specificity increases through kingdom, phylum, class, order, family, genus,
and species classifications. The technique of 16S rRNA gene sequencing allows accurate
taxonomic classification up to the genus level, but lacks reliable species-level or functional
information.' For a comprehensive assessment, to species or even strain or genotype level,
deeper exploration through whole genome (shotgun) sequencing (WGS) is imperative. This
higher-resolution approach uncovers the functional genes of microbial communities but is
considerably more expensive compared to amplicon sequencing. Even further, for a more
detailed understanding, proteomics and metabolomics can determine the biochemical
associations between microbial taxa (and human host). Proteomics provides information
on the proteins present, including their structures and functions, while metabolomics offers
insights into the metabolites in the sample.

Microbiota data are often manifested in matrices with the samples as rows and the taxa as
columns. It is important to note that the interpretation of these data is complicated by several
statistical challenges.?'® First of all, most datasets are comprised of more features (columns)
than objects (rows), which makes classical statistics challenging. Secondly, species-abundance
distributions exhibit a pronounced long-tail pattern, with many low-abundance taxa
appearing in only a small fraction of samples.?'® Consequently, microbiota abundance data
also frequently faces zero-inflation (i.e., the matrices are highly sparse) due to true absences
or undetected presences when the abundance falls below detection limits.2'>2'7:2'® However,
possibly the biggest challenge is that the count measurements obtained are not viewed as
‘true’ count data, instead only relative abundances are available.?’* 2" Because, regardless of
the amount of information available in the DNA sample, the output of a sequencing analysis
is constrained by the limitations and sequencing depth of the platform used.?'*22°
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Sequencing instruments are limited to delivering reads up to their capacity, with each sample
constrained by the available slots and the molar concentration loaded in the sequencing
machine.??' Therefore, the total read count observed in a high-throughput sequencing run

is a fixed size, resulting in a random sample of the relative abundance of the molecules in

the sample. This is explicitly acknowledged when microbiota datasets are mathematically
transformed or converted to relative abundance values (Box 1.4).20".21% 219,222

Box 1.4 - The impact of data transformations in microbial
ecology research. Rarefaction aims to rectify discrepancies in total
reads per sample. However, rarefaction sacrifices statistical power

and fails to really address the compositionality issues, as it involves
subsampling to the lowest read depth across samples.?'*??? Alternatives
to rarefaction all involve some type of transformation, the most common
of which are scaling, log-ratio transformations, or converting the
abundance count of each taxon into proportions or relative abundances
that sum up to one for each sample.?0" 215 219,220, 222224 However, this
brings another challenge, as it is quite possible that a significant change
in the relative abundance of a species is observed, while the absolute
number does not change. In microbial ecology studies, this phenomenon
is important to consider when analysing shifts in species composition
within a population or ecosystem. Imagine a simplified scenario with only
two species, A and B, in a microbial community. Initially, there are 100
individuals of species A and 100 individuals of species B, making the total
population size 200. This results in a 50% relative abundance for both
species (100/200). Now, an environmental change or intervention occurs
that favors the growth of species A, causing it to double in number to
200 individuals. Species B, however, remains at 100 individuals. The total
population size is now 300 (200 of A and 100 of B). Despite the absolute
number of species B remaining the same, the relative abundance of
species B has decreased to 33% (100/300), while the relative abundance
of species A has increased to 67% (200/300).

A common goal in microbiome research is to understand the relationships, ecological stability,
and dynamic behaviours of the microbiota communities and to unravel their impact on health
and disease. An important decision in study design involves whether to gather repeated
measurements from the same individuals or to allocate resources to sample from more
subjects at a single time point. Often, it is not possible to collect repeated samples from many
subjects. This is due to the high costs associated with longitudinal sampling and, particularly
in medical studies, the burden it places on patients to return for follow-up visits. The choice to
gather repeated samples or not should hinge on the study’s objective. Cross-sectional designs,
with one sample per subject, are suited for examining differences in microbiota composition
in association with health or disease.?* °* In contrast, longitudinal designs are preferred for
studying disease-course dynamics, treatment effects in randomized controlled studies, and
temporal fluctuations within the microbial community.*® 5% 225226 Consequently, to distinguish
intra-individual gut microbiota fluctuations from disease or treatment specific signals, robust
assessment of microbial features demands repeated sampling.
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Working with longitudinal microbiota data is challenged by many difficulties, including
inconsistent sampling frequencies, varying numbers of subjects per phenotype, or varying
numbers of samples per subject.

Realizing the importance of the gut microbiome for health and disease has encouraged the
development of methods and tools for its analysis and modeling. Techniques encompass,
among others, visualization, (temporal) clustering, network analyses, longitudinal and time
series models. Co-occurrence based methods, based on e.g., Pearson’s and Spearman’s
correlation measures, are quite popular for network inference due to their ease of use.??”2
While measures of co-occurrence, such as correlations, are powerful tools for generating
hypotheses, caution is advised when assigning biological meaning to them.?'® 2% 22 Graph
theory has gained prominence for its ability to depict microbial community structures,
capturing the potential interrelations among a multitude of species, possibly highlighting
potential keystone species and subcommunities.® In these graphical representations, nodes
typically represent biological features, such as microbial taxa, genes, metabolites, or even
environmental and host factors."'?* Edges signify correlations between nodes, but they
are often too easily interpreted as biological relationships. Edges between microbial taxa
might result from direct interactions, such as competition, secretion of substances, immune
modulation, or from mere co-occurrence without any direct biological meaning, e.g., due to
shared preferences, nutrient availability, or similar responses to environmental factors.® 23

Ordination analysis (e.g., principal component analysis (PCA), principal coordinates analysis
(PCoA), and non-metric multidimensional scaling (NMDS)) reduces data with many variables
(high dimensionality) to a set of two or three dimensions.??%?*' PCA identifies linear
relationships and projects data onto orthogonal axes, PCoA uses distance matrices for non-
linear relationships, and NMDS preserves the rank order of distances for data visualization.
Ordination analyses are tools used for visualizing and comparing microbial community
differences. In ordination plots, microbial communities are depicted as points, with sequential
samples linked by arrows. These arrows illustrate the system’s trajectory through the phase
space.”** 233 Samples with similar bacterial communities tend to cluster closer together,
whereas those with distinct compositions are positioned further apart.?** Clustering
techniques can then be applied to identify groups of points that share greater similarity with
each other compared to points in other clusters.** Note that applying a clustering technique
after dimension reduction by ordination analysis neglects significant information. Therefore,
it is recommended to cluster samples based on the original data, as, for example, by Dirichlet
multinomial mixture models. This is a clustering technique that is well-suited for multivariate
relative indices and establishes relationships between patient samples by identifying
similarities among them. This method has been used before in, for example, uncovering
patterns within the microbiota development of infant cohorts.?*¢
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An alternative method for analysing microbiota data is to parameterize mathematical models
of community dynamics using longitudinal data. However, the high-dimensional aspect

of the microbial communities remains challenging for fitting dynamical models to data.
Moreover, constructing such models requires substantial prior knowledge of the system,
which is seldom available. An alternative approach is to construct a system that captures the
core characteristics of the system’s elements. The time development of a dynamical system
will in this case be described by a set of ordinary differential equations (ODEs) that define

the principles governing the system’s dynamics (Box 1.5).2*2 However, high-dimensionality is
again a challenge for these types of models. Most existing modeling approaches consider a
few species at a time and fail to capture the true multivariate nature of the data. Also, they
have high computational costs and low prediction accuracy.?’” In general, when selecting a
model, one must choose a balance between realism (the complexity of the system) and the
ability to systematically and comprehensively analyse the microbial system with regard to the
study’s objectives.?*?

Box 1.5 - Models for microbial community dynamics. Dynamical systems
theory is a well-established mathematical framework used to describe behaviour
and evolution of complex systems over time.?*” The development and analyses of
dynamical models allows a better understanding and prediction of community
dynamics and engineering of community properties.?**>*’ The generalized Lotka-
Volterra (gLV) framework is a popular choice, benefitting from a deep theoretical
understanding.'%% "% 238239 However, the validity of this approach is under debate,
due to the model’s reliance on strong assumptions, such as leveraging quasi-
linearity in interaction terms. While pairwise models, such as the gLV models,
focus on the increase and decrease of abundance of local species, mechanistic
models consider interaction mediators as state variables.?*° For example, if a
certain species releases a compound which stimulates another species growth
upon consumption, then a mechanistic model tracks abundances of both species
and also the concentrations of the compound. Genome-scale metabolic models
(GEM:s) or constraint-based reconstruction and analysis (COBRA) models show
great potential for modeling the metabolism of microbial communities.??”- 241244
Note that mechanistic models often exclude molecular details, such as the
processes by which chemical signals are received and processed by recipients,

as well as the subsequent effects these signals have on the recipients’ behaviour
or function.?*® Ideally, models could also include the physical and chemical
environment, as this is a very important part of the species' environment.
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Aim and outline of the thesis

In this thesis, we aim to bridge the gap between microbiological, ecological, and clinical
concepts, which may help to better understand microbial dynamics, microbial involvement in
inflammatory bowel disease (IBD), and treatment success in fecal microbiota transplantation
(FMT). Specific aims addressed in this thesis are:

1 Characterize ecological structure in the human gut microbiota
Here we aim to unravel the correspondence between correlation-based networks and
the underlying network of ecological interactions. Human microbiota networks are often
characterized by pairwise correlation-based methods, applied to a few sampling points
in time. Such characterization implicitly assumes that the microbial system tends towards
a stable equilibrium. However, temporal ecological microbiota dynamics challenge the
assumptions of prevailing correlation-based methods and provide leads for alternative
characterizations.

2 Describe associations between gut microbial abundances and IBD
For this aim, we analyse fecal samples derived from Crohn’s disease (CD) patients. CD, a
type of IBD, has been associated with atypical microbiota composition and metagenomic
function. However, results from the literature on microbial associations with IBD have
not been consistent, especially with respect to disease activity. This could be because the
process of changing from a healthy to an unhealthy microbiota may not always follow
a deterministic pattern. It could be unique per patient. We provide a possible solution
by studying associations across a spectrum of individual patient responses to disease
activity.

3 Examine ecological microbiota determinants associated with
FMT treatment success
FMT has emerged as a promising treatment for microbiota-related intestinal disorders,
but its effectiveness in patients with ulcerative colitis (UC), another type of IBD, is still
limited. To characterize microbiota determinants of clinical remission, we examined
longitudinal associations between bacterial families and clinical response to FMT. It was
previously assumed that successful grafting of donor-derived microbes is associated with
clinical remission, but this donor-centric view has recently been questioned. Therefore,
we also investigate whether donor-derived, newly emerging, or host-associated species
are linked to patients achieving clinical remission after FMT treatment.
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This thesis starts with methodological considerations dedicated to the characterization
of microbial interactions and communities. Thereafter, our studies have a more clinical
application.

In Chapter 2 we use a mathematical model as a ground truth to simulate bacterial
communities. We specifically investigate how microbial network inference is related to
interindividual variation in population-dynamic parameters and different types of networks
of microbial interactions. In addition, we assess the impact of sample size or measurement
noise on the performance of correlation-based network reconstruction.

In Chapter 3, we apply a technique that clusters time series based on similarities in their
dynamical patterns, so-called wavelet clustering analysis. This technique, almost unknown in
the microbiota field, provides insight into the dynamic relationships between members of the
microbial community. This allows for an alternative characterization of community structures
as compared to the commonly used correlation-based methods.

In Chapter 4 we apply quantile regression, an extension of the general linear model that
allows for investigation of relationships across different quantiles of the distribution of

a response variable. The idea behind this method is that not all individuals are equally
responsive to disease-induced changes in terms of abundance of specific bacterial groups.
We test especially whether associations between relative abundances of specific families with
CD can be found relative to healthy controls and for different disease courses (i.e., remission
vs. exacerbation).

In Chapters 5 and 6 we investigate a longitudinal dataset of UC patients who underwent FMT
treatment. In Chapter 5 we employ several multivariate analyses to examine associations
between bacterial families and FMT treatment success: a Dirichlet multinomial mixture model,
longitudinal mixed models, and PCA with Aitchison distances. In Chapter 6 we map the
ecological dynamics in the gut microbiota during and after the FMT treatment. We categorize
all the species in ecological groups based on their origin (already present in the host pre-FMT,
derived from the donor, or introduced as a novel species that was neither present in the host
nor donor) and investigate their patterns of presence and absence, as well as their relative
abundance over time.

All findings are summarized and placed in the broader context of existing literature in
Chapter 7.
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Species abundance correlations carry
limited information about microbial
network interactions

Abstract

Unraveling the network of interactions in ecological communities is a daunting

task. Common methods to infer interspecific interactions from cross-sectional data
are based on co-occurrence measures. For instance, interactions in the human
microbiome are often inferred from correlations between the abundances of bacterial
phylogenetic groups across subjects. We tested whether such correlation-based
methods are indeed reliable for inferring interaction networks. For this purpose, we
simulated bacterial communities by means of the generalized Lotka-Volterra model,
with variation in model parameters representing variability among hosts. Our results
show that correlations can be indicative of the presence of bacterial interactions,

but only when measurement noise is low relative to the variation in interaction
strengths between hosts. Indication of interaction was affected by type of interaction
network, process noise, and sampling under non-equilibrium conditions. The sign of
a correlation mostly coincided with the nature of the strongest pairwise interaction,
but this is not necessarily the case. For instance, under rare conditions of identical
interaction strength, we found that competitive and exploitative interactions can
result in positive as well as negative correlations. Thus, cross-sectional abundance
data carry limited information on specific interaction types. Correlations in
abundance may hint at interactions but require independent validation.

Introduction

The human body harbors an exceptional bacterial diversity.?' The composition of these
bacterial communities is generally shaped by characteristics of the host and by the ecological
dependencies among bacterial species themselves.® '* 2% These dependencies often occur
through competitive or synergistic interactions, which may lead to a (mutual) decrease or
increase in the abundance of interacting species.’?* For instance, it is known that bacteria

can interact with each other through excreted metabolites, which can function as an
antimicrobial or as a food source.®2** Among other mechanisms, for example negative
interactions take place when toxic compounds produced by one species harm other bacteria,
whereas positive interactions occur when bacteria feed on the nutrients that are produced
by others. Besides, many different forms of interactions exist, depending on the effects
experienced by the species involved. Knowledge of interspecific interactions in the human
microbiome is paramount to understand ecological processes and compositional changes in
relation to health and disease.*® '*°

Most human microbiome studies are limited to only a few samples in time, presenting mere

‘snapshots’ of the microbial ecosystem, even if these samples are derived from hundreds of
human hosts.
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A common way to infer microbial networks from such cross-sectional data is by quantifying
co-occurrence, e.g., through (partial) correlations, between bacterial phylogenetic groups.
Several different conclusions have been derived from such endeavors, for example on
species associations that reflect shared or overlapping niche preferences,?*” microbial
community structure,?*® 2% the resilience of microbial communities to perturbations,’®

and keystone species in microbial networks."'* Currently there are several correlation-
based network tools available that can deal with the difficulties of microbiome data, such
as compositionality.?** 252" The potential of correlation-based approaches for uncovering
microbial networks has been highlighted in previous research.?*?

Whether correlation-based networks represent meaningful ecological structure in microbial
communities is, however, debated. Carr et al. (2019) showed that spurious correlations may
occur due to the use of sequencing methods, data transformations, and the large number
of unmeasured variables.?'® Berry & Widder (2014) and Hirano & Takemoto (2019) assessed
the performance of different co-occurrence methods for inferring interaction structure and
found that their performance strongly depends on the underlying network properties,
such as network size and density, and the number of samples used to construct the
network."*22° Apart from the challenges of metagenomic-based abundance data and
disagreement between various network tools, here we question whether correlations
themselves are at all useful to distinguish between different ecological interaction types.
Resource competition and metabolic cooperation have been successfully inferred within
environmental microbiomes, by linking ecological distribution data to multi-species
metabolic models and subsequent verification of putative interactions by means of
experimental co-growth analysis."'® However, host-associated microbiomes often include
non-culturable organisms, without information on nutrient requirements or metabolic
function. Likewise, performance of correlation analysis in relation to alternative interaction
types in the human microbiota is not well understood and deserves further investigation.

Correspondence of correlations with ecological interactions needs to be studied against

a known ground truth, which can be achieved by means of simulation. Mathematical
models have been used as ground truth in assessment of correlation network techniques
before,** but correlation networks have not been systematically investigated against
distinct interaction types in dynamic models. This requires elucidation especially as the ‘true’
ecological networks governing microbiome dynamics are still unknown. For this purpose,
we assessed the performance of correlation-based network reconstruction by simulating
abundance data based on the generalized Lotka-Volterra (gLV) model. The gLV model
describes the collective dynamics of multiple species by means of an interaction matrix that
can modulate different types of interactions.?*> The model is commonly used in microbiome
studies for different aims: to simulate microbial communities under various interaction
structures,?*? to infer interaction structure from time series data,'® to forecast population
dynamics after a perturbation,?* to infer the network topology from steady state samples,?**
and to identify the efficiency of intervention protocols in altering the state of a system via
the addition or subtraction of microbial species.?*° In ecology, gLV-type models have been
questioned for their reliance on pairwise additive interactions, as well as for the strictly linear
effects imposed on interspecific interactions. Nonetheless, from the perspective of network
inference, it makes sense to first investigate gLV-type models, as their first-order description
of ecological dependencies, specified through a pairwise interaction matrix, resembles the
objective of correlation analysis and most network models.?
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In addressing how gLV-type interactions can be inferred from cross-sectional data, we mainly
focus on the correspondence between the obtained correlation-based networks and the
underlying network of ecological interactions. We specifically investigate how the inference
of microbial interaction types is enabled by interindividual variation in population-dynamic
parameters (e.g., species-specific carrying capacities, intrinsic growth rates, and strength

of interspecific interactions) and how network reconstruction is affected by gLV model
assumptions. We highlight several situations where correlations cannot distinguish microbial
interaction types and therefore recommend careful interpretation and validation when
inferring networks from cross-sectional abundance data.

Methods

Two-species Lotka-Volterra model with self-limitation

First, we investigated how interactions between two species of microbial populations are
displayed in terms of correlations of abundances in the Lotka-Volterra model. For the sake of
convenience, we use the term ‘species’, although in studies with real microbiota data it is often
not possible to characterize the taxonomic abundances at species-level and therefore genera
or higher taxonomic levels are often used instead.

The two-species Lotka-Volterra model is given by the following set of ordinary differential

equations:

dN :

—t’=r1N1(1 - KN, +a,N,) Eq. 2.1
N N -KN N Eq.2.2
dt =r 2(1_ , Ny T4y, 1) q. 2.

Here, N, is the abundance of either species 1 or species 2 (with i =1 ori = 2). The term r, is the
intrinsic growth rate of each species, here normalized to 1 and 2 per time unit for species 1

and 2, respectively. The effect of each species’abundance on its own growth is defined in
terms of the species-specific carrying capacities K, with a, = -K ' denoting intraspecific
competition. We arbitrarily chose the carrying capacity for the first species to be higher

than the carrying capacity for the second species (K, = 1.5; K, = 1.1), meaning intraspecific
competition is less strong for species 1 compared to species 2. Furthermore, a; (i=1,2,j=1,2
i #j) indicates the interspecific interactions (the effect of one species abundance on the growth
of the other species). A positive a; (e.g., as in the case of mutualism) denotes a positive effect
of species j on the growth of species i, a negative a; (e.g., as in the case of competition) means
a negative effect of species j on the growth of species i (Appendix Figure 2.1). We assessed

the effect of variation in the interspecific interaction parameters on correlation in equilibrium
abundance between both species. For this purpose, the interspecific interaction strengths (a,,
and a,,) were drawn randomly from two normal distributions with similar or different mean
and similar or different standard deviations (o,). Moreover, we also investigated the situation
where |a,,| =
combination of a,, and a,,. More information on the conditions for coexistence can be found
in Box 2.1.

|a,,|- Note that it was not possible to achieve stable coexistence for every
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Box 2.1 - Coexistence in a two-species Lotka-Volterra model with self-limitation.
The conditions for coexistence in the two-species Lotka-Volterra model with self-limitation
can be derived by setting both growth equations to zero and investigating what parameter
combinations yield N, > 0 as well as N, > 0. Here, N, denotes the equilibrium abundance of
species 1 and N, denotes the equilibrium abundance of species 2. Writing these conditions in
terms of N, as functions of N, gives the following:

dnN
dt1 =0AN,>0->N, =f(N)=K +a,KN, Eq.2.A
dn 1 1

h _ N = - Eq.2.B
dt 0AN,>0—-N, =7£,(N,) » + @,K) N, q

The joint equilibrium abundance of both species (N, N,) is determined by £,(N,) = £,(N,).
Equation 2.A shows that species 1 grows to its carrying capacity K, in the absence of
interspecific interactions, i.e,, if a,, = 0. Likewise, a,, > 0 allows species 1 to grow to higher
abundance in the presence of species 2 than determined by its own carrying capacity,
whereas a,, < 0 leads to a reduced abundance of species 1 in the presence of species 2.
Similar relations hold for the abundance of species 2 in the presence of species 1, depending
on a,,. From Equation 2.B, it can also be derived that N, > 0 is only compatible with N, being
above its carrying capacity K, if at the same time a,, > 0, whereas N, being below K, requires
a,, <0.

Joint inspection of Equations 2.A and 2.B also establishes the following, more subtle,
conditions for coexistence:

1 Ifa,>0anda, >0,e.g.,in case of mutualism, £, has a negative intercept
in the Cartesian (N,, N,) coordinate system (Figure 2.A - panel A). As both functions have
a positive slope in this situation, and £, always has a positive intercept, f, must have a
stronger slope than £, for both to intersect in the positive quadrant. This boils down
to a1K >a, K, orequivalentlya,a,,<a,a,,asK=-4 L by definition. This means that the
product of interspecific mutualism needs to be smaIIer than the product of intraspecific
competition for both species to co-exist, otherwise there is no control of population

growth.

2 Ifa,<0anda, <0, e.g., in case of competition, both functions have positive
intercept and negative slope (Figure 2.A - panel B). Intersection in the positive quadrant
requires the function with the larger intercept to intersect the abscissa, i.e., the N, axis
where N, =0, at a smaller value than the function with the smaller intercept. Thus this
requrres |a | >% K and |a,,| > K % with 7, having the larger intercept, or alternatively,
|a,, | <+ K and la,,| <+ K ,Wrthf having the larger intercept. In the first instance, interspecific
competition is stronger than |ntraspeC|ﬁc competition, whereas in the second instance,
interspecific competition is less strong than intraspecific competition. It turns out that only
the last of these conditions yields a stable equilibrium, meaning that the abundances of
both species return to equilibrium after small displacements.
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3 Ifa,<0anda, >0, e.g, in case of exploitation of species 1 by species 2, , has a positive
intercept and negative slope, whereas £, still has a negative intercept and positive slope
(Figure 2.A - panel Q). Intersection in the positive quadrant requires f, to intersect the
abscissa at a larger value than K, the point where £, intersects the abscissa. The condition
for coexistence thus becomes |a,,| < ,1(—2, or equivalently a,, < a,,, meaning that the parasite
should exert stronger inhibitory effect on its own growth than on that of the exploited
species.

4 Conversely, in case of exploitation of species 2 by species 1, i.e., ifa,,>0and a,, <0,
both f, and £, have a positive intercept, but £, now has a positive slope whereas £, has a
negative slope (Figure 2.A - panel D). Intersection in the positive quadrant then requires £,
to have a smaller intercept than £,. The condition for coexistence thus become%jazJ S
or equivalently a,, < a,,, again meaning that the parasite should exert stronger inhibitory
effect on its own growth than on that of the exploited species.
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Figure 2.A - Zero-growth isoclines (‘null-clines’) in the
two-species Lotka-Volterra model. Visualization of the effect

of species 1 and 2 abundances on each other in the Cartesian (N, N,)
coordinate system. Here, 1, denotes the isocline of zero growth of
species 1, 1., £,(N,) (in dark blue), and f, denotes the isocline of zero
growth of species 2, i.e, £,(N,) (in light blue). Their point of intersection
represents the joint equilibrium abundance of both species, i.e., (N, N,).
Throughout K, = 1.5 and K,= 1.1. Parameters for the various scenarios:
a,,=03and a, = 0.6 under mutualism; a,, =-0.6 and a,, = 0.4 under
competition; a,, = -0.6 and a,, = 0.4 under exploitative interaction
type 1;and a,, = 0.6 and a,, = -0.4 under exploitative interaction type 2.
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The additional requirement for stable coexistence is that the two-species system should be
locally stable around the equilibria (N,, N,), which can be formalized in terms of the Jacobian
matrix of the Lotka-Volterra model evaluated at (N,, N,). This amounts to determining the
trace and determinant of the matrix of the partial derivatives of the growth equations
regarding either species, i.e.,
r- 2I’1ﬁ1 / K1 + r1a1zﬁz r1a1zﬁ1
Eq. 2.C
r,a, N, r,-2r,N,/ K, +r,a, N,
It can be verified that the conditions for coexistence stated under mutualism and exploitative
interactions yield equilibria that are locally stable, just as the last of the conditions under
competition. We will not derive these conditions here, as these are covered by textbooks on
theoretical ecology.?*”

In summary, the two-species Lotka-Volterra model with self-limitation has the following
possibilities for stable coexistence (Table 2.A):

Table 2.A - Conditions for stable coexistence in the two-species Lotka-

Volterra model.

Type of interaction Condition Outcome
Mutualism : B B
a,>0Aa, >0 a0, < KK) N,> K, AN,> K,
Competition 1 1 - B
a,<0Aa, <0 Ja,| <TZA la, | < K N, <K, AN,<K,
Exploitative interaction type 1° 1 - -
a,<0Aa,>0 |a1z|<72 N, <K, AN,>K,
Exploitative interaction type 2° 1 - -
a,>0Aa, <0 |021|<T] N,>K AN, <K,

2 Exploitative interaction type 1: species 1 is being exploited by species 2
b Exploitative interaction type 2: species 2 is being exploited by species 1

The condition for stable coexistence of competitors requires both species to have less effect
on the growth of the other species than on itself. In case of an unstable equilibrium, either
species will eventually outcompete the other; the species with an initial advantage will drive
the other species to extinction, a condition referred to as competitive exclusion.?*®2*° This
will occur, for instance, when each species produces a substance which is toxic to the other
species but relatively harmless to itself.

Chapter2 35 Correlations carry limited information about network interactions



Generalized host-specific Lotka-Volterra model

Microbial abundance is not only shaped by intra- and interspecific interactions, but also by
host characteristics, for example lifestyle, diet, and age.?® Therefore, we investigated the
performance of correlation-based network inference of microbial networks for a host-specific
version of the gLV model. The host-specific gLV model is given by:

dNr'm -1 <
g =r N 0-K'N +%a N ) Eq.2.3
,m i,m mm ,m / -1 m jm
Jj#i

Here, N, is the abundance of each species i in host m, withi=1, .., s (s being the total
number of bacterial species) and m =1, ..., 300 (the total number of hosts). The terms r,

and K, are the intrinsic growth rates and the carrying capacities of each species i in host m.
The carrying capacities are kept separated from the interaction matrix A which only contains
interspecific interactions (namely, the pairwise terms av), facilitating a one-to-one comparison
with the correlation matrix.

Parameterization of the base case simulations

We started with a base case, and we added step by step variation to this case. Note that
the base case parametrization does not reflect any particular real-world system. Rather,
parameters were chosen in such a way to facilitate computation and promote coexistence
among species. Variations to the base case parameters are shown later on, but also here,
findings should be appreciated from a qualitative rather than quantitative viewpoint. In
the base case, the number of bacteria equals ten. The species-specific growth rate r, and
the species-specific carrying capacity K, were randomly drawn from uniform distributions,
respectively U(0.05, 0.1) and U(0, 1). The density of the interaction matrix A in the base
case was chosen such that both sparsity of the interaction network and coexistence of

the species was promoted in all simulations; in the base case, density was % meaning that
three out of four possible interactions were set to zero. Moreover, to ensure coexistence
between species in the model we chose stronger intraspecific interactions than pairwise
interspecific interactions. The species-specific parameters a, were drawn from a Gaussian
mixture distribution, as follows. Half of the interactions were drawn from a negative normal
distribution: a, ~ N(-0.25, 0.1); and the other half of the interactions were drawn from a
positive normal distribution: a~ N(0.25, 0.1). All interactions were restricted to lie between
-0.5and 0.5, i.e., the normal distributions were truncated at -0.5 and 0.5. The parameters r,
K, and the interaction matrix A were randomly drawn 1000 times from the aforementioned
distributions to obtain 1000 different parameter combinations. Hereafter, host-specific
parameters were drawn from log-normal distributions around species-specific parameters,
as follows:

In(a,,.)) ~ N(In(|a,]), 0,)

In(r, ) ~N(In(r), o) Eq.2.4

In(K,,) ~ N(In(K), 0,)
Here, o, denotes the interindividual variability in interspecific interactions among the 300
hosts (with o, = 0.25 in the base case), and |aij’m| denotes the absolute strength of interaction
from species j on the growth of species i for each host m. Note that, for the sake of simplicity,
the use of log-normal distributions was adopted to induce fold-changes around population
means, where both the presence and the sign of interspecific interactions are kept constant
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across hosts. However, this may be untrue in real microbiota as many microbes can change
metabolic pathways and therefore may switch between interaction types and interaction
partners. In the base case model, the carrying capacities and growth rates were kept constant
across hosts, meaning 0, and o, were set equal to 0.

The simulation process yielded 300,000 time series (300 host-specific time series for each

of the 1000 ten species networks). The running time of the model was chosen such that all
species reached their equilibrium abundance. If at least one species did not survive (i.e., when
its abundance dropped below 0.001), we rejected the simulation in favor of another randomly
drawn parameter set. After sampling the abundances at equilibrium, we added independent
and identically distributed noise v to mimic uncertainty in measurements (with v ~ U(-0.01,
0.01) in the base case). This measurement noise can be thought of as representing, for
example, sampling errors, environmental contamination, batch effects during sequencing, or
annotation errors in reference genomes.?' Simulations were performed in R (R version 3.6.0;
www.r-project.org). The gLV model was solved with the ‘Isoda’ function from the ‘deSolve’ R
package (version 1.24) which uses a FORTRAN ODE solver written by Petzold & Hindmarsh
(1995).252:2%3 R code is available on the GitHub repository (susannepinto/gLV_microbiome).

A general overview of the base case simulation design is given in Figure 2.1.

Add multiplicative noise to the
— interaction strengths (a,-j)

dN,
1 1
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Figure 2.1 - Representation of the workflow. In an interaction network, singular
green and red arrows represent a commensalistic interaction and an amensalistic interaction,
respectively, whereas double green arrows represent mutualism and double red arrows
competition. A combination of a green and red arrow signifies an exploitative interaction.
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See Appendix Figure 2.1 for more details. A) A random interaction matrix i. This interaction
matrix is implemented in the gLV model, B) together with the intrinsic growth rates and carrying
capacities of the species. C) All time series are (slightly) different due to the variation in the
interaction strengths. D) The partial correlations are calculated from the abundances per species
sampled from the 300 different hosts at equilibrium. Only the significant correlations and the
lower part of the matrix are used for the comparison with the original interaction matrix /.
Variations to the workflow were studied by adding for example a perturbation or process noise.

Variations to the base case model

We studied multiple variations to the base case model. Similar to the base case simulations,
we did 1000 simulations per variation. As a first variation, we added host-specific variability
to the species-specific parameters r,and K, using Equation 2.4, with 0 = 0.25 and 0, = 0.25.

Second, we varied the amount of measurement noise, from v ~ U(-0.01, 0.01) (medium noise
in the base case) to v ~ U(-0.001, 0.001) (low noise), and to u ~ U(-0.1, 0.1) (high noise).

We also simulated time series with a different type of noise, namely varying magnitudes of
process noise W (Appendix Figure 2.2). In contrast to measurement noise, which was added
only to the sampled abundances, process noise was added to the gLV model such that within-
host population dynamics were perturbed at discrete time intervals At (At = 1 time unit).

The time-varying process noise was drawn from a log-normal distribution to prevent the
abundances from dropping below zero, i.e, AW, =In(N, ) = In(N, ) ~N(In(N,), 0,) (with
0,,~ N(0, 1) for high process noise and g, ~ N(0, 0.1) for low process noise).

Further, we simulated data with interaction strengths drawn from a uniform (a,.j. ~U(-0.5,0.5))
or unimodal (a,-,- ~N(0, 0.15)) distribution. As in the base case, the interaction strengths were
restricted to lie between -0.5 and 0.5 (Appendix Figure 2.3).

We also analysed three different structures of microbial networks. First, we increased the
number of species s from 10 to 30. To promote coexistence, we also reduced the density

of the interaction matrix to %. Secondly, we simulated a network based on a producer
consumer relation between the species (Appendix Figure 2.4). Instead of random interaction
networks (Appendix Figure 2.4A), the producer-consumer networks are based on a cross-
feeding structure between producers and consumers (with equal numbers of producers and
consumers) (Appendix Figure 2.4B). Producers excrete metabolites which are consumed by
the consumers. Because consumers remove the ‘waste’ from the producers, the presence

of a consumer can also be beneficial for the producers. Therefore, between producers and
consumers positive interactions are more likely to occur than negative interactions. For

this purpose, we drew the consumer-producer interactions from the positive side of the
Gaussian mixture distribution (aU ~N(0.25, 0.1)). In contrast, among producers and consumers
themselves, the interactions are predominantly negative as these species are more likely to
compete for similar resources. For this purpose, we drew the interactions among producers
and among consumers from the negative side of the Gaussian mixture distribution

(a,-,- ~ N(=0.25, 0.1)). Third, we simulated a microbial network with interaction hubs, i.e., a
network containing species with unusually high numbers of ecological interactions compared
to other species in the network (Appendix Figure 2.4C).?** Hub-species networks were created
according to the Barabasi-Albert model?*> and implemented with the ‘barabasi.game’ function
from the ‘igraph’R package (version 1.2.11). In the network-generating algorithm, interactions
are distributed according to a mechanism of preferential attachment.
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Thus, species with interactions obtain a higher chance of getting more interactions, resulting
in a few ‘hub-species’ with many interactions. We constructed two scale-free directed graphs
(with power = 2), denoting ‘incoming’ and ‘outgoing’interactions, and combined these to
obtain a bidirected graph. Density was kept similar to the base case model (V).

Next, we also investigated how network inference is affected by sample size by considering
a scenario with 3000 instead of 300 hosts. We did this for the base case model with random
interaction networks, as well as for the producer-consumer and hub-species networks
described before.

Last, we investigated the effect of a perturbation on the performance of network inference.
The populations were perturbed after 175 time units, with a perturbation that lasted for 50
time units. The perturbation was modelled by taking a new set of random carrying capacities
per species per sample. Due to the simulated perturbation, the equilibrium distribution
shifted. After the perturbation, the species grew back to their original equilibrium. Sampling
occurred before, during, or after the perturbation.

Assessment of correlation-based network inference

With the simulated data at hand, we created a dataset with the abundances of the model
species sampled at equilibrium for each host m. After adding measurement noise to the data,
we inferred the correlations between species by calculating the Pearson’s partial correlation
coefficients p between all abundances N, across the m different hosts (Figure 2.1). We did
not use plain correlations, because partial correlations have the advantage of controlling
for confounding interactions (e.g., interactions between bacterial species affecting the
abundance of a third species).??” Agreement between the partial correlation matrix and the
interaction matrix A from the gLV model was assessed qualitatively, i.e., we only considered
whether significant entries in the partial correlation matrix agreed with the interaction
matrix in terms of nonzero entries with the same sign. We used the Benjamini-Hochberg
procedure to control for the expected proportion of ‘false discoveries’ after calculating partial
correlations between each pair of species.?*® The results (true positives, true negatives,

false positives, and false negatives) were stored in a confusion matrix (Table 2.1). Because a
correlation matrix is symmetric and an interaction matrix A is not, we only used half of the
partial correlation matrix (Figure 2.1D) to construct the confusion matrix. For a correctly
classified interaction, either one or both interactions in the upper and lower part of the A
matrix must have the same sign as in the lower part of the partial correlation matrix. This
can produce a bias, because asymmetric interactions can result in a true positive result

for correspondence of the correlation coefficient (p) with either interaction. For example,
for exploitative interactions, both negative and positive correlations were classified as

true positive results. Therefore, we tested the effect of this bias on the success of network
inference by specifying the intended sign in correlation analysis, as the sign of the strongest
interaction in each pair of species. Hence, for an exploitative interaction, only a positive or

a negative correlation is correct, depending on the weights of the asymmetric interactions.
We also tested the effect of this bias on the success of network inference by setting the rule
that the sign of both interactions must be matched by the inferred correlation coefficient.
Therefore, only mutualism and competition can be inferred correctly, as amensalism,
commensalism, and exploitative interactions are asymmetric.
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Table 2.1. The confusion matrix as used in this study.
The inferred partial correlation coefficient p (from the lower part of the partial

correlation matrix) must have the same sign as one of the interactions in the interaction
matrix A to be considered as a true positive finding in base case analysis.

Interaction in the A matrix from Inferred partial correlation

the model Negative: Not significant | Positive:
No interaction 0,0 false positive | true negative false positive
Mutualism + + false positive | false negative true positive
Competition - - true positive | false negative false positive
Commensalism +,0|0,+ | false positive | false negative true positive
Amensalism -, 0]0,- | true positive | false negative false positive
Exploitative interaction |+ -|-, + | true positive | false negative true positive

2 Only significant partial correlations (with p-value < 0.05) are considered after correction for
multiple testing with Benjamini-Hochberg procedure.

Performance of network inference was evaluated using precision and recall, as well as a
combination of both measures, called the F -score.” The precision is the fraction of correctly
classified interactions among the total number of significantly predicted interactions (i.e.,
significant partial correlations) and the recall is the fraction of correctly classified interactions
among the total number of non-zero interactions in the interaction matrix A. The F -score (on
a scale from 0 (no agreement) to 1 (perfect agreement)) is obtained as the harmonic mean of
precision and recall, weighted equally, as given in the following equation:

F=2. precision - recall

1~ “ precision + recall Eq.2.5

Results

Inference of asymmetric and symmetric interactions in a two-species system
Correlations in abundances of the species in a two-species Lotka-Volterra model are shaped
by the type of interaction involved. Figure 2.2 shows scatterplots of the abundances of two
bacterial species for different interaction mechanisms over a range of different combinations
of a,, and a,,. Mutualistic interactions clearly yielded a positive correlation in abundance
between the two species involved (Figures 2.2A and Appendix Figure 2.5). Competitive
interactions generally yielded negative correlations (Figures 2.2B and Appendix Figure 2.5).
However, under perfectly symmetric competition (when a,, = a,,) we did find a positive
correlation depending on interaction strength and carrying capacities of the species involved
(Appendix Figure 2.5D - second panel). In the situation where one of the two species does
not experience any benefits or limitations in growth from the other species, as is the case
with commensalism and amensalism (i.e., a,, = 0 or a,, = 0), correlations are zero because one
of the species will grow to its carrying capacity irrespective of the abundance of the other
species (Figure 2.2C and 2.2D).

