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ABSTRACT 17 

Cough drives respiratory pathogen transmission, yet how microbes directly engage host 18 

sensory neurons to trigger cough is largely unknown. We previously demonstrated that 19 

the Mycobacterium tuberculosis (Mtb) glycolipid sulfolipid-1 (SL-1) activates neurons 20 

and induces cough. Here, we reveal that phenolic glycolipid (PGL) produced by the 21 

hypertransmissible HN878 Mtb strain activates both mouse and human nociceptive 22 

neurons in vitro using calcium imaging and electrophysiology and is sufficient to induce 23 

cough using plethysmography. Combined with SL-1, PGL potently triggers neuronal 24 

activation.  By synthesizing various PGL analogs, we show that neuroactivity is 25 

proportional to saccharide chain length and structure. Mechanistically, PGL stimulates 26 

rapid extracellular ATP release, which engages neuronal P2X3 purinergic receptors—an 27 

effect blocked by a P2X3 antagonist. These findings uncover a neuronal activation 28 

pathway co-opted by certain Mtb strains to enhance transmission via cough and 29 

suggest inhibition of purinergic signaling as a potential strategy to block airborne spread 30 

of Mtb.  31 
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INTRODUCTION 32 

The respiratory epithelium is innervated by sensory nociceptive neurons that respond to 33 

chemical, inflammatory, and mechanical irritants and protect the airways by initiating the 34 

cough reflex1,2. While cough has evolved among mammalian species as a protective 35 

reflex, it is also a hallmark sign of respiratory infection and a driver of aerosol 36 

transmission3-5. Despite the role of cough as a pulmonary response to respiratory 37 

infection, the molecular mechanisms by which microbially encoded compounds lead to 38 

cough remain largely unknown.  39 

Pulmonary tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, is 40 

a highly inflammatory disease with persistent, bloody cough as a primary sign and route 41 

of infectious transmission6-8. We previously identified the Mtb cell wall glycolipid, 42 

sulfolipid-1 (SL-1), as a nociceptive neuron activating molecule that provokes coughing 43 

in naïve and Mtb-infected guinea pigs9. By testing a variety of Mtb isolates, we also 44 

observed differential neuronal activation due to genetic variation in SL-1 production. 45 

Beyond SL-1 production, circulating Mtb lineages also differ in synthesis of other cell 46 

wall glycolipids and some lineages are reported to have enhanced virulence and 47 

transmissibility10. In particular, the lineage 2/Beijing strains of Mtb have a higher 48 

propensity for bacterial growth, drug resistance, and frequency of transmission10-12. 49 

HN878, a representative lineage 2 strain of Mtb, is hypervirulent during mouse infection 50 

due to its ability to induce anti-inflammatory innate immune signaling characteristic of 51 

Th2 immunity13,14. This phenotypic characteristic is genetically linked to a polyketide 52 

synthase gene, pks1-15, and production of the pks1-15 encoded lipid, phenolic 53 

glycolipid (PGL)13. In contrast, community and laboratory Mtb lineage 4 strains such as 54 
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Mtb Erdman, H37Rv, and CDC1551 do not produce PGL due to a naturally occurring 55 

frameshift mutation in pks1-1514,15. Given the propensity of lineage 2 strains for 56 

enhanced virulence and transmission, and known changes to their cell wall lipid 57 

repertoire13,16-18, we hypothesized that these strains may encode additional nociceptive 58 

neuron activating molecules to trigger the cough reflex.  59 

Here we identify PGL as a nociceptive neuron agonist produced by lineage 2 Mtb 60 

strains. Exposing nociceptive neurons to purified PGL elicited increased intracellular 61 

calcium and both nociceptive molecules, SL-1 and PGL, cooperatively activated 62 

neurons. PGL triggered  activation of primary mouse dorsal root ganglia (DRG) and 63 

nodose ganglia neurons and primary human DRG neurons, and depolarized primary 64 

human nociceptors. Through structure-activity relationship studies of PGL analogs, 65 

obtained through organic synthesis, we identified that the saccharide chain of PGL was 66 

sufficient to trigger neuronal activation while the full lipid chain was dispensable for 67 

activity. Additionally, exposure of naïve guinea pigs to purified PGL was sufficient to 68 

induce the cough reflex. Finally, we identified that PGL activated neuronal signaling by 69 

stimulating release of extracellular ATP (eATP) through pannexin channels, and this 70 

signaling pathway was abrogated by chemical inhibition of cell surface purinergic 71 

receptors. Taken together, we identify a mechanism by which Mtb PGL triggers the 72 

cough reflex, with implications for understanding and preventing transmissibility of 73 

circulating Mtb lineages.  74 

RESULTS 75 

Mtb strains differ in neuron activation due to variable production of phenolic 76 

glycolipid  77 
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To determine if Mtb strains considered to be hyper-transmissible19 produce additional 78 

nociceptive compounds beyond SL-1, we extracted lipids from two distinct strains of 79 

Mtb, Erdman and HN878. We assessed neuronal activation by these lipid extracts in 80 

vitro using live-cell calcium imaging of the nociceptive neuronal cell-line, MED17.11. 81 

Although both strains produce SL-1 (Supplemental Figure 1A, related to Figure 1), we 82 

found that an organic extract from the lineage 2 strain HN878 elicited higher neuronal 83 

activation compared to the lineage 4 Erdman strain (Figure 1A). A major genetic 84 

distinction between these two strains lies in the polyketide synthase gene, pks1-15, 85 

which is naturally mutated in Mtb Erdman but in frame in HN87814,15. The polyketide 86 

synthase pks15/1 is part of the first committed step in the biosynthesis of the 87 

mycobacterial cell wall lipid PGL20,21. Beginning with the precursor molecule p-hydroxy 88 

benzoic acid, a series of enzymes including other polyketide synthases, ligases, and 89 

methyltransferases extend the lipid core to form p-hydroxyphenol phthiocerol 90 

dimycocerosate (PDIM)22. Finally, glycosyl and methyltransferases attach and elongate 91 

the glycan chain of PGL23. The resultant structure includes a lipid chain (PDIM) linked to 92 

an aromatic ring (phenolic group), and an oligosaccharide (Figure 1B).  93 

Because PGL is produced by Mtb HN878 but not Mtb Erdman, we hypothesized the 94 

PGL could serve as an additional nociceptive molecule when comparing both extracts. 95 

To test this hypothesis, we treated MED17.11 neurons in vitro with PGL purified from M. 96 

canetti. When the cells were treated with PGL alone, intracellular calcium increased 97 

significantly compared to the response to the vehicle DMSO and was comparable to the 98 

levels elicited by the positive control capsaicin, a TRPV1 agonist24 (Figure 1C). 99 

Capsaicin-responsive nociceptive neurons exhibited higher maximum calcium levels  100 
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when treated with PGL alone compared to those that were only treated with the vehicle 101 

DMSO (Figure 1D). Having established the nociceptive phenotype of PGL, we next 102 

determined the potency of PGL in a dose response assay of neuronal activation as 103 

assessed by increased levels of intracellular calcium and quantified an EC50 of 30 pM 104 

(Figure 1E). To ensure that the activity detected from the natural product M. canetti PGL 105 

was due to PGL alone and not an alternative contaminating molecule, we generated 106 

PGL-Mtb through organic synthesis. Three different synthetic Mtb-PGLs, differing only in 107 

the location of the methyl ethers on the trisaccharide structure, recapitulated the 108 

activation phenotype of nociceptive neurons, further confirming PGL as the active 109 

compound (Supplemental Figure 2A-B, related to Figure 1). Subsequent experiments 110 

were performed with the synthetic PGL-1 (Supplemental Figure 2A, related to Figure 1), 111 

henceforth referred to as PGL.  112 

While both Mtb Erdman25 and HN8789 produce the established nociceptive glycolipid 113 

