

The differentiating power of mitochondrial genes: complete mitogenome sequences of 27 mosquito species present in Europe

Beek, J.G. van der; Ibáñez-Justicia, A.; Biesmeijer, J.C.; Lizarazo-Forero, E., Stroo, A.; Vossenberg, B.T.L.H. van de; Warbroek, T.; Schrama M.J.J.

# Citation

Beek, J. G. van der, Ibáñez-Justicia, A., Biesmeijer, J. C., Lizarazo-Forero, E., S., A., Vossenberg, B. T. L. H. van de, & Warbroek, T. (2025). The differentiating power of mitochondrial genes: complete mitogenome sequences of 27 mosquito species present in Europe. *Journal Of The European Mosquito Control Association*, 1-19. doi:/10.52004/2054930x-20251025

Version: Publisher's Version

License: Creative Commons CC BY 4.0 license

Downloaded from: <a href="https://hdl.handle.net/1887/4283540">https://hdl.handle.net/1887/4283540</a>

**Note:** To cite this publication please use the final published version (if applicable).



# Journal of the European mosquito control association $(2025)~1{ ext{-}}19$



RESEARCH ARTICLE

# The differentiating power of mitochondrial genes: complete mitogenome sequences of 27 mosquito species present in Europe

J.G. van der Beek<sup>12,3\*</sup> , A. Ibáñez-Justicia<sup>4</sup> , J.C. Biesmeijer<sup>1,2</sup> , E. Lizarazo-Forero<sup>5</sup> , A. Stroo<sup>4</sup> , B.T.L.H. van de Vossenberg<sup>6</sup> , T. Warbroek<sup>6</sup> and M. Schrama<sup>1,2</sup>

<sup>1</sup>Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands; <sup>2</sup>NL Biodiversity & Society Research Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; <sup>3</sup>Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands; <sup>4</sup>Centre for Monitoring of Vectors (CMV), Netherlands Institute for Vectors, Invasive plants and Plant health (NIVIP), Netherlands Food and Consumer Product Safety Authority (NVWA), Geertjesweg 15, 6706 EA Wageningen, the Netherlands; <sup>5</sup>Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; <sup>6</sup>Molecular Biology, Netherlands Institute for Vectors, Invasive Plants and Plant health (NIVIP), Netherlands Food and Consumer Product Safety Authority (NVWA), Geertjesweg 15, 6706 EA Wageningen, the Netherlands; \*jordy.vanderbeek@naturalis.nl

Received: 14 February 2025 | Accepted: 16 October 2025 | Published online 6 November 2025

#### **Abstract**

The rapid advancement of genomic tools has revolutionised entomological research, offering new insights into insect evolution, population dynamics, and species identification. Much in line with most other insects, mitochondrial DNA has emerged as a key resource in mosquito studies, with the partial coxI (cytochrome oxidase c subunit 1, oftentimes referred to as COI) gene commonly used for species identification. However, coxl's limitations in resolving cryptic and sibling species and its challenges in metabarcoding applications underscore the need to explore alternative genetic markers. This study addresses the lack of comprehensive reference mitogenomes for mosquitoes present in Europe, by sequencing and assembling 82 mitochondrial genomes from 27 Northwest European species including 3 invasive Aedes species. Two-thirds of the species' mitogenomes were sequenced for the first time. Our results highlight a notable variability of mitochondrial genes, highlighting the potential for development of genetic markers to improve taxonomic resolution. Notably, the *nad6* and *nad2* genes demonstrated more variability compared to *cox1*, exhibiting higher nucleotide diversity, more variable base pairs and greater between-species variability. These genes are flanked by conserved tRNA genes, providing ideal primer sites and enabling efficient amplification for degraded or pooled samples. As such, this study presents a foundation for improved molecular identification techniques, enhancing mosquito monitoring and research across Europe by providing mitogenome sequences of 26% of the 102 European mosquito species. It also highlights the need to sequence the mitogenomes of a much larger fraction of the mosquito species community. By expanding the availability of mitogenomic data, researchers can explore novel genetic markers to improve biomonitoring and address current challenges in species identification.

#### Keywords

mitochondrial DNA - mosquito genomics - reference genomes - species identification - Culicidae

#### 1 Introduction

Over the past few decades, there has been a remarkable expansion of the entomologists' genomic toolbox, which has allowed for a deeper understanding of insect evolution, unravel population dynamics, facilitate species identification, and enhance monitoring practices. For all those activities, mitochondrial DNA (mtDNA) genes are ideal markers for demonstrating inter-specific and intra-specific variation, as their inheritance is typically uniparental (mainly maternally), recombination is absent, introns are absent, yet they exhibit a higher nucleotide substitution rate and are available in a high number of copies per cell when compared to nuclear DNA (Ladoukakis and Zouros, 2017).

Like for the vast majority of invertebrate taxa, mitochondrial DNA - specifically the cytochrome oxidase subunit I (cox1 or COI) barcoding region – has become the predominant genetic marker for mosquito species identification. Currently, cox1 sequences of about 30% of all mosquito species worldwide have been entered in the major databases (Moraes Zenker et al., 2024). Although the extensive reference dataset is a significant advantage of this gene, cox1 seems to have several notable disadvantages as well, mostly related to its lack of taxonomic resolution. For example, it appears to lack sufficient discriminatory power to distinguish certain cryptic and sibling species, such as those within many Culex (Culex) complexes, the Anopheles maculipennis complex or between Culiseta fumipennis and Cs. morsitans (Laurito et al., 2013; Kuhlisch et al., 2019; Smitz et al., 2021).

The rapid expansion of the genetic toolkit, coupled with the increasing affordability of high-throughput DNA sequencing in recent decades, has revolutionised species identification. This advancement has shifted the focus from identifying single specimens to analysing DNA mixtures from pooled specimens or environmental samples (e.g. eDNA from water), a technique known as metabarcoding (Bierman and Lloyd, 2024). Also for this purpose, the *cox1* barcoding region has played a key role, and has also been adopted in mosquito research for species identification in eDNA samples as well as mixed mosquito trap catches (Batovska et al., 2017; Boerlijst et al., 2019; Krol et al., 2019; Gutiérrez-López et al., 2023). To ensure that this method performs well, the target region must be short enough to amplify degraded samples, near-identical within the same species, yet variable between species, and capable of facilitating the equal amplification of the full array of species (Epp et al., 2012). This variable target region should ideally be flanked by conserved genetic sequences, that can be used for annealing of the sequencing primers. *CoxI* poses a number of challenges for this, as well. For example, *coxI* is sometimes lacking conserved areas in the gene, rendering it difficult to detect suitable primer sites, causing (1) unequal amplification of the different species present in bulk samples and (2) hindering the development of group-specific primers (e.g. targeting mosquitoes but no other Diptera) (Deagle et al., 2014).

The issues that occur with cox1 thereby highlight the need to explore other potential genetic regions. However, the lack of a comprehensive reference database of other mitochondrial genes has led to serious impediment of progression. This is slowly changing as more complete mitochondrial genomes of mosquitoes are increasingly becoming available (Chen et al., 2024; Da Silva et al., 2020; Do Nascimento et al., 2021; Ma et al., 2022). Currently, most available mitogenomes belong to Neotropical species, with a decent representation of the genus Anopheles. In contrast, the mitogenomes of European species are poorly resolved. Of the 102 mosquito species present in Europe (Becker et al., 2020), only 14 native and 4 established exotic species have published mitogenomes so far, with only half of the native species sequenced from material collected in Europe (Supplementary Table S1). This is problematic, as many species with large distributions also exhibit substantial genetic variation, resulting in networks of variants within species boundaries that are not yet completely resolved (Aardema et al., 2020; Vargas Espinosa and Aguirre-Obando, 2022).

Because the shortage of reference genomes severely restricts the possibilities to broaden the horizon of molecular identification techniques of mosquitoes, we performed Illumina sequencing to assemble and annotate 82 mitogenomes of 27 Northwest European mosquito species. Two-thirds of the species had their mitogenomes sequenced for the first time. This approach allows for exploring within-species variation, within-family variation and within genus or subgenus variation. We compared the variability of all 13 different protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, and 22 transfer RNA (tRNA) genes to help researchers select regions of interest for their research. Ultimately, we aim to provide a boost to the genomic research and monitoring of mosquitoes on the European continent by increasing the availability of these mitogenome sequences.

#### 2 Material and methods

## Sample collection

For this study, we obtained 92 individuals, initially identified as 29 different Northwest European species and 3 invasive Aedes species present in Europe, from the Centre for Monitoring Vectors (CMV) of the Netherlands Institute for Vectors, Invasive plants and Plant Health (NIVIP-NVWA). The majority of mosquitoes were collected between 2010 and 2020 during mosquito monitoring for the Exotic Mosquito Species (EMS) survey (Ibáñez-Justicia et al., 2020) and the National Vector Survey (NVS) (Ibañez-Justicia et al., 2015). Collection methods included the use of various CO<sub>2</sub>-baited traps: Mosquito Magnet Liberty Plus trap (Woodstream Corporation, Lititz, PA, USA), BG Sentinel trap (Biogents AG, Regensburg, Germany), and CDC miniature light trap model 512 (John W. Hock Company, Gainesville, FL, USA). Additional mosquito specimens were obtained through incidental larval dipping and rearing, or by hand aspirator. Additional Dutch material was sampled for a project by Prof. dr. P.F.M. Verdonschot in 2019 (Verdonschot, 2020). Non-Dutch specimens of Aedes aegypti (German lab strain), Ae. albopictus (Spain; Menorca), and Ae. detritus/coluzzii (France; Camargue) were opportunistically collected outside standard monitoring efforts. All specimens have been registered in the collection of Naturalis Biodiversity Center, formerly the National Museum of Natural History, Leiden, the Netherlands (RMNH) under collection numbers RMNH.INS.1271298-1389. Storage conditions for all specimens were maintained at -20 °C from collection until genetic processing.

#### Identification and taxonomic treatment

Individuals were identified by three experts based on their expertise and morphological characteristics outlined in Culicidae identification keys (Becker et al., 2020; Gunay et al., 2020; Schaffner et al., 2001). These identifications were subsequently verified using cox1 sequences retrieved from the genome assembly, which were compared against GenBank via BLAST (Altschul et al., 1990). All specimens were photographed from at least eight different angles and detailed close-ups using a ZEISS SteREO Discovery.V12 and V.20 (Carl Zeiss AG, Oberkochen, Germany) motorised stacking microscope equipped with a AxioCam MRc 5 (5-megapixel camera). Image acquisition, including automated stacking, was performed using AxioVision software (v.4.8). The software automatically determined the number of stacks and stacking window based on magnification and object size, providing a comprehensive reference for morphological identification. Images are publicly available and can be accessed as a full dataset in Zenodo (https://doi.org/10.5281/zenodo.14672457; Van der Beek *et al.*, 2025).

