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The response of driven frustrated media stems from interacting hysteretic elements. We derive explicit
mappings from networks of hysteretic springs to their abstract representation as interacting hysterons.
These mappings reveal how the physical network controls the signs, magnitudes, symmetries, and pairwise
nature of the hysteron interactions. In addition, strong geometric nonlinearities can produce pathways that
require excess hysterons or even break hysteron models. Our results pave the way for metamaterials with
geometrically controlled interactions, pathways, and functionalities, and highlight fundamental limitations

of abstract hysterons in modeling disordered systems.

DOI: 10.1103/PhysRevLett.134.188201

The response of driven disordered media, such as com-
pressed crumpled sheets or sheared amorphous solids,
forms pathways composed of sequential transitions
between metastable states [1-5]. These pathways encode
memories of past driving [6], including its direction [7] and
amplitude [8-11], and even computational capabilities
[4,12—14]. Understanding the connections between proper-
ties of a physical system and its pathways is crucial, both
for the fundamental understanding of amorphous solids
[1,2,15,16], and for devising (meta)materials with targeted
pathways, memory effects, or in materia computational
capabilities [13,17-20].

Physically, these pathways are often composed of
successive flips of localized hysteretic elements such as
beams, ridges, or particle clusters, which function as
“material bits” [3-5,18,21]. Therefore, strictly binary
hysteretic elements, known as hysterons [22,23], are prime
candidates for modeling and designing memory effects and
pathways [1,24-27] [Figs. 1(a) and 1(b)]. The strength of
hysteron models is that they condense physical systems
into a small set of parameters (switching thresholds) which
characterize the material bits and their interactions [23,24].
However, we lack a general link between these parameters
and the underlying physics. Materializing targeted path-
ways from the hysteron model remains a challenge [13,28],
while random hysteron parameters can produce nonphysi-
cal responses or become ill defined [23,26,29]. Can we use
hysteron models to describe and design physical systems
composed of hysteretic elements?

To address these questions, we consider physical net-
works of hysteretic springs, and derive explicit mappings to
the switching thresholds of the hysteron model [Fig. 1(c)].
For linear geometries, we map hysteretic spring networks to
hysterons with pairwise interactions; for two-dimensional
networks, this mapping produces geometrically tunable,
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nonpairwise interactions. We leverage this geometric con-
trol to realize exotic pathways, including multiperiodic
orbits where the systems only returns to its initial state after
multiple driving cycles [25,30]. However, when springs
align or orient perpendicular to the drive, this mapping
requires more hysterons than springs or may even break
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FIG. 1. (a) Force-displacement curve for a hysteretic spring
with two linear branches (purple); pictograms represent the
configurations of a physical realization [13]. (b) The binary
phase s := 0, 1 of a hysteron as a function of the external field H.
(c) Relation between networks of hysteretic springs driven by
displacement E (left) and interacting hysteron models (right).
Under certain conditions, networks and hysterons can be pre-
cisely mapped and produce the same transition graph (center);
however, in other cases, springs may follow nonhysteron path-
ways and vice versa. In the 7-graph, states are represented with
binary strings, and transitions with red (blue) arrows for increas-
ing (decreasing) external driving.
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down: exceptional networks can exhibit pathways beyond
those of the hysteron framework.

Our Letter conveys two key insights. First, as exceptional
alignment is unavoidable in large disordered systems, it
may lead to discrepancies with hysteron models, and we
identify key ingredients to improve mesoscopic models for
amorphous media. Second, our Letter provides a precise,
geometric, and general strategy to materialize targeted
pathways in specific networks of hysteretic elements,
whether electronic [31-33], pneumatic [34,35], fluidic
[36], or mechanical [17,18,28]. This paves the way for
rationally designed (meta)materials with on-demand
memories and computational capabilities [16,19,20,37].

Hysteretic springs, pathways, and t-graphs—We con-
sider hysteretic elements, characterized by a bilinear
relation between two conjugate physical variables, such
as current and voltage [31-33], pressure and volume or
flow [34-36], or, as we use here, force f; and displacement
e; [13,38]:

fi= (k) + Ak;s;)e; — g;s;. (1)

Each hysteretic spring switches between its two phases
s; =0 and s; = 1 when its displacement e; exceeds the
local, hysteretic switching thresholds e;” > e;; the stiffness
of its branches are k¥ and k! = k¥ + Ak;, and g; sets the
force jumps between branches [Fig. 1(a)] [39].

