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ABSTRACT: Kinase inhibitors are an important class of anticancer drugs,
with 80 inhibitors clinically approved and >100 in active clinical testing. Most
bind competitively in the ATP-binding site, leading to challenges with
selectivity for a specific kinase, resulting in risks for toxicity and general off-
target effects. Assessing the binding of an inhibitor for the entire kinome is
experimentally possible but expensive. A reliable and interpretable computa-
tional prediction of kinase selectivity would greatly benefit the inhibitor
discovery and optimization process. Here, we use machine learning on
docked poses to address this need. To this end, we aggregated all known inhibitor-kinase affinities and generated the complete
accompanying 3D interactome by docking all inhibitors to the respective high-quality X-ray structures. We then used this resource to
train a neural network as a kinase-specific scoring function, which achieved an overall performance (R2) of 0.63−0.74 on unseen
inhibitors across the kinome. The entire pipeline from molecule to 3D-based affinity prediction has been fully automated and
wrapped in a freely available package. This has a graphical user interface that is tightly integrated with PyMOL to allow immediate
adoption in the medicinal chemistry practice.

■ INTRODUCTION
Protein kinases are one of the main protein families targeted by
anticancer drugs, with 80 approved drugs and around 150 in
clinical testing.1 However, current FDA-approved kinase
inhibitors are designed to target only a few percent of the
entire protein family.2 The so-far untargeted kinases, thus, offer
great opportunities for the development of novel molecular
therapies.
The chances of success for any drug greatly depend on two

parameters: affinity of the drug for the intended target protein,
and selectivity over the rest of the protein family. Off-target
activity is often the main cause of (pre)clinical toxicity, and
side-effects in general.3 This issue is particularly pressing for
kinase inhibitors, as these in most cases target the ATP-binding
site of the protein, which is highly conserved across this large
protein family.4 This leads to many kinase inhibitors potently
binding to many family members, sometimes inhibiting as
much as 70% of all kinases.5 Determining the specificity of an
inhibitor over all ±500 kinases is experimentally feasible, but is
prohibitively expensive in terms of time, material and funds to
perform on a routine basis.
In recent years, various computational methods of predicting

kinase inhibitor selectivity have thus been developed.6−8

Approaches vary from “classical” protein structure-based
techniques such as molecular docking to machine learning
approaches such as Quantitative Structure Activity Relation-
ship (QSAR) studies. The revolution of artificial intelligence
(AI) has not gone unnoticed in this field, and e.g. AlphaFold9

will have a tremendous impact in the coming years, giving
direct access to structures for all proteins. Structure-based

methods typically rely on either classical physics-based scoring
functions to “score” a generated protein−ligand complex.
More recently, machine learning-based scoring functions such
as RFScore have reached state-of-the-art performance.10−12

These scoring functions were trained on experimental data sets
such as the PDBbind, offering a relatively broad set of protein-
inhibitor complexes and their bioactivity data.13 Some kinase
specific tools have also appeared in recent years. KinomeX, a
multitask classification DNN trained only on ligand molecular
fingerprints can be classified as one of the QSAR based
models.14 It was available online as a service but did not
provide the option of installing locally for proprietary data
applications. KinomeX has more or less been superseded by
KinomeMETA of the same research group.15 KinomeMETA
uses a GNN architecture on ligand structures to predict the
Boolean activity on >600 kinases. KinomeMETA is available as
an online service, but no local variant is provided. Neither of
these models has an obvious way to inspect the prediction
origin. Closer to what we envision is ProfKin, a structure-based
tool that compares docked poses to 4219 experimentally
determined kinase-ligand complexes.16 The interaction finger-
print and similarity scoring is used to provide expected kinase
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targets for a given ligand. This tool was also only available as a
server.
We set out to develop a fully automated docking-based tool

akin to ProfKin, but with the aim of predicting binding
affinities for kinases. As it is generally accepted that pose
finding for most docking algorithms is very good,17 we
envisioned that a large docking-based protein-inhibitor data set
for which biochemical data is known should also function as a
basis for training a scoring function. We demonstrated this

approach by generating protein-inhibitor complexes for all
kinase inhibitors in the Papyrus data set,18 a large aggregation
of literature binding data, for kinases of which a high-quality
experimental protein structure is available in the KLIFS
database, a kinase specific mirror of the PDB.19,20 We used two
docking algorithms: Autodock VinaGPU21 and DiffDock.22

This generated database is then used to train a multilayered
Neural Network as scoring function, that shows excellent
performance on bioactivity predictions for unseen inhibitors.

