
My code is less secure with Gen AI: surveying developers' perceptions of
the impact of code generation tools on security
Kudriavtseva, A.; Hotak, N.A.; Gadyatskaya, O.

Citation
Kudriavtseva, A., Hotak, N. A., & Gadyatskaya, O. (2025). My code is less secure with Gen AI:
surveying developers' perceptions of the impact of code generation tools on security. Sac '25,
1637-1646. doi:10.1145/3672608.3707778

Version: Publisher's Version
License: Creative Commons CC BY-SA 4.0 license
Downloaded from: https://hdl.handle.net/1887/4283611

Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by-sa/4.0/
https://hdl.handle.net/1887/4283611

My Code Is Less Secure with Gen AI: Surveying Developers’
Perceptions of the Impact of Code Generation Tools on Security

Arina Kudriavtseva
Leiden University

Leiden, The Netherlands
a.kudriavtseva@liacs.leidenuniv.nl

Nisar Ahmad Hotak
Leiden University

Leiden, The Netherlands
n.a.hotak@umail.leidenuniv.nl

Olga Gadyatskaya
Leiden University

Leiden, The Netherlands
o.gadyatskaya@liacs.leidenuniv.nl

Abstract
Background: Generative AI (GAI) tools like GitHub Copilot and
ChatGPT are transforming software development by automating
code generation and enhancing developers’ productivity. However,
since these tools are often trained on open-source repositories,
they may inadvertently reproduce vulnerable code, raising con-
cerns about the security of AI-generated outputs. Aims: In this
paper, we aim to investigate how developers perceive code secu-
rity when using GAI tools. Method:We conducted a survey with
105 software developers with diverse experience levels to gather
their perceptions regarding the security of generated code and their
suggestions for improving it. Results:While developers reported
increased development speed when using GAI tools, many spend
additional time on security reviews and documentation of the gen-
erated code, and they are worried about the overreliance on AI and
vulnerabilities in the code. Only about a quarter of the developers
expressed confidence in the code generated by AI, and, moreover,
experienced developers perceive that their proficiency in secure
coding decreases when using GAI tools. Our results provide orga-
nizations with a better understanding of the risks associated with
GAI tools and help improve their software security programs.

CCS Concepts
• Computing methodologies → Artificial intelligence; • Secu-
rity and privacy → Software security engineering.

Keywords
Secure software development; developer study; generated code
security

ACM Reference Format:
Arina Kudriavtseva, Nisar Ahmad Hotak, and Olga Gadyatskaya. 2025. My
Code Is Less Secure with Gen AI: Surveying Developers’ Perceptions of
the Impact of Code Generation Tools on Security. In The 40th ACM/SIGAPP
Symposium on Applied Computing (SAC ’25), March 31-April 4, 2025, Catania,
Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3672608.
3707778

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
SAC ’25, March 31-April 4, 2025, Catania, Italy
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0629-5/25/03
https://doi.org/10.1145/3672608.3707778

1 Introduction
Generative artificial intelligence (GAI) tools such as GitHub Copi-
lot1 or OpenAI’s Codex2 and ChatGPT3 have demonstrated impres-
sive capabilities in generating code, allowing developers to quickly
translate ideas into functional code [46].

However, since GAIs are often trained on data from open-source
repositories like GitHub, they may inadvertently learn and replicate
code that contains software bugs and security vulnerabilities [46].
The 2024 Open Source Security and Risk Analysis (OSSRA) report4
revealed that 84% of the analyzed codebases contain at least one vul-
nerability, with 74% having high-risk vulnerabilities. Consequently,
there is a concern that the GAI tools could perpetuate vulnerabili-
ties learned from the training during the code generation process,
resulting in flawed and highly exploitable code [46]. For example,
studies have shown that Copilot generates insecure code about
40% of the time [31], and only 5 out of 21 programs produced by
ChatGPT were initially secure [20]. Additionally, participants who
had access to an AI assistant tended to write less secure code com-
pared to those without [32]. As AI-driven programming becomes
more prevalent, it is important to understand what are the effects
perceived by software developers on security of their code and on
their own behavior. Are they concerned about potential insecurities
in the generated code? What do they do to mitigate these issues?

In this paper, we aim to investigate developers’ perceptions re-
garding code security when using GAI tools, such as GitHub Copilot
and ChatGPT. We explore these perceptions from several directions:
we study the changes in secure coding proficiency and behavior
that developers report, the perceived benefits and risks of using
GAI, the security best practices followed by developers, and the
factors contributing to security of generated code, the GAI tools
used by developers, and the level of trust they have in these tools.
Concretely, we formulated these research questions for our study:
RQ1 What is the effect of using code generation tools on developers’

behavior (with respect to code security)?
RQ2 What are the perceived benefits and risks of using generated

code?
RQ3 What do developers recommend to improve the security of gen-

erated code?
RQ4 How do developers perceive the security of code generated by AI

tools they use?
RQ5 How does the level of development experience affect developers’

perceptions regarding security of generated code?

1https://github.com/features/copilot
2https://openai.com/index/openai-codex/
3https://chatgpt.com/
4https://www.synopsys.com/blogs/software-security/open-source-trends-ossra-
report.html

1637

https://doi.org/10.1145/3672608.3707778
https://doi.org/10.1145/3672608.3707778
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://doi.org/10.1145/3672608.3707778
https://github.com/features/copilot
https://www.synopsys.com/blogs/software-security/open-source-trends-ossra-report.html
https://www.synopsys.com/blogs/software-security/open-source-trends-ossra-report.html
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3672608.3707778&domain=pdf&date_stamp=2025-05-14

SAC ’25, March 31-April 4, 2025, Catania, Italy A. Kudriavtseva et al.

To address these RQs, we conducted a surveywith 105 developers
to gather their perceptions of the security of GAI code. We analyzed
the survey data and discussed the findings in the context of existing
literature on the use of AI-generated code in software development.
Our main findings are as follows:

• Developers perceive substantial changes in their secure coding
proficiency when not using GAI tools compared to when using
them. While self-reported proficiency without GAI aligns robustly
with their development experience, their proficiency with GAI
varies: novice developers tend to perceive that they become better
in secure coding, while advanced developers tend to perceive their
proficiency to be degraded. More experienced developers are also
more likely to have less trust in the security of AI-generated code
compared to less experienced developers.

• Developers also report changes in their behavior when using GAI:
while they see AI programming assistants as productivity boost-
ers, they also report paying more attention to code review before
integration and to documenting the generated code properly.

• The major GAI-introduced risks that developers perceive are the
overreliance on AI, security vulnerabilities in the code, and ethical
and privacy concerns.

• To reduce these risks and improve security of generated code,
developers recommend thoroughly reviewing the AI-generated
code and using code scanning tools for vulnerability detection.
Another recommended security practice is avoiding submitting
sensitive data to GAI tools.