SL-1, only Mtb HN878 produces both SL-1 and PGL13 . To test how the combination of 114 

SL-1 and PGL triggers neuron activation, we treated MED17.11 cells with equimolar 115 

concentrations of both compounds. As previously established, trehalose-2-sulfate (T2S) 116 

is the minimal active component of SL-19 and significantly activated neurons in vitro 117 

(Figure 1F). Similarly, full length SL-1 and PGL alone triggered neuron activation (Figure 118 

1F). When neurons were exposed to both compounds simultaneously at an equimolar 119 

ratio (100 nM each), mimicking production of both molecules by Mtb HN878, we found 120 

significantly higher neuron activation compared to treatment of neurons with each 121 

compound alone and the vehicle control DMSO (Figure 1F). We observed this 122 

increased response when combining PGL with either the minimal compound T2S or SL-123 
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1. Taken together these results identify PGL, produced by the HN878 strain, as a 124 

nociceptive neuron activating molecule in vitro and establish that the combination of Mtb 125 

SL-1 and PGL triggers significantly increased intracellular calcium  compared to either 126 

molecule alone.  127 

PGL directly activates lung-innervating nociceptive neurons  128 

Having established that PGL is a nociceptive molecule produced by Mtb, we next 129 

determined if PGL could interact with lung-innervating nociceptive neurons. The airways 130 

are innervated by neurons from distinct sensory afferent subsets. The larger airways are 131 

innervated by neurons stemming from the dorsal root ganglia (DRG) while vagal 132 

neurons from the nodose and jugular ganglia innervate conducting airways and project 133 

to the alveolar region26. We cultured primary mouse nociceptive neurons from both the 134 

DRG and nodose ganglia and tested for neuronal activation in response to PGL by live 135 

cell calcium imaging. Synthetic PGL alone activated not only the nociceptive cell line 136 

MED17.11 (Figure 2A), but also primary mouse DRG and nodose neurons (Figure 2D 137 

and G) as demonstrated by large spikes in intracellular calcium. Among the cells 138 

stimulated with PGL, a large percentage (>40%) were responsive to both PGL and 139 

capsaicin for all cell types tested. Additionally, most of the cells identified as capsaicin-140 

responsive nociceptors were also responsive to PGL, ranging from 60-90% (Figure 2B, 141 

E, and H). Compared to cells treated only with the vehicle (DMSO), those treated with 142 

PGL alone resulted in significantly higher maximum calcium elevation (Figure 2C, F, and 143 

I). Importantly, primary DRG and nodose neurons exhibited pronounced responsiveness 144 

to PGL, with the Max ΔF/F0 reaching between 1-3. These data further establish PGL as 145 
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a nociceptive molecule and its ability to activate lung-innervating neurons that 146 

orchestrate the cough reflex.  147 

Human neurons are activated by PGL  148 

Due to the human tropism of Mtb infection and to further establish the nociceptive 149 

function of PGL, we assessed PGL responses in primary human DRG neurons. We 150 

treated DRG derived neurons from two human donors with PGL and observed a 151 

significant increase in intracellular calcium compared to the vehicle DMSO (Figure 3A 152 

and D). Like mouse neurons, most of the human cells (>50%) were both PGL and 153 

capsaicin responsive (Figure 3B and E) and the maximum change in fluorescence due 154 

to PGL treatment was significantly higher than for DMSO (Figure 3C and F).  155 

To further analyze the mechanisms of PGL excitation of human DRG nociceptors, we 156 

conducted patch-clamp experiments of individual neurons. We tested the impact of PGL 157 

at rest and during evoked firing of eleven human nociceptive neurons. To test the impact 158 

of PGL on membrane potential (MP), some cells were recorded at their resting 159 

membrane potential (RMP, no holding current applied; n=5), and other cells were held at 160 

-60mV to test the impact of PGL on firing properties (n=6). Dissociated human 161 

nociceptors are mostly silent (no spontaneous firing) during rest or between 162 

stimulations27,28, therefore we tested if perfusion of PGL would induce action potential 163 

(AP) firing. While PGL did not induce regular AP firing, two cells did fire one or more 164 

APs during perfusion (Figure 3G, inset asterisk). Additionally, five of the eleven cells 165 

depolarized five or more mV in the presence of PGL. Figure 3G shows a neuron 166 

recorded at the resting membrane potential and where PGL reversibly depolarized 34 167 

mV and fired three APs (blue trace). On average, PGL at 1 nM induced a depolarization 168 
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of 2.1 mV while 100-300nM capsaicin depolarized 5 mV or more in seven of the ten 169 

cells (Figure 3H). We note that the EC50 for PGL-induced intracellular calcium elevation 170 

was determined to be 30 pM (Figure 1E), while it is between 100-500 nM for 171 

capsciacin24. The pie chart (Figure 3H) demonstrates that, except for one cell not tested 172 

with capsaicin (nd), the remaining cells that depolarized with PGL (PD) were also 173 

capsaicin-responsive (CD). These data not only validate our findings in mouse primary 174 

neurons but also extend to primary human neurons the activity of PGL as a neuronal 175 

agonist triggering increased intracellular calcium and neuron depolarization.  176 

The saccharide chain structure of PGLs impacts nociceptive activity  177 

PGL is produced not only by Mtb but also by other slow growing mycobacteria including 178 

M. bovis, M. leprae, and M. kansasii, with the glycan moiety distinguishing PGLs 179 

produced by each organism. PGL produced by M. bovis, mycoside B, shares the 180 

common lipid chain (PDIM) with Mtb but contains only the monosaccharide rhamnose29. 181 

M. kansasii PGL includes a more decorated tetrasaccharide chain, with a 2,6-182 

dideoxysugar as the terminal residue 30,31. Both PGLs from Mtb and M. leprae contain a 183 

trisaccharide chain; however, the terminal sugars are fucose and glucose, 184 

respectively32,33. Additionally, the carbohydrate chain structure differs between Mtb and 185 

M. leprae PGLs: where PGL-leprae contains a unique β1-4 linkage of the terminal 186 

glucose compared to the α1-3 linkage of the terminal fucose of PGL-Mtb34. To determine 187 

if structural differences amongst the PGLs produced by pathogenic mycobacteria differ 188 

in their ability to activate neurons, we tested various synthetic PGLs reflecting each 189 

species described above35,36. We treated MED17.11 cells with synthetic PGLs from M. 190 

bovis, M. leprae, Mtb, and M. kansasii (Figure 4A) at the same concentration (1 nM) and 191 
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measured neuronal activation by live-cell calcium imaging. While PGL from M. bovis 192 

and M. leprae were able to induce modest elevation of intracellular calcium, we 193 

observed significantly higher calcium levels in neurons exposed to PGLs from Mtb and 194 

M. kansasii (Figure 4B). This phenotype was consistent when we tested the same PGL 195 

compounds on primary mouse DRG neurons (Figure 4C). We further characterized the 196 

nociceptive activities of mycobacterial PGLs by performing dose response studies for 197 

each PGL molecule and calculating their EC50. The EC50 for neuron activation by 198 

monosaccharide (M. bovis) and disaccharide forms of PGL were significantly higher (nM 199 

to µM range) than the EC50 for the trisaccharide (Mtb) and tetrasaccharide PGLs (pM to 200 

nM range) (Supplemental Table 1, related to Figure 4). Additionally, PGL from 201 

Mycobacterium haemophilum, which also contains a trisaccharide form but with 202 

rhamnose as the terminal sugar, compared to fucose for Mtb PGL, significantly 203 

activated neuronal calcium elevation (Supplemental Figure 3A-B, related to Figure 4). 204 