Figure 1. Kinase activity data set | A) Distribution of kinase inhibition values reported per kinase group; B) Distribution of the reported inhibitory
values; C) Number of pChEMBL values for unique kinases reported per kinase inhibitor, i.e., against how many kinases was a compound tested; D)
Number of reported inhibitors per kinase, i.e., how many compounds were tested for a kinase; E) Overview of the workflow of the work in this
paper.
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The automated workflow has been wrapped in an easily
installable Docker container23 with a convenient PyMOL
Graphical User Interface (GUI) plugin, allowing broad access
to the methodology.

■ RESULTS
Extracting Literature Biochemical and Structural

Data. To generate our desired docking-based training data
set, we first needed to select all kinases of which we have a
high-quality experimental structure. As a source of well curated
and annotated kinase protein structures available in the Protein
Data Bank we used the KLIFS database. These structures were
filtered based on their resolution (≤2.5 Å) and KLIFS quality
metric (≥8). We selected the best of each of the four possible
combinations of DFG-in/out and α-C helix in/out as
annotated in the KLIFS database. In total, this led to 345
protein structures for 226 unique kinases.
Next, we extracted all reported inhibitory activities for these

kinases in the Leiden Papyrus data set, a curated resource
combining data from resources such as ChEMBL, PubChem
and others. We chose to indiscriminately use pIC50, pKi and
pKd values, collectively from hereon: pChEMBL values. We
filtered the compounds to entail only the more drug-like small
molecules using quite lax criteria (MW ≤ 750, NumHBD ≤
10, NumHBA ≤ 15, Rotatable Bonds ≤15), which should have
reasonable chance to dock well and form a representative
training set for real world medicinal chemistry applications. An
overview of the resulting physicochemical properties and
chemical diversity is plotted in Figure S1.
This procedure led to a completed data set of in total

205,190 affinity values for 87,951 unique compounds against

226 unique kinases. A summative view of the workflow and
complete resulting data set is depicted in Figure 1 and Figure
S1.

Large Scale Molecular Docking Using Open Source
Software. We set up an automated docking pipeline to
generate a set of docking poses for all inhibitor-protein pairs in
the created data set (Figure 1E). To this end, inhibitors were
prepared for docking using an RDKit24 pipeline, which
enumerates potential stereo- and double bond isomers, and
generates a 3D conformer. For each protein structure, a
binding site was defined using PyVOL to guide the VinaGPU
docking algorithm.25 All prepared isomers were consecutively
docked in the known targets of these inhibitors using two
docking algorithms: Autodock VinaGPU and the diffusion-
based DiffDock algorithm (version of December 2022).
For all compound-protein structure pairs, a maximum of 5

poses were generated. The poses were filtered for excessive
atomic overlap based on a tailored clash-score (see Methods
and Figure S2) to get rid of unphysical poses generated, a
problem especially prevalent in DiffDock generated poses. For
the inhibitor-kinase pairs in our data set for which an
experimental pose has been determined (only ±0.2% of the
205,000), the root mean squared deviation (RMSD) was
calculated for both docking algorithms. Median ± absolute
deviation for DiffDock and VinaGPU were 1.296 ± 0.587 Å
and 5.659 ± 4.177 Å, respectively.
The results of this large-scale docking project were

aggregated and have been made available in an SQLite
database that holds all activities, compounds, isomers, protein
information, kinase structure information and all poses for
both docking tools. A simplified schema of this database with

Figure 2. Correlation of Vina and RFScoreVS scoring functions with Papyrus pChEMBL data | Predicted affinity values vs literature values
displayed as logarithmic hexbin plots, as based on the -Vina score for all VinaGPU poses (A), RFScoreVS for all VinaGPU poses (B), RFScoreVS
for all DiffDock poses (C), R2 calculated per kinase and aggregated per kinase group for Vina scores (D), RFScoreVS for VinaGPU poses (E) and
RFScoreVS for DiffDock poses (F).
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statistics per table is depicted in Figure S3A. The database
includes all.mol-formatted poses in a compressed format, as
well as the.pdb files for all KLIFS structures used. The database
was designed to be readily usable for machine learning
applications. Additionally, a KNIME-based user interface has
been built to browse and query the generated docking
complexes (Figure S3B). The full database and accompanying
application are freely available on Zenodo and GitHub (vide
inf ra).

