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CHAPTER 3
Evolution of discordant edges in the

voter model on random sparse
digraphs

This chapter is based on the following paper:

Federico Capannoli. Evolution of discordant edges in the voter model on random
sparse digraphs. Electronic Journal of Probability, 30:Paper No. 6, 24, 2025

Abstract

We explore the voter model dynamics on a directed random graph model ensemble (di-
graphs), given by the Directed Configuration Model. The voter model captures the evolution
of opinions over time on a graph where each vertex represents an individual holding a binary
opinion. Our primary interest lies in the density of discordant edges, defined as the fraction
of edges connecting vertices with different opinions, and its asymptotic behavior as the graph
size grows to infinity. This analysis provides valuable insights, not only into the consensus
time behavior but also into how the process approaches this absorption time on shorter time
scales. Our analysis is based on the study of certain annealed random walk processes evolving
on out-directed, marked Galton-Watson trees, which describe the locally tree-like nature of the
considered random graph model. Additionally, we employ innovative coupling techniques that
exploit the classical stochastic dual process of coalescing random walks. We extend existing
results on random regular graphs to the more general setting of heterogeneous and directed
configurations, highlighting the role of graph topology in the opinion dynamics.
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§3.1 Introduction

In recent times, new tools have been developed that make it possible to analyze
interacting particle systems (IPSs) evolving on large finite graphs, enriching the pre-
existing infinite volume literature, see [Lig85], developed since the late 70s. In this
finite volume setting, the voter model is one of the most studied IPSs, mainly due to
its stochastic dual process that translates its analysis into questions about coalescing
random walks. The classical two-opinions voter model was introduced in [CS73],
then it was further studied in [HL75] on the lattice and in [Cox89] on the torus, and
it represents one of the simplest opinion dynamics evolution that can be modeled via
a Markov process. As many other IPSs, the voter model can be seen as a simplified
model to understand some behaviours of social or real life networks. Therefore, it
became natural to generalise it on random graphs. The voter model and coalescing
random walks on finite graphs, mainly studied via the consensus and coalescence times,
were recently investigated on random graphs, see e.g. [CFR10], [FO23], [HLYZ22],
[ACHQ24] and [BK24]. We are interested in a directed random graph model, called
directed configuration model (DCM). The DCM is a random graph model in which
every vertex have a prescribed in- and out-degree and the randomness is specified by
the edge set. It resembles the directed version of the configuration model introduced
in [Bol80], while the DCM was first studied in [CF04]. Recently there has been an
increasing interest in studying the topological properties of this directed ensemble (see
e.g. [HOC18], [CP21], [HP24]) as well as the evolution of stochastic processes over
such random geometry (see e.g. [BCS18], [CQ20], [CQ21a], [CCPQ23], [QS23].

We can informally describe the voter dynamics as follows. On a given locally
finite graph each vertex, individual, has an initial mark, opinion, usually denoted by 0
or 1. After waiting a random amount of time given by a collection of rate-one Poisson
clocks, an individual changes its opinion by adopting the one of a randomly chosen
neighbour. Naturally in this setting, the main object of interest is the distribution of
the so-called consensus time, i.e., the first time at which all the vertices share the same
opinion. Voter model on DCM was first studied by [ACHQ24] for a general class of
in- and out-degree sequences. The authors showed the precise first-order asymptotic
of the consensus time after a proper scaling. In particular the expected consensus time
scales linearly in the size of the graph, with an explicit pre-constant that depends on
the heterogeneity of the degrees.

In this chapter we conduct a more detailed study on the voter model on DCM,
which would simultaneously provide all the information about the consensus time and
the process by which it was reached. In particular, we examine the evolution of the
density of discordant edges, that is, the ratio of edges that have different opinion. It is
an interesting object to study as it resembles a richer observable w.r.t. the consensus
time, and describes exactly the perimeter of the set of vertices with one of the two
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opinions. A crucial work in the rigours literature that depicts a complete analysis of
the discordant edges behaviour is [ABH+24] on the regular random graphs. There, the
authors show that the expected fraction of discordant edges has a interesting interplay
with the geometry of the graph. In particular, the choice of the time scale with
respect to the size of the network will show drastically different behaviours of the
process. Such work although was restricted to the, symmetric (undirected) and degree
homogeneous, regular case.

Our contribution
Adapting the basic approach of [ACHQ24] in our setting, we show that it is possible
to get the explicit behaviour of the expected fraction of discordant edges on the sparse
DCM. More precisely, we are able to prove that a similar behaviour as seen in the
random regular case is preserved, i.e. the process first drops to a constant plateau,
then it stabilizes in this metastable state for a long time and then finally, when the time
scale is of the same order of the consensus time, it approaches zero. On the other hand
some interesting outcomes arose from our analysis. Unlike the random regular case,
we observe a different behaviour regarding the explicit function leading the first-order
asymptotic for short and moderate time scales. This is due to the directed nature and
the inhomogeneity of the underlying geometry. The new explicit pre-constant turns
out to be an uniformly bounded function of the degree sequence that depends only on
the average degree and a spectral quantity that governs the homogeneity of the in- and
out-degrees. Moreover, it is worth to point out that this work gives a contribution to
the literature of IPSs on random directed graphs, that is still far from being completely
understood. As a consequence of duality, we will see that the proof depends on
studying properties of random walks on random environment. We look at joint law
of the process and the graph dynamics together. Such analysis was possible thanks to
innovative annealing techniques used in [BCS18], [CCPQ23] and [ACHQ24, Section
6.1].

Outline
In Section 3.2 we define formally the voter model together with the directed config-
uration model random graph, and eventually we state our main result. In Section
3.3 we will introduce the consensus time for the voter model and how it relates to
the discordant edges, together with a crucial tool for our analysis, given by the dual
system of coalescing random walks. Then we briefly describe the directed random
environment of interest, showing that its local geometry can be well-approximated by
a Galton-Watson tree. Finally, we define the observable related to the random walks
evolving on the DCM and its relation to the so-called annealed random walk. In
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Section 3.4 we give a complete proof of the main result. First we prove the result for
short time scales, and afterwords we extend it to any time scales.

§3.2 Models and results

In this section we formally introduce the two model of interest for this chapter: the
voter model on directed graphs and the directed configuration model. After that we
state our main result, describing the asymptotic behaviour of the expected fraction of
discordant edges on a typical realisation of the random environment.

§3.2.1 Voter model
Given a directed, strongly connected graph 𝐺 = (𝑉, 𝐸), we define the voter model
on 𝐺 as the continuous-time Markov process (𝜂𝑡 )𝑡≥0 with state space {0, 1}𝑉 and
infinitesimal generator L𝑣𝑚 as

(L𝑣𝑚 𝑓 ) (𝜂) =
∑︁
𝑥∈𝑉

∑︁
𝑦∈𝑉 :

(𝑥,𝑦) ∈𝐸

1
𝑑+𝑥

(
𝑓 (𝜂𝑥→𝑦) − 𝑓 (𝜂)

)
, 𝑓 : {0, 1}𝑉 → R ,

where (𝑥, 𝑦) ∈ 𝐸 denotes a directed edge exiting 𝑥 and entering 𝑦, 𝑑+𝑥 = |{𝑧 ∈ 𝑉 |
(𝑥, 𝑧) ∈ 𝐸}| is the out-degree of 𝑥 and

𝜂𝑥→𝑦 (𝑧) =
{
𝜂(𝑦), if 𝑧 = 𝑥 ,
𝜂(𝑥), otherwise .