These data demonstrate that the length and type of sugar linked to the phenol and 205 

PDIM lipid are vital to the nociceptive activity of mycobacterial PGLs.  206 

To further evaluate the structure activity relationship of PGL, we next tested PGL 207 

analogs, modified with respect to the lipid chain. We synthesized PGL analogs 208 

containing the full lipid chain (Figure 1B), a simplified C18 lipid chain, or no lipid chain 209 

(phenolic analog, PhA) and compared these to the common full lipid chain, PDIM, alone 210 

(Figure 4D). We tested each analog for neuron activation on MED17.11 cells at the 211 

same concentration (1 nM). We observed that only Mtb PGLs containing the sugar 212 

chain (PGL-Mtb, C18, and PhA) were able to activate neurons, while PDIM alone 213 

resulted in no significant activation phenotype (Figure 4E). This phenotype was also 214 
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conserved when the same compounds were tested using primary mouse DRG neurons 215 

(Figure 4F). Furthermore, the phenolic analogs lacking the PDIM moiety of the species 216 

specific PGLs exhibited the same phenotype as their full-length forms (Supplemental 217 

Figure 3 C-D, related to Figure 4) further highlighting the saccharide chain as the 218 

functional component of PGL. Taken together, these data demonstrate that while 219 

multiple forms of mycobacterial PGLs activate nociceptive neurons, the activity of PGL 220 

is highly dependent on the presence, length, and structure of the attached glycan chain 221 

while the full-length lipid core is largely dispensable for the observed phenotype.  222 

Purified PGL triggers a cough response in guinea pigs  223 

Given the in vitro nociceptive function of PGL, we hypothesized that PGL could serve as 224 

a cough inducing molecule produced by Mtb. To test this, we employed an established 225 

methodology for measuring cough in naïve guinea pigs using whole body 226 

plethysmography9,37-40. Healthy unanesthetized guinea pigs were placed inside the 227 

plethysmography chamber followed by continuous pressure recording over 10 minutes 228 

during compound nebulization and 10 minutes of acclimation, 20 minutes total (Figure 229 

5A).  230 

To determine if PGL triggers the cough reflex in guinea pigs, we first nebulized lipid 231 

extract from the Mtb Erdman and HN878 strains. Guinea pigs were first exposed to the 232 

vehicle (10% methanol: PBS) then the same animals were treated with 20 mg/mL of 233 

lipid extract with 2-3 days of rest between cough recordings. Prior to nebulization, the 234 

lipid extract was confirmed for the presence of SL-1 and PGL by mass spectrometry and 235 

TLC, respectively (Supplemental Figure 1 A-B), and guinea pigs were treated with a 236 

positive control cough agonist, citric acid, at the end of study. While we did observe 237 
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significantly more coughs in the Mtb lipid extract treated groups compared to the 238 

vehicle, there was no statistically significant difference between the Mtb Erdman and 239 

HN878 extracts (Figure 5B). This could be due to the bioavailability of nociceptive 240 

compounds, SL-1 and PGL, during the nebulization period or variation in the amount of 241 

SL-1 and PGL in the lipid extracts. We next tested if PGL alone could trigger cough in 242 

healthy guinea pigs. A separate cohort of guinea pigs was placed inside the 243 

plethysmography chamber and exposed to the vehicle control (10% methanol: PBS) or 244 

two different doses of PGL (60 and 250 µg/mL). When treated with the lower dose of 245 

PGL, guinea pigs exhibited an elevated cough response; however, this did not reach 246 

statistical significance. The higher concentration (250 µg/mL), however, triggered 247 

significantly more coughs in the same animals compared to the vehicle control (Figure 248 

5C). All guinea pigs included in the cough studies exhibited significant cough responses 249 

due to citric acid treatment, confirming their neurophysiological ability to cough 250 

(Supplemental Figure 4 A-B, related to Figure 5). Based on these results, PGL not only 251 

activates nociceptive neurons in vitro but is also sufficient to trigger the cough reflex.  252 

Extracellular ATP serves as a secondary messenger for neuronal activation by 253 

PGL  254 

Having established the nociceptive function of PGL, we next sought to determine the 255 

mechanistic basis for PGL-dependent neuronal activation. While PGL is a potent 256 

activator of nociceptors, we observed a 50- to 100-second delay in activation across the 257 

neuronal cells tested, which contrasted with the rapid increase observed by capsaicin 258 

mediated opening of TRPV1 channels24 (Figure 2). This delayed response suggests 259 

that exposure of neurons to PGL may trigger release of a secondary messenger to 260 
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activate neurons. Indeed, prior work has demonstrated the importance of secondary 261 

messengers in mediating nociceptive functions like pain and cough41,42. Among the 262 

known secondary messengers released by neurons, extracellular ATP (eATP) has been 263 

implicated as an alarmin that mediates inflammatory and neuropathic pain43 as well as 264 

chronic cough44,45. Upon stimulation by exogenous signals46, sensory neurons and 265 

surrounding accessory cells can release eATP through pannexin channels47,48 and 266 

further activate purinergic receptors49 to activate neuronal signaling (Figure 6A). Thus, 267 

we hypothesized that PGL may leverage this signaling pathway through release of the 268 

secondary messenger eATP. To test this hypothesis, we first stimulated MED17.11 cells 269 

with PGL and measured extracellular ATP released into the supernatant after exposure. 270 

Cells stimulated with PGL (100 nM), or the positive control potassium chloride (50 mM), 271 

released an average of 1.5- fold more ATP compared to the vehicle control DMSO 272 

(Figure 6B) suggesting that ATP may be involved in the broader neuronal response to 273 

PGL.  274 

To further assess the role of eATP in PGL dependent neuron activation, we stimulated 275 

MED17.11 neurons with PGL in the presence of the enzyme apyrase, which catalyzes 276 

the hydrolysis of eATP (Figure 6A). As a positive control for apyrase activity, and to test 277 

the ability of eATP to activate MED17.11 cells, we first compared eATP or eATP plus 278 

apyrase in live cell calcium responses. Exposure of MED17.11 neurons to eATP led to a 279 

significant increase in intracellular calcium, which was inhibited by concomitant 280 

treatment with apyrase (Figure 6C). Likewise, when we co-incubated neurons with PGL 281 

and apyrase, PGL-dependent neuron activation was markedly reduced (Figure 6C). 282 
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ATP can be released through pannexin channels50-53, and such channels are involved in 283 

a variety of biological processes, including neuropathic pain42. Furthermore, the PANX1 284 

gene, encoding pannexin 1 protein, is highly expressed in human and mouse 285 

nociceptors in the DRG54 and the protein is detected in hDRG using unbiased proteomic 286 

methods55. To determine if pannexin channels are involved in the PGL-dependent 287 

release of eATP, we pretreated MED17.11 cells with the pannexin1 inhibitor 288 

carbenoxolone (CBX)56. We observed a modest increase in intracellular calcium in cells 289 

treated with both vehicle (DMSO) and CBX compared to vehicle alone; however, the 290 

average responses (CBX+DMSO average 0.17 and DMSO alone average 0.07) were 291 

markedly lower than that observed for PGL (Figure 6D). CBX treatment prior to 292 

exposure to PGL, significantly reduced neuronal activation compared to cells without 293 

CBX treatment  (Figure 6D). These results demonstrate that pannexin 1 channels 294 

contribute to accumulation of eATP following PGL exposure. 295 

Once released into the extracellular environment, eATP can signal through purinergic 296 

receptors (P2X and P2Y) to activate nociceptive pathways in sensory neurons of the 297 

