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Abstract

Computer-Aided Synthesis Planning (CASP) and CASP-based approximated synthesizability scores have rarely been used

as generation objectives in Computer-Aided Drug Design despite facilitating the in-silico generation of synthesizable
molecules. However, these synthesizability approaches are disconnected from the reality of small laboratory drug design,
where building block resources are limited, thus making the notion of in-house synthesizability with already available resources
highly desirable. In this work, we show a successful in-house de novo drug design workflow generating active and in-house
synthesizable ligands of monoglyceride lipase (MGLL). First, we demonstrate the successful transfer of CASP from 17.4 million
commercial building blocks to a small laboratory setting of roughly 6000 building blocks with only a decrease of —12% in CASP
success when accepting two reaction-steps longer synthesis routes on average. Next, we present a rapidly retrainable in-house
synthesizability score, successfully capturing our in-house synthesizability without relying on external building block resources.
We show that including our in-house synthesizability score in a multi-objective de novo drug design workflow, alongside a sim-
ple QSAR model, provides thousands of potentially active and easily in-house synthesizable molecules. Finally, we experimen-
tally evaluate the synthesis and biochemical activity of three de novo candidates using their CASP-suggested synthesis routes
employing only in-house building blocks. We find one candidate with evident activity, suggesting potential new ligand ideas
for MGLL inhibitors while showcasing the usefulness of our in-house synthesizability score for de novo drug design.

Scientific contribution Our core scientific contribution is the introduction of in-house de novo drug design, which enables
the practical application of generative methods in small laboratories by utilizing a limited stock of available building blocks.
Our fast-to-adapt workflow for in-house synthesizability scoring requires minimal computational retraining costs while sup-
porting a high diversity of generated structures. We highlight the practicality of our approach through a comprehensive
in-vitro case study that relies entirely on in-house resources, including in-silico generation, synthesis planning, and activity
evaluation.

Keywords Computer-aided synthesis planning, Casp, Retrosynthesis, Synthesizability, Synthesizability score, De novo
drug design, Virtual screening, In vitro, Medicinal chemistry
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Introduction
In drug discovery, the traditional Design-Make-Test-
Analyze (DMTA) cycle is undergoing substantial

changes, driven by the incorporation of novel artificial
intelligence approaches [1]. Within the “Design” phase of
DMTA, de novo drug design methods have emerged that
propose novel molecular structures, already demonstrat-
ing effectiveness in identifying potential new drug candi-
dates [2, 3]. In this search process, optimization-based de
novo methods repeatedly generate a selection of candi-
date molecules, evaluate these candidate molecules with
desired objective functions, and optimize the generative
method towards desired chemical spaces [4, 5]. Inher-
ently, this search involves multi-objective optimization,
as generated molecules should satisfy various potentially
contradicting and, therefore, non-combinable objectives
(i.e., selectivity for the desired protein target, pharma-
cokinetic properties, or synthetic accessibility) [6].

Simultaneously, the conceptualization of the “Make”
phase of DMTA has also undergone massive changes
with the emergence of artificial intelligence approaches,
where Computer-Aided Synthesis Planning (CASP)
determines synthesis routes by deconstructing molecules
recursively into molecular precursors until a collection
of commercially available molecules, commonly termed
“building blocks’, is identified [7, 8]. Rather than manu-
ally searching for these synthesis routes, contemporary
approaches employ neural networks to encapsulate the
backward reaction logic and search algorithms to find
possible multi-step reaction pathways [9].

One of the existing challenges limiting the broader
adoption of de novo techniques in the “Design” phase is
the generation of unrealistic, non-synthesizable molecu-
lar structures. Here, different strategies have become
available to include synthesizability to ensure realistic
molecular structures [10]. The most straightforward
approach is to directly use synthesis planning, assessing
if a synthesis route can be found using one of the availa-
ble approaches [7, 11-13]. Lately, this approach has been
successfully investigated as an objective in de novo drug
design [14], but has high computational requirements
and is time-intensive [4, 10]. In this scenario, each mole-
cule necessitates an entire synthesis planning run, where
the duration can range from minutes to several hours
depending on the selected retrosynthesis neural network
[15, 16]. Unfortunately, this renders synthesis planning
incompatible with most optimization-based de novo drug
design methods, as these methods require numerous
optimization iterations to achieve convergence.

A more efficient alternative to full synthesis plan-
ning is the use of synthesizability heuristics or learned
synthesizability scores that (indirectly) provide a fast
measure of synthesizability, making them well suited for
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post-generation virtual screening or de novo drug design
[4, 10].

These synthesizability heuristics can be as simple as
the length of the SMILES string [10], the presence of
fragments typical in synthesizable molecules [17], or the
combination of typical structural features of synthesiz-
able molecules with a penalty for structural complex-
ity like rings or stereo-centers [18]. Within de novo drug
design, these heuristics are occasionally used as genera-
tion objectives to improve synthesizability (e.g., [10]) or
as post-generation filters to identify synthetic accessible
molecules (e.g., [17, 19]).

In contrast to synthesizability heuristics, CASP-based
synthesizability scores approximate synthesis planning
results and learn the relationship between a molecule’s
structure and the successful identification of a synthesis
route via synthesis planning [20]. This learning task is
either formulated as a classification task of the synthesis
planning outcomes [20, 21] or a regression task relying
on the resulting synthesis route properties [14, 22]. How-
ever, these CASP-based scores are thus far rarely used as
an objective in de novo drug design and are missing in
common de novo benchmark frameworks (e.g., [23]).

Nevertheless, the limited in-silico studies that use the
aforementioned CASP-based scores indicate: First, they
improve synthesizability in terms of the used score in an
in-silico de novo drug design benchmark [22] but lack in-
silico evaluation of potential synthesis routes. Second,
they improve post-generation synthesis planning success
in an in-silico lead optimization benchmark [14] but lack
the experimental evaluation of generated structures and
synthesis routes.

All of the above ties into a common challenge of the
field, where contemporary de novo drug design and syn-
thesizability approaches do not take the experimental
reality of drug discovery into account, as most de novo
approaches are evaluated against synthesizability and
activity heuristics (e.g., [23]) instead of synthesizing
potential drug candidates and measuring their activity
experimentally [24]. This absence of experimental evalua-
tion and focus on computational benchmarking environ-
ments is also present in de novo methods that explicitly
include synthesizability scores to actively enforce real-
istic and synthetically accessible molecular structures
(e.g., [14, 22]), yielding the question of whether suggested
approaches also work experimentally regarding the
proposed drug candidates and the suggested synthesis
routes.

In addition to the lack of experimental evaluation,
these general CASP-based synthesizability scores assume
near-infinite building block availability. This assumption
is, however, far removed from a realistic laboratory set-
ting, where resources are limited regarding budget and
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lead times for building blocks, making a specific notion of
in-house synthesizability tailored to available resources
more valuable than a general notion of synthesizability.
However, this transfer of contemporary CASP methods,
which rely on millions of commercially available build-
ing blocks, to a resource-limited environment might be
challenging for two reasons: First, the CASP performance
is limited by the quantity and nature of available build-
ing blocks, where missing building blocks can lead to
unsolvable molecules [20]. Second, current CASP-based
synthesizability scores are not building block agnostic as
they create their training data to capture a general notion
of synthesizability with these millions of commercially
available building blocks (e.g., [14, 20, 22]).

In this work, we address both of those challenges in the
field of computer-aided de novo drug design:

First, we demonstrate the successful transfer of syn-
thesis planning to an environment with a limited in-
house collection of building blocks, revealing that an
extensive commercial inventory is unnecessary for
identifying potential synthesis routes. Specifically, we
show that using only 6,000 in-house building blocks
results in merely -12% loss in synthesis planning per-
formance for a large drug-like chemical space, com-
pared to employing a roughly 3000-fold more exten-
sive library of commercially available building blocks
(“Zinc” [11]).

Second, we introduce an in-house CASP-based syn-
thesizability score that can successfully predict if
molecules are synthesizable with our in-house build-
ing blocks. We establish that a well-chosen dataset
of 10,000 molecules suffices for training this score,
allowing rapid retraining to accommodate changes in
building blocks through iterative synthesis planning
and model training.