For any 𝑢 ∈ [0, 1], let P𝑢 be the law of the voter model (𝜂𝑡 )𝑡≥0 with initial distribution
𝜂0 = Bern(𝑢)⊗𝑉 , and E𝑢 its expectation. Sometimes we may adopt the equivalent
notation 𝑥 → 𝑦 in place of (𝑥, 𝑦) to emphasise the fact that the edge is directed from 𝑥

to 𝑦. For any 𝑥 ∈ 𝑉 and 𝑡 ∈ R+, 𝜂𝑡 (𝑥) represents the state of node 𝑥 at time 𝑡 in terms of
the binary state {0, 1}, to be interpreted as the opinion of the individual 𝑥 at time 𝑡. In
other words, the process captures the evolution of the opinion dynamics starting from
the initial configuration of opinions given by 𝜂0 = {𝜂0(𝑥) | 𝑥 ∈ 𝑉}. The Markovian
evolution defined by the generator L can be described as follows. Give to each directed
edge (𝑥, 𝑦) an exponential clock of rate 1/𝑑+𝑥 . When the clock associated to an edge
𝑥 → 𝑦 rings, vertex 𝑥 adopts the opinion of vertex 𝑦. Similarly to other interacting
particle systems, such description gives rise to the so-called graphical representation
for the voter model. We refer to [Lig85] and [Lig99] for all the details concerning the
matter. Notice that such Markov process has two absorbing states, corresponding to
the monochromatic configurations 0̄ and 1̄ consisting of all 0’s and 1’s, respectively.
If we assume 𝐺 to be finite, then it can be shown that almost surely the process will

102



§3.2. Models and results

C
hapter

3

reach one of the two absorbing states in finite time. This setting naturally leads to the
question of determining the time such that the system reaches the absorbing states,
called consensus time, and defined as

𝜏cons = inf{𝑡 ≥ 0 : 𝜂𝑡 ∈ {0̄, 1̄}} . (3.1)

In the literature this hitting time was deeply studied in a wide variety of underlying
random and non-random, finite and infinite volume geometries. Knowing the be-
haviour of the consensus time is generally a difficult task that strongly depends on
the graph structure. Additionally, it is not very informative regarding the evolution
of the process, as it lacks information about how the opinion dynamics led to such
a consensus. It is possible to perform a different, more detailed study on the voter
model from which, at the same time, we can derive all the information regarding the
consensus time and how did the process reach it. In the present chapter we analyse the
evolution of the density of discordant edges. More precisely, let us denote the set of
discordant edges at time 𝑡 as

𝐷𝑡 = 𝐷
(𝑛)
𝑡 = {𝑒 = (𝑥, 𝑦) ∈ 𝐸 : 𝜂𝑡 (𝑥) ≠ 𝜂𝑡 (𝑦)} .

Therefore, we set the density of discordant edges at time 𝑡 to be

D𝑡 = D (𝑛)
𝑡 =

|𝐷𝑡 |
|𝐸 | . (3.2)

The aim of this chapter is to study the asymptotic evolution of the latter quantity,
as the size of the underlying graph grows to infinity. The evolution of (the fraction
of) discordant edges has a proper interest as it exactly captures the way in which the
two opinion compete before reaching consensus. Furthermore, as shown in [CCC16],
there is an interesting interplay between the Fisher-Wright diffusion, seen as scaling
limit of the fraction of, say, blue opinions, and the scaling limit of the fraction of
discordant edges (3.2).

§3.2.2 Directed configuration model
For any 𝑛 ∈ N, let [𝑛] := {1, . . . , 𝑛} be a set of 𝑛 labeled nodes. For any vertex
𝑥 ∈ [𝑛], let 𝑑+𝑥 (resp. 𝑑−𝑥 ) be its out-degree (resp. in-degree), that is the number of
vertices that are connected to 𝑥 via a directed edge that is exiting (resp. entering) 𝑥.
Define d𝑛 = ((𝑑−1 , 𝑑

+
1 ), . . . , (𝑑

−
𝑛 , 𝑑

+
𝑛 )) to be a deterministic bi-degree sequence with

the following constraint

𝑚 = 𝑚𝑛 :=
∑︁
𝑥∈[𝑛]

𝑑−𝑥 =
∑︁
𝑥∈[𝑛]

𝑑+𝑥 . (3.3)
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The randomness of the model comes from the mechanism in which the edges are
formed. This is a result of the following uniform pairing procedure. Assign to each
vertex 𝑥 ∈ [𝑛], 𝑑+𝑥 labeled heads and 𝑑−𝑥 labeled tails, denoting the in- and out-stubs
of 𝑥 respectively. At each step, select a tail 𝑒 that was not matched in a previous step,
and a uniform at random head 𝑓 among the unmatched ones, then match them and
add the directed edge 𝑒 𝑓 between the vertex incident to 𝑒 and the one incident to 𝑓

to the edge set 𝐸 . Continue until there are no more unmatched heads and tails. Note
that the constraint in (3.3) ensures that such uniform matching ends without any stub
left unmatched. This random procedure gives rise to a so-called configuration, and it
uniquely determines the corresponding random, directed graph 𝐺 = 𝐺𝑛 = ( [𝑛], 𝐸).
We say that a graph 𝐺𝑛 is sampled from the Directed Configuration Model DCM =

DCM(d𝑛) with a given degree sequence d𝑛, if it is sampled according to the procedure
above. We denote by P the law of 𝐺. We will be interested in studying the asymptotic
regime in which 𝑛 → ∞, and we will say that 𝐺 has a certain property 𝐸𝑛 with high
probability (w.h.p.), if

P(𝐸𝑛) → 1 , as 𝑛→ ∞ .

Let 𝑑±max = max𝑥∈[𝑛] 𝑑±𝑥 and 𝑑±min = min𝑥∈[𝑛] 𝑑±𝑥 . We will consider the following
assumptions over d𝑛:

Assumption 3.A. There exist some constants 𝐶,𝐶′ ≥ 2 such that for any 𝑛 ∈ N

(1) 𝑑±min ≥ 2 ,
(2) 𝑑+max ≤ 𝐶 ,
(3) 𝑑−max ≤ 𝐶′ .

■

Under the assumption (1) it holds that the resulting graph realisation will be
strongly connected with high probability ([CF04]), while assumptions (2) and (3)
guarantee that the graph is sparse, in the sense that the number of edges grows at most
linearly in the size of the graph, i.e. 𝑚 = O(𝑛).

§3.2.3 Main result
Before stating the main result, we introduce some relevant functions of the degree
sequence of the DCM. Let

𝛿 = 𝛿𝑛 :=
𝑚

𝑛
, 𝛽 = 𝛽𝑛 :=

1
𝑚

∑︁
𝑥∈[𝑛]

(𝑑−𝑥 )2 ,

𝜌 = 𝜌𝑛 :=
1
𝑚

∑︁
𝑥∈[𝑛]

𝑑−𝑥
𝑑+𝑥

, 𝛾 = 𝛾𝑛 :=
1
𝑚

∑︁
𝑥∈[𝑛]

(𝑑−𝑥 )2

𝑑+𝑥
,

(3.4)
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where 𝑚 as in (3.3). Notice that, under Assumptions 3.A, all the above quantities are
Θ(1) and bounded away from zero. Moreover, define

𝜗 = 𝜗𝑛 (d+, d−) :=
𝛿

𝛾−𝜌
1−𝜌

(
1 − 1−

√
1−𝜌
𝜌

)
+ 𝛽 − 1

. (3.5)

The following represents the main contribution of this chapter. It gives a complete
picture of the asymptotic behaviour of the expected fraction of discordant edges for
the voter model with high probability with respect to the law of the DCM.