• Developers’ perceptions of security of AI-generated code are influ-
enced by various factors, including clarity and understandability of
the code and the absence of known vulnerabilities on the generated
code.

• Among all prominent GAI tools that most participants are familiar
with, IntelliCode and Copilot are considered to be somewhat more
reliable.

• Overall, the perceptions of security of AI-generated code appear
to be consistent across all levels of developers’ experience
Our results provide organizations with a better understanding

of the risks associated with GAI tools and generated code, and help
improve their software security.

2 Research Methodology
2.1 Questionnaire Design
We designed our survey questions to answer the research ques-
tions using the Qualtrics platform5. To ensure quality, we followed
the guidelines for conducting survey studies in Software Engineer-
ing [26]. The survey took about 15 minutes to complete. It was
anonymous and participants were required to read the study infor-
mation and provide their consent before answering the question-
naire. The target audience of the survey was software developers.
We aimed to survey both experienced and junior developers, as
well as students learning to develop software, to capture the per-
ceptions and trends among the different groups of developers. The
complete survey questionnaire is available in the supplementary
materials [22].

5https://www.qualtrics.com/

To construct the multiple-choice questions, we relied on the
existing literature on developers’ behaviors, potential benefits, chal-
lenges, and risks associated with using AI-generated code, as well
as factors contributing to security [8, 34, 35, 42, 45]. Additionally,
we engaged in discussions with developers in our network to gain
insights into their experiences with using AI-generated code, which
helped us validate the constructed multiple-choice questions. Fur-
thermore, a pilot study involving five participants from our profes-
sional networks was conducted to assess the clarity, flow, and over-
all quality of the survey questions. Based on the feedback received
from these participants, the survey was refined and improved.

2.2 Survey Response Collection and Analysis
The survey was run from May 19, 2024, to 13 July, 2024. We invited
people to participate in our survey via the personal network of the
authors, as well as via invitations given out during several large in-
dustry and academic conferences dedicated to software engineering
and software security. In addition, prospective participants within
our professional networks were invited by mail and direct messages
on the LinkedIn platform6. The participants were not compensated,
but we offered to share the study findings if the participants were
interested in them.

We received 196 responses to the survey in the study period.
Out of these collected responses, we considered 105 to be valid
responses by participants that 1) were not considered by Qualtrics
to be bots (based on the CAPTCHA scores and time spent on the
survey) and 2) viewed and answered all questions. The 91 discarded
answers included 10 bots and 81 people who did not complete the
whole survey.

The demographic information of the 105 participants with valid
responses is depicted in Figure 1. For further analysis, we group the
participants into junior (student/learning, 0-2 years of experience),
medior (3-5 years), and senior (more than 6 years) groups based on
their years of experience. The distribution of the study participants
by experience level is then as follows: junior – 41%, medior – 28%,
and senior – 31%. It is worth noting that about half of our respon-
dents do not identify themselves as professional developers, but
they are, e.g., students, hobbyists, and freelancers. We deliberately
did not exclude them from the target audience as today such people
play a significant role in global software development, including
open-source software projects.

For closed-ended questions, we aggregated the results using
descriptive statistics. Answers to open questions were analyzed
and common themes were identified.

We did three statistical tests: two Kruskal–Wallis tests, and one
Brunner-Munzel test. Accounting for multiple comparisons, we ap-
ply the Bonferroni correction and set the significance level 𝑝=0.016.

2.3 Ethical considerations
The study design was approved by the Science Ethics Committee
at Leiden University. To protect participants’ privacy, we limited
the collection of their personal data as much as possible. We stored
and analyzed the data in compliance with the EU General Data
Protection Regulation (GDPR). All participants were presented with
a consent form explaining the goals of the research, the collected
6https://linkedin.com/

1638

https://www.qualtrics.com/
https://linkedin.com/

My Code Is Less Secure with Gen AI SAC ’25, March 31-April 4, 2025, Catania, Italy

Current occupation

Student Professional Programmer Researcher Hobbyist Programmer Freelancer Programmer Other:

Experience

Student/learning 0 to 2 years 3 to 5 years 6 to 8 years 9 to 11 years More than 11 years

0% 20% 40% 60% 80% 100%

Programming languages

Python JavaScript TypeScript Java other C++ PHP C# Go Ruby

Figure 1: Demographic information of the participants.

59%

41%

10%

66%

24%

24%

41%

35%

44%

26%
30%

12%

67%

21%

58%

42%

Figure 2: Change in the proficiency level in writing secure
code with GAI tools.

data, and the research method. We only considered answers from
participants who explicitly consented to participate in the study
and allowed us to publish the results in an anonymized, aggregated
format.

3 Results
3.1 RQ1: Perceived Secure Coding Proficiency

and the Effect of GAI Tools
The influence of AI on secure coding proficiency. To understand
the impact of GAI on self-assessed programming proficiency, we
asked participants to rate their proficiency levels in writing secure
code with and without the GAI tools. The results are summarized
in Table 1. As we can see, more than half of the participants rated
their code security proficiency levels as intermediate, both with
and without GAI. However, as we examine further, these are not
the same people.

We explored the relationship between self-reported proficiency
in writing secure code without GAI tools and years of professional
experience. There is a strong correlation between the level of pro-
ficiency in writing secure code without AI tools and experience
(Spearman’s rank correlation 𝜌 = 0.94). That means that, as expected,
the level of proficiency in writing secure code without GAI tools
increases with years of professional experience. The participants’s
self-assessment of proficiency in secure coding without generative
AI can thus be considered to be reasonably objective.

We note that the self-assessed secure coding proficiency lev-
els with GAI tools are nuanced – some participants reported that
their proficiency increases with GAI, while others indicated that
their proficiency actually decreases. To show how developers move

from one proficiency group to another, we depict the results in
the Sankey chart 2. This figure indicates that GAI tools have some
positive impact on the perceived secure coding proficiency levels
of more junior developers, while more senior developers appear to
be more concerned about the security of the code they write with
GAI. Overall, 20% of participants estimated that their secure coding
proficiency increases with GAI, while 24% considered that their
proficiency decreases. Proficiency of the rest (56%) remained at the
same level. There is now almost no correlation between the level of
proficiency in writing secure code with GAI and the years of expe-
rience (Spearman’s rank correlation 𝜌 = -0.028). Thus, developers
perceive that the presence of GAI tools substantially affects their
proficiency in writing secure code, and this proficiency no longer
reflects their actual professional experience.

This interesting phenomenon with the self-assessed proficiency
in secure coding with and without AI can be potentially attributed
to the Dunning-Kruger effect: perhaps, more senior and experi-
enced people are more aware of the security issues with generated
code [21, 31, 32, 36] and they suspect that the security of their code
would overall diminish, while more junior developers might be
prone to over-estimate their capabilities in secure coding with AI,
because they are less aware. It would be interesting to investigate
this more in-depth in future studies.