Third, we demonstrate the effectiveness and use-
fulness of both in-house and general CASP-based
synthesizability scores within de novo drug design.
When combined with a MGLL [25] protein target
QSAR model as objectives, we show that the in-
house synthesizability score facilitates the genera-
tion of thousands of in-house, easy-to-synthesize and
potentially active drug candidate molecules.

Finally, we experimentally evaluate and critically ana-
lyze three generated molecules using an in-house
synthesizability score after synthesis based on Al-
suggested, in-house CASP routes. In the process,
we find one active candidate, suggest potential novel
ligand ideas for MGLL inhibitors, and examine dif-
ferences between our experimentally evaluated mol-
ecules, the generated in-house candidate space, and
known MGLL ligands.
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In-house synthesizability

To evaluate the transfer synthesis planning to our real-
life, resource-limited university setting, we deployed the
open-source synthesis planning toolkit AiZynthFinder
[11, 37] with two different building block sets, 5,955 in-
house university building blocks (“Led3”) and 17.4 mil-
lion generally available commercial compounds (“Zinc”).
The synthesis planning performance was evaluated for
two datasets, a set number of centroids of a Butina-clus-
tered [27] subset from Papyrus (“Caspyrus”) [26] and a
set of 200,000 randomly sampled drug-like ChREMBL [28]
molecules.

An overview of the synthesis planning results is pre-
sented in Fig. 1. This analysis showed that the difference
in performance when using only 5955 Led3 building
blocks compared to 17.4 million Zinc building blocks,
despite a 3000-fold increase, is notably small. Using
the more limited Led3 building blocks, solvability rates
for Caspyrus centroids are around 60%, except when
using only 1000 clusters (“Caspyruslk”) or evaluating
on ChEMBL. For the far more extensive Zinc build-
ing blocks, solvability rates are around 70% across all
datasets. The solvability disparity between both build-
ing blocks is around +12% for most datasets except for
Caspyruslk, where roughly +17% more molecules are
solved with Zinc building blocks. A notable difference
between both building blocks is that the shortest syn-
thesis route found with in-house building blocks is, on
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average, two reaction steps longer than those using Zinc
building blocks, as more building blocks allow shorter
synthesis routes across all datasets (see Fig. 2). Surpris-
ingly, the increase in synthesis route length is relatively
uniform across all molecules for both the Caspyrus50k
and Chembl200k datasets, as no distinct areas of the
chemical space require longer synthesis routes or are
unsolvable when using in-house building blocks (see
Supplementary: Fig. A1, A2).

Overall, these results suggest that storing a large com-
mercially sized stock of building blocks is unnecessary to
run synthesis planning, as a small building set loses only
— 12% solvability when accepting slightly longer synthesis
routes. These results open the possibility of planning the
synthesis of desired compounds in-house instead of buy-
ing new building blocks from a vendor and potentially
allowing the prioritization of interesting drug discovery
candidates according to available in-house resources.

In-house synthesizability score
After discovering that in-house building blocks are suf-
ficient for performing synthesis planning, we trained
a CASP-based synthesizability score for assessing the
in-house synthesizability of molecules without requir-
ing resource-intensive synthesis planning. In short, we
trained an XGBoost model [29], following the methodol-
ogy suggested by RaScore [20], to predict if a complete
synthesis route can be found for a molecule using syn-
thesis planning. Here, we used the previously generated
routes for the in-house Led3 and Zinc building blocks
as training data. Afterward, we evaluated the models on
respective independent test sets (10% of the data - “IND-
Test”) and 200,000 newly sampled ChEMBL molecules
not present in any training datasets (“ChEMBL-Test”) to
further evaluate generalizability, for which we addition-
ally conducted synthesis planning with both building
block sets (Fig. 3).

On both evaluation tasks, our trained in-house mod-
els achieved excellent results in both F1 and Matthews

Caspyruslk Caspyrus10k
7.0: 6.6: 6.4:

Fraction of Dataset

Caspyrus20k
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Correlation Coefficient (MCC) [30, 31] classification
scores, which were used to assess the predictivity of syn-
thetic accessibility by the trained scorer. For datasets with
at least 10,000 molecules, the F1 performance on the
respective test sets surpassed 0.8, proving competitive
with the results from larger training datasets. The MCC
performance generally improved with more training data,
reaching acceptable levels with at least 10,000 molecules,
likely because more data enhances the discernment of
non-synthesizable molecules. When employing the same
training data but using routes based on Zinc building
blocks instead, the resulting classifiers performed compa-
rably to those trained with in-house building blocks. Like
the Led3 building blocks, classifiers based on Zinc build-
ing blocks achieved acceptable F1 and MCC performance
when trained on datasets of at least 10,000 molecules.
The performance differences in F1 and MCC between
the respective dataset test sets and the additionally sam-
pled and unseen 200,000 ChEMBL molecules were minor
(except for Caspyruslk).

These results indicate that our models can accurately
estimate in-house synthesizability on a large drug-like
chemical space and generalize beyond their respective
test sets, allowing us to assess in-house synthesizability
for our laboratory in the drug discovery process.

In-house synthesizability of generated molecules

Since we can successfully predict if a molecule is in-house
synthesizable, we wanted to investigate if these scores
can be used in a de novo drug design setting to generate
in-house synthesizable drug candidates.

For this purpose, we combined our in-house synthe-
sizability scores with an MGLL QSAR model to train a
multi-objective DrugEx [19] molecular generator to find
potent and readily synthesizable compounds for this
target (compare training details in methods "De novo
molecular generation" section). We deployed a novel
DrugEx training strategy that helped our generator to
learn the desired chemical spaces by guiding it from

Caspyrus50k ChEMBL200k
6.3 6.3

Building Blocks
. ed3
Zinc

1234567382910
Number of Reactions

1234567382910
Number of Reactions

1234567382910
Number of Reactions

12345678910
Number of Reactions

1234567182910
Number of Reactions

Fig. 2 Distribution of the shortest synthesis route found. Evaluation using synthesis planning with 5,955 building blocks (Led3) and 17.4
million building blocks (Zinc) on the Caspyrus and 200,000 ChEMBL molecules datasets. The dotted line indicates the average route length

for both building block sets
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Fig. 3 Benchmarking in-house and general synthesizability scores. Performance comparison of CASP-based synthesizability scores predicting
the synthesizability using in-house (“Led3") and general (“Zinc") building blocks in contrast to finding a synthesis route using synthesis planning.
Scores are evaluated by measuring the F1 and MCC scores on independent test sets of the respective training datasets (“IND-TEST") and 200,000
newly sampled and, to all models, unknown ChEMBL molecules (‘ChEMBL-TEST")

a general drug-like chemical space towards our target
space with both a fine-tuned target-specific generator
model, capturing the known ligand distribution, and a
QSAR model, capturing the scaffold specific information.
As we wanted to evaluate the effect of different synthesiz-
ability scores, we trained multiple molecular generators
with different QSAR and synthesizability model combi-
nations. We used the QSAR model without any synthe-
sizability score or in combination with either the SAScore
[18] or our in-house and general synthesizability scores
trained on 10,000 and 200,000 molecules (Caspyrus10k
& ChEMBL200k). To evaluate the trained molecular gen-
erators, we sampled 100,000 molecules for each trained
generator and assessed how many are synthesizable with
either building blocks using synthesis planning (“solved”)
and are seen as active by the QSAR model with a prob-
ability larger than 0.8 (“active”).