Correlations under exploitative interactions among bacteria, benefitting one but harming the

other species, generally yielded positive correlations (Figures 2.2E and 2.2F, and Appendix
Figure 2.5), but negative correlations were also found.
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This happened when the exploitative benefit was of equal magnitude as the harm done

to the other species (Appendix Figure 2.5D), or of similar mean magnitude but with more
variation (e.g., species 1 is exploited by species 2; -a,,=a,, and 0, , << g ,, (exploitative
interaction type 1) or species 2 is exploited by species 1;a,,=-a,, and o, <<0_,
(exploitative interaction type 2) (Appendix Figure 2.5B). However, if the exploitative benefit
outweighs the harm done to the other species, exploitative interactions will generally yield
positive correlations. It should also be noted that the two species were not exchangeable,
because species 1 was given a weaker intraspecific interaction strength than species 2.
Thus, in the absence of interspecific interactions, species 1 can reach a higher abundance at
equilibrium. This means that, for the same interspecific interaction strength, the species with
the higher carrying capacity exerts a stronger (negative) effect on the growth of the other
species.
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Figure 2.2 - Scatter plots between the abundances of two bacterial species for
different interaction mechanisms. A) mutualism, B) competition, C) commensalism, D)
amensalism, and E, F) exploitative interactions. The abundances of the two species N, and N, at
equilibrium are shown as scatterplots and have been obtained by running the two-species
Lotka-Volterra model, with K, = 1.5;K,=1.1;r = 1;7,=2 and a, drawn randomly from normal
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distributions with identical means and standard deviations (a,, ~ N(|0.7],0.2), a,, ~ N(|0.7|, 0.2)).
In the case of commensalism and amensalism: a,, ~ N(|0.7|, 0.2) and a,, = 0. The two species can
co-exist under certain combinations of a, (Box 2.1). The grey polygon indicates the area where
coexistence is possible. Note that the axes have different ranges in each subplot. Because the
two species have different carrying capacities, the two situations of exploitative interactions are
different; i.e, in case of exploitative interaction type 1 (species 1 is exploited by species 2) and in
case of exploitative interaction type 2 (species 2 is exploited by species 1).

Network inference under various interaction types

Here, we used the base case model to assess the success rate of recovering a particular
interaction type between pairs of species: amensalism, commensalism, exploitative
interactions, mutualism, and competition (Appendix Figure 2.1). Figure 2.3A shows that
correlations were more often found in mutualistic and competitive interactions, where
interacting species experience the same qualitative effects from each other, than in
amensalistic and commensalistic interactions, where only one species experiences an effect
from the presence of another species. For exploitative interactions among bacteria, either a
positive or negative correlation coefficient p could be found, with a success rate comparable
to amensalistic and commensalistic interactions. Contrary to the results that included
symmetric interactions, there was no difference between the successful inference of positive
interactions over negative interactions in any interaction type (Figure 2.3B). For all interaction
types, the sign of the significant correlation coefficient p found, mostly agreed with the sign
of the interaction type (Figure 2.3). However, with the inferred correlations neither the type
nor direction of the original interaction could be recovered.
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Figure 2.3 - The percentage of significant partial correlations (with sign matching
interaction in either direction), as recovered from the base case model.
A) For different types of pairwise interactions and B) for the different correlations.
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Network inference under various sources of process variability

Next, we investigated how correct network inference was affected by several variations to
the base case model (Figure 2.4 and Appendix Table 2.1). In all cases considered, interactions
were recovered with precision exceeding recall. This means that the likelihood of missing an
interaction (i.e., 1 - recall) was higher than the likelihood of finding a false interaction

(i.e., 1 — precision), illustrating the effect of false discovery rate control.

Partial correlations corresponded to non-zero entries in the interaction matrix only when
interindividual variation existed in the interaction parameters (av) and/or carrying capacities (K)
(Figure 2.4A and 2.4B). These parameters directly influence microbial abundance patterns, as
interspecific interactions and carrying capacities determine the equilibrium of the gLV model.
The intrinsic growth rate only determines the speed at which species reach their equilibrium,
and this parameter is not informative for the equilibrium abundances. In fact, performance
under interindividual variation in growth rates was just as bad as the performance under pure
measurement noise with no variation in model parameters (Figure 2.4B).

Performance of correlation-based network inference was robust to measurement noise, if
measurement noise was small compared to interindividual variation in process parameters
(Figure 2.4C). When measurement noise became of the same magnitude as the variation

in interspecific interactions, the F -score deteriorated, and it was no longer possible to use
correlations as a proxy for interactions (Figure 2.4C). We also checked whether adding process
noise would affect the inference. We did observe a significant improvement of the inference
from a model with process noise relative to only measurement noise (Figure 2.4C and
Appendix Table 2.1).

Hereafter, we investigated the effect of drawing the interaction strengths from different types
of distributions (Figure 2.4D and Appendix Figure 2.3). We did not observe a difference

between the success rate of network inference under a Gaussian mixture distribution or
uniform distribution, which were conditioned to have similar variances (Appendix Table 2.1).
However, successful inference deteriorates with reduced interaction strength; success rates
were better under a Gaussian mixture distribution or uniform distribution compared to a
unimodal distribution around zero (with smaller variance) (Figure 2.4D). The weaker interactions
have a smaller effect on equilibrium abundances of other species, which makes them harder to
detect with correlation analysis.

Figure 2.4E shows the results for different network types. Increasing the number of species from
10 to 30 had a significant negative effect on the success of the inference (Appendix Table 2.1),
which was mainly due to reduced precision. Conversely, F,-scores were improved as compared
to the base case when assuming a producer-consumer based network (Appendix Figure 2.4 and
Appendix Table 2.1), on account of an improved recall. Inference in a network with interaction
hubs (as explained in Appendix Figure 2.4) was significantly worse than in a random network,
which could be attributed to a somewhat reduced recall.

Note that problems may arise with asymmetric relationships. When using the rule that pairwise
correlations should match the strongest interaction between both species involved as the
intended sign, we found only a slight non-significant reduction in F -score as compared to the
base case scenario (Figure 2.4F and Appendix Table 2.1).

Chapter2 43 Correlations carry limited information about network interactions



Type of score

ll Precision l Recall IF‘-score
[ T
A e e . | L Base case
,
! - . - ! Variation in
—_ _— all parameters
|
—_ Variation in
—_ o o carrying capacities

Variation in
growth rates

No variation
in parameters

. Low measurement
e e B noise
-l . . High measurement
noise

. . | Low process
noise

_ High process
noise

Uniform
- distribution
Unimodal
F—‘L distribution
._- - 30 species
system
Producer-consumer
network

o Hub-species

| network

Inference of
—— intended sign

Strict inference

Base case
(3000 hosts)

network (3000 hosts)

Hub-species
network (3000 hosts)

|
|
|
T
T .

i

| - Producer-consumer
|

1

— |

|

0 0.25 0.5 0.75 100 0.25 0.5 0.75 1.00 025 0.5 0.75 1.0
Score Score Score

Figure 2.4 - Inference under various sources of process variability. For the
different scenarios we show the precision, recall, and the F -score. A) The base case model.

B) Host-specific variation in the carrying capacities and intrinsic growth rates. C) Decreased
and increased amount of measurement noise (uv) and the effect of process noise (W)
(Appendix Figure 2.2). D) Interaction strengths drawn from a uniform and unimodal
distribution (Appendix Figure 2.3). E) The results for a 30-species system, a network based on a
producer-consumer structure and a network with interaction hubs (Appendix Figure 2.4).

F) The effect of network inference when specifying the intended sign in correlation analysis, as
the sign of the strongest interaction in each pair of species, or by setting the rule that the sign
of both interactions must be matched by the inferred correlation coefficient (strict inference).
G) Three scenarios with 3000 hosts, for the base case with random interaction networks as
well as for the scenarios with structured (i.e., producer-consumer and hub-species) networks.
Network inference was assessed by the F -score, which measures agreement between the
interaction matrix in the gLV model and the inferred partial correlation matrix on a scale from
0 (no agreement) to 1 (perfect agreement) (according to the rules of Table 2.1). The dashed
line indicates the median result from the base case model. The bars of the boxplots indicate
the variability of the data outside the middle 50% (i.e., the lower 25% of scores and the upper
25% of scores). All p-values are given in Appendix Table 2.1.
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Thus, pairwise interactions wherein the net effect on population growth is positive or
negative are mostly picked up as such in correlation analysis. However, under the rule that
mutual interactions must both be reflected in the sign of the correlations, asymmetric
interactions cannot be recovered as correlations are symmetric. We indeed found much lower
F,-scores when detection of asymmetric interactions was no longer considered as a true
positive result after inferring a significant correlation coefficient p (either positive or negative)
(Figure 2.4F).

Finally, we verified that network inference improved with increasing sample size. This applied
to models with random as well as structured interaction networks (Figure 2.4G). In the base
case, precision was somewhat reduced at increased sample size notwithstanding Benjamini-
Hochberg control. However, this was compensated by substantially improved recall, resulting
in significantly increased F,-scores. Interestingly, precision stayed more or less constant

at increased sample size in producer-consumer and hub-species networks, whereas recall
improved but remained somewhat behind that of random networks.

Network inference under non-equilibrium conditions

Figure 2.5 shows that the equilibrium assumption is not necessary for successful correlation-
based network inference. In fact, our results even suggest that a perturbation can positively
affect the performance of network inference. Variation in the growth rates becomes
significantly informative outside the equilibrium (Appendix Table 2.2). Also, variation in the
interactions becomes even more informative when the population is still growing towards the
equilibrium. Network inference is impaired only right after the start of a perturbation, when
the population is still far from a new equilibrium, unless the interindividual variation is in the
carrying capacities (Figure 2.5B). We also assessed the success of correlation-based inference
when the sampling occurred randomly in time in relation to the perturbation. We found that
the F -score resembled an average of F,-scores across various sampling time points.

Discussion

Correlation-based network inference has been used in many studies and for many different
types of human and environmental microbial communities.??” The reliability of the results
with regards to true ecological dependencies has been criticized, to the extent that
correlation analysis has been suggested to almost never reveal anything substantive about
the biotic relationships between bacteria.?’® However, the theoretical basis that enables
ecological interactions to be inferred from cross-sectional abundance data remains poorly
understood. Most of the previous research has focused on the reconstructed network
properties or the difficulties pertaining to metagenomics-based abundance patterns, e.g., the
compositionality of the data and the high proportion of zeros.?'®227.26¢ While these difficulties
are pervasive and merit further consideration, here, we question whether correlations are at
all useful in distinguishing different interaction types in microbial networks.

We demonstrated multiple pitfalls when using correlation-based methods for inferring
interactions. Some of those pitfalls are well known, as they relate to the inherent symmetry
of correlation-based metrics and the frequent asymmetry of ecological interactions.?'®

As a result, asymmetric interaction types (commensalism, amensalism, and exploitative
interactions) cannot be recovered with an indication of the direction of interaction, which
agrees with prior work done by Weiss et al. (2016).2**
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Figure 2.5 - The effect of a perturbation on correlation-based network
inference. A) Example of a time series. Dashed lines represent sampling time points.
Sampling was performed during the perturbation (t, = green, t, = yellow, t, = blue, and

t, = grey) and at equilibrium (t, = dark blue). Alternatively, sampling was performed
randomly between =100 and t = 1000 (random = pink). B) Results (F -scores) of network
inference for sampling at various time points. After a perturbation all species grow back
to their original equilibrium. The bars of the boxplots indicate the variability outside

the middle 50% (i.e., the lower 25% of scores and the upper 25% of scores). Dashed

lines represent median results of sampling during equilibrium. All p-values are given in
Appendix Table 2.2.
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Symmetric interaction types, where species involved affect each other’s growth in a
qualitatively similar way (competition and mutualism) can be recovered, although
competitive interactions may also result in positive correlations, albeit in very rare cases
where species have identical competitive strength. Likewise, we found that exploitative
interactions generally induce positive correlations, especially in the likely circumstance
where the exploitative benefit outweighs the harm to the exploited species. These findings
might explain why empirical correlation-based networks have a relative shortage of negative
correlations."'* 268 25%|t remains to be investigated whether the high frequency of positive
edges in reconstructed networks is caused by methodologic limitations or whether the
interspecific interactions in host-associated microbiota are primarily mutualistic.’'? '36.270.271

Still, as illustrated by our analysis, correlations in microbial abundance across independently
sampled hosts can be indicative of underlying ecological interactions under host-specific
variation in microbial population dynamics. That is, if microbial groups of interest are
omnipresent and their interactions are appropriately captured by generalized Lotka-Volterra
(gLV) dynamics, the variation in population abundances should be driven by interindividual
variability in population-dynamic parameters. In the context of the gLV model, the
informative parameters are primarily related to intrinsic growth rates, carrying capacities,
and strength of between-species interactions of microbial groups considered. A change in
species abundances can be informative for the interactions among those species, as was also
previously shown by Stone and Roberts (1991).?7? It remains to be determined how much
variability across individual hosts is driven by external forcing and by gradual differences in
process related parameters relative to measurement noise. On one hand, it is well known
that microbes adapt to host-specific environments, shaped by, among others, diet, lifestyle,
hormonal regulation, and the immune system.?*® As an example, increased abundance of a
particular bacterial species at increased glucose intake levels might be reflective of increased
resource availability (affecting carrying capacity and growth rate) or superior competitive
strength (affecting interactions with other species).?* On the other hand, environmental
drivers of bacterial growth can operate over different spatial and temporal scales and
correlations in abundance can be reflective of shared environmental niches that have no
meaning in terms of direct biotic interactions.?!

Therefore, a correlation between the abundance of two species does not imply that those
species are interacting."" Many of the detected correlations may be caused by shared
environmental preferences rather than species interactions.?”? Such environmental filtering
can mask putative between-species interactions as well as induce spurious correlations.?'®
Also, co-occurring species may appear to be dependent on each other, while their
co-occurrence can be explained by them actually sharing a similar dependency on a third
species so that co-occurrence, and hence apparent dependencies drawn from that, may

also be explained by higher-order interactions.?’* Berry and Widder (2014) suggested that
network interpretation is only possible if samples are derived from similar environments.""*
Our analysis suggests that network inference partially depends on a degree of heterogeneity
in population-dynamic parameters. If differences in bacterial abundances between hosts

are mainly due to measurement noise, their correlations are not informative of underlying
interactions. In our simulations, with relative standard deviation in process-related parameters
between hosts of about 25%, inference performed well as long as measurement noise had
coefficients of variation well below 10% of the mean bacterial abundances. Strikingly, the
inference of interactions was even improved when process noise was added. More research is
needed to delineate the extent to which correlation analyses can be confounded by latent
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environmental drivers of microbial population dynamics, and how strongly one should
condition on environmental or host homogeneity.

Our results have been obtained using the gLV model. While the gLV model has been very
popular in microbiome research because of its manageability, it has several drawbacks. In
ecology, the gLV model has been criticized for the absence of trophic levels within the model.?”*
This is in contrast to most classical ecological (e.g., plant-herbivore or predator-prey) systems,
where direct consumption and predation offer more opportunity for top-down regulation,
possibly obscuring interactions in co-occurrence patterns.?’® But trophic levels are probably

not so relevant in the human microbiome as bacteria mainly interact with each other through
excreted metabolites.? Furthermore, the interactions between bacteria might be much more
complex than the additive and pairwise interactions that the gLV model assumes. Momeni

et al. (2017) claimed that pairwise modeling will often fail to predict microbial dynamics, as
many interactions occur through chemical production pathways (such as cross-feeding and
nutrient competition) involving more than two species.?*® Correlation analysis fails to capture
the resulting higher-order interactions, for which more advanced techniques, e.g., graphical
models, might be more appropriate.?’” It is unclear how well directed links predicted by these
methods recover true ecological interaction types. Often, they require more prior knowledge of
the network of microbial interactions, time series, or more fine-grained data on the pathways of
interaction. Moreover, microbial networks can be bidirected and cyclic,'"® which poses problems
for inference of directionality and type of interactions from mere cross-sectional data. More
classical methods of separating direct from indirect interactions, e.g., path analysis,?”® rely on
testing of specific alternative causal hypotheses, which can only be considered as a next step in
network inference. To shed more light on causal pathways, there is a need in microbial ecology
for models that can describe the full set of metabolite concentrations, metabolic fluxes, and
species abundances within a community.’?° Based on metabolic modeling, Freilich et al. (2011)
concluded that cooperative interactions are relatively rare among free-living bacteria and, if
present, are often unidirectional. Machado et al. (2021) suggested that mutualistic interactions
are much more common among host-associated bacteria, that often form highly cooperative
communities and have smaller genomes and fewer metabolic genes compared to other species.
Cooperative communities are resilient to nutrient change and adaptable to a wide variety of
different environments, including the human body.'" 2’ Metabolic modeling is still challenging
and heavily based on a priori assumptions, but is also a rapidly developing field that may prove
useful for computational validation of correlation-based interaction networks.?”®

In addition, the gLV model disregards important biological processes, such as adaptation (for
instance, switching of mutualistic partners due to for example horizontal gene transfer?),

that may affect the topology of ecological networks, rather than the strength of ecological
interactions in a network. Furthermore, the gLV model displays dynamics that are characterized
by strong equilibrium attractors. Many studies have shown the occurrence of complex dynamics
as alternative stable states,'® oscillations, and chaos in experimental,® 26" 222 but also in field
studies,® with ecological communities. Whether this also applies to the bacterial communities
inhabiting the human body is still unknown, due to the paucity of long-term human
microbiome studies. However, a study among a thousand Western individuals has suggested
the existence of tipping elements in the intestinal microbiome'®? indicating the possible
presence of alternative attractors in the dynamics of gut microbiome communities.®”- 2
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As a general critique, the use of simulated data based on gLV dynamics raises the question to
what extent the necessary model assumptions (and therefore the results) are representative
for the human microbiome. Of course, real data are much more complex than simulated
data. To reiterate, our base case parametrization does not reflect any particular real-world
system, and findings should be appreciated from a qualitative rather than quantitative
viewpoint. Even so, while models can only serve as very crude approximations, the main
features of model-based analysis might still hold, as demonstrated by Freilich et al. (2018).27*
They compared a well-resolved, empirically defined interaction network of species in the
rocky intertidal zone in central Chile to a reconstructed network based on the co-occurrence
of those species. There are similarities in their findings to our results. For example, they
found that weak interactions are missed more often than interactions above a certain
threshold. They also concluded that the ability to correctly detect a true link varies across
different interaction types, and that positive interactions are better detected than negative
interactions. Interestingly, in line with our results, they also found that negative interactions
are misclassified as positive interactions more often than vice versa.

In our simulation studies, the chance of finding false interactions was well under control using
partial correlations with adjustment for multiple testing. It should be noted that application
of correlation-based network reconstruction to real-world high-throughput microbial
abundance data typically requires additional constraints for control of false discovery rates.
Real-world microbiome data have some specific challenges which may negatively affect the
success of correlation-based network inference. The compositionality of the data, the diversity
of species (with many rare species) and the density of interactions make these networks
harder to predict and apparent correlations more likely to appear.??* #*° Various correlation-
based methods, often free of charge and provided as pre-programmed packages are available
to handle these challenges. However, Weiss et al. (2016) showed that with the same data,
there is much disagreement between the inferred networks generated by different tools.?*
Thus, even if correlations are a useful proxy of microbial interactions, performance of network
inference in high-dimensional settings will also strongly depend on the specific network
modeling approach taken.

To summarize, correlation-based methods are particularly insensitive for the detection of
asymmetric interactions (such as exploitative interactions, amensalism, or commensalism),
as direction of interaction cannot be recovered from co-occurrence data. Still, they may
perform well when applied to networks that are dominated by mutualistic and competitive
interactions, as in producer-consumer systems. Applicability of correlation-based network
inference to readily available microbiome data thus depends on the type of interactions that
govern microbiome dynamics, which likely depends on each application. To conclude, our
study suggests that hypotheses about microbial interactions, generated with correlation-
based methods, should be questioned with domain-specific knowledge. We highlight again
the careful interpretation and validation that is required.
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Appendices of Chapter 2

Appendix Table 2.1 - Mann-Whitney U test results for the
F -scores of the base case model and for the F -scores of

the model with different sources of process variability.
Significant results are highlighted in bold and blue.

Scenario p-value
Variation in all parameters <0.001
Variation in carrying capacities <0.001
Variation in growth rates <0.001
No variation in parameters <0.001
Low measurement noise <0.001
High measurement noise <0.001
Low process noise <0.001
High process noise <0.001
Uniform distribution >0.05

Unimodal distribution <0.001
30 species system <0.001
Producer-consumer network <0.001
Hub-species network <0.001
Inference of intended sign >0.05

Strict inference <0.001
Base case (3000 hosts) <0.001
Producer-consumer network (3000 hosts) | <0.001
Hub-species network (3000 hosts) <0.001
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Appendix Table 2.2 - Mann-Whitney U test results for the F -scores of the

samples taken outside equil

ibrium relative to those taken at equilibrium (t,

in Figure 2.5) and for the F, -scores of the samples taken randomly.
Significant results are highlighted in bold and blue.

Variation in interactions

Time point p-value
Random <0.001
t, <0.001
t, <0.001
t, <0.001
t, <0.001
Variation in carrying capacities

Time point p-value
Random >0.05

t, <0.001
t, <0.001
t, <0.001
t, <0.001
Variation in growth rates

Time point p-value
Random <0.001
t, <0.001
t, <0.001
t, <0.001
t, <0.001
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Appendix Figure 2.1 - Cartoon illustrating the different interaction

mechanisms. A) In mutualistic interactions, both species experience a positive
effect. An example is when a species feeds on the metabolites excreted by the other
species. B) In competitive interactions both species experience a negative effect. An
example is when both species produce toxic compounds that are harmful to the other
species as well as to themselves. C) Commensalism is a one-sided positive interaction.

This type of interaction occurs when one species is beneficial to another species,

without benefit or harm to itself. D) Amensalism is a one-sided negative interaction.

Amensalism occurs when a species causes harm to another species, without benefit
or harm to itself. E) Exploitative interactions occur when one species derives a benefit
from another species at the expense of the latter, such as when one species kills and
subsequently consumes the other. Red arrows represent negative interactions, green
arrows represent positive interactions, and grey arrows indicate no interactions.
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Appendix Figure 2.2 - The effect of process noise (/) on the within host
population dynamics. Process noise was added by means of the ‘events’ function from the
‘deSolve’R package.?®* The time-varying noise was drawn from a log-normal distribution to

prevent the abundances from dropping below zero, i.e., AW, = In(N

r,m/At)) - ln(N,,mm) - N(ln(Ni,r)' o,)

at every timestep, At = 1. A) Simulated time series without process noise, B) with low process
noise (0,,~ N(0, 0.1)), and C) high process noise (o, ~ N(0, 1)).
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Appendix Figure 2.3 - Distributions of interaction strengths in three different
scenarios. A) The interaction strengths in the base case follow a Gaussian mixture distribution.
Half of the interactions were drawn from a negative normal distribution: a,~N(-0.25,0.1); and
the other half of the interactions were drawn from a positive normal distribution: a,~ N(0.25,
0.1). B) The interaction strengths in Figure 2.4D-1 follow a uniform distribution (a,~ U(=0.5,0.5).
C) The interaction strengths in Figure 2.4D-2 follow a unimodal distribution (@, ~N(0, 0.15)).

All interactions were restricted to lie between 0.5 and 0.5, i.e., the normal distributions were

truncated at =0.5 and 0.5.
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Appendix Figure 2.4 - Network structures used in the different case studies.

A) An example of a random network and its corresponding interaction matrix. B) An example

of a structured network with interaction modules and its corresponding interaction matrix. The
modular networks are based on a cross-feeding structure between producers and consumers
(with equal numbers of producers and consumers). Between producers (P ;i = 1:5) and consumers
(C;;j=1:5), positive interactions (indicated in green) are more likely to occur, because metabolites
excreted by the producers are consumed by the consumer species. Among producers or among
consumers, the interactions are predominantly negative (indicated in red) as these species

are more likely to compete for similar resources. C) An example of a structured network with
interaction hubs and its corresponding interaction matrix. The hub-species network contains
species (H) with unusually high numbers of ecological interactions compared to other species in
the network. This can occur when some species perform a central role in the microbial ecosystem,
for example when a hub-species produces a metabolite that is required for growth by many other
species.
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Appendix Figure 2.5 - The effect of a,on the correlations between the
abundances of two bacterial species for different interaction mechanisms.

The two species can co-exist under certain combinations of a, (Box 2.1). The abundances of the
two species N, and N, at equilibrium are shown as scatterplots and were obtained by running
the two-species Lotka-Volterra model with K =15, K, =1.1,r,=1,r,=2,and a, drawn randomly
from normal distributions with different combinations of means and standard deviations.

In A) the two distributions have different means and standard deviations: a,, ~ N(|0.5], 0.1) and
a,, ~ N(|0.7], 0.2). In B) the distributions have identical means, but different standard deviations:
a,, ~N(|0.5],0.2) and a,, ~ N(|0.5], 0.1). For exploitative interactions we also show the situations
that negative correlations can occur when the exploitative benefit displays much more variation
than the harm to the other species, i.e, a,, ~ N(-0.5,0.01) and a,, ~ N(0.5, 0.2) for exploitative
interaction type 1,and a,, ~N(0.5,0.2) and a,, ~ N(~=0.5, 0.01) for exploitative interaction type
2.In Q) interactions are randomly drawn from distributions with different means and identical
standard deviations: a,, ~ N(|0.6], 0.1) and a,, ~ N(|0.3], 0.1). In D) the interactions have identical
strengths for the two species, namely |a, | = |a,,|. The mutualistic interactions are drawn from
the distribution a,, = a,, ~ U(0, 2.5), for competition and exploitative interactions we show two
different scenarios, namely |a,,| = |a,,| ~ U(|0.4], |2.5]) (upper graph) and |a,,| = |a,,| ~ U(0, [0.4))
(lower graph). Because the two species have different carrying capacities, the two situations of
exploitative interactions are different. The grey polygon indicates the area where coexistence is
possible. Note that the ranges of the axes are different in each subplot.
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Wavelet clustering analysis as a tool for
characterizing community structure in the
human microbiota

Abstract

Human microbiota research is helped by the characterization of microbial networks,
as these may reveal key microbes that can be targeted for beneficial health effects.
Prevailing methods of microbial network characterization are based on measures of
association, often applied to limited sampling points in time. Here, we demonstrate
the potential of wavelet clustering, a technique that clusters time series based on
similarities in their spectral characteristics. We illustrate this technique with synthetic
time series and apply wavelet clustering to densely sampled human gut microbiota
time series. We compare our results with hierarchical clustering based on temporal
correlations in abundance, within and across individuals, and show that the cluster
trees obtained using either method are significantly different in terms of elements
clustered together, branching structure, and total branch length. By capitalizing on
the dynamic nature of the human microbiota, wavelet clustering reveals community
structures that remain obscured in correlation-based methods.

Introduction

The human microbiota is the collective of microbial communities living on the various
surfaces of the human body. These communities consist of microorganisms which do not
live in isolation but interact with each other and with their human host.?**?%4 |n the past
decade, thanks to advances in sequencing techniques and data analyses, an increasing
number of studies have attempted to gain ecological insights from microbiota abundance
data, e.g., by reconstructing networks of interacting species with the nodes representing the
microorganisms and the edges representing the dependencies between them.?*

Most of the studies that aim to reconstruct the network of interacting species are based on
measures of co-occurrence, e.g., using correlations between pairs of species as proxies of
between-species dependencies.® 2°%2¢¢ Despite the popularity of such methods in microbiota
studies,?% 25021 their usefulness in describing community structure is still a matter of
debate."'* 22287 While these co-occurrence studies are often performed on a relatively large
number of individuals, they are limited to one or a few sampling points in time, presenting
a mere snapshot of the dynamic microbiota. Other methods infer the ecological network

by fitting an a priori chosen population-dynamic model to time series data of the microbial
community.'%% 24288 These methods have the limitation that the inferred community
structures strongly rely upon the assumptions that are intrinsic to the chosen model, and
require considerable prior knowledge of the community of interest. There are also examples
where the ecological interactions are inferred from repeated measurements around steady
states.?”> This circumvents the need for a priori specification of a population dynamic

model but makes the implicit assumption that the microbial system tends towards a stable
equilibrium.
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However, many experimental and field studies have shown the presence of complex
dynamics in ecological communities, such as alternative stable states,°” "% oscillations,

and chaos,* %282 questioning the steady states assumptions for the human microbiota.
These dynamics are driven by a complex interplay between intrinsic factors (e.g., interaction
mechanisms between organisms such as competition, mutualism, and parasitism) and
external perturbations (e.g., environmental conditions and interventions).® 2% 2%° Complex
dynamics are also likely to occur in the human microbiota, because the bacterial communities
living in our body are characterized by a plethora of interactions®*' and are also affected by
external perturbations (e.g., diet, use of antibiotics, and travel patterns).>®2°* 2% A study with
a thousand healthy western individuals suggested the existence of tipping elements in the
intestinal microbiota,'*? reflecting the presence of alternative attractors and the possibility
of more complex microbiota dynamics. The presence of complex dynamics in the human
microbiota has not yet been demonstrated, probably due to the paucity of long and dense
time series of the human microbiota. However, the study with one of the longest time series
of human microbiota measurements available shows strong variability in the abundance of
the bacteria over time, indicating that the human microbiota might not be at the presumed
steady state.*

To advance our ecological understanding of the human microbiota, methodology is needed
that can exploit the temporal information in microbiota time series data without a priori
knowledge of data generating mechanisms or steady-state assumptions. In the last decade,
many methods have been developed to model the abundances of compositionally sampled
data with the purpose of either fitting or predicting the temporal dynamics of the microbiota
communities.?**??¢ Here, we perform wavelet clustering analysis, a technique that clusters
time series based on similarities in their periodical patterns.?’ This technique, which is
commonly applied in climate and engineering studies,?*® more recently gained popularity in
ecological,*® and epidemiological studies.?*3°" Wavelet clustering analysis has only recently
been applied to time series derived from 165 rRNA gene amplicon data to reveal coastal
plankton community structure,**? but, to our knowledge, our study is the first application

to human gut microbiota data. The novelty of the wavelet clustering approach, relative to
prevailing co-occurrence or time series methodologies in human microbiota research, is that
it is able to characterize community structure on the basis of collective temporal behaviour
of the microbiota, without directly fitting a dynamic model or reconstructing the network of
interacting species.

We illustrate wavelet clustering first with synthetic time series and then with densely

sampled time series of human gut microbiota data from a male and female subject.*® For

both examples, we compare our results with clustering obtained on the basis of correlations
in bacterial abundances over time. Our results show that correlation-based clustering is
significantly different from clustering using wavelets. Wavelet clustering uncovered more
diverse community structures and retained more of the differences between the male and
the female subject compared to methods using temporal correlation. The results of this

work highlight how the choice of method determines the type of communities found in
microbiota data analysis. This is particularly important, considering that most of the putative
microbiota communities, and their associations with a particular disease state or physical host
condition, strongly rely on prevailing correlation-based methods or steady-state assumptions.
Our results suggest that wavelet clustering readily capitalizes on the dynamic nature of the
human microbiota and reveals more diverse community structures than those based on
temporal correlations or associations.
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Methods

Wavelet analysis

Wavelet analysis makes use of a periodic function (the mother-wavelet). The relative
importance of periodicities (wavelet power) is then plotted in contour plots as a function of
time (wavelet power spectra). Here, we use as mother-wavelet the Morlet wavelet, which is
particularly suited for detecting periodicities.?*® 3% Significance of the detected periodicities
is assessed using a Markov surrogate significance test.>** Statistical significance is assessed
by testing against the null hypothesis that observed periodicities are identical to those
generated by a stochastic Markov process, characterized by the same mean, the same
variance, the same distribution of values and the same short-term autocorrelation structure.
More detailed information on wavelet analysis is provided elsewhere.® 305307

Wavelet clustering

The wavelet spectra are compared using a procedure based on the maximum covariance
analysis.?”” To be more precise, as described in Rouyer, Fromentin et al. (2008), the distance
matrix is computed based on leading patterns and singular vectors obtained using

matrix decomposition analysis.?” Matrix decomposition analysis relies on a singular value
decomposition performed on the covariance matrix between two wavelet power spectra.
This enables construction of a distance matrix based on the wavelet power spectra. Only
periodicities with a confidence higher than 90% have been considered in the computation
of the dissimilarity matrix. Wavelet analysis and wavelet clustering were performed using
wavelet software written in Matlab which is available at Bernard Cazelles' research page
(www.biologie.ens.fr/~cazelles/bernard/Research.html).>”

Comparison among cluster trees

We quantified similarities between cluster trees using the B, statistic (i.e., Fowlkes-Mallows
index).*** The B, statistic measures the degree of similarity between two hierarchical clusters.
Consider two hierarchical trees C, and C,, each with the same number of elements n and
partition each tree to produce k = 2, ..., n-1 subclusters for each tree. For each value of k we
can compute the quantity m, which quantifies the number of objects in common between
the i cluster of C,, and the j*" cluster of C,. The statistic B, is then defined:

B= 1t
k m Eq. 3.1
where:

K ko,

Tk=ZZm_l—n Eq. 3.2
==
Kk )

Pk:Z(Zm.j) -n Eq. 3.3
=1 =1
< S )2 Eq. 3.4

Q=>0m)=n q.3.

B, is calculated for all the k partitions and B, takes values between 0 and 1; B, = 1 indicates
that k subclusters in each tree correspond completely whereas B, = 0 indicates that the
subclusters in each tree don't correspond at all.
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Details on the B, statistic are described in Fowlkes et al. (1983).2°* The B, statistic has been
calculated using the ‘dendextend’R package.** The computed values of B, are then plotted as
a function of k. The significance of the B, values is tested against the null hypothesis that the
two cluster trees are not related. A one-sided rejection line (with significance level of 5%) is
drawn based on the asymptotic distribution of B, values, for each k, under the null hypothesis
of no relation between the clusters.

Calculation of total branch length
The total branch length was calculated by summing the lengths of connecting segments in
the tree using the ‘treeheight’ function of the ‘vegan’R package.*'°

Microbiota data

In our analysis, we used previously published time series of the gut microbiota of two healthy
subjects, one male and one female, on which fecal samples have been taken for 15 and 6
months, respectively.® The V4 variable region of the 16S rRNA gene was amplified by PCR
and sequenced on an lllumina Genome Analyzer lIx. In the original paper of Caporaso et al.
(2011)%¢ the raw sequences were clustered in Operational Taxonomic Units (OTU) using the
Quantitative Insights Into Microbial Ecology (QIIME) pipeline. However, recent studies have
shown that the use of OTUs is more prone to produce noisy features which are artifacts of
sequencing errors.?”® Nowadays, the use of Amplicon Sequence Variants (ASV) data has been
shown to be more reliable than OTU’s.2%®

Following the same line, here we used the ASV gut microbiota data of Caporaso et al. (2011)
which is available at the Earth Microbiota Project (EMP) platform (earthmicrobiome.org).*®
The ASV data provided at the EMP platform have been generated from the raw sequence data
with the Deblur pipeline®*'" and the detailed protocol is provided in Thompson et al. (2017).3'?
The data for human microbiota time series was obtained from ‘emp_deblur_150bp.release1.
biom’ by filtering to keep only samples from the Qiita study ID 5501.

We removed singletons and ASV sequences assigned to mitochondria and chloroplasts. We
assembled the taxa at the genus level and this yielded 578 unique genera. For both the male
and female subject, we first removed samples with less than 500 reads, then we transformed
the time series to relative abundances and then we made a selection of genera, using a
bootstrapping method?*'* with a prevalence value of 25% and a relative abundance threshold
value of 0.005 (i.e., select the genera in which the relative abundance has a value higher

than 0.005 in at least 25% of the samples). We disregarded the taxa that were not identified
as uniquely defined genera. This yielded a total of 19 genera for the male subject and of 12
genera for the female subject. The aim of our analysis is to compare clusters (and techniques
to obtain these clusters) among the two different subjects. Therefore, we considered in our
analysis the genera that were present in at least one subject, yielding a total of 19 genera

for each subject. Processing of the data from ASV to the core-microbiota taxa was done
using the ‘phyloseq”'* and ‘microbiota”'? R packages. Subsequently, we applied a centered
log-ratio (CLR) transformation to the relative abundance time series using the ‘compositions’
R package.’* The CLR transformed time series of the selected genera are shown in Figure

3.2. Wavelet analysis requires equidistance between subsequent datapoints, therefore we
interpolated the time series of both subjects using cubic Hermite interpolation to obtain data
with equidistant time intervals of 1.6 days (the mean time interval of the original data of the
male subject is 1.6 days and the female subject is 1.5 days), yielding a total of 336 data points
for the male subject and of 131 data points for the female subject.
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Before performing wavelet analysis to the data, the microbiota CLR transformed time series
were rescaled using a Box-Cox transformation to suppress sharp peaks, homogenize the
variance and approximate a normal distribution. For each time series the optimal parameter
of the Box-Cox transformation has been estimated by optimizing the normal probability plot
correlation coefficient using the ‘EnvStats’ R package (see Appendix Figure 3.1).3'¢

Results

Wavelet cluster analysis

Wavelet analysis enables investigation of time series characterized by different periodicities
and is particularly suited for time series which are not stationary, as applies to many biological
systems. We first illustrate this technique using synthetic time series (Figure 3.1A left hand
side). Consider for instance time series 1 and 2: they are stationary and oscillate at the same
periodicity of eight days, but in antiphase. They are therefore characterized by the same
wavelet spectrum: a significant period of eight days (orange area inside the black dotted line)
occurring along the entire time span of 100 days. The average wavelet spectrum, which is an
estimation of the classical Fourier spectrum, is also identical among the two time series (see
plot at the far most right-hand side). If one considers time series 7 and 8, one may see that
they are showing opposite patterns. Time series 7 oscillates fast at a periodicity of about four
days in the first 50 days and then slows down and oscillates at a periodicity of about 20 days
in the second half of the time series. Time series 8 is doing exactly the opposite, it oscillates
slowly with a periodicity of about 20 days in the first half of the time series and then oscillates
with a periodicity of about four days in the second half of the time series. While the average
wavelet spectrum is identical for both time series, the wavelet spectra are showing opposite
patterns and are therefore able to depict the differences between the temporal behaviour in
the oscillations of the two time series (Figure 3.1A).