Theorem 3.2.1. Suppose that the degree sequence satisfies Assumption 3.A. Fix 𝑢 ∈
(0, 1) and let 𝑛 ∈ N. Consider the voter model on the directed configuration model
𝐺𝑛 = ( [𝑛], 𝐸) with initial distribution Bern(𝑢)⊗[𝑛] . Then, for any non-negative
sequence 𝑡𝑛 such that lim𝑛→∞ 𝑡𝑛 and lim𝑛→∞ 𝑡𝑛/𝑛 exist,

it holds that ����E𝑢 [D𝑡𝑛] − 2𝑢(1 − 𝑢) 𝜑(𝑡𝑛) 𝑒−2 𝑡𝑛
𝑛
𝜗−1

���� P−→ 0 , (3.6)

where

𝜑(𝑡) = 1 − 1
2 𝛿

∑︁
𝑘≥0

𝑒−2𝑡 (2𝑡)𝑘
𝑘!

( ⌊ 𝑘−1
2 ⌋∑︁
𝑠=1

2−2𝑠 𝐶𝑠 𝜌
𝑠 1𝑘>2 + 1𝑘>0

)
, 𝑡 ≥ 0, (3.7)

𝜗 as in (3.5), 𝜌 and 𝛿 as in (3.4), and 𝐶𝑠 denote the Catalan numbers, i.e.

𝐶𝑠 =
1

𝑠 + 1

(
2𝑠
𝑠

)
.

Remark 3.2.2. We can immediately check that the series in (3.7) is converging uni-
formly in 𝑡 to

𝜑(∞) = 𝜑𝑛 (∞) = 1 −
1 −

√︁
1 − 𝜌

𝛿 𝜌
. (3.8)

Furthermore, as it will be shown in the proof of Proposition 3.4.7, if 𝑡 = 𝑡𝑛 is a
diverging sequence then 𝜑(𝑡) is close to 𝜑(∞) as 𝑛→ ∞.

Similarly to what the authors proved in [ABH+24], from the expression in (3.6)
we observe that there are four different time scales for the evolution of the voter model
that show different behaviours of the expected density of discordant edges.

(a) Short time scale. If 𝑡𝑛 is of order one, i.e. 𝑡𝑛 = 𝑡 = Θ(1), then the exponential
factor doesn’t play any role and the leading term is given by the function 2𝑢(1−
𝑢)𝜑(𝑡). This is related to the event that two coalescing annealed walks evolving
on a out-directed, multi-type Galton-Watson tree do not meet and chase each
other on the same branch of the tree within time 𝑡.
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Figure 3.1: A single simulation of the voter model with 𝑢 = 1/2 on a quenched realization of
DCM with 𝑛 = 1000 vertices and (in/out) degrees ranging between 2 and 5. In red, the fraction
of discordant edges; in magenta, the constant line having value 2𝑢(1− 𝑢)𝜑(∞). As predicted,
the phenomenology consists of an initial drop to the magenta line, then, for the intermediate
time scales, a metastable behaviour stabilized around 2𝑢(1 − 𝑢)𝜑(∞), then finally a rapid
drop to zero on the consensus scale.

(b) Intermediate time scale. If 𝑡𝑛 diverges slowly, i.e. it is such that lim𝑛→∞ 𝑡𝑛 = ∞
and 𝑡𝑛 = 𝑜(𝑛), then as 𝑛 → ∞ the density of discordances stabilises around
the limiting value 2𝑢(1 − 𝑢)𝜑(∞) as in (3.8). The choice of such a range
for intermediate time scales is due to Theorem 3.3.2, which indicates that the
consensus time for the voter model in the sparse DCM is linear in 𝑛.

(c) Long time scale. If 𝑡𝑛 is of the consensus time order, i.e. 𝑡𝑛 = ℓ 𝑛 with
ℓ ∈ (0,∞), then the voter model is approaching consensus and the exponential
factor in (3.6) becomes relevant. In terms of the discordant edges behaviour this
reflects into a drastic descent from the previous plateau, approaching zero. See
also Figure 3.1.

(d) Consensus. If 𝑡𝑛 exceeds the consensus time scale, i.e. lim𝑛→∞ 𝑡𝑛/𝑛 = ∞, then
the expression in (3.6) vanishes.

Remark 3.2.3 (Variability of degree sequence). Recall first that the authors in
[ACHQ24] showed that from the expression 𝜗 in (3.5) one could retrieve relevant
information about how fast does the consensus time happen depending on the regular-
ity/variability of the degree sequence. We can get a similar information on some time
scales exploiting such a fact.

• Consider the special cases in which the graph is out-regular, i.e. for a fixed
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𝑑 ≥ 2 the degree sequence d is such that 𝑑+𝑥 ≡ 𝑑 for all 𝑥 ∈ [𝑛], and the one in
which it is regular, i.e. 𝑑+𝑥 = 𝑑−𝑥 ≡ 𝑑 for all 𝑥 ∈ [𝑛] . Note that for both cases
𝛿 = 𝑑 and 𝜌 = 1/𝑑, thus 𝜑(∞) reads as√︂

𝑑 − 1
𝑑

.

Such value matches exactly the value of of 𝜗−1 for the 𝑑-regular case. We
would like to point out that such result, only for the simplified 𝑑-regular random
directed graphs setting, could also be retrieved from [CCC16]. For general
out-regular random graphs, analyzing the quantity 𝜗, in [ACHQ24] it has been
showed that the expected consensus time happens faster than the regular case,
depending on the size of the second moment of the in-degree sequence. We can
get from a different perspective a new, coherent interpretation of the speed at
which the consensus phenomena is happening.

• If we consider long time scales, that is such that lim𝑛→∞ 𝑡𝑛/𝑛 = ℓ ∈ (0,∞), by
Theorem 3.2.1 we have that the expected density of discordant edges is close to

2𝑢(1 − 𝑢) 𝜑(∞) 𝑒−2ℓ𝜗−1
.

By the previous observations, we conclude that, for long time scales, the expected
density of discordant edges for 𝑛 large is smaller in the out-regular case with
respect to the regular one. The difference becomes larger as the variability of
the in-degrees increases, while they coincide only when it approaches zero, that
is in the regular case.

• Finally we can make the following observations on the values of 𝜑(∞). Once
we fix the average degree 𝛿, we can observe that the function 𝑥 ↦→ 1 − 1−

√
1−𝑥
𝛿 𝑥

is non-increasing in its domain (0, 1/2), with a small range. This implies that,
at least on short and moderate time scales, the fraction of discordances remains
larger the smallest the value that 𝜌 can attain. This happens when there are a
lot of vertices with small in-degree and large out-degree. The same conclusion
does not hold on the consensus scale as one has to compare such value with the
exponential factor containing 𝜗.