Behavior change with AI. To understand the impact of GAI
on the software development process, we investigated the changes
in developers’ behavior when using GAI tools. Table 2 shows that
the majority of the participants (61%) agreed with spending less
time writing code with generative AI tools compared to the code
written by themselves. Neutral participants were 13%, while almost
26% replied that the time spent on coding using generative AI tools
was not decreased. This result is consistent with studies from the
literature that show faster coding with GAI tools [18, 40].

Likewise, the majority of the participants (61%) were more cau-
tious about deploying generated code to production compared
to deploying their own code, while 26% remained neutral on this
aspect, and a small percentage (13%) reported not being cautious
about deploying AI-generated code to production. Spending more
time on reviewing security of AI-generated code was reported
by almost half of the participants (44%), while nearly 36% of respon-
dents were neutral. One-fifth (20%) of the participants disagreed
on spending more time on security reviews. Understanding the
logic behind generative AI code proved to be a challenge for a
significant portion of the respondents (41%) who disagreed with
finding it easier than understanding their own code. Around a third
(30%) of the responses neither agree nor disagree. While 29% found

1639

SAC ’25, March 31-April 4, 2025, Catania, Italy A. Kudriavtseva et al.

Table 1: Distribution of secure coding proficiency levels with and without AI by experience level

Experience Level Beginner (%) Intermediate (%) Advanced (%)

Without AI With AI Without AI With AI Without AI With AI

Student/learning 47 35 53 35 0 23
0 to 2 years 19 15 81 77 0 8
3 to 5 years 13 21 59 52 28 28
6 to 8 years 0 0 44 56 56 44
9 to 11 years 0 29 29 43 71 29
> 10 years 0 50 30 40 70 10
Total population 16 22 56 55 28 23

the logic behind AI-generated code less challenging to grasp. Al-
most half of the participants (49%) found it more important to
document the purpose and limitations of generated code for future
reference. A neutral response was provided by around one-third
(32%) of participants. One-fifth (19%) of the participants disagreed.

To investigate whether the reduction in coding time was per-
ceived differently based on the experience level (junior, medior,
senior), we performed cross-tabulation. As shown in Figure 3, a
higher percentage of junior developers (29%) expressed skepticism
about spending less time on coding with AI assistance, compared to
28% of medior developers and 21% of advanced developers. In con-
trast, the majority of senior developers (67%) agreed that they spent
less time on coding with AI. Similarly, 61% of medior developers and
57% of junior developers agreed with this perception. Our analysis
using the Kruskal-Wallis test with the Bonferroni correction did
not show that the experience level of the developers significantly
influenced the time spent on coding with GAI tools compared to
code written by themselves (𝐻 = 2.4, 𝑝 = 0.3).

We also cross-tabulated the experience level with the perception
of spending more time reviewing security of generated code. The
Figure 3 shows that 39% of senior developers, 48% of medior devel-
opers, and 47% of junior developers agreed that they spend more
time on security reviews of generated code. On the other hand, 15%
of senior developers, 14% of medior developers, and 29% of junior
developers disagreed. We observed that the largest percentage of
developers (29%) who disagreed with spending more time review-
ing GAI code came from the junior experience level, compared to
senior and medior developers. However, the Kruskal-Wallis test
with the Bonferroni correction did not show that the experience
level of the developers influences the time spent on security reviews
of generated code (𝐻 = 6.9, 𝑝 = 0.03).

3.2 RQ2: Perceived Benefits and Risks of GAI
Tools

Perceived benefits. We asked the developers about the benefits
of generative AI tools they perceived. A significant proportion of
respondents (78%) identified faster development (decreased time
to production) as a key advantage. Furthermore, 65% of the partici-
pants viewed increased efficiency (i.e. spending less resources on
a project) as a major benefit. Almost equal proportion received im-
proved detection of vulnerabilities (36%) and improved code
maintainability (32%). Automatic generation of patches for
vulnerabilities was indicated by 24%. A small number of partic-
ipants (4%) used the opportunity to list their own answers under

Junior Medior Senior

Strongly Disagree

Somewhat Disagree

Neither Agree nor Disagree

Somewhat Agree

Strongly Agree

Less time on writing code with GAI More time to review GAI code

Figure 3: Agreement with statements “I spend less time writ-
ing code with GAI” and “I spendmore time reviewing generated
code”: comparison among experience levels.

0%

20%

40%

60%

80%

100%
Increased Efficiency

Automatic generation
of patches for
vulnerabilities

Faster developmentImproved detection of
vulnerabilities

Improved code
maintainability

Junior Medior Senior

Figure 4: Perceived benefits for code security of using gener-
ative AI tools, per experience level.

“Other”. These answers included increased security awareness, stan-
dardization of code implementation, and easier development due
to AI-refactored code.

The mapping of perceived benefits with the level of experience
is depicted in Figure 4. The graph shows that the percentage of
participants who identified each benefit as a key advantage of using
generative AI tools across different levels of experience is nearly the
same. The only gap is in the increased efficiency, where the percent-
age of participants who identified this benefit as a key advantage is
higher for junior developers (72%) compared to intermediate-level
developers (52%).

1640

My Code Is Less Secure with Gen AI SAC ’25, March 31-April 4, 2025, Catania, Italy

Table 2: Participants’ self-assessment of behavioral changes when using GAI tools. Percentages in italics on the chart (N%) repre-
sent the percent of the distribution that reported “Strongly Disagree”/“Somewhat Disagree” (left) and “Somewhat Agree”/“Strongly
Agree” (right).

Behavioral changes Distribution
I spend less time writing code with GAI compared to writing myself 26% 61%
I am more cautious about deploying GAI code to production compared
to deploying without GAI

13% 61%

I spend more time on security reviews when using GAI code compared
to code written by myself

20% 44%

I find it less challenging to understand the logic behind GAI code com-
pared to the code I write myself

41% 29%

I find it more important to document the purpose and limitations of
GAI code for future reference compared to the code I write myself

19% 49%

Strongly Disagree Somewhat Disagree Neither Agree nor Disagree Somewhat Agree Strongly Agree

Perceived risks and challenges. We then examined the per-
ceived risks of generative AI in code security. The overreliance
on AI without human oversight was found to be the greatest
risk perceived by 65% of the participants. Additionally, the other
important perceived risks and challenges were: likely to gener-
ate code with similar vulnerabilities (59%), the introduction
of new vulnerabilities (52%), privacy and ethical concerns in
AI-generated solutions (48%), integration challenges with the
code/infrastructure (29%), and integration challenges with
existing security tools (21%). Some participants (3%) suggested
additional risks associated with using generative AI code, including
supply chain-related risks (the possibility of incorporating expired
or conflicting libraries) and the risk of hacked GAI tools, which
could lead to bugs in many pieces of software. The prominent
concern of our participants about vulnerabilities aligns with the lit-
erature showing that generated code is frequently vulnerable [9, 31]
as well as software professionals being wary about this [21].