The wavelet spectra are then compared using a procedure based on maximum covariance
analysis which enables construction of a distance matrix based on the wavelet power
spectra.”’ The constructed distance matrix is used to build a cluster tree based on the
WARD agglomeration criterion (Figure 3.1B).2'” For comparison, we also constructed a
Spearman dissimilarity matrix calculated as d = 1 — p (where p is the correlation coefficient),
using all data points in the time series pairs. The Spearman dissimilarity matrix is also used
to construct a cluster tree based on the WARD agglomeration criterion (Figure 3.1C). We
compare the wavelet clustering with a clustering based on Spearman’s correlation, because
the latter is a common method used in microbiota studies to infer relationships between
microorganisms.?*> One may immediately observe substantial differences between the trees
obtained with the two different methods (Figure 3.1B and 3.1C). The time series are clustered
differently within the trees according to the two methods, but also branching structure and
the total length of the branches is noticeably different.

Time series 1 and 2 are close together in the wavelet cluster tree (Figure 3.1B), but they fall
apart in the Spearman cluster tree (Figure 3.1C). The first results from the fact that the two
time series have identical wavelet spectra, which indicates that the time series oscillate at the
same periodicity. However, they are considered dissimilar in correlation analysis, because the
time series are in antiphase (i.e., the peaks of one time series coincide with the troughs of the
other time series and vice versa).
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Figure 3.1 - lllustration of wavelet clustering analysis with synthetic time
series. A) Wavelet analysis of synthetic time series: synthetic time series (left hand side)
characterized by different periodicities; wavelet spectra (right hand side) and average
wavelet spectra (far right) of the synthetic time series. Color codes represent wavelet
power and range from low (white) to high (red). Black dotted lines enclose the 5%
significance areas computed using a Markov surrogate significance test. The solid black
line delimits the cone of influence, where edge effects become important. Clustering
of the synthetic time series based on two methods. In B), clustering is based on the
wavelet spectra. The cluster tree is constructed by grouping the time-frequency patterns
of the time series using maximum covariance analysis. In C), clustering is based on
Spearman’s correlations calculated for each pair of time series. The correlations are used
to compute the dissimilarity matrix which is used to cluster the data. For both methods
the hierarchical clustering of the time series is performed using the WARD agglomeration
criterion. D) Comparison of the hierarchical clusters obtained using the B, statistic.>*® Black
dots represent the B, values plotted against the k number of clusters in which each tree
has been partitioned. Red line represents the one-sided rejection region based on the
asymptotic distribution of B, values, for each k, under the null hypothesis of no relation
between the clusters (significance a = 5%).
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Similarly, time series 5 and 8 cluster together in the wavelet tree but they fall apart in the
Spearman cluster tree. Both time series 5 and 8 oscillate slowly at a periodicity of about 13
and 20 days, respectively, in the first part of the time series but then oscillate faster (at a
periodicity of about four days) in the second part of the time series. Therefore, their wavelet
spectra are very similar.

If the synthetic time series would represent the dynamical behaviour of microorganisms,
one would conclude from the Spearman cluster tree that microorganisms 1 and 2 (or 5 and
8) are not or only weakly related, because when one microorganism is highly abundant then
the other one has very low abundance (and the other way around). The wavelet clustering
instead shows that these microorganisms are strongly connected because they oscillate with
similar periodicities and therefore share the same dynamical properties, which may point to
ecological interdependence e.g., through parasitic interactions or neutral niche competition.

In addition to visual inspection, we used the B, statistic to quantify the similarity in cluster
trees constructed with the two methods.>® The B, statistic assesses the chance-corrected
proportion of items that two cluster trees have in common, as a function of the number of
subclusters k that the two trees are partitioned into. Plotting B, versus k gives a quantitative
representation of the similarity between two cluster trees (black dots in Figure 3.1D). The red
line represents the 95% rejection region under the null hypothesis of no relation between the
trees. For all partitions k, the blacks dots fall below the red line, hence we cannot conclude
that the trees calculated with the wavelets and the Spearman’s correlations for the synthetic
time series are significantly related.

In Box 3.1 we give an additional demonstration of wavelet clustering analysis applied to the
outputs of an ecological model of four consumers and four resources. In this case, wavelet
clustering accurately captures the competitive coupled dynamics between consumers and
resources, whereas clustering based on Spearman’s correlation does not (Figure 3.A - panels D
and Ein Box 3.1).

Application to human microbiota data

We tested our approach, as illustrated for the synthetic time series, on real data of microbiota
communities. We used previously published gut microbiota time series of two healthy
subjects, one male and one female, from whom fecal samples had been collected for 15 and
6 months, respectively.”® We considered the data at genus level and we selected the same

19 genera for the male and the female subject. A detailed description of the data and of the
selection criterion is provided in the methods.

Time series of the selected genera for the male and the female subject are shown in
Figure 3.2. CLR transformed relative abundances over time show remarkable fluctuations.
Some genera (e.g., Lachnospira and Roseburia in the male subject; Bacteroides in both
subjects) show a clear wax and wane in their dynamical pattern. There are other genera
(e.g., Campylobacter and Finegoldia in the female subject) that show more spiky dynamics,
dominated by low CLR transformed relative abundances, but with few very high peaks.
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Figure 3.2 - Gut microbiota time series of CLR transformed relative
abundances for selected genera. Male (upper graphs) and female (lower graphs)
subject. The time series show clear fluctuations. Note the distinct time axes in the male and
the female subject.
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Box 3.1 - Wavelet clustering applied to the dynamics of four consumers feeding
on four resources. In this section we give an extra demonstration of the potential of
wavelet clustering by performing the analysis on the outputs of a simplified ecological model
describing the dynamics of four consumers and four resources. The model is a modified
version of the previously published model of Vandermeer of two species feeding on two
resources.'#32

The model reads as follows:

d¢, _ aR(C Eq.3.A
dt ~T+6R MG d

dR _ g (K-R-aR ) qr( G Eq.3.B
dt K "1+0bR

d¢, _ aRC mC Eq.3.C

dt “1+bR K

de =rR (K_Rk_ak/R/) aR,( Ck
= - Eq.3.D
de “F K Y5 bR g

fori=1,2and k=3,4andi=jand k #/, where C and C, are the abundances or densities of

the i" and the k™ consumers, respectively, and R and R, denote those of the /" and the k™"
resources. The parameters r, and r, represent the intrinsic growth rates of the i" and the k™
resource, respectively. m is the mortality rate of the consumers, a is the competition coefficient
between resource 1and 2, a,, is the competition coefficient between resource 3 and 4, a is

the resource consumption rate, b is the functional response parameter (with higher values
denoting diminished response in consumer growth at a given resource abundance), and K'is
the carrying capacity of each resource, which we assume for simplicity to be the same for all
four resources.

The model consists of two separated food webs of two consumers each feeding on one
resource (Figure 3.A - panel A). Consumer C, feeds on resource R, consumer C, feeds on
resource R, and the two resources R, and R, negatively interact with a parameter a,,. Similarly,
consumer C, feeds on resource R, consumer C, feeds on resource R,, and the two resources R,
and R, negatively interact with a parameter a,,. In Figure 3.A (panel B left hand site) are shown
the temporal dynamics of the four consumers and the four resources. We applied wavelet
analysis to all eight of the time series (Figure 3.A - panel B right hand side) and we used this
information to build the cluster tree (Figure 3.A - panel C). Wavelet clustering identifies two
big subclusters: subcluster 1 with consumers C, and C, and resources R, and R,, and subcluster
2 with consumers C, and C, and resources R, and R,. Wavelet clustering successfully identifies
the two separated food webs. In addition, inside each cluster we observe that each consumer
is clustered together with its own resource (C, with R,, C, with R,, C, with R, and C, with R,). For
comparison we build a tree based on Spearman’s correlation (Figure 3.A - panel D). In contrast
to wavelet clustering, clustering based on Spearman’s correlation is not able to identify neither
the two distinct food webs, neither the pairs of consumers-resources. Clustering based on
Spearman’s correlation is substantially different from clustering based on wavelets as it is
shown by the corresponding B, plot (Figure 3.A - panel E).

Chapter3 65 Wavelet clustering analysis for characterizing community structure



B

9 \M\N\ MUUWWU\ M Elgzmasmrogosooty k\,
U] szt |
<l
S
R TN g e -
& MmN el =
sl ) BB

0 100 200 300 40(? 500 600 700 800 900 1000 0 200 400 . 0 800 1000 0 20 40
Time (days) Time (days) Power
Wavelet clustering Spearman'’s correlation clustering B, plot wavelet vs. Spearman
10
2
2os8
06
z .
104 \
£ Y
2 0.2
€
C, R C, R 0.0 | ——

¢ R GR T GR

1 2 4 6 8
k (number of clusters)

Figure 3.A - Application of wavelet clustering to the outputs of a model with
four consumers feeding on four resources. A) The model consists of two separated
food webs of two consumers on two resources. The two resources within each food web
negatively interact with a competition coefficient a. B) (Left) Outputs of the resources-
consumers model. Simulations have been run for 2000 time units. The plots shown here covers
the last 1000 time units of the simulation. Parameters: K=1;a=2;b=13;m=0.1;r,=0.2;
r,=04;r,=08;r,=12;a,=08;a,, = 04; (Right) Wavelet spectra and average wavelet spectra
(far right) of the model outputs. Color codes represent wavelet power and range from low
(white) to high (red). Black dotted lines enclose the 5% significance areas computed using a
Markov surrogate significance test. The solid black line delimits the cone of influence, where
edge effects become important. C) Clustering based on the wavelet spectra. The cluster tree

is constructed by grouping the time-frequency patterns of the time series using maximum
covariance analysis. D) Clustering based on Spearman’s correlations calculated for each pair

of time series. The correlations are used to compute the dissimilarity matrix which is used to
cluster the data. For both methods the hierarchical clustering of the time series is performed
using the WARD agglomeration criterion. E) Comparison of the hierarchical clusters obtained
using the B, statistics. Black dots represent the B, values plotted against the k number of
clusters in which each tree has been partitioned. Red line represents the one-sided rejection
region based on the asymptotic distribution of B, values, for each k, under the null hypothesis
of no relation between the clusters (significance a = 5%).
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To capture possible similarities in the dynamical patterns of the bacteria, we applied wavelet
analysis to each of the bacterial time series in both subjects. Wavelet spectra detected
several significant periodicities in the fluctuations of bacteria both for the male (Figure 3.3)
and the female subject (Figure 3.4). A first visual inspection of the spectra already reveals
similarities between the dynamical patterns of the bacteria. For instance, in the male subject
(Figure 3.3), Porphyromonas, Phascolarctobacterium, and Peptoniphilus show common
periodicities of about 30-40 days co-occurring for approximately 100 days at the end of the
time series. In addition, Campylobacter and Roseburia clearly show common periodicities of
64 days occurring approximately in the last 150 days of the time series, whereas Blautia and
Coprococcus share this periodicity at the beginning of the time series. Common patterns

are less clear in the female subject (Figure 3.4), though some similar periodicities can be
identified. For instance, many genera show the same periodicity of about 60 days occurring
along the entire length of the time series.
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Figure 3.3 - Wavelet analysis of time series for selected genera in the male
subject. For each genus the wavelet spectrum (left) and the average wavelet spectrum
(right) are computed. Color codes represent wavelet power and range from low (white) to
high (red). Black dotted lines enclose the 5% significance areas computed using a Markov
surrogate significance test. The solid black line delimits the cone of influence, where edge
effects become important.
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Figure 3.4 - Wavelet analysis of time series for selected genera in the
female subject. For each genus the wavelet spectrum (left) and the average wavelet
spectrum (right) are computed. Color codes represent wavelet power and range from low
(white) to high (red). Black dotted lines enclose the 5% significance areas computed using
a Markov surrogate significance test. The solid black line delimits the cone of influence,
where edge effects become important.

With the wavelet spectra at hand, we built trees based on the wavelet distance matrix as
described for the synthetic time series. Both the clusters based on wavelet spectra for the
male and the female subject show a clear partition in two subgroups (Figure 3.5A and 3.5B).
The clusters based on Spearman’s correlations for the male and the female subjects are also
characterized by two main subclusters (Figure 3.5C and 3.5D). Although there are few bacteria
that are clustered together with both methods (i.e., Peptoniphilus, Finegoldia, Porphyromonas,
and Anaerococcus in the male subject), the two methods yield very different clusters. For
instance, Bacteroides and Prevotella are clustered together in the male subject with the
wavelet method, but they are in two different clusters in the male subject with the correlation
method. The case of Prevotella and Bacteroides resembles the example of signals 1 and 2 (or

5 and 8) illustrated before: two time series with similar dynamical properties are clustered
together based on wavelets but are considered not related by the correlation method.

Also, visual comparison of the clusters obtained using wavelets (Figure 3.5A and 3.5B) with
the clusters obtained by pairwise correlations (Figure 3.5C and 3.5D) reveals substantial
differences between the two methods in the positioning of branches within the two
subclusters and in the total length of the branches.
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Of note, total branch length (see ‘Methods’) is substantially higher in the wavelet cluster
tree as compared to the tree based on Spearman’s correlations (male subject: 80.9 vs. 27.6;
female subject: 70.0 vs. 21.9). Further visual comparison of the trees based on wavelets
among the two subjects also reveals that the members of each subcluster are substantially
different between the male and the female subject (compare Figure 3.5A with Figure 3.5B).
In contrast, comparison of the cluster trees based on correlations shows that many bacteria
that are clustered together in the male subject are also clustered together in the female
subject (compare Figure 3.5C with Figure 3.5D).
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Figure 3.5 - Clustering for the male and female subjects based on
different methods. Cluster tree obtained using the dissimilarity matrix obtained
from the wavelet clustering analysis for A) the male subject and B) the female subject.
Cluster tree obtained using the dissimilarity matrix obtained from the Spearman’s
correlation matrix for C) the male subject and D) the female subject.
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To further quantify the similarities between subjects and methods we calculated the B,
statistic as we did for the synthetic time series. For low values of k, the dots in Figure 3.6A

and 3.6C fall below the 95% rejection line. Thus, wavelet clustering and Spearman's clustering
are not significantly related when the community is partitioned into a limited number of
subclusters, and this holds for both the male and female subject. This is likely because the
wavelet clustering method accounts for other features (i.e., the spectral characteristics of

the bacterial dynamics and their time evolution) than the correlation-based methods, which
only consider quantities averaged over the whole series. For higher values of k, the dots
sometimes fall above the rejection line (Figure 3.6A and 3.6C), meaning that wavelet clustering
and Spearman's clustering get significantly related at some higher resolution when certain
subclusters become apparent. For comparison (Figure 3.6B and 3.6D) we also applied the B,
statistic to correlation-based trees constructed with the Spearman’s correlation and with the
Pearson’s correlation coefficient (trees not shown). For all k partitions (except the maximum
partition for the male subject), the trees calculated with these two correlation methods are
instead, as it could be expected, significantly related.

Finally, we also assessed the similarity between the two subjects. Interestingly, we found no
evidence for related wavelet clusters between the male and female subjects, as all dots fall
below the 95% rejection line irrespective the number of k partitions (Figure 3.6E). In contrast,
in the B, plot of the Spearman’s correlation-based clustering, the majority of dots fall above
the 95% rejection line (Figure 3.6F), indicating significantly related clusters for almost all
subpartitions between the male and female subject. This suggests that wavelet clustering not
only uncovers more diverse community structures within individuals, but might also be more
sensitive towards subtle differences in community structures across individuals.

Discussion

Developments in high-throughput sequencing have improved our ability to track the temporal
variability of microbial communities. This has led to an increase in longitudinal data from a
variety of different microbiota ranging from wastewater,*?' marine,***3?* freshwater,>** and
terrestrial®?®3?” environments. These time series offer unprecedented opportunities to gain
ecological insights into microbial community dynamics and the mechanisms governing them,
and to track the response of the microbial systems to external perturbations.

Ideally, long time series are required to capture the periodic patterns of microbial dynamics
and reveal community structures. Unfortunately, only few of such datasets exist in human
microbiota studies.*®**32%32° This probably reflects the relative difficulty to repeatedly sample
the human microbiota in comparison to a natural field habitat (e.g., sampling strongly relies
on the consent of the host to provide sampling material at a regular basis). As a result, the
majority of studies on human microbial community structures have relied on sparse data and
methods based on co-occurrence, which may have produced biased associations, e.g., towards
positive correlations.?>* 2¢%:26° Clearly, there is a need to shift from a static to a dynamical
approach, that takes into account the temporal development of bacterial communities and
can shed new light on microbial community structure.*® This also has bearing on the ability to
employ microbiota data for clinical practice, as more and more studies move from association
to prediction of disease course, e.g., exacerbation of inflammatory bowel disease (IBD),**°

and treatment response in Clostridioides difficile infection.'®
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Figure 3.6 - Comparison of hierarchical clusters using the B, statistic.>*®

Black dots represent the B, values plotted against the k number of clusters in which the

tree has been partitioned. Red line represents the one-sided rejection region based on the
asymptotic distribution of B, values, for each k, under the null hypothesis of no relation
between the clusters (significance a = 5%). A) Comparison of the tree based on wavelets and
the tree based on Spearman’s correlations for the male subject. B) Comparison of the tree
based on Pearson’s correlations and the tree based on Spearman'’s correlations for the male
subject. C) Comparison of the tree based on wavelets and the tree based on Spearman’s
correlations for the female subject. D) Comparison of the tree based on Pearson’s correlations
and the tree based on Spearman’s correlations for the female subject. E) Comparison of the
trees based on wavelets for the male and female subject. F) Comparison of the trees based
on Spearman’s correlations for the male and female subject.
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Interestingly, our reanalysis of the widely used Caporaso et al. (2011) data reveals some novel
important patterns.* The trees obtained with the two different methods show significant
differences in the way microbial genera are clustered together. For instance, there are cases
where pairs of bacteria are clustered together in the male and female subject when using
correlations, but not when using wavelets. For example, according to wavelet analysis Blautia
and Coprococcus only cluster together in the male subject, and Phascolarctobacterium,
Roseburia, and Bacteroides only in the female subject, whereas these genera are clustered
together in both subjects with the correlation-based method. In general, similarity of the
cluster trees between subjects seems to be stronger with the correlation-based method than
with wavelet clustering, for which we found no evidence for significant relations between the
male and female trees. Tree correspondence according to clustering method within subjects
was more ambiguous, as similarity also depends on tree resolution. This emphasizes how
sensitive the clustering is to the type of method chosen.

In addition, we also note differences in the pattern of branching and in the total branch
length of the cluster trees. Studies have shown that the total length of the branches in a
traits tree is indicative of the functional diversity in ecosystems.>*' Analogously, total branch
length can here be considered as an indicator of the diversity of community structure. While
we are not considering functional traits here, we could speculate that the higher total length
observed in the wavelet clustering of the microbiota time series is indicative of a higher
diversity in community structure as compared to the correlation-based method. A likely
explanation is that wavelet analysis is able to detect dependencies that are not apparent

in correlations, whereas the reverse is not the case: highly correlated time series are still
detectable in wavelet spectra. Thus, wavelet clustering can extract more information on the
dependencies within microbial communities than is reflected in mere correlations.

Looking at the clusters identified by the wavelet method one can speculate about possible
interaction mechanisms between the bacteria. For instance, in the male subject, two genera
are observed together, Blautia and Coprococcus. Members of genus Blautia are known to
produce acetate and lactate which is shown to support improved growth of Coprococcus

in vitro.*3> Coprococcus bacteria can convert lactate and acetate to butyrate, a short chain
fatty acid that is associated with a healthy microbiota.>** This mutualistic mechanism could
potentially lead to similar dynamical patterns and explain why these bacteria co-occur in
the same cluster. Although these ‘potential’ interaction mechanisms are based on associative
dynamical patterns of 16S rRNA gene sequence data they may provide ground for further
investigation of these interactions in vitro and in vivo. In addition wavelet cluster analysis
can be used as a starting point for investigation for time series causality inference methods
such as Granger causality®**3** or convergence-cross mapping.***3¥” For instance, there are
methods that are able to estimate Granger’s causality from wavelet spectra of time series
data.?** 33 Application to a complex system such as the microbiota has not yet been done
and can be subject of investigation in future studies.

In ecological and epidemiological studies, wavelet analysis is often used to evaluate the
effect of external factors, such as climatic or meteorological variables, on species or disease
dynamics. Examples include studies which evaluate the effect of external factors on the
spread of dengue fever,**° malaria,**' and cholera,**? or on the dynamics of communities of
benthic organisms,® marine®** and freshwater plankton,*** or fish,2°% 345
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In an analogous way, when longitudinal studies on human microbiota dynamics become
more widely available, metadata can be exploited using wavelet analysis to evaluate the
effect of interventions, as for instance vaccination, the use of antimicrobials or probiotics,
fecal microbiota transplantation, and cancer treatment.

The reader interested in using the wavelet clustering approach might wonder how many
points are needed for applying such an analysis. The limits in the number of data points

for wavelet analysis are similar to those of Fourier analysis and depend on the periodic
components that one wants to highlight. For instance, Murdoch et al. (2002)3*¢ suggest that
with a minimum time series length of 25 time units one can identify periodicities between
two time units (the Nyquist frequency) and 8-10 time units. Cazelles et al. (2012)** are more
conservative and they suggest time series with a minimum length of 30-40 time units which
allows detection of a maximum periodicity equal to 20-25% of the total length of the time
series. Another practical aspect is that wavelet analysis requires equidistant data. Although
this might appear as a limiting factor, this requirement can easily be addressed. For instance,
when possible, an experiment or a sampling strategy could be designed in such a way to
obtain equidistant sampling points. If this is not possible, there are interpolation methods
that can be used to obtain equidistant data. Different interpolation methods should be
tested, and the interpolated data should be checked against the original data to see if the
general dynamical behaviour is unaffected by the interpolation. This is the approach taken in
this study. In addition, as for Fourier analysis, there are extensions of wavelet analysis that can
be applied to non-equidistant data.?*’**'

In our study we analysed the time series of two individuals, and we compared the wavelet
dendrograms of the two subjects using a pairwise metric. Ideally, new longitudinal human
microbiota studies will track the joint dynamics of much more than two individuals. When
time series of multiple subjects become available, one might want to compare dendrograms
among classes of individuals (e.g., individuals of the same gender or patients versus healthy
controls). Instead of a pairwise metric between individuals, our analysis could then be applied
to consensus dendrograms between classes of individuals to assess how communities differ
with respect to the condition of interest.>*?

To summarize, wavelet cluster analysis has the big advantage of accounting for non-
stationary dynamics which are often preponderant in biological systems. In addition, we
show that it appears to be a sensitive method for recovering microbial community structure
from densely sampled microbiota time series. By taking into account the spectral features

of bacterial abundance and their time evolution that are ignored in methods focusing on
co-occurrence at any one time point, wavelet clustering analysis is able to extract more
information on the dependencies within microbial communities, and to uncover more diverse
communities within and across individuals than conventional methods. The results show that
interpretation of microbial networks and communities, inferred on the basis of only a few
sampling points in time, should be done with care, and be compared to alternatives.
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Box-cox Centered log-ratio (CLR) transformed relative abundances

Appendix of Chapter 3
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Appendix Figure 3.1. Box-cox transformed CLR time series of selected genera

in the male (upper graphs) and the female (lower graphs) subject. The relative
abundance time series of both subjects have been interpolated using cubic Hermite interpolation
to obtain data with equidistant time intervals of 1.6 days (the mean time interval of the original
data of the male subject is 1.6 days and the female subject is 1.5 days), yielding a total of 336
data points for the male subject and of 131 data points for the female subject. Subsequently, we
applied a CLR transformation to the relative abundance time series using the ‘compositions’

R package.*'* Before performing wavelet analysis on the data, the microbiota CLR transformed
time series were rescaled using a Box-Cox transformation to suppress sharp peaks, homogenize
the variance and approximate a normal distribution. For each time series the optimal parameter
of the Box-Cox transformation has been estimated by optimizing the normal probability plot
correlation coefficient using the ‘EnvStats'R package.®'
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Heterogeneous associations of gut
microbiota with Crohn’s disease activity

Abstract

The multifactorial involvement of gut microbiota in Crohn’s disease (CD) necessitates
robust analysis to uncover potential associations with specific microbes. CD has
been linked to certain bacteria, but reported associations vary widely across studies.
This inconsistency may result from heterogeneous associations across individual
patients, resulting in no apparent or only weak relationships with the means of
bacterial abundances. We investigated the relationship between bacterial relative
abundances and disease activity in a longitudinal cohort of CD patients (n = 57) and
healthy controls (n = 15). We applied quantile regression, a statistical technique
that allows investigation of possible relationships outside the mean response. We
found several significant and mostly negative associations with CD, especially in
lower quantiles of relative abundance on family or genus level. Associations found
by quantile regression deviated from the mean response in relative abundances of
Coriobacteriaceae, Pasteurellaceae, Peptostreptococcaceae, Prevotellaceae, and
Ruminococcaceae. For the family Streptococcaceae we found a significant elevation
in relative abundance for patients experiencing an exacerbation relative to those
who remained without self-reported symptoms or measurable inflammation. Our
analysis suggests that specific bacterial families are related to CD and exacerbation,
but associations vary between patients due to heterogeneity in disease course,
medication history, therapy response, gut microbiota composition, and historical
contingency. Our study underscores that microbial diversity is reduced in the gut of
CD patients, but suggests that the process of diversity loss is rather irregular with
respect to specific taxonomic groups. This novel insight may advance our ecological
understanding of this complex disease.

Introduction

Crohn’s disease (CD) is a chronic inflammatory disorder that can affect any part of the
digestive tract, but mostly involves the ileum and colon.>** The disease is characterized

by periods of inflammation (exacerbation) interspersed by periods without symptoms
(remission). During exacerbation, the patients are suffering from a range of different
symptoms, including diarrhea, abdominal pain, bloody stool, fatigue, and weight loss.
Prolonged inflammation can lead to severe complications, such as damage to the
gastrointestinal tract and malnutrition.*>* While the exact cause of CD is unknown, an
inappropriate immune response against commensal gut bacteria, host genetics, and
environmental factors are all thought to be involved in disease pathophysiology.>** The gut
microbiota in CD patients is characterized by a reduced diversity and lower long-term stability
as compared to healthy individuals.>* Also, shifts in abundance of specific bacterial genera or
families have been associated with CD,** its disease course,'”” and disease activity.'®'

Several studies have investigated relations between specific microbial groups and CD.
Faecalibacterium prausnitzii (Ruminococcaceae), Clostridium leptum (Clostridiaceae), and
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Clostridium coccoides (Clostridiaceae) were found to be negatively associated with CD as
well as disease activity.'®' 2% 357 Conversely, the family Enterobacteriaceae was found to

be positively associated with CD and with disease activity.'”" **® However, the patterns of
association with specific microbes are not always consistent among studies. Within the
Bacteroidaceae family conflicting results were found. For example, CD patients showed
both lower relative abundances,**% 3% as well as higher relative abundances®*” in Bacteroides
(Bacteroidaceae) compared to healthy individuals.

The inconsistency in findings might be partly due to technical artifacts, such as differences
between studies in sequencing methods to quantify gut microbiota composition and

the compositional nature of data obtained by most next generation sequencing (NGS)
techniques. Another explanation is that the heterogeneous responses among patients

may derive from multifactorial dependencies, between microbial elements themselves and
between gut microbiota and host factors, such as treatment with immunomodulatory drugs,
lifestyle, and diet, but also in underlying disease characteristics such as disease location,
severity, and epigenetic immune regulation.??3* This heterogeneity among patients is
reflected by a strong variation in disease course, the response to medication, and the need
for surgery among subgroups of patients.**® The involvement of specific bacterial groups

in CD will likewise depend on multiple factors. Some of these factors can be accounted for
when relating CD to gut microbiota composition, although correction relies on adequate
model specification which is difficult in multi-factorial systems. Moreover, many factors
which may strongly determine the observed relationships between bacterial abundance and
CD activity have not been identified or are not routinely measured. One such factor is the
order in which specific bacteria have been acquired throughout life. Rapid colonization by
maternal and environmental bacteria occurs within days of birth and is unique per person.
The temporal development of the microbiota is directed, implying that the growth of certain
species precedes the growth of others, leading to the unique microbiomes in adult life. This
historical contingency of gut microbiota might also influence how microbes react to future
perturbations in that gut community.*”

The multi-factorial involvement of specific microbial groups with CD necessitates robust
analysis to uncover possible associations, as there may be no apparent or only weak
relationships with the means of bacterial abundances. Here, we apply quantile regression,
an extension of the general linear model that allows for investigation of relationships across
different quantiles of the distribution of a response variable.?¢" %2 Quantile regression extends
regression of the mean to the analysis of the entire conditional distribution of the response
variable.**? Examining quantile regression functions across the entire range of quantiles
provides a more complete view of the response variable distribution than achieved by
standard regression analysis.*®' The idea behind this method is that not all individuals are
equally responsive to changes in abundance of specific bacterial groups, due to hidden bias
and complex dependencies in ecological datasets.*®' Quantile regression is less sensitive to
outliers than conventional regression and is not dependent on homoscedastic errors.?*

In particular, we tested whether associations between relative abundances of specific
families with CD can be found with a clinical diagnosis (i.e., remission vs. exacerbation), but
also with specific markers (i.e., fecal calprotectin (FC), serum C-reactive protein (CRP), and
the Harvey Bradshaw index (HBI)) of disease activity in repeatedly sampled CD patients and
healthy controls.®’
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Methods

Data and procedures

The study population has previously been described in Galazzo et al. (2019)."®" A total of 57
CD patients were included in this study. Demographic variables and subject characteristics
are provided in Appendix Table 4.1 and medication use between visits is provided in
Appendix Table 4.2. The CD patients formed a subset of the Inflammatory Bowel Disease
South Limburg Cohort.'*® As a reference group, 15 healthy cohort (HC) subjects, all without
any gastrointestinal disease, gastrointestinal symptoms, or comorbidities, were recruited
among the controls who participated in the Maastricht Irritable Bowel Syndrome (IBS)
Cohort.*** Clinical data, blood, and feces were collected at two time points. The CD group
comprised 22 remission-exacerbation (RE) patients with baseline sampling at time of
remission and subsequent sampling during an exacerbation, and 35 remission-remission
(RR) patients, with two subsequent samples while maintaining remission, i.e., without any
flares in between subsequent samples. The median time between baseline and follow up
samples was 14 (IQR 11-21), 20 (8-36), and 13 (12-16) weeks for RR patients, RE patients,
and HCs, respectively (Appendix Table 4.2). All study subjects gave written informed consent
prior to participation. Both studies have been approved by the Medical Ethics Committee of
Maastricht University Medical Center and have been registered in the US National Library of
Medicine (www.clinicaltrials.gov; NCT02130349 and NCT00775060, respectively).

Fecal samples were collected at home, kept at room temperature, and brought to the hospital
within 12 hours after defecation. Part of the fecal sample of the CD patients was sent to the
laboratory of Clinical Chemistry for routine analysis of FC. The remaining part was aliquoted
and frozen at —80°C for microbiota analysis. Disease activity was defined by FC, serum CRP,
and HBI. Patients were included in the study when patients were in remission at baseline, i.e.,
FC < 100 pg/g and CRP < 5 mg/L or FC < 100 pg/g, CRP < 10 mg/L, and HBI < 4. Exacerbation
at the second time point was defined by FC > 250 pg/g or FC > 100 ug/g with at least a
5-fold increase from baseline (Appendix Figure 4.1). The fecal microbiota composition was
assessed by lllumina Miseq sequencing of the V4-region of the 16S rRNA gene. A detailed
description of metagenomic DNA isolation, sequencing, and quality control is provided in
the supplementary information of Galazzo et al. 2019."®" The 16S rRNA gene sequencing

data are released in the European Nucleotide Archive. The accession number is: PRIEB62578
(ERP147674). Information on microbial profiling and the selection of bacterial families for
quantile regression analysis can be found in Box 4.1.

Box 4.1 - Data procedures and family selection. Data demultiplexing, length

and quality filtering, and clustering of reads into Operational Taxonomic Units (OTUs) at
97% sequence identity was done using the online Integrated Microbial Next Generation
Sequencing (IMNGS) platform using default settings except for minimum and maximum
length for amplicons, which were set at 100 and 500 bp, respectively.’** After quality
filtering, binning, and removing unassigned reads, sequences were clustered in 640
OTUs. Normalization was performed by dividing OTU counts per sample for their total
count (sample depth) and then multiplying the obtained relative abundances by the
lowest sample depth. OTU sequences assigned to chloroplasts were removed prior to the
statistical analyses. Then, the 18 different families used in the main text were selected by
removing rare reads (not seen more than three times in at least 20% of the samples). We
also performed quantile regression on the remaining families (which were not selected
by the base case threshold), these results are placed in the Appendices.

Chapter4 81 Heterogeneous associations of gut microbiota with Crohn'’s disease activity



Linear quantile regression mixed models (LQMM)

The quantile regression model takes the form QYlX(r) = XB,, where QY‘X(T) denotes the t
quantile of the response variable Y, which is predicted from a vector X of explanatory
variables with quantile specific parameters 8. The " quantile is the inverse of the cumulative
distribution function of Y, i.e., q,(1) = F," or reciprocally F,(g) = P(Y < y) = T; where T € [0,1].

It denotes the smallest value where the probability of finding an even smaller value is less
than or equal to 7, whereas the probability of finding a larger value is less than or equal to

1 —1.3%" A parametric distribution is assumed for the deterministic part of the model, but the
random error part does not assume any distributional form. Further information on inclusion
of covariates and model building strategy is supplied in Box 4.2.

Box 4.2 - Model building strategy. The analysis was divided in three parts. First,
we investigated whether the relative abundances of the bacterial families could be
explained by the group to which each individual belongs (i.e., healthy control (HC),
remission-remission (RR), or remission-exacerbation (RE)). We added the interaction
with visit number, to allow for different temporal changes in bacterial relative
abundance over time between healthy controls, CD patients who experienced an
exacerbation at the second visit, and those who remained in remission. Secondly,
we excluded the healthy individuals from the model and investigated whether

the relative abundances of the bacteria could be explained by disease activity

(i.e., remission vs. exacerbation) in the CD patient group. Thirdly, we additionally
investigated if the relative abundances of the bacterial families could be related to a
quantitative disease indicator (i.e., HBI, CRP, or FC) other than the clinical definition
of disease activity (remission and exacerbation). The models contain two time points
per individual. Therefore, we used a random intercept per patient as well as a random
effect for the variable ‘visit number’, because temporal changes in bacterial family’s
relative abundances may differ within patients, even when accounting for the fixed
effect of disease trajectory (e.g., experiencing an exacerbation at the second visit).

Prior to the analyses, relative abundances were multiplied with 1000 and log-
transformed with the natural-log function assuming a lower detection limit of 100
reads (which is 4" of the lowest measurable value in the data). Prior to variable
selection, all models contained the variables sex (male vs. female), smoking (current,
ex, or never), and age (centered around mean age of 39.6 years) (Appendix Table 4.1).
The models for CD patient cohort data also contained the disease-specific variables
disease location (colonic (C), ileal (I), or ileocolonic (IC)), age at diagnosis (younger
than 40 years (0) or older than 40 years (1)), surgery (no (0) vs. yes (1)), disease
phenotype (non-stricturing/non-penetrating vs. stricturing/penetrating), and current
treatment (mesalazines (no (0) vs. yes (1)), thiopurines (no (0) vs. yes (1)), biologicals
(no (0) vs. yes (1)), induction (no (0) vs. yes (1)), and proton pump inhibitors (PPI) (no
(0) vs. yes (1)) (Appendix Table 4.1). Variable selection was performed by running all
possible models and then selecting the model with the lowest Bayesian Information
Criterion (BIC) in the 50% quantile. For the model with the disease indicators (HBI,
CRP, and FQ), variable selection was performed on a model that contained all three
indicators. For the sake of comparison, the selected variables were also used in the
separate models for HBI, CRP, and FC. FC was divided by 1000 to improve numerical
precision in quantile regression. Moreover, HBI, CRP, and FC are measured on different
scales, therefore the data was normalized beforehand to make the quantile regression
model estimates comparable. For this purpose, the values for HBI, CRP, and FC were
divided by the difference between the 5% and 95" percentiles.
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We used the ‘lgmm’R package (version 1.5.5)*% of the R statistical analysis software
(www.R-project.org) to perform the quantile regression analysis. Analyses were performed
separately for each bacterial family. Although genus level might be preferred, this would
have resulted in too many models. Therefore, we only looked at certain genus levels, when
significant results were found at family level (within the base case selection as described

in Box 4.1). To accommodate repeated sampling on the individual level, we employed a
linear quantile mixed model (LQMM) framework. A mixed model contains both fixed effects
and random effects, and can then account for correlation in repeated measurements from
the same individual as these are likely to be more similar than observations from different
individuals.>®” We estimated the series of quantile regression functions from the 10" to the
90t percent quantile. We used the Benjamini-Hochberg (BH) procedure per quantile to
control for the expected proportion of ‘false discoveries’ across microbial families.?® However,
the BH procedure assumes independency in multiple testing, which is likely not the case in
the gut microbiota. Therefore, the BH correction might provide too conservative estimates,
and we choose to also report the unadjusted results.