In instances of uncertainty, either morphologically or genetically, an additional blind verification was performed by three independent experts using high-resolution pictures. *Anopheles maculipennis* s.l. was not identified to the species level morphologically. Instead, species-level identification relied on retrieving the Internal Transcribed Spacer 2 (ITS2) sequence from the raw Illumina sequencing data. Reads were mapped to a consensus of all European species within the complex, using the same method as described for the mapping assemblies below, and comparing the results with the Single Nucleotide Polymorphisms (SNPs) in Kronefeld *et al.* (2014).

Throughout this paper, we followed the species nomenclature and higher taxonomy for mosquitoes as accepted by Wilkerson *et al.* (2021). For the genus *Aedes*, we adopted a composite treatment, with groupings represented at the subgeneric level, as outlined by Wilkerson *et al.* (2015).

#### DNA extraction and sequencing

Genomic DNA was isolated from the entire body of each individual using a magnetic bead-based approach with the NucleoMag Tissue kit (Macherey-Nagel, Düren, Germany) on a KingFisher Flex system (Thermo Fisher Scientific, Waltham, MA, USA), following the manufacturers protocol and application note for the system. DNA was eluted in 150  $\mu$ l of the kit's Elution Buffer MB6.

Library preparation, including fragmentation, A-tailing, ligation of the sequencing adapters, and PCR, was conducted based on the NEBNext Ultra II FS DNA library construction workflow (NEB, Ipswich, MA, USA), following the procedures outlined in the NEBNext Ultra II FS DNA module and NEBNext Ultra II Ligation module Instruction Manual. The resulting products were approximately 500–700 bp. A concentration of 1.1 nM of DNA was utilised for Illumina sequencing performed on a NovaSeq6000 (Illumina, San Diego, CA, USA) with a paired-end 2x150 bp run, in accordance with the manufacturer's protocols. Library preparation and sequencing were conducted at GenomeScan B.V. (Leiden, the Netherlands).

#### Genome assembly, mapping, and annotation

Samples with multiple read files for both directions were combined into a single read file for the forward and reverse sequences of each specimen. We trimmed the low-quality ends of the reads with fastp (v.0.20.1; Chen *et al.*, 2018). Subsequently, the read coverage was normalised to create a more manageable dataset and to mitigate potential sequencing errors. We down-sampled reads in high-depth regions (i.e. areas with many fully overlapping k-mers) to an average depth of 100x and removed reads with coverage below 5x×, using the BBNorm tool of BBMap (v.38.95; Bushnell, 2022).

De Novo mitogenome assembly was performed with the GetOrganelle toolkit (v.1.7.5.3; Jin et al., 2020), using SPAdes (v.3.13.1; Bankevich et al., 2012) as the core assembler. De novo assemblies were seeded based on a local reference database with 139 mitogenomes (139 species; 17 genera) available on the NCBI Reference Sequence Database (RefSeq, accessed: January 2022) (Supplementary Table S2). The seed was only used to collect the initial target-associated reads using Bowtie2. These seed-mapped reads further extended themselves with more overlapped reads without the starter in the following extending rounds, without using the seed as a reference.

Contigs larger than 12,000 bp were selected and queried against the same reference library with 139 mitogenomes using a local nucleotide BLAST (v.2.12.0; Altschul et al., 1990). Contigs with a match in the database were then circularised by removing overlapping sequences at the tails using the Python script: Simple-Circularise (Kitson, 2018). The sequences were then manually inspected using Unipro UGENE (v. 41). Sequences were adjusted to the forward orientation, and all sequences were reset to start with the tRNA for Isoleucine (trnI) as the starting point for their linear form. While no formal consensus on the starting point for linear visualisation of mosquito mitogenome sequences is widely cited in the literature, 92% of the 139 reference mitogenomes used begins at the trnI locus. Adopting a consistent starting point streamlines subsequent data utilisation.

Sequences were grouped by belonging to the same species, species-group, or subgenus, and those sequences were aligned using the MUSCLE alignment tool in UGENE using the default settings. Next, the assembled sequences were inspected for having large insertions or deletions (> 50~bp) compared to the same or closely related species in our dataset or, if present, among the reference sequences.

Specimens that had those duplications, large insertions and/or deletions in the sequences compared to the sequences from the same and closely related species were re-assembled by mapping the trimmed Illumina reads with minimap2 (v.2.24; Li, 2018, 2021)

to a (consensus) sequence of the same species or a consensus sequence of multiple closely related species. The mapped reads were cleaned using SAMtools (v.1.13; Danecek *et al.*, 2021) functions 'fixmate', 'sort', and 'markdup'. The functions 'mpileup' and 'call' from BCFtools (v.1.13) were used to call the variants and extract the consensus sequence.

The mitogenome sequences were annotated using the MitoFinder pipeline (v.1.4.1; Allio *et al.*, 2020) which allows annotating of mitochondrial genes utilising existing genomic assemblies. Specifically, we used the 139 RefSeq mosquito mitogenomes as references for the gene annotation. The mitochondrial tRNA finder (MiTFi) script (v.0.1; Jühling *et al.*, 2012) was employed for the tRNA annotation step within the MitoFinder pipeline.

The full UNIX workflow can be found on the author's GitHub repository: https://github.com/JordyvdB97/mos quito-genomes-pipeline/.

#### Genome analysis and visualisation

A comparative map of the assembled mitogenomes was built using BLAST Ring Image Generator (BRIG) (v.0.95; Alikhan *et al.*, 2011), with the longest mitogenome (*Ae. punctor*) serving as the reference. The resulting image was post-processed in INKSCAPE (v.1.3.2) to change the colour scheme, titles and markings, as well as to remove the gene similarity gradient, as the focus was on visualising genome structure rather than direct sequence similarity to *Ae. punctor* due to high sequence divergence.

We generated a pairwise distance matrix per gene in GeneiousPrime(v.2023.2.1;https://www.geneious.com/), based on MAFFT alignments (v.7.490; Katoh  $et\ al.$ , 2002; Katoh and Standley, 2013) with default settings. The gene level matrices were analysed together with taxonomic annotation with R (v.4.2.1) in RStudio (v.2023.12.1; http://www.rstudio.com/) using additional packages dplyr (v.1.1.4; Wickham  $et\ al.$ , 2023) and tidyr (v.1.3.1; Wickham  $et\ al.$ , 2024). A sliding window plot of nucleotide diversity ( $\pi$ ) was constructed using PopGenome (v.2.7.7; Pfeifer  $et\ al.$ , 2014) using a 200 nucleotide window size and 10 nucleotide increments. All plots were visualised using the packages ggplot2 (v.3.5.1; Wickham, 2016), gridExtra (v.2.3; Auguie, 2017) and cowplot (v.1.1.3; Wilke, 2024).

#### 3 Results

The sequenced mosquito samples generated 82 mitogenomes, representing 27 different species from five

genera: Aedes (15 spp.), Anopheles (3 spp.), Coquillettidia (1 sp.), Culex (3 spp.), Culiseta (5 spp.) (Table 1). Ten mitogenomes were excluded: two did not yield sufficient DNA to produce a complete mitogenome, while the remaining eight were omitted due to the inability to achieve a sufficiently certain morphological identification. The number of mitogenomes generated per species ranged from one to six. Three-quarters of the mitogenomes (62) were de novo assembled, while the others were consensus generated from reads mapped against a closely related reference genome. Mitogenomes from 17 species were assembled for the first time: Aedes annulipes/cantans, Ae. cinereus/geminus, Ae. communis, Ae. detritus/coluzzii, Ae. flavescens, Ae. geniculatus, Ae. leucomelas, Ae. punctor, Ae. rusticus, Ae. sticticus, Anopheles claviger, Coquillettidia richiardii, Culiseta annulata, Cs. longiareolata, Cs. morsitans, Cs. ochroptera, and Cs. subochrea (Table 1, Supplementary Table S1).

#### Genome organisation

Almost all assemblies were circular (containing overlapping ends), only three de novo assemblies of Anopheles plumbeus were non overlapping and therefore referred to as 'partial sequences'. The genome size ranged between 15,347 bp to 17,186 bp, with an average genome size of 15,916 bp (Table 1). All assembled and annotated genomes covered all the 13 different protein-coding genes (atp6, atp8, ATP synthase subunits 6 and 8 genes; *cytb*, cytochrome oxidase b gene; *cox1–cox3*, cytochrome oxidase c subunit 1-3 genes; nad1-nad6, nad4L, NADH dehydrogenase subunits 1-6 and 4 L), two ribosomal RNA genes (the large and small ribosomal RNA subunit gene: rrnS and rrnL), and 22 transfer RNA genes (each of them hereafter referred to as trn + the single-letter IUPAC-IUB code for their respective amino acids) genes. All assembled and annotated genomes included the 13 protein-coding genes (PCGs): the ATP synthase subunits 6 and 8 (atp6 and atp8); cytochrome b oxidase (cytb); the cytochrome c oxidase subunits 1–3 (cox1– cox3); and the NADH dehydrogenase subunits 1-6 and 4L (nad1-nad6, nad4L). They also covered two ribosomal RNA genes (the large and small subunit genes: rrnS and rrnL) and 22 transfer RNA genes (tRNAs). The order and orientation of the genes were exactly the same for all species (Figure 1). Only the control region of the genome, positioned after the rrnS gene, and a noncoding region between the tRNA's for cysteine (trnC) and tyrosine (trnY), contribute to the varying genome sizes among the mosquito species sequenced. The noncoding region being exceptionally long in Ae. punctor (907 bp; Figure 1).

## Discriminative power different coding genes

We assessed the genetic similarity within and between species for each of the PCGs and rRNAs (Figure 2). Eleven mitochondrial genes (PCGs: atp6, cox1, cox2, cox3, cytb, nad1, nad2, nad4, nad5, nad6; and the rRNA gene: rrnS) showed no overlap in the extent of the intra-and interspecific genetic similarity. For two PCGs, cox1 and nad2, there was a significant gap of at least 1.5% between the lowest intraspecific similarity and the highest interspecific similarity (Supplementary Table S3). For the remaining nine genes, this gap was smaller.