The performance of different synthesizability scores in
combination with our QSAR model is presented in Fig. 4.
Compounds generated with only a QSAR objective have
a very low yield of solvable and active structures since the
generative model is not guided by synthesizability con-
straints. Here, generated structures tend to exploit the
QSAR model (i.e., repeat the active structural patterns
to increase the probability of being flagged as active) but
are synthetically inaccessible when solving with both the

in-house and general building blocks. In contrast, add-
ing SAScore as an objective produces many solvable but
very few active molecules, as most generated structures
are too structurally constrained by SAScore to be active
but are consequently easy to synthesize. Regarding syn-
thesizability scores trained using synthesis planning, all
CASP-based synthesizability scores perform well and
produce between 20,000 and 30,000 predicted active
and synthesizable candidates using either the in-house
or general building blocks. Surprisingly, scores trained
on CaspyruslOk produce the most solved and active
molecules, whereas CASP-based synthesizability scores
trained on 200,000 ChEMBL molecules produce more
solved molecules but not more active ones. It is worth
noting that the solvability of the generated molecules is
expectably lower than the ChEMBL test sets (compare
Fig. 3) as molecules are generated along the Pareto front
between the QSAR model and the respective used syn-
thesizability score (compare Supplementary: Fig. C9 for
an example of the generated objective space).

Quantitatively, our experiment shows that using in-
house synthesizability scores within a de novo generator
can produce thousands of in-house synthesizable mol-
ecules, which can function as a starting point for experi-
mental in-house evaluation.
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Fig. 4 Generated synthesizable and potentially active molecules
using in-house synthesizability scores. Evaluation of 100,000
molecules generated per selected QSAR model and CASP-based
synthesizability score combination. “Solved” denotes the successful
identification of a synthesis route for a particular molecule
with the respective building blocks (in-house Led3 and Zinc),
while “Active”is measured by the QSAR model with a probability
threshold of greater than 0.8

Synthesizability score impact on generated molecules
After we showed that CASP-based synthesizability scores
facilitate the generation of synthesizable molecules, we
set out to investigate their impact on the generated can-
didates and potential problems with their predictive per-
formance in the desired candidate space.

First, given that we tested in-house and general synthe-
sizability scores alongside our QSAR model, an obvious
question is whether these different scores target separate
chemical spaces and generate, consequently, distinct can-
didates. Our primary motivation stems from the fact that
the number of solved de novo candidate molecules from
the in-house and general CaspyruslOk synthesizabil-
ity scores are comparable when using in-house building
blocks within synthesis planning. This yields the question
of whether one can use a general synthesizability score
in de novo design first and solve with in-house building
blocks afterward to receive the same candidates. For this
purpose, we created a joint UMAP projection [32] of all
the solved and potentially active candidate molecules
from both the in-house and general synthesizability
scores trained with Caspyrusl0k, making the synthesiz-
ability score results comparable as they are trained on the
same dataset. Here, molecules generated with these two
scores prioritize different chemical sub-spaces, showing
that utilizing only a general synthesizability score and
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Fig. 5 Contrasting the shared generated chemical space of in-house
and general synthesizability scores. UMAP visualization of the solved
and potentially active molecular space derived from combining

the molecules generated from both in-house and general
synthesizability scores trained on the same dataset (“Caspyrus10k”).
In both instances, in-house building blocks are used for synthesis
planning to evaluate solvability. UMAP is calculated using Morgan
Fingerprints (Radius 3, Size 2048)

running synthesis planning with in-house building blocks
afterward is problematic as the generated results can dif-
fer (see Fig. 5). Notably, we confirmed the presence of
this pattern in high-dimensional fingerprint space by also
clustering the combined generated space, resulting in two
distinct chemical space clusters for Caspyrus10k that are
differentiated by the synthesizability score used during
generation (Supplementary: Fig. C3). In detail, the usage
of only a general score produces sparse results in areas
prioritized by the in-house score and, while still partially
recovering the same key scaffolds, creates different mol-
ecules. Between both candidate spaces, only 1,124 unique
molecules, solved with in-house building blocks and seen
as active by the QSAR model, are shared (based on InChl
comparisons). For ChREMBL200K, this pattern is also pre-
sent, though to a lesser extent (Supplementary: Figs. C4,
C5).

Hence, when CASP-based synthesizability scores are
used as objectives in de novo drug design, it is impor-
tant to note that these scores assess generated molecules
based on characteristics influenced by the underlying
route planning settings - in our case, the different build-
ing blocks used. As demonstrated here, this can greatly
impact the chemical space coverage of de novo drug
design algorithms.
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training

Second, CASP-based synthesizability scores are trained
on a specific drug-like chemical space, in our case 200,000
ChEMBL or up to 50,000 Caspyrus molecules, for which
synthesis planning is conducted and that is consequently
known to the model. However, a specific target chemical
space explored by our de novo generation might fall out-
side of this known model scope and produce unreliable
predictions. To analyze if this happens in our generation
process, we evaluated if our CASP-based scores cor-
rectly predict the route planning results for the 100,000
generated molecules and compared the performance to
the independent ChEMBL 200k test set (compare Fig. 3).
Naturally, we could only compare scores used during the
generation with their respective building blocks, meaning
that a score trained using synthesis planning results from
Zinc building blocks is now also evaluated against Zinc
building blocks. Across all models, the performance on
generated molecules decreases and performs worse than
on the ChEMBL test set, showing a clear domain shift
away from the training data (Fig. 6). However, the over-
all performance for most scores is still acceptable, with
around 0.7 F1 and an MCC of around 0.5. For the worst
performing CaspyruslOk score based on Zinc building
blocks, it is questionable if an MCC of 0.26 is still suffi-
cient to be reliably used.

Overall, these results suggest that synthesizabil-
ity scores, in-house or general, can be used to generate
desired candidates. Nonetheless, it is necessary to exer-
cise caution when using such scores in a de novo drug
design setting since distinct scores might produce dif-
ferent candidate distributions and as the reliability of the
individual scores can differ.

Experimental candidate and synthesis route evaluation

Next, we experimentally evaluated our methodol-
ogy regarding the predicted activity and their sug-
gested in-house synthesis routes. For this purpose, we
first deployed a virtual screening approach to reduce
the candidate set to a manageable size. In detail, we
filtered the molecules generated with the in-house
Caspyrus10k synthesizability score, requiring that mol-
ecules be perceived as active and synthesizable by their
respective objective function using a probability filter
threshold of 0.8 (32,907 candidates). Next, we reduced
the resulting molecules by the requirement that a syn-
thesis route with our in-house building blocks could
be found, resulting in 20,055 potential candidate mol-
ecules (compare Supplementary: Table C5 for the other
scores). It is noteworthy that we relied here on a virtual
screening setting rather than directly using the solved
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after treatment with varying concentrations of inhibitor as measured by natural substrate assay (compare Supplementary: Experimental Evaluation

D for details)

candidates from the prior experiments (compare Fig. 4)
since this setting reflects a more realistic application
of our synthesizability scores in the future, reducing
resource-intensive synthesis planning. To decrease the
resulting large number of synthesis candidates further,
we first analyzed the entire candidate set regarding the
Tanimoto similarity for each molecule to the known
ligands of MGLL (see Supplementary: Fig. C6). We
then applied further filtering in that a found synthesis
route cannot be longer than five reaction steps to focus
on easy-to-make candidates (4675), required drug-
likeness by satisfying the Lipinski rule of 5 [33] (950),
and enforced novelty by having a Tanimoto similarity
to known ligands of smaller than 0.7 (609). From these
609 candidates, domain experts selected three candi-
dates for experimental validation based on diversity,
potential activity (“chemical eye”), and the presence of
a short synthesis route (1 or 2 steps). These three can-
didates were made using the suggested synthesis routes
by the synthesis planning algorithm and evaluated in a
natural substrate assay for MGLL inhibition.

The experimental inhibition results of our candidates
and their respective in-house synthesis routes are pre-
sented in Fig. 7. Compound 1 showed clear activity with
an ICsp of 1 pM, and compounds 2 and 3 show slight
activity of around 100 pM ICjy.

Although all three tested molecules showed some level
of inhibitory activity, a stricter boundary of < 10 uM,
generally used for hit finding, only leaves one candidate
that can be classified as active. This somewhat lower
potency can be expected, as the selection of molecules
was based on conducting at most two synthesis steps,
leaving molecules with more expressed side chains and
higher potential potency out of the evaluation. Neverthe-
less, from these experimental results, we can conclude

that we can generate in-house synthesizable and active
drug candidates that rely on CASP routes using our lim-
ited building blocks.