Baseline Performance of Readily Available Docking
Scores. The performance of two readily available docking
scores was assessed to establish a baseline for bioactivity
prediction. To this end, we assessed the predicted binding
affinity by the Vina score, and used RFScoreVS26 to rescore all
poses generated by VinaGPU and DiffDock. The results are
aggregated in Figure 2. Unsurprisingly, neither of the scoring
algorithms showed any productive correlation with the Papyrus
pChEMBL values, either when looking at the entire data set
(Figure 2A-C) or when aggregating the per-kinase correlation
coefficient (R2) over the kinase groups (Figure 2D-F).

Kinome-wide Activity Predictions Learned from
Docked Poses. We then set out to train a more performant
kinase specific scoring function on this unprecedently large
structural data set. First, the database was used to generate
protein−ligand extended connectivity (PLEC)27 fingerprints
for the first three poses of every protein structure-inhibitor
pair. All PLEC fingerprints were used as input for one single 3-
layer Deep Neural Network tasked with predicting the affinity
value based on a given fingerprint. This was done separately for
the two docking algorithms, to compare their relative
performance in this task. The generated models, which

function as kinase-specific scoring functions, were trained on
either a random 80:20 split of protein-inhibitor activity pairs,
an 80:20 compound-based split (completely unseen com-
pounds) or an 80:20 split based on kinases (completely unseen
kinases as test set). These latter splits are intended to assess the
generalization capabilities of the models toward newly
designed inhibitors or unseen kinase targets, respectively. As
a nondocking 2D comparison, in parallel we trained the same
DNN on only the ECFP4 fingerprints of the inhibitors, to
assess the added value of using docked poses as input. In this
case we trained one model per kinase for all kinases that had at
least 100 unique inhibitors known (172 out of 226 kinases in
the data set). The performance results of these models are
shown in Figure 3, Figure S4 and Figure S5 and specified per
kinase in Supplementary Tables 1−3 (Supporting Informa-
tion).
Regardless of the underlying docking algorithm, the

performance of the DNNs trained on the compound splits
(R2 = 0.63−0.74) vastly outperformed both the original Vina
scoring (R2 = 0.04) as well as the rescoring using RFScoreVS
(R2 = 0.05−0.06). For the DiffDock model, for 86 out of 214
kinases (40%) the R2 of the compound split was higher than
0.6, yielding predictions of sufficient quality to be genuinely
informative in drug discovery projects. This value is
comparable to the ECFP models, where 84 out of the 172
were ≥0.6. Of note, the ECFP models were only trained for
kinases with ≥100 compounds, which leads to fewer kinases
covered overall. The DiffDock model can extrapolate to some
extend to the lower coverage kinases that are lacking in de
ECFP models, with an R2 ≥ 0.6 for 18% of these (8 out of 42).
The VinaGPU model shows somewhat lower overall perform-

Figure 3. Model performance | Predicted affinity values vs literature values for the compounds-split test set displayed as logarithmic hexbin plots,
as based on predictions for ECFP models (A), the DNN trained on DiffDock poses (B) and on the VinaGPU poses (C). Panels D, E and F show
the average performance per kinase group for ECFP, DiffDock and VinaGPU models, respectively.
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ance, with 65 out of all 220 models having an R2 ≥ 0.6, and 5
of the low-coverage kinases. This corresponds to the overall

higher RMSD as observed in the docking procedure, pointing
to the lower quality of the underlying training data.