DRG and nodose ganglia5,57,58. In addition, P2X3 receptor activity has been implicated 298 

in chronic cough59,60, and two P2X3 receptor antagonists have reached phase 3 human 299 

studies for efficacy in refractory chronic cough61,62. Thus, we tested the impact of 300 

blocking P2X3 receptors on PGL-dependent neuron activation. MED17.11 cells were 301 

pretreated with the P2X3 inhibitor gefapixant63,64 or vehicle control prior to calcium 302 

imaging. As expected, eATP-induced MED17.11 neuron activation was inhibited by 303 

gefapixant (Figure 6E). Likewise, gefapixant pretreatment significantly inhibited PGL-304 

mediated neuronal activation (Figure 6E). Taken together these data suggest that eATP 305 
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serves as a secondary messenger for the nociceptive function of PGL and provides a 306 

mechanistic target for therapeutic intervention.  307 

  308 
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DISCUSSION 309 

In this study, we identify PGL, produced by a hypervirulent and hypertransmissible 310 

strain of Mtb, as a potent activator of nociceptive neurons and inducer of cough. Purified 311 

PGL triggers intracellular calcium flux in mouse dorsal root ganglia and nodose ganglia 312 

neurons, and human DRG neurons. Using synthetic PGL analogs, we show that 313 

nociceptive activity is conferred by the saccharide moiety, while the PDIM lipid is 314 

dispensable. Importantly, PGL variants with longer saccharide chains such as those 315 

from Mtb exhibited enhanced neuronal activation compared to PGLs from other non-316 

tuberculous mycobacteria. In vivo, aerosolized PGL alone is sufficient to induce dose-317 

dependent coughing in naïve guinea pigs. Mechanistically, PGL stimulates the release 318 

of extracellular ATP (eATP), which acts through the P2X3 receptor to activate sensory 319 

neurons. 320 

These findings expand our understanding of Mtb-host interactions by linking a specific 321 

bacterial lipid to direct neuronal activation and cough induction - a process with major 322 

implications for airborne transmission. Although cough is widely regarded as a major 323 

driver of Mtb aerosolization, other respiratory actions such as singing65, speaking and 324 

breathing 66 can contribute to transmission. Nevertheless, the ability of the HN878 strain 325 

to produce PGL and trigger enhanced neuron activation adds to its known 326 

immunomodulatory activities, including dampening of pro-inflammatory responses13,67 327 

and skewing toward Th2 immunity13. Notably, the lineage 2/Beijing strains of Mtb are 328 

among the most widespread globally due to enhanced frequency of transmission and 329 

poor treatment outcome68-70 . While lipid extracts from HN878 and Erdman strains did 330 

not differ significantly in their capacity to induce cough, purified PGL alone triggered 331 
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robust coughing, suggesting lipid organization and delivery dynamics may influence in 332 

vivo activity. Though aerosol delivery of cough agonists to conscious, unrestrained 333 

animals is the most physiologically relevant approach to measure cough induction37-40, 334 

we are unable to determine the precise amount of specific lipid species (i.e. SL-1 and 335 

PGL) inhaled by each animal during nebulization or whether complex micelles are 336 

formed, which may prevent lipids from reaching the neurons innervating distal alveoli. 337 

These limitations may confound our lipid extract cough results. Future work is needed to 338 

quantify individual lipid species during aerosolization and infection and assess their 339 

precise contributions to transmission. 340 

PGL production varies across Mtb lineage 2 strains13. While many retain the intact pks1-341 

15 locus required for PGL biosynthesis, some subgroups lack functional PGL despite 342 

retaining the gene18, suggesting alternative regulatory or mutational constraints. 343 

Intriguingly, outbreaks have been associated with both PGL-positive and PGL-deficient 344 

strains71, implying that while PGL may enhance transmission via cough, it is not the sole 345 

determinant. Other lipids, such as SL-1, may compensate in certain genetic 346 

backgrounds, a hypothesis that merits further investigation. Additionally, Mtb strains 347 

devoid of PGL synthesize structurally related p-hydroxybenzoic acid derivatives (p-348 

HBADs) containing the oligosaccharide moiety21,72. Given the activity of the phenolic 349 

analog, it is possible that release of p-HBADs may also contribute to cough induction in 350 

strains unable to synthesize the full PGL molecule.  351 

Beyond Mtb, PGLs are produced by diverse pathogenic mycobacteria, each with distinct 352 

immunomodulatory roles. M. leprae PGL mediates bacterial entry into phagocytes 73 353 

leading to macrophage activation and nerve damage74-76. Similar to PGL produced by 354 
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Mtb, PGLs from M. kansasii and M. leprae suppress pro-inflammatory cytokines or 355 

modulate host immunity77,78 while PGL from M. marinum, structurally distinct from PGL-356 

Mtb, induces myeloid cell recruitment and chemokine production by infected 357 

macrophages79,80. Across species, the saccharide moiety consistently emerges as a 358 

critical determinant of host interaction, influencing receptor engagement and immune 359 

evasion81. Our data extend this paradigm by linking glycan structure to neuronal 360 

activation and cough induction, particularly among respiratory pathogens like Mtb and 361 

M. kansasii82. 362 

Bacterial pathogens including Staphylococcus aureus, Streptococcus pyogenes, 363 

Klebsiella pneumonia and E. coli directly interact with nociceptive neurons to cause 364 

pain83,84, itch85, and inflammation86-88. While we have yet to identify a direct PGL 365 

receptor on nociceptive neurons, the saccharide chain likely governs receptor binding 366 

affinity or specificity. Similarly, trehalose-2-sulfate, a sulfated disaccharide precursor in 367 

the SL-1 synthesis pathway lacking acyl chains, is also sufficient to activate neurons in 368 

vitro9, highlighting that a shared feature of nociceptive neuron activation by 369 

mycobacterial glycolipids is recognition and response to bacterial saccharides. Indirect 370 

pathways may also contribute. For instance, Candida albicans activates sensory 371 

neurons via keratinocyte-derived eATP in response to β-glucan89. Similarly, we show 372 

that PGL-driven neuron activation is mediated by eATP signaling and is blocked by 373 

eATP depletion and purinergic receptor antagonism. These insights connect microbial 374 

lipids to a broader neuroimmune signaling axis. 375 

P2X3 receptor antagonists, such as gefapixant and camlipixant, are already in clinical 376 

development for chronic cough61,90,91. Our findings suggest they may have utility in 377 
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treating eATP-triggered infectious cough as well. Such host-directed therapeutics, used 378 

alongside antibiotics, could reduce transmission during peak bacterial shedding both for 379 

Mtb7,92-95 and other pandemic pathogens96. Future studies should assess whether 380 

purinergic blockade can reduce cough and limit aerosolized bacterial particles during 381 

infection. 382 

In summary, we describe a previously unrecognized function for Mtb PGL in triggering 383 

cough via nociceptive neuron activation and eATP signaling. These findings highlight a 384 

novel mechanism of pathogen-host communication that promotes Mtb transmission and 385 

opens therapeutic opportunities to disrupt cough-mediated spread.  386 

MATERIALS AND METHODS 387 

Bacterial culture conditions 388 

Mtb Erdman (laboratory of J. Cox, UC Berkeley) and HN878 (BEI Resources, #NR-389 

13647), were grown in Middlebrook 7H9 medium (Sigma, #M0178) supplemented with 390 

10% oleic acid-albumin-dextrose-catalase, 0.5% glycerol and 0.05% freshly prepared 391 

tween-80. Bacteria were grown using a roller apparatus and maintained in roller bottles 392 

at 37°C until preparation for lipid extractions.  393 

Extraction of mycobacterial lipids  394 

Mtb cultures were grown to an optical density600 of 0.8-1.0 in 7H9 medium and bacterial 395 

pellets from 400mL of culture were collected by centrifugation at 3,500 RPM (Thermo 396 