Results

Differences in abundance between healthy individuals and CD patients

We found several associations between the relative abundances of bacterial families with

CD, and more specific with remission or disease exacerbation (Figure 4.1). The quantiles that
were significantly associated with CD are different per bacterial family (Appendix Figure 4.2).
For example, patients with baseline sampling at time of remission and subsequent sampling
during an exacerbation (RE) displayed significantly distinct distributions in relative abundance
in the family Coriobacteriaceae (Figure 4.2A), both at baseline (visit 1) and at the second visit,
compared to the healthy control subjects (HC). At baseline, there was a positive association in
the higher quantiles and over time (at time of exacerbation) there was a negative association
in the lower quantiles. This means that the distribution of Coriobacteriaceae abundance
among RE patients is skewed to higher values at baseline, but to lower values at the follow-up
visit, as compared to healthy controls (see also Figure 4.1D). However, these effects were no
longer significant after BH correction (Appendix Figure 4.3). For Coriobacteriaceae we also
found a significant relation in the higher quantiles of patients in the RE group compared to
the patients with two subsequent samples while maintaining remission (RR) (Appendix Figure
4.4). Thus, a significant fraction of patients in the RE group had higher Coriobacteriaceae
abundance than healthy individuals and RR patients at baseline.

The family Erysipelotrichiaceae (Figure 4.2B) displayed negative associations in relative
abundance over almost all quantiles (except the most upper quantiles) for both patient
groups compared to the healthy controls. We still found significant differences after BH
correction, but these were only present in the lowest quantiles (Appendix Figure 4.3). Looking
at genus level, the genera Holdemania and Turicibacter both displayed a similar pattern of
significant results (Appendix Figures 4.5 to 4.7). We did not find a significant difference among
the patients in the RE and RR group (Appendix Figure 4.4). This implies that the relative
abundance of Erysipelotrichiaceae is severely skewed to lower values in CD patients (see also
Figure 4.1G). The same kind of relationship was also found for Ruminococcaceae (Figure 4.2D).
Similar to Erysipelotrichiaceae, the associations were only found at baseline, suggesting that
this is a characteristic of CD, but not related to disease activity.
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Figure 4.1 - Violin plots of transformed relative abundances of base case
bacterial families by group and time point. In green the healthy controls (HC), in blue
the RR group, and in red the RE group, all visualized per time point (V1 = visit 1 and V2 = visit 2).
Patients in the RE group are in remission during the first visit and experience an exacerbation
during the second visit. The 50% quantile is shown with a black horizontal line. Genera are given
in Appendix Figure 4.5 and families outside the base case criterion in Appendix Figure 4.8.

As another example, the relative abundances of Sutterellaceae among patients in the RE
group were significantly skewed to lower values compared to both the healthy controls and
the RR group patients (Figures 4.1P, 4.2F, and Appendix Figure 4.4). We also found a significant
negative relation between the abundance of the family Pasteurellaceae in the RR group at
baseline compared to the healthy controls (Figure 4.2C). For the family Streptococcaceae,

we did not find many significant associations at baseline (except for one quantile), but the
association for the RR x visit variable was significant for almost all quantiles (Figure 4.2E). This
means that patients from the RR group experienced stronger increases in relative abundance
of Streptococcaceae over time as compared to the healthy controls.
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We also found a significant difference between the RR and RE patient groups for the family
Streptococcaceae, with the RE patients having elevated abundances across the entire quantile
range (Appendix Figure 4.4, see also Figure 4.1 - panel O). In our data, Pasteurellaceae

and Streptococcaceae both only consisted of one classified genus. When refining the
analyses for these classified genera, we did not find significant results within Mannheimia
(Pasteurellaceae) or Streptococcus (Streptococcaceae) (Appendix Figures 4.5 to 4.7).
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Figure 4.2 - Examples of quantile regression profile plots for some

of the base case families. A) Coriobacteriaceae, B) Erysipelotrichaceae, C)
Pasteurellaceae, D) Ruminococcaceae, E) Streptococcaceae, and F) Sutterellaceae.
The various dots represent sample estimates (y-axis) of differences in relative
abundance compared to healthy controls across the 10" to the 90" percent
quantile (x-axis). Differences at baseline (visit 1) are visualized in light blue (RR) and
red (RE), while the interaction with visit number (in dark blue and orange) displays
the difference in changes over time. The dotted line at zero indicates no difference
compared to healthy controls. When the points are above the dotted line there is a
positive effect of disease group on relative abundance, whereas points below the
dotted line imply a negative effect of disease group on relative abundance at that
particular quantile. Significant variables (p-value < 0.05) are indicated with a closed
circle. The other base case families are in Appendix Figure 4.2.

Chapter4 85 Heterogeneous associations of gut microbiota with Crohn'’s disease activity



On top of the examples given in Figure 4.2, we also found that the relative abundances

of Clostridiaceae, Desulfovibrionaceae, Peptostreptococcaceae, Prevotellaceae, and
Rikenellaceae in CD patients were different from the relative abundances in the microbiota
of healthy controls (Figure 4.3, Appendix Figure 4.2). These results, except for the families
Prevotellaceae and Rikenellaceae, remained significant after BH correction (Appendix

Figure 4.3). Most significant relations were negative and were found in the lower quantiles
(Figure 4.3), meaning that CD patients more often displayed negatively than positively
skewed abundance distributions (see also Figure 4.1). Besides, only a few associations
between bacterial family abundance and covariates were found, with sex being the only
significant covariate (males having higher abundances than females) (Figure 4.3). We also
identified some significant associations in the families which fall under the sensitivity analyses
of the families outside the base case selection criterion (Appendix Figure 4.8 to 4.10).

We found that the relative abundances of Victivallaceae and Clostridiales fam. i.s. XI were
different from the healthy controls for both the patients that stayed in remission and the
patients that experienced an exacerbation. We also found significant results for the family
Enterococcaceae for the patients that stayed in remission compared to the healthy controls
and the families Actinomycetaceae and Lactobacillaceae for the patients that experienced an
exacerbation at the second visit (Appendix Figure 4.9). However, these results disappeared
after applying BH correction for multiple testing (Appendix Figure 4.10).

We compared our results from the LOMM models with the results obtained from an ordinary
linear mixed-effects model (with similar variables as used in the LQMM models) using the
‘Ime’ function from the ‘nlme’ R package (version 3.1).2°¢ Example code of the LQMM and LME
models can be found on the GitHub repository (susannepinto/Quantile-Regression-CD). Most
associations found by quantile regression could also be found with ordinary regression, as the
mean response in the linear mixed-effects model provides somewhat of an average response
over all quantiles. Nevertheless, some differences were also noticeable (Appendix Figure 4.11).
For example, the family Coriobacteriaceae has a positive estimate in the higher quantiles

for patients in the RE group relative to the healthy control group, which is not visible in

the mean response (Appendix Figure 4.11D). Likewise, patients in the RR group displayed
significant reductions in abundance in the lower to middle quantiles of Prevotellaceae and
Streptococcaceae abundance, that were apparent in a reduced mean response, but without
statistical significance. Conversely, the reduced mean responses regarding Ruminococcaceae
in both RR and RE patients hide the fact that reductions only apply to lower and middle
quantiles of abundance (Figure 4.1N and Appendix Figure 4.11N). Comparable findings were
obtained for Pasteurellaceae and Peptostreptococcaceae. In some instances, linear mixed-
effects regression yielded imprecise (cf. Lachnospiraceae) or biased (cf. group x visit in
Prevotellaceae) estimates as compared to quantile regression (Appendix Figure 4.11).

Gut microbiota changes in relation to Crohn’s disease activity

The relation between bacterial family abundance and disease activity (exacerbation)

was mainly negative across the quantile range, indicating reduced abundance among

RE patients as compared to RR patients at the second visit. However, this association was

only statistically significant for upper quantiles of Coriobacteriaceae after adjustment for
covariates (Figure 4.4). Instead, significant associations were revealed with several clinical
variables (e.g., phenotype, surgery, proton pump inhibitors (PPI), and biologicals), suggesting
that differences between RR and RE patients might have been confounded by disease-specific
variables (Figure 4.4).
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Figure 4.3 - Heatmap of quantile regression estimates across quantiles
of relative abundance for base case families and common variables.
The model included all groups, i.e., healthy control (HC), remission-remission (RR),
and remission-exacerbation (RE), with healthy controls as reference group. The

red boxes indicate negative regression estimates, the blue boxes indicate positive
regression estimates, and the empty boxes are the variables that were not selected
during variable selection. Significant variables (p-value < 0.05) are indicated with an
asterisk (™), results adjusted with the BH procedure are given in Appendix Figure 4.3.
Other families outside the base case criterion are given in Appendix Figure 4.9 and
Appendix Figure 4.10.
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Figure 4.4 - Heatmap of quantile regression estimates across
quantiles of relative abundance for base case families and clinical
variables in CD patients only. The red boxes indicate negative regression
estimates, the blue boxes indicate positive regression estimates, and the
empty boxes are the variables that were not selected during variable selection.
Significant variables (p-value < 0.05) are indicated with an asterisk ('*'), results
adjusted with the BH procedure are given in Appendix Figure 4.12.
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Of note, many associations with disease activity also disappeared after BH correction for
multiple testing (Appendix Figure 4.12), but the finding that RE patients had elevated
Streptococcaceae abundances across the entire quantile range (irrespective of visit number)
remained significant; likewise, treatment with biologicals remained significantly associated
with lower Streptococcaceae abundance (Figure 4.4 and Appendix Figure 4.12). Further
results on genera and other families can be found in Appendix Figures 4.13 to 4.16.

Bacterial relative abundances in relation to different disease activity indicators
When comparing regression on clinically defined exacerbation with different indicators of
disease activity, we found that especially FC levels gave distinct results compared to the
other indicators (Figure 4.5 and Appendix Figure 4.17). For almost all bacterial families, we did
not observe a signal (estimates around zero) for clinical status (remission or exacerbation),
CRP, and HBI after correction for clinical variables. In contrast, the normalized estimates of

FC were much stronger (Appendix Figure 4.17), and significantly negative across the entire
quantile range for Porphyromonadaceae and Verrucomicrobiaceae (Figure 4.5). The results of
Porphyromonadaceae still hold after BH correction (Appendix Figure 4.18D). Further results
on genera and other families can be found in Appendix Figures 4.19 to 4.22.
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Figure 4.5 - Quantile regression profile plots for different disease activity
indicators and clinical variables in CD patients only. For the families:

A) Bifidobacteriaceae, B) Coriobacteriaceae, C) Peptostreptococcaceae, D) Porphyromonadaceae,
E) Rikenellaceae, and F) Verrucomicrobiaceae. Only families with significant results are given,

the other families are in Appendix Figure 4.17. The dotted line at zero indicates no difference
compared to healthy controls. When the points are above the dotted line there is a positive

effect of disease group on relative abundance, whereas points below the dotted line imply a
negative effect of disease group on relative abundance for that particular quantile. The regression
estimates for clinical status, HBI, CRP, and FC were estimated in different models, therefore

the data was normalized beforehand to make the regression coefficients comparable. For this
purpose, the values for HBI, CRP, and FC were divided by the difference between the 5" and 95"
percentiles. Significant variables (p-value < 0.05) are indicated with a closed circle, results adjusted
with the BH procedure are given in Appendix Figure 4.18.
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Discussion

In this study, we investigated the possible associations between the relative abundance

of specific bacterial families with CD and disease activity. We relied on quantile regression

to uncover relationships that are not restricted to the mean response across CD patients.

We found mainly negative associations with CD at family or genus level, especially in lower
quantiles of relative bacterial abundance. These results are consistent with the frequently
cited reduced microbial diversity in the gut of CD patients compared to healthy controls, but
they also highlight that reductions for specific microbes are usually limited to a minority of
patients. Thus, while CD coincides with a loss of microbial diversity in the gut, the process of
diversity loss seems rather irregular with respect to specific taxonomic groups.

Associations outside of the mean response can be a result of heterogeneity among CD
patients and may arise from the complex interactions among members of the microbiota.
Microbes alter the environment through metabolic by-products, creating new ecological
niches that promote diversification. However, some metabolites may adversely affect the
growth of other microorganisms.® Whether systemic changes, such as those induced by CD,
lead to niche reduction or expansion for a particular microbe probably depends as much on
the characteristics of that particular microbe as on the microbial ecosystem of the individual
host. If specific bacterial groups respond to disease or disease activity in some of the patients
but not in others, their associations with CD or disease activity are more likely to be found in
upper or lower quantiles than in the mean or median response across CD patients.

Interestingly, almost all significant associations we found were negative and applicable to

the lower quantiles of bacterial abundance. While positive associations in upper quantiles
have been attributed to unmeasured factors that limit the potential response to a positive
stimulus,*®' this opposite pattern is reminiscent of an ecosystem response to stress: the ability
to maintain healthy bacterial abundances is gradually lost once the system gets close to a
tipping point.”” The loss of some species in the microbial network can still be compensated
for by other species with similar ecosystem functions (functional redundancy), but the loss

of too many may lead to a loss of resilience and critical transition to an alternative stable
state.'**3¢ Although the existence of tipping points in the onset or exacerbation of CD has
not been demonstrated, a large-scale study by Lahti et al. (2014) showed distinct bimodal
abundance patterns of certain bacterial species (i.e., tipping elements) among healthy human
hosts.'®? These species were present in either a high or low abundance state, supporting

the idea of alternative stable states in the human gut microbiota. Taken together, concepts

of ecosystem resilience and critical transitions in the gut microbiota may explain why some
individuals respond strongly to systemic changes, as induced by CD, while others display a
more robust microbiota composition.?

Associations between the relative abundance of bacterial families and CD across the entire
quantile range can also be identified with methods that focus on the mean response, such as
ordinary linear regression. Families that exhibit such uniform responses could be considered
to represent keystone bacterial groups, as their response to CD or disease activity is less
dependent on other microbes or host factors as compared to families that are only responsive
in some patients. This feature of robustness would be preferred for clinical diagnostics,
prioritization for treatment, or monitoring of disease course, because guidelines can then be
developed and used for all CD patients. However, it is also important to understand the less
generic differences in the microbiota of CD patients because less robust associations may
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also shed light on etiology and progression of CD and may provide leads for personalized
treatment strategies. This is especially important considering the heterogeneous disease course,
therapy response, and potentially contributing factors to microbiota perturbations. Moreover,
the results of our analysis might help to reconcile inconsistencies in previously published
findings as regards involvement of specific bacterial families in CD.

Our results confirm previously identified associations of CD with the families Erysipelotrichaceae,
Peptostreptococcaceae, Prevotellaceae, Rikenellaceae, Ruminococcaceae (e.g., Faecalibacterium
prausnitzii), and Veillonellaceae.'”" '#" 3*¢|n addition, we also identified previously unreported
associations between CD and the families Coriobacteriaceae, Desulfovibrionaceae,
Streptococcaceae, and Sutterellaceae. Mixed results (both negative and positive associations)
have been reported for the family Bacteroidaceae (e.g., Bacteroides fragilis).'”"-*>7-38 OQur results
suggest that these mixed results can be explained by a change in association (from positive to
negative) across the quantile range. Likewise, we found a negative association with the family
Pasteurellaceae when the patients were compared to healthy individuals, especially with
regard to patients who remained in remission. This is in contrast with previous results showing
a positive association between relative abundances of Pasteurellaceae and CD."”!

Previous studies did not make use of quantile regression to identify possible associations
between the microbiota and factors related to inflammation. Most studies compared samples
based on their means or medians (by Student’s t-test, Mann-Whitney U test, or the analysis of
variance), without taking into account the confounding effect of covariates, such as medication
use or the age of the patient.'”* 356358 Other studies used methods that can take covariates into
account, such as generalized linear regression models, but these still only consider the mean
count or relative abundance and do not consider distinct associations across patients.'”" 73175357
Lastly, supervised classifiers (e.g., Random Forest) and clustering algorithms (e.g., agglomerative
hierarchical clustering) are used to predict the presence or activity of disease by the pattern

in relative abundance of many families at once.’®" While these methods are not constrained

by the strict assumptions of regression models, they have difficulties in dealing with repeated
measurements and covariates. In addition, these methods require many patients, which are
often not available in longitudinal clinical cohorts.

A practical advantage of quantile regression is its usefulness in situations when assumptions of
other methods are violated. For example, quantile regression does not require homoscedastic
and normally distributed data. On the contrary, the method enables detection and

description of changes in the conditional distribution of the response variable when there is
heteroscedasticity, skewness, or kurtosis in the data.**' Another limitation of quantile regression
is that it is hard to use for the purpose of prediction. Nevertheless, quantile regression is
powerful when heterogeneous response distributions should be expected, e.g., if many
interdependencies and potentially limiting factors play a role. If those co-factors are differently
distributed among patients and not included in the model, they lead to (hidden) bias in
conventional regression but can be dealt with in quantile regression.?”°

We found several significant associations of bacterial abundance with the presence of CD.
However, associations with disease activity were less evident in our data. Although we found
some differences between the two groups of CD patients, we only found significantly elevated
abundances for Streptococcaceae (at baseline) and Coriobacteriaceae (during active disease) in
patients experiencing an exacerbation relative to patients remaining in remission, and the latter
effect disappeared after correction for multiple testing.
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Multiple explanations are possible for the lack of significant associations between
exacerbation and remission. Firstly, the microbiota of CD patients might not be responsive
to exacerbation as compared to remission. Multiple studies underline our finding of no
clear significant differences between remission and active disease.'”” '®' In other words, the
observed differences in bacterial abundances are disease-related community differences
that even persist in the absence of active inflammation, and therefore this pattern is not
significantly reflected between the disease states.*”" 2

However, most studies, including ours, also likely lacked the statistical power to find such
potential differences. A second possibility is that potential associations are confounded

with other factors that are likely to play a role in shaping the microbiota, such as disease
severity,'”® disease duration,'”” disease location,'”® treatments,*”* and host characteristics
(such as smoking)."”? Treatments such as PPls have been shown to change gut microbiota and
individuals undergoing surgery will have been given antibiotics to prevent infection.’”* Lastly,
we might not have looked at the right taxonomic level, while the resolution of taxonomic
profiling could impact the accuracy and specificity of our findings. Most differences are
possibly present only at the species or strain levels, or may even require metabolic or
functional analysis.?" > 72 Moreover, a change in relative abundance at taxonomic level

might not reflect a change in ecosystem functioning, as expansion in certain species can
compensate for the loss of another (functionally similar) species.?? Nonetheless, we did find
stronger associations with fecal calprotectin than with the clinical definition of CD activity.
This suggests that a quantitative measure of inflammation carries information about the
microbial involvement in disease activity. As the level of fecal calprotectin is only a proxy

of inflammation in the gut, the associations might become even clearer when specific
immunological markers, or even hormones, would be used.

Itis important to acknowledge several limitations that may impact the generalizability and
interpretation of our findings. Firstly, our study was conducted within a relatively small
cohort of CD patients (n = 57) and healthy controls (n = 15). While this cohort size allowed

us to perform longitudinal analyses, it may limit the generalizability of our results to broader
CD populations. Also, quantile regression is not insensitive to outliers, especially in the
highest and lowest quantiles when there is not much data left for estimation, potentially
affecting the robustness of our statistical analyses. With a larger dataset, one might consider
a finer quantile division to obtain a smoother quantile regression profile, while with a
smaller dataset, a coarser division would be more appropriate. Furthermore, as with any
observational study, causation cannot be inferred from our results, and further mechanistic
investigations are needed to elucidate whether there is a role of the highlighted bacterial
families in CD pathogenesis. Lastly, the dynamic nature of the gut microbiota and potential
temporal variations were not extensively explored in this study, which might have limited
our ability to capture the full spectrum of microbial changes associated with CD over time.
In light of these limitations, caution should be exercised when interpreting our results, and
future research hopefully addresses these constraints through larger, more diverse cohorts
and a finer taxonomic resolution to provide a more comprehensive understanding of the gut
microbiota’s role in CD.

In this study, we showed that associations between CD with relative bacterial abundances can
be different for subsets of individuals. Our findings revealed significant negative associations
with CD for several bacterial families, such as Pasteurellaceae, Peptostreptococcaceae,
Prevotellaceae, and Ruminococcaceae, highlighting their potential roles in CD pathogenesis.
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Furthermore, the significant differences in the relative abundance of Sutterellaceae and
Streptococcaceae among CD patients who experienced exacerbations, relative to those
who maintained remission, had not been seen before and underscore the dynamic nature
of microbial associations in relation to disease activity. The subtle variations observed in the
family Coriobacteriaceae, which could not be seen in the mean response, further emphasize
the complexity of these relationships.

Importantly, our study underscores the heterogeneity of CD and its impact on gut microbiota,
suggesting that associations may only become evident when considering patients’ diverse
disease courses, medication histories, therapy responses, and gut microbiota compositions.
Associations with specific bacterial families may only be detectable in a minority of patients,
hence they cannot generally be considered to identify CD or disease activity. The novelty

of our study lies in its rigorous approach to exploring associations in subsets of patients,
acknowledging the heterogeneity between them. In such situations, quantile regression is a
useful tool for distilling potential relationships that may remain unidentified by commonly
used methods. We recommend its use in even larger cohorts, to gain a better understanding
of CD in relation to the gut microbiota.

Appendices of Chapter 4

Appendix Table 4.1 - Clinical and demographic information of healthy
controls and CD patients (RR and RE).

Note that two samples per individual (n = 72 individuals) were collected (n = 144
samples).

HC RR RE Overall
(n=30) (n=70) (n=44) (n=144)
Sex
Female 14 (46.7%) 50 (71.4%) 24 (54.5%) 88 (61.1%)
Male 16 (53.3%) 20 (28.6%) 20 (45.5%) 56 (38.9%)
Smoking
Ex 4(13.3%) 34 (48.6%) 20 (45.5%) 58 (40.3%)
Never 26 (86.7%) 20 (28.6%) 20 (45.5%) 66 (45.8%)
Current 0 (0%) 16 (22.9%) 4(9.1%) 20 (13.9%)
Age
Mean (SD) 26.7 (5.93) 42.6 (12.8) 43.6 (16.8) 39.6 (14.7)

Median (min, max) | 25.0(20.0,45.0) | 43.0(17.0,67.0) K 42.5(19.0,68.0) 38.5(17.0, 68.0)

Disease location®

C NA 16 (22.9%) 14 (31.8%) 30 (20.8%)

| NA 24 (34.3%) 14 (31.8%) 38 (26.4%)

IC NA 30 (42.9%) 16 (36.4%) 46 (31.9%)
Age at diagnosis®

A2 NA 62 (88.6%) 28 (63.6%) 90 (62.5%)

A3 NA 8 (11.4%) 16 (36.4%) 24 (16.7%)

Table continued on next page
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Surgery

0 30 (100%) 54 (77.1%) 36 (81.8%) 120 (83.3%)

1 0 (0%) 16 (22.9%) 8(18.2%) 24 (16.7%)
Phenotype

0 NA 52 (74.3%) 24 (54.5%) 76 (52.8%)

1 NA 18 (25.7%) 20 (45.5%) 38 (26.4%)
Mesalazines

0 30 (100%) 60 (85.7%) 35 (79.5%) 125 (86.8%)

1 0 (0%) 10 (14.3%) 9 (20.5%) 19 (13.2%)
Thiopurines

0 30 (100%) 46 (65.7%) 28 (63.6%) 104 (72.2%)

1 0 (0%) 24 (34.3%) 16 (36.4%) 40 (27.8%)
Biologicals®

0 30 (100%) 32 (45.7%) 15 (34.1%) 77 (53.5%)

1 0 (0%) 38 (54.3%) 29 (65.9%) 67 (46.5%)
Induction

0 30 (100%) 57 (81.4%) 36 (81.8%) 123 (85.4%)

1 0 (0%) 13 (18.6%) 8(18.2%) 21 (14.6%)
PPI¢

0 30 (100%) 56 (80.0%) 28 (63.6%) 114 (79.2%)

1 0 (0%) 14 (20.0%) 16 (36.4%) 30 (20.8%)
HBI®

Mean (SD) NA 2.41 (2.95) 3.00 (3.39) 2.08 (2.97)

Median (min, max) | NA 1.00 (0, 11.0) 2.00 (0, 13.0) 1.00 (0, 13.0)

Missing NA 0 (0%) 2 (4.5%) 2 (1.4%)
CRPf

Mean (SD) NA 2.57 (2.05) 3.76 (3.28) 2.31(2.61)

Median (min, max) | NA 2.00(0.9,11.0) | 2.80(0.9,13.0) | 1.40(0,13.0)

Missing NA 5(7.1%) 8(18.2%) 13 (9.0%)
FCe

Mean (SD) NA 28.6 (20.9) 290 (742) 102 (426)

Median (min, max) | NA 14.0 (14.0,98.0) | 110 (14.0,4900) | 15.0 (0, 4900)

2 Disease location: colonic (C), ileal (1), or ileocolonic (IC)
b Age at diagnosis: younger than 40 years (A2) or older than 40 years (A3)
¢ All biological treatments concerned anti-TNF therapy
4 PPI: proton pump inhibitors
¢ HBI: Harvey Bradshaw index (Appendix Figure 4.1)
FCRP: serum C-reactive protein (Appendix Figure 4.1)
9 FC: fecal calprotectin (Appendix Figure 4.1)
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Appendix Table 4.2 - Medication use and time between sampling moments for

remission and exacerbation samples.

RR (n=35) RE (n =22)
Remission Remission Remission Exacerbation
Medication®
Mesalazine 5(14.3%) 5(14.3%) 4(18.2%) 5(22.7%)
Thiopurines 11 (31.4%) 11 (31.4%) 9 (40.9%) 7 (31.8%)
Biologicals 18 (51.4%) 19 (54.3%) 13 (59.1%) 15 (68.2%)
Corticosteroids 1(2.9%) 0 (0%) 1(4.5%) 1 (4.5%)
PPI 7 (20%) 7 (20%) 8 (36.4%) 8 (36.4%)
Antibiotics® 1(2.9%) 0 (0%) 1 (4.5%) 0 (0%)
Time between sampling 14 (11-21) 20 (11-21)

moments (week, median, IQR)

2 Six RR and five RE patients had a medication change between consecutive samples during the
study period. In the RR group, mesalazine was stopped by one patient, prednisone by one patient
and biologicals by two patients, while one patient started mesalazine and one patient started
with biologicals. In the RE group, two patients started with biologicals, two patients stopped with
thiopurines, and one patient started with mesalazine.

b Ciprofloxacin and cotrimoxazole were used two and one month prior to sample collection,

respectively.
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Appendix Figure 4.1 - Disease indicators (FC, serum CRP, and HBI).
Remission at baseline was defined by FC < 100 ug/g and CRP < 5 mg/L or

FC < 100 pg/g, CRP < 10 mg/L, and HBI < 4. Disease activity at the second visit
was defined by FC, serum CRP, and HB, i.e., FC > 250 pg/g or FC > 100 ug/g with
at least a 5-fold increase from baseline.
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Estimate

A Bacteroidaceae B Bifidobacteriaceae C Clostridiaceae

D Coriobacteriaceae E Desulfovibrionaceae F Enterobacteriaceae
2

Variables
RR

® RE
@ RRxvisit

RE x visit

Significance

J Peptostreptococcaceae K Porphyromonadaceae L Prevotellaceae (O Not significant (p-value > 0.05)
1 @ Significant (p-value < 0.05)

M Rikenellaceae N Ruminococcaceae (o] Streptococcaceae

25 50 75 25 50 75 25 50 75

Quantile

Appendix Figure 4.2 - Quantile regression profile plots for all base case
families. The various dots represent sample estimates (y-axis) of differences in relative
abundance compared to healthy controls across the 10" to the 90" quantile (x-axis).
Differences at baseline (visit 1) are visualized in light blue (RR) and red (RE), while

the interaction with visit number (in dark blue and orange) displays the difference in
changes over time. The dotted line at zero indicates no difference compared to healthy
controls. When the points are above the dotted line there is a positive effect of disease
group on relative abundance, whereas points below the dotted line imply a negative
effect of disease group on relative abundance at that particular quantile. Significant
variables (p-value < 0.05) are indicated with a closed circle.
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Sensitivity analyses: Differences in abundance between healthy individuals and
CD patients
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Appendix Figure 4.3 - Heatmap of quantile regression estimates across
quantiles of the relative abundance for base case families and common
variables, with p-values adjusted using the BH procedure. The red boxes
are negative estimates, the blue boxes are positive estimates, and the empty boxes
are the variables that were not selected during variable selection. Significant variables
(p-value < 0.05 after BH adjustment) are indicated with an asterisk (*').
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Appendix Figure 4.4 - Heatmap of quantile regression estimates across
quantiles of the relative abundance for base case families and common
variables, using the RR group as reference instead of the HC group.

The red boxes are negative estimates, the blue boxes are positive estimates, and

the empty boxes are the variables that were not selected during variable selection.
Significant variables (p-value < 0.05) are indicated with an asterisk (*').
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Appendix Figure 4.5 - Violin plots of transformed relative abundances
for selected genera by group and time point. In green the healthy controls,
in blue the RR group, and in red the RE group, all visualized per time point (V1 = visit 1
and V2 = visit 2). Patients in the RE group are in remission during the first visit and
experience an exacerbation during the second visit. The 50" quantile is shown with

a black horizontal line.
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Appendix Figure 4.6 - Heatmap of quantile regression estimates across
quantiles of the relative abundance for selected genera and common
variables. The corresponding family names are placed in bold on the left. The red
boxes are negative estimates, the blue boxes are positive estimates, and the empty
boxes are the variables that were not selected during variable selection. Significant
variables (p-value < 0.05) are indicated with an asterisk (*).
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Appendix Figure 4.7 - Heatmap of quantile regression estimates across
quantiles of the relative abundance for selected genera and common
variables, with p-values adjusted using the BH procedure. The corresponding
family names are placed in bold on the left. The red boxes are negative estimates, the blue
boxes are positive estimates, and the empty boxes are the variables that were not selected
during variable selection. Significant variables (p-value < 0.05 after BH adjustment) are

indicated with an asterisk ("*').
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Appendix Figure 4.8 - Violin plots of transformed relative abundances
for families outside the base case selection criterion by group and time
point. In green the healthy controls, in blue the RR group, and in red the RE group, all
visualized per time point (V1 = visit 1 and V2 = visit 2). Patients in the RE group are in
remission during the first visit and experience an exacerbation during the second visit.
The 50" quantile is shown with a black horizontal line.
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Appendix Figure 4.9 - Heatmap of quantile regression estimates across
quantiles of the relative abundance for families outside the base case
selection criterion and common variables. The red boxes are negative
estimates, the blue boxes are positive estimates, and the empty boxes are the variables
that were not selected during variable selection. Significant variables (p-value < 0.05)
are indicated with an asterisk (*).
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Appendix Figure 4.10 - Heatmap of quantile regression estimates across
quantiles of the relative abundance for families outside the base case
selection criterion and common variables, with p-values adjusted using
the BH procedure. The red boxes are negative estimates, the blue boxes are positive
estimates, and the empty boxes are the variables that were not selected during variable
selection. Significant variables (p-value < 0.05 after BH adjustment) are indicated with an
asterisk (*).
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Appendix Figure 4.11 - Comparison of the LQMM analysis results (20%, 50%,
and 80% quantiles) with linear mixed-effects model results. The point estimates,
95% confidence intervals, and a reference line at 0 (in black) are shown. When the horizontal
lines do not cross the vertical reference line, this means that the coefficients are significantly
different (p-value < 0.05) from 0.
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Sensitivity analyses: Gut microbiota changes in relation to Crohn'’s disease

activity
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Appendix Figure 4.12 - Heatmap of quantile regression estimates across
quantiles of the relative abundance for base case families and clinical
variables in CD patients only, with p-values adjusted using the BH
procedure. The red boxes are negative estimates, the blue boxes are positive estimates,
and the empty boxes are the variables that were not selected during variable selection.
Significant variables (p-value < 0.05 after BH adjustment) are indicated with an asterisk (**').
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Appendix Figure 4.13 - Heatmap of quantile regression estimates across
quantiles of the relative abundance for selected genera and clinical
variables in CD patients only. The corresponding family names are placed in bold
on the left. The red boxes are negative estimates, the blue boxes are positive estimates,
and the empty boxes are the variables that were not selected during variable selection.
Significant variables (p-value < 0.05) are indicated with an asterisk (*)).

Chapter4 107 Heterogeneous associations of gut microbiota with Crohn's disease activity



Estimate Significance

[ Positive [I] Negative X p-value < 0.05

10" quantile 20" quantile 30t quantile
Holdemania
Erysipelotrichaceae gen. i.s.
Clostridium XVIII
Catenibacterium
Turicibacter
Faecalibacterium
Ruminococcus
Clostridium IV

Butyricicoccus
Flavonifractor

Intestinimonas

Oscillibacter

Streptococcaceae Streptococcus
50t quantile 60" quantile
Holdemania
Erysipelotrichaceae gen. i.s.
Clostridium XVIII
Catenibacterium
lotrich. Turicibacter
Faecalibacterium
Ruminococcus
Clostridium IV

Butyricicoccus
Flavonifractor

Intestinimonas

Oscillibacter

Streptococcus

Holdemania
Erysipelotrichaceae gen. i.s.
Clostridium XVIII
Catenibacterium
lotrich. Turicibacter
Faecalibacterium
Ruminococcus
Clostridium IV

Butyricicoccus
Flavonifractor

Intestinimonas
Oscillibacter

Streptococcaceae Streptococcus

A0 A A U0 0 AU A S S S A
EEBZSTYRACEIRTE FERSOTIIAGSIEIT FERTOFTRLF LT
ELEE e 888" T2 SR oa.288R =2 ELEE oaL285ER =2
° o © oo © Qo fs=
853 ££3206328 33 8337 c£Egeoczs 33 8537 £E£ges2E 23
232% £Z2852Tw 7 23Ex $58GeC® n L23Ex 58880 T® n
3858 Zo280Ef o 3953 ¥o2890E3 o 39538 2222928 o
gUgv gfoan®~ 2 = gUgv gfonw@~ g = gUgY gfoma@~ 2 =
gUS7 ExE = 5 EUS7 EsE == £Ts 538 = F
3 £T o £T 3 £0T

3 R 3 (Rt g R

s ) g & 1 &

“n < “n < “ <

Appendix Figure 4.14 - Heatmap of quantile regression estimates across
quantiles of the relative abundance for selected genera and clinical
variables in CD patients only, with p-values adjusted using the BH
procedure. The corresponding family names are placed in bold on the left. The red
boxes are negative estimates, the blue boxes are positive estimates, and the empty
boxes are the variables that were not selected during variable selection. Significant
variables (p-value < 0.05 after BH adjustment) are indicated with an asterisk (*).
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Appendix Figure 4.15 - Heatmap of quantile regression estimates across
quantiles of the relative abundance for families outside the base case
selection criterion and clinical variables in CD patients only. The red boxes
are negative estimates, the blue boxes are positive estimates, and the empty boxes

are the variables that were not selected during variable selection. Significant variables
(p-value < 0.05) are indicated with an asterisk (*').
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Appendix Figure 4.16 - Heatmap of quantile regression estimates
across quantiles of the relative abundance for families outside the

base case selection criterion and clinical variables in CD patients only,
with p-values adjusted using the BH procedure. The red boxes are negative
estimates, the blue boxes are positive estimates, and the empty boxes are the variables
that were not selected during variable selection. Significant variables (p-value < 0.05
after BH adjustment) are indicated with an asterisk (**').
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Sensitivity analyses: relative abundances of bacterial families in relation to
different disease activity indicators
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Appendix Figure 4.17 - Quantile regression profile plots for different
disease activity indicators and clinical variables for all base case families
in CD patients only. The estimates for clinical status, HBI, CRP, and FC were estimated
in different models, therefore the data were normalized beforehand to make the models
comparable. For this purpose, the values for HBI, CRP, and FC were divided by the
difference between the 5" and 95" percentiles. Significant variables (p-value < 0.05) are
indicated with a closed circle.
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Appendix Figure 4.18 - Quantile regression profile plots for different disease
activity indicators and clinical variables for base case families in CD patients
only, with p-values adjusted using the BH procedure. The estimates for clinical
status, HBI, CRP, and FC were estimated in different models, therefore the data were
normalized beforehand to make the models comparable. For this purpose, the values for HBI,
CRP, and FC were divided by the difference between the 5" and 95" percentiles. Significant
variables (p-value < 0.05 after BH adjustment) are indicated with a closed circle.
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Appendix Figure 4.19 - Quantile regression profile plots for different
disease activity indicators and clinical variables for selected genera in
CD patients only. The estimates for clinical status, HBI, CRP, and FC were estimated in
different models, therefore the data were normalized beforehand to make the models
comparable. For this purpose, the values for HBI, CRP, and FC were divided by the
difference between the 51 and 95" percentiles. Significant variables (p-value < 0.05) are
indicated with a closed circle.
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Appendix Figure 4.20 - Quantile regression profile plots for different disease
activity indicators and clinical variables for selected genera in CD patients
only, with p-values adjusted using the BH procedure. The estimates for clinical
status, HBI, CRP, and FC were estimated in different models, therefore the data were normalized
beforehand to make the models comparable. For this purpose, the values for HBI, CRP, and

FC were divided by the difference between the 5™ and 95" percentiles. Significant variables
(p-value < 0.05 after BH adjustment) are indicated with a closed circle.
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Appendix Figure 4.21 - Quantile regression profile plots for different
disease activity indicators and clinical variables for families outside the
base case selection criterion in CD patients only. The estimates for clinical
status, HBI, CRP, and FC were estimated in different models, therefore the data were
normalized beforehand to make the models comparable. For this purpose, the values
for HBI, CRP, and FC were divided by the difference between the 5 and 95" percentiles.
Significant variables (p-value < 0.05) are indicated with a closed circle.
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Appendix Figure 4.22 - Quantile regression profile plots for different
disease activity indicators and clinical variables for families outside the
base case selection criterion in CD patients only, with p-values adjusted
using the BH procedure. The estimates for clinical status, HBI, CRP, and FC were
estimated in different models, therefore the data were normalized beforehand to make the
models comparable. For this purpose, the values for HBI, CRP, and FC were divided by the
difference between the 51 and 95" percentiles. Significant variables (p-value < 0.05 after
BH adjustment) are indicated with a closed circle.
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Dynamics of gut microbiota after FMT

Susanne Pinto', Dominika Sajbenové’, Elisa Behinca?, Sam Nooij?,
Elisabeth M. Terveer®*, Josbert J. Keller** ¢, Andrea E. van der Meulen-de Jong®,
Johannes A. Bogaards” #*, Ewout W. Steyerberg'*

=

Department of Biomedical Data Sciences, Leiden University Medical Center,
Leiden, the Netherlands

Centre for Infectious Disease Control, National Institute for Public Health
and the Environment (RIVM), Bilthoven, the Netherlands

Leiden University Center for Infectious Diseases (LUCID) Research,

Leiden University Medical Center, Leiden, the Netherlands

Netherlands donor Feces bank, Department of Medical Microbiology,
Leiden University Medical Center, Leiden, the Netherlands

Department of Gastroenterology and Hepatology, Leiden University
Medical Center, Leiden, the Netherlands

Department of Gastroenterology, Haaglanden Medisch Centrum,;

The Hague, the Netherlands

Department of Epidemiology and Data Science, Amsterdam UMC location
Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

Amsterdam Institute for Infection and Immunity (Al&I), Amsterdam UMC,
Amsterdam, the Netherlands

*These authors contributed equally

J Crohns Colitis. 2025 Feb 4;19(2):jjae137. doi: 10.1093/ecco-jcc/jjae137.