In general, low intraspecific variation was observed, but the level of intraspecific variation differed considerably across genes. The largest range observed in *nad4* (97.5–100% similarity) and the smallest in *rrnL* (99.7–100% similarity). The greatest intraspecific variation was found in *Culex modestus* specimens for *nad4*, but also other genes of these species show relatively low similarity (Supplementary Table S4). At the species level, five species showed a relatively low level of intraspecific similarity (<99% for the *cox1* barcoding region), which include *Ae. aegypti*, with a similarity of 96.2–97.87%, *Cx. modestus*, with a similarity of 98.1–99.6%, *Ae. detritus/coluzzii*, with a similarity of 98.2%, *Ae. annulipes/cantans*, with a range of 98.3–99.9%, and *An. messeae*, with a range of 98.8–99.9% (Supplementary Table S4).

At higher taxonomic levels, we find that the genetic similarity varies significantly between genes. The lowest average similarity between different species of the same subgenus was found in nad6 (90.0%) and nad2 (91.3%), while the highest occurred in the two rRNAs (rrnL: 97.7%, rrnS: 97.5%). Some genes fail to distinguish certain species. For example, the atp8 gene (162 bp) of Ae. leucomelas was 100% identical with all three sequences of Ae. caspius. However, PCGs did vary between these species, with similarities ranging from 91.5% in cox1 to 97.3% in nad4L.

All tRNAs (Supplementary Figure S1) appear highly conserved, exhibiting high similarities between closely related species (within the same subgenus). In some cases, different species displayed completely identical sequences across all tRNAs. Even at higher taxonomic levels, the similarities remained substantial, with the most dissimilar sequences (across species of different subfamilies) for the tRNAs of Leucine (*trnL1*), Lysine (*trnK*), Methionine (*trnM*), Serine (*trnS1*), Tryptophan (*trnW*), and Valine (*trnV*) remaining above 90% similar.

The variability across mitochondrial genomes was quantified using nucleotide diversity  $(\pi)$ , which measures the mean pairwise genetic difference among all possible pairs of individuals in the sample (Figure 3;

TABLE 1 Overview of generated genomes and generation methods.<sup>1</sup>

| Species                                           | Reference number | GenBank<br>acquisition<br>number | Assembly<br>method             | Reference<br>sequence for<br>mapping                                                              | Genome<br>length<br>(bp) |
|---------------------------------------------------|------------------|----------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------|--------------------------|
| Aedes (Aedes) cinereus/geminus                    | RMNH.INS.1271319 | PV094688                         | mapped<br>against<br>reference | consensus <i>de novo</i> assemblies <i>Ae. cinereus/geminus</i>                                   | 16,104                   |
| Aedes (Aedes) cinereus/geminus                    | RMNH.INS.1271320 | PV094689                         | de novo                        | , 0                                                                                               | 16,103                   |
| Aedes (Aedes) cinereus/geminus                    | RMNH.INS.1271321 | PV094690                         | de novo                        |                                                                                                   | 16,100                   |
| Aedes (Aedes) cinereus/geminus                    | RMNH.INS.1271386 | PV094747                         | de novo                        |                                                                                                   | 16,101                   |
| Aedes (Aedimorphus) vexans<br>(Meigen, 1830)      | RMNH.INS.1271304 | PV094673                         | de novo                        |                                                                                                   | 15,912                   |
| Aedes (Aedimorphus) vexans<br>(Meigen, 1830)      | RMNH.INS.1271305 | PV094674                         | de novo                        |                                                                                                   | 15,913                   |
| Aedes (Aedimorphus) vexans<br>(Meigen, 1830)      | RMNH.INS.1271306 | PV094675                         | mapped<br>against<br>reference | consensus <i>de novo</i> assemblies <i>Ae. vexans</i>                                             | 15,909                   |
| Aedes (Dahliana) geniculatus<br>(Olivier, 1791)   | RMNH.INS.1271340 | PV094709                         | de novo                        |                                                                                                   | 15,790                   |
| Aedes (Dahliana) geniculatus<br>(Olivier, 1791)   | RMNH.INS.1271341 | PV094710                         | de novo                        |                                                                                                   | 15,790                   |
| Aedes (Dahliana) geniculatus<br>(Olivier, 1791)   | RMNH.INS.1271342 | PV094711                         | de novo                        |                                                                                                   | 15,791                   |
| Aedes (Hulecoeteomyia) japonicus (Theobald, 1901) | RMNH.INS.1271379 | PV094741                         | de novo                        |                                                                                                   | 15,779                   |
| Aedes (Hulecoeteomyia) japonicus (Theobald, 1901) | RMNH.INS.1271380 | PV094742                         | mapped<br>against<br>reference | RMNH.INS.1271379                                                                                  | 15,777                   |
| Aedes (Hulecoeteomyia) japonicus (Theobald, 1901) | RMNH.INS.1271381 | PV094743                         | mapped<br>against<br>reference | RMNH.INS.1271379                                                                                  | 15,792                   |
| Aedes (Ochlerotatus) annulipes/cantans            | RMNH.INS.1271325 | PV094694                         | de novo                        |                                                                                                   | 15,855                   |
| Aedes (Ochlerotatus) annulipes/cantans            | RMNH.INS.1271326 | PV094695                         | mapped<br>against<br>reference | consensus <i>de novo</i><br>assemblies <i>Ae.</i><br>annulipes/cantans<br>& <i>Ae. flavescens</i> | 15,854                   |
| Aedes (Ochlerotatus) annulipes/cantans            | RMNH.INS.1271327 | PV094696                         | de novo                        |                                                                                                   | 15,841                   |
| Aedes (Ochlerotatus) annulipes/<br>cantans        | RMNH.INS.1271328 | PV094697                         | de novo                        |                                                                                                   | 15,853                   |
| Aedes (Ochlerotatus) annulipes/cantans            | RMNH.INS.1271329 | PV094698                         | de novo                        |                                                                                                   | 15,846                   |

<sup>&</sup>lt;sup>1</sup>Reference numbers correspond to internal institution identifiers assigned to specimens at Naturalis Biodiversity Center. While original specimens were destructively sampled and are no longer available in the collection, their DNA extracts are stored in the DNA reference collection. These numbers link the specimens' DNA extracts, associated images, metadata, and genetic sequences. *Anopheles plumbeus* (\*) is referred to as a partial genome, where no circularisation was detected, but did recover all coding regions in its entirety and the genome size is comparable with other members from the genus.

TABLE 1 Overview of generated genomes and generation methods. (cont.)

| Species                                                     | cies Reference number |          | Assembly method                | Reference<br>sequence for<br>mapping                                                              | Genome<br>length<br>(bp) |
|-------------------------------------------------------------|-----------------------|----------|--------------------------------|---------------------------------------------------------------------------------------------------|--------------------------|
| Aedes (Ochlerotatus) annulipes/cantans                      | RMNH.INS.1271330      | PV094699 | de novo                        |                                                                                                   | 15,845                   |
| Aedes (Ochlerotatus) caspius<br>(Pallas, 1771)              | RMNH.INS.1271346      | PV094714 | de novo                        |                                                                                                   | 15,888                   |
| Aedes (Ochlerotatus) caspius<br>(Pallas, 1771)              | RMNH.INS.1271347      | PV094715 | de novo                        |                                                                                                   | 15,883                   |
| Aedes (Ochlerotatus) caspius<br>(Pallas, 1771)              | RMNH.INS.1271348      | PV094716 | de novo                        |                                                                                                   | 15,887                   |
| Aedes (Ochlerotatus) caspius<br>(Pallas, 1771)              | RMNH.INS.1271369      | PV094733 | de novo                        |                                                                                                   | 15,884                   |
| Aedes (Ochlerotatus) communis<br>(De Geer, 1776)            | RMNH.INS.1271334      | PV094703 | de novo                        |                                                                                                   | 16,722                   |
| Aedes (Ochlerotatus) communis<br>(De Geer, 1776)            | RMNH.INS.1271335      | PV094704 | mapped<br>against<br>reference | RMNH.INS.1271334                                                                                  | 16,723                   |
| Aedes (Ochlerotatus) communis<br>(De Geer, 1776)            | RMNH.INS.1271336      | PV094705 | mapped<br>against<br>reference | RMNH.INS.1271334                                                                                  | 16,722                   |
| Aedes (Ochlerotatus) detritus/<br>coluzzii                  | RMNH.INS.1271367      | PV094731 | de novo                        |                                                                                                   | 15,981                   |
| Aedes (Ochlerotatus) detritus/<br>coluzzii                  | RMNH.INS.1271368      | PV094732 | de novo                        |                                                                                                   | 15,988                   |
| Aedes (Ochlerotatus) flavescens<br>(Müller, 1764)           | RMNH.INS.1271370      | PV094734 | mapped<br>against<br>reference | consensus <i>de novo</i><br>assemblies <i>Ae.</i><br>annulipes/cantans<br>& <i>Ae. flavescens</i> | 15,846                   |
| Aedes (Ochlerotatus) flavescens<br>(Müller, 1764)           | RMNH.INS.1271371      | PV094735 | mapped<br>against<br>reference | consensus de novo<br>assemblies Ae.<br>annulipes/cantans<br>& Ae. flavescens                      | 15,849                   |
| Aedes (Ochlerotatus) flavescens<br>(Müller, 1764)           | RMNH.INS.1271372      | PV094736 | de novo                        | ecritory turn escente                                                                             | 15,847                   |
| Aedes (Ochlerotatus) leucome-<br>las (Meigen, 1804)         | RMNH.INS.1271375      | PV094737 | de novo                        |                                                                                                   | 15,347                   |
| AedessOchlerotatus) punctor<br>(Kirby in Richardson, 1837)  | RMNH.INS.1271337      | PV094706 | de novo                        |                                                                                                   | 16,279                   |
| Aedes (Ochlerotatus) punctor<br>(Kirby in Richardson, 1837) | RMNH.INS.1271339      | PV094708 | de novo                        |                                                                                                   | 16,280                   |
| Aedes (Ochlerotatus) sticticus<br>(Meigen, 1838)            | RMNH.INS.1271361      | PV094728 | de novo                        |                                                                                                   | 16,061                   |
| Aedes (Ochlerotatus) sticticus<br>(Meigen, 1838)            | RMNH.INS.1271362      | PV094729 | de novo                        |                                                                                                   | 16,060                   |
| Aedes (Ochlerotatus) sticticus<br>(Meigen, 1838)            | RMNH.INS.1271363      | PV094730 | de novo                        |                                                                                                   | 16,059                   |

TABLE 1 Overview of generated genomes and generation methods. (cont.)