To the best of our knowledge, prior to our contribution in the current literature, the
only work that adequately addressed the problem is [ABH+24], in the random regular
graphs setting. The only other known ensemble is the complete graph, where the
number of discordant edges is trivially the product of the numbers of vertices holding
the two respective opinions. For a comparison with our result, we state the result for
the random regular graph setting.
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Theorem 3.2.4 (Theorem 1.1, [ABH+24]). Fix 𝑑 ≥ 3, 𝑢 ∈ (0, 1) and let 𝜃𝑑 = 𝑑−1
𝑑−2 .

For 𝑛 ≥ 𝑑 + 1 consider the voter model on a 𝑑− regular random graph 𝐺𝑑,𝑛 with
𝑛 vertices and initial distribution Bern(𝑢)⊗𝑉 . Then, for any non-negative sequence
(𝑡𝑛)𝑛∈N such that the limit of 𝑡𝑛 and 𝑡𝑛/𝑛 exists, it holds that����E𝑢 [D𝑡𝑛] − 2𝑢(1 − 𝑢) 𝑓𝑑 (𝑡𝑛) 𝑒−2 𝑡𝑛

𝑛
𝜃−1
𝑑

���� P−→ 0 , as 𝑛→ ∞ , (3.9)

where P is the law of the random regular graph and 𝑓𝑑 : R+ → [0, 1] is an explicit
function such that

𝑓𝑑 (𝑡𝑛) → 𝜃𝑑 ,

as 𝑛→ ∞.

The expression in (3.9) shows that, similarly to our result, different time scales
produce different behaviours. Moreover, the function 𝑓𝑑 that governs the leading term
of the evolution up to linearity, replaced by 𝜑 in our setting, is related to the first
meeting time of two walks on an infinite, deterministic 𝑑-regular tree. This has to do
with the locally-tree-like nature of the sparse 𝑑-regular random graph. We will exploit
such beautiful property also in our directed, heterogeneous setting, and, as expected,
this will lead to a comparable result. All the details are discussed in Section 3.3.1.

§3.3 Preliminaries

§3.3.1 Local structure of the graph
A consequence of the fact that we are considering realisations of sparse random graphs
is that their local structure is locally tree-like. This is related to the fact that, as many
others sparse random graphs models, the local weak limit of the sparse DCM is a
Galton-Watson tree. See [Hof17] for a modern introduction to the topic.

We want to compare the exploration process of a neighborhood of 𝐺 with an
exploration process of a marked Galton-Watson tree. For any fixed 𝑥 ∈ [𝑛] and any
ℎ = ℎ𝑛 > 0, define B+

𝑥 (ℎ), the ℎ-out-neighborhood of vertex 𝑥, to be the set of
paths starting from 𝑥 of length at most ℎ. We generate B+

𝑥 (ℎ) using the breadth-first
procedure (BF) starting from 𝑥 as priority rule, iterating the following steps:

(a) pick the first available unmatched tail 𝑒 according to BF starting from 𝑥;

(b) pick uniformly at random an unmatched head 𝑓 ;

(c) draw the resulting directed edge 𝑒 𝑓 . Continue until the graph distance from an
unmatched tail in Item (a) to 𝑥 exceeds ℎ.

Let 𝑥 ∈ [𝑛], and define a marked (out-directed) random tree T +
𝑥 rooted at 𝑥 as follows:

the root is assigned mark 𝑥, and all other vertices an independent mark ℓ ∈ [𝑛]
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with probability 𝑑−
ℓ

𝑚
. Each vertex with mark ℓ ∈ [𝑛] has 𝑑+

ℓ
children. Note that T +

𝑥

is obtained by gluing together 𝑑+𝑥 independent Galton-Watson trees with offspring
distribution

𝜇+(𝑘) :=
∑︁
𝑥∈[𝑛]

𝑑−𝑥
𝑚
1(𝑑+𝑥 = 𝑘) , 𝑘 ∈ N . (3.10)

Let T +
𝑣 (ℎ) be a subtree of T +

𝑣 given by its truncation up to generation ℎ. A classical
description of the coupling between B+

𝑣 (ℎ) and T +
𝑣 (ℎ) can be found e.g. in [CCPQ23,

Sec. 2.2] and [ACHQ24, Sec. 4.1].

Lemma 3.3.1 (Lemma 4.1, [ACHQ24]). Assume the degree sequence satisfy As-
sumption 3.A. Let 𝑣 ∈ [𝑛], then for any ℎ > 0 there exists a coupling between B+

𝑣 (ℎ)
and T +

𝑣 (ℎ) having law P̂ such that

P̂
(
B+
𝑣 (ℏ) ≠ T +

𝑣 (ℏ)
)
= 𝑜(1) ,

where

ℏ = ℏ𝑛 :=
log(𝑛)

5 log(𝑑+max)
. (3.11)

§3.3.2 Coalescing random walks

The consensus time for the voter model is related to an observable of a different
Markovian process called coalescing random walks (CRWs). In fact, this process can
be interpreted as the stochastic dual process of the voter model, in the sense that it
tracks back in time the origin of the opinions. More precisely, let {(𝑋 𝑥𝑡 )𝑡≥0}𝑥∈𝑉 be a
collection of rate one continuous-time random walk such that 𝑋 𝑥0 = 𝑥, for any 𝑥 ∈ 𝑉 .
This system of random walks is such that each time two walks meet at the same vertex
they collapse (coalesce) into a new, independent single walk. Therefore, similarly
to the consensus time, it is well-defined the coalescing time 𝜏coal, the first time such
that all the RWs coalesced into a single one. Note that, under the assumption that
𝐺 is finite, any two walks meet in finite time, thus 𝜏coal < ∞ almost surely. In full
generality, it holds that 𝜏cons ≤ 𝜏coal almost surely, as the CRWs system is the dual
process of the voter model. Under some further assumption on𝐺 it can be proved that,
in some cases, consensus and coalescing times are not that far apart. In particular,
in [Oli13] the author proved that under some mean field conditions the asymptotic
behaviour, with respect to the size of the network growing to infinity, of the consensus
and coalescing time can be well-approximated by the expected meeting time of two
independent random walk starting from stationarity.
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§3.3.3 Random walks on sparse DCM
We define (𝑋𝑡 )𝑡≥0 to be a continuous-time rate one simple random walk on a directed
graph 𝐺 = ( [𝑛], 𝐸) evolving on the out-degrees, i.e. as the Markov chain with state
space [𝑛] and generator

(L𝑟𝑤 𝑓 ) (𝑥) =
∑︁
𝑦∈[𝑛]

|{𝑒 ∈ 𝐸 : 𝑒 = (𝑥, 𝑦)}|
𝑑+𝑥

[ 𝑓 (𝑦) − 𝑓 (𝑥)], 𝑓 : [𝑛] → R . (3.12)

Let P([𝑛]) be the set of probability measures on the vertex set [𝑛]. Using a slight
abuse of notation with respect to the law of the voter model, we denote by P𝜇 the law
of (𝑋𝑡 )𝑡≥0 with 𝑋0 ∼ 𝜇 and 𝜇 ∈ P([𝑛]), and with E𝜇 its expectation. We adopt the
usual notation P𝑥 , E𝑥 whenever 𝜇 is a Dirac mass at some 𝑥 ∈ [𝑛]. In our setting
we will be considering random walks evolving on the random environment depicted
by the DCM. As a consequence, the latter probability measure describing the random
walk’s law will become random measures according to P, the law of the environment.