Critical analysis of de novo generated candidates

Given that most de novo methods only do an in-sil-
ico evaluation of their drug candidates [24], it is vital
to critically analyze our experimentally evaluated and
active molecules stemming from a de novo drug design
approach to provide further inside.

For this purpose, we first contrasted our synthesized
candidates with known ligands to analyze their novelty.
When directly inspecting our selected candidates, even
though active and in-house synthesizable, their novelty
in key scaffolds is limited. Looking at the closest known
ligands, as determined by a Tanimoto similarity thresh-
old, for the respective candidate structures, 2 and 3 are
variations of the closest ligand. However, candidate 1,
which was also the most active one in our experiments,
deviates more from the closest known ligands in the
training dataset and seems to combine distinct motives
found in previously explored analogs using the same key
scaffold (see Fig. 8, Supplementary: Fig. C7 for candi-
date 2 & Fig. C8 for candidate 3), akin to what a medici-
nal chemist would think of trying in the various Design
cycles of a candidate.

In the second step, we compared our solved candidate
space to the known ligands to understand what consti-
tutes our generated space and how our objective func-
tions influence the generation of potential candidates
and the presence of key scaffolds. For this purpose, we
created a joint UMAP projection of all the solved gen-
erated candidate molecules, our three synthesized can-
didates, and all known ligands for the target. For the
known ligands, we annotated which molecules are active
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or inactive in terms of our QSAR model (compare meth-
ods 4.3) and for which of the active ligands a synthesis
route could be found with our in-house building blocks.
When analyzing the joint UMAP projection of the gener-
ated candidate molecules and known ligands (see Fig. 9),
candidate molecules are generated in areas where active
ligands that are synthesizable with our in-house building
blocks are present. From this, we can conclude that the
QSAR model works as intended, which is supported by
the direct rediscovery of 145 known active ligands in our
candidate space (based on InChl comparisons) that the
QSAR model also classified as active and, in comparison,
the rediscovery of 0 inactive ligands. This, however, also
explains the usage of key scaffolds in our generated can-
didates, as the QSAR model operates on the structures
of known ligands for MGLL and does not generalize well
beyond that. Inactive known ligands, in comparison, tend
to be in areas of low candidate density. They can, how-
ever, also be close to active ligands with higher density,
especially when analogs to known actives are tested.

We can conclude further that the applied in-house
synthesizability score works as intended as a generation
objective, as unsolvable active ligands are outside areas
with high candidate density. Intriguingly, the model gen-
erates two major clusters of molecules with little to no
known molecules tested for MGLL. These areas could
hold more ’creative’ ligands, which was also illustrated
by their lengthier synthetic routes. For synthetic reasons,
these were outside of the scope of this research.
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Conclusion

In this work, we have introduced an end-to-end and
experimentally evaluated in-house de novo drug design
approach that provides active drug candidates and their
in-house synthesis routes by repurposing already avail-
able chemicals to reduce costs, lead times and potentially
chemical waste in the drug discovery process.

We have demonstrated that synthesis planning can
be successfully conducted by using only a small set of
roughly 6000 in-house available building blocks, making
it unnecessary to have a commercially vendor-sized stock
of building blocks available. With this, we demonstrated
the possibility of conducting potential synthesis in-house
while repurposing already available resources. Com-
pared to utilizing general vendor building blocks, this
in-house approach yields only a —12% decrease in syn-
thesis planning success rate when accepting the resulting,
on average, two reactions longer synthesis routes. Next,
we leveraged our in-house synthesis planning approach
to create an in-house machine learning synthesizability
score to predict if a molecule is synthesizable with our
in-house building blocks. We further showed that it is
possible to train such a score on a small, selected subset
of molecules, allowing the recreation of our score within
a day in case of changes in our available building blocks,
reactions, or the general adaptation to a new laboratory
environment by the broader research community. Finally,
we showed the successful application of this score in de
novo drug design by generating molecules that are both
active against our selected MGLL target and in-house
synthesizable. We further demonstrated that combin-
ing synthesis planning and de novo drug design is viable
and valuable in a small laboratory setting by providing
a large set of in-house accessible candidate molecules to
our chemists, showing that including such a synthesiz-
ability score increased the number of in-house syntheti-
cally accessible molecules manifold. Out of this candidate
pool, we validated three selected candidates not only in
silico but experimentally, finding an active molecule with
new disconnection ideas for our target and additionally
verifying that the algorithmically proposed in-house syn-
thesis routes are feasible in our laboratory setting.

Even though the proof-of-concept for in-house syn-
thesizability of generated structures is the main focus
of this study, a primary limitation relates to the novelty
of the generated structures. Generally, we see in our
candidates one of the current problems in de novo drug
design, where key scaffolds for the target are re-used,
and the sidechains are algorithmically altered (e.g., [3]).
In our work, we do not explore potentially more active
candidates with more complex side chains and, conse-
quently, longer synthesis routes, as we find novel ideas
for a possible MGLL inhibitor, even when looking only
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at fairly undecorated molecules. Still, the re-usage of key
scaffolds is also present in our work. Even though we do
not enforce or fix any scaffolds for the target, our trained
molecular generator re-discovers active and in-house
synthesizable molecules with known scaffolds on its own.

A natural future improvement is to replace the target
QSAR model, potentially limiting the diversity of gener-
ated key scaffolds, with other methods for assessing pro-
tein-ligand activity like a shape-based pharmacophore
[34] or docking [35, 36]. Since both synthesis planning

and synthesizability scores are active research fields,
improving the synthesis planning performance with
more complex neural networks capturing that capture
the reaction logic [15, 16] or better approximation mod-
els for synthesizability [21, 22] that combine more syn-
thesis route criteria beyond binary CASP-synthesizability
[14]. Along the same lines, optimizing the right in-house
building blocks to open synthetically accessible chemical
spaces might be of further interest. Here, the presence of
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the right mix of small laboratory building blocks could
allow the synthesis of a broader chemical space with as
few as possible reactions. Beyond focusing only on in-
house synthesizability, merging in-house with cheap and
easy-to-acquire vendor building blocks could be of prac-
tical interest to maximize cost-efficient synthesis.

Finally, our in-house synthesizability score is regularly
used in our university setting for de novo drug design and
virtual screening to streamline the overall drug discovery
process. Its internal usage and the application of simi-
lar scores in other institutions will hopefully facilitate a
change for a more efficient and sustainable drug discov-
ery process and a further combination of contemporary
artificial intelligence methods with real-world laboratory
experimentation going forward. For this purpose, we
provide all relevant code that relies solely on open-source
software and all data to reproduce the results presented
in this work, allowing easy and cost-free creation of other
in-house synthesizability scores.

Methods

Synthesis planning

For all synthesis planning in this study, we used the pub-
licly available open-source AiZynthfinder [11, 37] syn-
thesis planning framework. Specifically, we relied on the
AiZynthfinder-provided NeuralSym reaction network
[38] that is trained on publicly available USPTO reactions
[39] and Monte-Carlo Tree Search [7] as the respective
search algorithm. The search settings were limited to a
search time of 900 s per molecule, 1000 search iterations,
and a synthesis route depth of 8. Further, we added 50
possible reactions to the tree search per reaction model
call (compare Supplementary: Table A2 for details).
The building blocks used, i.e., search targets in the tree
search, were 17,422,831 Zinc building blocks provided by
AiZynthinder [11], used for the general evaluation of syn-
thesizability, and 5,955 building blocks provided by the
Leiden University Early Drug Discovery & Development
department [40], used for in-house synthesizability.