| Species                                                        | Reference number | GenBank<br>acquisition<br>number | Assembly<br>method             | Reference<br>sequence for<br>mapping                    | Genome length (bp) |  |
|----------------------------------------------------------------|------------------|----------------------------------|--------------------------------|---------------------------------------------------------|--------------------|--|
| Aedes (Rusticoidus) rusticus                                   | RMNH.INS.1271331 | PV094700                         | de novo                        |                                                         |                    |  |
| (Rossi, 1790)<br>Aedes (Rusticoidus) rusticus<br>(Rossi, 1790) | RMNH.INS.1271332 | PV094701                         | de novo                        |                                                         | 16,044             |  |
| Aedes (Rusticoidus) rusticus<br>(Rossi, 1790)                  | RMNH.INS.1271333 | PV094702                         | mapped<br>against<br>reference | consensus <i>de novo</i> assemblies <i>Ae.</i> rusticus | 16,047             |  |
| Aedes (Rusticoidus) rusticus<br>(Rossi, 1790)                  | RMNH.INS.1271338 | PV094707                         | de novo                        |                                                         | 16,045             |  |
| Aedes (Stegomyia) aegypti<br>(Linnaeus, 1762)                  | RMNH.INS.1271382 | PV094744                         | mapped<br>against<br>reference | RMNH.INS.1271383                                        | 16,256             |  |
| Aedes (Stegomyia) aegypti<br>(Linnaeus, 1762)                  | RMNH.INS.1271383 | PV094745                         | de novo                        |                                                         | 16,256             |  |
| Aedes (Stegomyia) aegypti<br>(Linnaeus, 1762)                  | RMNH.INS.1271384 | PV094746                         | mapped<br>against<br>reference | RMNH.INS.1271383                                        | 16,249             |  |
| Aedes (Stegomyia) albopictus<br>(Skuse, 1895)                  | RMNH.INS.1271376 | PV094738                         | de novo                        |                                                         | 16,099             |  |
| Aedes (Stegomyia) albopictus<br>(Skuse, 1895)                  | RMNH.INS.1271377 | PV094739                         | mapped<br>against<br>reference | RMNH.INS.1271376                                        | 16,099             |  |
| Aedes (Stegomyia) albopictus<br>(Skuse, 1895)                  | RMNH.INS.1271378 | PV094740                         | mapped<br>against<br>reference | RMNH.INS.1271376                                        | 16,057             |  |
| Anopheles (Anopheles) claviger<br>(Meigen, 1804)               | RMNH.INS.1271310 | PV094679                         | de novo                        |                                                         | 15,469             |  |
| Anopheles (Anopheles) claviger<br>(Meigen, 1804)               | RMNH.INS.1271311 | PV094680                         | de novo                        |                                                         | 15,470             |  |
| Anopheles (Anopheles) claviger<br>(Meigen, 1804)               | RMNH.INS.1271312 | PV094681                         | de novo                        |                                                         | 15,471             |  |
| Anopheles (Anopheles) messeae<br>Falleroni, 1926               | RMNH.INS.1271298 | PV094667                         | de novo                        |                                                         | 15,452             |  |
| Anopheles (Anopheles) messeae<br>Falleroni, 1926               | RMNH.INS.1271299 | PV094668                         | de novo                        |                                                         | 15,451             |  |
| Anopheles (Anopheles) messeae<br>Falleroni, 1926               | RMNH.INS.1271300 | PV094669                         | de novo                        |                                                         | 15,457             |  |
| Anopheles (Anopheles)<br>plumbeus Stephens, 1828*              | RMNH.INS.1271349 | PV094717                         | de novo                        |                                                         | 15,473             |  |
| Anopheles (Anopheles)<br>plumbeus Stephens, 1828*              | RMNH.INS.1271350 | PV094718                         | de novo                        |                                                         | 15,474             |  |
| Anopheles (Anopheles)<br>plumbeus Stephens, 1828*              | RMNH.INS.1271351 | PV094719                         | de novo                        |                                                         | 15,472             |  |
| Coquillettidia (Coquillettidia)<br>richiardii (Ficalbi, 1889)  | RMNH.INS.1271301 | PV094670                         | mapped<br>against<br>reference | RMNH.INS.1271303                                        | 15,629             |  |

TABLE 1 Overview of generated genomes and generation methods. (cont.)

| Species                                                       | Reference number | GenBank<br>acquisition<br>number | Assembly<br>method             | Reference<br>sequence for<br>mapping                                           | Genome<br>length<br>(bp) |  |
|---------------------------------------------------------------|------------------|----------------------------------|--------------------------------|--------------------------------------------------------------------------------|--------------------------|--|
| Coquillettidia (Coquillettidia)<br>richiardii (Ficalbi, 1889) | RMNH.INS.1271302 | PV094671                         | mapped<br>against              | RMNH.INS.1271303                                                               | 15,698                   |  |
| Coquillettidia (Coquillettidia)<br>richiardii (Ficalbi, 1889) | RMNH.INS.1271303 | PV094672                         | reference<br>de novo           |                                                                                | 15,708                   |  |
| Culex (Barraudius) modestus<br>Ficalbi, 1890                  | RMNH.INS.1271313 | PV094682                         | de novo                        |                                                                                | 15,575                   |  |
| Culex (Barraudius) modestus<br>Ficalbi, 1890                  | RMNH.INS.1271314 | PV094683                         | de novo                        |                                                                                | 15,580                   |  |
| Culex (Barraudius) modestus<br>Ficalbi, 1890                  | RMNH.INS.1271315 | PV094684                         | de novo                        | nvo                                                                            |                          |  |
| Culex (Culex) pipiens Linnaeus,<br>1758                       | RMNH.INS.1271355 | PV094722                         | de novo                        |                                                                                | 15,586                   |  |
| Culex (Culex) pipiens Linnaeus, 1758                          | RMNH.INS.1271356 | PV094723                         | de novo                        |                                                                                | 15,587                   |  |
| Culex (Culex) pipiens Linnaeus, 1758                          | RMNH.INS.1271357 | PV094724                         | de novo                        |                                                                                | 15,585                   |  |
| Culex (Neoculex) territans<br>Walker, 1856                    | RMNH.INS.1271316 | PV094685                         | de novo                        |                                                                                | 16,091                   |  |
| Culex (Neoculex) territans<br>Walker, 1856                    | RMNH.INS.1271317 | PV094686                         | de novo                        |                                                                                | 16,086                   |  |
| Culex (Neoculex) territans<br>Walker, 1856                    | RMNH.INS.1271318 | PV094687                         | de novo                        |                                                                                | 16,088                   |  |
| Culiseta (Allotheobaldia) longi-<br>areolata (Macquart, 1838) | RMNH.INS.1271322 | PV094691                         | de novo                        |                                                                                | 15,729                   |  |
| Culiseta (Allotheobaldia) longi-<br>areolata (Macquart, 1838) | RMNH.INS.1271323 | PV094692                         | de novo                        |                                                                                | 15,729                   |  |
| Culiseta (Allotheobaldia) longi-<br>areolata (Macquart, 1838) | RMNH.INS.1271324 | PV094693                         | mapped<br>against<br>reference | consensus <i>de novo</i><br>assemblies <i>Cs.</i><br><i>longiareolata</i>      | 15,729                   |  |
| Culiseta (Culicella) morsitans<br>(Theobald, 1901)            | RMNH.INS.1271358 | PV094725                         | mapped<br>against<br>reference | ped RMNH.INS.1271360<br>nst                                                    |                          |  |
| Culiseta (Culicella) morsitans<br>(Theobald, 1901)            | RMNH.INS.1271359 | PV094726                         | mapped<br>against<br>reference | RMNH.INS.1271360                                                               | 15,857                   |  |
| Culiseta (Culicella) morsitans<br>(Theobald, 1901)            | RMNH.INS.1271360 | PV094727                         | de novo                        |                                                                                | 15,857                   |  |
| Culiseta (Culicella) ochroptera<br>Peus, 1935                 | RMNH.INS.1271389 | PV094748                         | de novo                        |                                                                                | 16,176                   |  |
| Culiseta (Culiseta) annulata<br>(Schrank, 1776)               | RMNH.INS.1271307 | PV094676                         | mapped<br>against<br>reference | consensus <i>de novo</i> assemblies <i>Cs.</i> annulata & <i>Cs.</i> subochrea | 15,790                   |  |

TABLE 1 Overview of generated genomes and generation methods. (cont.)

| Species                                                       | Reference number | GenBank<br>acquisition<br>number | Assembly<br>method             | Reference<br>sequence for<br>mapping                                           | Genome<br>length<br>(bp) |
|---------------------------------------------------------------|------------------|----------------------------------|--------------------------------|--------------------------------------------------------------------------------|--------------------------|
| Culiseta (Culiseta) annulata (Schrank, 1776)                  | RMNH.INS.1271308 | PV094677                         | de novo                        |                                                                                | 15,783                   |
| Culiseta (Culiseta) annulata<br>(Schrank, 1776)               | RMNH.INS.1271309 | PV094678                         | mapped<br>against<br>reference | consensus <i>de novo</i> assemblies <i>Cs.</i> annulata & <i>Cs.</i> subochrea | 15,776                   |
| Culiseta (Culiseta) annulata<br>(Schrank, 1776)               | RMNH.INS.1271345 | PV094713                         | de novo                        |                                                                                | 15,785                   |
| Culiseta (Culiseta) annulata<br>(Schrank, 1776)               | RMNH.INS.1271352 | PV094720                         | de novo                        |                                                                                | 15,785                   |
| Culiseta (Culiseta) annulata<br>(Schrank, 1776)               | RMNH.INS.1271354 | PV094721                         | de novo                        |                                                                                | 15,784                   |
| Culiseta (Culiseta) subochrea<br>(Edwards in Wesenberg, 1921) | RMNH.INS.1271344 | PV094712                         | de novo                        |                                                                                | 15,791                   |

Table 2). The highest  $\pi$  values were observed in the PCGs ( $\pi=0.090-0.157$ ), while much lower diversity was recorded in rRNAs ( $\pi=0.045$  and 0.056) and tRNAs ( $\pi=0.015-0.088$ ). Among the PCGs, both nad6 and nad2 exhibited greater variability than the cox1 barcoding region, with both a higher nucleotide diversity (respectively  $\pi=0.157$  and  $\pi=0.134$ , compared to  $\pi=0.126$  for cox1 barcoding region) and a higher percentage of variable base pairs (respectively 54.7% and 51.5% compared to 37.1%). All PCG, except nad1, have a higher percentage of variable base pair sites than cox1.

In particular, the genera *Anopheles* and *Culiseta* showed peaks in nucleotide diversity for nad6, whereas in the genera *Culex* and *Aedes*, the variability in nad6 was more comparable to other genes. Overall, the variability patterns of genes were consistent across genera (Figure 3). However, some regional differences were noted. For instance, in nad3, Culex exhibited a dip in  $\pi$  that was lower than its neighbouring genes, while other genera displayed  $\pi$  that was similar to those of their neighbouring regions.