As it will become clear in Section 3.4, the main observable of interest of this
chapter is the first meeting time of two copies of independent random walks, defined
as

𝜏
(𝑥,𝑦)
meet = inf{𝑡 ≥ 0 : 𝑋 𝑥𝑡 = 𝑋

𝑦
𝑡 } , (3.13)

where (𝑋 𝑧𝑡 )𝑡≥0, 𝑧 ∈ [𝑛], represents a random walk having initial position 𝑋 𝑧0 = 𝑧.
More generally, when the initial distribution of the walks is given by the realisation
of two measures 𝜇 and 𝜈, we write 𝜏𝜇⊗𝜈meet to describe the first meeting time of two
independent walks 𝑋,𝑌 such that 𝑋0 ∼ 𝜇 and 𝑌0 ∼ 𝜈.

We will prove our main result through continuous-time random walks due to the
dual relation with the voter model. Nevertheless, it will be useful to work with the
skeleton chain given by the discrete-time, asynchronous version of the process defined
by the transition matrix

P(𝑥, 𝑦) = |{𝑒 ∈ 𝐸 : 𝑒 = (𝑥, 𝑦)}|
𝑑+𝑥

, 𝑥, 𝑦 ∈ [𝑛] . (3.14)

We will denote by 𝑃𝜇 and 𝐸𝜇 the law and expectation of such Markov chain whenever
the initial position of the walk is distributed according to 𝜇, where 𝜇 ∈ P([𝑛]).

In the following we report a result that was crucial in order to proceed with our
discordant edges analysis. It gives insights about the asymptotic behaviour of the first
meeting time of two random walks starting from their stationary distribution 𝜋. In
particular, it shows that for 𝑛 = |𝑉 | large enough, with high probability the distribution
and the expectation of the meeting time, rescaled by an explicit linear factor of the size
of the network, are well-approximated by the ones of a rate one exponential random
variable.
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Theorem 3.3.2 (Theorem 3.1, [ACHQ24]). Let (d+, d−) satisfy Assumption 3.A and
𝐺 be sampled from DCM(d+, d−). Then, letting 𝜏𝜋⊗𝜋meet denote the first meeting time of
two independent stationary random walks, it holds

𝑑𝑊

(
𝜏𝜋⊗𝜋meet

1
2 𝜗 × 𝑛

, Exp(1)
)

P−→ 0 , (3.15)

with 𝑑𝑊 (·, ·) denoting the Wasserstein 1-distance.

§3.3.4 Annealed random walks
We conclude this section explaining briefly one of the main tools that we used to
derive our results. Since we will be studying random walks evolving on random
environments, the laws of the walks will be a random variable with respect to the
law of the environment, thus depending on the realisation of the graph 𝐺. We are
interested in stating asymptotic results in probability w.r.t. the law P of the random
graph, and to this aim we will often be interested in computing expectations E of the
laws the observables of interest; in other words, we want to compute the annealed
version of such quantities. An useful way of computing the latter is to rewrite such
expectations as a non-Markovian process that simultaneously let the walks move and
also explores the graph. More precisely, for every 𝐵 ⊂ 𝑉 , 𝜇 ∈ P(𝑉) and 𝑡 ≥ 0 it holds
that

E[𝑃𝜇 (𝑋𝑡 ∈ 𝐵)] = Pan
𝜇 (𝑊𝑡 ∈ 𝐵) , (3.16)

where Pan
𝜇 is the law of the joint random variable describing the partial realisation of

the DCM, as described in Section 3.2.2, with at most 𝑡 matchings and 𝑊𝑡 ∈ 𝑉 is the
location of the annealed walk at time 𝑡 having 𝜇 as initial distribution. Such joint
process is non-Markovian as at each time step 𝑠 the transition probabilities depend on
the whole trajectory of explored vertices up to step 𝑠. The evolution can be described
as follows: in an environment given by the empty matching of the edges, the walk
samples its initial position 𝑥 ∈ [𝑛] according to 𝜇; then it samples u.a.r. a tail of 𝑥 and
u.a.r. a head 𝑓 incident to some vertex 𝑦 ∈ [𝑛] among all the possible ones. The edge
(𝑥, 𝑦) is formed and the walk moves from 𝑥 to 𝑦. The procedure iterates up to time 𝑡,
where at each step, if the walk chooses a head that is already matched to a tail then no
other edges are formed.

The ℓ-th moment with respect to E of the transition probabilities associated to
𝑃𝜇 can be computed via a similar construction, using multiple random walks, for
which the above construction reads as follows. For all ℓ ∈ N, 𝐵1, . . . , 𝐵ℓ ⊂ 𝑉 and
𝑡1, · · · , 𝑡ℓ ≥ 0 we can write

E
[ ℓ∏
𝑖=1

𝑃𝜇 (𝑋𝑡𝑖 ∈ 𝐵𝑖)
]
= Pℓ−an

𝜇

(
𝑊

(𝑖)
𝑡𝑖

∈ 𝐵𝑖 , ∀𝑖 ≤ ℓ
)
, (3.17)
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where the random variables (𝑊 (𝑖) )𝑖≤ℓ are independent annealed walks sampled ana-
logously to the single annealed walk, with the difference that the ℓ walks are sampled
sequentially, all having initial distribution 𝜇 and, for any 𝑖 < ℓ, the 𝑖-th walk evolves
in the partial environment described by the first 𝑖 − 1 walks.

Another natural application of the annealing random walks is the computation of
an expectation conditioned on a partial realisation of the environment 𝛾, given by any
partial matching of tails and heads according to the DCM uniform matching procedure.
Let 𝜇 ∈ P([𝑛]) depending only on 𝛾, ℓ ∈ N, 𝐵1, . . . , 𝐵ℓ ⊂ 𝑉 and 𝑡1, · · · , 𝑡ℓ ≥ 0, then

E
[ ℓ∏
𝑖=1

𝑃𝜇 (𝑋𝑡𝑖 ∈ 𝐵𝑖) | 𝛾
]
= Pℓ−an |𝛾

𝜇

(
𝑊

(𝑖)
𝑡𝑖

∈ 𝐵𝑖 , ∀𝑖 ≤ ℓ
)
, (3.18)

where Pℓ−an |𝛾
𝜇 is the joint law of the partial environment and the multiple random

walks as described previously, but the initial environment of the first walk is given
by 𝛾 instead of the empty matching of the edges. Clearly, all the events in (3.16) -
(3.18) can be replaced by any event (A𝑖)𝑖≤ℓ that depend only on the trajectories of
(𝑋 (𝑖)
𝑠 )𝑠≤𝑡𝑖 ,𝑖≤ℓ .

§3.4 Proof of the main result

This section is fully devoted to show the proof of Theorem 3.2.1. It is divided into
two subsections: in the first one we provide a proof for the main result only for short
time scales, while in the second one we extend it to any time scale.

§3.4.1 Short time scales
Fix 𝑥, 𝑦 ∈ [𝑛] such that 𝑥 → 𝑦, and consider two discrete-time, asynchronous,
independent random walks 𝑋,𝑌 on𝐺×𝐺 such that (𝑋0, 𝑌0) = (𝑥, 𝑦). Let us introduce
the following random variables that will become useful for the rest of the proof.