We utilized two datasets to evaluate synthesizability
using the respective building blocks: First, we created a
representative subset of the synthesizable drug-like mol-
ecules space that allows fast evaluation and retraining of
potential synthesis scores named Caspyrus. The creation
process mimicked our work evaluating different model
architectures in synthesis planning with 10,000 mole-
cules [16]. We selected the high-quality Papyrus dataset
[26] of 1,238,835 molecules and cleaned them with the
Guacamol cleaning strategy [23] to ensure drug-like mol-
ecules. We further removed known building blocks stem-
ming from Zinc [11], Enamine [41], MolPort [42] and
eMolecules [43]. We then clustered the remaining mol-
ecules using Butina clustering [27] with a cut-off of 0.6
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Table 1 Different Caspyrus versions

Name Centroids Molecules
Caspyrus1k 1000 82,352
Caspyrus10k [16] 10,000 280,956
Caspyrus20k 20,000 371,231
Caspyrus50k 50,000 491,422

Overview of the selected cluster centroids per Caspyrus dataset and their overall
represented molecules

using Morgan fingerprints [44] (radius of 2, fingerprint
size of 1024), which resulted in 137,963 cluster centroids.
From these centroids, we removed 19 centroids that are
directly in clinical study phases 1-3 [45] as we wanted to
prevent later molecular generation towards intellectual
property spaces. Finally, we took centroids of the » larg-
est clusters to create the different Caspyrus versions (see
Table 1).

Second, we sampled 200,000 molecules from ChEBML,
following the evaluation framework of RaScore [20], and
cleaned them with the same Guacamol cleaning strategy.
Compared to the clustered Caspyrus dataset, this data-
set is more likely to contain noisy data, duplicates, and
potential building blocks.

We measured the number of molecules for which at
least one complete synthesis route with the respective
building block sets could be found on both evaluation
datasets. Furthermore, we used the shortest found route
of all found synthesis routes to evaluate the minimum
route length.

Synthesizability scores

We leveraged the results of the synthesis planning to
train our general and in-house synthesizability scores. To
approximate synthesis planning, we used XGBoost [29]
as a binary classifier to learn the relationship between
the selected molecules and their synthesis planning
result (synthesis route found/not found). We selected the
rather “simplistic” XGBoost, following the well-working
RaScore [20], as we were more interested in the general
applicability of our approach and because more complex
Graph Neural Network architectures showed only slight
performance improvements [21, 22]. The input into all
XGBoost models were Morgan fingerprints (radius of 3,
size of 2048) using additional selected chemical proper-
ties following DrugEx [19].

All classifiers were trained and evaluated with the fol-
lowing scheme: Initially, we split away 10% of the respec-
tive data as a test set following the process of RaScore
[20], where we used the ability to find a synthesis route
with Led3 building blocks as a stratifying criterion. On
the remaining 90% of the data, the training dataset, we
conducted a 5-fold cross-validation to evaluate different
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hyperparameter settings. Our hyperparameter optimiza-
tion scheme consists of 1000 rounds of Bayesian Optimi-
zation for every classifier using Bayesian Optimization
and Hyperband [46] - in total, multiple days of runtime
per classifier. Here, the selected hyperparameters were
the learning rate (0.05—0.4), maximum depth of a tree
(1-50), minimum loss reduction required for further par-
tition of a tree (0—10), and number of trees (5—-250). The
final score is then trained on the entire training dataset
using the best hyperparameters.

The final performance of each score is evaluated on
two datasets: First, the respective 10% test data for each
dataset not used during training. Second, we sampled
an additional 200,000 cleaned molecules from ChEMBL
[28] and conducted synthesis planning to create a
new test to measure the generalizability of the trained
scores on a large chemical space (compare Supplemen-
tary: Table B3 for optimal hyperparameter settings and
results). Noteworthy, we ensured that the molecules from
this ChEMBL test set are neither in the Caspyrus nor the
Chembl200k datasets used to train our CASP-based syn-
thesizability scores.

De novo molecular generation

The trained CASP-based synthesizability scores were
evaluated in a de novo drug design setting, where the goal
was to generate active and in-house synthesizable mol-
ecules for our selected MGLL protein target [25], evalu-
ated by in silico synthesis planning and experimental
evaluation.

For this purpose, we used our molecular genera-
tor DrugEx [19] alongside a set of desirable generation
objectives, in our case, a trained target QSAR model and
multiple different synthesizability scores. We selected
DrugEx v3 as the molecular generator for two reasons:
First, DrugEx is currently the only Reinforcement Learn-
ing (RL) approach that uses a reward based on the Pareto
front instead of a single or a scalarized objective [47],
which allows the model to more accurately learn the
trade-offs between different objectives and produce more
diverse solutions. This is especially important in our set-
ting as the predicted biological activity by the QSAR
model and our selected synthesizability scores are non-
consumable without losing information about the trade-
offs between both objectives, meaning that molecules
evaluated to be active are not necessarily also assessed
to be synthesizable and vice versa. Second, we hope for
the adoption of our approach in the future, as DrugEx is
open source, well-maintained with high code quality [48]
and allowed for all the data and methods used to create
this work to be publicly available. Given that the DrugEx
framework offers several generative model architectures,
we decided to use the latest graph-based transformer
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model operating on fragments in this work [19], where
the goal is to learn the generation of novel and valid mol-
ecules from a predetermined chemical space given a set
of starting fragments—substructures smaller than known
key scaffolds. The version 3.4.0.devl of the DrugEx soft-
ware was used throughout this work.

In our case, the training process of DrugEx consisted of
three steps:

(1) A pretrained model was obtained, that captures
the general drug-like chemical space by learning
the mapping between fragments and their respec-
tive molecules. Here, we used a pre-trained model
based on Papyrus 05.5 [26] that was trained by
applying BRICS fragmentation [49] on the mol-
ecules in Papyrus to achieve the aforementioned
goal.

(2) A fine-tuned DrugEx model was created by con-
ducting transfer learning on the pre-trained model
with the chemical space related to MGLL. For this
purpose, we extracted 700 structures related to
MGLL from Papyrus 05.5 [26] using the MGLL
Uniprot ID Q99685 (Supporting information:
Q99685.tsv) and utilized them to fine-tune the pre-
trained model. These 700 ligands in the fine-tuning
set were also fragmented with the BRICS method
following the same protocol as the pre-trained
model (1). Out of the resulting data set of fragment-
molecule pairs, 10% were used for validation and
implementation of the early stopping strategy. The
training process ran for 200 epochs with a batch
size of 512 until no improvement in loss could be
observed after 50 epochs (compare Supplementary:
Fig. C10).

(3) In the final step, we used RL to steer our model
towards generating active and synthesizable mol-
ecules by repeatedly generating a set of molecules,
evaluating the generated molecules with our objec-
tives, and retraining the model based on the Pareto-
front of both active and synthesizable molecules.
Here, the general pre-trained model (1) was used
as the actively trained network (Gy) and the fine-
tuned model (2) as the fixed network (G,) in the
DrugEx RL exploration strategy [19]. To train the
model, the same set of training and validation frag-
ment-molecule pairs was used as in the fine-tuning
step (2). Given that we wanted to evaluate the effect
of different synthesizability scores, we trained mul-
tiple models that each combined a different synthe-
sizability score with our QSAR model (see Table 2).
Further, several values for the exploration param-
eter epsilon were explored that controlled the frac-
tion of data originating from the fixed fine-tuned
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ligand space model during training (compare Sup-
plementary: Fig. C11). For all objectives, modifier
settings were set according to values recommended
in the literature or based on a suitable classification
threshold to support smooth model training (com-
pare Supplementary: Table C7). For each trained
model, the training was set to continue for at most
500 epochs, with early stopping being triggered
once the overall desirability on the validation set
stopped improving. Based on the epsilon trade-off
data obtained (compare Supplementary: Fig. C11),
the final set of 100,000 compounds was generated
with models with an exploration parameter epsi-
lon of 0.2 as they offered the best trade-off between
objective optimization (desirability) and structural
diversity. All models built are made available in the
public domain as part of the provided data.