Sorvall Legend XTR) for 10 mins. Bacterial pellets were resuspended in 2mL of PBS 397 

and transferred to 45 mL 2:1 chloroform: methanol in a glass conical tube and incubated 398 

for 16 hours at 58°C. Samples were then centrifuged at 2000 RPM (Allegra X-14R) for 5 399 

mins and the aqueous (upper) phase and cellular debris were discarded. To the 400 
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remaining organic phase, 8mL of water was added and the samples were centrifuged 401 

again for phase separation97. After removal of the aqueous phase, the organic layer 402 

interface was washed with 2mL 1:1 methanol:water to remove any debris. The 403 

remaining lipids were concentrated at 65°C under nitrogen gas (Techne Dri-Block and 404 

Sample Concentrator).  405 

For detection of SL-1, lipid extracts were resuspended in 1:1 MeOH: IPA 16mM NH4F to 406 

a final concentration of 4mg/mL. The samples were then infused on a quadrupole TOF 407 

TripleTOF 6600+ (SCIEX) mass spectrometer using previously established9 source 408 

parameters. PGL was detected by thin layer chromatography (TLC) of lipid extracts. 409 

Lipids were resuspended in chloroform to a final concentration of 20mg/mL and 10uL 410 

were spotted onto a silica gel 60 TLC plate (Sigma, #1057500001). The TLC plate was 411 

placed in a latch-lock chamber containing 95:5 chloroform:methanol solvent. After 412 

development, the plates were sprayed with a solution of 0.2% anthrone (Sigma, 413 

#319899) in H2SO4 and dried with a heat gun. 414 

PGL and SL-1 of bacterial origin 415 

For initial experiments, PGL extracted from Mycobacterium canettii was obtained from 416 

BEI Resources (#NR-36510). Likewise, SL-1 extracted from M. tuberculosis was from 417 

BEI Resources (#NR-14845). All biologic molecules were stored at -20°C until use, at 418 

which time they were resuspended in DMSO. 419 

Organic synthesis of PGLs and PGL aglycon analogues  420 

The synthesis of the phenolic glycolipids followed a modular strategy35,98 in which the 421 

required iodoglycan36,99, carrying protecting groups on the different hydroxyl functions 422 

that can be removed through a single hydrogenation step, was coupled with a 423 
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phthiocerol alkyne in a Sonogashira cross-coupling. Next, the two mycocerosic acids 424 

were introduced through a Steglich esterification reaction. Global deprotection by 425 

hydrogenation over Pd/C then furnished the desired PGLs. 426 

 427 

 428 

General procedure Sonogashira cross coupling  429 

Iodoaryl glycoside (1.0 eq) was dissolved in freshly distilled NEt3 (0.05 M) together with 430 

alkyne (1.2 – 3 eq). A mixture of Pd(PPh3)2Cl2, PPh3 and CuI (ratio 1:1:2) was dissolved 431 

in freshly distilled NEt3 and was stirred for 15 minutes at 40°C. Of this cocktail, enough 432 

was added to the sugar/alkyne mixture to amount to 0.05 eq Pd(PPh3)2Cl2, 0.05 eq 433 

PPh3 and 0.1 eq CuI. The reaction was allowed to stir at 40°C until the starting material 434 

was completely consumed, as indicated by TLC (2-16 h). The solvent was then 435 

removed under a stream of N2. The crude material was then transferred to a silica 436 

column in toluene and the column was flushed with toluene. Thereafter the product was 437 

purified by means of column chromatography.  438 

General esterification procedure with mycocerosic acid  439 

Starting material (1.0 eq) was dissolved in dry DCM (0.05 M) together with mycocerosic 440 

acid (3.0 eq) and DMAP (9 eq). The resulting mixture was cooled to 0 °C after which 441 

DIC (6 eq) was added. The reaction was allowed to stir for 16 hours while warming to 442 

room temperature, after which it was warmed to 40°C and stirred for a further 5 hours. 443 

The reaction mixture was then diluted with Et2O and the organic layer was washed 1 M 444 
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HCl, sat. aq. NaHCO3 and brine, dried with MgSO4 and concentrated in vacuo. 445 

Thereafter the product was purified by means of column chromatography.  446 

General hydrogenation procedure  447 

Starting material (1.0 eq) was dissolved in a mixture of THF and EtOH (1:1, 0.007 M) 448 

and the solution was purged with N2. Pd/C (10%, 1.0 eq) was then added to the solution 449 

and the resulting mixture was purged with H2. The reaction was left to stir under H2 450 

atmosphere until TLC revealed complete conversion of the starting material and 451 

reaction intermediates to a single low running spot (DCM-MeOH 19:1). The reaction 452 

mixture was then purged with N2 and filtered over celite and rinsed with acetone. 453 

Thereafter the product was purified by means of column chromatography. Extended 454 

methods and validation of synthesized PGL analogs are included in supplemental 455 

dataset 1.  456 

Neuronal cell line  457 

The mouse nociceptive neuronal cell line, MED17.11100, was generously provided by M. 458 

Nassar (University of Sheffield). Cells were propagated in DMEM F12/Glutamax (Gibco, 459 

#10565018) supplemented with 10% fetal bovine serum (FBS) (Gibco, #16000044), 460 

0.5% penicillin/streptomycin (Gibco, #15140122), 5 ng/mL recombinant mouse 461 

interferon gamma (R&D systems, #485-MI), and 0.5% chick embryo extract (US 462 

Biological, #NC1202490). Undifferentiated MED17.11 cells were cultured at 33°C and 463 

5% CO2 until differentiation. For differentiation, cells were plated onto 35mm glass-464 

bottom dishes (MatTek, #P35G-1.5-14-C) at a density of 2x104 cells/dish in 465 

supplemented differentiation media at 37°C and 5% CO2 for 7 days with media change 466 

every 2 days. MED17.11 differentiation media consisted of DMEM F12/ Glutamax 467 
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(Gibco, #10565018), 10% FBS (Gibco, #16000044), 0.5% penicillin/streptomycin 468 

(Gibco, #15140122), 10 ng/mL FGF basic (R&D systems, #3139FB025), 10 ng/mL 469 

GDNF (Sigma, #SRP3200), 100 ng/mL β-NGF (R&D systems, #1156-NG-100), 25 µM 470 

forskolin (R&D systems, #10-995-0) and 5 µg/mL Y-27632 (R&D systems, #12-545-0). 471 

For the first 2 days of differentiation, 0.5 mM of dibutyryl cAMP sodium salt (Sigma, 472 

#D0627) was added to the supplemented differentiation media.  473 

Animal Studies 474 

Protocols for neuronal isolation from mice and guinea pig cough studies were reviewed 475 

and approved by the Institutional Animal Care and Use Committee at the University of 476 

Texas at Dallas and the University of Texas Southwestern Medical Center. 477 

Primary mouse neuron isolation and culture  478 

Dorsal Root Ganglia  479 

Primary mouse dorsal root ganglia (DRG) neurons were dissected and cultured as 480 

described 101. In brief, C57BL/6J mice (JAX) were sacrificed and DRG were dissected 481 

from the intervertebral foramina and placed in media containing DMEM (Gibco, 482 

#10565018), 10% FBS (Gibco, #16000044), and 0.5% penicillin/streptomycin (Gibco, 483 

#15140122), on ice. Ganglia were then enzymatically digested in 1.25mg/mL 484 

collagenase A (Sigma, #10103578001) and 2.5 mg/mL dispase II (Sigma, #D4693) for 485 