After mapping the perceived risks with years of professional
experience (Figure 5), we found that overreliance on AI without
human oversight is the highest perceived risk for junior (76%) and
senior (64%), with a drop for medior developers (52%). In contrast,
the integration challenges with existing security tools are perceived
to be the smallest risk by all levels. Notably, perceptions of the risk
of introducing new vulnerabilities and the integration challenges
with existing code and infrastructure increase with experience.
Privacy and ethical concerns in AI-generated solutions and the
risk of generating code with similar vulnerabilities are perceived
to be somewhat more significant with increased experience, with
their perceived importance rising from junior to medior and then
decreasing slightly for senior (46%).

Looking forward, we investigated the challenges related to the
security of AI-generated code in five years envisaged by our par-
ticipants. Unintended biases in generated code (56%), privacy
and ethical concerns in AI-generated code (52%), and lack of
transparency and auditability of AI-generated code (51%) were
considered the most important challenges. A small portion of partic-
ipants (5%) provided own suggested challenges regarding the high
risk of similar code with vulnerabilities, having less experienced
developers, and overreliance on AI.

When comparing the current perceived risks that developers
have with the challenges anticipated for generative AI in code
security in five years, we see that privacy and ethical concerns
are perceived to become even more important in five years (3%

Junior Medior Senior

20

30

40

50

60

70

P
er

ce
nt

ag
e

(%
)

Overreliance on AI without human oversight
Introduction of new vulnerabilities
Integration challenges with existing security tools
Privacy and ethical concerns in AI-generated solution
Likely to generate code with similar vulnerabilities
Integration challenges with the code/infrastructure

Figure 5: The perceived risks of using generative AI in code
security, per experience level.

increase). The integration challenges are at the bottom of both lists
with a small percentage of developers selecting them as a current
risk and a predicted challenge in five years.

3.3 RQ3: Improving Security of Generated Code
Recommended security best practices. Figure 6 presents the secu-
rity best practices that developers recommend when incorporating
AI-generated code. Most of the participants (82%) believed that a
thorough review and understanding of all AI-generated code
before integration is the most important. In addition, 68% of the
respondents suggested avoiding submitting sensitive data or
personal information to GAI tools. Furthermore, 62% of the par-
ticipants mentioned using active code scanning tools to identify
vulnerabilities as one of the best security practices. Two partici-
pants provided their own responses, suggesting to “use safe tools”
and “utilize an enterprise plan like Copilot, which ensures source code
confidentiality on their servers”. Thus, to eliminate security risks,
developers recommend reviewing, testing, and fully understanding
generated code before integrating it and being mindful of confi-
dentiality and privacy issues when using remote GAI tools. We
note that other studies also consistently highlight the importance
of maintaining vigilant security reviews to prevent security issues
(e.g. [21, 43]).

1641

SAC ’25, March 31-April 4, 2025, Catania, Italy A. Kudriavtseva et al.

0 20 40 60 80
Percentage of respondents (%)

Choose GAI tools
from reputable vendors
with a focus on security

Thoroughly review and
understand all AI-generated

code before integration

Use active code
scanning tools to

identify vulnerabilities

Do not enter sensitive
or personal information into

the GAI tools

Incorporating secure
coding standards

and guidelines

Junior
Medior
Senior

Figure 6: Security practices recommended by developers.

After mapping the recommended security practices with the ex-
perience level, we observe that junior developers were less inclined
to choose the recommended security practices compared to medior
and senior developers. The only exception was for choosing a GAI
tool from a reputable vendor, where junior developers were more
likely to recommend this practice. Overall, all security practices
received the same share of medior and senior respondents.

We also asked developers which security best practices they cur-
rently follow when coding with generative AI tools. The answers
mostly came from juniors (64%). In total, 20 security best practices
were reported. Although the question was open-ended, most of
the answers were similar to those we gave as options to discover
the security practices recommended by developers, suggesting a
priming effect. The most frequently reported option (provided by
12 participants) emphasized a thorough review of AI-generated
code, including manual review to ensure the correctness and full
understanding of the code before implementing it. Several partici-
pants (10) stated that they do not share sensitive information with
AI tools to preserve privacy and prevent data leakage, including
”turning off data sharing so the AI will not learn from my input when
working with sensitive data”. There was also an emphasis on sani-
tizing inputs and avoiding the use of real credentials or identifiable
data. In addition, six developers mentioned using tools such as
SonarQube for code scanning to identify security vulnerabilities
and code smells as part of the build process. One participant de-
scribed their work with AI-generated code in this way: “Usually,
I take the generated code, throw it away, and write it again myself.
Not saying that this is more secure. The reason for this, however, is
not primarily security, but maintainability of the code”.

Factors contributing to security. Participants ranked the se-
curity factors they should consider when reviewing AI-generated
code. The factors are ranked from 1 (most important) to 5 (least
important) (Figure 7). What we see is that the clarity and un-
derstandability of the code are the most important factors for
developers when reviewing code generated by AI. The absence
of known vulnerabilities in the generated code is the second
most important factor. The reputation and security track record

1
Most Important
2345

Least Important

No known vulnerabilities

Code is clear and understandable

Code aligns with security best practices

Code integrates with security tools

Reputation of GAI tool

Figure 7: Boxplots of the rating of factors that contribute to
code security according to the participants.

of the GAI tool is the least important factor for developers when
reviewing code generated by AI.

We note that the factors contributing to security align closely
with the security practices that developers follow and recommend.
The clarity and understandability of the code were consistently
highlighted as the most important factor and a thorough review of
the generated codes was the most frequently recommended security
practice. Similarly, the use of scanning tools to find vulnerabilities
was both a prominent recommended security practice and the ab-
sence of vulnerabilities is an important factor that contributes to
security. On the other hand, choosing a generative AI tool from
reputable vendors was considered the least recommended practice
and ranked as the least important factor in ensuring security.

Around 20% of the participants also responded to the open ques-
tion about what other security factors are important when review-
ing generative AI code. One prevalent idea was the importance of
protecting and checking confidential data in the code, like API keys,
IDs, and personal information when using generative AI tools: “Se-
crets like API keys and IDs must not be shared with the GAI provider”.
Some of the responses focused on the need to check that the AI-
generated code followed secure coding practices, such as input
validation, proper error handling, and avoiding insecure coding
patterns. Another group of respondents suggested that generative
AI might be less suitable for certain programming languages with
unique characteristics. Solidity7 was mentioned as an example:
“Consider Solidity, it is less likely to give an optimal code for it.”