120



Dynamics of gut microbiota after fecal
microbiota transplantation in ulcerative
colitis: success linked to control of
Prevotellaceae

Abstract

Fecal microbiota transplantation (FMT) is an experimental treatment for ulcerative
colitis (UC). We aimed to study microbial families associated with FMT treatment
success. We analysed stools from 24 UC patients treated with four weekly FMTs after
randomization for pretreatment during three weeks with budesonide (n = 12) or
placebo (n = 12). Stool samples were collected nine times pre-, during, and post-
FMT. Clinical and endoscopic response was assessed 14 weeks after initiation of the
study using the full Mayo score. Early withdrawal due to worsening of UC symptoms
was classified as non-response. Nine patients (38%) reached remission at week 14,
and 15 patients had a partial response or non-response at or before week 14. With a
Dirichlet multinomial mixture model we identified five distinct clusters based on the
microbiota composition of 180 longitudinally collected patient samples and 27 donor
samples. A Prevotellaceae-dominant cluster was associated with poor response to
FMT treatment. Conversely, the families Ruminococcaceae and Lachnospiraceae
were associated with a successful clinical response. These associations were already
visible at the start of the treatment for a subgroup of patients and were retained in
repeated measures analyses of family-specific abundance over time. Responders
were also characterized by a significantly lower Simpson dominance compared

to non-responders. The success of FMT treatment of UC patients appears to be
associated with specific gut microbiota families, such as control of Prevotellaceae.
Monitoring the dynamics of these microbial families could potentially be used to
inform treatment success early during FMT.

Introduction

Ulcerative colitis (UC) is a chronic inflammatory disorder affecting the colon. Symptoms
experienced by patients during disease exacerbation include bloody stools, diarrhea, and
abdominal pain.*** The etiology of UC is multifactorial, involving complex interplay between
the host immune system, gut microbiota, and genetic and environmental factors.?># 3% 374
UC patients exhibit reduced microbial diversity and alterations in the composition of their gut
microbiota compared to healthy individuals.>** 3> Notably, a decrease in Bacillota (formerly
Firmicutes), especially Clostridia (such as Clostridium, Roseburia, and Faecalibacterium),

and Verrucomicrobia, along with an overgrowth of species from the Enterobacteriaceae
family (such as Escherichia coli or Klebsiella spp.), have been observed.?' ¢376.377 Studies
investigating associations with common Bacteroidota in the human gut, such as the
Bacteroidaceae and Prevotellaceae families, have yielded conflicting results.?¢ 200 356376379
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The current approach to treat UC focuses on attenuating the hyperactive immune response
using pharmaceutical drugs, such as local immune suppression with 5-aminosalicylates
(5-ASA) or systemic immune suppression with prednisolone, thiopurines, biologics, or small
molecules.’® However, many patients do not derive lasting benefits from these interventions
and may even experience severe side effects.**° Fecal microbiota transplantation (FMT)

has emerged as a promising alternative treatment for microbiota-associated disorders,
particularly in the treatment of recurrent Clostridioides difficile infection.’®* %38 FMT involves
transferring fecal matter from a healthy donor to a patient with the aim of modulating the
microbiota composition towards a more favourable state. The effectiveness of FMT in UC is
limited, with a lower response rate observed as compared to FMT treatment of Clostridioides
difficile infection.’®® A recent meta-analysis comprising six randomized controlled trials (RCT)
reported a short-term clinical response in only half of the patients with active UC following
FMT administration.'” The specific host factors influencing successful FMT response in UC are
still unclear, and the donor characteristics that influence patient response to clinical success
after FMT remain uncertain.? "%

A small pilot study in patients with Crohn'’s disease suggests an additional value of FMT in
maintaining remission after successful induction therapy with corticosteroids.*®" 32
Achieving or maintaining remission after FMT may be associated with engraftment of donor
bacteria.**>3% We hypothesized that reducing inflammation promotes engraftment of the
healthy donor microbiota, which in turn may result in clinical improvement in inflammatory
bowel disease (IBD). To further explore the effects of corticosteroids on engraftment and
clinical response, we performed a randomized study investigating the effects of three weeks
budesonide pretreatment prior to FMT in patients with UC. The primary analysis showed no
association between pretreatment or overall engraftment with clinical response. This may be
because the anti-inflammatory potential of budesonide is limited after three weeks. However,
there was a significant donor-dependent effect on engraftment, although the study was not
powered to detect differences regarding clinical endpoints.?** In the current study we aimed
to further identify longitudinal associations between the microbiota composition and clinical
response to FMT treatment. We explored differences in gut microbiota dynamics between
patients with clinical remission and non-responders following FMT treatment.

Methods

The study population

For the current study we used the stool samples collected from 24 UC patients included in
our previously described FMT trial (Appendix Table 5.1).2%* Patients were randomly assigned
to be pretreated daily for three weeks with oral budesonide (9 mg) or with a placebo, and

for treatment with FMT suspensions from donor D07 or D08 (block randomization). Inclusion
criteria included being at least 18 years old and having a confirmed diagnosis of mild to
moderate UC, defined as a full Mayo score ranging from 4 to 9 (including a partial Mayo score
and endoscopic sub score of 1 or 2). Exclusion criteria included, among others, proctitis,
antibiotic use, surgery within the last 6 weeks, or received other treatments within 12 weeks
prior to study entry.

The following clinical and demographic information was collected for each patient in the

study (Appendix Table 5.1): sex, age at baseline (years), donor ID (D07 or D08), pretreatment
(placebo or budesonide), and clinical outcome at week 14.
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Patients who did not complete the study because of progressive symptoms or disease were
considered treatment failures and classified as non-responders. At week 14, nine patients
were in clinical and endoscopic remission (hereafter called responders), 14 patients were
non-responders, and one patient was a partial responder. We included this last patient in the
non-responder group.

Clinical and laboratory procedures

Patients received a weekly FMT for four times (at the end of weeks 3, 4, 5, and 6 after
randomization) from the Netherlands Donor Feces Bank (NDFB), either from donor D07 or
donor D08 following standard protocols for donor screening, sample collection, sample
preparation, sample storage, and FMT infusion.?*> The samples used for the different FMTs
came from different donations. Before every FMT the patients fasted for at least six hours.

A bowel lavage with two liters of macrogol solution (Kleanprep) was performed one day
before the first FMT to cleanse the intestine. No changes in diet or medication were reported
by the physician who monitored the patients during the study.

Stool samples of the patients were collected once at baseline, once after the pretreatment
phase (but still before the FMT treatment), one week after every FMT (four times; designated
Post-1 to Post-4), and three times as a follow-up, at 8, 10, and 14 weeks after randomization.*®*
In total we collected 81 stool samples in the responder group (n = 9 patients) and 99 stool
samples in the non-responder group (n = 15 patients). Stool samples of donors D07 and D08
were collected regularly, and a total of 27 samples (n = 13 samples for donor D07 and n = 14
samples for donor D08) were used for analysis.

Microbiota composition

DNA was extracted from the collected stool samples (both from the donors and recipients)
and sequenced by Diversigen (New Brighton, MN, USA) with the lllumina NovaSeq platform
(100 bp single-end reads to a median depth of 2.9 million reads). Raw reads mapping

to the human genome were removed using bowtie2 (version 2.4.2)*% and the GRCh37
reference genome, and reads were quality-trimmed using fastp (version 0.20.1),°*” both part
of an in-house workflow (git.lumc.nl/snooij/metagenomics-preprocessing). The mOTUs3
workflow (version 3.0.1) was used to generate taxonomic profiles.**3% Unassigned, human-
derived, Archaeal, and low-quality reads were removed from the data, which resulted in 93
different families (i.e., 1552 unique mOTUs). The mOTUs3 database includes taxa based on
metagenomic bins that have not been formally classified, which are listed as 'incertae sedis'
(i.s.). Due to the sparsity of the data and the relatively small number of patients, the analyses
performed at taxonomic genus rank lacked the statistical power needed to provide robust
and reliable results. For this reason, the data were aggregated to family level prior to the
statistical analysis. All analyses were performed using R software (R version 4.2.2) and R code
is available on the GitHub repository (susannepinto/FECBUD_microbiome).

Differences in relative abundances of specific microbial families among responders and non-
responders were tested for statistical significance in repeated measures analyses, as described
in the 'longitudinal models of bacterial relative abundances’ section. The average relative
abundances of the same bacterial families were calculated for each donor from multiple
samples, considering the donor samples were not collected at the same time points as the
patient samples. Differences between donor D07 and donor D08 were tested with Pearson's x?
test and p-values were corrected for multiple hypothesis testing with the Bonferroni method.
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Principal component analysis

We performed principal component analysis (PCA) on the Aitchison distances calculated
between each pair of patient microbiota profiles. The Aitchison distance is often used in
microbiota data because it takes into account the compositionality of the data.?'***° The
Aitchison distance involved each patient sample undergoing the centered log-ratio (CLR)
transformation and then obtaining the Euclidean distance between each pair of samples,
as implemented in the ‘microViz’ R package.**"

Dirichlet multinomial mixture models

We used the Dirichlet multinomial mixture (DMM) clustering algorithm to identify distinct
clusters of samples based on their microbial abundance profiles. DMM assumes that

the microbial abundances in each sample follow one of a given number of multinomial
distributions, the number of which is determined by the assumed number of clusters in the
data. We used the ‘dmn’ function from the ‘DirichletMultinomial’ R package to cluster patient
and donor samples.>*? The parameters of the different clusters are estimated by maximizing
the likelihood of the observed data given the assumed model, with a Dirichlet prior for
relative abundances of the bacterial families to facilitate parameter estimation and prevent
overfitting. The prior consisted of a mixture of Dirichlets with k=1, ..., K to represent the K
clusters, with hyperparameters denoting cluster-specific weights and relative abundances.
Next, the bacterial families in each cluster were ranked based on the posterior difference
between the cluster in a multi-cluster solution versus a one-cluster model. A more detailed
description of DMM models is presented elsewhere.*** Considering that the DMM clustering
algorithm uses stochastic likelihood optimization with random initial parameter values, we
performed the clustering algorithm 1000 times and chose the model with the lowest Laplace
value, indicating a better parsimonious fit of the model to the data.

Data were clustered according to a combination of patient and donor samples. As a sensitivity
analysis, we also applied the algorithm in the following situations: patient samples only;
patient samples excluding a patient who was placed in a distinct cluster relative to all other
patients (patient 102); patient samples excluding patients who both had only two samples
available (patients 109 and 117).

Longitudinal models of bacterial relative abundances

Mixed models were used to model the changes over time in relative abundance for each of
the 15 most abundant bacterial families in the patient samples. Regarding the distribution of
relative abundance, many families had a high proportion of zeros, resulting in right-skewed
distributions. All abundances, except for Ruminococcaceae, were therefore transformed with
an arcsine square root transformation to approximate normally distributed data. We modelled
the relative abundances of the 15 selected bacterial families separately in 15 different
longitudinal models with a linear mixed-effects model (LMM), possibly augmented with a
zero-inflation component (ZILMM). The ‘ime4’R package was used for constructing LMMs

and the ‘gImmTMB'’R package was used for constructing ZILMMs.***3°* To account for the
correlation of repeated observations within each patient, both random slopes and random
intercepts were considered as potential models for each bacterial family. Note that the
dataset was too small for the specification of predictors in the zero-inflation component. To
incorporate possible non-linearity in relative abundance trajectories over time into the model,
a natural cubic spline (with the ‘ns’ function from the ‘splines’ R package) with a knot at

week 8 (the beginning of the follow-up phase) was considered for all models.
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Model preference was based on the lowest Akaike Information Criterion (AIC) and model
diagnostics, judged by a QQ-plot and a plot of residuals against predicted values. All choices
per family are given in Appendix Table 5.2.

The longitudinal models further included the variables: clinical outcome (non-responder

vs. responder), time (possibly with a cubic spline), and an interaction with time and clinical
outcome (non-responder vs. responder). The interaction determined whether there was a
divergence in the relative abundance of a particular family between non-responders and
responders, with statistical significance assessed by Wald tests.** The inclusion of the patient-
specific variables donor (donor D07 vs. D08), pretreatment (budesonide vs. placebo), age, and
sex (female vs. male) in the model was dependent upon testing their role as confounders or
contribution to the model fit. This assessment involved examining whether their inclusion led
to a greater than 15% change in the primary coefficients (notable influence on the model’s
outcome) or a significant Likelihood Ratio Test (contribution of the variable to the model

fit); with flexibility allowed for a variable to meet one of these criteria during the evaluation
process.

Simpson dominance

Simpson dominance was used to summarize microbiota diversity of each sample. We
calculated this measure (the sum of the squared relative abundances) with the ‘dominance’
function from the ‘microbiome’R package.*” The Simpson dominance estimates the
probability that two random entities taken from a sample represent the same bacterial
family within a patient’s microbiota. Hence, a higher Simpson dominance means a higher
concentration of species from the same family in the sample, which corresponds with a less
diverse microbiota. To account for the correlation of repeated observations within each
patient, the Simpson dominance was modelled with a random-intercepts LMM (with the
‘Ime’ function from the ‘nlme’ R package).** A log transformation was applied to the Simpson
dominance measure to correct for non-normality. The regression parameter of primary
interest was the relationship between Simpson dominance and clinical response, either as a
main effect (denoting baseline differences in diversity) or in interaction with time (denoting
divergence in diversity between responders and non-responders over time). Additional
parameters included the effects of sex and time. Similar to the longitudinal LMM of bacterial
families, time was modelled as a continuous variable with a natural cubic spline (knot at
week 8). The effects of pretreatment, donor, and age were negligible and therefore not
included in the model. Wald tests were performed to test for statistical significance of the
clinical response variables jointly in the model.

Results

Microbiota community composition of donors, responders, and non-responders
The fecal microbiota composition between the two donors was distinctly different (Figure
5.1 and Appendix Figure 5.1). Donor D07 had a significantly higher relative abundance

of the families Clostridiaceae, Clostridiales fam. i.s. (i.e., an unclassified family within the
order Clostridiales), Ruminococcaceae, and Veillonellaceae compared with donor D08,
whereas donor D08 had a significantly higher relative abundance of Bacillota fam. i.s. and
Lachnospiraceae (Figure 5.1, Appendix Figure 5.1, and Appendix Table 5.3).
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Relative abundance

Overall, the most abundant bacterial family in the patients was Ruminococcaceae. However,
from the second time point onwards, the relative abundance of Prevotellaceae continued to
increase in the microbiota of the non-responders. Prevotellaceae overtook Ruminococcaceae
as the most abundant family for non-responders at Post-1 and remained the most abundant
for the remaining time points (Figure 5.1, Appendix Figure 5.1, and Appendix Figure 5.2).
Compared to the non-responders, Lachnospiraceae and Oscillospiraceae seemed to become
more abundant in the responder group over time (Figure 5.1, Appendix Figure 5.1, and
Appendix Figure 5.2).
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Figure 5.1. Average microbiota composition of the 15 most abundant
bacterial families. Abundances were followed over time for the two donors,
non-responders (NR), and responders (R). Here, the ‘other’ category includes all
remaining bacterial families.

PCA results for donors and patients

The first two components in PCA of patient and donor samples, based on the Aitchison
distance, explained 24% of the total variation in the data (Figure 5.2). The samples of

donor D08 clustered away from the patients’ samples, driven by a difference in the relative
abundance of Lachnospiraceae (Figure 5.2). Patients treated with an FMT from donor D08
showed a higher responder rate than those from donor D07 (Appendix Table 5.1). The
difference in distance between non-responders and responders seemed to be explained by
the relative abundance of Prevotellaceae (Figure 5.2). This applied particularly to the patients
who received an FMT from donor D08 (Appendix Figure 5.3). Only a few patient samples
seemed to traverse considerable Aitchison distance over time. Notably, the patients whose
microbiota became more donor-like over time were more often non-responders (e.g., patients
110 and 111) (Appendix Figure 5.4).
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Figure 5.2, PCA plot with Aitchison distances in microbiota profiles, showing
the distance between sample types. The PCA plots include data ellipses around

the different groups and loading vectors of families to obtain an initial visualization about
the extent of separation between non-responder, responder, and donor samples. The
different symbols, closed circles, open circles, open triangles, and closed triangles, represent
responders, non-responders, donor D07, and donor D08, respectively, while the different
colors indicate the various groups (responders, non-responders, and donors).

Sample clustering with Dirichlet multinomial mixture models

Over 1000 iterations, a five-clusters model was selected as the best-fitting model (i.e., having
the lowest Laplace value). Figure 5.3 and Appendix Figure 5.5 show that Ruminococcaceae was
present in all clusters whereas Lachnospiraceae, Bacteroidaceae, and Clostridiales fam. i.s. were
present in four of the five clusters. The relative abundances of those families in each cluster
differed: clusters 1 and 4 were dominated by Ruminococcaceae and Lachnospiraceae, whereas
clusters 2 and 5 were dominated by Ruminococcaceae and Clostridiales fam. i.s. Prevotellaceae
was the only family almost defining an entire cluster (cluster 3).

Cluster 1 appeared to be associated with a successful clinical response, while cluster 3
appeared to be associated with non-response (Figure 5.4). For the patient samples, 56% of
responder samples were classified into cluster 1, and 38% into cluster 2, whereas 42% of
non-responder samples were classified into cluster 3 (Figure 5.4B). All donor samples, except
for one, were assigned to cluster 4 (Appendix Figure 5.6). Five non-responder patient samples
were also assigned to cluster 4 (Figure 5.4A). This donor-dominated cluster disappeared

in sensitivity analysis on patient samples only (Appendix Figure 5.7A), resulting in the
reassignment of the corresponding patient samples to cluster 2. Patient 102 was responsible
for the existence of a separate cluster (cluster 5), with all its measurements belonging to that
cluster. Removal of this patient in a sensitivity analysis resulted in the disappearance of that
cluster, with re-assignment of the other corresponding samples to cluster 2 (Appendix
Figure 5.7B). Removing patients with only two measurements (patients 107 and 119) had a
minor impact on the results (Appendix Figure 5.7C).

Chapter5 127 Dynamics of gut microbiota after FMT



1.00

0.75 I
]
g
s Family
:Cs . Other
% . Bacteroidaceae
,02) 0.50 . Clostridiaceae
&8 B clostridiales fam. i.s.
[ [ Lachnospiraceae
S Prevotellaceae
g . Ruminococcaceae

0.25 I

0.00 : . . . .

1 2 3 4 5

Cluster

Figure 5.3. Mean relative abundance of bacterial
families in the five clusters. Clusters are detected by the
Dirichlet multinomial mixture model.

Out of 24 patients, nine patients (38%) remained in the same cluster for all of their provided
samples (Figure 5.4A). An alluvial plot of patient samples showed the substantial changes

in sample membership and cluster size throughout the clinical trial (Figure 5.4C). There

was a mixture of non-responder and responder samples in cluster 1 at the beginning, with
most samples at baseline being classified into cluster 1. There was then a shift toward more
responder samples in cluster 1 from Pre-FMT onwards. Samples in cluster 1 were exclusively
composed of responder samples at time points Post-4, Week 10, and Week 14. Cluster 3 was
fully composed of non-responder samples after pretreatment and after every FMT treatment
(Figure 5.4C).

Coloring samples by their cluster membership in the PCA plot of Aitchison distances showed
separation among clusters 1, 2, and 3, with cluster 2 being the intermediate cluster (Appendix
Figure 5.6). The Prevotellaceae vector was pointed in the direction of cluster 3, corresponding
to a potential association between this cluster and non-response (Appendix Figure 5.6),
possibly driven by the donor (Figure 5.2 and Appendix Figure 5.3). There appeared to be
some separation between donor samples, a majority of which were in cluster 4, and patient
samples. Donor D08 samples were close to cluster 1 samples. Meanwhile, donor D07 samples
were positioned near cluster 2 samples (Appendix Figure 5.6). Finally, samples from cluster 5
were tightly grouped together, likely because they all originated from the same patient.
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Figure 5.4. Clustering of donor and patient samples. A) Cluster membership over time
per patient for the non-responders (upper facet) and responders (lower facet). Lack of colored bar
indicates that no stool sample was collected at that time point. B) Percentage of each cluster for
non-responders and responders. C) Alluvial plot of patients distributed over the different clusters
over time. This plot displays the distribution of clusters per time point and whether each cluster is
comprised of only one clinical group (e.g., only non-responders) for every time point. A grey box
means that the cluster at that time point contains both samples from responder and non-responder
patients, a colored box only contain responder samples or only non-responder samples.

Mixed models of bacterial families

Responders and non-responders showed significantly different trajectories in relative
abundance over time for the families Prevotellaceae, Lachnospiraceae, Ruminococcaceae,
Oscillospiraceae, and Sutterellaceae (Figure 5.5, Appendix Table 5.2, and Appendix Figure 5.2).
Prevotellaceae showed the greatest difference in trajectory between responders and non-
responders over time. Note that the preferred model for Prevotellaceae had a straightforward
linear trajectory and used only the original time variable instead of splines. The family
Prevotellaceae consisted of four named genera, of which Prevotella (especially Prevotella copri)
was the most abundant (Appendix Figure 5.8).

There were four families with a significant donor effect, namely Veillonellaceae, Rikenellaceae,

Sutterellaceae, and Bifidobacteriaceae (Appendix Table 5.2). Notably, removal of the donor
variable from the model for Sutterellaceae diminished the significance of the main effect
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related to clinical response. This observation underscores the role of the donor variable in
influencing the association between Sutterellaceae and clinical response. Rikenellaceae and
Bacillota fam. i.s. had a significant sex effect, Veillonellaceae had a significant pretreatment
effect (Appendix Table 5.2). None of these other significant covariates altered the statistical
significance of clinical response. This observation suggests that the estimated associations
were not confounded by these covariates.
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Figure 5.5. Results of the mixed models. Only the families among the 15 most
abundant families (Prevotellaceae, Lachnospiraceae, Ruminococcaceae, and Oscillospiraceae)
for whom we found a significant effect in relation to clinical response with the Wald test

are shown. The point estimates, 95% confidence intervals, and a reference line at zero are
shown. When the horizontal lines do not cross the vertical reference line, this means that the
coefficients are significantly different from 0. All p-values are given in Appendix Table 5.2.

Simpson dominance

The steadily increasing relative abundance of Prevotellaceae in non-responders found before
was reflected in the Simpson dominance. Simpson dominance was higher for non-responders
compared to responders, especially throughout the follow-up period (Figure 5.6). There was
a significant difference between the Simpson dominance in responder and non-responder
patients (Wald test: p-value = 0.004). Our study was too small to determine whether this
difference already existed at baseline or developed over time (Appendix Table 5.4). The LMM
random-intercept model suggested that there was also a significant sex effect (Appendix
Table 5.4). However, sex did not alter the statistical significance of clinical response. This
observation suggests that the estimated associations were not confounded by the sex of the
patients.
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Figure 5.6. Change in Simpson dominance calculated for non-responders
and responders. The points indicate the individual measurements of the patients.
The lines are the mean Simpson dominance per group.

Discussion

Inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) have been linked to
alterations in both the composition and metagenomic function of the gut microbiota.***> 37>
In this study, we employed a wide range of analytical techniques to investigate potential
associations between microbiota and clinical outcomes following FMT in UC patients.

A subgroup of the cohort (9 of 24 patients) reached a successful combined clinical and
endoscopic remission after the FMT treatment, and our results suggest that this response
may be related to certain gut microbiota families. Specifically, longitudinal models and
cluster analysis of repeatedly measured compositional data indicated that the success

of FMT treatment of UC patients appears to be associated with control of Prevotellaceae.
Conversely, our analyses also highlighted a potentially beneficial role of Lachnospiraceae
and Ruminococcaceae in FMT treatment response. Furthermore, we identified several other
bacterial families, including Oscillospiraceae and Sutterellaceae, that exhibited associations
with clinical remission. The clustering results indicated that differences in the gut microbiota
of responders versus non-responders might already be apparent early during the treatment.
If this result can be confirmed by larger studies, clinical success may be predicted from

early microbiota analysis after the first FMT treatment and mitigating actions, for example,
stopping, personalizing, or changing the treatment, might be envisioned.

Donor-related microbiota characteristics may potentially impact the clinical efficacy of
FMT.'?® Intriguingly, we observed marked differences between the donors’and the patients’
microbiota. Amongst patients who responded well to FMT, gut microbiota composition did
not transition fully to resemble that of the donors at the end of follow-up.
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This contrasts with earlier studies that suggested that a donor-like microbiota is preferred

after FMT treatment,? %% 199383 and suggests that some complementarity in microbiota
compositions between donors and recipients is required for a successful clinical response.’?* 2%
In other words, the complementarity of the donor-patient pairing seems more important to
achieve clinical remission than attaining a donor-like microbiota. The samples of donor D08
clustered closer to cluster 1 (associated with a successful clinical response), and the samples

of donor D07 were closer to cluster 3 (indicating non-response). Note that an FMT from donor
D08 resulted in relatively more treatment success in the patients than donor D07. Also, donor
D08 seemed to have a more diverse microbiota than donor D07, although not statistically
significant. Donor gut microbiome diversity has been associated with a higher clinical response
before.>* In addition, higher post-FMT diversity has been associated with remission, suggesting
that the variety of introduced organisms may promote recovery.?* It was already noted that
donor D08 was the more successful donor; however, intriguingly, this was the donor with the
least engraftment.*** This observation suggests that the persistent transfer of microbes may
not be the prime reason for clinical success. Possibly, the transient exposure to an external
microbial community might still induce a beneficial change in the recipient's gut environment.
Itis also possible that patients who received FMT from donor D08 had a more favourable
starting state, while those who received FMT from donor D07 required stronger microbiota
changes to move to a more favourable state. Further investigations are warranted to unravel
the intricate dynamics underlying the observed outcomes.

This study provides novel evidence for a potential association between control of
Prevotellaceae at a moderate abundance and favourable clinical outcomes following FMT

in UC patients. In addition, the Simpson dominance measure suggests that Prevotellaceae
constituted a sizable proportion of the microbiota in non-responsive FMT patients throughout
the course of the clinical trial. Screening the patients (and donors) for Prevotellaceae before
and during treatment, and matching donors to patients accordingly might improve the
response rate. However, a previous study suggested that higher levels of Prevotella (a genus
level within Prevotellaceae) may confer health benefits in UC patients after treatment. For
instance, studies on UC patients who underwent drug and surgical treatments, excluding FMT,
demonstrated that responders had higher baseline levels of Prevotella compared to non-
responders.’’® Notably, a previous FMT trial on IBD patients did not report any detrimental
effects of increased Prevotella abundance, despite observing a substantial increase in this
bacterium in their patients after FMT treatment.? They classified Prevotella as a colonizing
bacterium, as its abundance in patients reached a level comparable to that in the donors. Of
note, in our study, responders also maintained levels of Prevotellaceae comparable to donors,
but in non-responders there was a clear overgrowth. The conflicting role of Prevotella in
human health has been attributed to the high diversity within the Prevotella genus. While the
majority of Prevotella species are commonly found in healthy individuals, certain strains may
be implicated in disease pathogenesis.*°*“°! For instance, Prevotella intestinalis has been shown
to induce intestinal inflammation upon colonization in mice.>”° Prevotella melaninogenica and
Prevotella oralis have been characterized as tipping elements.*? This means that Prevotella
stands out as a bimodal group, with either a high or low abundance state, and can be a pivotal
driver in the context of microbial ecosystem stability. This finding was reiterated in a recent
investigation into the involvement of gut microbiota families with Crohn’s disease activity,
where we found that associations with Prevotellaceae were among the most heterogeneous
across individual patients (see Chapter 4).4%
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In contrast to Prevotellaceae, other bacterial families have shown associations with positive
clinical outcomes. Specifically, the families Lachnospiraceae, Ruminococcaceae, and
Oscillospiraceae have also been found to increase following FMT in patients with UC in

other studies.’® Lachnospiraceae and Ruminococcaceae may play a role in modulating the
immune response and inflammatory pathways in the colon.'® Earlier attempts to cluster

the gut microbiota of healthy and unhealthy individuals showed clusters dominated by
Bacteroides, Prevotella, and Ruminococcus.****°¢ While our study identified clusters dominated
by Prevotellaceae and Ruminococcaceae, we did not find clusters dominated by Bacteroides
(i.e., Bacteroidaceae). This discrepancy could be due to differences in the study populations,
or the specific methodologies used for microbiota analysis. Interestingly, contrary to previous
literature, the expected increase in Clostridiaceae among responders was not observed in the
present study. This discrepancy in Clostridiaceae abundance may be attributed to variations
in FMT protocols employed across different clinical trials or the low number of patients in

this study.*’” In addition, in contrast to the present study, previous research has reported an
increased abundance of Enterobacteriaceae in UC patients who did not respond to drug and
surgical interventions, with higher levels being associated with mucosal inflammation.?”®
Discrepancies in Enterobacteriaceae abundance may stem from differences in the types of UC
treatments employed, for example, when FMT was not involved as a treatment modality.*”®

In the context of FMT, a study involving IBD patients who underwent FMT revealed the
presence of a dysbiotic Bacteroides cluster, as well as an Enterobacteriaceae cluster. Donors
were subjected to cluster analysis and categorized into Prevotella or Bacteroides clusters.
Interestingly, the clinical outcome of FMT varied depending on the cluster of both the
patients and their respective donors.?*°

The longitudinal study design of our trial, with protocolized data collection across all stages
of FMT, enabled a uniquely fine-grained view of gut microbiota dynamics during and after
FMT in UC patients. Our study allowed us to assess changes on an almost weekly basis.

RCTs with a strong longitudinal component often involve a smaller number of patients with
more frequent repeated measures, as compared to RCTs that focus on clinical outcomes. For
example, in a recent clinical trial 42 patients provided a single stool sample for microbiota
analysis before FMT, followed by another single sample after FMT.?*° Another clinical trial
included 12 patients who submitted stool samples weekly throughout their 12-week FMT
treatment and at the 18-week follow-up.**® A limitation of our study is that the results

of statistical analyses should be interpreted with caution due to multiple tests in a small
number of patients. Yet, most associations found in cluster analysis were retained in repeated
measures analyses where we also accounted for the correlation of repeated observations
within each patient. Moreover, despite the relatively small number of patients (n = 24) and
donors (n = 2), both DMM and PCA clustering utilize all 180 patient samples and 27 donor
samples available, rather than considering observations per patient.

Microbiota data are compositional, high-dimensional, and often zero-inflated.?'”-2'°
Moreover, the intestinal microbiota exhibits complex interactions, including competition

and cooperation, that form intricate networks.® 22 These characteristics pose challenges to
analytical methods, such as mixed models, which are commonly employed to investigate
temporal variation and potential differences in bacterial abundance trajectories among
clinical groups. Our analysis was limited by the individual modeling of each bacterial family,
neglecting the interplay and interactions between families within the microbiota network.
However, results obtained by supervised models of family-specific abundance over time were
in line with results obtained by unsupervised methods (PCA and DMM clustering) that use
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community characteristics. Cluster analysis has been widely employed to explore the
relationship between gut microbiota and conditions such as child gut development,
depression, obesity, and IBD.?** “*>*"" Conventionally, unsupervised methods are suitable
for exploratory analyses.**? If the distinct clusters that we identified are confirmed in

further larger-scale longitudinal analyses, this may lead to tailored diagnosis and treatment
approaches based on specific cluster characteristics.*'? In our study, this would, for example,
mean that the FMT treatment is stopped or changed to another donor when patients are
found to be in the Prevotellaceae-dominated cluster during the treatment. While clustering
techniques provide valuable insights, it is important to recognize that they depend on various
choices by the modeler, including cutoffs and priors, which may lead to different clustering
results.

Our study is admittedly rather exploratory in nature, but consistently revealed indications
of a potential association between controlled abundances of Prevotellaceae with successful
clinical and endoscopic remission following FMT treatment in UC patients. Moreover, we
also highlighted a potential beneficial role of Lachnospiraceae and Ruminococcaceae. This
provides a basis for new hypotheses regarding the role of gut microbiota in UC. Therapeutic
interventions may be refined in the future, with early prediction of clinical outcomes and
more personalized FMT treatments.

Appendices of Chapter 5

Appendix Table 5.1 - Clinical and demographic information of responders

and non-responders.

Responders?

Non-responders®

Number (Percentage)

Number (Percentage)

Patients 9 (38%) 15 (63%)
Samples 81 (45%) 99 (55%)

Missing 0 36
Sex

% Female“ 6 (67%) 6 (40%)
Pretreatment

% Budesonide* 5 (56%) 8 (53%)
Donor

% DO7¢ 2 (22%) 10 (67%)

Mean (SD) Mean (SD)

Age 45(17) 48 (16)

2 Remission (i.e., response) was defined at week 14 as no symptoms (partial Mayo score of 2
with no individual sub score of > 2) and an endoscopic Mayo score 0-1.

b All other patients, including those with a partial response (a decrease of at least 3 points in the
partial Mayo score and at least 1 point at the endoscopic Mayo score) at week 14 and patients
who left the study early, were classified as non-responders.

¢ Percentages calculated separately for responders and non-responders.
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Appendix Table 5.2 - Model choice and mixed models results for the 15 most
abundant families.

Significant results are obtained via a X? statistic (Wald test). Significant results are
highlighted in bold and blue. Absence of a p-value means that the variable was not
included in the model.

O} T s T T _¢T
3 2 8_32 2 TBES3
s s S¥® 9% ¥ 8T®
x? % 8§7 5% E£3
Families Model choice ws <2 daES 02| Tos
Bacillota fam. i.s. LMM (random 0.004 0.760  0.877 0.535 | 0.428
intercepts)
Bacteroidaceae LMM (random 0.243 0377 | - 0.794 | 0.052
intercepts)
Bacteroidales fam.i.s. | ZILMM (random 0.182 - - - 0.546
intercepts)
Bifidobacteriaceae ZILMM (random 0.230 - - 0.023 0.104
intercepts)
Clostridiaceae ZILMM (random 0.377 0.694 | - - 0.439
intercepts)
Clostridiales fam. i.s. | ZILMM (random 0.197 0.280 | 0.821 0.629 | 0.909
slopes)
Coriobacteriaceae ZILMM (random 0.618 0.027 | - 0.825 | 0.146
intercepts)
Eubacteriaceae LMM (random 0.509 0.701 | 0.499 0.337 | 0.661
slopes)
Lachnospiraceae LMM (random 0.059 0.904 | 0.640 0.734 | 0.014
intercepts)
Oscillospiraceae LMM (random 0.459 0.135 | 0.550 0.233 | 0.020
intercepts)
Prevotellaceae LMM (random 0.230 0.251 | - - <0.001
intercepts)
Rikenellaceae ZILMM (random <0.001 0.061 | - 0.038 0.181
intercepts)
Ruminococcaceae® LMM (random 0.963 0.708 | 0.891 0.381 | 0.011
intercepts)
Sutterellaceae ZILMM (random - - - 0.004 0.010
intercepts)
Veillonellaceae ZILMM (random 0.589 0.503 | <0.001 0.046 0.435
slopes)

2Wald test on multiple parameters: Responders, Responders x time point (first and second

spline)
> No transformation
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Appendix Table 5.3 - Significant differences in bacterial abundances
between the two donors (for donor D07 n = 13 and for donor D08 n = 14

samples).
The results are obtained with the independence test. Significant results are highlighted
in bold and blue.

Family Mean relative abundance p-value®
Donor D07 Donor D08

Bacillota fam. i.s. 0.0072 0.0327 <0.001
Bacteroidaceae 0.0265 0.0199 0.311
Bacteroidaceae fam. i.s. 0.0003 0.0002 0.722
Bifidobacteriaceae 0.0575 0.0575 0.100
Clostridiaceae 0.0572 0.0365 0.003
Clostridiales fam. i.s. 0.1033 0.0265 <0.001
Coriobacteriaceae 0.0501 0.0660 0.144
Eubacteriaceae 0.0204 0.0367 0.060
Lachnospiraceae 0.1971 0.4755 <0.001
Oscillospiraceae 0.0126 0.0024 0.006
Prevotellaceae 0.0314 0.0000 0.004
Ruminococcaceae 0.3183 0.1400 <0.001
Sutterellaceae 0.0018 0.0027 0.371
Veillonellaceae 0.0582 0.0000 <0.001

2 After a Bonferroni correction in which the adjusted p-value threshold was 0.004

Appendix Table 5.4 - Regression coefficients and p-values of the Simpson

dominance random-intercepts LMM.
Significant results are highlighted in bold and blue.