40 mins at 37°C with shaking. Dissociated tissue was then centrifuged at 1000 rpm for 5 486 

mins and washed with DMEM media. The cell pellet was carefully resuspended in 487 

supplemented neurobasal-A media (Gibco, #10888022) containing 1x B-27 supplement 488 

(Thermo, 17504044), 1x GlutaMax (Thermo, #35050061 ), 1% penicillin/streptomycin, 489 

50 ng/mL β-NGF (R&D systems, #1156-NG-100), 2 ng/mL GDNF (Sigma, #SRP3200), 490 
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and 10 µM cytosine beta-D-arabinofuranoside hydrochloride (Sigma, #C6645). The 491 

DRGs were dissociated by aspirating and ejecting the solution several times through a 492 

1mL syringe attached to an 18-gauge needle followed by 25- and 27-gauge needles 493 

until a single-cell suspension was achieved. Cells were then plated on 35mm glass-494 

bottom dishes (MatTek, #P35G-1.5-14-C) that were pre-coated with 10 µg/mL laminin 495 

(Sigma, #L2020) and incubated at 37°C and 5% CO2 for 1-2 days. DRGs from 3-4 mice 496 

were combined to generate approximately 5-6 dishes of cells per experiment.  497 

Nodose Ganglia 498 

Nodose tissues for culture were dissected from adult male and female ICR CD-1 mice 499 

and placed in Hanks’ balanced salt solution without calcium or magnesium (Sigma, 500 

#H6648). Nodose ganglia from 16 mice (equal numbers of male and female animals) 501 

were pooled together to create cultures for downstream processing. The nodose ganglia 502 

were then enzymatically digested using collagenase A and collagenase D (each 1 503 

mg/ml, Roche, 45-11088858001) with papain (30 U/m, Roche, 45-10108014001) for 20 504 

min at 37°C. Following digestion, the ganglia were triturated in 1 ml of Hanks’ balanced 505 

salt solution. The solution was then passed through a 70-μm cell strainer to remove 506 

debris. The isolated cells were resuspended in Dulbecco’s modified Eagle’s 507 

medium/F12/GlutaMAX (Gibco, #10565018) culture media supplemented with 10% fetal 508 

bovine serum (Hyclone, H30088.03) and 1% penicillin/streptomycin (Gibco, 15070-063). 509 

Cells were plated on precoated poly-d-lysine dishes (MatTek, P35GC-1.5-10-C) that 510 

were coated with laminin (Sigma-Aldrich, L2020). The plated cells were then incubated 511 

for 2 hours to allow for cell adhesion. The cells were then supplemented with the same 512 

culture media as described above but with the addition of NGF (10 ng/ml; Sigma, 01-513 
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125) and 5-fluoro-2’-deoxyuridine (3 μg/ml) + uridine (7 μg/ml) (FRD + U; Sigma-Aldrich, 514 

856657) and incubated at 37°C with 5% CO2 for 48 hours before use. 515 

Live-cell neuronal calcium imaging  516 

MED17.11 and primary mouse DRG neurons plated on 35mm dishes were loaded with 517 

5 µg/mL of Fura-2 AM calcium indicator dye (Thermo, #F1221) in loading buffer 518 

containing Hank’s Balanced Salt Solution (HBSS) with phenol red (Thermo, 519 

#14170120), 2.5 mg/mL bovine serum albumin (Thermo, #BP1600), and 2 mM calcium 520 

chloride (Sigma, #10043-52-4). Cells were incubated with Fura-2 for 20 minutes and 521 

then placed in a solution of HBSS (no phenol red) with 2% HEPES buffer (Cytiva, 522 

#SH3023701) for 10 minutes prior to live-cell imaging. Nodose cultures were loaded 523 

with Fura-2 AM (1 μg/ml; Thermo, #F1221) for 1 hour then transferred to a normal bath 524 

containing 135 mM NaCl, 5 mM KCl, 10 mM Hepes, 1 mM CaCl2, 1 mM MgCl2, and 20 525 

mM glucose, adjusted to pH 7.4 and osmolarity 300 ± 5 mOsm with N-methyl-glucamine 526 

(NMDG). Calcium imaging was performed using an Olympus IX73 microscope with 527 

MetaFluor Fluorescence Ratio imaging software. Cells were imaged every second at 528 

340/380 nm excitation wavelengths and 510 nm emission wavelength and 340/380 529 

ratiometric data were exported for downstream analysis.  530 

For each cell dish, a 50 second baseline was first recorded following the addition of a 531 

vehicle control (1% DMSO) for 50-100 seconds. Next, test compounds or vehicle 532 

(DMSO) were added with continuous recording for a minimum of 100 seconds or until 533 

response reached baseline. Finally, a positive control of 200-400 nM capsaicin (Sigma, 534 

#404-86-4) was added for 30-100 seconds. Ratio data was analyzed through an R 535 

script to determine the maximum change in fluorescence of our compound of interest 536 
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compared to the vehicle over the baseline fluorescence intensity (Max ΔF/F0). All data 537 

points shown are from individual cells with a capsaicin response >40% (MED17.11) or 538 

>10% (primary DRG and nodose).  539 

Inhibitor treatment and ATP release  540 

To measure release of extracellular ATP, MED17.11 neurons were cultured in a 96 well 541 

plate (10,000 cells/well) and allowed to differentiate for 7 days. Following differentiation, 542 

cells were washed with HBSS and 100µL of HBSS was added to each well. Designated 543 

wells were stimulated with DMSO, PGL (100 nM) or KCl (50 mM) for 3 minutes. 544 

Supernatants were immediately collected after stimulation and ATP was measured 545 

using a luminescent ATP determination kit (Thermo, #A22066) based on manufacturer 546 

instructions.  547 

For inhibitor treatment, MED17.11 neurons were loaded with Fura-2 calcium indicator 548 

dye as described above. Prior to calcium imaging, cells were treated with vehicle 549 

(DMSO) or inhibitor 5 U/mL apyrase (Sigma, #A6535), 10 µM carbenoxolone (Sigma, 550 

#C4790), or 10 µM gefapixant (Selleckchem, #S6664) for 10 or 20 minutes. The cells 551 

were then used for calcium imaging with the experimental design described for live-cell 552 

neuronal calcium imaging. Exposure to ATP (Sigma, #A7699) (2 µM) was used as a 553 

positive control for inhibitor treatment.  554 

Human Dorsal Root Ganglia  555 

Human DRG (hDRGs) tissue was recovered as described previously102. All human 556 

tissue procurement procedures and ethical regulations were approved by the 557 

Institutional Review Board at the University of Texas at Dallas under protocol Legacy-558 

MR-15-237. DRGs were procured from organ donors through a collaboration with the 559 
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Southwest Transplant Alliance, an organ procurement organization (OPO) in Texas. The 560 

Southwest Transplant Alliance obtain informed consent for research tissue donation 561 

from first-person consent (driver’s license or legally binding document) or from the 562 

donor’s legal next of kin. Ethical oversight of OPOs, including the Southwest Transplant 563 

Alliance, is maintained by several federal agencies, such as the Health Resources and 564 

Services Administration (HRSA), Centers for Medicare and Medicaid Services (CMS), 565 

and the United Network for Organ Sharing (UNOS). These agencies ensure that 566 

donation practices comply with ethical guidelines, including informed consent and donor 567 

autonomy. Following isolation in the operating room at the organ recovery site, hDRGs 568 

were maintained in artificial cerebrospinal fluid (ACSF) on ice consisting of: 95 mM 569 