The need for proper testing procedures to validate the gener-
ated code was another important theme. Furthermore, the structure
should be up to date with current versions of the chosen program-
ming language to reduce the risk of backdoors or newly discovered
vulnerabilities. Two participants also recommended abstaining from
using GAI: “Code without any GAI tools, practice yourself ”, consid-
ering writing code without AI tools as a factor that contributes to
security. As we can see, the responses to the open question were
consistent with the responses to the open question regarding the
security practices developers follow. We can conclude that develop-
ers consider the factors that contribute to security while using GAI
tools and reflect these factors in the security practices they follow.

7Solidity, a programming language designed for creating smart contracts for the
Ethereum blockchain platform https://soliditylang.org/

1642

https://soliditylang.org/

My Code Is Less Secure with Gen AI SAC ’25, March 31-April 4, 2025, Catania, Italy

3.4 RQ4: Used GAI Tools and Confidence in
Generated Code

Security of different GAI tools. We asked participants if they
trust the security of code generated by different generative AI tools
varies significantly. The most substantial part of the participants
(49%) agree with this statement, while a much smaller proportion
(15%) disagree. Interestingly, one-third (36%) of developers were
unsure about whether there are significant variations in the security
of code generated by different GAI tools.

We then asked developers about the factors that contribute to
the differences in generated code security among different GAI
tools. The majority (74%) of the respondents chose transparency
and explainability of the generated code as the main factor.
The specific functionalities of the tool, such as code completion
versus full program generation, was the secondmost popular choice
(64%), which agrees with the results from [29]. Reputation of the
GAI tool and regular updates and patching of the tool seem
to be less important factors with equal amounts of votes (38%).
Other factors mentioned by the participants include the nature of
the coding language, true positive and false negative rates, and
the goal of the tool (e.g., logical reasoning, coding, or answering
complex questions). Two participants highlighted the importance
of the amount of training the AI tool had and the quality of the
source code on which the tool was trained: “It also depends on how
much training this AI tool has had, the less training – the more likely
it is to screw up a line or two in the sense of security.”

Commonly used GAI tools. We asked which GAI tools the
participants used and how they would assess confidence in the
security of the code generated by those tools. ChatGPT was the
most (89%) used GAI tool, followed by GitHub Copilot (59%). This
aligns with themost recent literature [11, 21] and the StackOverflow
developers’ survey [39]. Table 3 presents the confidence levels of
the participants in security of the code generated by the AI tools
they use. It appears that IntelliCode is perceived to be the most
reliable tool because more than half of developers who use it (62%)
are confident in the security of the code it generates, while nobody
stated that they were not sure about it. GitHub Copilot creates
doubts in 20% of the participants, while 46% of satisfied users. The
Tabnine AI assistant received the most conflicting votes. However,
very few people answered about this tool, so no conclusion can be
drawn about it. Similarly, most of the participants did not select
the OpenAI CodeX model. Overall, among the two most used GAI
tools, Copilot from GitHub is considered to be more reliable.

As GitHub Copilot and ChatGPT were the most commonly used
tools, we compared the confidence in the security of the code gen-
erated by these tools using the Brunner-Munzel test with the Bon-
ferroni correction. We found that, overall, the confidence in the
security of the code generated by GitHub Copilot was not sig-
nificantly higher than the confidence in the security of the code
generated by ChatGPT (𝑍 = -2.4, 𝑝-value: 0.017).

Program creation versus code completion. We asked the par-
ticipants whether there is a higher risk of vulnerabilities in code
generated by full program creation tools compared to code comple-
tion tools. A slight majority (59%) agreed that full program creation
tools pose a higher risk of security vulnerabilities compared to code

Junior Medior Senior

Strongly Disagree

Somewhat Disagree

Neither Agree nor Disagree

Somewhat Agree

Strongly Agree

Figure 8: Agreementwith the statement “There is a higher risk
of security vulnerabilities in code generated by full program
creation GAI tools compared to code completion tools”.

completion tools, with 19% disagreeing with this assessment. The
remaining 22% of respondents remained neutral on this issue.

When mapping the answers with the experience levels, we ob-
served that more mediors (36%) strongly agreed, while only 17% of
juniors and 21% of seniors strongly agreed with this statement. In
contrast, the percentage of juniors (21%) who somewhat disagreed
with the statement was higher compared to mediors (7%) and se-
niors (9%). The results in Figure 8 suggest that more experienced
developers are slightly more likely to perceive that full program cre-
ation tools pose a higher risk of security vulnerabilities compared
to code completion tools.

Confidence in AI-generated code. Figure 9 illustrates the par-
ticipants’ confidence in security of AI-generated code compared to
code written by themselves. The results indicate that a significant
portion (43%) of the respondents expressed a lack of confidence in
the security of AI-generated code. A substantial proportion of the
participants (32%) stated that they were neutral on this question.
A quarter (25%) reported feeling somewhat or very confident in
the security of AI-generated code. Notably, a larger percentage
(11%) lacked confidence entirely, compared to the small group (1%)
who were very confident. This general distrust in security of the
generated code aligns with the findings from a recent qualitative
study by Klemmer et al. [21].

When examining the confidence levels based on experience, it
is interesting to note that the small group of developers who were
very confident in AI-generated code were only juniors. On the other
hand, medior (14%) and senior (15%) developers were more likely
to express a complete lack of confidence compared to juniors (5%).
This suggests that more experienced developers are more likely to
have less trust in the security of AI-generated code compared to
less experienced developers.

3.5 RQ5: The Effect of Experience on
Perceptions

As discussed above, for all major questions we have mapped the
responses with the level of developers’ experience to discover the
difference in perceptions regarding security of GAI-generated code.
We now synthesize these results and answer our final research ques-
tion. Overall, our statistical analysis did not reveal a substantial

1643

SAC ’25, March 31-April 4, 2025, Catania, Italy A. Kudriavtseva et al.

Table 3: Participants’ confidence in the security of code generated by generative AI tools. Percentages in italics on the chart
(N%) represent the percent of the distribution that reported “Not Confident at All”/“Somewhat Unsure” (left) and “Somewhat
Confident”/“Very Confident” (right).

GAI tools % users Distribution
ChatGPT 89% 33% 34%
Github Copilot 59% 20% 46%
IntelliCode 14% 0% 62%
OpenAI CodeX 7% 43% 43%
Tabnine 4% 25% 50%

Not Confident at All Somewhat Unsure Neutral Somewhat Confident Very Confident

Junior Medior Senior

Not confident at all

Somewhat unsure

Neutral

Somewhat confident

Very confident

Figure 9: Answers to the question “How confident are you in
the security of code generated by AI tools compared to code
written by yourself?”.

difference in perceptions between the groups, but some notable dis-
tinctions emerged. Particularly, senior developers spend less time
coding with AI assistance, while junior developers do not perceive
such a substantial productivity gain, and both medior and junior
developers perceive spending more time on security reviews of
generated code compared to senior developers. However, our sta-
tistical analysis did not find any significant difference between the
groups, and an industry study [13] previously found productivity
gains with GAI to be the most pronounced for junior developers.
So, our observation needs further investigation in a larger study.