#### 4 Discussion and conclusion

In this study, we sequenced and assembled 82 mitochondrial genomes of 27 mosquito species occurring or introduced in Northwestern Europe. The material was primarily collected in the Netherlands, supplemented by Ae. albopictus from Menorca (Spain), Ae. detritus/coluzzii from the Camargue (France), and a laboratory population of Ae. aegypti. These newly sequenced genomes will enable researchers to explore novel genetic markers beyond the widely used cox1 barcoding region, providing new opportunities for addressing species identification and monitoring challenges. Our results show large differences in genetic variation between the various mitochondrial genes, not only at the species level, but also at higher taxonomic levels. This raises a number of novel ideas and opportunities regarding further use of these mitogenomes for dedicated species analysis. In particular, the nad2 and nad6 gene appear to be promising regions to improve species identification of mosquito species complexes.

## Coverage of genetic variation and quality control

The species used in this study represent a large portion of the indigenous mosquito species found in Northwestern Europe, but also include widespread *Aedes* invasive species across Europe, such as *Ae. albopictus* and *Ae. japonicus* (ECDC and FSA, 2024), as well as *Aedes* species that are less common but occasionally introduced in the Netherlands, such as *Ae. aegypti* (Ibáñez-Justicia *et al.*, 2020). The material used in this study was primarily obtained from adult mosquito traps, which largely capture female specimens. While effective for broad sampling, specimens collected in traps are often damaged, potentially complicating morphological identification.

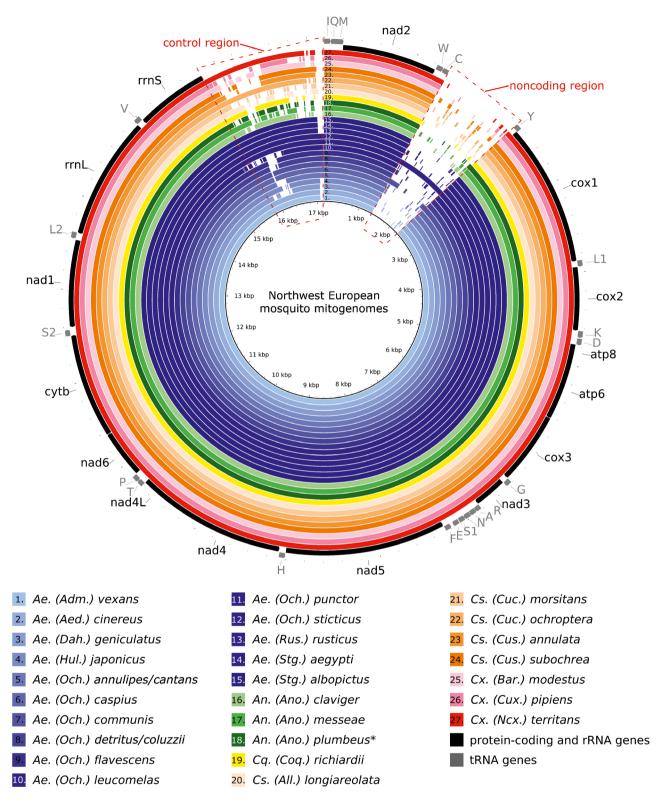



FIGURE 1 Comparative map of the assembled mitogenomes in relation to the longest genome (i.e. *Aedes punctor*). Showing the highly conserved arrangement of the protein-coding genes, ribosomal RNA genes, and transfer RNA genes. tRNA genes are represented by the single-letter IUPAC-IUB code for their respective amino acids. Only the control region and a non-coding region between *trnC* en *trnY* seems to be variable in length. *Anopheles plumbeus* (\*) was derived from a partial sequence, where no circularisation was detected, but did recover all coding regions in its entirety.

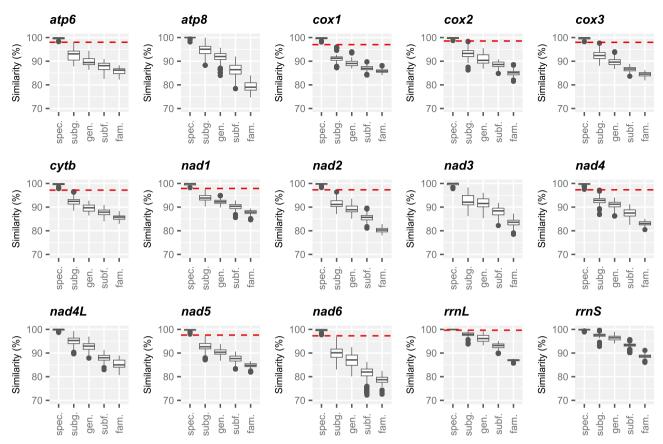



FIGURE 2 Box plot illustrating pairwise genetic similarity across different taxonomic levels for all mitochondrial protein-coding genes and ribosomal RNAs. Red dashed line indicates no overlap between variance of genetic similarity at the species level and higher taxonomic levels.

Although adult females are commonly used for identification, they may not always be the most straightforward sex or life stage for accurate differentiation. For example, morphologically distinguishing between Ae. cinereus and Ae. geminus can only be achieved by examining male genitalia (Schaffner et al., 2001). Similarly, the differentiation of *Ae cantans* and *Ae. annulipes, Cx. pipiens* and Cx. torrentium, as well as Cs. morsitans and Cs. fumipennis, is much easier and more reliable when based on larvae or male genitalia (Becker et al., 2020). To address these challenges, we implemented a rigorous identification process that included initial assessments by three experts in morphological mosquito identification, followed by genetic confirmation using cox1. In cases of uncertainty, additional blind verification was conducted by three independent experts. Despite this, incorporating larval or male specimens, which can sometimes provide clearer morphological traits for identification, might benefit the certainty of identifications even more.

A common deficit in mosquito mitogenome studies, and in mosquito research in general, is the lack of vouchered specimens. The absence of non-destructive sampling or storage of remaining specimens in public collections, or if destructive sampling is necessary, the

lack of detailed photographic reference of the species, can limit the ability to verify the identification of previously published mitogenomes.

Additionally, some mitogenomic studies rely on material derived from long-established laboratory colonies of mosquitoes (e.g. Luo et al., 2016; Peng et al., 2016), which may have undergone numerous generations in captivity. This can lead to unusual genetic variability, as seen in our high within-species variation in many different genes of our laboratory reared specimens of Ae. aegypti mitogenomes. The population history and potential selective pressures may have introduced unusual genetic variability, that lacks in natural populations, increasing mismatches between the reference library and field-collected specimens.

# Other mitochondrial genes potentially suitable for species identification

Our results suggest that mitochondrial genes other than *cox1* may also be suitable for species identification of mosquitoes. In other insect groups, such as beetles and butterflies, it has been previously reported that certain genes in the mitochondrial genome evolve more rapidly and offer greater taxonomic resolution (Ma *et al.*, 2019;

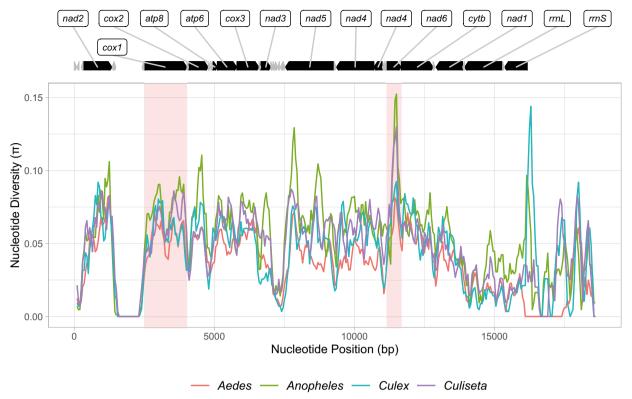



FIGURE 3 Sliding window plots of nucleotide diversity  $(\pi)$  among the species of the different genera, showing potential loci with most genetic variation. Highlighted in red is the most widely used gene for genetic identification (coxI) and the gene showing the highest nucleotide diversity (nad6). Window sizes are 200 nucleotides with 10 nucleotide increments.

Li et al., 2024). While cox1 is a widely used marker due to its high variability and the clear gap it provides between intraspecific and interspecific variation at higher taxonomic levels, our analysis highlights the potential of nad2 and nad6 as superior alternatives for (northwestern) European mosquito identification. A previous study demonstrated that the gene nad2 exhibits greater genetic divergence than cox1 in a pairwise comparison of nine mosquito species from four different genera, making it useful for designing species-specific probes for mosquitoes (Wang et al., 2017). Our study shows, that nad6 exhibits greater nucleotide diversity in Anopheles and *Culiseta* compared to *cox1*. For the genus *Anopheles*, nad6 has helped in other studies resolving phylogenetics in difficult species groups of Anopheles in combination with other genes such as: with coxl in Leucosphyrus Group of Anopheles (Cellia) (Sallum et al., 2007; Takano et al., 2010); or with a nuclear marker in three species groups of Anopheles (Nyssorhynchus) (Bourke et al., 2010). Our study shows that nad2 demonstrates a comparable gap between within- and between-species similarity to *cox1*, with a similarly high nucleotide diversity. Notably, nad2 exhibited greater dissimilarity among closely related species within the same subgenus, resulting in a higher taxonomic resolution compared to *cox1*. Nad6 emerged as another excellent candidate, showing a slightly smaller within- and between-species gap than cox1 but surpassing it in dissimilarity among closely related species. Furthermore, nad6 displayed the highest nucleotide diversity of all the genes analysed. Both nad6 and nad2 genes also featured a greater percentage of variable base pairs compared to *cox1*. Both genes nad2 is on both sides and nad6 on one side bordered by highly conserved tRNAs which allow for ideal primer sites, with full *nad6*-gene being a great size (about 519 bp) for a barcode sequence as well. Using the conserved tRNAs as primer sites has resulted in high recovery rates (Helleman et al., 2025; Park et al., 2010). Together, these observations underscore the potential utility of using nad6 and nad2 as alternative genetic markers for species identification of mosquitoes, particularly when addressing taxonomic challenges or resolving cryptic species complexes.