Predictors Estimates Standard error | p-value
(Intercept) -1.88 0.1 <0.001
Sex (male relative to female) | 0.27 0.09 0.01
Clinical outcome (responder | -0.14 0.13 0.30
relative to non-responder)

Time (1% spline) 0.30 0.16 0.06
Time (2" spline) 0.23 0.12 0.06
Clinical outcome (responder | -0.2 0.24 0.07
relative to non-responder) *

Time (1%t spline)

Clinical outcome (responder | -0.22 0.16 0.17
relative to non-responder) *

Time (2" spline)
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Appendix Figure 5.1 - Composition of the 15 most abundant families in the
donors and the patients’ microbiota over time. The 12 patients at the left-hand
side of the plot (under the plot of donor D0O7) were treated with feces from donor DO7.
The 12 patients at the right-hand side of the plot (under the plot of donor D08) were
treated with samples of donor D08. Patients with a blue title are responders, patients with
a red title are non-responders.
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Appendix Figure 5.2 - Relative abundances over time of the 15 most abundant
bacterial families. The points indicate the individual measurements of the patients. The lines
are the mean relative abundances per group (responders in blue and non-responders in red).
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Appendix Figure 5.3 - PCA plot with Aitchison distances in
microbiota profiles differentiated per donor. The PCA plots include
data ellipses around the different groups (e.g., blue for the responders, red

for the non-responders, and grey for the donors) and a loading vector of
Prevotellaceae to obtain an initial visualization about the extent of separation
between responders, non-responders, and donor samples. The different symbols,
closed circles, open circles, open triangles, and closed triangles, indicate
responders, non-responders, donor D07, and donor D08, respectively.
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Appendix Figure 5.4 - Plot with Aitchison distances in microbiota profiles
differentiated per patient and corresponding donor. Patients with a blue title
are responders, patients with a red title are non-responders.
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Appendix Figure 5.5 - Importance of the contribution of different families
to each cluster. A) Cluster 1, B) Cluster 2, C) Cluster 3, D) Cluster 4, and E) Cluster 5.
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Appendix Figure 5.6 - PCA plot with Aitchison distances in
microbiota profiles for different clusters, showing the taxa that
generally differ across the samples. The PCA plots include data ellipses
around the different Dirichlet clusters and loading vectors of families to
obtain an initial visualization about the extent of separation between patient
(responders and non-responders) and donor samples. The different symbols,
closed circles, open circles, open triangles, and closed triangles, indicate
responders, non-responders, donor D07, and donor D08, respectively.
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Appendix Figure 5.7 - Sensitivity analyses of DMM models. A) patient
samples only, B) patient samples excluding patient 102 (with a distinct microbiota
from all other patients), and C) patient samples excluding patients 109 and 117
(only two samples available for those patients).
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Appendix Figure 5.8 - Genera (panels A and B) and species (panels C and
D) within the Prevotellaceae family. Relative abundances (panels A and C) and
counts (panels B and D) are given.
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Ecological dynamics of donor and host
microbial species in the treatment of
ulcerative colitis with fecal microbiota
transplantation

Abstract

Fecal microbiota transplantation (FMT) has emerged as a promising treatment for

the chronic immune-mediated disease ulcerative colitis (UC). However, the ecological
dynamics underlying clinical remission remain poorly understood. To investigate
these dynamics, we analysed data from 24 UC patients treated with four rounds of
FMT donated by two healthy donors. Microbiota samples from patients were collected
at nine standardized time points before, during, and after treatment, covering a
period of 14 weeks. Additionally, 27 donor samples were analysed. Species detected
in the recipients’ gut microbiota were categorized into ecological categories based

on their origin and temporal dynamics: species already present in the host pre-FMT,
species derived from the donor, or novel species, i.e., absent before FMT in both host
and donor samples but detected later. Overdispersed Poisson regression models with
random effects were employed to model the number of species within each category
over time. Furthermore, we investigated the change in relative abundance for species
present in the host pre-FMT. The results revealed that host species with higher relative
abundances prior to FMT were more likely to persist following FMT. Notably, patients
who achieved combined clinical and endoscopic remission at week 14 retained a
significantly higher number of host species compared to non-responders. In contrast,
non-responders initially exhibited a higher colonization of donor species than
responders, but colonization rate decreased significantly over time in non-responders.
These findings suggest that clinical remission following FMT is associated with a
resilient patient gut community, capable of controlled incorporation of donor species,
without replacing resident species.

Introduction

Fecal microbiota transplantation (FMT) is the transfer of fecal matter, including gut
microorganisms, from the intestine of a healthy donor to a diseased recipient with the goal

of modulating the recipient’s disturbed microbiota.’®* %3¢ FMT has been demonstrated to be
effective in recurrent Clostridioides difficile infection,'®*3#" but the success rate is lower for more
complex diseases, such as inflammatory bowel disease (IBD)."**'* A possible cause for the
lower success rate of FMT in complex diseases is the tendency of the recipient’s microbiota to
revert to its original pre-FMT adverse state.” Transition to a healthier state is likely helped by
the successful colonization (engraftment) of donor-derived microorganisms. Therefore, it has
been suggested that the success of FMT depends on the donor’s gut microbial diversity and
composition.?'% 3% The extent to which shifts in the patient’s microbiota towards the donor’s
microbiota are beneficial for resolving gut disturbances remains unclear.? 195200414 This donor-
centric view has been challenged, and the importance of the recipient and procedural factors
to determine FMT outcomes has been highlighted.'®? 415417
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In previous analyses of the FMT trial for ulcerative colitis (UC) we examined the engraftment
of specific microbial species following FMT, and their associations with clinical remission (see
also Chapter 5).3%% 414 For this, we analysed the data from a randomized controlled trial (RCT)
involving 24 UC patients treated with four rounds of FMT donated by two healthy donors.
Interestingly, we observed that the rate of microbial engraftment did not correlate with
successful clinical remission,*** a paradox also noted in a meta-analysis conducted by Schmidt
et al. (2022) involving 316 FMT procedures.” In their study, clinical success was not correlated
with donor strain colonization or replacement of recipient species. Instead, recipient factors
seemed to play a more important role in determining FMT outcomes than donor-related
factors.'® The seemingly limited role of engraftment in predicting clinical outcome of FMT
defies the super-donor hypothesis and necessitates deeper investigation into the ecological
changes underlying clinical remission.

In this study, the role of donor and host microbial species in determining clinical outcome of
FMT is investigated further by applying the conceptual framework introduced by Schmidt

et al. (2022)'*° to a longitudinal setting. We capitalize on a randomized controlled trial*** with
dense repeated sampling to map the succession dynamics in the recipient’s gut microbiota
of UC patients following FMT treatment in relation to clinical remission. Our analysis focuses
on ecological dynamics on a species level, categorizing all taxa based on their origin and
temporal presence: already present in the host before FMT, derived from the donor, or
detected during or after the FMT therapies while absent in both the pre-FMT host and the
donor.

Methods

The study population

A total of 24 adult patients experiencing mild to moderate exacerbations of UC were included
in a double-blind randomized controlled trial conducted at LUMC.?** Written informed
consent was obtained from all study participants prior to their participation. Demographic
variables and subject characteristics are provided in Appendix Table 6.1, with further details
on the study population and clinical characteristics provided by van Lingen et al. (2024) and
in Box 6.1.%%

Following pretreatment with either budesonide (n = 12) or placebo (n = 12), patients received
four fecal transplants at weekly intervals. Donors (D07 and D08) were randomly assigned.
FMTs were infused in the duodenum via a nasoduodenal tube or gastroscope.*** Stool
samples were obtained before and after the pretreatment phase, before every FMT (four
times), and 1 week, 4 weeks, and 8 weeks after treatment. At the end of the study, at week
14, a sigmoidoscopy was performed to assess the endoscopic Mayo score. Remission (i.e.,
response) was defined at week 14 as no symptoms (partial Mayo score of 2 with no individual
sub score of > 2) and an endoscopic Mayo score 0-1. Partial remission was defined as a
decrease of at least 3 points at the partial Mayo score and at least 1 point at the endoscopic
Mayo score. A total of nine patients achieved remission, and one patient achieved partial
remission. Of the 14 non-responders, 10 patients left the study early (in total 2 patients did
not finish all four FMT treatments) because their symptoms worsened.?3 14
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For this study, we defined a responder as a patient in remission after FMT (n = 9). Non-
responders were defined as having activity despite FMT (non-responders and partial
responders, n = 15).

Box 6.1 - Patient inclusion criteria, treatment protocols, and study
design. The patients were included in the study if they had a full Mayo score

of 4-9 and a colonoscopy with a Mayo endoscopic sub score of 1-2 within

four weeks before study entry. Patients were excluded from this study if they
had used antibiotics (< 6 weeks), used oral corticosteroids (< 8 weeks), surgical
treatment (< 12 weeks), treatment with any investigational drug in another trial
(< 12 weeks), significant signs of active infectious gastro-enteritis or enterocolitis,
or any other significant medical illnesses. During the study, the medication

and diet of the patients was not changed. Patients randomly received daily
treatment for three weeks with either 9 mg budesonide or a placebo drug
(Appendix Table 6.1). One day before the first FMT a bowel lavage with two liters
of Kleanprep (macrogol solution) was performed to cleanse the intestine. Before
every fecal transplantation the patients did not eat for at least six hours. The
fecal donor suspensions were provided by the Netherlands Donor Feces Bank
(NDFB). Collected fecal samples were stored and prepared at the LUMC following
standard protocols.*** Further details on the study population and clinical
characteristics are provided by van Lingen et al. (2024).2%*

Microbiota data

DNA was extracted from the donor and recipient stool samples and shotgun sequenced with
100 bp single-end reads to a median depth of 2.9 million reads by Diversigen (New Brighton,
Minneapolis, USA) using the Illumina NovaSeq platform. Raw reads mapping to the human
genome were removed using bowtie2 (version 2.4.2)**¢ and the GRCh37 reference genome
and reads were quality-trimmed using fastp (version 0.20.1),**” both part of an in-house
workflow (git.lumc.nl/snooij/metagenomics-preprocessing). The mOTUs3 workflow (version
3.0.1) was used to generate taxonomic profiles.?®® 3¥° Unassigned, human-derived, archaeal,
and low-quality reads were removed from the data, which resulted in 1552 unique mOTUs.
For the sake of simplicity, we use the term ‘species’ to refer to unique mOTUs throughout.
The results table was then imported into R (version 4.2.2) for analysing the data, visualizing
the results and performing the statistical tests. R code is available on the GitHub repository
(susannepinto/FECBUD_microbiome).

Mapping ecological categories

Respectively 13 and 14 samples were available for donor D07 and donor D08. Note that
every recipient received FMT material from only one of the donors. We could not match
every recipient sample to a specific donor sample used for the FMT, because not every
donor sample used for FMT was sequenced. Therefore, we created a dataset with the core
microbiota for each donor. The core donor microbiota was defined as having its relative
abundance higher than 0.1% in at least one sample. The core donor microbiota yielded
120 and 84 unique species for donors D07 and D08, respectively.

Subsequently, we created a presence or absence dataset of all species per recipient and
per time point, and every species was assigned to an ecological category per recipient and
per time point based on its origin and presence over time, according to the decision tree
presented in Figure 6.1 (detailed explanation Box 6.2).
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Figure 6.1 - Decision tree used to assign species to ecological categories. The categories
are based on the origin and presence of a species over time. First, the species was compared to the
pre-FMT host samples, then to the core donor microbiota. Next, the presence or absence at all previous
time points was considered to assign the species to an ecological category. Note that we ignored

the first absence of a species when categorizing species as lost or as transient upon re-detection.

In Sensitivity T we evaluated whether this choice had an impact on the results (Box 6.2).
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Per recipient, for every species ever present at any time point in the recipient, or present

in the microbiota of the associated donor, a comparison was made with the recipient’s
pre-FMT sample and with the microbiota of the corresponding donor. All species present in
the recipient’s pre-FMT sample were placed into a host category (Resident, Host transient,

or Species loss), depending on the pattern of presence over time. If species were unique

for the donor relative to the recipient’s pre-FMT samples, species were placed into a donor
category (Colonization, Donor transient, or Rejection). If species were not present in the

host pre-FMT or in the microbiota of the donor, they were classified as a novel species
(Novel, Novel transient, or Novel loss). Within these broad categories, a species was further
categorized as a stable (Resident, Colonization, or Novel), intermittent (Host transient, Donor
transient, or Novel transient), or previous occupant (Species loss, Rejection, or Novel loss)

in the microbiota, depending on the presence at that moment and at the previous time
points. Because absence in microbiota data can also mean that the abundance was under the
detection limit, in the base case we allowed, for each species, the occurrence of one single
absence without direct consequences for categorization in the rest of the time series. Due

to the way the categories are defined, some categories cannot occur at the first time points.
For example, a donor-derived species first had to colonize the gut (colonization), then

be absent for at least two time points (absence ignored (NA) and Rejection), and then be
detected again to be categorized as a Donor transient species (Box 6.2).

In sensitivity analyses, we tested some variations to the base case criteria regarding the
temporal information used for categorizing the species. In Sensitivity 1 we did not allow the
occurrence of any absence when categorizing species into either of the host, donor, or novel
categories (Figure 6.1). In Sensitivity 2 we only considered the presence or absence at the
previous time point instead of all the previous time points (Appendix Figure 6.3). In contrast,
in Sensitivity 3 the presence of species at all time points is considered in the categorization
of species at a particular time point (Appendix Figure 6.4). Sensitivity 4 is the same as
Sensitivity 3 but with the added criterion of not allowing the occurrence of any absence
(Appendix Figure 6.4). In Box 6.2 examples on categorization of species and the differences
between the sensitivity analyses are illustrated.
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Box 6.2 - Examples illustrating the categorization of the species in the base case
and in the four sensitivity analyses.

Sensitivity analyses

In Sensitivity 1 we did not allow the occurrence of any single absence when categorizing
species as lost or as transient upon re-detection (in either the host, donor, or novel
categories). Secondly, in Sensitivity 2 we only considered the previous time point instead

of all previous time points (Appendix Figure 6.3). Therefore, the species can switch more
frequently between ecological categories. In Sensitivity 3 and in Sensitivity 4, we considered
the full time series (also future points) before assigning them to a category with and without
considering a single absence, respectively (Appendix Figure 6.4).

Species present in the host pre-FMT

In the base case scenario, a host species was present in one of the pre-FMT samples of

the host (Example 6.1). The resident species has been present up to a specific time point,
however, we have ignored a single absence of the species. If the species was absent for two
or more time points up to the current one, the species was categorized as a host transient
species. The third possible category for a host species is based on the absence of the species
at a specific time point and is called ‘Species loss’.

Example 6.1 - A species present in the host pre-FMT can be categorized

as Resident (Res), Host transient (HT), or Species loss (SL).

Time point
Host
Donor | pre- 1 2 3 4 8 10 14
FMT
< a a a < a a a a
A - Base case Res ' Res | NA Res | Res | Res | Res
B - Sensitivity 1 Res | Res SL HT HT HT HT
C - Sensitivity 2 Res | Res ' SL HT Res | Res | Res
D - Sensitivity 3 Res | Res | NA Res Res | Res | Res
E - Sensitivity 4 HT HT SL HT HT HT HT

Species identified in both the host pre-FMT and the donor are categorized as host species
into the groups: Resident (Res), Host transient (HT), and Species loss (SL) (Example 6.2).
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Example 6.2 - A species both present in the host pre-FMT and in the

donor will be categorized as a host species into: Resident (Res), Host
transient (HT), or Species loss (SL).

Time point
Host
Donor | pre- 1 2 3 4 8 10 14
FMT
S 5|5 E| 8 5 E| 5§
¢ ¢ 2 & ¢ B B ¢ ¢
a a < < a < < a a
A - Base case NA SL HT SL SL HT HT
B - Sensitivity 1 SL SL HT SL SL HT HT
C - Sensitivity 2 SL SL HT SL SL HT Res
D - Sensitivity 3 NA SL HT SL SL HT HT
E - Sensitivity 4 SL SL HT SL SL HT HT

Donor-derived species

A donor species is a species that was not detected in the host pre-FMT, and that was present
in the core donor microbiota (Example 6.3). Again, there are three possible categories:
Colonization, Donor transient, and Rejection. Species are categorized according to rules
similar to how the host species are categorized (Colonization similar to Resident, Donor
transient similar to Host transient, and Rejection similar to Species loss). However, a species
can still be placed in the Colonization category after being absent for some time points, as it
is possible that a species does not colonize directly after the first FMT, but that it needs time
to establish in the gut. Note that also in this category a species is allowed and ignored if it is
absent once, but only after being present.

Example 6.3 - A species not present in the host pre-FMT, but present in

the donor can be categorized as Colonization (C), Donor transient (DT),
or Rejection (Rej).

Time point
Host
Donor | pre- 1 2 3 4 8 10 14
FMT
¢ 2 ¢ ¢ £ & i B
a < a a < a a < a
A - Base case @ C NA C C Rej DT
B - Sensitivity 1 C C Rej DT DT Rej DT
C - Sensitivity 2 @ C Rej DT C Rej DT
D - Sensitivity 3 DT DT NA DT DT Rej DT
E - Sensitivity 4 DT DT Rej DT DT Rej DT
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Novel species

A novel species has not been present or was under the detection limit in the pre-FMT host
samples, as well as in the core donor microbiota (Example 6.4). Similar to colonizing species,
novel species can also enter the microbiota of the host later. However, where a donor species
is in that case categorized as ‘Rejected; the novel species is not categorized as ‘Novel loss;, but
as ‘Absent’and not taken into account in the analyses, until the species has been present once.

Example 6.4 - A species not present in either the host pre-FMT or
the donor can be categorized as Novel (N), Novel transient (NT), or

Novel lost (NL), from the moment the species appeared in the patient
samples.

Time point
Host
Donor | pre- 1 2 3 4 8 10 14
FMT
< a a o < a a a a
A - Base case - N N N NA N NL
B - Sensitivity 1 - N N N NL NT NL
C - Sensitivity 2 - N N N NL NT NL
D - Sensitivity 3 - NT NT NT NA NT NL
E - Sensitivity 4 - NT NT NT NL NT NL

Modeling the number of species across ecological categories

We modelled the number of species across ecological categories by means of overdispersed
Poisson regression models with random effects to accommodate correlation between
repeated measurements per recipient. For this, we employed a generalized linear
mixed-effects model (GLMM) with a negative binomial family and a log-link using the
‘glmer.nb’ function from the ‘Ime4’R package.>** The temporal evolution of the expected
log-number of species in each category was modelled with a spline transformation of the
original time variable (in weeks since start of FMT treatment). Estimates from the spline
model were compared to those from a linear model in a sensitivity analysis, by modeling the
expected log-number of species as a simple linear function of time. Possible differences in
succession dynamics between responders and non-responders were investigated by adding
the treatment response variable as a covariate to the model, and through specification of
interaction terms with time and ecological category. Patient-specific variables, namely, donor
(donor DO7 vs. D08), pretreatment (budesonide vs. placebo), age, and sex (female vs. male),
were included based upon their role as possible confounders.

Change in population abundances of host-derived species

To explore the dynamics of host-derived species in response to FMT in more detail, we
investigated the relative abundance over time for the species that were already present
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in the host pre-FMT. Results reveal the distribution of abundance differences at particular

time points across subjects per ecological category for the species that were already present
pre-FMT. In addition, we compared the baseline distributions among species that were

later categorized as resident, host transient, and species lost among both responders and
non-responders. Finally, we also calculated the differences in microbial abundance before

and after FMT for all species that were present in the recipients’ pre-FMT samples. Because
several non-responder patients quitted early during the study, we only included patients who
completed all four rounds of FMT and had at least one post-FMT sample (n = 18 patients, of
whom 9 were defined as responders) and used the last available post-FMT measurement when
calculating the difference in relative abundance before and after FMT. Because the abundance
distributions were right-skewed, we used a natural-log transformation of the abundances.
Consequently, the abundance differences on the log scale can be interpreted as proportional
differences on the original scale (in percentage differences). To assess the significance of these
differences between responders and non-responders, linear mixed-effects models (LMM) were
applied, accounting for the correlation of repeated observations within each patient (using the
‘Imer’ function from the ‘lme4’R package).>*

Results

Succession of host-derived, donor-derived, and novel species following FMT
To study the succession dynamics of species during and after FMT in our UC cohort, we
modelled the number of species across ecological categories and investigated differences
between responders and non-responders (Figure 6.2). In these models, donor and sex were
included as covariates, while pretreatment and age were not relevant as confounders.
Appendix Figure 6.1 shows the specific parameter estimates of the model depicted in
Figure 6.2.

At the start of the study, we observed a significantly higher number of host species in the
resident categories (species that were present in the patient’s gut pre-FMT) among responders
compared to non-responders, and this difference persisted over time (Figure 6.2A). Although
the number of resident species declined over time in both responders and non-responders
this decrease was not statistically significant. In contrast, the number of host transient species
increased significantly over time in both patient groups (Figure 6.2B). Of note, this increase
may be partly attributable to the definition of host-derived species being transient upon re-
detection after temporary absence. Non-responder patients exhibited a significantly greater
loss of host species over time compared to responders, in whom the number of host species
lost decreased significantly over time (Figure 6.2C).

Conversely, non-responders were initially colonized by a significantly higher number

of donor species compared to responders. However, the number of colonizing species in
non-responders significantly declined over time, whereas it remained constant in responders
(Figure 6.2D). The number of donor transient species was similar between the two patient
groups at the start of the study and showed a significant increase over time, especially in
non-responders. However, this category remained relatively small and differences according to
treatment response were not significant (Figure 6.2E). The number of rejected donor species
was higher at baseline and over time for non-responders compared to responders, however
this difference also did not reach statistical significance (Figure 6.2F).
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The number of novel species detected post-FMT was similar for both responders and
non-responders and remained constant in time (Figure 6.2G). The number of novel transient
species increased significantly over time; this increase was more or less similar for both the
responders and non-responders (Figure 6.2H). Initially, the responders lost significantly more
novel species than the non-responders, but over time the latter group lost significantly more
novel species than the responders (Figure 6.2, panel I).

We also found significant differences between responders and non-responders in the host
transient and novel transient categories when applying a linear model instead of splines for
the temporal evolution of the number of species in each category (Appendix Figure 6.2).

It should be noted that these categories contained relatively few species, and the lack of
statistical significance when using splines is likely explained by a reduced statistical power.
Importantly, all differences between responders and non-responders identified by the spline
model were retained in the linear model for category size (Appendix Figure 6.2).
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Figure 6.2 - Temporal changes in the number of species per ecological
category. Average trajectories among responders to the treatment are indicated with

blue lines, average trajectories among non-responders with red lines. Individual patient
trajectories are shown with grey lines. Note the different scaling of the y-axis per category.
The model contained a random intercept per patient to account for repeated measurements.
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Time was modelled with a spline. The levels of significance are reported above each plot
and are indicated by asterisks (*** = p-value < 0.001; ** = p-value < 0.01; * = p-value < 0.05;
NS = not significant).

Sensitivity analyses

We conducted four different sensitivity analyses concerning the categorization of the species.
To illustrate the effect of categorization on the rates of change over time, we generated a

plot of the average slope estimates according to each sensitivity analysis (Appendix Figures
6.5 to 6.10). Sensitivity analysis 1 resulted in a slightly stronger decline in the number of
species for the resident, colonization, and novel categories (Appendix Figures 6.5, 6.9,

and 6.10). This outcome is a logical consequence of the criterion that a species can no longer
be absent for a single time point. Consequently, the likelihood of a species moving to a
different category (transient or loss) increased, since it was by definition not possible to return
to the categories denoting stable presence over time. This resulted in transient categories
having higher intercepts, but the average slopes remained unchanged for all other categories
(Appendix Figures 6.5, 6.9, and 6.10). Similarly, for Sensitivity analysis 2, no substantial
differences from the base case were found (Appendix Figures 6.6, 6.9, and 6.10). The most
profound differences were noted in the slopes of the resident and transient categories.

The slopes of the transient categories were smaller, especially for the host-derived species
among non-responders (Appendix Figures 6.6, 6.9, and 6.10). Sensitivity analyses 3 and 4

led to more stable patterns over time, especially for the resident category, as compared to
both the base case scenario and the other sensitivity analyses (Appendix Figures 6.7 to 6.10).
This stability can be attributed to the modifications in the category assignment criteria in
Sensitivity analyses 3 and 4, where stable presence is defined at all time points. Consequently,
fewer species were assigned to the resident, colonization, and novel categories and more to
the transient categories (Box 6.2).

Relative abundances of host resident species pre- and post-FMT

We further assessed changes in the relative abundance of species present in the gut prior

to treatment to investigate whether the relative abundance pre-FMT is indicative of the
category that a species will reach post-FMT. Host transient species displayed significantly
lower relative abundances at all time points compared to resident species (Figure 6.3A and
Appendix Table 6.2). In both responders and non-responders, recipient species with higher
pre-FMT relative abundances were more likely to remain in the recipient’s gut and become
resident species, compared to recipient species that were transient or lost (Figure 6.3B,
Appendix Figure 6.11, and Appendix Table 6.2). Therefore, our findings show that initial
microbiota composition is associated with post-FMT composition. The differences in relative
abundance of host resident species between the pre-FMT measurement and the last available
post-FMT measurement were centered around zero (Figure 6.3C). A positive difference
indicates an increase in the relative abundance of resident species following FMT, while a
negative difference denotes a decrease. Thus, approximately equal numbers of resident
species showed either a positive or negative response to FMT. No significant differences were
found between responders and non-responders regarding relative abundances of resident
species in response to FMT (Figure 6.3C, Appendix Figure 6.12, and Appendix Table 6.2).
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Figure 6.3 - Comparison of relative abundances of species in different categories.
A) Relative abundances of Resident (blue) and Host transient (red) species over time. Here, no
distinction has been made between responders and non-responders. B) Relative abundance of host
species at pre-FMT measurement. The relative abundances in species categorized as Resident, Host
transient, and Species loss species between responders (blue) and non-responders (red) are not
significant (Appendix Table 6.2). C) Difference in relative abundance in resident species between
pre-FMT and last available post-FMT measurement for responders (blue) and non-responders (red).
Significance was tested with linear mixed-models and shown in the plots (**** = p-value < 0.0001,
*** = p-value < 0.001; ** = p-value < 0.01; * = p-value < 0.05; NS = not significant).

Chapter6 158 Ecological dynamics of donor and host microbial species following FMT



Discussion

The success of FMT for UC is ultimately determined by whether the patient achieves clinical
and endoscopic remission after treatment. It has been suggested that treatment success is
related to the extent to which the recipient’s microbiota composition shifts towards that of
the donor.>**4'® However, we found no evidence supporting this link, in line with several
Other Studies.199'200' 384,414,415

We used an ecological framework of succession to investigate microbiota dynamics
associated with clinical success of FMT. Microbial species were categorized as pre-existing in
the host before FMT, donor-derived, or newly detected. We found that responders retained
a higher number of host species compared to non-responders. Although non-responders
initially exhibited colonization by more donor species than responders, this colonization

in non-responders declined over time and eventually became equal to the levels observed
in responders. These findings suggest that a successful clinical response to FMT may be
facilitated by a microbiota receptive to colonization without compromising the resident
microbiota. Additionally, non-responders lost substantially more novel species over time
compared to responders, indicating that newly detected species failed to establish stably
within the non-responder gut microbiota. This finding suggests less robust alterations in
gut microbiota composition among non-responders. A successful FMT may induce a shift in
which the recipient’s microbiota integrates donor and novel species, achieving a balanced
coexistence to restore the gut microbial ecosystem. This observation aligns with earlier
research.'®® 2 Qur study expands upon previous analyses using longitudinal analysis of UC
patients, thereby providing a fine-grained view of the ecological dynamics over time of donor
and host species following FMT.

FMT can be seen as a perturbation experiment on the gut microbiota, creating a dynamic
interplay between donor and recipient communities, which may open ecological niches

for other microorganisms.* '** The balance between the engraftment of beneficial
microorganisms and competition with deleterious microorganisms in the recipient gut,
combined with systemic host processes, such as the modulation of immune responses and
the interaction with (external) environmental factors and genetic characteristics, could
initiate clinical remission.*’* The process of microbial invasion involves various challenges
that incoming microorganisms need to overcome to establish colonization and influence the
existing microbial community. It is important for the invading species to achieve sufficient
metabolic activity in the gut to interact with the resident community. This interaction may
also be achieved by transient species, indicating that permanent colonization is not always
necessary.®> Analogous to nurturing an ecosystem such as a crop field through biological
control, FMT necessitates the introduction of donor species with healthy functional
properties to modify the recipient’s system rather than inducing wholesale changes that
might lead to the extinction and replacement of existing microbial inhabitants. Therefore,
the recipient microbiota must exhibit a degree of resilience, allowing it to integrate donor
species without completely altering its composition. FMTs may also strengthen recipient
species by introducing beneficial spores or metabolites, thereby enhancing the stability and
functionality of the recipient’s own microbiota.'® The stability of the microbiota is maintained
through controlled species loss, ensuring that introduced organisms integrate harmoniously
with the pre-existing ecosystem.
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The outcome of FMT is influenced by a range of ecological processes, spanning from neutral
or stochastic factors (e.g., donor propagule pressure) to adaptive or selective factors (e.g.,
niche competition and differentiation).’®*#'° This indicates a complex mechanism of action

of FMT in patients with UC, necessitating the establishment of a novel homeostasis between
the donor and recipient microbiota. This complexity may also explain why prolonged FMT
treatment with multiple donor infusions appears necessary in UC, as repeated exposure may
be required to achieve an optimal balance between recipient and donor microbiota. This
approach contrasts with the FMT treatment of recurrent Clostridioides difficile infections (rCDI),
which is characterized by a depleted microbiota that can be effectively restored with a single
infusion, with a cure rate of about 80%."°

The success of FMT may not be reliant on resembling the donor’s microbiota, but rather

on establishing a complementary relationship, emphasizing the importance of selecting
donors whose microbiota optimally aligns with the recipient’s specific needs.**° Unlike the
developmental stages of a child’s microbiota, the gut microbiota of a UC patient is already
an established, independent microbial community. This pre-existing microbiota makes the
introduction of new species and the induction of change considerably more challenging.®” ¢
Tailoring the selection of FMT donors to those enriched in taxa capable of restoring disturbed
metabolic pathways in the recipient might enhance the effectiveness of FMT, particularly in
metabolic dysfunction associated diseases.? 2°%*°° For example, incoming species that are
metabolically complementary to the recipient’s community, by introducing novel functions
or by occupying previously unfilled niches, may be more likely to colonize the resident
community.?”*?° In addition, a high gut microbial diversity in the donor and low diversity in
the recipient may further influence the success of colonization." 2%

From an ecological perspective, our findings suggest that donor and recipient species can
coexist. We might hypothesize that they occupy distinct metabolic niches. Moreover, we
observed that species with a higher abundance prior to FMT (the main ‘founders’) are more
likely to persist during the FMT than species with a lower abundance. This implies that the
competitive strength of the resident species is related to their abundance, indicating that
within each metabolic niche, communities are built by random winners, driven by stochastic
colonization.® This is in line with ecological studies showing that functional differences create
opportunities for coexistence (niche theory). However, within each niche functionally similar
species can coexist, and communities are structured to random stochastic rules (neutral
theory).*?' Within the gut microbiota, species often have overlapping functions, allowing
them to replace each other and take over specific functional traits if one species is perturbed
or removed.”

This study has several limitations. The first concerns the classification of patients into
responders and non-responders. Patients who dropped out early due to worsening symptoms
were classified as non-responders. Microbiota data were not collected for these patients,
which potentially introduces bias into the results for the non-responder group. Moreover,
the study concerns only 24 UC patients and the time series up to 14 weeks represents only
a snapshot of the dynamic process of microbial succession. This sample size is too small to
draw definite conclusions and further investigation into longer-term outcomes is necessary
to gain a more comprehensive understanding.*?? A third limitation is the sequencing

depth (2.9 million 100 bp single-end lllumina reads), which does not allow for definitive
determination of whether an absent species was actually absent in the host or donor, or
simply undetected.®”
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Also, the low sequencing resolution makes it impossible to determine whether the same
strain present in the donor sample successfully colonized the recipient’s gut microbiota or
whether the donor and host strains coexisted or were replaced following FMT. Lastly, we did
not have data to directly link the unique donor sample used for FMT to the corresponding
recipient samples. Therefore, we used the combined microbiota data, which may have led
to the misclassification of some low-abundance colonizing species from the donor as novel
species.

By applying an ecological perspective to FMT, our study sheds new light on the importance
of ecological principles, such as succession of microorganisms and the resilience of the
recipient’s system, in shaping therapeutic outcomes. Our study reveals the ecological
dynamics of the gut microbiota during and after FMT in patients with UC, with a particular
focus on the dynamics of recipient, donor, and novel species. Contrary to some previous
studies, the overall engraftment of the donor microbiota did not emerge as the most
important factor for FMT success in this study.***“* The key factor influencing the response
may not be the overall engraftment of donor species, but rather the recipient’s ability

to retain resident species while simultaneously enriching with novel and donor species.
Thus, successful FMT hinges on fostering a microbiota shift that complements rather than
compromises the existing ecosystem. This ecological interpretation aids in understanding
the mechanism through which FMT may induce clinical remission and also underscores the
nuanced interplay between donor and recipient microbiota essential for therapeutic efficacy.
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Appendices of Chapter 6

Appendix Table 6.1 - Clinical and demographic information of responders

and non-responders.

Responders? Non-responders®
Number (Percentage) Number (Percentage)
Patients 9 (38%) 15 (63%)
Samples 81 (45%) 99 (55%)
Missing 0 36
Sex
% Female“ 6 (67%) 6 (40%)
Pretreatment
% Budesonide« 5 (56%) 8 (53%)
Donor
% DO07¢ 2 (22%) 10 (67%)
Mean (SD) Mean (SD)
Age 45 (17) 48 (16)

2 Remission (i.e., response) was defined at week 14 as no symptoms (partial Mayo score of 2
with no individual sub score of > 2) and an endoscopic Mayo score 0-1.

b All other patients, including those with a partial response (a decrease of at least 3 points in the
partial Mayo score and at least 1 point at the endoscopic Mayo score) at week 14 and patients
who left the study early, were classified as non-responders.

¢ Percentages calculated separately for responders and non-responders.
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Appendix Table 6.2 - Model estimates and p-values for the differences in
relative abundances.

Results are visualized in Figure 6.3. Multiple models were used to test the differences.
Significant results are highlighted in bold and blue.

A) Abundance differences per time point

Post-3

Intercept -5.72735 0.15259 -37.535 < 2e-16
Host transient -0.68310 0.08039 -8.497 < 2e-16
Post-4

Intercept -5.91299 0.10204 -57.95 <2e-16
Host transient -0.83215 0.06461 -12.88 <2e-16
Week 8

Intercept -5.95367 0.10251 -58.08 <2e-16
Host transient -0.83115 0.05676 -14.64 <2e-16
Week 10

Intercept -5.75390 0.18769 -30.66 3.73e-10
Host transient -0.84484 0.06146 -13.75 < 2e-16
Week 14

Intercept -5.90331 0.09321 -63.33 <2e-16
Host transient -0.78173 0.05636 -13.87 < 2e-16
B) Relative abundance pre-FMT

Categories within responders

Intercept -5.48590 0.19461 -28.189 2.17e-09
Host transient® -0.63418 0.07692 -8.245 3.91e-16
Species loss® -0.71556 0.06999 -10.224 < 2e-16
Categories within non-responders

Intercept -5.60069 0.18367 -30.49 5.3e-10
Host transient® -0.72155 0.07792 -9.26 <2e-16
Species loss? -0.80577 0.06514 -12.37 < 2e-16
Differences in Resident species between responders and non-responders

Intercept -5.6414 0.1732 -32.57 2.6%e-16
State (Responders) | 0.1314 0.2432 0.54 0.597
Differences in Host transient species between responders and non-responders
Intercept -6.3584 0.1989 -31.973 5.92e-16
State (Responders) | 0.2003 0.2797 0.716 0.484
Differences in Species loss species between responders and non-responders

Intercept -6.3788 0.2133 -29.902 1.34e-14
State (Responders) | 0.1883 0.3053 0.617 0.546

C) Ratio relative host species abundances between responders and non-responders

Intercept

0.184309

0.152030

1.212

0.246

State (Responders)

0.006944

0.213633

0.033

0.975

2 The difference between the host transient and species loss categories for responders and
non-responders was tested in a separate model and was not significant (p-values were 0.303

and 0.343 for responders and non-responders, respectively).
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Appendix Figure 6.1. Results of modeling (with a spline) the number of species
per ecological category in the base case. The point estimates, 95% confidence intervals,
and a reference line at 0 are shown. When the horizontal lines do not cross the vertical reference
line, this means that the coefficients are significantly different from 0. The original time variable
was modelled with a spline rescaled to denote time in weeks since the start of FMT. The model
contained a random intercept per patient to account for repeated measurements.
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Appendix Figure 6.2 - Results of modeling (without a spline) the number of
species per ecological category in the base case. The point estimates, 95% confidence
intervals, and a reference line at 0 are shown. When the horizontal lines do not cross the vertical
reference line, this means that the coefficients are significantly different from 0. Contrary to

the base case, the original time variable was not modelled with a spline. Time was rescaled

to denote time in weeks since the start of FMT. The model contained a random intercept per
patient to account for repeated measurements.
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Appendix Figure 6.3 - Decision tree for Sensitivity 2 analysis to assign species to
ecological categories according to different inclusion criteria as in the base case
analysis. The categories are based on the origin and presence of a species over time. First, the
species was compared to the pre-FMT host samples, then to the core donor microbiota. Next, the
presence or absence at only the previous time point was considered to assign the species to an
ecological category. Differences with the base case scenario, where all previous time points were
considered, are indicated with a dotted line around the box (see also Box 6.2).
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Appendix Figure 6.4 - Decision tree for Sensitivity 3 and 4 analyses to assign
species to ecological categories according to different criteria as in the base case
analysis. The categories are based on the origin and presence of a species over time. First, the
species was compared to the pre-FMT host samples, then to the core donor microbiota. Next,
the presence or absence at all time points was considered to assign the species to an ecological
category. Differences with the base case scenario, where only previous time points were
considered, are indicated with a dotted line around the box (see also Box 6.2).
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Appendix Figure 6.5 - Temporal changes in the number of species per
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ecological category for Sensitivity 1. Average trajectories among responders to the
treatment are indicated with blue lines, average trajectories among non-responders with
red lines. Individual patient trajectories are shown with grey lines. Note the different scaling
of the y-axes. The model contained a random intercept per patient to account for repeated
measurements. Time was modelled with a spline. The levels of significance are reported
above each plot and are indicated by asterisks (*** = p-value < 0.001; ** = p-value < 0.01;

* = p-value < 0.05; NS = not significant).
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Appendix Figure 6.6 - Temporal changes in the number of species per
ecological category for Sensitivity 2. Average trajectories among responders to the
treatment are indicated with blue lines, average trajectories among non-responders with
red lines. Individual patient trajectories are shown with grey lines. Note the different scaling
of the y-axes. The model contained a random intercept per patient to account for repeated
measurements. Time was modelled with a spline. The levels of significance are reported
above each plot and are indicated by asterisks (*** = p-value < 0.001; ** = p-value < 0.01;

* = p-value < 0.05; NS = not significant).
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Appendix Figure 6.7 - Temporal changes in the number of species per
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ecological category for Sensitivity 3. Average trajectories among responders to the
treatment are indicated with blue lines, average trajectories among non-responders with
red lines. Individual patient trajectories are shown with grey lines. Note the different scaling
of the y-axes. The model contained a random intercept per patient to account for repeated
measurements. Time was modelled with a spline. The levels of significance are reported
above each plot and are indicated by asterisks (*** = p-value < 0.001; ** = p-value < 0.01;

* = p-value < 0.05; NS = not significant).
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Appendix Figure 6.8 - Temporal changes in the number of species per
ecological category for Sensitivity 4. Average trajectories among responders to
the treatment are indicated with blue lines, average trajectories among non-responders
with red lines. Individual patient trajectories are shown with grey lines. Note the different
scaling of the y-axes. The model contained a random intercept per patient to account
for repeated measurements. Time was modelled with a spline. The levels of significance
are reported above each plot and are indicated by asterisks (*** = p-value < 0.0071;

** = p-value < 0.01; * = p-value < 0.05; NS = not significant).
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Appendix Figure 6.9 - Average temporal changes in the number of species
per ecological category for the base case (BC) and all Sensitivity analyses
(S1,S2, S3, and S4). Upper plots are for responders (solid lines) and lower plots for
non-responders (dashed lines) to the treatment. The model contained a random intercept
per patient to account for repeated measurements. Time was modelled with a spline.