Let B+
𝑥 (ℎ) be the out-neighbour of 𝑥 ∈ [𝑛] in 𝐺 up to depth ℎ > 0,

𝑉+
★ = {𝑥 ∈ [𝑛] | B+

𝑥 (ℏ) is a tree} ,

and
ℏ = ℏ𝑛 =

1
10

log(𝑛)
log(𝑑+max)

. (3.19)

Define

𝜏 = 𝜏 (𝑥,𝑦) = inf{𝑡 > 0 | 𝑋𝑡 ∉ (𝑌𝑠)𝑠≤𝑡 ∪ {𝑥}} , (3.20)

𝜏dev = 𝜏
(𝑥,𝑦)
dev = inf{𝑡 > 0 | B+

𝑋𝑡
(ℏ) ∩ B+

𝑌𝑡
(ℏ) = ∅ and 𝑋𝑡 , 𝑌𝑡 ∈ 𝑉+

★ } . (3.21)
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In words, 𝜏dev is the first time such that the out-neighbour of the two walks are non-
intersecting trees. As we will prove, this happens exactly when the walk 𝑋 does not
follow the path of the walk 𝑌 . Moreover, let

𝜈dev(𝑢, 𝑣) = P(𝑋𝜏dev = 𝑢,𝑌𝜏dev = 𝑣 | (𝑋0, 𝑌0) = (𝑥, 𝑦)), 𝑢, 𝑣 ∈ [𝑛], 𝑢 ≠ 𝑣 . (3.22)

The following lemma shows that the first time in which the walk starting at 𝑥 moves
into a vertex that has not been visited previously by the walk starting at 𝑦, will happen
in a short amount of time with high probability.

Lemma 3.4.1. Suppose that the degree sequence satisfies Assumption 3.A. Define the
sequence ℎ★ = ℎ

(𝑛)
★ such that ℎ★ = log2(𝑛). It holds that

max
𝑥,𝑦∈[𝑛]

𝑃(𝜏 > ℎ★)1𝑥→𝑦 = 𝑜P(𝑛−𝐶 log(𝑛) ) , (3.23)

for some 𝐶 > 0.

Proof. Fix 𝑥, 𝑦 ∈ [𝑛] such that 𝑥 → 𝑦. Let 𝑆(𝑡) be the number of steps of the walk
𝑋 within time 𝑡 > 0. Since the walks are discrete-time and moves asynchronously, we
have that 𝑆(𝑡) 𝑑= Bin(𝑡, 1/2). Therefore,

𝑃(𝜏 > ℎ★) = 𝑃(𝜏 > ℎ★, 𝑆(ℎ★) ≥ ℎ★/3) + 𝑃(𝜏 > ℎ★, 𝑆(ℎ★) < ℎ★/3)

≤ (𝑑+min)
− ℎ★3 + Pr(Bin(ℎ★, 1/2) < ℎ★/3) = 𝑜(𝑛−𝑐̄ log(𝑛) ) ,

for some 𝑐 > 0, where the first bound comes from the fact that in order to 𝜏 not to
happen within time ℎ★ the walk 𝑋 needs to follow the path of 𝑌 for all its steps within
ℎ★. We conclude using the definition of ℎ★, the fact that 𝑑+min ≥ 2, by Assumption 3.A,
and that Pr(Bin(ℎ★, 1/2) < ℎ★/3) = 𝑜(𝑛−𝑐 log(𝑛) ), for some 𝑐 > 0, by Hoeffding’s
inequality. □

In the next lemma, we will prove that conditioned on the paths of the walks up to
time 𝜏, the out-neighbourhood generated by the positions of the walks at 𝜏 gives two
non intersecting trees of logarithmic size. Such result strongly relates the hitting times
𝜏 and 𝜏dev.

Lemma 3.4.2. Suppose that the degree sequence satisfies Assumption 3.A. Let 𝜏 as in
(3.20) and Ξ = (𝑋𝑠, 𝑌𝑠)𝑠≤ 𝜏̄ . For all 𝑖 ∈ {1, 2, 3}, it follows that

Pan |Ξ(A𝑖) = 1 − 𝑜(1) ,

where

A1 = {B+
𝑋𝜏̄

(ℏ) ∩ B+
𝑌𝜏̄
(ℏ) = ∅}, A2 = {𝑋𝜏̄ ∈ 𝑉+

★ }, A3 = {𝑌𝜏̄ ∈ 𝑉+
★ } ,

and Pan |Ξ denotes the conditioned annealing law, as defined in (3.18).
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Proof. Define a coupling between the exploration process of B+
𝑋𝜏̄

(ℏ) and an unimodu-
lar Galton-Watson tree, as defined in Section 3.2, rooted at 𝑋𝜏̄ on a partial environment
of 𝐺 given by the vertices and edges explored by (𝑋𝑠, 𝑌𝑠)𝑠≤ 𝜏̄ . Call P̂ the law of such a
coupling. Let F𝑖 be the event in which A𝑖 fails, 𝑖 ∈ {1, 2, 3}, with respect to P̂. Con-
sider the uniform matching between tails and heads of the DCM. In order to analyze
A2 and A3, let us construct sequentially the out-neighbour of 𝑋𝜏̄ and𝑌𝜏̄ up to ℏ in the
partial environment previously stated. Let 𝜎 be the first time such that a head incident
to a previously selected vertex is chosen and ℎ★ = log2(𝑛). Then, for any 𝑡 > 0,

P̂(𝜎 = 𝑡) ≤ P̂(𝜎 = 𝑡, 𝜏 ≤ ℎ★) + P̂(𝜏 > ℎ★) ≤
𝑑−max(𝑡 + ℎ★)

𝑚
+ 𝑜(𝑛−𝐶 log(𝑛) ) ,

𝐶 > 0, where during the 𝑡-th step in the matching procedure, there are at most 𝑡 + 𝜏
already matched vertices and, thanks to Lemma 3.4.1, 𝜏 ≤ ℎ★ with high probability.
Therefore

P̂(𝜎 ≤ 𝑡) ≤
𝑡 𝑑−max(𝑡 + ℎ★)

𝑚
+ 𝑡 𝑜(𝑛−𝐶 log(𝑛) ) .

In order to explore the whole B+
𝑋𝜏̄

(ℏ) it is sufficient to take 𝑡 = (𝑑+max)ℏ, thus

P̂(F2) ≤ P̂(𝜎 ≤ (𝑑+max)ℏ) ≤ 2
(𝑑+max)2ℏ 𝑑−max

𝑚
+ 𝑜(1) . (3.24)

The result follows by the definition of ℏ, and the fact that 𝑑−max and 𝑑+max are uniformly
bounded by Assumption 3.A. Similarly, the same conclusion follows for F1 and F3. In
particular, the bound in (3.24) reads

P̂(F1) ≤
(𝑑+max)ℏ 𝑑−max(2(𝑑+max)ℏ + ℎ★)

𝑚
+ 𝑜(1) = 𝑜(1) .

□

Corollary 3.4.3. Suppose that the degree sequence satisfies Assumption 3.A. It holds
that

max
𝑥,𝑦∈[𝑛]

𝑃(𝜏 (𝑥,𝑦) = 𝜏 (𝑥,𝑦)dev ) = 1 − 𝑜P(1) .

Proof. The conclusion follows from the boundness of the random measure and fact
that

max
𝑥,𝑦∈[𝑛]

E[𝑃(𝜏 (𝑥,𝑦) = 𝜏 (𝑥,𝑦)dev )] = 1 − 𝑜(1) .