We connect n of these springs in a network and follow
their response to edge-applied driving by controlling the
overall deformation E. We assume no simultaneous flips,
and focus on slow driving with overdamped dynamics
[Fig. 1(c)]; other conditions, including spatially textured
driving [4,17], race conditions [23], and dynamic driving
[42,43] introduce additional complexity. The response is
piecewise smooth, but when e; reaches its individual
switching thresholds, the ith element flips its phase
s;: 0 <> 1. These events cause a rapid change in the forces
and extensions, which in turn may trigger additional flips
(avalanches). The critical values of E where transitions are
triggered define the global, state-dependent switching
thresholds Ei(S), where S == (sq, 5,, ...). The transitions
and switching thresholds can be collected in the transition
graph (t-graph), which captures the response to any
sequential driving protocol and encodes the memory
capacity and capabilities [Fig. 1(c)] [1,4,23,44].

Hysteron model—A simplified description of such net-
works—and complex media in general—is provided
by hysterons, abstracted hysteretic elements which are
purely binary, and driven by an external field H [23-25]
[Fig. 1(b)]. A collection of interacting hysterons is defined
by the switching thresholds Hi(S) which specify when
hysteron i flips between phases s; =0, 1, and which
determine the r-graph [23,24,26]. Often, the state-depen-
dent thresholds are modeled via pairwise interactions:

where h; are the fixed bare thresholds and cj; are
interaction coefficients [4,13,23]. Hysteron models lack a
physical description for these parameters and typically
assign them randomly [25-27,30]; however, for specific
parameters, race conditions and unphysical loops may
occur [29].

Interactions and mapping—A successful mapping
between a network and the hysteron model requires that
they exhibit the same pathways and the same switching
thresholds. In hysteretic spring networks, interactions are
mediated by physical balance equations, e.g., force balance.
The switching thresholds can then be determined as
follows: (i) freeze the state S so that the force-displacement
relations f;(e;) are strictly linear; (ii) use force balance to
determine e; as a function of the driving E; and (iii) deter-
mine state-dependent switching thresholds Ei(S) by cal-
culating the values of E where e¢; = ei° (either analytically
or numerically). Once E7(S) is determined, we can trivially
identify these with H(S), and then determine whether the
interactions are pairwise, top-down symmetric (i.e.,
c,?; = ci‘j), and their precise values. Hence, our goal is to
map a given geometry of springs with their parameters to
the switching thresholds E(S).

Linear networks—We first consider mechanical hyster-
etic springs in serial or parallel geometries: these can be
mapped onto interacting hysterons [Fig. 2(a)]. The corre-
sponding force balance equations are scalar and produce
pairwise interactions [see Eq. (2)]. These can be worked out
explicitly from the collective force-displacement curves
F(E,S) [Fig. 2(b)] [39]. For serial coupling and controlled
total displacement E = ) ¢; [45] we obtain

4 g; | Ak
C..:—i—}— 071
nkjkj

u nkjl-

fi (3)

For parallel coupling, an additional spring of stiffness K
mediates the interactions [46], and we obtain

g; — Akjef
C?;:%‘ (4)

These expressions reveal how geometry controls the
interactions: serial coupling leads to negative interactions
(cij <0) [13], while parallel coupling leads to positive
interactions (c;; > 0). For stiffness-symmetric springs
(Ak = 0), interactions are up-down symmetric (cj; = ¢j;
and global, i.e., each hysteron affects all others equally
(cij = cx;)- In contrast, for Ak # O this symmetry is broken
—as seen in experiments [4]—with large Ak producing

opposite signs of cl-*j and c;; [Figs. 2(b) and 2(d)].
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FIG. 2. (a) Hysteretic springs under controlled deformations
interact when coupled in parallel (spring K mediates interactions,
top) or in series (bottom). (b) Collective response curves F(E, S)
for two serially coupled hysteretic springs, with endpoints
representing state dependent switching thresholds. The interac-
tion coefficients follow from comparing appropriate pairs of bran-
ches, e.g., ¢, = E[f1.(00)] —E[f; .(01)] and ¢, = E[f3. (01))-
E[f5.(11)]. Here these have opposite signs. Inset: corresponding
t-graph. (c) T-graph featuring a dissonant avalanche (See
Ref. [39] for details and parameters). (d) Interactions that respect
(left) and break (right) the up or down symmetry c:; =cj (arrows
represent switching thresholds: orange, bare; gray, with inter-
actions).