The benefits of using GAI were found to be consistent across all
levels of experience, with one exception. Junior developers were
more likely to identify increased efficiency as a key benefit, com-
pared to medior-level developers. Interestingly, while junior devel-
opers were less inclined to mention spending less time coding with
GAI tools, they were more likely to perceive increased efficiency.

We observed slight variations in perceived risks based on ex-
perience level, but there were no visible major trends. In terms of
security practices, medior and senior developers showed similar
eagerness to recommend best practices, whereas junior developers
were less likely to do it. Additionally, more experienced developers
tend to see full program generation tools as posing higher secu-
rity risks compared to code completion tools and generally trust
AI-generated code less than less experienced developers.

4 Limitations
Our survey has several limitations that may impact our results.
Firstly, there is a possibility of self-selection bias [1] because we had
no control over sample selection. This may introduce a bias towards
individuals who are more interested or knowledgeable about the
topic. Furthermore, the non-response bias could be present because
the participants who did not respond to the survey could have
different opinions than those who did respond [14].

Additionally, our survey relies on self-reported answers. That
means that participants could give wrong or incomplete answers
about themselves because they want to appear better than they are
or if they misunderstand the questions [7]. We tried to mitigate this
in the pilot test.

Due to the limitations of the survey format, we were unable
to ask many follow-up questions or add many options for multi-
select questions because it would increase the cognitive load on
the participants and could decrease the response rate [12]. We
attempted to compensate for this by designing and pilot-testing
concise questions, with an open-ended option for the most critical
questions to receive additional information or clarify the responses.

Lastly, our results may not be generalizable to the whole pop-
ulation of developers [5]. The main reason for this is our sample
size of 105 respondents. However, as we discuss in Section 5 our
results broadly align with findings from several previous studies.
Thus, we believe that our results still provide valuable insights into
the current landscape and can offer meaningful implications for
organizations.

5 Related Work
We now overview the literature on security issues with generated
code, the effects of generated code on developer productivity, and
the perceptions of developers towards AI tools.

Security concerns about AI-generated code. Recent research
highlights the security vulnerabilities associated with code gener-
ated by LLMs [2, 6, 15, 17, 20, 31, 32, 36, 38, 41, 49]. For instance,
Pearce et al. [31] reported that Copilot produced insecure code in
about 40% of cases, while Perry et al. [32] observed that AI-assisted
developers introduced more vulnerabilities. Thus, our more experi-
enced participants perhaps correctly perceive their proficiency in
secure coding to degrade when using GAI tools.

Developers’ perceptions of AI tools. Research demonstrated
that developers’ perceptions and experiences influence their actual
productivity [33]. Thus, the literature on developers’ perceptions
regarding AI tools in software development provides an under-
standing of the impact of these tools on software engineering. One

1644

My Code Is Less Secure with Gen AI SAC ’25, March 31-April 4, 2025, Catania, Italy

important aspect that has been investigated is trust, as it plays a
crucial role in shaping user interaction with AI [10, 25]. Thus, if
developers do not trust AI-generated code, they are less likely to
use it [16].

Several studies show that perceived utility and trust of AI tools
contribute to users’ intention to use them [3, 4, 50]. For example,
Ge and Wu [16] found that trust and utility have a significant
impact on the intention to use ChatGPT for bug fixing. Wang et
al. [47] discovered that developers trust AI tools as these increase
productivity and improve code quality, but some developers prefer
to use AI tools only for simple tasks such as writing unit tests.
Sergeyuk et al. [37] report that the main reasons why developers
avoid using AI assistants are the lack of need, inaccuracy of AI-
generated outputs, the lack of trust, and failure of AI assistants
to understand the context. Indeed, several studies [23, 28, 30, 44]
demonstrated that both ChatGPT and Copilot show a limited ability
to understand the context and requirements, thus generating code
containing errors and requiring additional debugging. Focusing on
the usability of AI coding assistants, Liang et al. [24] found that,
while developers appreciate AI assistants for reducing keystrokes
and speeding up tasks, they face significant usability issues.

Despite the limitations of AI-generated code, academic and indus-
try research show that developers prefer using AI tools in their daily
programming tasks as it provides a helpful starting point [13, 40, 44]
and can improve developer productivity by reducing the time spent
on coding [48]. However, studies also highlight the problems asso-
ciated with using AI-generated code, such as code correctness [49].

Regarding perceived productivity, Ziegler et al. [51] found that
if developers frequently accept the Copilot suggestions, they tend
to feel more productive. Mendes et al. [27] explored benefits and
challenges related to GAI tools in a qualitative study, finding that
increased productivity is the main perceived benefit.

The annual developer survey from Stack Overflow measures
the usage of GAI tools among a large population of developers
and evaluates developers’ perceptions towards them [39]. Davila et
al. [11] surveyed 72 developers in a Brazilian company regarding
their GAI tools adoption. These surveys are broad and not geared
toward security, unlike our study.

Developers’ perceptions of security of AI-generated code.
Kholoosi et al. [19] studied the perceptions of security professionals
and software developers who shared their views on using ChatGPT
for security tasks on Twitter (X). Vulnerability detection was the
most discussed task, and users generally expressed positive sen-
timent towards this tool, though concerns about credibility and
practicality persisted, especially for complex security tasks.

Klemmer et al. [21] reviewed 190 relevant Reddit posts and in-
terviewed 27 software professionals to investigate how they use AI
assistants in secure software development. Oh et al. [29] surveyed
238 developers (mostly students) to investigate how much they
use code completion and code generation tools and whether they
trust the security of the code produced by such tools. These studies
confirm that, although there are security and quality concerns, soft-
ware professionals widely use GAI tools. Some developers reported
that they verify AI outputs similarly to human code [21]. This is
in line with our findings, as our participants also reported an in-
creased time spent on code review and stressed the importance of
a thorough examination of the generated code.

Using a different instrument (quantitative survey) we come to
some similar conclusions compared to [21], which used qualitative
methods. Thus, our work independently confirms [21]. At the same
time, our work has several important distinctions from [21, 29].
First, to the best of our knowledge, we are the first to observe the
phenomenon when developers rather objectively (i.e., in line with
their actual years of programming experience) assess their own
proficiency in secure coding without AI assistants, but their self-
assessment of proficiency with AI is practically disconnected with
the objective experience measure. Second, our study also examined
many other aspects: the behavioral changes that the participants
self-reported when using GAI tools, the perceived benefits and risks
that generated code entails, factors and practices contributing to
code security, factors that contribute to a GAI tool being perceived
as more secure, and the differences in developers’ perceptions based
on their experience.