NMDG, 2.5mM KCL, 1.25mM NaH2PO4, 30mM NaHCO3, 20mM HEPES, 25mM 570 

Glucose, 5mM Ascorbic acid, 2mM Thiourea, 3mM Sodium pyruvate, 10mM MgSO4, 571 

0.5mM CaCl2, 12mM N-acetylcysteine. Upon returning to the lab, hDRG tissue was 572 

transferred to fresh ACSF solution on ice and carefully trimmed and cut into small 573 

pieces to enable better digestion. The tissue pieces were then transferred to a tube 574 

containing 1mL of 10mg/ml Stemxyme 1, Collagenase/Neutral Protease (Dispase, 575 

Worthington Biochemical, #LS004107) and placed in a sideways-shaking water bath. 576 

The tissues were digested for 3-4 hours with regular trituration with glass pipettes every 577 

hour. When DRG tissue was sufficiently digested, it was passed through a 100-µm cell 578 

strainer. The resulting suspension was carefully transferred to a 10% BSA gradient 579 

using a pipette and centrifuged at 900xg (9 acceleration, 7 deceleration) for 5 minutes. 580 

The supernatant was carefully discarded and the pellet resuspended in media 581 

containing BrainPhys® media (Stemcell technologies, #05790), 1% 582 
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penicillin/streptomycin (Thermo, #15070063), 1% GlutaMAX® (United States Biological, 583 

#235242), 2% NeuroCult™ SM1 (Stemcell technologies, #05711), 1% N-2 Supplement 584 

(Thermo, #17502048), 2% HyClone™ Fetal Bovine Serum (Thermo, #SH3008803IR), 585 

1: 1000 FrdU, and 10 ng/mL human β NGF. A 5 μL aliquot of the cell suspension was 586 

plated onto a dish, and the cells were counted to determine the appropriate media 587 

volume required to achieve the desired cell density for calcium imaging. The cells were 588 

plated on PDL-coated coverslips at a density of 150-200 cells per coverslip and 589 

incubated at 37°C (5% CO2) for 3 hours before flooding with media. The cells were 590 

incubated for 5 days with media change on alternate days prior to imaging. Specific 591 

donor details are provided in Supplementary Table 2. 592 

Human DRG calcium imaging. 593 

Calcium imaging of hDRGs was performed using Fluo-4 dye. Cells were loaded with a 594 

suspension of 1 mL HBSS containing 5 mL Fluo-4 resuspended in 82 µl of HBSS and 595 

9.12 µl of pluronic acid. Cells were incubated with Fluo-4 for 1 hour. Following 596 

incubation, coverslips were transferred to a perfusion slide and external bath containing 597 

125 mM NaCl , 4.2 mM KCl, 1.1 mM CaCl2, 29 mM NaHCO3, 20 mM Glucose, 2 mM 598 

MgSO4, 1 mM CaCl2, 2.5 mM KCl, 1.25 mM NaH2PO4, pH 7.4 with NMDG and 599 

osmolality of 300-305 mOSm. The cells were then treated, imaged, and analyzed in the 600 

same way as described for mouse nodose neurons except ratiometric measurements 601 

were not captured for Fluo-4.  602 

Electrophysiology  603 

Recordings were done 3 or more days after plating. The external solution contained: 604 

147 mM NaCl, 3 mM KCl, 1.25 mM NaH2PO4, 2 mM CaCl2,1. 25 mM MgCl2, 10 mM 605 
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dextrose, and 10 mM HEPES (pH 7.4, 310 mOsm). Whole-cell patch clamp was 606 

performed using borosilicate capillaries pulled with a P-97 flaming-brown micropipette 607 

puller (Sutter Instruments). The pipettes had a resistance of 1.2-3.5 MΩ, when using an 608 

internal solution containing: 120 mM K-Glutamate, 2 mM KCl, 8 mM NaCl, 0.2 mM 609 

EGTA, 14 mM Na2-Phoshphocreatine, 2 mM Mg-ATP, 0.3 mM Na-GTP and 10 mM 610 

HEPES-K (pH 7.3, 295 mOsm). Recordings were obtained using an Axopatch 200B 611 

amplifier (Molecular Devices). Neurons were visualized using a Nikon Eclipse Ti 612 

inverted microscope equipped with Nikon Advanced Modulation Contrast. Acquisition 613 

was done at 10-20 kHz and data was filtered at 5 kHz and analyzed offline using 614 

Clampfit Analysis Suite 11 (Molecular Devices), GraphPad Prism 11, and Microsoft 615 

Excel 2015. In whole-cell configuration, cells were held in voltage clamp mode at near 616 

resting potential for at least 5 min to allow for dialysis of the pipette internal solution. 617 

Afterwards, when needed, cells were held at -60 mV (H-60) by injecting current of the 618 

appropriate sign and amplitude. The acute effect of PGL (1 nM) and of capsaicin (100-619 

300 nM) on membrane potential and on evoked firing was evaluated using both step 620 

and ramp protocols separated by 10 seconds within the same sweep and repeated at 621 

0.033 Hz and where the first 10 sweeps were recorded as baseline before adding PGL. 622 

In a different set of experiments, cells were recorded while at resting membrane 623 

potential (RMP), that is, no current was injected to hold them at a predetermined 624 

(holding) potential. After 1 min recording at RMP, 1 nM PGL was perfused and changes 625 

in RMP or spontaneous firing activity were monitored for 8-9 additional minutes. 626 

Afterwards PGL was washed out and a similar sequence was recorded for capsaicin. 627 

Guinea Pig Cough Studies 628 
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Male Hartley guinea pigs weighing >200g were purchased from Charles River 629 

Laboratories. Upon arrival, animals were housed in standard cages with alpha-dri 630 

bedding (Shepherd Specialty Papers) with irradiated pressed timothy hay cubes 631 

(Bioserv) and provided food and water ad libitum. All guinea pigs were given a 3-4 day 632 

acclimation period before any experimental procedures were performed.  633 

For cough recording, naïve guinea pigs were placed inside specialized whole body 634 

plethysmograph chambers (Data Sciences International) fitted with a pressure 635 

transducer and nebulizer for aerosol delivery of compounds into the chamber. 636 

Unrestrained animals were first allowed to acclimate inside the chambers for 5 minutes, 637 

followed by 10-minute nebulization of vehicle (10% methanol in PBS), 1mL of Mtb lipid 638 

extract (20mg/mL), or purified PGL (60 or 250 µg/mL). All animals were treated with a 639 

positive control cough agonist 0.4- 0.8M citric acid (Thermo, #036665.36). Following the 640 

nebulization period, animals were acclimated inside the chambers for another 10 641 

minutes with continuous pressure recording for a total cough recording time of 20 642 

minutes. Cough recordings were performed on the same animals over the experimental 643 

course with a 2-day waiting period between treatments to prevent tachyphylaxis. Using 644 

the companion software for analysis (Buxco FinePointe), primary cough data was 645 

recorded as the bias flow of the system, the slope of the bias flow, and the transition 646 

from the compressive to expulsive phase of a cough (delta half peak crossing). 647 

Individual coughs were counted for each animal both by automated software and 648 

manual counts of blinded data.  649 

Statistical Analysis 650 
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Statistical comparisons between groups were performed using GraphPad Prism 10.4.0 651 

software. Comparisons between multiple groups were assessed by Kruskal-Wallis test 652 

while two groups were compared by Mann-Whitney. For guinea pig cough experiments, 653 

paired data sets were analyzed by Friedman test. EC50 of PGL compounds were 654 

calculated by nonlinear regression analysis. For all statistical tests, differences were 655 

considered significant at p<0.05.  656 
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Figure Legends 1061 