The levels of significance are reported above each plot and are indicated by asterisks

(*** = p-value < 0.001; ** = p-value < 0.01; * = p-value < 0.05; NS = not significant).
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Appendix Figure 6.10 - Distribution of the number of species per ecological
category for the base case and all sensitivity analyses, estimated by
overdispersed Poisson regression models with random effects and splines.
The models contain random intercepts per patient to account for repeated measurements.
The point estimates, 95% confidence intervals, and a reference line at 0 are shown. When
the horizontal lines do not cross the vertical reference line, the coefficients are significantly
different from 0. A - D) Model output is presented for variables grouped into four categories
for clarity.
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Appendix Figure 6.11 - Histograms showing the relative abundances of host
species (Resident, Host transient, and Species loss) pre-FMT. Only patients that
completed the treatment and had at least one post-FMT sample are included in this plot.
Because the data had skewed distributions, we used a natural-log transformation of the
abundances to normalize the data and homogenize the variance.
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Appendix Figure 6.12 - Histograms showing the distribution of the differences
in relative abundances (between pre- and post-FMT) of resident species.

Only patients that completed the treatment and had at least one post-FMT sample are
included in this plot. The striped vertical line indicates no change in abundance between

pre- and post-FMT. Because the data had skewed distributions, we used a natural-log
transformation of the abundances to normalize the data and homogenize the variance.
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General discussion and future
perspectives

Main findings

In this thesis, we applied a theoretical framework and used methodologies derived from the
field of ecology to investigate the dynamic properties and characteristics of the human gut
microbiota. In this way, we aimed to contribute to a better understanding of the complex
microbial ecosystem of the human gut and its association with inflammatory bowel disease
(IBD) course (i.e., exacerbation or remission). Additionally, we examined microbial changes
following an intervention with fecal microbiota transplantation (FMT). Addressing these aims
requires a thorough examination of the human gut microbiome, its dynamics, and the key
factors influencing the functioning of this microbial ecosystem. This dissertation contributes
to these goals in several ways.

First, we studied the correspondence between correlation-based networks and the
underlying network of ecological interactions. Our results demonstrated that correlations
could indicate the presence of bacterial interactions, at least in a simulation setting.
Interactions were recovered with precision exceeding recall, indicating that the likelihood of
missing interactions was higher than the likelihood of finding false positive interactions
when using correlations in cross-sectional abundance as their proxy. However, we also
showed that asymmetric interaction types cannot be detected and that there are many
factors that may worsen these results, such as measurement noise. Unfortunately, biomedical
data are always subject to measurement errors, particularly in microbiota studies where
data are obtained through sequencing processes."'® Furthermore, microbiota data are also
influenced by host-specific variation in process parameters (process noise) and sampling
under various (non-equilibrium) conditions, all of which will influence the inference,

though not necessarily in an adverse way.*** Therefore, while correlations may hint at
interactions, independent validation is needed to confirm their presence and to ensure that
these correlations represent genuine biological interactions with meaningful implications.
Until then, we should continue to refer to these correlations as associations rather than
interactions. Moreover, in our second study we showed that wavelet clustering uncovers
more diverse community structures compared to analyses based on temporal correlations. We
revealed significant differences between these methods and suggested that the correlation-
based approaches might overlook certain dynamical aspects of microbial communities. This
comparison highlights the potential of wavelet clustering to use the temporal fluctuations
and complexity inherent in the human microbiota for characterizing community structure,
offering a more nuanced understanding than correlation-based methods alone.

Second, our objective was to describe specific associations between microbial abundances
and Crohn'’s disease (CD), in particular with exacerbation of disease. In doing so, we made the
analogy between the gut microbiota in an unhealthy host with an ecosystem under stress.
We found that microbial diversity is reduced in the gut of CD patients, and that the process

of diversity loss is irregular with respect to specific taxonomic groups. If this process of loss of
species continues for an extended period, it may eventually lead to an unhealthy and possibly
irreversible state. Moreover, in this study we showed that associations of relative bacterial
abundances with CD can be different for subsets of individuals. A practical, though
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undesirable implication of this finding is that it seems very difficult to pinpoint specific gut
microbes as biomarkers or therapeutic targets for CD patients.

Third, we studied bacterial associations with clinical treatment success of FMT in ulcerative
colitis (UC) and investigated the succession of the microbiota during and after the treatment.
By means of several analytical techniques, such as longitudinal modeling and cluster analysis,
we identified potential associations between specific gut microbiota families and clinical
outcomes. Our findings suggest that the success of FMT in UC patients may be linked to the
control of Prevotellaceae, with potentially beneficial roles attributed to Lachnospiraceae

and Ruminococcaceae. Notably, clustering analysis indicated that differences in the gut
microbiota between responders and non-responders may manifest early during treatment.
Moreover, successful FMT seems to be associated with a resilient gut community that is open
to colonization by donor species, while maintaining the original community to some degree.
This suggests that a balanced coexistence of host and donor species can induce a shift in
which the recipient's microbiota evolves towards a healthier community.

Stability and variability in microbiota dynamics

Over the past 15 years, microbiological research has flourished, driven by technological
advancements that have significantly expanded our knowledge concerning the ecology of
gut microbiota and its relation to health and disease.*** The beneficial functions provided by
our microbiomes offer potential for improving human health. Therefore, efforts have been
made to understand the temporal variations in our microbiota to define ‘stable’and
‘(un)healthy’ dynamics.?™ %> ¢2 Early attempts to classify the gut microbiota introduced the
concept of ‘enterotypes; distinct clusters characterized by an enrichment of Bacteroides,
Prevotella, or Ruminococcus.*®> However, this early classification was only based on
metagenomics from 39 individuals, and much larger studies have challenged the distinctness
of these enterotypes, suggesting a more gradient-like distribution with varying levels of
Prevotella and Bacteroides.?*> %1% 425

The microbiota is acknowledged to be highly specific to individuals, displaying relative
stability in adults, with regular fluctuations in the composition over time.*> % 5" These
fluctuations suggest that long-term stability of human gut microbial communities is
influenced by the tendency of the intestinal ecosystem to maintain internal stability
(homeostasis), owing to the coordinated response to any stimulus that disturbs its normal
condition.®? This prompts inquiries into whether fundamental ecosystem ‘rules’ governing
microbiota (group)dynamics can be distilled from a collection of individual microbiota, and
to what extent each represents a unique ecosystem with its own host-specific microbial
dynamics (Figure 7.1).%?¢ If microbiota dynamics were independent from the host, then the
presence of the same species should result in the same relative proportions of those species,
and interventions could be devised to regulate microbial states across different individuals.?®*
On the other hand, if the dynamics are strongly host-specific, personalized interventions
should be designed, considering not only the unique microbial state of an individual but
also the specific host factors of the microbial ecosystem.*®>>>° However, studying this is very
difficult due to the presence of latent or unknown parameters (related to lifestyle or diet

for example) influencing microbiota composition.'*® The factors contributing to microbiota
variation are still not fully understood.*’
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Consequently, comparative analyses between patient and healthy cohorts yield many
different dysbiotic states or sets of microbial biomarkers that are dependent on a specific
comparison, and the definition of a normal healthy microbiota remains unsatisfactorily
answered. Moreover, it is still unclear whether the structure of the gut microbial community
shifts gradually within individuals or transitions between distinct community states, and
whether such states are consistent among different individuals.?33 405 427
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Figure 7.1 - lllustration of microbial dynamics through ecological networks.
Microbial dynamics are illustrated through an ecological network, wherein nodes symbolize
species and edges depict interspecies interactions (green and red arrows denote positive
and negative interactions, respectively). A) The underlying dynamics or networks are unique
to each subject. B) Subjects within the same group exhibit shared dynamics or networks,
which markedly differ from those of other groups. C) Different subjects display identical
underlying dynamics or networks. Note that subjects can also differ in species composition
or in the relative abundances of each species. This figure is based on Bashan et al. (2016).4%

Broader insights from the literature

Part | - Ecological structure in the human gut microbiota

Microbial interactions can yield diverse outcomes, ranging from positive impacts such as
mutualism, where species exchange metabolic products to benefit each other, to negative
impacts on participating species. These interactions shape community patterns and inhibit
the outgrowth of certain species. In Chapter 2, we assessed the reliability of correlation-based
methods for inferring microbial interaction networks. Unraveling the network of interactions
within ecological systems, particularly in studies of the human microbiome, is challenging.
Technical issues in constructing networks from sequencing data, such as compositionality
and the predominance of zeros, combined with the influence of often unmeasured
environmental factors, make the networks difficult to interpret and susceptible to potential
biases."'® Additionally, data generated from assays may be censored by detection limits,
causing species to remain undetected.?*
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Moreover, the presence of a third variable or species (e.g., bacteriophage) can influence the
observed correlations, especially if the researcher fails to measure this linked species (Figure
7.2). Correlation-based network analysis typically results in too many spurious edges.''®
Addressing these challenges has led to the development of various co-occurrence methods,
such as CoNet, SparCC, and SPIEC-EASI.?*7-25% 42¢|nterestingly, in evaluations, classical
correlation measures often perform just as well as the more sophisticated algorithms.'"®42°
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Figure 7.2 - Interaction networks between three species.

Direct interactions are indicated by a solid arrow, indirect interactions are
given by a dashed arrow. A) The interactions utilize separate compounds, C,
and C,, as mediators. Interaction chain: Species S, influences S, which in turn
affects S.. B) In this scenario, S, initiates a change where S, and S, interact only
when S is present. Modified interaction: Species S, influences both S, and

S, Species S, consumes mediator C, altering the interaction between S, and
S,. O) Modified interaction: Both S, and S, contribute compound C,, which
stimulates S,. 5, and S, do not directly interact regardless of S,. This figure is
based on Momeni et al. (2017).24°
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To address potential confounding in pairwise interactions, we employed partial

correlations in Chapter 2 to infer the correlation network. See Figure 7.3 for a comparison
between plain and partial correlations in a real dataset. For most microbes, ecological
interactions are poorly understood, necessitating the de novo construction of ecological
interaction networks without guiding assumptions or a gold-standard set of interactions
for validation. 00 111.238,251,430.431 Therefore, we used the generalized Lotka-Volterra (gLV)
model with simulated interactions to study the correspondence between correlations

and interactions.”®?> gLV models are widely employed in ecological studies to simulate the
dynamics within bacterial communities.’? 111 232,254,423, 432 Thjs approach enabled us to define
the species-species interaction terms and incorporate variations in model parameters to
reflect the variability among hosts. The gLV model, while versatile, has drawbacks: it only
describes pairwise interactions, disregards immigration and environmental effects, and
maintains constant and additive interaction strengths.?® 57.100,232,240,433-435 |n Chapter 3 we
also used an ecological model. Here, we simulated the dynamics of four consumers and four
resources to provide an additional dataset to evaluate the accuracy of wavelet clustering in
contrast with clustering based on Spearman’s correlation.?'#-32°

Some scientists tend to approach mathematical models, also the ones used in Chapter 2
and Chapter 3, with skepticism, wary that simplification might sacrifice realism. However,
while models may simplify complex systems, they can also serve as invaluable tools for
understanding phenomena that are otherwise difficult to grasp.' For example, in Chapter 2,
we would not have been able to judge the correctness of the correlation matrix without a
simulated network that could be used as a ground truth. Models allow scientists to explore
hypothetical scenarios, test theories, perform virtual experiments that are impossible or
unethical in humans, make predictions, explain complex phenomena, thereby ultimately
advance our understanding of the natural world. However, it is imperative to ensure

that models are built upon correct assumptions as these can significantly impact model
outcomes.

Notably, many studies on microbial communities and their associations with specific
disease courses or host conditions heavily rely on a steady-state assumption and the failure
to account for non-steady-state dynamics could introduce biases in the findings, leading

to an overemphasis on certain taxa while neglecting others that may be important in a
non-steady-state context. The microbial interaction network is also likely dynamic, shaped
by both negative and positive feedback loops. These feedbacks occur as an organism's
metabolic activity alters its environment, influencing its own fitness, and the fitness of
competing species, creating ecological niches that drive diversification.?? Therefore, the
niches in the gut might be more comparable to a dynamic river ecosystem than to a more
static ecosystem on land, as nutrient flows through the bowel, providing constant resources
but also causing constant disturbances and reassembly of microbial communities and
interactions.**®

Future microbiome studies will benefit from larger cohorts, more frequent sampling, and
longer follow-up periods to unravel the short- and long-term dynamics of gut microbial
communities in real datasets. Longitudinal studies allow for investigating the consistency,
or changes, of microbiota patterns over time. Following this, in Chapter 3, we applied a
methodology unknown to the microbiome field, namely wavelet clustering analysis. This
method clusters time series based on the similarity in their temporal dynamics of microbial
communities.

Chapter 7 183 General discussion and future perspectives



Bacteroidaceae -] 3 -02 -0.1 0 03 ] 03 -02 -03 0.1 .—0.| -04 -02 04 01 -02
Bifidobacteriaceae - -03
Clostridiaceae - -2
Coriobacteriaceae - -o1
Desulfovibrionaceae - ©

Enterobacteriaceae - 03 Correlation
Erysipelotrichaceae - © strength
Lachnospiraceae - 03 1.00
Pasteurellaceae - -02 I 8:23
Peptostreptococcaceae - -03 0.25
Porphyromonadaceae - o1 _g:gg
Prevotellaceae -. a1 -0.50

Rikenellaceae - -o1
Ruminococcaceae - -4
Streptococcaceae - -02
Sutterellaceae -|o4
Veillonellaceae - o1

Verrucomicrobiaceae - -o2

B4

B
Bacteroidaceae | o o o1 -02 03 —a.|m 0 -02 01 -04 0 0 -01 03 01 o1
Bifidobacteriaceae 0 01 03 0 0 02 0 -02 02 -02 01 0 02 02 0 -02 01
Clostridiaceae o o1 01 -01 0 -01 -01 03 03 -01 0 02 0 0 01 0 02
Coriobacteriaceae o1 03 o1 -1 02 03 0 01 01 03 01 02 0 01 -01 0 -01
Desulfovibrionaceae = -02 0 -01 -01 01 0 01 0 0 01 -01 -02 02 -01 04 01 O Partia|
Enterobacteriaceae 03 0o 0 -02 01 0 0 02 02 0 0 01 -03 03 -02 -02 01 correlation
Erysipelotrichaceae  _ ., &, o1 03 o o )4 -01 02 -03 01 01 01 0 03 -01 03 Strength
Lachnospiraceae Bl o o1 o o1 o jos [l 02 w1 o1 o 02 w3 0 o1 o1 o2 100
Pasteurellaceae  _ , ;703 01 o0 02 01 02 02 -01 0 -02 02 o 03 o I 0.75
Peptostreptococcaceae . o, o 03 01 o 02 02 -1 0z 01 -03 -02 03 -02 01 03 -o01 ggg
Porphyromonadaceae _ o, L, .01 03 o1 o 03 01 -o1 o1 0 01 03 o 02 -01 02 0.00
Prevotellaceae :g:gg
Rikenellaceae -0.75
-1.00

Ruminococcaceae
Streptococcaceae
Sutterellaceae
Veillonellaceae
Verrucomicrobiaceae

Figure 7.3 - Correlation matrices. Matrices are derived from the dataset
presented in Chapter 4 of this thesis. A) Spearman’s correlation matrix displaying
the pairwise correlations between bacterial families. The correlation matrix provides
insights into the linear abundance relationships among variables. B) Spearman’s
partial correlation matrix illustrating the partial correlations between the bacterial
families. Partial correlations help to assess the unique association between bacteria,
independent of the interrelated influence of other bacteria. Each cell represents

the (partial) correlation coefficient between two variables, with color intensity
indicating the strength and direction (e.g., blue is positive and red is negative) of the
correlation.
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Unlike prevailing co-occurrence methodologies, the novelty of wavelet clustering lies in its
ability to characterize community structure based on the collective temporal behaviour of
the microbiota, without directly fitting a dynamical model or reconstructing the network

of interacting species. While traditional correlation-based methods may offer some, but
limited or biased, insights, wavelet clustering enables the extraction of more information

on dependencies within microbial communities and can reveal community structures that
remain obscured in correlation-based methods.**” These findings underscore the critical role
of longitudinal data and methodological choices in shaping the outcomes of microbiota data
analysis.

Mapping ecological networks to predict (temporal) behaviours and discern assembly rules is
motivated by the goal of gaining insights into the underlying dynamics that drive microbial
ecosystems. Ultimately, this knowledge may be used to establish early warning signals,
develop clinical prognostic models, and even engineer stable microbiomes with desired
properties.***#4° The topology of the network often provides insights into the potential
explanatory nodes for specific functional properties within the network, allowing for the
identification of tightly interrelated modules of variables, such as communities.® Additionally,
knowledge of the interaction network not only aids in identifying key players within the
network (i.e., keystone species) but also facilitates predictions on how microbial communities
might respond to diverse stimuli or disturbances, such as alterations in diet or exposure to
antibiotics.

Previous research has indicated that correlation-based networks likely capture only a fraction
of the interactions occurring in microbiota, with strong symmetric interactions being more
readily detected compared to weaker or asymmetric interactions.?'® ?** 273 Correlation-based
networks from cross-sectional data are commonly interpreted as representing interspecific
interactions.??” Each significant link in a correlation network suggests a shared process
affecting connected nodes; however, we should acknowledge that correlations do not
always imply causation or biological meaning.*2'® Densities may also vary as a result of an
external factor that is not of biological interest."’® The presence of two species together in
one sample, while absent in another, may not necessarily indicate an interaction between
them. Instead, they could simply coexist because one sample was taken during a nutrient-rich
period that supports the growth of both species independently, whereas the other sample
may have been taken at a less favourable time, limiting the growth of both species. Therefore,
incorporating additional information about influencing factors can provide a richer, more
nuanced picture of the underlying dynamics within the microbiome. Moreover, as most
microorganisms form biofilms, i.e., genetically diverse, surface-associated communities
embedded in an extracellular polymeric matrix, bacteria primarily interact with others

in their immediate neighborhood, with the strength of these interactions diminishing as
distance increases.*** *! Therefore, the spatial relationships between individual organisms
should ideally also be considered in the network, including the nature and strength of their
interactions based on their positions within the community.**° However, before delving into
more complex network structures including extensive metadata, it is essential to first gain a
thorough understanding of the ‘simpler’ networks to lay a solid foundation for future analyses.
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Part Il - Gut microbiota and inflammatory bowel disease

Given the involvement of the microbiome in numerous essential functions, it is not surprising
that disturbances in microbiota composition (known as dysbiosis) have been linked to the onset
and course of various diseases. Many associations found may not always be disease-specific but
rather part of a non-specific, shared response to health or disease.?°* #? Chapter 4 and

Chapter 5 of this thesis address the relationships between bacterial dysbiosis and the disease
course of CD, which, along with UC, comprises the pathology of IBD. While CD can occur
anywhere in the digestive system, UC is limited to the colon. Both diseases exhibit significant
distinctions in microbiota compositions from one another, although less strongly than they
differ from healthy subjects.’’> However, the findings regarding disease exacerbation among
CD or UC patients are often inconsistent and occasionally even contradictory. For example,
previous studies have reported both lower and higher relative abundances of Bacteroides
(Bacteroidaceae) in CD patients compared to healthy individuals.***3*% This discrepancy can

be attributed in part to technical variations between studies such as differences in DNA
extraction methods and sequencing depth, but they may also arise from variations in disease
assessment or study populations, as well as potential confounding factors, such as medication
use or lifestyle factors that remained unidentified.*® 7" 225443 Coupled with the interindividual
variability of the microbiome in gastrointestinal disorders, the pursuit of shared biological
signals proves challenging. Moreover, while many studies adopt a cross-sectional study design,
longitudinal studies are needed for comparing active and inactive disease.?""*** The knowledge
gap with regards to consistent and specific dysbiosis signatures poses a challenge to reveal the
role of gut microbiota in human diseases.

In Chapter 4 we investigated the multifactorial involvement of specific microbial groups

with CD compared to healthy individuals. Additionally, we also investigated associations
between the relative abundances of specific bacterial families with disease course (remission

vs. exacerbation) and disease activity markers (e.g., fecal calprotectin (FC), serum C-reactive
protein (CRP), and Harvey Bradshaw index (HBI)) in repeatedly sampled CD patients.'®’ Given the
variability among CD patients and the complex microbial interactions, associations with disease
may only be weak when considering mean responses. Therefore, it requires robust analysis to
uncover these associations, and quantile regression is a promising method given that potential
relationships may only be apparent in lower or upper quantiles of relative abundances.*¢" 3¢

We identified several significant associations between bacterial family abundances and CD,
particularly when compared to healthy controls. CD patients exhibited distinct microbial
profiles, with several families showing predominantly negative associations. While our
results confirmed previously identified associations, including Erysipelotrichaceae,
Peptostreptococcaceae, Prevotellaceae, Clostridiaceae, and Ruminococcaceae, we also
uncovered novel associations with Coriobacteriaceae, Desulfovibrionaceae, Pasteurellaceae,
Sutterellaceae, and Streptococcaceae.'”! 77:181.356:358 Notably, Coriobacteriaceae displayed

a shift in relative abundance across the disease course, with higher values at baseline in
patients who later experienced exacerbation. Additionally, Streptococcaceae demonstrated
increased abundance over time in patients with exacerbation, compared to both healthy
controls and patients in remission. Conversely, Sutterellaceae was consistently lower in patients
with exacerbation as well as those in remission compared to healthy controls. Interestingly,
associations with disease activity were generally weaker. We also found that FC levels were
negatively correlated with the abundance of Porpyromonadaceae and Verrucomicrobiaceae.
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Prevotellaceae were among the most heterogeneous across individual patients. The genus
Prevotella, which belongs to this family, is involved in saccharolytic fermentation and short-
chain fatty acid production. Prevotella is generally more prevalent in individuals from rural areas
compared to urban populations, potentially due to the higher abundance of Prevotella phages
and a diet lower in plant-derived complex carbohydrates in urban populations.**>#4¢ Additionally,
Prevotella has been linked to inflammation in other diseases; for instance, Prevotella bivia is
strongly associated with inflammation in bacterial vaginosis and an increased risk of HIV.#47-448
In Chapter 5, we also observed associations with Prevotellaceae in UC patients undergoing FMT
treatment. Non-responders to FMT showed an increase in Prevotellaceae abundance compared
to patients who achieved clinical remission after FMT (i.e., responders). However, our data from
Chapter 4 and Chapter 5 do not clarify whether these differences are driven by the disease or
factors, such as dietary habits, environmental variables, or other unknown factors that could
contribute to the outgrowth of Prevotellaceae in these patients.

Interestingly, nearly all significant associations found with quantile regression in Chapter 4
were negative and primarily observed in the lower quantiles of the bacterial abundances. While
positive associations in upper quantiles have been linked to unmeasured factors constraining
the potential response to positive stimuli,*®' this contrasting trend resembles an ecosystem
responding to stress: as the system nears a tipping point, the ability to sustain healthy bacterial
abundances gradually diminishes.”” However, the loss of certain species within the microbial
network can be compensated for by others with similar ecosystem functions (functional
redundancy). This redundancy enhances resilience, ensuring the continuity of essential functions
important to the host, such as butyrate production.®***°* Consequently, when solely studying
the compositional profile, the actual functional output of a system presumed to be in 'dysbiosis'
might be normal, and vice versa; lack of significant differences in abundance doesn't necessarily
indicate a healthy state as the species may lack essential functional genes.**° However, an
excessive loss of species may reduce resilience and cause a critical transition to an alternative
stable state.’®* 3% A study setup including proteins secreted by the microbiome would provide
insights into how dysbiosis is expressed on the functional level. For instance, in a CD case-
control study, a lack of species capable of consuming hydrogen sulfide was identified as a key
distinguishing microbiome feature of the disease.”’ Other studies showed the role of butyrate,
secreted by pathobionts such as Fusobacterium. While butyrate is typically beneficial, it may
negatively affect the viability of the intestinal epithelium and potentially contribute to IBD
pathogenesis.*% >3

Note that, from a statistical point of view, investigating numerous bacterial species across
multiple patients poses a significant challenge regarding the multiple hypothesis testing
problem. To construct a correlation network or investigate significant differences in microbiota
composition, adjustments might be necessary to control for false discoveries. The choice
between correction methods depends on the research goal; stricter corrections, such as the
Bonferroni approach, may be preferred to demonstrate specific associations, while more general
impressions may be sought with less stringent corrections, such as the Benjamini-Hochberg (BH)
method. However, even the BH approach might still be too strict when applied to microbiota
data, because these methods assume independence among bacterial abundances, which is

not valid due to (biological) relationships between species (Figure 7.2 and Figure 7.3) and the
compositional nature of the data. Ideally, correction methods should account for correlated
species to provide more accurate results. However, there is no solution yet available; therefore,
conclusions should be based on a comprehensive review of existing literature in addition to
study findings and not on p-values alone.
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Part Il - Ecological determinants of FMT treatment success

Concerning the treatment of dysbiosis, since a groundbreaking study in 2013, FMT has

emerged as a treatment option for recurrent Clostridioides difficile infection (rCDI)."*° However,
rCDI remains the only condition for which FMT is widely accepted as a treatment. In all other
indications where FMT has shown promise, its use remains experimental or is considered a last-
resort option.*** One of the challenges with FMT is its inconsistency in (microbiota composition)
outcomes.** This means that every person will react differently to certain bacteria and that
diverse immune responses are activated across patients with different diseases.**® This variability
raises significant safety concerns, because the microbiota could also be altered to an even more
undesirable state in the recipient's gut.*** **” Similarly, other therapies designed to modulate
the microbiome, such as probiotics, have also been associated with adverse outcomes. The
PROPATRIA study, a Dutch clinical trial conducted from 2003 to 2007, revealed that patients
with acute pancreatitis who received probiotics had a higher mortality rate compared to the
control group.**® However, it remains unclear whether the probiotics themselves or other factors
contributed to this increased mortality. Therefore, a 'one-size-fits-all' treatment approach does
not ensure safety and efficacy against multifaceted diseases, as evidenced by the inconsistent
results of FMT trials for IBD and irritable bowel syndrome (IBS)."”-45°%¢' The interaction between
two microbial consortia (donor and recipient) during FMT can be likened to a complex pulse
perturbation. Possibly, the perturbation caused by bacterial components, metabolites, or
bacteriophages may also mediate the effects of FMT. Especially as investigations into auto-FMT
have also shown promising results in restoring gut microbiome composition.***“¢* Clearly,

there is a need for a deeper understanding of the dynamics underlying the interaction between
donor and recipient microbiota during FMT.*** This could ultimately lead to a safe and controlled
modification from disturbed to desired phenotypes in the recipient.

In the studies detailed in Chapter 5 and Chapter 6, we examined stool samples from 24 patients
with mild to moderate UC undergoing FMT. Stool samples were collected at nine time points
across the study period, allowing for a comprehensive assessment of gut microbiota dynamics
during and post-FMT. Our longitudinal approach provided insights into weekly changes, a
perspective often lacking in randomized controlled trials (RCTs) that focus primarily on clinical
outcomes. Our results in Chapter 5 suggested that there is a potential for predicting clinical
success of FMT treatment based on early microbiota analysis in the early phase of treatment,
which would make it possible to adapt treatment strategies accordingly. However, developing a
reliable predictive model for this purpose will require substantial additional effort.

It is plausible that differences in microbiota related to clinical success become apparent early
during FMT treatment. The order in which species arrive can influence community succession
(the predictable change in community composition over time), as early-arriving species can
modify resources and environmental conditions, thereby affecting the establishment of later-
arriving species. These priority effects can lead to varying successional pathways within the

gut ecosystem.®* 3 This concept is akin to plant ecosystems, where pioneer species prepare the
environment for subsequent arrivals. For example, while a particular patch may not always host
the same grass species, the presence of any grass helps create conditions that are conducive to
the establishment of shrubs. Similarly, the growth of taller plants (regardless of specific species)
facilitates the establishment of shade-tolerant species.*® Therefore, to understand how microbial
species interactions shape community dynamics during succession after FMT, we need to

focus not just on which species are present, but also on the role each species plays within the
community.
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Several hypothetical outcomes of the FMT treatment are possible (Figure 7.4). First, the
host communities may revert to their initial dysbiotic state if the perturbation is too weak
and the dysbiotic state too strong. Therefore, the transferred microorganisms fail to change
the microbiome or to establish themselves permanently. Second, due to intrinsic host or
environmental factors, an alternative dysbiotic state may emerge, wherein the microbial
community, although different in composition, possibly continues to perform detrimental
ecosystem services. Third, an alternative healthy state may emerge, characterized by a
novel microbiota composition with beneficial properties. Fourth, the microbiota changes
to resemble the donor state, ideally incorporating the donor’s healthy functions.?*
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Figure 7.4 - Hypothetical outcomes of FMT treatment on microbiota
composition. The interaction between two microbial consortia during FMT treatment
may be likened to a complex pulse perturbation intended to transfer the functional
properties of a donor microbiota to a recipient. Several potential outcomes can arise.
First, one possibility is that the host microbiota returns to its original dysbiotic state
(referred to as stable state A), as the introduced microorganisms fail to establish
themselves permanently due to an insufficient perturbation. Second, the interaction
may lead to the establishment of a completely new microbial community (referred to as
stable state B), comprising species neither from the donor nor the original community.
This novel community may arise due to a combination of factors such as niche availability,
competitive exclusion, and environmental influences. Importantly, this new community
could exhibit either beneficial or dysbiotic properties, depending on the specific
composition and functional attributes of the newly established species. Third, due to
intrinsic host or environmental factors, an alternative state is selected as the outcome
(referred to as stable state C), comprising a mix of donor, patient, and new species.
Fourth, resilience of the donor community (referred to as stable state D) in the new
habitat could lead to a new interaction with long-term transfer of potential beneficial
properties. This figure is adapted from Sommer et al. (2017).%
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In Chapter 6, we applied a methodology inspired by Schmidt et al. 2022 to the same dataset
as the one used in Chapter 5 to investigate the extent to which a shift in the patient's
microbiota towards the donor microbiota is beneficial for resolving dysbiosis in the patient’s
gut.””? Engraftment has long been considered a key mechanism underlying the success

of fecal microbiota transplantation.**® However, insights from earlier studies have raised
questions about what happens to all the species involved during the succession phase

of the treatment (during and after FMT)."%® '° Therefore, we categorized species within

the recipient's gut microbiota into ecological groups based on their origin and presence
over time: those either already present in the host before FMT, derived from the donor,

or introduced as novel species (absent in both host pre-FMT and donor samples). Our
findings revealed that responders retained more resident species and maintained a more
constant level of colonization over time compared to non-responders. This suggests that a
favourable response to FMT is facilitated by a microbiota receptive to colonization, without
compromising the resident community.

Restoring the microbiota with an FMT treatment is a complex process, as different taxa
recover or colonize to varying extents, with some failing to (re)establish entirely.>® 8 226,465
This variability can be influenced by suppression and resource competition between
invaders and resident species.®” “¢45¢ To mitigate the pressure from the resident species,

a bowel lavage was performed prior to the first treatment, allowing for a more conducive
environment for donor species to colonize. However, it is likely that the species that
successfully colonize the gut after FMT are those closely related to the original inhabitants,
as the gut environment provides a suitable niche for their growth.?” 18849 Even if the original
species are replaced or supplemented by similar ones, the new microbes may potentially
introduce new traits that alter the ecosystem’s functionality and metabolic output.®
Moreover, if donor species may fail to establish, they might still be able to impact the
recipient community's functioning and induce autonomous changes through interactions
with resident members, for example by horizontal gene transfer or local metabolic activities
while passing through.® 95466467 |t has been shown that in a fluctuating environment, rapid
evolution can destabilize the long-term stability of interactions, potentially enhancing
adaptability and resilience or disrupting microbial balance and health.*”° Our study could not
determine whether the species that reappear are leftover residents that regrew post-lavage,
whether they gained additional functions, or whether they originated from the transplanted
donor material if they are identical to the recipient species pre-FMT.
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Future directions for microbiome research in health and disease

The recognition of the microbiome's critical role in our health marks a significant shift from
traditional clinical perspectives, which often view the body as a battleground between
human cells and microbes (i.e., pathogens) to an understanding that embraces the complex
ecological community context of the microbiome. A dysbiotic human gut microbiome can
be likened to plant or animal communities in a highly disturbed environment, e.g., impacted
by overfishing, (abrupt) climate change, habitat loss, ocean acidification, pollution, or an
invasive species. Human interventions, such as generic antibiotic use, have demonstrated
detrimental effects on both the microbiome and human health, mirroring the irreversible
changes observed in disrupted ecosystems where pesticides are used instead of ecological
management measures. Therefore, to overcome dysbiosis in complex chronic diseases, we can
draw inspiration from strategies such as habitat restoration and targeted removal of invasive
species, which have been successfully applied in large-scale biodiversity management.

For chronic diseases, an ecological maintenance approach may be more effective than the
traditional battlefield strategy.?> 2

The limitations of the traditional 'one-size-fits-all' treatment approach, based on broad
population averages, have also become increasingly apparent due to the heterogeneity

in genotypes and phenotypes of gastrointestinal diseases among human populations. For
example, matching donors and recipients by lifestyle and diet could enhance the likelihood
of transplanting species that are effective colonizers or providing the resident species with
the necessary metabolites that support their growth and function, thereby potentially
improving the recipient's microbiome more successfully. Potentially, a better FMT success can
also be achieved through the administration of specific prebiotics alongside the microbes. By
providing targeted substrates exclusively metabolized by preferred species, prebiotics could
create an advantage for them.*’" 72 Such an approach potentially strengthens the recipient's
own microbiota and enriches it with species that naturally belong to the same community,
leading to a more harmonious and effective community. However, the specific species that
are most beneficial and those that are naturally suited to the community still need to be
identified before this strategy can become a reality. As our understanding of the microbiome
ecosystem advances, doctors will hopefully be equipped with precise disease prevention
strategies and more effective treatments in the future.

A recurring theme in microbiome research is the need for large, densely sampled
temporal datasets encompassing individuals from diverse backgrounds and lifestyles.
Such datasets would be instrumental in unraveling fundamental mechanisms governing
ecosystem dynamics in health and disease. Furthermore, studying microbiomes from
various geographical regions (e.g., Africa) is important for capturing the global diversity
in microbiological research, as most studies to date have focused on the United States,
Europe, and Asia.””* The unique environmental factors, dietary habits, and cultural practices
in different regions in the world can significantly influence microbial composition and
function.”’* By incorporating diverse microbiomes into our research, we can enhance our
understanding of microbial dynamics that could inform health strategies and identify
important confounding variables that may influence health outcomes.
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Another way forward is to paint a more comprehensive picture of the microbial ecosystem
with an integrative ecosystem biology approach that combines multiple omics technologies
with host physiological data, and in depth knowledge of bacterial species behaviour and their
(chemical) environment.?* 60 152:244,440,475 By examining fecal matter in more detail alongside
dietary questionnaires or food diaries, we might be able to extract valuable information
about the host's diet, offering more insights than what is typically available. Note that the
presence of a nutrient in a fecal sample is often assumed to indicate its importance for the
microbiome. However, it could also be present because the species have not utilized it,
leaving it to be excreted in the feces. Additionally, simultaneous assessment of mediators

of reciprocal host-microbe interactions, such as microbial metabolites and immunological
parameters, holds promise for identifying causality, discerning what changes first and who
or what influences whom at various points in time.'?' At present, a significant question
remains unanswered: whether the microbiota differs in various disease states because it
causes these states, whether the microbiota differs as a consequence of the patients' disease
state, or whether both are caused by the same external factors (for example altered diet or
lifestyle). Mixing up association with causality can lead to an overestimation of the clinical
relevance and impact of the microbiome on diseases.?'* For example, bacteria associated with
unhealthy microbiomes may not necessarily be those directly related to the disease; instead,
they could merely be among the few species capable of thriving in a gut environment with
reduced diversity (possibly due to chance as described by the neutral theory); or they may
play a beneficial role by supporting the host in the restoration of the healthy microbial
community.*’¢

Future research could also aim to identify not only bacteria, but also other microbes such

as Archaea, fungi, and viruses, while exploring their interactions with each other and with
bacteria, as well as their potential roles in health and disease. This includes investigating
phage therapy as a strategy to target specific bacteria or pathogens, as bacteriophages may
regulate intestinal microbiota diversity through mechanisms such as the kill-the-winner
principle (which targets the most abundant bacterial species) or by specifically eliminating

a species of interest, thereby preventing, for example, the outgrowth of Prevotellaceae in UC
patients.®” *7747° Cross-domain networks may be important in understanding microbiome
dynamics and ecosystem resilience, as there are many correlations with the bacterial
microbiome and other domains.**

It is important to find a balance between collecting extensive data and maintaining clarity
and interpretability. Merely increasing sequencing efforts is insufficient; the analysis pipelines
must also continuously evolve to accommodate the influx of new data types and quantities.
Moreover, focusing on excessively granular data might lead to a loss of statistical power

due to the large number of species or functions relative to the number of patients and the
prevalence of rare taxa. Additionally, the fact that different bacterial species can perform the
same functional role in different patients may require a much larger sample size or functional
assay than is (currently) possible in microbiome studies.’® % On top of that, even the 'simple’
networks with only bacteria generated from currently available data are challenging to grasp.
Before introducing further complexity, we must step back to reflect on our research designs
and develop strategies to effectively comprehend the influx of new information.
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Finally, increasing the database of cultured microorganisms and annotated genes is needed
for a comprehensive understanding of microbial function and for creating benchmark

data to improve the evaluation of tool performance.'® % Without the information about,

for example, functional redundancy, dormancy, and phenotypic plasticity, taxonomic

data alone offers limited insights into ecosystem processes across space and time.*?> 480 481
Fundamental research on gut microbiota, including culturing of isolates, remains important
for understanding the interspecies interactions and bacterial behaviours and dynamics, as it
provides species-specific knowledge.*** Mechanistic research in wet-lab and (animal) models
is also imperative to validate the hypothesized mechanisms of species behaviours, not only
for the most abundant ones, as they may not be the most important from an ecological point
of view.*®3%8 However, replicating complex human gut microbiome interactions (in artificial
gut models) poses significant challenges, despite all the current advances in the field, and
warrants further improvements.''® 4649 |deally, establishing gold standards for microbiota
data analysis and comprehensive reporting of (meta)data would enable more meaningful
comparisons across studies, a call made over a decade ago but still largely unaddressed.**% %3

Concluding remarks

The journey of microbiome research reveals both the complexities and the promises for
enhancing human health. As technology advances, so does our understanding of the
microbiome. More fine-grained studies on the (gut) microbiome and its role in human

health are needed to provide interpretation and meaning on the differences already found.
Sophisticated technologies, such as Artificial Intelligence (Al), machine learning, and network
analyses hold potential for identifying patterns within microbiota community data. However,
those results should still be considered in light of past discoveries, established methods and
models, and longstanding theories from multiple fields. When we combine (mathematical)
modeling, theoretical knowledge, and experimental approaches, we gain a more
comprehensive understanding of complex biological systems allowing us to validate results,
do predictions, uncover underlying mechanisms, and refine our models for more accurate
insights, as demonstrated throughout this thesis.