These interactions control the pathways of the network.
Interactions may produce avalanches whose sequences of
up (u:0 — 1) and down (d: 1 — 0) flips follow the signs of
c?;: (1) in serial coupling of symmetric hysteretic springs
(Ak = 0), negative interactions produce avalanches that
alternate between u and d and are of maximal length two
[13]; (i1) stiffness-asymmetric springs can produce exotic,
“dissonant’” avalanches like duu, where a decrease in E (or
H) leads to an increase in the magnetization m := X;s; or
vice versa [47] [Fig. 2(d)] [23]; (iii) in parallel coupling,
positive interactions drive monotonic avalanches (only u’s
or d’s) of arbitrary length. Recently, countersnapping
springs have been realized—where up (down) instabilities
counterintuitively lead to force jumps (drops) as opposed to
ordinary hysteretic springs [48-50]. Such countersnapping
springs can be captured in our framework by controlling the
signs of gji, and can produce monotonic avalanches in
serial geometries, and alternating avalanches in parallel
geometries [39].

Nevertheless, the range of pathways in linear networks is
limited. This is because all elements experience the same
force (displacement) in serial (parallel) networks, so that
their switching thresholds follow a fixed order set by the
individual switching forces fi (displacements e;°) [13].

For example, if in a serial network f7 < f7, then hysteron
i will always flip up before hysteron j.

This limitation is reflected in the qualitative features of
the z-graphs, which in particular cannot sustain a multi-
periodic response. We explore them numerically for three
hysteretic elements in linear networks [13,23], and find that
out of hundreds of z-graphs, the vast majority obeys a
hierarchical structure of nested loops known as loop-return
point memory (I-RPM) [51], which hinders the emergence
of complex behavior [39]. Hence, while the sign and
magnitude of interactions can be controlled, linear geom-
etries severely limit the range of pathways and memory
effects.

2D networks—Our understanding of the linear geom-
etries suggests that 2D networks of hysteretic elements may
open a route to more advanced pathways and memory
effects. We consider the paradigmatic case of a trigonal
hub, where the two fixed and one moving corner of a
triangle 7; = (x;,y;) connect to a central, freely moving
point M via three symmetric hysteretic springs with k; = 1
[Fig. 3(a)]. We deform the hub by slowly driving H = x;.
Since the force balance on M is vectorial and angle
dependent, the flipping order is no longer subordinate to
the ordering of fi or ei, allowing a far greater range of
pathways, including multiperiodic responses. We use this
vectorial force balance to derive exact expressions for the
interaction coefficients, and find that the ratio g/e®
determines their form. For small g/e*, the interactions
are pairwise and controlled by the angles between the
springs, while for large g/e*, geometric nonlinearities
produce nonpairwise interactions and can even lead to a
breakdown of the mapping from springs to hysterons.

When g/e* < 1, the changes in angles following an
instability are small, and the interactions can be expressed
geometrically:

COS §0U
cosf;

(5)

+
Cij R ZiY;

where the geometrical factor z; arises from the connectivity
of the trigonal hub ([z;, 25, 23] = [% 1,1]), @;; is the angle
between s; and s;, and all angles are evaluated at the
instability of hysteron i. This expression has a clear
geometrical interpretation. First, the jump between the
branches, g;, provides the typical scale for the strength
of interactions, as in the linear networks. Second, the factor
1/cos@; represents how global driving is coupled to
stretching of hysteron i. Third, the factor cos ¢;; captures
the geometric coupling: consistent with our findings for
serial and parallel couplings, this factor approaches 1(—1)
for ¢;=0 (¢;;=nm), and approaches zero for
perpendicular hysterons.

When g/e* 1, the angle changes during flipping events
are significant. Interactions are neither pairwise nor
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FIG. 3. (a) Trigonal hub with hysterons connected in 2D. 7, is
externally pulled along the X axis. (b) Strong nonpairwise
interactions, where flipping s5 reverses the interactions between
hysterons one and two. (c) Comparison of the numerically
obtained ¢, (dots) and approximate expression, Eq. (5) (light
curve), for 10* random samples; here we have assumed the
geometrical relation 0; = /2 — 2¢1,/3 [39].

up-down symmetric, and depend on the initial states. For
example, c¢7; will depend on the phase of s3 [39]. Yet,
Eq. (5) still holds geometrical intuition: e.g., flipping s3
may change ¢,. If as a result ¢, crosses 7/2, ¢},(s3 = 0)
and c¢},(s3 = 1) have opposite signs, presenting a strong
deviation from pairwise interactions [Fig. 3(b); see the
Supplemental Material [39], Video 1].

We complement our analytical analysis with numerical
simulations, where we determine M using overdamped

dynamics: M= y! Zifi, where y is a large damping
constant and the forces are given by Eq. (1). Starting from
any state S we quasistatically drive H, follow M, and identify
instabilities whenever e; = e. We find that the numerically
calculated interaction coefficient ¢}, closely matches the
geometrical expression [Eq. (5)] [Fig. 3(c)] [39].