The QSAR model used for the MGLL [25] activity
objective was trained by using the QSPRPred library [50],
which directly interfaces with DrugEx to facilitate QSAR
model scoring. The same set of 700 MGLL ligands from
Papyrus, as described in the fine-tuning step (2), was used
to obtain bioactivity data for this model. For model eval-
uation and selection, we divided the ligands into train-
ing and test sets using both a scaffold split (80% training,
20% test) and a time split (pre-2018 training, since 2018
test), comparing the results obtained from different mod-
els under both evaluation strategies. Here, we opted for
a classification task instead of a regression task for the
QSAR modeling as, from our experience, classification
works better in DrugEx during RL optimization. The
labels to distinguish active and inactive molecules were
taken from the pChEMBL values in Papyrus, where mol-
ecules with at least 6.5 pChEMBL were treated as active.
For both scaffold- and time-splits, we applied hyperpa-
rameter optimization using grid-search with a 5-fold
cross-validation on the training data (compare Supple-
mentary: Table C8) to find the optimal hyperparameters

Table 2 Trained DrugEx models

Synthesizability Score Training Data Building Blocks

QSAR Only - -
SAScore - -
Led3Caspyrus10k Caspyrus10k In-house
Led3ChEMBL200k ChEMBL200k In-house
ZincCasyprus10k Casyprus10k General
ZincChEMBL200k ChEMBL200k General

Models are trained using a combination of the QSAR model alongside a
synthesizability score, relying in the case of CASP-based synthesizability scores
on a unique set of training data and building blocks
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and selected the best model algorithm based on the over-
all test-set performance across both evaluation strategies.
Out of the nine evaluated models via QSPRPred (Ran-
dom Forrest, Extra Tree Classifier, XGBoost, Multi-Layer
Perceptron, Gradient Boosting Classifier, AdaBoost,
k-nearest neighbors, Support Vector Classification, and
Gaussian Naive Bayes) [29, 51], we picked XGBoost for
our QSAR model as it performed consistently well across
both the scaffold and time split benchmarks (see Fig. 10)
and provided fast inference speeds required for our RL
training. Due to data scarcity, we retrained the selected
XGBoost classifier afterward with all known bioactiv-
ity data for our target. The optimal hyperparameters for
this final model were chosen from the prior scaffold-split
optimization workflow, as the resulting model showed
the best performance both during cross-validation and
on the external test set.

To investigate the effect of our synthesizability scores
on generated molecules, we used different synthe-
sizability scores as a second objective alongside the
QSAR model (see Table 2). In our baseline setting,
we only used the QSAR model without any synthesiz-
ability score (“QSAR Only”) or combined SAScore
[18] with the QSAR model (“SAScore”). We picked
SAScore as a heuristic synthesizability baseline as it is
a widely adopted measure to evaluate molecules (e.g.,
[23]) and differs substantially from our CASP-based
synthesizability scores as it measures the topological
complexity of a molecule instead of approximating the
ability to find a synthesis route using synthesis plan-
ning. As SAScore does not provide a probability for
synthetic complexity, we transformed the scores using
a smoothed-clipped score function (compare Supple-
mentary: Table C7). For our non-baseline setting, we
selected four different CASP-based synthesizability
scores alongside our QSAR model, where two meas-
ured the in-house synthesizability and the other two
measured general synthesizability. For our in-house
synthesizability scores, we used models trained on
the Caspyrus10k and ChEMBL200k datasets using in-
house building blocks. The rationale behind this selec-
tion was two-fold: First, we wanted to know how much
data is required to train a synthesizability score. Sec-
ond, a synthesizability score based on 10,000 molecules
is easily retrainable in case of available building blocks
or reaction changes, as the computational require-
ments of running synthesis planning differ substantially
between 10,000 and 200,000 molecules. For the general
synthesizability scores, we selected models based on
the same Caspyrus10k and ChEMBL200k datasets, as
this allowed a direct comparison on the same training
dataset between our sparse locally available in-house
building blocks and generally available building blocks.
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Model
Fig. 10 Performance of the QSAR model evaluated on known MGLL ligands. Performance is measured using 5-fold cross-validation on the training
data (“CV") and an independent test dataset (“Test”) while employing both scaffold- and time-splits

Noteworthy, the ChREMBL200k score mimics the RaS-
core [20], as it is trained with the same amount of data
and comparable building blocks.

To evaluate different combinations of the QSAR model
and synthesizability score, we generated 100,000 mole-
cules for each uniquely trained DrugEx model. We evalu-
ated the synthesizability of our generated molecules by
conducting synthesis planning using in-house and gen-
eral building blocks on the generated molecules with
the same settings as in the prior synthesis planning step.
Given that we can sample indefinitely from our trained
models, we sampled 100,000 molecules for each trained
model, assuming that a denser population of candidates
generated along the Pareto front should increase our
hit probabilities (e.g., [47]) and provide us with enough
examples to evaluate each score profusely.

Supplementary Information

The online version contains supplementary material available at https://doi.
0rg/10.1186/513321-024-00910-4.

[ Supplementary materials 1. }

Acknowledgements

Parts of this work were performed using the ALICE compute resources
provided by Leiden University. Large Language Models (LLMs) were used
throughout the creation of this manuscript to improve spelling mistakes,
grammar, and the overall reading flow. All LLM suggestions were profusely
checked for correctness and refined by the authors of this work. No research
was conducted throughout this work by the LLM.

Authors’ contributions

AKH: Conceptualization, Methodology, Software, Validation, Formal Analysis,
Investigation, Data Curation, Writing - Original Draft, Writing - Review & Edit-
ing, Visualization, Project administration. MS: Conceptualization, Methodology,
Software, Validation, Formal Analysis, Investigation, Data Curation, Writing

- Original Draft, Writing - Review & Editing, Visualization, Supervision, Project
administration. YJVA: Software, Formal Analysis, Investigation, Data Curation,

Page 14 of 16

Approach
X Scaffold Test
X Time Test
mmm Scaffold CV
Time CV

Visualization. MCWH: Formal Analysis, Investigation, Data Curation, Visualiza-
tion. DNRR: Formal Analysis, Investigation, Data Curation, Visualization. SL:
Conceptualization, Methodology, Writing - Review & Editing, Supervision.

AB: Conceptualization, Methodology, Validation, Writing - Review & Editing.
DAC: Validation, Resources, Writing - Review & Editing, Supervision, Funding
acquisition. APAJ: Conceptualization, Methodology, Validation, Formal Analysis,
Investigation, Resources, Data Curation, Writing - Original Draft, Writing -
Review & Editing, Visualization, Supervision, Project administration. GJPvW:
Conceptualization, Methodology, Validation, Resources, Writing - Review &
Editing, Supervision, Project administration. MP: Conceptualization, Methodol-
ogy, Validation, Resources, Writing - Review & Editing, Supervision, Project
administration, Funding acquisition.

Funding

AKH was partially funded by the European Union’s Horizon 2020 research

and innovation programme under the Marie Sktodowska-Curie Actions grant
agreement "Advanced machine learning for Innovative Drug Discovery (AIDD)"
No. 956832. MS was supported by Czech Science Foundation Grant No.
22-173670 and by the Ministry of Education, Youth and Sports of the Czech
Republic (project number LM2023052). SL was supported by funding from the
Dutch Research Council (NWO) in the framework of the Science PPP Fund for
the top sectors and acknowledges the Dutch Research Council (NWO ENPPS.
LIFT.019.010).

Availability of data and materials
All source code, models and relevant data of this work can be found at https://
github.com/AlanHassen/led3score.

Declarations

Competing interests
The authors declare no Conflict of interest.

Author details

'Leiden Institute of Advanced Computer Science, Leiden University, Leiden,
The Netherlands. 2Leiden Academic Centre of Drug Research, Leiden Uni-
versity, Leiden, The Netherlands. >CZ-OPENSCREEN: National Infrastructure
for Chemical Biology, Department of Informatics and Chemistry, Faculty

of Chemical Technolog, University of Chemistry and Technology Prague,
Prague, Czech Republic. “Leiden Institute of Chemistry, Leiden University,
Leiden, The Netherlands. °Machine Learning Research, Pfizer Research

and Development, Berlin, Germany.

Received: 28 February 2024 Accepted: 28 September 2024
Published online: 28 March 2025


https://doi.org/10.1186/s13321-024-00910-4
https://doi.org/10.1186/s13321-024-00910-4
https://github.com/AlanHassen/led3score
https://github.com/AlanHassen/led3score

Hassen et al. Journal of Cheminformatics

(2025) 17:41

References

1.