Collaborations across multidisciplinary groups, comprising, among others, (microbial)
ecologists, healthcare professionals, complexity scientists, and bioinformaticians will
further enrich our research field. Complex systems exist on a spectrum between order and
randomness. Although one can get lost in the hairball of a complex network, knowledge
from several fields can help. Understanding how systems respond to changes and return to
stability enhances our grasp of the complex dynamics within the human gut microbiome.
This knowledge can ultimately improve microbiome-modulating strategies and drive
innovation of therapeutic strategies. Improved data sharing practices, including publishing
raw data in a standardized fashion and statistical code will facilitate higher-quality meta-
analyses and the establishment of more robust microbial signatures for diseases.** 4%
Unfortunately, data accessibility still poses a significant challenge in microbiota research,
with researchers frequently withholding study-related data. While concerns about privacy
and efforts required for data collection are understandable, limited data sharing impedes
scientific advancement.*5%
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By recognizing that each step brings us closer to harnessing the microbiome’s potential to
improve human health, we ensure continuous progress and discovery. To truly understand
microbial dynamics, it is important to acknowledge that human time is vastly different from
bacterial time. Bacteria perceive their environment, resources, and interactions on a much
smaller spatial scale. They constantly adapt to their immediate surroundings and rapidly
shifting communities. An (microbial) ecological perspective grounded in theory is essential
to interpret the impact of the microbiome on our health and disease.
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English summary

The gut microbiota

The human body hosts countless microorganisms, with a significant portion residing in

the digestive system. The bacteria and other microorganisms in our gut, such as fungi and
viruses, are collectively referred to as the gut microbiota. A rich and diverse gut microbiota
can contribute to good health in its host, for example, by suppressing harmful bacteria.
Additionally, these bacteria assist with tasks such as nutrient digestion and training the
immune system. The microorganisms constantly influence each other and their human host.
Microbes adapt to the specific conditions of their host, with factors such as diet, lifestyle,
hormonal regulation, and the immune system playing a role (Figure 1). As a result, the
composition of the microbiota frequently changes, for instance, after foreign travel or during
antibiotic treatment. Despite these adjustments, it is hoped that the microbiota does not
lose its functions, ensuring, among other things, that the integrity of the intestinal wall
remains intact.

Environmental
factors:
e.g. pets, hygiene,
household
composition

Figure 1. Factors influencing the composition of the gut microbiota.
While technical factors do not directly affect the composition of the gut microbiota
itself, they do influence the types and the abundance of microorganisms that can
be detected in fecal samples.
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The significant role of the gut microbiota in our health has led to extensive research into
this ecosystem. Fecal samples are often collected to study the composition and diversity
of gut bacteria using DNA analysis techniques such as 16S rRNA sequencing. However,
technical factors, such as sample quality, the DNA extraction method used, and the choice
of primers, can influence which species are detected and how they are represented in

the results (Figure 1). Additionally, incomplete databases, the vast microbial diversity,

the dynamic nature of the microbiota, and the limited knowledge about many species
make these analyses particularly challenging. The resulting data are complex and require
advanced methods for accurate interpretation.

The dynamics and stability of microbial communities, in relation to health and disease, can
be studied using techniques such as network analyses and time series models. Network
analyses map which bacteria frequently coexist within an ecosystem, providing clues about
how microbes might influence and interact with each other. Time series models help track
changes in microbial communities over time and uncover patterns. Studying the microbiota
is challenging because it cannot be directly observed in the body, and often only a limited
number of samples are available. A small number of samples, both in terms of participants
and measurement points, complicates the identification of robust associations and makes it
difficult to distinguish between individual variation and general patterns.

In the project ‘Ecology meets human health) we first examined the reliability of network
analyses and alternative methods for mapping relationships between microbes. Next,
we combined clinical, microbiological, and ecological concepts to better understand
how microbial dynamics are linked to intestinal diseases, specifically Crohn's disease and
ulcerative colitis, as well as the success of fecal microbiota transplantation (FMT) as a
treatment. In this context, we investigated the ecological factors that influence the gut
microbiota and the functioning of this complex ecosystem.

Ecological structure in the gut microbiota

The gut ecosystem consists of numerous species whose presence depends on variations in
the environment and functional needs, such as breaking down food, producing vitamins,
or combating pathogens. Additionally, interactions often occur between bacteria, which
can have positive (beneficial) or negative (detrimental) effects on the species involved.
Understanding these interactions is crucial for grasping ecological processes and changes
within the microbiota. Correlation methods are often used to map these networks.

In Chapter 2, we investigated the reliability of correlation methods for inferring interaction
networks. For our research, we used the generalized Lotka-Volterra (gLV) model to simulate
bacterial communities. This model provides insights into microbial dynamics without
requiring actual gut microbiota samples and allows for the adjustment of parameters such
as bacterial growth rates. Moreover, it enabled us to use a known interaction network as a
reference, which is not possible with real samples. We examined the effects of interindividual
variation (differences in microbiota composition between individuals) and sample size (the
amount of available data) on the accuracy of network reconstructions. While correlations

in microbial abundances often indicate ecological interactions, we demonstrated that
measurement noise, such as variations in sample processing, complicates the detection of
true interactions.

Appendices 216 Summaries (EN/NL)



Furthermore, correlations do not differentiate specific interaction types, making laboratory
verification necessary to understand these relationships. The gLV model offers valuable
insights but also underscores the indispensable role of studies using real data. However,
many human microbiota studies are snapshots in time, meaning apparent correlations can
be driven by external factors, such as fluctuations in nutrients, without indicating actual
interactions between species. Longitudinal studies, which track microbial communities over
time, provide a much better basis for understanding consistency and patterns. Such datasets
are scarce, likely due to practical challenges, such as repeated sampling, which depend
heavily on the host's consent and willingness to participate in research.

In Chapter 3, we demonstrated how the microbiota changes over time and what information
these variations reveal about relationships between species. To do this, we analysed time
series data from two individuals collected by researcher Caporaso et al. in 2011. These two
individuals submitted stool samples almost daily for a year, providing a clear view of the
variation within the microbiota. Using wavelet clustering, we uncovered patterns in these
data. Wavelet clustering has already been established in ecological and epidemiological
studies, and it has also proven particularly suitable for non-stationary microbiota time series,
providing greater insight into the collective temporal behaviour of bacteria compared to
conventional correlation methods. With wavelet spectra, we constructed ‘trees’ that depicted
relationships between bacterial species. These trees showed significant differences from
those based on correlation methods, such as a greater total branch length (indicating higher
functional diversity) and distinct subgroups. This highlights that wavelet clustering is more
sensitive to subtle differences in community structures than correlation-based methods.
Our findings underscore the importance of the method chosen by researchers for analysing
microbiota data.

Gut microbiota and inflammatory bowel disease

The interaction between humans and the microbiota is the result of over a billion years of
co-evolution, leading to a symbiotic relationship. Our microbes are involved in numerous
essential functions, and disturbances in their species composition, known as dysbiosis, have
been linked to various diseases. Dysbiosis can weaken the mucus layer in the gut wall, a
protective layer that covers the inside of the intestines and helps keep harmful substances
and microorganisms out of the body. This can lead to colonization by harmful organisms, an
increased risk of inflammation, and metabolic disruptions, putting the host's health at risk
(Figure 2).

Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are
chronic inflammations of the intestinal mucosa. These conditions are associated with an
altered composition and diversity of the gut microbiota. In Chapters 4 to 6, we explore the
relationships between bacterial dysbiosis and the disease progression in patients with IBD.
Although much research has been conducted in this area, findings across studies have often
been inconsistent. The differences in findings regarding the involvement of microbes in IBD
can likely be attributed to technical variations in research methods and diversity among
patients, including variations in disease assessment, medication use, and lifestyle factors.
Additionally, the variability of the microbiota in gastrointestinal disorders, such as natural
fluctuations in composition, makes it challenging to identify consistent biological signals.
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Figure 2. lllustration of the difference between a gut with a healthy
microbiota and a disrupted microbiota. A) A healthy gut microbiota is diverse and
balanced. The mucus layer provides nourishment for the bacteria while also protecting the
gut cells. B) When the balance is disrupted, some bacteria can overgrow and displace other
bacteria. Then, the mucus layer can be damaged, allowing bacteria to harm the gut wall.

In Chapter 4, we analysed stool samples from patients with Crohn's disease to describe
associations between bacterial abundance and disease remission or exacerbation. We
employed a quantile regression model to uncover relationships that go beyond the average
response of all patients. Quantile regression allows for a more comprehensive view of the
relationships between bacterial abundance and disease. Associations with specific bacterial
families may only be observable in a minority of patients. While generic associations can
also be identified using methods that focus on the average response, it is also essential

to understand less common differences in the microbiota, as these may provide insight

into personalized treatment approaches. We also correlated the relative abundance of
bacterial families with known biomarkers of disease activity, such as fecal calprotectin and
serum C-reactive protein. Our findings revealed significant negative associations between
various bacterial families and disease, such as Pasteurellaceae and Ruminococcaceae. When
comparing regressions with clinically defined exacerbation, we found that associations
with fecal calprotectin were stronger than with other indicators. In summary, our research
highlights the heterogeneity of Crohn's disease and its relationship with the gut microbiota.

Ecological determinants of FMT treatment success

Microbiota-related therapies aim to intentionally alter the microbiota of patients to shift

it from a dysbiotic to a healthy state. Fecal microbiota transplantation (FMT), commonly
known as a stool transplant, is an experimental treatment in which fecal material, including
the microbiota from healthy donors, is transferred to the patient to restore the disrupted
microbiota. FMT has established itself as a promising treatment for microbiota-related
conditions, particularly for the treatment of recurrent Clostridioides difficile infection. In
ulcerative colitis, the success of FMT is determined by achieving clinical remission.
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One of the challenges of FMT is the inconsistency in outcomes regarding the final
composition of the patient's microbiota. This means that each person responds differently to
certain donor bacteria and that various immune responses can be activated in patients with
different conditions. Hypothetical outcomes include a return to the original dysbiotic state,
an alternative dysbiotic state, a long-term change with beneficial properties, or a persistent
shift to a healthy microbiota with donor species. In our study, we investigated the microbial
families associated with the success of FMT treatment in ulcerative colitis. This allowed us to
explore the dynamics of the gut microbiota. This longitudinal approach provided insight into
weekly changes (Figure 3), a perspective often missing in randomized controlled trials that
mainly focus on clinical outcomes.

Budesonide/placebo

'\ 0SS
o0 oo
i i i i Clinical evaluation Clinical evaluation
I | | | | | | | | >
I 00T I I
Week: 0 3 14

Fy sassss 4 4

Figure 3. Design of the FECBUD-study (data used in Chapters 5 and 6). Patients
were first pre-treated for three weeks with budesonide (n = 12), a medication commonly used

to reduce inflammation, or a placebo (n = 12), an inactive substance with no therapeutic effect.
After that, the patients received four consecutive fecal transplants from a healthy donor provided
by the Netherlands Donor Feces Bank (NDFB). Treatment evaluation took place after 10 and 14
weeks from the start of the study. A subgroup of the patient group (9 out of 24 patients) achieved
a successful combined clinical and endoscopic remission after the FMT treatment. Fecal samples
from the patients were collected at the beginning of the study, after the pre-treatment, weekly
after the fecal transplant, and at two, four, and eight weeks post-FMT.

In Chapter 5, we studied the associations related to the clinical success of FMT in patients
and the development of the microbiota during and after treatment. We used a wide range
of analytical techniques to investigate potential associations between bacterial families

and clinical outcomes, including ordination analysis, Dirichlet multinomial mixture analysis,
and longitudinal modeling. The use of these approaches allowed us to identify significant
differences in microbial composition and diversity between patients who benefited from the
treatment and those who did not. For example, we found that the success of FMT in patients
with ulcerative colitis seems to be associated with limited growth of Prevotellaceae and the
presence of the families Lachnospiraceae and Ruminococcaceae. Monitoring the dynamics of
these microbial families could potentially provide early insight into the success of treatment
during FMT.

It is widely believed that the colonization of donor species in the recipient's microbiota

is a key mechanism behind the success of FMT. An interesting finding from our research

in Chapter 5 is that we found no indication of a shift in the microbial composition of the
recipient towards the donor microbiota among patients with clinical success of FMT. In
Chapter 6, we therefore examined whether the donor-centered view of FMT holds true by
analysing whether microbiota dynamics are related to achieving remission in patients after
FMT treatment.
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To do this, we categorized the species based on their origin and temporal presence: already
present in the host before FMT, derived from the donor, or species newly introduced during
the FMT treatment. We then modelled the number of species per category (host-associated,
donor-derived, and novel) for patients who did or did not benefit from FMT. Our results
show that patients who benefited from the treatment retained a higher number of host-
associated species compared to patients who did not benefit from the treatment. Although
donor species initially colonized more extensively in patients who did not benefit from the
treatment, this colonization decreased over time, aligning with the level seen in patients who
did benefit from the treatment. This suggests that a successful clinical response to FMT may
be facilitated by a microbiota that is receptive to colonization without compromising the
resident microbiota. We also discovered that host species with higher relative abundances
before FMT are better able to persist after FMT.

In conclusion

There are numerous environmental factors and habits (among others, diet and lifestyle)

that influence the composition and function of microbes. This complexity can sometimes

be overwhelming, but knowledge from various disciplines provides valuable insights.

By understanding how systems respond to changes and regain balance, we deepen our
knowledge of the complex dynamics within the human gut microbiota. These insights

can improve microbiota-modulating strategies such as FMT and stimulate innovation in
personalized therapeutic approaches. This leads to a new perspective, viewing the microbiota
not just as a battleground against pathogenic microbes, but as a complex ecological
community. Management strategies such as habitat restoration play an important role in this.
To achieve this, extensive (longitudinal) datasets are needed that include a wide range of
individuals with diverse backgrounds and lifestyles. Such data are essential for understanding
the mechanisms that influence the dynamics of ecosystems in health and disease. In addition,
suitable methods must be available to effectively investigate the complex microbiota data.

The limitations of a 'one-size-fits-all' approach are becoming increasingly evident, particularly
due to the diversity, genotypes (genetic composition), and phenotypes (observable traits
and characteristics) of the gut microbiota. This underscores the need for a more personalized
approach in (clinical) scientific research. For instance, matching donor and recipient based
on lifestyle and diet could increase the likelihood that transplanted bacteria successfully
colonize and that the resident bacteria receive the right nutrients. This could contribute

to a more effective improvement of the recipient’s microbiota, tailored to the patient's
unique needs. However, to truly understand microbial functioning, we need to keep the
ecological perspective of bacteria in mind. This means recognizing that bacteria perceive
their environment, resources, and interactions on a much smaller spatial scale, constantly
adapting to their immediate surroundings. This implies that even within a single sample,
different bacteria can exhibit different behaviours, functions, or interactions. Additionally,
within the gut microbiota, various bacteria often have overlapping functions. This means
that if a certain species is disrupted or removed, other species can take over that function.
This mechanism is crucial for maintaining a healthy gut microbiota and remains an area that
has not been sufficiently researched. An ecological approach, grounded in theory, is essential
for interpreting the impact of the microbiota on health or disease. This perspective allows

us to better understand the complex interactions within the microbiota, which is vital for
developing effective therapeutic strategies.
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Nederlandse samenvatting

De darmmicrobiota

Het menselijk lichaam herbergt als gastheer talloze micro-organismen, een groot deel
daarvan bevindt zich in het spijsverteringsstelsel. De bacterién en andere micro-organismen
in onze darmen, zoals schimmels en virussen, worden samen de darmmicrobiota genoemd.
Een rijke en diverse darmmicrobiota is in staat om bij te dragen aan een goede gezondheid
van de gastheer, bijvoorbeeld door schadelijke bacterién te onderdrukken. Daarnaast
helpen de bacterién ook bij de vertering van voedingsstoffen en het instrueren van het
immuunsysteem. De micro-organismen beinvloeden continu elkaar en hun menselijke
gastheer. Microben passen zich aan de specifieke omstandigheden van hun gastheer aan,
waarbij factoren zoals dieet, leefstijl, hormonale regulatie en het immuunsysteem een

rol spelen (Figuur 1). Hierdoor verandert de samenstelling van de microbiota regelmatig,
bijvoorbeeld na een buitenlandse reis of tijdens een antibioticabehandeling. Tijdens deze
aanpassingen verliest de microbiota hopelijk geen functies, zodat de integriteit van de
darmwand behouden blijft.

Omgevings-
factoren:
huisdieren, hygiéne,
gezinssamenstelling,
etc.

Gezondheid
Leefstijlifactoren: \ : ga.stheer:_ )
dieet, alcohol, medicatie, allergieén,
roken, reizen, zwangerschap,
sporten, etc. ziekten, genetica,
immuunsysteem,
stress, etc.

Ecologische
factoren:
interacties, successie,
kolonisatie, selectie,

Technische
factoren:
monsterverzameling,
opslag, DNA-isolatie,

PCR-primers, \ genoverdracht, etc.
pipeline, etc.
Kenmerken
gastheer:

leeftijd, geslacht,
socio-economische
status, geografie,
etc.

Figuur 1. Factoren die van invloed zijn op de samenstelling van de
darmmicrobiota. Hoewel de technische factoren niet de samenstelling van de
darmmicrobiota zelf beinvioeden, hebben deze wel effect op zowel de soorten als de
hoeveelheid micro-organismen die kunnen worden gevonden in de fecale monsters.
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Doordat de darmmicrobiota zo belangrijk is voor onze gezondheid, wordt er uitgebreid
onderzoek gedaan naar dit ecosysteem. Vaak worden ontlastingsmonsters verzameld om
met DNA-analysetechnieken zoals 16S rRNA-sequencing de samenstelling en diversiteit van
darmbacterién te onderzoeken. Technische factoren, zoals de kwaliteit van het monster, de
gebruikte DNA-extractiemethode en de keuze van primers, kunnen echter invloed hebben
op welke soorten worden gedetecteerd en in welke mate ze worden gerepresenteerd in

de resultaten (Figuur 1). Daarnaast maken incomplete databases, de enorme microbiéle
diversiteit, het dynamische karakter van de microbiota en de beperkte kennis over veel
soorten de analyses extra uitdagend. De verkregen gegevens zijn hierdoor complex en
vereisen geavanceerde methoden om nauwkeurig geinterpreteerd te worden.

De dynamiek en stabiliteit van microbiéle gemeenschappen, in relatie tot gezondheid

en ziekte, is te onderzoeken met behulp van technieken zoals netwerkanalyses en
tijdreeksmodellen. Netwerkanalyses brengen in kaart welke bacterién vaak samen
voorkomen binnen een ecosysteem. Dit kan een aanwijzing zijn voor hoe microben elkaar
mogelijk beinvloeden en samenwerken. Tijdreeksmodellen helpen om veranderingen in de
microbiéle gemeenschappen over de tijd te volgen en patronen te ontdekken. Het onderzoek
van de microbiota is ook uitdagend, omdat het niet rechtstreeks in het lichaam kan worden
bestudeerd en er vaak slechts een beperkt aantal monsters beschikbaar is. Een klein aantal
monsters, zowel qua deelnemers als meetmomenten, bemoeilijkt het vaststellen van
robuuste verbanden en maakt het lastig om onderscheid te maken tussen individuele variatie
en algemene patronen.

Binnen het project ‘Ecology meets human health’ onderzochten we eerst de betrouwbaarheid
van netwerkanalyses en alternatieve methoden om de relaties tussen microben in kaart te
brengen. Vervolgens combineerden we klinische, microbiologische en ecologische concepten
om beter te begrijpen hoe microbiéle dynamiek samenhangt met darmaandoeningen,
specifiek de ziekte van Crohn en colitis ulcerosa, en met het succes van fecale microbiota-
transplantatie (FMT) als behandeling. Hierbij onderzochten we de ecologische factoren die de
darmmicrobiota beinvioeden en de werking van dit complexe ecosysteem bepalen.

Ecologische structuren in de darmmicrobiota

Het darmecosysteem omvat tal van soorten waarvan het voorkomen afhankelijk is van
variaties in de omgeving en functionele vereisten, zoals de afbraak van voedsel, productie
van vitamines of de bestrijding van ziekteverwekkers. Daarnaast zijn er ook vaak interacties
tussen bacterién, die positieve (winst) of negatieve (verlies) effecten hebben op de
betrokken soorten. Inzicht in deze onderlinge interacties is belangrijk voor het begrijpen van
ecologische processen en veranderingen in de microbiota. Vaak worden correlatiemethoden
gebruikt om het netwerk in kaart te brengen.

In Hoofdstuk 2 onderzochten we de betrouwbaarheid van correlatiemethoden bij het
afleiden van de interactienetwerken. We hebben voor ons onderzoek het gegeneraliseerde
Lotka-Volterra (gLV) model gebruikt om bacteriéle gemeenschappen te simuleren. Dit model
biedt inzicht in microbiéle dynamieken zonder echte darmmicrobiota monsters nodig te
hebben en maakt het mogelijk om parameters, zoals de groeisnelheid van de bacterién, te
variéren. Bovendien konden we een bekend interactienetwerk als referentie gebruiken, wat
bij echte monsters niet mogelijk is.
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We onderzochten onder andere de invloed van interindividuele variatie (verschillen

in microbiota-samenstelling tussen individuen) en steekproefgrootte (de hoeveelheid
beschikbare gegevens) op de nauwkeurigheid van netwerkreconstructies. Hoewel correlaties
in microbiéle aantallen vaak indicatief zijn voor ecologische interacties, toonden we aan

dat meetruis, zoals variaties in monsterverwerking, het waarnemen van echte interacties
bemoeilijkt. Daarnaast onderscheiden correlaties niet specifieke interactietypen, waardoor
verificatie met laboratoriumstudies noodzakelijk blijft om de relatie te begrijpen. Het
gLV-model biedt waardevolle inzichten, maar benadrukt ook dat studies met echte

data onmisbaar zijn. Veel microbiota studies bij mensen zijn echter momentopnames
waardoor schijnbare correlaties veroorzaakt kunnen worden door externe factoren, zoals
schommelingen in voedingsstoffen (nutriénten), zonder dat er sprake is van echte interacties
tussen soorten. Longitudinale studies, die microbiéle gemeenschappen door de tijd volgen,
stellen ons veel meer in staat om consistentie en patronen beter te begrijpen. Er bestaan
echter maar weinig van dergelijke datasets, waarschijnlijk door praktische uitdagingen

zoals herhaalde monsterafnames, aangezien dit sterk afhankelijk is van de toestemming en
bereidheid om mee te werken aan onderzoek van de gastheer.

In Hoofdstuk 3 hebben we aangetoond hoe de microbiota in de loop van de tijd verandert
en welke informatie deze variaties bevatten over verbanden tussen soorten. Hiervoor
analyseerden we de tijdseries van twee individuen, verzameld door onderzoeker Caporaso
en zijn collega's in 2011. Deze twee mensen hebben gedurende een jaar bijna dagelijks

hun ontlasting ingeleverd, waardoor de variatie in de microbiota goed zichtbaar wordt. Met
wavelet clustering hebben we vervolgens de patronen onthuld in deze gegevens. Wavelet
clustering, al bekend in ecologische en epidemiologische studies, bleek bijzonder geschikt
voor niet-stationaire tijdseries van microbiota en bood meer inzicht in collectief temporeel
gedrag van de bacterién dan gangbare correlatiemethoden. Met de waveletspectra bouwden
we ‘bomen’ die verbanden tussen bacteriesoorten laten zien. Deze toonden aanzienlijke
verschillen met bomen gebaseerd op correlatiemethoden, zoals een grotere totale
taklengte (wijzend op meer functionele diversiteit) en duidelijke subgroepen. Dit laat zien
dat wavelet clustering gevoeliger is voor subtiele verschillen in gemeenschapsstructuren
dan correlatiemethoden. Onze resultaten benadrukken het belang van de methode die de
onderzoeker kiest voor het analyseren van microbiota gegevens.

Darmmicrobiota en inflammatoire darmziekten

De interactie tussen mensen en de microbiota is het resultaat van meer dan een miljard jaar
co-evolutie, wat heeft geleid tot een symbiotische relatie. Onze microben zijn betrokken

bij tal van essentiéle functies, waardoor verstoringen in hun soortensamenstelling, bekend
als dysbiose, zijn gerelateerd aan verschillende ziekten. Dysbiose kan de mucuslaag in de
darmwand verzwakken. Deze laag bedekt en beschermt de binnenkant van de darmen

en helpt om schadelijke stoffen en micro-organismen buiten het lichaam te houden.
Verzwakking van de mucuslaag kan leiden tot kolonisatie door schadelijke organismen, een
verhoogd risico op ontstekingen en metabolische verstoringen. Dit brengt de gezondheid
van de gastheer in gevaar (Figuur 2).
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Figuur 2. lllustratie van het verschil tussen een darm met een
gezonde microbiota en een verstoord microbiota. A) Een gezond
darmmicrobiota is divers en in evenwicht. De mucus laag verzorgt de voeding
voor de bacterién en beschermt tegelijkertijd de darmcellen. B) Wanneer het
evenwicht verstoord wordt kunnen sommige bacterién uitgroeien en andere
bacterién verdrijven. Als het evenwicht verstoord is kan de mucuslaag worden
aangetast, hierdoor kunnen bacterién de darmwand beschadigen.

Inflammatoire darmziekten, waaronder de ziekte van Crohn en colitis ulcerosa, zijn chronische
ontstekingen van de slijmvliezen van het darmkanaal. Deze zijn geassocieerd met een
afwijkende samenstelling en diversiteit van de darmmicrobiota. In Hoofdstuk 4 tot en met 6
onderzoeken we de relaties tussen bacteriéle dysbiose en het ziekteverloop van patiénten
met inflammatoire darmziekten. In het verleden is hier al veel onderzoek naar gedaan,
maar de resultaten tussen studies kwamen vaak niet met elkaar overeen. De verschillen

in bevindingen over betrokkenheid van microben bij inflammatoire darmziekten kunnen
waarschijnlijk worden toegeschreven aan technische variaties in onderzoeksmethoden

en diversiteit tussen patiénten, inclusief variaties in ziektebeoordeling, medicatiegebruik
en leefstijlfactoren. Daarnaast maakt ook de variabiliteit van de microbiota bij maag-darm
aandoeningen, zoals natuurlijke fluctuaties in samenstelling, het uitdagend om consistente
biologische signalen te identificeren.

In Hoofdstuk 4 analyseerden we ontlastingsmonsters van patiénten met de ziekte van Crohn
om associaties te beschrijven tussen bacteriéle abundantie en remissie of exacerbatie van
de ziekte. We gebruikten een kwantiel regressie model om relaties bloot te leggen die niet
beperkt zijn tot de gemiddelde respons van alle patiénten. Kwantiel regressie maakt het
mogelijk om een completer beeld te krijgen van de relaties tussen bacteriéle abundantie en
ziekte. Associaties met specifieke bacteriéle families zijn mogelijk alleen waarneembaar bij
een minderheid van de patiénten. Generieke associaties kunnen ook worden vastgesteld
met methoden die zich richten op de gemiddelde respons, maar het is ook belangrijk om

de minder algemene verschillen in de microbiota te begrijpen, omdat ze inzicht zouden
kunnen geven in gepersonaliseerde benaderingen van behandeling. We koppelden de
relatieve abundantie van bacteriéle families ook aan bekende biomarkers van ziekteactiviteit,
zoals fecale calprotectine en serum C-reactief proteine. Onze bevindingen onthulden vooral
significante negatieve associaties tussen verschillende bacteriéle families en de ziekte, zoals
Pasteurellaceae en Ruminococcaceae.
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Bij het vergelijken van regressies met klinisch gedefinieerde verergering ontdekten we
dat de associaties met fecale calprotectine sterker waren dan met de andere indicatoren.
Samenvattend benadrukt ons onderzoek de heterogeniteit van de ziekte van Crohn en de
relatie daarvan met het darmmicrobiota.

Ecologische bepalende factoren voor het succes van FMT-behandeling

Microbiota-gerelateerde therapieén zijn gericht op het doelgericht veranderen van de
microbiota van patiénten, zodat deze van een dysbiotische naar een gezonde toestand gaan.
Fecale microbiota-transplantatie (FMT), beter bekend als een poeptransplantatie, is een
experimentele behandeling, waarbij fecaal materiaal, inclusief de microbiota van gezonde
donoren aan de patiént wordt overgebracht om het verstoorde microbiota te herstellen.
FMT heeft zich gepositioneerd als een veelbelovende behandeling voor microbiota-
gerelateerde aandoeningen, vooral in de behandeling van terugkerende Clostridioides
difficile-infectie. Bij colitis ulcerosa wordt het succes van FMT bepaald door het bereiken

van klinische remissie. Een van de uitdagingen bij FMT is de inconsistentie in de uitkomsten
met betrekking tot de uiteindelijke samenstelling van de microbiota in de patiént. Dit
betekent dat elke persoon anders reageert op bepaalde donor bacterién en dat er diverse
immuunreacties kunnen worden geactiveerd bij patiénten met verschillende aandoeningen.
Hypothetische uitkomsten zijn onder andere een terugkeer naar de oorspronkelijke
dysbiotische toestand, een alternatieve dysbiotische toestand, een langdurige verandering
met gunstige eigenschappen, of een blijvende verschuiving naar een gezonde microbiota
met donorsoorten.

In ons onderzoek hebben we de microbiéle families onderzocht die geassocieerd zijn met
het succes van FMT-behandeling bij colitis ulcerosa. Hierdoor konden we de dynamiek

van het darmmicrobiota onderzoeken. Deze longitudinale benadering bood inzicht in
wekelijkse veranderingen (Figuur 3), een perspectief dat vaak ontbreekt in gerandomiseerde
gecontroleerde proeven die voornamelijk gericht zijn op klinische uitkomsten.

Budesonide/placebo
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Figuur 3. Opzet van de FECBUD-studie (gegevens gebruikt in Hoofdstukken 5

en 6). De patiénten werden eerst drie weken vooraf behandeld met budesonide (n =12), een
medicijn dat vaak wordt gebruikt om ontstekingen te verminderen, of een placebo (n = 12),

een inactieve stof die geen therapeutische werking heeft. Daarna kregen de patiénten viermaal
opeenvolgend van de Netherlands Donor Feces Bank (NDFB) een feces transplantatie van een
gezonde donor. De evaluatie van de behandeling vond plaats na 10 en 14 weken na de start van
de studie. Een subgroep van de patiéntengroep (9 van de 24 patiénten) bereikte een succesvolle
gecombineerde klinische en endoscopische remissie na de FMT-behandeling. Fecesmonsters van
de patiénten werden verzameld aan het begin van de studie, na de voorbehandeling, wekelijks
na de feces transplantatie en twee, vier en acht weken na de FMT.
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In Hoofdstuk 5 hebben we de associaties bestudeerd met betrekking tot het klinische
succes van FMT bij patiénten en daarna de ontwikkeling van de microbiota tijdens en na de
behandeling. We hebben een breed scala aan analytische technieken gebruikt om mogelijke
associaties tussen bacteriéle families en klinische uitkomsten te onderzoeken, waaronder een
ordinatie analyse, Dirichlet multinomial mixture-analyse en longitudinale modellering. Het
gebruik van deze benaderingen stelde ons in staat om significante verschillen in microbiéle
samenstelling en diversiteit te identificeren tussen patiénten die wel en geen baat hadden
bij de behandeling. Zo vonden we dat het succes van FMT bij colitis ulcerosa patiénten lijkt
samen te hangen met een beperkte groei van Prevotellaceae en de aanwezigheid van de
families Lachnospiraceae en Ruminococcaceae. Het monitoren van de dynamiek van deze
microbiéle families zou mogelijk vroegtijdig inzicht kunnen geven in het succes van de
behandeling tijdens FMT.

Er wordt algemeen aangenomen dat kolonisatie van donorsoorten in de microbiota van de
ontvanger een sleutelmechanisme is achter het succes van FMT. Een interessante bevinding
van ons onderzoek in Hoofdstuk 5 is dat we geen indicatie vonden voor een verschuiving

in de microbiéle samenstelling van de ontvanger naar de donormicrobiota onder de
patiénten met een klinisch succes van FMT. In Hoofdstuk 6 onderzochten we daarom of de
donor-gecentreerde visie van FMT klopt, door te analyseren of de microbiota-dynamiek
gerelateerd is aan het behalen van remissie bij patiénten na FMT-behandeling. Hiervoor
categoriseerden we de soorten op basis van hun oorsprong en temporele aanwezigheid:

al aanwezig in de gastheer voor FMT, afgeleid van de donor, of nieuwe soorten die tijdens de
FMT-behandeling werden geintroduceerd. Daarna modelleerden we het aantal soorten per
categorie (gastheer-geassocieerd, donor-afgeleid en nieuw) voor patiénten die wel of geen
baat hadden bij FMT. Onze resultaten tonen aan dat de patiénten die baat hadden bij de
behandeling een hoger aantal gastheersoorten behielden in vergelijking met patiénten die
niet profiteerden van de behandeling. Hoewel donorsoorten aanvankelijk meer koloniseerden
bij de patiénten die geen baat hadden bij de behandeling, nam deze kolonisatie in de loop
van de tijd af, waardoor het niveau gelijk werd aan dat van de patiénten die wel baat hadden
bij de behandeling. Dit suggereert dat een succesvolle klinische reactie op FMT mogelijk
wordt vergemakkelijkt door een microbiota die receptief is voor kolonisatie zonder de
residentiéle microbiota in gevaar te brengen. We ontdekten ook dat gastheersoorten met
hogere relatieve abundanties véér FMT beter in staat zijn om na FMT te blijven bestaan.

Appendices 226 Summaries (EN/NL)



Tot slot

Er zijn talrijke omgevingsfactoren en gewoonten (voeding, leefstijl, enzovoort) die

de samenstelling en functie van microben beinvloeden. Deze complexiteit kan soms
overweldigend zijn, maar kennis uit verschillende disciplines biedt waardevolle inzichten.
Door te begrijpen hoe systemen reageren op veranderingen en weer in balans komen,
vergroten we onze kennis van de complexe dynamiek binnen de menselijke darmmicrobiota.
Deze inzichten kunnen microbiota-modulerende strategieén zoals FMT verbeteren en
innovatie in persoonlijke therapeutische benaderingen stimuleren. Dit leidt tot een nieuw
perspectief, waarbij de microbiota niet alleen wordt gezien als een strijdtoneel tegen
pathogene microben, maar als een complexe ecologische gemeenschap. Beheerstrategieén
zoals habitatherstel spelen hierbij een belangrijke rol. Om dit te bereiken zijn er uitgebreide
(longitudinale) datasets nodig die een breed scala aan individuen met diverse achtergronden
en levensstijlen omvatten. Dergelijke gegevens zijn essentieel om de mechanismen te
begrijpen die de dynamiek van ecosystemen in gezondheid en ziekte beinvloeden. Daarnaast
moeten er geschikte methoden beschikbaar zijn om de complexe microbiota-data effectief te
kunnen onderzoeken.

De beperkingen van een 'one-size-fits-all'-benadering worden steeds duidelijker, vooral door
de diversiteit, genotypen (de genetische samenstelling) en fenotypen (de waarneembare
eigenschappen en kenmerken) van de darmmicrobiota. Dit benadrukt de noodzaak van een
meer op maat gemaakte benadering in (klinisch) wetenschappelijk onderzoek. Bijvoorbeeld
het afstemmen van donor en ontvanger op basis van leefstijl en dieet kan de kans vergroten
dat getransplanteerde bacterién zich effectief vestigen en dat de aanwezige bacterién de
juiste voedingsstoffen krijgen. Dit kan bijdragen aan een effectievere verbetering van de
microbiota van de ontvanger, aangepast aan de unieke behoeften van de patiént. Maar

om echt inzicht te krijgen in het functioneren van microben, moeten we het ecologisch
perspectief van bacterién in de gaten houden. Dit houdt in dat we begrijpen dat bacterién
hun omgeving, hulpbronnen en interacties waarnemen op een veel kleinere ruimtelijke
schaal, met constante aanpassing aan hun directe omgeving. Dit betekent dat zelfs binnen
een enkele steekproef verschillende bacterién verschillende gedragingen, functies of
interacties kunnen vertonen. Bovendien hebben binnen de darmmicrobiota verschillende
bacterién vaak overlappende functies. Dit houdt in dat als een bepaalde soort wordt
verstoord of verwijderd, andere soorten die functie kunnen overnemen. Dit mechanisme

is cruciaal voor het behoud van een gezonde darmmicrobiota en hiernaar is nog te weinig
onderzoek gedaan. Een ecologische benadering, geworteld in theorie, is essentieel om de
impact van de microbiota op gezondheid of ziekte te interpreteren. Dit perspectief stelt ons
in staat om de complexe interacties binnen de microbiota beter te begrijpen, wat cruciaal is
voor het ontwikkelen van effectieve therapeutische strategieén.
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