#### Resolving species complexes

Our results highlight the challenges posed by species complexes, where intra-species similarity can closely approach inter-species levels. Notable examples in our data include *Ae. detritus/coluzzii, Ae. annulipes/cantans,* and *An. messeae*, all of which exhibited relatively low within-species similarity (<99%) in *cox1* and other mitochondrial genes. These species are all part of recognised

Variability of the 13 different protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, as well as the barcoding region of *cox1*.

| Genes <sup>1</sup>    | Length<br>(bp) | Variable sites |            | Nucleotide diversity $(\pi)$ |       |           |       |          |
|-----------------------|----------------|----------------|------------|------------------------------|-------|-----------|-------|----------|
|                       | ( <i>b</i> p)  | Number         | Percentage | Total                        | Aedes | Anopheles | Culex | Culiseta |
| nad6                  | 523            | 286            | 54.7       | 0.157                        | 0.110 | 0.109     | 0.080 | 0.105    |
| nad2                  | 1035           | 533            | 51.5       | 0.134                        | 0.095 | 0.088     | 0.073 | 0.086    |
| atp8                  | 162            | 75             | 46.3       | 0.126                        | 0.107 | 0.096     | 0.077 | 0.085    |
| cox1 barcoding region | 658            | 244            | 37.1       | 0.126                        | 0.068 | 0.069     | 0.053 | 0.092    |
| cox3                  | 789            | 315            | 39.9       | 0.121                        | 0.091 | 0.086     | 0.070 | 0.084    |
| cox1                  | 1506           | 555            | 36.9       | 0.118                        | 0.096 | 0.091     | 0.072 | 0.085    |
| nad4                  | 1344           | 601            | 44.7       | 0.117                        | 0.095 | 0.083     | 0.075 | 0.079    |
| Cytb                  | 1144           | 447            | 39.1       | 0.116                        | 0.078 | 0.086     | 0.071 | 0.082    |
| atp6                  | 698            | 302            | 43.3       | 0.114                        | 0.084 | 0.091     | 0.065 | 0.086    |
| nad5                  | 1743           | 759            | 43.5       | 0.113                        | 0.088 | 0.087     | 0.071 | 0.084    |
| nad3                  | 354            | 146            | 41.2       | 0.110                        | 0.077 | 0.091     | 0.041 | 0.074    |
| cox2                  | 689            | 282            | 40.9       | 0.109                        | 0.081 | 0.093     | 0.071 | 0.065    |
| nad4                  | 300            | 132            | 44.0       | 0.095                        | 0.062 | 0.073     | 0.049 | 0.075    |
| nad1                  | 957            | 332            | 34.7       | 0.090                        | 0.069 | 0.067     | 0.064 | 0.060    |
| rrnL                  | 1356           | 375            | 27.7       | 0.088                        | 0.030 | 0.033     | 0.007 | 0.051    |
| trnE                  | 89             | 44             | 49.4       | 0.077                        | 0.015 | 0.047     | 0.040 | 0.049    |
| trnS2                 | 68             | 20             | 29.4       | 0.067                        | 0.053 | 0.092     | 0.005 | 0.034    |
| trnL2                 | 69             | 15             | 21.7       | 0.066                        | 0.024 | 0.078     | 0.026 | 0.048    |
| trnV                  | 70             | 20             | 28.6       | 0.056                        | 0.028 | 0.038     | 0.016 | 0.031    |
| trnC                  | 79             | 33             | 41.8       | 0.055                        | 0.028 | 0.016     | 0.007 | 0.054    |
| trnS1                 | 67             | 15             | 22.4       | 0.055                        | 0.029 | 0.030     | 0.009 | 0.062    |
| trnY                  | 69             | 11             | 15.9       | 0.053                        | 0.046 | 0.015     | 0.022 | 0.046    |
| trnA                  | 83             | 31             | 37.3       | 0.051                        | 0.036 | 0.015     | 0.008 | 0.047    |
| rrnS                  | 812            | 235            | 28.9       | 0.048                        | 0.033 | 0.042     | 0.087 | 0.092    |
| trnR                  | 75             | 29             | 38.7       | 0.048                        | 0.016 | 0.041     | 0.022 | 0.018    |
| trnG                  | 68             | 13             | 19.1       | 0.045                        | 0.024 | 0.040     | 0.019 | 0.027    |
| trnT                  | 74             | 25             | 33.8       | 0.044                        | 0.029 | 0.036     | 0.022 | 0.020    |
| trnD                  | 71             | 14             | 19.7       | 0.044                        | 0.035 | 0.032     | 0.029 | 0.018    |
| trnM                  | 68             | 12             | 17.6       | 0.044                        | 0.026 | 0.038     | 0.011 | 0.057    |
| trnI                  | 86             | 33             | 38.4       | 0.043                        | 0.027 | 0.024     | 0.000 | 0.048    |
| trnW                  | 68             | 19             | 27.9       | 0.043                        | 0.019 | 0.031     | 0.023 | 0.052    |
| trnK                  | 70             | 16             | 22.9       | 0.042                        | 0.013 | 0.007     | 0.000 | 0.010    |
| trnQ                  | 112            | 55             | 49.1       | 0.037                        | 0.035 | 0.007     | 0.022 | 0.049    |
| trnP                  | 67             | 10             | 14.9       | 0.029                        | 0.033 | 0.016     | 0.008 | 0.037    |
| trnF                  | 71             | 13             | 18.3       | 0.025                        | 0.012 | 0.015     | 0.006 | 0.037    |
| trnH                  | 69             | 8              | 11.6       | 0.023                        | 0.012 | 0.023     | 0.000 | 0.011    |
| trnL1                 | 67             | 8              | 11.9       | 0.022                        | 0.003 | 0.000     | 0.003 | 0.011    |
| trnN                  | 72             | 9              | 12.5       | 0.017                        | 0.007 | 0.013     | 0.003 | 0.023    |

 $<sup>^{1}</sup>$  tRNA genes are represented by as 'trn' plus the single-letter IUPAC-IUB code for their respective amino acids The table is sorted for the total nucleotide diversity.

species complexes: Ae. detritus has a sibling species, Ae. coluzzii, in the Camargue, where the specimens were collected (Rioux et al., 1998); Ae. annulipes/cantans is part of a group of four morphologically similar species in Northwestern Europe (Kuhlisch et al., 2019); and An. messeae (98.8–99.8%) belongs to the Anopheles maculipennis complex, which consists of four species in the Netherlands (Ibáñez-Justicia et al., 2022). However, we also observed low similarity in Cx. modestus, a species that is not part of a species complex in the region where it was collected. Unfortunately, our data did not include all members of these complexes to allow for an in-depth analysis. However, the availability of mitochondrial genomic data provides a foundation for identifying regions in the genome where members of these complexes vary most. Future studies could leverage these genomic regions by sequencing these markers for all species in the complex, represented by specimens across their entire distribution, using gold-standard specimens - fresh samples of the sex or life stage that is most morphologically identifiable and verified by multiple experts. This approach would allow for testing whether consistent genetic patterns can be identified to differentiate these species reliably.

For some species complexes, a higher resolution might be necessary, which nuclear genetic markers can provide. While mitochondrial DNA generally exhibits a higher mutation rate than nuclear DNA (estimates ranging from 10- to 100-fold greater in humans), attributed to factors such as the lack of protective histones, a high replication rate, and less efficient DNA repair mechanisms in the mitochondrion (Serrano et al., 2024), the nuclear genome possesses a significantly larger proportion of non-coding DNA. These extensive non-coding regions in the nucleus, including introns, telomeres, and various regulatory sequences, often harbour greater genetic variability as they are under weaker selective pressure. Consequently, they can provide a different and sometimes more detailed genetic pattern in phylogenetic relationships (Hanemaaijer et al., 2019; Lee et al., 2019). Examples include the Internal Transcribed Spacer 2 (ITS2) widely employed in Anopheles mosquitoes (e.g. Beebe et al., 1999; Fang et al., 2017) and highly polymorphic microsatellites (e.g. Laurito et al., 2017).

#### Broader impacts and future directions

By assembling and annotating multiple mitogenomes of 27 mosquito species, this study significantly expands the reference database for European mosquitoes. Historically, the selection of genetic markers has often been dictated by the availability of primers and reference sequences, rather than the suitability of specific genes

for addressing particular research questions. While *cox1* remains a valuable tool for species identification, our result highlight *nad6* and *nad2* as mitochondrial genes that may offer improved resolution and greater discriminative power. Additionally, highly conserved tRNAs, scattered throughout the genome, could address challenges like unequal amplification caused by variable primer binding sites. As such, this study underscores the potential for developing genetic markers tailored to specific identification needs, using mitochondrial reference genomes as a foundation. Ultimately, we hope that the increased availability of these genomes will encourages researchers to explore a wider array of mitochondrial genes and the future use of the obtained results in improving eDNA metabarcoding tools.

#### Supplementary material

Supplementary material can be found online at https://doi.org/10.52004/2054930X-20251025

**Table S1.** Overview of available mitogenome sequences in GenBank for species occurring in Europe, as listed by Becker *et al.* (2020)

**Table S2.** Details of the 139 mosquito mitogenome sequences (representing 139 species across 17 genera) utilised as seeds for the de novo assemblies in this study.

**Table S3.** Overview of the average genetic similarity at different taxonomic levels (the smallest taxonomy two sequences have in common), split by the 13 protein-coding genes, 2 ribosomal RNAs and the cox1 barcoding region.

**Table S4.** Overview of the average genetic similarity within species, split by the 13 protein-coding genes, 2 ribosomal RNAs and the *cox1* barcoding region.

Figure S1. Box plot illustrating pairwise genetic similarity across different taxonomic levels for all transfer RNAs.

#### Acknowledgements

We extend our heartfelt gratitude to several individuals whose contributions were instrumental to the success of this project. Louie Krol, Sam Boerlijst, and Berry van der Hoorn provided critical input during the proposal phase, which ultimately facilitated the acquisition of funding. We are particularly thankful to Frans Jacobs for his invaluable assistance in both the selection of material and the identification process. Pasquale Ciliberti and Jeremy Miller were pivotal in creating reference photographs for all specimens, and their meticulous

work greatly supported this endeavour. We also express our appreciation to Steffanie Teekema for organising the blind identification of the reference photographs, and to Francis Schaffner, Anders Lindström, and Filiz Gunay for their expert reviews of the reference photographs, which helped clarify the identification of some challenging species. Finally, special recognition goes to Frank Stokvis for his diligent efforts in performing the DNA extractions, and to Eveline Metz for her indispensable assistance in organising the sequencing process.

#### **Authors' contributions**

All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Conceptualisation: JvdB, AI-J, AS, BvdV, TW, and MS. Funding acquisition: AI-J, KB, AS, and BvdV. Data collection and identification: JvdB and AI-J. Data analysis and visualisation: JvdB. Result interpretation: JvdB, AI-J, KB, EL-F, AS, BvdV, TW, and MS. Writing original draft: JvdB. All authors have read, contributed to, and approved the final version of the manuscript.

#### Conflict of interest

Adolfo Ibáñez-Justicia serves as a board member of the European Mosquito Control Association at the time of writing; however, he had no involvement in the review process or decision-making related to this manuscript. The remaining co-authors declare no conflict of interest.