6 Conclusions
We investigated how developers perceive the impact of AI-generated
code on security and found that GAI tools can bring both benefits
and risks. While developers reported faster coding, they also noted
the need for additional time on security reviews and documentation
of AI-generated code. And, despite the perceived efficiency gains
from using GAI, there is a clear concern about the security of the
generated code, with many experienced developers perceiving their
secure coding proficiency to decrease when using AI. To address
the security risks, developers recommend several best practices:
thoroughly understanding AI-generated code before integration, us-
ing scanning tools to identify vulnerabilities, and avoiding sharing
sensitive information with the GAI tool.

Our findings underscore the need for caution when integrat-
ing AI-generated code into the development process. While GAI
tools positively impact developer productivity, the broader secu-
rity implications must be addressed before these tools can be fully
embraced. Building on our results, future research can investigate
more in-depth how developers use and adapt to AI technologies.

Acknowledgments
This research has been partially supported by the Dutch Research
Council (NWO) under the project NWA.1215.18.008 Cyber Security
by Integrated Design (C-SIDe).

References
[1] Chittaranjan Andrade. 2020. The limitations of online surveys. Indian journal of

psychological medicine 42, 6 (2020), 575–576.
[2] Owura Asare, Meiyappan Nagappan, and N Asokan. 2023. Is github’s copilot

as bad as humans at introducing vulnerabilities in code? Empirical Software
Engineering 28, 6 (2023), 129.

[3] Janarthanan Balakrishnan, Salma S Abed, and Paul Jones. 2022. The role of
meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and
social self-efficacy in chatbot-based services? Technological Forecasting and Social
Change 180 (2022), 121692.

[4] Janarthanan Balakrishnan and Yogesh K Dwivedi. 2024. Conversational com-
merce: entering the next stage of AI-powered digital assistants. Annals of Opera-
tions Research 333, 2 (2024), 653–687.

[5] Sebastian Baltes and Stephan Diehl. 2016. Worse than spam: Issues in sampling
software developers. In Proceedings of the 10th ACM/IEEE international symposium
on empirical software engineering and measurement. 1–6.

[6] Manish Bhatt, Sahana Chennabasappa, Cyrus Nikolaidis, ShengyeWan, Ivan Evti-
mov, Dominik Gabi, Daniel Song, Faizan Ahmad, Cornelius Aschermann, Lorenzo

1645

SAC ’25, March 31-April 4, 2025, Catania, Italy A. Kudriavtseva et al.

Fontana, et al. 2023. Purple llama cyberseceval: A secure coding benchmark for
language models. arXiv preprint arXiv:2312.04724 (2023).

[7] Philip S Brenner and John DeLamater. 2016. Lies, damned lies, and survey self-
reports? Identity as a cause of measurement bias. Social psychology quarterly 79,
4 (2016), 333–354.

[8] Matteo Ciniselli, Niccolò Puccinelli, Ketai Qiu, and Luca Di Grazia. 2024. From
Today’s Code to Tomorrow’s Symphony: The AI Transformation of Developer’s
Routine by 2030. arXiv preprint arXiv:2405.12731 (2024).

[9] Domenico Cotroneo, Cristina Improta, Pietro Liguori, and Roberto Natella. 2024.
Vulnerabilities in ai code generators: Exploring targeted data poisoning attacks.
In Proceedings of the 32nd IEEE/ACM International Conference on Program Com-
prehension. 280–292.

[10] Arun Das and Paul Rad. 2020. Opportunities and challenges in explainable
artificial intelligence (xai): A survey. arXiv preprint arXiv:2006.11371 (2020).

[11] Nicole Davila, Igor Wiese, Igor Steinmacher, Lucas Lucio da Silva, André
Kawamoto, Gilson José Peres Favaro, and Ingrid Nunes. 2024. An Industry
Case Study on Adoption of AI-based Programming Assistants. In Proceedings of
the 46th International Conference on Software Engineering: Software Engineering
in Practice. 92–102.

[12] Elisabeth Deutskens, Ko De Ruyter, Martin Wetzels, and Paul Oosterveld. 2004.
Response rate and response quality of internet-based surveys: An experimental
study. Marketing letters 15 (2004), 21–36.

[13] Thomas Dohmke, Marco Iansiti, and Greg Richards. 2023. Sea change in software
development: Economic and productivity analysis of the AI-powered developer
lifecycle. arXiv preprint arXiv:2306.15033 (2023).

[14] Mark Damian Duda and Joanne L Nobile. 2010. The fallacy of online surveys: No
data are better than bad data. Human Dimensions of Wildlife 15, 1 (2010), 55–64.

[15] Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li, Mojtaba Shahin, and Jiaxin Yu.
2023. Security weaknesses of copilot generated code in github. arXiv preprint
arXiv:2310.02059 (2023).

[16] Haotong Ge and YuemengWu. 2023. An Empirical Study of Adoption of ChatGPT
for Bug Fixing among Professional Developers. Innovation & Technology Advances
1, 1 (2023), 21–29.

[17] Stefan Goetz and Andreas Schaad. 2024. " You still have to study"–On the Security
of LLM generated code. arXiv preprint arXiv:2408.07106 (2024).

[18] Begum Karaci, Deniz Chandra Gnanasambandam, Martin Harrysson, Al-
harith Hussin, and Shivam Srivastava. 2019. Unleashing developer productivity
with generative AI. (2019). Available at https://digital-strategy.ec.europa.eu/en/
library/communication-building-trust-human-centric-artificial-intelligence.

[19] M Mehdi Kholoosi, M Ali Babar, and Roland Croft. 2024. A Qualitative Study on
Using ChatGPT for Software Security: Perception vs. Practicality. arXiv preprint
arXiv:2408.00435 (2024).

[20] Raphaël Khoury, Anderson R Avila, Jacob Brunelle, and Baba Mamadou Camara.
2023. How secure is code generated by chatgpt?. In 2023 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2445–2451.

[21] Jan H Klemmer, Stefan Albert Horstmann, Nikhil Patnaik, Cordelia Ludden,
Cordell Burton Jr, Carson Powers, Fabio Massacci, Akond Rahman, Daniel
Votipka, Heather Richter Lipford, et al. 2024. Using AI Assistants in Software
Development: A Qualitative Study on Security Practices and Concerns.

[22] Arina Kudriavtseva, Nisar Ahmad Hotak, and Olga Gadyatskaya. 2024. Ques-
tionnaire for the survey. https://doi.org/10.5281/zenodo.14524893

[23] MohammadAmin Kuhail, Sujith Samuel Mathew, Ashraf Khalil, Jose Berengueres,
and Syed Jawad Hussain Shah. 2024. “Will I be replaced?” Assessing ChatGPT’s
effect on software development and programmer perceptions of AI tools. Science
of Computer Programming 235 (2024), 103111.

[24] Jenny T Liang, Chenyang Yang, and Brad A Myers. 2024. A large-scale survey
on the usability of AI programming assistants: Successes and challenges. In
Proceedings of the 46th IEEE/ACM International Conference on Software Engineering.
1–13.