2D t-graphs—The range of f-graphs that can be realized
by 2D networks is huge, and we use our numerical scheme
to generalize earlier #-graph sampling protocols [13,23] to
explore their diversity. First, we find that the trigonal hub
can easily host multiperiodic cycles with a periodi-
city T =2 (Fig. 4; see the Supplemental Material [39],
Video 2). Such cycles are a hallmark of complex behavior
in driven amorphous systems, break 1-RPM, and cannot be
realized in linear geometries (because their switching
thresholds follow a fixed order).

Second, the trigonal hub produces pathways where
starting from a certain stable state S, either increasing or
decreasing the drive H, triggers the same transition. This
violates the assumption of all hysteron models that tran-
sitions under increased (decreased) driving are initiated by
a hysteretic element flipping up (down). However, this
effect can easily be understood geometrically, and is a

(a) multiperiodic cycles - ool
cycle 2
s
51/2‘) 53/'.
P\.‘/f Fx
@

Y

s

time >

(b) multigraphs (c) emergent

geometric

hysteron
Sa = 0 Sa = 1

FIG. 4. (a) T-graph showing a multiperiodic cycle with perio-
dicity 7 =2 (left): starting from state (000) and driving H
cyclically, the system returns to (000) after 7 = 2 driving cycles
[39]. Multiperiodicity is also apparent in the mechanical response
(right), the force F, measured at 7, as a function of time.
(b) Multigraph (left): starting from (100), either increasing or
decreasing H leads to the same transition s3 =0 — 1; this
happens when e3 is perpendicular to the driving. Decreasing
H stretches es if 65 > /2 (right). (c) Illustration of an emergent,
geometric 4th hysteron. The state S = (sy, 5», s3) is fixed while
the hub exhibits global, bistable buckling.

general feature of higher dimensional networks: if the angle
(0;) between a spring and the driving H is around 7 /2, both
an increase and a decrease of H can lead to stretching of
this spring thus triggering the same flipping [Eq. (5)].
The corresponding #-graph is a multigraph, where multiple
directed transitions connect the same two states [Fig. 4(b);
see the Supplemental Material [39], Video 3] [52].
Similarly, both for H - co and H — —oo, the springs
get stretched and all switch to phase 1—hence, there is no
guarantee that the springs will ever reach s; = 0.

Third, 2D networks can give rise to additional hysteretic
degrees of freedom associated with buckling [Fig. 4(c)].
This geometric degree of freedom can be mapped to an
additional (fourth) hysteron, for example by defining its
phase via the leaning direction of the buckled structure
[43]. Such geometric hysterons produce a wide variety
of t-graphs [39].

For large random networks, we expect the numbers of
springs perpendicular to the driving and of emergent
hysterons to proliferate [53]. This suggests that for increas-
ingly large systems, the mapping from spring networks to
hysteron models progressively fails.

Conclusion and outlook—Networks of hysteretic ele-
ments allow one to investigate the links between real space
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configurations and abstract hysteron models. We have
shown how geometry controls interactions, leading to a
general, geometric strategy to materialize targeted path-
ways in networks of hysteretic elements. At the same time,
the exceptional 2D geometries clarify that spurious align-
ment between elements and between elements and driving,
may break the description of physical systems by hysteron
models. In large networks, these effects could potentially
be enhanced by nonaffine deformations [54]. This break-
down implies that previous insights on the mechanics of
amorphous solids, derived from hysteron models, may
require reconsideration; point toward the importance of
exceptionally aligned geometries for future descriptions of
amorphous solids [15,24,38,55]; and suggest that physical
systems exhibit a wider range of responses and memory
effects than shown in the hysteron model [17,21].

While we focused here on controlled deformations, slow
driving, and nondegenerate conditions, we note that stress
control (instead of strain) [21], textured driving [4,17],
dynamic driving [42,43], or race conditions [23] can
significantly extend the range of physically realizable
pathways, and further probe the validity of hysteron models
[26,43].

We briefly mention directions for future research. First,
straightforward extensions include networks of mechanical
elements with other hysteretic degrees of freedom (e.g.,
shear or rotation) [19,28,56]. Second, the complex, non-
pairwise interactions in 2D networks may provide a route to
understanding the emergence of glassy dynamics in large
networks [57-59]. Third, physical hysteretic elements
prohibit the occurrence of spurious loops, where after an
instability, the system cannot find a stable state but instead
gets trapped in an infinite cycle [29]. Such loops over-
whelm hysterons with arbitrary switching thresholds
[23,25,26], and also arise in coupled spin models [60].
Hence, physical models allow one to define ensembles of
hysterons that lead to well-defined dissipative behaviors.
Finally, our explicit expressions for the geometrically
controlled interactions suggest that solving the inverse
problem, i.e., translating a targeted pathway, ¢-graph, or
set of switching thresholds to a specific network, is now
within reach.
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