Figure 4. A user-friendly application: KinaseDocker2 | (A) Schematic overview of the software setup; (B) screenshots of the Graphical User
Interface of KinaseDocker2 showing the initial configuration and kinase selection screens, as well as the result after running the program. The
prediction results are shown in a table on screen, with the affinity value (avg_score) and details of the docking run. Docked complexes can be
loaded in 3D for further assessment.
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Comparing the DiffDock and VinaGPU-based models shows
some intriguing results. There is only a low correlation
between the performances per kinase (Figure S6−7). This can
partially be attributed to the smaller number of successful
docking poses DiffDock generated but could also be due to the
intrinsic differences between the pose finding tools.
The different splits clearly showed that the random splits

performed best overall, although only slightly outcompeting
the compound split. This is to be expected as for 78% of the
compounds there is only 1 activity in the data set, meaning that
the random and compound splits have highly similar
difficulties in practice. However, for unseen kinases the
performance drops significantly (Figure S5). This seems to
indicate that the model strongly relies on the kinase structure
underlying the complexes and suggests that when appending
new kinases or KLIFS structures to the data set, retraining of
the model is warranted.

KinaseDocker2 Release for Direct Local Application.
Encouraged by the strong performance across the kinome we
decided to wrap our workflow and models in a user-friendly
application that allows predictions to be generated by a
medicinal chemist in real-world applications. Because the
model inherently generates docking poses on which the affinity
prediction is based, interpretation of the reliability of the
output can be done on a per-compound and per-kinase basis.
With this interpretability end point in mind, we chose the
open-source molecular viewer PyMOL as the basis for the
program. Schematically shown in Figure 4A, we built a
PyMOL plugin that launches a pipeline to handle the
predictions. The docking and consecutive bioactivity pre-
diction by the neural network is handled by a Docker image
that requires minimal installation by the user.
The user interface is shown in screenshots in Figure 4B,

where the plugin allows the input of a (list of) SMILES strings,
the selection of a (list of) kinases and the choice of docking
engine. After the prediction is run, the output data is written to
files as well as presented in a Results table on screen, showing
the generated complexes with their predicted pIC50 (avg_score
in the screenshot). Generated complexes can be loaded and
inspected in the PyMOL session. Programmatic access is
available if larger scale runs are desired. The whole codebase
has been designed to be modular, allowing the future
implementation of different model architectures or structure
encodings. All code and Docker images are openly available,
see section Code Availability.

■ DISCUSSION
The homogeneity of the sources of biochemical data in the
Papyrus data set (and nearly every other publicly available data
set) inherently means that there is considerable noise in the
data. Realistically, R2 values of around 0.8 are as high as can be
achieved when taking experimental error into account.28 This
means that the DiffDock model for 42 kinases (±20%) already
reached this maximum. For these, no significant improvement
on this metric can be expected regardless of the methodo-
logical improvements or addition of further data. Adding more
(diverse) compounds would for these kinases merely expand
the chemical space where the model is applicable. For the
kinases with lower performing predictions, the addition of
more data and/or more structures could still increase
performance.
Training (machine learning-based) scoring functions on

structural data has been a successful strategy for years, enabled

by data sets such as the PDBbind, as demonstrated by, for
example, the RFScore series.12,26,29−31 Utilizing the accuracy of
pose finding in docking algorithms to synthesize an orders of
magnitude larger training data set has, to the best of our
knowledge, not been attempted before. Here we clearly
showed that the approach in the basis works and outperforms
current state-of-the-art in this kinase-specific use-case. There
are many possibilities for future improvement over the current
machine learning implementation. The docking performance
of our VinaGPU workflow was not very high, with an average
RMSD > 5 Å. More manual curation of the data set could
reduce the amount of flawed docking poses, arguably positively
impacting the quality of the training data.
From a machine learning perspective, the current choice of

encoding the poses (3D) using PLEC fingerprints (1D) and
utilizing a basic DNN architecture is inherently lossy.
Implementing geometric deep learning models directly on
the 3D data could positively impact performance if it can make
better use of the available information. Additionally, the
attention mechanism of the Transformer architecture could be
used to highlight important regions in the complex for the
generated prediction, yielding better interpretability and
guidance for compound optimization.
There are more domain-focused improvements that could

improve the performance too. The current implementation
uses every KLIFS structure available for a certain kinase when
docking a compound, regardless of inhibitor type (type I, II,
III).32,33 Previous work has shown that ML models can
differentiate Type I and II inhibitors based on structure to a
reasonable extend.34 By only considering the poses of a
molecule in their preferred activity state (DFG-in or -out),
when available, the predictions should theoretically be
improved. Another limitation is the domain of covalent kinase
inhibitors. Though reliable poses can be obtained with known
covalent drugs, noncovalent docking poses can never capture
the influence of covalent bond formation.
To broaden the scope of kinases for which predictions can

be made, structural data on the proteins is currently the main
bottleneck. Of the 636 kinases, 226 (±35%) have crystal
structures that meet our criteria. Of these, only about 26%
(59) have both DFG-in and -out(-like) structures available. A
strategy to enrich this data set could be through homology
modeling. Considering the high sequence and structural
similarity in the kinase domains, for many if not most kinases
a reliable homology model in both DFG-states should be
feasible to obtain. Adding these to the data set would not only
considerably extend the applicability of the model to the entire
kinome, it would also grow the size of the available
biochemical training data with >100,000 data points for
which currently no high quality experimental structure is
available.