Vijayan RSK, Kihlberg J, Cross JB, Poongavanam V (2022) Enhancing
preclinical drug discovery with artificial intelligence. Drug Discov Today
27(4):967-984. https://doi.org/10.1016/j.drudis.2021.11.023

Moret M, Pachon Angona |, Cotos L, Yan S, Atz K, Brunner C, Baumgartner
M, Grisoni F, Schneider G (2023) Leveraging molecular structure and
bioactivity with chemical language models for de novo drug design. Nat
Communicat 14(1):114. https://doi.org/10.1038/541467-022-35692-6
Ballarotto M, Willems S, Stiller T, Nawa F, Marschner JA, Grisoni F, Merk D
(2023) De novo design of Nurr1 agonists via fragment-augmented gen-
erative deep learning in low-data regime. J Med Chem 66(12):8170-8177.
https://doi.org/10.1021/acsjmedchem.3c00485

Stanley M, Segler M (2023) Fake it until you make it? Generative de novo
design and virtual screening of synthesizable molecules. Curr Opin Struct
Bio 82:102658. https://doi.org/10.1016/j.5b1.2023.102658

Anstine DM, Isayev O (2023) Generative models as an emerging
paradigm in the chemical sciences. J Am Chem Soc 145(16):8736-8750.
https://doi.org/10.1021/jacs.2c13467

Nicolaou CA, Brown N (2013) Multi-objective optimization methods in
drug design. Drug Discov Today Technol 10(3):427-435. https://doi.org/
10.1016/j.ddtec.2013.02.001

Segler MHS, Preuss M, Waller MP (2018) Planning chemical syntheses
with deep neural networks and symbolic Al. Nature 555(7698):604-610.
https://doi.org/10.1038/nature25978

Corey EJ, XgM Cheng (1989) The logic of chemical synthesis. John Wiley &
Sons Ltd, New York

Schwaller P, Vaucher AC, Laplaza R, Bunne C, Krause A, Corminboeuf C,
Laino T (2022) Machine intelligence for chemical reaction space. WIREs
Computational Molecular Science 12(5):1604. https://doi.org/10.1002/
wcms.1604

Gao W, Coley CW (2020) The synthesizability of molecules proposed by
generative models. J Chem Informat Modeli 60(12):5714-5723. https://
doi.org/10.1021/acs.jcim.0c00174

. Genheden S, Thakkar A, Chadimova V, Reymond JL, Engkvist O, Bjerrum

E (2020) AiZynthFinder: A fast, robust and flexible open-source software
for retrosynthetic planning. J Cheminformat 12(1):70. https://doi.org/10.
1186/513321-020-00472-1

Chen B, Li C, Dai H, Song L (2020) Retro*: learning retrosynthetic planning
with neural guided a* search. In: Il HD, Singh A (eds) proceedings of

the 37th International conference on machine learning. proceedings of
machine learning research, vol. 119, pp 1608-1616. PMLR, Virtual

Yu'Y, WeiY, Kuang K, Huang Z, Yao H, Wu F, Koyejo S, Mohamed S, Agarwal
A, Belgrave D, Cho K, Oh A (2022) GRASP: navigating retrosynthetic plan-
ning with goal-driven policy. advances in neural information processing
systems, vol 35. Curran Associates Inc, New Orleans, Louisiana, USA, pp
10257-10268

Parrot M, Tajmouati H, da Silva VBR, Atwood BR, Fourcade R, Gaston-
Mathé Y, Do Huu N, Perron Q (2023) Integrating synthetic accessibility
with Al-based generative drug design. J Cheminformat 15(1):83. https://
doi.org/10.1186/513321-023-00742-8

Hassen AK, Torren-Peraire P, Genheden S, Verhoeven J, Preuss M, Tetko |
(2022) Mind the Retrosynthesis Gap: bridging the divide between single-
step and multi-step retrosynthesis prediction. In: NeurlPS 2022 Al for
science: progress and promises

Torren Peraire P, Hassen AK, Genheden S, Verhoeven J, DgA Clevert,
Preuss M, Tetko IV (2024) Models matter: the impact of single-step ret-
rosynthesis on synthesis planning. Digital Discov. https://doi.org/10.1039/
D3DD00252G

Urbina F, Lowden CT, Culberson JC, Ekins S (2022) MegaSyn: integrating
generative molecular design, automated analog designer, and synthetic
viability prediction. ACS Omega 7(22):18699-18713. https://doi.org/10.
1021/acsomega.2c01404

Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score
of drug-like molecules based on molecular complexity and frag-

ment contributions. J Cheminformat 1(1):8. https://doi.org/10.1186/
1758-2946-1-8

Liu X, Ye K, van Vlijmen HWT, lJzerman AP, van Westen GJP (2023) DrugEx
v3: scaffold-constrained drug design with graph transformer-based rein-
forcement learning. J Cheminformat 15(1):24. https://doi.org/10.1186/
$13321-023-00694-z

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33

34.

35.

36.

37.

Page 150f 16

Thakkar A, Chadimova V, Bjerrum EJ, Engkvist O, Reymond JL (2021)
Retrosynthetic accessibility score (RAscore)-rapid machine learned syn-
thesizability classification from Al driven retrosynthetic planning. Chem.
Sci. 12(9):3339-3349. https://doi.org/10.1039/D0SCO5401A

Yu J,Wang J, Zhao H, Gao J, Kang Y, Cao D, Wang Z, Hou T (2022) Organic
compound synthetic accessibility prediction based on the graph atten-
tion mechanism J Chem Informat Model 62(12):2973-2986. https://doi.
org/10.1021/acs.jcim.2c00038

CgH Liu, Korablyov M, Jastrzebski S, Wtodarczyk-Pruszyniski P, Bengio Y,
Segler M (2022) RetroGNN: fast estimation of synthesizability for virtual
screening and de novo design by learning from slow retrosynthesis
software. J Chem Informat Model 62(10):2293-2300. https://doi.org/10.
1021/acsjcim.1c01476

Brown N, Fiscato M, Segler MHS, Vaucher AC (2019) GuacaMol: bench-
marking models for de novo molecular design. J Chem Informat Model
59(3):1096-1108. https://doi.org/10.1021/acs.jcim.8b00839

Luukkonen S, Van Den Maagdenberg HW, Emmerich MTM, Van Westen
GJP (2023) Artificial intelligence in multi-objective drug design. Curr Opin
Struct Bio 79:102537. https://doi.org/10.1016/].5bi.2023.102537

The UniProt Consortium Q99685 | MGLL | Monoglyceride Lipase | Homo
Sapiens (Human) | UniProt (2023). https://www.uniprot.org/uniprotkb/
Q99685/entry Accessed 24 Oct 2023

Béquignon OJM, Bongers BJ, Jespers W, IJzerman AP, van der Water B,
van Westen GJP (2023) Papyrus: a large-scale curated dataset aimed at
bioactivity predictions. J Cheminformat 15(1):3. https://doi.org/10.1186/
$13321-022-00672-x

Butina D (1999) Unsupervised data base clustering based on daylight's
fingerprint and tanimoto similarity: a fast and automated way to cluster
small and large data sets. J Chem Informat Comput Sci 39(4):747-750.
https://doi.org/10.1021/ci9803381

Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magarifios
MP, Mosquera JF, Mutowo P, Nowotka M, Gordillo-Maranén M, Hunter F,
Junco L, Mugumbate G, Rodriguez-Lopez M, Atkinson F, Bosc N, Radoux
CJ, Segura-Cabrera A, Hersey A, Leach AR (2018) ChEMBL: towards direct
deposition of bioassay data. Nucleic Acids Res 47(D1):930-940. https://
doi.org/10.1093/nar/gky 1075

Chen T, Guestrin C (2016) XGBoost: A Scalable Tree Boosting System.