#### Data availability

The assembled mitogenomes are available on GenBank under accession numbers: PV094667-PV094748. The raw sequencing data is deposited in GenBank Sequence Read Archive (SRA), under BioProject PRJNA1219649. The full analysis pipeline, including R scripts and statistics, is available on GitHub at https://github.com/JordyvdB97/mosquito-genomes-pipeline/. Reference images of the sequenced material are hosted on Zenodo and can be accessed at https://doi.org/10.5281/zenodo .14672457.

# **Funding**

The collection of the material and the sequencing costs were funded from regular Netherlands Food and Consumer Product Safety Authority (NVWA) financing. JGvdB. received support from the Pandemics and Disaster Preparedness Center (PDPC) (reference number 2022.001).

#### Informed consent

The 'use' of specimens collected in France and Spain was formally communicated to the relevant authorities in both countries, in compliance with the Nagoya Protocol on Access and Benefit-sharing.

#### Research ethics

The collection of these mosquitoes is not subject to restrictions under national or international laws and does not require special permission. All specimens were collected on state-owned properties or, where applicable, with the consent of the landowner.

#### References

Aardema, M.L., vonHoldt, B.M., Fritz, M.L. and Davis, S.R., 2020. Global evaluation of taxonomic relationships and admixture within the *Culex pipiens* complex of mosquitoes. Parasites and Vectors 13(1): 8. https://doi.org/10.1186 /s13071-020-3879-8.

Alikhan, N.-F., Petty, N.K., Ben Zakour, N.L. and Beatson, S.A., 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12(1): 402. https://doi.org/10.1186/1471-2164-12-402.

Allio, R., Schomaker-Bastos, A., Romiguier, J., Prosdocimi, F., Nabholz, B. and Delsuc, F., 2020. MitoFinder: Efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Molecular Ecology Resources 20(4): 892–905. https://doi.org/10.1111/1755-0998.13160.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215(3): 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2.

Auguie, B., 2017. gridExtra: miscellaneous functions for 'grid' graphics. https://CRAN.R-project.org/package=gridExtra.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A. and Pevzner, P.A., 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19(5): 455. https://doi.org/10.1089/CMB.2012.0021.

- Batovska, J., Cogan, N.O.I., Lynch, S.E. and Blacket, M.J., 2017.
  Using next-generation sequencing for DNA barcoding:
  capturing allelic variation in ITS2. G3 Genes|Genomes|
  Genetics 7(1): 19–29. https://doi.org/10.1534/g3.116.036145.
- Becker, N., Petrić, D., Zgomba, M., Boase, C., Madon, M.B., Dahl, C. and Kaiser, A., 2020. Mosquitoes. 3rd ed. Fascinating Life Sciences. Springer International Publishing, Cham, Switzerland, 570 pp. https://doi.org/10.1007/978-3-030 -11623-1.
- Beebe, N.W., Ellis, J.T., Cooper, R.D. and Saul, A., 1999. DNA sequence analysis of the ribosomal DNA ITS2 region for the *Anopheles punctulatus* group of mosquitoes. Insect Molecular Biology 8(3): 381–390. https://doi.org/10.1046/j.1365-2583.1999.83127.x.
- Bierman, A. and Lloyd, M., 2024. Metabarcoding and eDNA for insect conservation. In: Pryke, J.S., Samways, M.J., New, T.R., Cardoso, P. and Gaigher, R. (Eds.) Routledge handbook of insect conservation. Routledge, Taylor & Francis Group, Oxfordshire, United Kingdom, pp. 487–499. https://doi.org/10.4324/9781003285793-43.
- Boerlijst, S.P., Trimbos, K.B., Van der Beek, J.G., Dijkstra, K.D.B., Van der Hoorn, B.B. and Schrama, M., 2019. Field evaluation of DNA based biodiversity monitoring of Caribbean Mosquitoes. Frontiers in Ecology and Evolution 7: 240. https://doi.org/10.3389/fevo.2019.00240.
- Bourke, B.P., Foster, P.G., Bergo, E.S., Calado, D.C. and Sallum, M.A.M., 2010. Phylogenetic relationships among species of *Anopheles (Nyssorhynchus)* (Diptera, Culicidae) based on nuclear and mitochondrial gene sequences. Acta Tropica 114(2): 88–96. https://doi.org/10.1016/j.actatropica.2010.01 .009.
- Bushnell, B., 2022. BBMap. SourceForge.net. Available at: https://sourceforge.net/projects/bbmap/.
- Chen, D.-H., He, S.-L., Fu, W.-B., Yan, Z.-T., Hu, Y.-J., Yuan, H., Wang, M.-B. and Chen, B., 2024. Mitogenome-based phylogeny of mosquitoes (Diptera: Culicidae). Insect Science 31(2): 599–612. https://doi.org/10.1111/1744-7917.13251.
- Chen, S., Zhou, Y., Chen, Y. and Gu, J., 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17): i884-i890. https://doi.org/10.1093/bioinformatics/bty560.
- Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T., McCarthy, S.A., Davies, R.M. and Li, H., 2021. Twelve years of SAMtools and BCFtools. GigaScience 10(2): 1–4. https://doi.org/10.1093 /GIGASCIENCE/GIAB008.
- da Silva, A.F., Machado, L.C., de Paula, M.B., da Silva Pessoa Vieira, C.J., de Morais Bronzoni, R.V., de Melo Santos, M.A.V. and Wallau, G.L., 2020. Culicidae evolutionary history focusing on the Culicinae subfamily based on mitochondrial phylogenomics. Scientific Reports 10: 18823. https://doi.org/10.1038/s41598-020-74883-3.

- Deagle, B.E., Jarman, S.N., Coissac, E., Pompanon, F. and Taberlet, P., 2014. DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biology Letters 10(9): 20140562. https://doi.org/10.1098/rsbl.2014.0562.
- do Nascimento, B.L.S., da Silva, F.S., Nunes-Neto, J.P., de Almeida Medeiros, D.B., Cruz, A.C.R., da Silva, S.P., da Silva e Silva, L.H., de Oliveira Monteiro, H.A., Dias, D.D., Vieira, D.B.R., Rosa, J.W., Brandão, R.C.F., Chiang, J.O., Martins, L.C. and da Costa Vasconcelos, P.F., 2021. First description of the mitogenome and phylogeny of Culicinae species from the Amazon region. Genes 12(12): 1983. https://doi.org/10 .3390/genes12121983.
- European Centre for Disease Prevention and Control (ECDC) and European Food Safety Authority (FSA), 2024. Mosquito maps. Stockholm: ECDC, 2024. Available from: https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps.
- Epp, L.S., Boessenkool, S., Bellemain, E.P., Haile, J., Esposito, A., Riaz, T., Erséus, C., Gusarov, V.I., Edwards, M.E., Johnsen, A., Stenøien, H.K., Hassel, K., Kauserud, H., Yoccoz, N.G., Bråthen, K.A., Willerslev, E., Taberlet, P., Coissac, E. and Brochmann, C., 2012. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Molecular Ecology 21(8): 1821–1833. https://doi.org/10.1111/j.1365-294X.2012.05537.x.
- Fang, Y., Shi, WQ. and Zhang, Y., 2017. Molecular phylogeny of *Anopheles hyrcanus* group members based on ITS2 rDNA. Parasites & Vectors 10: 417. https://doi.org/10.1186/s13071 -017-2351-x.
- Gunay, F., Picard, M. and Robert., V., 2020. MosKeyTool, an interactive identification key for mosquitoes of Euro-Mediterranean. Version 2.2. http://bioinfo-web.mpl.ird.fr/identiciels/zip/moskeytool V2.2 english.zip.
- Gutiérrez-López, R., Egeter, B., Paupy, C., Rahola, N., Makanga, B., Jiolle, D., Bourret, V., Melo, M. and Loiseau, C., 2023. Monitoring mosquito richness in an understudied area: can environmental DNA metabarcoding be a complementary approach to adult trapping? Bulletin of Entomological Research 113(4): 456–468. https://doi.org/10.1017/S000748 5323000147.
- Hanemaaijer, M.J., Houston, P.D., Collier, T.C., Norris, L.C., Fofana, A., Lanzaro, G.C., Cornel, A.J. and Lee, Y., 2018. Mitochondrial genomes of *Anopheles arabiensis, An. gambiae* and *An. coluzzii* show no clear species division. F1000Research 7: 347. https://doi.org/10.12688/f1000research.13807.2.
- Helleman, P., Schrama, M., Trimbos, K.B., Braks, M.A.H., Schaffner, F., Stroo, A., Wouters, R.M. and Beek, J.G. van der., 2025. The ecological niche and population history shape mosquito population genetics on a group of three Caribbean islands. Parasites & Vectors 18: 167. https://doi .org/10.1186/s13071-025-06801-3.

Ibáñez-Justicia, A., Koenraadt, C.J.M., Stroo, A., van Lammeren, R. and Takken, W., 2020. Risk-based and adaptive invasive mosquito surveillance at Lucky Bamboo and used tire importers in the Netherlands. Journal of the American Mosquito Control Association 36(2): 89–98. https://doi.org/10.2987/20-6914.1.

- Ibáñez-Justicia, A., Smitz, N., Blom, R., Vanderheyden, A., Jacobs, F., Meganck, K., Gombeer, S., Backeljau, T., Koenraadt, C.J.M., Griep, J.S., De Meyer, M. and Stroo, A., 2022. Anopheles maculipennis complex in The Netherlands: first record of Anopheles daciae (Diptera: Culicidae). Diversity 14(8): 636. https://doi.org/10.3390/D14080636.
- Ibáñez-Justicia, A., Smitz, N., Den Hartog, W., van de Vossenberg, B., De Wolf, K., Deblauwe, I., Van Bortel, W., Jacobs, F., Vaux, A.G.C., Medlock, J.M. and Stroo, A., 2020. Detection of exotic mosquito species (Diptera: Culicidae) at international airports in Europe. International Journal of Environmental Research and Public Health 17(10): 3450. https://doi.org/10.3390/IJERPH17103450.
- Ibañez-Justicia, A., Stroo, A., Dik, M., Beeuwkes, J. and Scholte, E.J., 2015. National mosquito (Diptera: Culicidae) survey in the Netherlands 2010–2013. Journal of Medical Entomology 52(2): 185–198. https://doi.org/10.1093/jme/tju058.
- Jin, J.J., Yu, W.B., Yang, J.B., Song, Y., Depamphilis, C.W., Yi, T.S. and Li, D.Z., 2020. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21(1): 1–31. https://doi.org/10.1186/S13059-020-02154-5/FIGURES/6.
- Jühling, F., Pütz, J., Bernt, M., Donath, A., Middendorf, M., Florentz, C. and Stadler, P.F., 2012. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Research 40(7): 2833. https://doi.org/10.1093/NAR/GKR1131.
- Katoh, K., Misawa, K., Kuma, K. and Miyata, T., 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30(14): 3059–3066. https://doi.org/10.1093/nar/gkf436.
- Katoh, K. and Standley, D.M., 2013. MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–780. https://doi.org/10.1093/molbev/mst010.
- Kitson, E., 2018. Simple Circularise. https://github.com/Kzra/Simple-Circularise.
- Krol, L., Van der Hoorn, B., Gorsich, E.E., Trimbos, K., Bodegom, P.M. van and Schrama, M., 2019. How does eDNA compare to traditional trapping? Detecting mosquito communities in South-African freshwater ponds. Frontiers in Ecology and Evolution 7: 260. https://doi.org/10.3389/fevo.2019.00260.