■ CONCLUSIONS
Kinase inhibitors are an essential part of anticancer therapy.
Developing new kinase inhibitors suitable for clinical use
requires these to be as specific as possible, targeting primarily
the intended kinase. Due to the high homology in kinase
domains, this is not a trivial requirement. Computational tools
to aid in the development of these inhibitors by predicting
inhibition across the kinome can be of great value. Current
state-of-the-art struggles to perform well across the protein
family, in part due to the lack of suitable data. Here, we
generate a large data set of predicted binding poses, each
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corresponding to an experimental binding affinity in the
Papyrus data set, where a high-quality kinase domain structure
of the target is available in the KLIFS database. We showed
that this data set forms a strong basis on which to train
machine learning models that can predict binding affinities of
compounds for a wide variety of targets. We trained a Deep
Neural Network on a 1D protein−ligand interaction finger-
print representation (PLEC) and showed that this vastly
outperforms readily available (re)scoring functions like Vina
score and RFscoreVS. Encouraged by these results, we
developed a user-friendly interface to bring the automated
docking procedure and scoring function as a freely available
tool called KinaseDocker2 to the bench chemist. Simulta-
neously, we ensured the modularity of the code, so that
exchanging the protein−ligand complex encoding or the
predictive model for more advanced approaches is feasible.
Finally, we setup an interface for the database of docking poses
to expose the data encapsulated in this to the general
(bio)chemist.
We expect that the scoring functions trained here are useful

as is, but also that, together with the data set generated here,
they form a starting point to further tackle the kinase selectivity
question, enabling the reliable prediction of affinities across the
kinome to aid in bringing new and safe anticancer drugs to
patients.

■ METHODS
Biochemical Data. Data was retrieved from Papyrus

v5.5,18 filtering on the Uniprot Protein Class “Kinase” and
data quality “High”. The data was matched to the KLIFS20

data set based on Uniprot35 accessions. Mutations were
disregarded and averages for unique compound − Uniprot
pairs were used as activity value (pChEMBL). Included
bioactivities were filtered based on the drug-likeness of the
measured compounds. Filters used were MW between 250 and
750 Da, rotatable bonds ≤15, number of hydrogen bond
donors ≤10 and number of hydrogen bond acceptors ≤15,
calculated using RDKit.24

Structural Data. Kinase structures and annotations were
retrieved from KLIFS in October 2022. The structures were
filtered on resolution (≤2.5 Å) and missing residues (≤5) after
which the highest quality (KLIFS metric) structure was
selected based on DFG-in/out and αC-helix states as
annotated in KLIFS, if available. The.mol2 files were
downloaded and converted to PDB files using OpenBabel.36

PDB structures thus generated were used as is for DiffDock or
further converted to.pdbqt format using the Open Drug
Discovery Toolkit37 for use with Autodock VinaGPU.

Docking Benchmark Set. Ligands from the KLIFS
database were extracted and used as a benchmark data set
for the two docking algorithms used. RMSD was determined
using the CalcLigRMSD extension for RDkit.38

Pocket Definition. Pockets for Autodock Vina docking
were automatically generated using PyVOL25 using default
settings with manual curation to encompass the entire ATP-
binding pocket. The largest pocket detected in most cases
represented the ATP-binding site, to which a 5 Å padding was
added for the docking box. DiffDock was executed without
restraints on binding site location (i.e., blind docking).

Ligand Preparation. SMILES strings from the Papyrus
data set were transformed into 2D structures using default
settings and enantiomers and cis/trans isomers were
enumerated using RDKit.24 These RDKit objects were

converted to.pdbqt format for VinaGPU docking using the
Open Drug Discovery Toolkit.37 The RDKit objects were
written to.csv files in canonical SMILES format with stereo
information to use as DiffDock input.