Indeed, 𝜏 (𝑥,𝑦) ≤ 𝜏 (𝑥,𝑦)dev , as until the walk 𝑋 does not take a different path with respect
to the vertices explored by 𝑌 , the out-neighbour of 𝑋 and 𝑌 will have a non-trivial
intersection. The fact that 𝜏 (𝑥,𝑦) is the first time in which the conditions of 𝜏 (𝑥,𝑦)dev are
satisfied w.h.p. follows directly from Lemma 3.4.2. □
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Recall the definition of 𝜏 (𝑥,𝑦)meet in (3.13). The following proposition gives us
important information about the behaviour of the meeting time after the deviation
time, i.e. after 𝜏dev happened. In particular, it tells us that after deviating the walk
will not meet again after at least O(log3(𝑛)) steps with high probability. As shown in
the proof of Corollary 8.6, [ACHQ24], it is related to the fact that first the walks have
to exit the directed trees in which they are trapped for at least O(log(𝑛)) amount of
time, and after that they need at least another O(log2(𝑛)) steps to chase each other and
finally meet. This fact will become useful once we notice that the mixing time of the
product chain of the two independent walks has logarithmic order, thus w.h.p. after
deviating the walks will first mix and then possibly meet.

Proposition 3.4.4 (Corollary 8.6, [ACHQ24]). Suppose that the degree sequence
satisfies Assumption 3.A. Then

max
(𝑢,𝑣) ∈supp𝜈dev

𝑃(𝜏 (𝑢,𝑣)meet > log3(𝑛)) P−→ 0 ,

as 𝑛→ ∞, where supp𝜈dev denotes the support of the measure 𝜈dev.

We deduce that, if we are interested in computing the first meeting time of two in-
dependent random walks within a short time scale, i.e. of the order of 𝑡𝑛 = 𝑜(log3(𝑛)),
it suffices to consider only the events in which they do not deviate before they meet.
More formally, the following corollary holds true.

Corollary 3.4.5. Suppose that the degree sequence satisfies Assumption 3.A. For
any 𝑥, 𝑦 ∈ [𝑛], 𝑥 → 𝑦, and any sequence 𝑡 = 𝑡𝑛 such that lim𝑛→∞ 𝑡𝑛 exists and
𝑡𝑛 = 𝑜(log3(𝑛)), it holds that

𝑃(𝜏 (𝑥,𝑦)meet ≤ 𝑡) = 𝑃(𝜏 (𝑥,𝑦)meet ≤ 𝑡, 𝜏 (𝑥,𝑦)dev > 𝜏
(𝑥,𝑦)
meet ) + 𝑜P(1)

Proof. It follows from Proposition 3.4.4 and the fact that 𝑡𝑛 = 𝑜(log3(𝑛)). □

The next result will be the building block for the asymptotic behaviour of the
annealed expected number of discordant edges.

Lemma 3.4.6. Suppose that the degree sequence satisfies Assumption 3.A. Fix 𝑥, 𝑦 ∈
[𝑛], 𝑥 ≠ 𝑦, such that 𝑥 → 𝑦, and any sequence 𝑡 = 𝑡𝑛 such that lim𝑛→∞ 𝑡𝑛 exists and
𝑡𝑛 = 𝑜(log3(𝑛)). For any 𝑠 ≤ 𝑡

2 and 𝜀 ∈ (0, 1), it holds that

Pan | (𝑥,𝑦) (𝜏 (𝑥,𝑦)meet = 2𝑠, 𝜏 (𝑥,𝑦)dev > 𝜏
(𝑥,𝑦)
meet ) = 𝑜(𝑛𝜀−1) , (3.25)
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and

Pan | (𝑥,𝑦) (𝜏 (𝑥,𝑦)meet = 2𝑠 + 1, 𝜏 (𝑥,𝑦)dev > 𝜏
(𝑥,𝑦)
meet ) = 2−1 1

𝑑+𝑥
1𝑠=0

+ 2−2𝑠−1𝐶𝑠
1
𝑑+𝑥

1
𝑑+𝑦
𝜌𝑠−11𝑠>0 + 𝑜(𝑛𝜀−1) ,

(3.26)

where 𝐶𝑠 are the Catalan numbers, 𝜌 as in (3.4) and Pan | (𝑥,𝑦) is the conditioned
annealed law described in (3.18).

Proof. Similar to what we described in Section 3.2.2, consider the coupling between
the exploration process generated by the annealed random walks on the original graph,
conditioned on 𝑥 → 𝑦, having law Pan | (𝑥,𝑦) , and the same annealed process defined
on the out-directed Galton-Watson tree rooted at 𝑥, still conditioned on 𝑥 → 𝑦, with
offspring distribution given by

𝜇+(𝑘) =
∑︁
𝑧∈[𝑛]

𝑑−𝑧
𝑚
1𝑑+𝑧=𝑘 , 𝑘 ∈ Z+ , (3.27)

and call it T (𝑥,𝑦) . Denote with P̂ the law of such a coupling, and with F the event that
the coupling fails within time 𝑡. Analogous to what we established in Lemma 3.4.2,
we can give an upper bound on the latter event as follows

P̂(F ) ≤ 𝑡2
𝑑−max
𝑚

= 𝑜(𝑛𝜀−1) , (3.28)

for any 𝜀 ∈ (0, 1), thanks to Assumption 3.A on the maximal in-degree and the fact
that 𝑡𝑛 = 𝑜(log3(𝑛)).

It follows that we can consider the annealed process of interest only on the GW
tree structure. Therefore, under the event 𝜏 (𝑥,𝑦)dev > 𝜏

(𝑥,𝑦)
meet , the only possibility for the

two walks starting at 𝑥, 𝑦 to meet is to follow each other on the same branch of the
random tree rooted at 𝑥 and eventually meet. Due to parity conditions, since the walks
start at distance one in (𝑋0, 𝑌0) = (𝑥, 𝑦), for any 𝑠 ≤ 𝑡

2 we can rule out the even times
and thus we have that

Pan | (𝑥,𝑦) (𝜏 (𝑥,𝑦)meet = 2𝑠, 𝜏 (𝑥,𝑦)dev > 𝜏
(𝑥,𝑦)
meet ) = 𝑜(𝑛𝜀−1) ,

as expected, proving therefore the first part of the lemma.
Let us consider the case in which the meeting happens at odd times on the event

that the deviation time did not happen before the first meeting. If 𝑠 = 0, i.e. 𝜏meet = 1,
the event occurs if and only if the walk 𝑋 is selected and it moves in the direction of
𝑌 , to vertex 𝑦. Therefore

Pan | (𝑥,𝑦) (𝜏 (𝑥,𝑦)meet = 1, 𝜏 (𝑥,𝑦)dev > 𝜏
(𝑥,𝑦)
meet ) = 1

2
1
𝑑+𝑥

+ 𝑜(1) . (3.29)
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Fix 1 ≤ 𝑠 ≤ 𝑡
2 . Thanks to (3.28) it is enough to consider the same probabilities under

the event that the coupling with the tree succeeds, therefore we restrict the focus on
the construction of the G-W tree T (𝑥,𝑦) with law P̂. Let 𝑑 (𝑠) be the distance in T (𝑥,𝑦)

between 𝑋𝑠 and𝑌𝑠 at time 𝑠. We can rewrite the event in (3.26) in terms of the Markov
process induced by 𝑑 (𝑠). Recall the definition of 𝜏 = 𝜏 (𝑥,𝑦) in (3.20) and note that,
on T (𝑥,𝑦) , it holds that

𝑑 (𝜏) = 𝑑 (𝑡) = ∞, ∀𝑡 ≥ 𝜏 .
Moreover, (𝑋0, 𝑌0) = (𝑥, 𝑦) implies that 𝑑 (0) = 1 and, given 𝑑 (𝑠), we have that

𝑑 (𝑠 + 1) =

𝑑 (𝑠) − 1 if 𝑠 < 𝜏 and 𝑋 moves ,
𝑑 (𝑠) + 1 if 𝑠 < 𝜏 and 𝑌 moves ,
∞ if 𝑠 ≥ 𝜏 .