In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD 16, pp 785-794. Association
for Computing Machinery, San Francisco, California, USA. https://doi.org/
10.1145/2939672.2939785

Matthews BW (1975) Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Pro-
tein Struct 405(2):442-451. https://doi.org/10.1016/0005-2795(75)90109-9
Chicco D, Jurman G (2020) The advantages of the Matthews correla-
tion coefficient (MCC) over F1 score and accuracy in binary classifi-
cation evaluation. BMC Genomics 21(1):6. https://doi.org/10.1186/
$12864-019-6413-7

Mclnnes L, Healy J, Saul N, Gro3berger L (2018) UMAP: uniform manifold
approximation and projection. J Open Source Softw 3(29):861. https.//
doi.org/10.21105/j0s5.00861

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental

and computational approaches to estimate solubility and permeability
in drug discovery and development settingsq. Adv Drug Deliv Rev
23(1):3-25. https://doi.org/10.1016/50169-409X(96)00423-1
Papadopoulos K, Giblin KA, Janet JP, Patronov A, Engkvist O (2021) De
novo design with deep generative models based on 3D similarity scor-
ing. Bioorganic Med Chem 44:116308. https://doi.org/10.1016/j.bmc.
2021.116308

Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina
1.2.0: new docking methods, expanded force field, and python bindings.
J Chem Informat Model 61(8):3891-3898. https://doi.org/10.1021/acs.
jcim.1c00203

Corso G, Stark H, Jing B, Barzilay R, Jaakkola TS (2023) DiffDock: diffusion
steps, twists, and turns for molecular docking. in: the eleventh interna-
tional conference on learning representations

Saigiridharan L, Hassen AK, Lai H, Torren-Peraire P, Engkvist O, Genheden S
(2024) AiZynthFinder 4.0: developments based on learnings from 3 years
of industrial application. J Cheminformat 16(1):57. https://doi.org/10.
1186/513321-024-00860-x


https://doi.org/10.1016/j.drudis.2021.11.023
https://doi.org/10.1038/s41467-022-35692-6
https://doi.org/10.1021/acs.jmedchem.3c00485
https://doi.org/10.1016/j.sbi.2023.102658
https://doi.org/10.1021/jacs.2c13467
https://doi.org/10.1016/j.ddtec.2013.02.001
https://doi.org/10.1016/j.ddtec.2013.02.001
https://doi.org/10.1038/nature25978
https://doi.org/10.1002/wcms.1604
https://doi.org/10.1002/wcms.1604
https://doi.org/10.1021/acs.jcim.0c00174
https://doi.org/10.1021/acs.jcim.0c00174
https://doi.org/10.1186/s13321-020-00472-1
https://doi.org/10.1186/s13321-020-00472-1
https://doi.org/10.1186/s13321-023-00742-8
https://doi.org/10.1186/s13321-023-00742-8
https://doi.org/10.1039/D3DD00252G
https://doi.org/10.1039/D3DD00252G
https://doi.org/10.1021/acsomega.2c01404
https://doi.org/10.1021/acsomega.2c01404
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1186/s13321-023-00694-z
https://doi.org/10.1186/s13321-023-00694-z
https://doi.org/10.1039/D0SC05401A
https://doi.org/10.1021/acs.jcim.2c00038
https://doi.org/10.1021/acs.jcim.2c00038
https://doi.org/10.1021/acs.jcim.1c01476
https://doi.org/10.1021/acs.jcim.1c01476
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1016/j.sbi.2023.102537
https://www.uniprot.org/uniprotkb/Q99685/entry
https://www.uniprot.org/uniprotkb/Q99685/entry
https://doi.org/10.1186/s13321-022-00672-x
https://doi.org/10.1186/s13321-022-00672-x
https://doi.org/10.1021/ci9803381
https://doi.org/10.1093/nar/gky1075
https://doi.org/10.1093/nar/gky1075
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.1016/S0169-409X(96)00423-1
https://doi.org/10.1016/j.bmc.2021.116308
https://doi.org/10.1016/j.bmc.2021.116308
https://doi.org/10.1021/acs.jcim.1c00203
https://doi.org/10.1021/acs.jcim.1c00203
https://doi.org/10.1186/s13321-024-00860-x
https://doi.org/10.1186/s13321-024-00860-x

Hassen et al. Journal of Cheminformatics (2025) 17:41 Page 16 of 16

38. Segler MHS, Waller MP (2017) Neural-symbolic machine learning for
retrosynthesis and reaction prediction. Chem A Eur J 23(25):5966-5971.
https://doi.org/10.1002/chem.201605499

39. Lowe DM (2012) Extraction of chemical structures and reactions from the
literature. University of Cambridge, Thesis

40. Universiteit Leiden Leiden Early Drug Discovery & Development (2023).
https://www.universiteitleiden.nl/en/science/led3 Accessed 25 Oct 2023

41. Enamine Ltd. enamine building blocks catalog (2023). https://enamine.
net/building-blocks/building-blocks-catalog Accessed 15 May 2023

42. Molport SIA molport compound sourcing, selling and purchasing
platform (2023). https://www.molport.com/shop/index Accessed 15 May
2023

43. eMolecules, Inc. eMolecules chemical building blocks (2023). https://
www.emolecules.com/products/building-blocks Accessed 15 May 2023

44. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem
Informat Model 50(5):742-754. https://doi.org/10.1021/ci100050t

45, Corsello SM, Bittker JA, Liu Z, Gould J, McCarren P, Hirschman JE, Johnston
SE, Vicic A, Wong B, Khan M, Asiedu J, Narayan R, Mader CC, Subramanian
A, Golub TR (2017) The drug repurposing hub: a next-generation drug
library and information resource. Nat Med 23(4):405-408. https://doi.org/
10.1038/nm.4306

46. Falkner S, Klein A, Hutter F (2018) BOHB: Robust and Efficient Hyperpa-
rameter Optimization at Scale. In: Dy JG, Krause A (eds) Proceedings of
the 35th International Conference on Machine Learning. Proceedings of
Machine Learning Research, vol. 80, pp 1437-1446. PLMR, Stockholms-
massan, Stockholm, Sweden

47. Fromer JC, Coley CW (2023) Computer-aided multi-objective optimiza-
tion in small molecule discovery. Patterns https://doi.org/10.1016/j.patter.
2023.100678

48. Sicho M, Luukkonen S, van Den Maagdenberg HW, Schoenmaker L,
Béquignon OJM, Van Westen GJP (2023) DrugEx: deep learning models
and tools for exploration of drug-like chemical space. J Chem Informat
Model 63(12):3629-3636. https://doi.org/10.1021/acs.jcim.3c00434

49. Degen J, Wegscheid-Gerlach C, Zaliani A, Rarey M (2008) On the art of
compiling and using ‘drug-like’ chemical fragment spaces. ChemMed-
Chem 3(10):1503-1507. https://doi.org/10.1002/cmdc.200800178

50. van den Maagdenberg H, Sicho M, Schoenmaker L, Bequignon OJM,
Luukkonen S, Gorosiola Gonzélez M, Araripe D (2023) QSPRPred: a tool
for creating quantitative structure property relationship (QSPR) models.
https://github.com/CDDLeiden/QSPRPred Accessed 06 June 2023

51. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A,
Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn:
machine learning in python. J Mach Learn Res 12:2825-2830

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


https://doi.org/10.1002/chem.201605499
https://www.universiteitleiden.nl/en/science/led3
https://enamine.net/building-blocks/building-blocks-catalog
https://enamine.net/building-blocks/building-blocks-catalog
https://www.molport.com/shop/index
https://www.emolecules.com/products/building-blocks
https://www.emolecules.com/products/building-blocks
https://doi.org/10.1021/ci100050t
https://doi.org/10.1038/nm.4306
https://doi.org/10.1038/nm.4306
https://doi.org/10.1016/j.patter.2023.100678
https://doi.org/10.1016/j.patter.2023.100678
https://doi.org/10.1021/acs.jcim.3c00434
https://doi.org/10.1002/cmdc.200800178
https://github.com/CDDLeiden/QSPRPred

	Generate what you can make: achieving in-house synthesizability with readily available resources in de novo drug design
	Abstract 
	Introduction
	Results and discussion
	In-house synthesizability
	In-house synthesizability score
	In-house synthesizability of generated molecules
	Synthesizability score impact on generated molecules
	Experimental candidate and synthesis route evaluation
	Critical analysis of de novo generated candidates

	Conclusion
	Methods
	Synthesis planning
	Synthesizability scores
	De novo molecular generation

	Acknowledgements
	References