[25] Q Vera Liao and S Shyam Sundar. 2022. Designing for responsible trust in AI
systems: A communication perspective. In Proceedings of the 2022 ACMConference
on Fairness, Accountability, and Transparency. 1257–1268.

[26] Johan Linåker, Sardar Muhammad Sulaman, Rafael Maiani de Mello, and Martin
Höst. 2015. Guidelines for conducting surveys in software engineering. (2015).

[27] Wendy Mendes, Samara Souza, and Cleidson De Souza. 2024. “You’re on a bicycle
with a little motor”: Benefits and Challenges of Using AI Code Assistants. In
Proceedings of the 2024 IEEE/ACM 17th International Conference on Cooperative
and Human Aspects of Software Engineering. 144–152.

[28] Nikolaos Nikolaidis, Karolos Flamos, Daniel Feitosa, Alexander Chatzigeorgiou,
and Apostolos Ampatzoglou. 2023. The End of an Era: Can AI Subsume Soft-
ware Developers? Evaluating ChatGPT and Copilot Capabilities Using Leetcode
Problems. SSRN (2023).

[29] Sanghak Oh, Kiho Lee, Seonhye Park, Doowon Kim, and Hyoungshick Kim.
2024. Poisoned GhatGPT finds work for idle hands: Exploring developers’ coding
practices with insecure suggestions from poisoned AI models. In 2024 IEEE
Symposium on Security and Privacy (SP). IEEE, 1141–1159.

[30] Ruchika Pandey, Prabhat Singh, Raymond Wei, and Shaila Shankar. 2024. Trans-
forming Software Development: Evaluating the Efficiency and Challenges of

GitHub Copilot in Real-World Projects. arXiv preprint arXiv:2406.17910 (2024).
[31] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and

Ramesh Karri. 2022. Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 754–768.

[32] Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. 2023. Do users
write more insecure code with AI assistants?. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security. 2785–2799.

[33] Abdul Razzaq, Jim Buckley, Qin Lai, Yun Ting, and Goetz Botterweck. 2024. A
Systematic Literature Review on the Influence of Enhanced Developer Experience
on Developers’ Productivity: Factors, Practices, and Recommendations. Comput.
Surveys (2024).

[34] Daniel Russo. 2024. Navigating the complexity of generative ai adoption in
software engineering. ACMTransactions on Software Engineering andMethodology
(2024).

[35] Siva Sai, Utkarsh Yashvardhan, Vinay Chamola, and Biplab Sikdar. 2024. Genera-
tive ai for cyber security: Analyzing the potential of chatgpt, dall-e and other
models for enhancing the security space. IEEE Access (2024).

[36] Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Siddharth Garg, and
Brendan Dolan-Gavitt. 2023. Lost at c: A user study on the security implications
of large language model code assistants. In 32nd USENIX Security Symposium
(USENIX Security 23). 2205–2222.

[37] Agnia Sergeyuk, Yaroslav Golubev, Timofey Bryksin, and Iftekhar Ahmed. 2024.
Using AI-Based Coding Assistants in Practice: State of Affairs, Perceptions, and
Ways Forward. arXiv preprint arXiv:2406.07765 (2024).

[38] Mohammed Latif Siddiq and Joanna CS Santos. 2022. SecurityEval dataset: mining
vulnerability examples to evaluate machine learning-based code generation
techniques. In Proceedings of the 1st International Workshop on Mining Software
Repositories Applications for Privacy and Security. 29–33.

[39] Stack Overflow. 2024. Developer Survey 2024. https://survey.stackoverflow.co/
2024/

[40] Maxim Tabachnyk, Stoyan Nikolov, et al. 2022. Ml-enhanced code completion
improves developer productivity. Google Research Blog. July 26 (2022).

[41] Maryam Taeb, Hongmei Chi, and Shonda Bernadin. 2024. Assessing the Ef-
fectiveness and Security Implications of AI Code Generators. In Journal of The
Colloquium for Information Systems Security Education, Vol. 11. 6–6.

[42] Sumanth Tatineni. 2024. Integrating Artificial Intelligence with DevOps: Advanced
Techniques, Predictive Analytics, and Automation for Real-Time Optimization and
Security in Modern Software Development. Libertatem Media Private Limited.

[43] Rebeka Tóth, Tamas Bisztray, and László Erdődi. 2024. LLMs inWebDevelopment:
Evaluating LLM-Generated PHP Code Unveiling Vulnerabilities and Limitations.
In International Conference on Computer Safety, Reliability, and Security. Springer,
425–437.

[44] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation
vs. experience: Evaluating the usability of code generation tools powered by
large language models. In CHI conference on human factors in computing systems
extended abstracts. 1–7.

[45] Jibin Rajan Varghese and Divya Susan Thomas. 2024. Survey of Generative AI in
Code Generation: Privacy, Security and Ethical Considerations. (2024).

[46] Jiexin Wang, Xitong Luo, Liuwen Cao, Hongkui He, Hailin Huang, Jiayuan
Xie, Adam Jatowt, and Yi Cai. 2024. Is Your AI-Generated Code Really Secure?
Evaluating Large LanguageModels on Secure Code Generationwith CodeSecEval.
arXiv preprint arXiv:2407.02395 (2024).

[47] Ruotong Wang, Ruijia Cheng, Denae Ford, and Thomas Zimmermann. 2024.
Investigating and designing for trust in ai-powered code generation tools. In The
2024 ACM Conference on Fairness, Accountability, and Transparency. 1475–1493.

[48] Thomas Weber, Maximilian Brandmaier, Albrecht Schmidt, and Sven Mayer.
2024. Significant Productivity Gains through Programming with Large Language
Models. Proceedings of the ACM on Human-Computer Interaction 8, EICS (2024),
1–29.

[49] Burak Yetiştiren, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. 2023. Evaluat-
ing the code quality of AI-assisted code generation tools: An empirical study
on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT. arXiv preprint
arXiv:2304.10778 (2023).

[50] Xiao Yu, Lei Liu, Xing Hu, Jacky Wai Keung, Jin Liu, and Xin Xia. 2024. Fight Fire
with Fire: How Much Can We Trust ChatGPT on Source Code-Related Tasks?
arXiv preprint arXiv:2405.12641 (2024).

[51] Albert Ziegler, Eirini Kalliamvakou, X Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2022. Productivity
assessment of neural code completion. In Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming. 21–29.

1646

https://digital-strategy.ec.europa.eu/en/library/communication-building-trust-human-centric-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/library/communication-building-trust-human-centric-artificial-intelligence
https://doi.org/10.5281/zenodo.14524893
https://survey.stackoverflow.co/2024/
https://survey.stackoverflow.co/2024/

	MAIN MENU
	Search
	Print
	View Full Page
	View Page Width
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryList_V1
 qi2base