Figure 1: Phenolic Glycolipid (PGL) Activates Nociceptive neurons. (A) Intracellular 1062 
Ca2+  levels of MED17.11 nociceptive neurons treated with lipid extract from Mtb strains 1063 
Erdman and HN878. (B) Mtb PGL structure containing trisaccharide chain. ( C)  1064 
Intracellular Ca2+ of MED17.11 neurons activated with purified Mycobacterium canettii 1065 
1nM PGL and capsaicin (cap), average response of 57 cells in purple. (D) Maximum 1066 
calcium change in MED17.11 stimulated with 1nM PGL canettii compared to vehicle 1067 
DMSO. (E) EC50 of purified PGL M. canettii for activation of nociceptive neurons.  (F) 1068 
Activation of nociceptive neurons by trehalose 2-sulfate (T2S, 100nM), sulfolipid-1 (SL-1069 
1, 100nM), PGL (100 nM), and 1:1 equimolar concentration of PGL and T2S or SL-1. P-1070 
values calculated by Kruskal- Wallis. EC50  calculated by nonlinear regression analysis. 1071 

 1072 

Figure 2: Mtb PGL Activates Primary Lung Innervating Nociceptive Neurons. (A) 1073 
Intracellular Ca2+ levels of MED17.11 neurons activated with organically synthesized 1074 
Mtb PGL and capsaicin (cap) over time (seconds). Average response of 64 cells in 1075 
purple. (B) Pie chart depicting percentage of MED17.11 cells responsive to cap, PGL, or 1076 
both compounds. Percent of nociceptors (cap+) responsive to PGL depicted as a pie 1077 
chart. (C) Maximum fluorescent calcium signal following treatment with vehicle (DMSO) 1078 
or PGL (1nM) of MED cells. (D) Intracellular Ca2+ change of primary murine dorsal root 1079 
ganglion (DRG) neurons activated with PGL and cap with average response of 23 cells 1080 
in purple. (E ) Pie chart of DRG neurons responses to cap and/or PGL and percentage 1081 
of nociceptors responsive to PGL. (F) Maximum fluorescent calcium signal to vehicle 1082 
(DMSO) or PGL of DRG neurons. (G) Intracellular Ca2+ levels of primary nodose 1083 
ganglion neurons activated with PGL and cap. Average response of 20 cells in purple. 1084 
(H) Percentage of nodose neurons responsive to cap and/or PGL and associated 1085 
nociceptor responsiveness to PGL. (I) Maximum fluorescent calcium signal to vehicle 1086 
(DMSO) or PGL of nodose neurons. P- values calculated by Mann-Whitney 1087 

 1088 

Figure 3: PGL Exposure Activates and Depolarizes Human DRG Neurons. (A) 1089 
Human donor 1 DRG neuron calcium levels upon exposure to vehicle (DMSO), PGL 1090 
(1nM), and capsaicin (cap), average of 17 cells response in purple. (B) Pie chart 1091 
depicting percentage of cells responsive to cap, PGL, or both compounds and response 1092 
of nociceptors (cap+) to PGL from donor 1. (C ) Maximum fluorescent calcium signal 1093 
following treatment with DMSO or PGL. (D) Calcium change in human donor 2 DRG 1094 
neurons upon exposure to DMSO, PGL, and cap. Average of 29 cells in purple. (E) Pie 1095 
chart depicting percentage of cells responsive to cap, PGL, or both compounds and 1096 
response of nociceptors (cap+) to PGL from donor 2. (F) Maximum calcium 1097 
fluorescence following treatment with DMSO or PGL. (G) Non continuous 1-min 1098 
membrane potential traces before/after PGL and before/after capsaicin (caps) exposure. 1099 
Blue inset shows details of the first spontaneous action potential. Black inset details a 1100 
22 min trace showing time flags of the addition of PGL (blue arrowhead), and capsaicin 1101 
(black arrowhead). (H) Violin plot of the effects of PGL and caps on the membrane 1102 
potential.  Pie chart depicting  cells that depolarized with PGL (PD) and to caps (CD). 1103 
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The non-responsive groups are labeled PN (for PGL) and CN (for caps). Cell not tested 1104 
with caps (nd). P- values calculated by Mann-Whitney 1105 

 1106 

Figure 4: PGL Saccharide Chain Influences Structure Activity Relationship. (A) 1107 
Saccharide chain structure of PGLs from mycobacterial species bovis, leprae, kansasii, 1108 
and tuberculosis. R= PDIM lipid chain. (B) Activation of MED17.11 nociceptive neurons 1109 
and (C) DRG neurons by mycobacterial PGLs at 1nM concentration. (D) Structure of 1110 
PGL analogs and PDIM lipid chain. (E) Activation of MED17.11 cells and (F) DRG 1111 
neurons by PGL analogs at 1nM concentration. P-values calculated by Kruskal- Wallis 1112 

 1113 

Figure 5: PGL Triggers Cough in Healthy Guinea Pigs. (A) Whole body 1114 
plethysmography-based cough recording of naïve unanesthetized guinea pigs. (B) 1115 
Coughs per 20 mins recorded from guinea pigs nebulized with vehicle (10% methanol: 1116 
PBS) or lipid extract from Erdman and HN878 strains of Mtb. (C) Coughs induced by 1117 
nebulization of organically synthesized PGL Mtb. P-value calculated by Friedman test 1118 

 1119 

Figure 6: PGL Activates Neurons Through the Secondary Messenger ATP. (A) 1120 
Signaling pathway for ATP release and purinergic receptor antagonism by chemical 1121 
inhibitors. (B) fold change of extracellular ATP release by nociceptive neurons 1122 
stimulated with DMSO vehicle, PGL (100nM) or KCl (50mM) (C) Intracellular calcium 1123 
levels of MED17.11 cells with or without apyrase (5U/mL) treatment prior to stimulation 1124 
with positive control ATP (2µM)  or PGL (100nM). (D) Calcium levels from MED17.11 1125 
cells treated with the  pannexin channel inhibitor carbenoxolone (CBX, 10 µM) and (E) 1126 
P2X3 inhibitor, gefapixant (10µM), or vehicle control (DMSO) prior to stimulation with 1127 
ATP or PGL. P-values calculated by Kruskal- Wallis. 1128 

 1129 

Supplemental Figure 1: Detection of Nociceptive Lipids from Mtb Extracts. (A) 1130 
Sulfolipid-1 detected by mass spectrometry from lipid extracts of HN878 and Erdman 1131 
strains. (B) PGL detection by TLC (95:5 chloroform:methanol) and 0.2% anthrone in 1132 
H2SO4 stain. Arrow= PGL 1133 

 1134 

Supplemental Figure 2: Activation of Neurons by Organically Synthesized PGL 1135 
Analogs. (A) Synthetic PGL analogs with modifications made to methyl groups on the 1136 
saccharide chains. R=PDIM. (B) Neuronal activation of all three PGL analogs (1nM) 1137 
compared to DMSO vehicle control. P-values calculated by Kruskal- Wallis. 1138 

 1139 

Supplementary Figure 3: Variations in PGL Saccharide Chain Impact Activity. (A)  1140 
Structure of organically synthesized PGL from Mycobacterium haemophilum. (B) Level 1141 
of activation following MED17.11 stimulation with PGL haemophilum (1nM). (C) 1142 
Organically synthesized analogs of mycobacterial PGLs containing phenol ring and 1143 
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corresponding saccharide chain. (D) Neuronal activation of phenolic analogs at 1nM 1144 
concentration on MED17.11 cells. P-values calculated by Kruskal- Wallis and  Mann-1145 
Whitney 1146 

 1147 

Supplemental Figure 4: Cough Analysis by Positive Control Agonist Citric Acid. 1148 
(A) Coughs recorded from cohort 1 (Figure 5B) guinea pigs upon exposure to 0.8M citric 1149 
acid. (B) Coughs from cohort 2 (Figure 5C)  of guinea pigs exposed to 0.4M citric acid. 1150 
P-values calculated by Friedman test  1151 

 1152 

 1153 
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