Docking. Two docking procedures were employed:
DiffDock22 and AutoDock VinaGPU,21,39 both installed
through Docker.23 Generated VinaGPU poses were converted
to mol-format using RDKit.

AutoDock VinaGPU. A Docker image of AutoDock
VinaGPU21,40 was used, running on commercial RTX4070 or
RTX3070 GPUs. For each protein, the corresponding KLIFS
structures with predefined binding site boxes were iterated and
all compounds with known activities docked. The AutoDock
VinaGPU implementation differs slightly from the well
characterized CPU version in its docking settings, where the
exhaustiveness parameter is now replaced by search_depth and
thread. A small parameter optimization was performed to
benchmark the performance of VinaGPU on this data set,
resulting in the final settings search_depth = 10, threads = 8192
which resulted in balanced performance vs run time (data not
shown). Output.pdbqt formatted poses were converted to.mol
format using OpenBabel and aggregated in a tabular format for
inclusion in the database.

DiffDock. The original DiffDock Github release of October
2021 was used. Compounds were provided in canonical
SMILES format with explicit stereochemistry. ESM embed-
dings were generated using the provided scripts and default
settings:

For inference, the release inference.py script was used with
minor changes relating to the output data structure. The
author recommended settings for high throughput inference
were used:

Output.sdf formatted poses were expanded to.mol format
and aggregated in a tabular format for inclusion in the
database.

Clash-Score Filtering. The filter criterion (clash <10) was
based on the Vina output, where after fitting a normal
distribution on the clash scores a 3σ upper limit was calculated
to be 10.02, which was visually inspected to be sensible and
used for both docking algorithms. The clash-score was
calculated per atom using the formula:
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where d is the Euclidian distance between the atoms, and r1
and r2 are the van der Waals radii of the respective atom
types.41 This per-atom contribution was calculated based on
selections made using the PyMOL API. In brief, KLIFS.pdb
and docking pose.mol-files were loaded in PyMOL. A selection
around 4 Å of the ligand was made, and for all resulting atoms
pairs the clashing contribution was determined. All contribu-
tions were summed to yield the pose clash-score.

Machine Learning. All machine learning algorithms were
implemented in PyTorch 2.0. Splits were curated to ensure
that the test set pChEMBL distribution is similar to the train
set distribution. All DNNs were 3-layer fully connected NNs
with the input layer either 2048 bits (ECFP) or 65536 bits
(PLEC) to 4000, the hidden layer 4000 inputs to 1000 outputs
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and the output layer using the 1000 inputs to 1 output value.
All layers use ReLU activation functions and the input and
hidden layers use a dropout rate of 25% during training. The
learning rate is fixed at 10−5, batch size 128 with 100 epochs as
fixed termination. After every epoch the performance on the
test set is evaluated and the best model is stored. Typically,
50−70 epochs are required to reach a plateau.

Prediction Aggregation. For any given kinase-compound
combination, the top 3 poses for all available KLIFS structures
were scored by the DNN. To get to a final activity prediction,
we tested several aggregation strategies. Taking the mean value
of all options (aggregating the various KLIFS, all available
stereoisomers, and the top 3 poses) yielded consistently the
highest R2 (Figure S8). As expected, using only the top 1 pose
(according to Vina or DiffDock ranking) performed slightly
better than taking only the second or third ranked pose,
showing that on average the built-in scoring mechanism of
both algorithms is able to prioritize the most relevant poses.
However, averaging either the top 2 or top 3 poses consistently
improved the performance.

■ ASSOCIATED CONTENT
Data Availability Statement
The 3D structure database generated as part of this work is
available as an .sqlite database on Zenodo (10.5281/
zenodo.10894122), together with the KNIME workflow that
provides a simple user interface to search it. Code to reproduce
the work described in this paper is available on GitHub
(https://github.com/APAJanssen/KinaseDocker2-Paper-
code). The PyMOL plugin is available on its own GitHub
(https://github.com/APAJanssen/KinaseDocker2), which
contains instructions on how to set up the Docker environ-
ment. The Docker image is available on Docker Hub (https://
hub . do ck e r . c om/ r epo s i t o r y /docke r / ap a j an s s en/
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