- Kronefeld, M., Werner, D. and Kampen, H., 2014. PCR identification and distribution of *Anopheles daciae* (Diptera, Culicidae) in Germany. Parasitology Research 113(6): 2079–2086. https://doi.org/10.1007/s00436-014-3857-1.
- Kuhlisch, C., Kampen, H. and Werner, D., 2019. On the distribution and ecology of *Culiseta* (*Culicella*) *ochroptera* (Peus) (Diptera: Culicidae) in Germany. Zootaxa 4576(3): 544–558. https://doi.org/10.11646/zootaxa.4576.3.7.
- Ladoukakis, E.D. and Zouros, E., 2017. Evolution and inheritance of animal mitochondrial DNA: rules and exceptions. Journal of Biological Research-Thessaloniki 24(1): 2. https://doi.org/10.1186/s40709-017-0060-4.
- Laurito, M., de Oliveira, T.M., Almirón, W.R. and Sallum, M.A.M., 2013. COI barcode versus morphological identification of *Culex (Culex)* (Diptera: Culicidae) species: a case study using samples from Argentina and Brazil. Memórias do Instituto Oswaldo Cruz 108(Suppl 1): 110–122. https://doi .org/10.1590/0074-0276130457.
- Laurito, M., Ayala, A.M., Almirón, W.R., Gardenal, C.N., 2017.
  Molecular identification of two *Culex* (*Culex*) species of the neotropical region (Diptera: Culicidae). PLoS ONE 12(2): e0173052. https://doi.org/10.1371/journal.pone.0173052.
- Lee, Y., Schmidt, H., Collier, T.C., Conner, W.R., Hanemaaijer, M.J., Slatkin, M. Marshall, J.M., Chiu, J.C., Smartt, C.T., Lanzaro, G.C., Mulligan, F.S. and Cornel, A.J., 2019. Genomewide divergence among invasive populations of *Aedes aegypti* in California. BMC Genomics 20: 204. https://doi.org/10.1186/s12864-019-5586-4.
- Li, C., Wang, B., Ji, Y., Huang, L., Wang, X., Zhao, W., Wang, Y., Wang, H. and Yao, Y., 2024. Mitochondrial genome provides species-specific targets for the rapid detection of early invasive populations of *Hylurgus ligniperda* in China. BMC Genomics 25(1): 90. https://doi.org/10.1186/s12864-024-10011-z.
- Li, H., 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18): 3094–3100. https://doi.org/10.1093/BIOINFORMATICS/BTY191.
- Li, H., 2021. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37(23): 4572–4574, https://doi .org/10.1093/BIOINFORMATICS/BTAB705.
- Luo, Q.-C., Hao, Y.-J., Meng, F., Li, T.-J., Ding, Y.-R., Hua, Y.-Q. and Chen, B., 2016. The mitochondrial genomes of *Culex tritae-niorhynchus* and *Culex pipiens pallens* (Diptera: Culicidae) and comparison analysis with two other Culex species. Parasites & Vectors 9(1): 406. https://doi.org/10.1186/s13071 -016-1694-z.
- Ma, L., Liu, F., Chiba, H. and Yuan, X., 2019. The mitochondrial genomes of three skippers: Insights into the evolution of the family Hesperiidae (Lepidoptera). Genomics 112. https://doi.org/10.1016/j.ygeno.2019.03.006.

- Ma, X., Wang, F., Wu, T., Li, Y., Sun, X., Wang, C. and Chang, Q., 2022. First description of the mitogenome and phylogeny: *Aedes vexans* and *Ochlerotatus caspius* of the Tribe Aedini (Diptera: Culicidae). Infection, Genetics and Evolution 102: 105311. https://doi.org/10.1016/j.meegid.2022.105311.
- Moraes Zenker, M., Portella, T.P., Pessoa, F.A.C., Bengtsson-Palme, J. and Galetti, P.M., 2024. Low coverage of species constrains the use of DNA barcoding to assess mosquito biodiversity. Scientific Reports 14(1): 7432. https://doi.org/10.1038/s41598-024-58071-1.
- Park, D.-S., Suh, S.-J., Oh, H.-W. and Hebert, P.D.N., 2010. Recovery of the mitochondrial COI barcode region in diverse Hexapoda through tRNA-based primers. BMC genomics 11: 423, https://doi.org/10.1186/1471-2164-11-423.
- Peng, X.-Y., Zhou, P., Duan, X.-Y. and Qian, Z.-Q., 2016. The mitochondrial genomes of twelve *Anopheles* mosquitoes (Diptera: Culicidae) and their phylogenetic implications. Conservation Genetics Resources 8(4): 387–390. https://doi.org/10.1007/s12686-016-0565-4.
- Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S.E. and Lercher, M.J., 2014. PopGenome: an efficient Swiss army knife for population genomic analyses in R. Molecular Biology and Evolution 31(7): 1929–1936. https://doi.org/10.1093/molbev/msul36.
- Rioux, J.A., Guilvard, E. and Pasteur, N. 1998. Description d'*Aedes (Ochlerotatus) coluzzii* n. sp. (Diptera, Culicidae), espèce jumelle A du complexe detritus. Parassitologia 40(3): 353–360.
- Sallum, M.A.M., Foster, P.G., Li, C., Sithiprasasna, R. and Wilkerson, R.C., 2007. Phylogeny of the Leucosphyrus Group of *Anopheles (Cellia)* (Diptera: Culicidae) Based on mitochondrial gene sequences. Annals of the Entomological Society of America 100(1): 27–35. https://doi.org/10.1603/0013-8746(2007)100[27:POTLGO]2.0.CO;2.
- Schaffner, F., Angel, G., Geoffroy, B., Hervy, J.-P., Rhaiem, A. and Brunhes, J., 2001. The mosquitoes of Europe: an identification and training programme, version 2001. IRD Éditions & EID Méditerrannée, Montpellier, France. CD-ROM. ISBN: 2-7099-1485-9.
- Serrano, I.M., Hirose, M., Valentine, C.C., Roesner, S., Schmidt, E., Gabriel Pratt, G., Williams, L., Salk, J., Ibrahim, S. and Sudmant, P.H., 2024. Mitochondrial somatic mutation and selection throughout ageing. Nature Ecology & Evolution 8: 1021–1034. https://doi.org/10.1038/s41559-024-02338-3.
- Smitz, N., De Wolf, K., Gheysen, A., Deblauwe, I.,
  Vanslembrouck, A., Meganck, K., De Witte, J., Schneider,
  A., Verlé, I., Dekoninck, W., Gombeer, S., Vanderheyden, A.,
  De Meyer, M., Backeljau, T., Müller, R. and Van Bortel, W.,
  2021. DNA identification of species of the *Anopheles maculipennis* complex and first record of *An. daciae* in Belgium.

- Medical and Veterinary Entomology 35(3): 442–450. https://doi.org/10.1111/mve.12519.
- Takano, K.T., Nguyen, N.T.H., Nguyen, B.T.H., Sunahara, T., Yasunami, M., Nguyen, M.D. and Takagi, M., 2010. Partial mitochondrial DNA sequences suggest the existence of a cryptic species within the Leucosphyrus group of the genus *Anopheles* (Diptera: Culicidae), forest malaria vectors, in northern Vietnam. Parasites & Vectors 3(1): 41. https://doi.org/10.1186/1756-3305-3-41.
- Van der Beek, J.G., Ciliberti, P. and Miller, J., 2025. Image reference set of Northwestern European mosquitoes from 'The differential power of mitochondrial genes: complete mitogenome sequences of 27 European mosquito species'. Zenodo. https://doi.org/10.5281/zenodo.14672457.
- Vargas Espinosa, J. and Aguirre-Obando, O., 2022. Global phylogeography of the flood mosquito, *Aedes vexans* (Diptera: Culicidae), from mitochondrial DNA. Zoologia (Curitiba) 39: e21029. https://doi.org/10.1590/s1984-4689.v39.e21029.
- Verdonschot, P.F.M., 2020. Stekende insecten Griendtsveen 2019. Notitie Zoetwaterecosystemen, Wageningen Environmental Research, Wageningen, The Netherlands, 32 pp. https://doi.org/10.18174/531860.
- Wang, X., Tu, W.-C., Huang, E., Chen, Y.-H., Chen, J.-H. and Yeh, W.-B., 2017. Identification of disease-transmitting mosquitoes: development of species-specific probes for DNA chip assay using mitochondrial COI and ND2 genes and ribosomal internal transcribed spacer 2. Journal of Medical Entomology 54(2): 396–402. https://doi.org/10.1093/jme/tjw195.
- Wickham, H., 2016. Ggplot2: elegant graphics for data analysis. 2nd ed. Use R! Cham: Springer Cham. https://link.springer.com/book/10.1007/978-3-319-24277-4.
- Wickham, H., François, R., Henry, L., Müller, K. and Vaughan, D., 2023. Dplyr: A Grammar of Data Manipulation. https:// CRAN.R-project.org/package=dplyr.
- Wickham, H., Vaughan, D. and Girlich, M., 2024. Tidyr: tidy messy data. https://CRAN.R-project.org/package=tidyr.
- Wilke, C., 2024. Cowplot: streamlined plot theme and plot annotations for 'ggplot2,' https://CRAN.R-project.org/pack age=cowplot.
- Wilkerson, R.C., Linton, Y.-M., Fonseca, D.M., Schultz, T.R., Price, D.C. and Strickman, D.A., 2015. Making mosquito taxonomy useful: A stable classification of tribe Aedini that balances utility with current knowledge of evolutionary relationships. PLoS ONE 10(7): e0133602. https://doi.org/10.1371/journal.pone.0133602.
- Wilkerson, R.C., Linton, Y.-M. and Strickman, D., 2021. Mosquitoes of the world. Volume 1 and 2. John Hopkins University Press, Baltimore, Maryland, 1332 pp. https://doi.org/10.1353/book.79680.