(3.30)

Thanks to Corollary 3.4.3, the events of the type {𝜏 (𝑥,𝑦)meet = 2𝑠+ 1} ∩ {𝜏 (𝑥,𝑦)dev > 𝜏
(𝑥,𝑦)
meet }

can be rewritten as

C𝑠 = {0 < 𝑑 (𝑟) < ∞ ,∀𝑟 ∈ {1, . . . , 2𝑠}}
⋂

{𝑑 (2𝑠 + 1) = 0} , 𝑠 ≤ 𝑡

2
. (3.31)

We can look at C𝑠 as a collection of simple events of the type {𝑑 (1), . . . , 𝑑 (2𝑠 + 1)}
with proper constrains. The latter add up to an evolution in which the particle 𝑋
follows 𝑌 one up to reaching it for the first time at time 2𝑠 + 1. By construction, they
correspond to all the possible Dyck paths with 𝑠 upstrokes and 𝑠+1 downstrokes having
±1 increments, starting from 𝑑 (0) = 1; call them 𝔇𝑠. Notice now that T (𝑥,𝑦) can
be seen as a rooted (at 𝑥), marked out-directed G-W tree, where each vertex 𝑣 ≠ 𝑥, 𝑦

has mark ℓ ∈ [𝑛] with probability 𝑑−𝑧
𝑚

, and 𝑣 has mark ℓ if and only if 𝑑+𝑣 = 𝑑+
ℓ
. Let

𝔏𝑠 = (ℓ0, . . . , ℓ𝑠) ∈ [𝑛]𝑠 be the sequence of random marks of all the vertices in the
path of length 𝑠 defined by the two random walks from the root to the vertex at which
they meet (not included).

As a consequence, each simple event in C𝑠 can be associated uniquely to a couple
(𝔇𝑠,𝔏𝑠).

Observe that once we fix the marks of each vertex in which the walks move in their
path of length 𝑠, the different events that contribute to a simple event {𝑑 (1), . . . , 𝑑 (2𝑠+
1)} ∈ C𝑠 differ only in the order in which the particles moves. Thus they are all
equiprobable as the walks are asynchronous and at each step the moving one is selected
w.p. 1/2. Moreover, it is known that the number of Dyck paths of length 2𝑠+1, 𝑠 ≥ 1,
is the Catalan number 𝐶𝑠. Therefore, it is enough to take a representative Dyck path
𝔇𝑠 and write

P̂(𝜏 (𝑥,𝑦)meet = 2𝑠 + 1, 𝜏 (𝑥,𝑦)dev > 𝜏
(𝑥,𝑦)
meet ) = 𝐶𝑠

∑︁
𝔏𝑠∈[𝑛]𝑠

P̂(𝔇𝑠, 𝔏𝑠)

= 2−2𝑠−1𝐶𝑠
∑︁

𝔏𝑠∈[𝑛]𝑠
P̂(𝔏𝑠 | 𝔇𝑠) .

(3.32)

117



3. Evolution of discordant edges on random sparse digraphs

C
ha

pt
er

3

Recall the definition of 𝜇+ in (3.27) and consider the collection of independent random
variables 𝐷+

0 , 𝐷
+
1 , . . . , 𝐷

+
𝑠 where 𝐷+

𝑖
∼ 𝜇+ for 𝑖 ≥ 2, while 𝐷+

0 = 𝑑+𝑥 and 𝐷+
1 = 𝑑+𝑦

almost surely. Then∑︁
𝔏𝑠∈[𝑛]𝑠

P̂(𝔏𝑠 | 𝔇𝑠) =
∑︁
𝑑0≥2

· · ·
∑︁
𝑑𝑠≥2

𝑠∏
𝑗=0

1
𝑑 𝑗

P̂(𝐷+
0 = 𝑑0, . . . , 𝐷

+
𝑠 = 𝑑𝑠)

=
∑︁

𝑑0,𝑑1,...,𝑑𝑠≥2

𝑠∏
𝑗=0

1
𝑑 𝑗

P̂(𝐷+
𝑗 = 𝑑 𝑗)

=
1
𝑑+𝑥

1
𝑑+𝑦

(∑︁
𝑘≥2

1
𝑘
𝜇+(𝑘)

)𝑠−1

=
1
𝑑+𝑥

1
𝑑+𝑦

𝜌𝑠−1 ,

(3.33)

where the second equality comes from the independence of the samplings of 𝐷+
𝑖
, and

the last one is a consequence of the following identity∑︁
𝑘≥2

1
𝑘
𝜇+(𝑘) =

∑︁
𝑘≥2

1
𝑘

∑︁
𝑥∈[𝑛]

𝑑−𝑥
𝑚
1𝑑+𝑥=𝑘 =

1
𝑚

∑︁
𝑥

𝑑−𝑥
𝑑+𝑥

= 𝜌 . (3.34)

We conclude by plugging (3.33) into (3.32).
□

Proposition 3.4.7 (Expectation short time scales). Suppose that the degree sequence
satisfies Assumption 3.A. Fix 𝑢 ∈ (0, 1) and let 𝜂0 = Bern(𝑢)⊗𝑉 . Then, for any non-
negative sequence 𝑡𝑛 such that lim𝑛→∞ 𝑡𝑛 exists and 𝑡𝑛 = 𝑜(log3(𝑛)), it holds that����E[

E𝑢 [D𝑡𝑛]
]
− 2𝑢(1 − 𝑢) 𝜑(𝑡𝑛)

���� −→𝑛→∞
0 , (3.35)

where 𝜑(·) is as in (3.7). In particular, if lim𝑛→∞ 𝑡𝑛 = ∞ it holds that |𝜑(𝑡𝑛) −
𝜑(∞)| −→ 0, where

𝜑(∞) = 1 −
1 −

√︁
1 − 𝜌

𝛿 𝜌
. (3.36)

Proof. First observe that the expected density of discordant edges can be rewritten as
follows

E𝑢 [D𝑡𝑛] =
1
𝑚

∑︁
𝑒∈𝐸

P𝑢 (𝑒 ∈ 𝐷𝑡𝑛) =
1
𝑚

∑︁
𝑥,𝑦∈[𝑛]

P𝑢 ((𝑥, 𝑦) ∈ 𝐷𝑡𝑛) 1(𝑥,𝑦) ∈𝐸 . (3.37)

By the classical duality between the voter model and a system of coalescing random
walks, see Section 3.2.1, we can deduce that the event that an edge 𝑒 is discordant at
time 𝑡 can be expressed as the event that two independent random walks starting at
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vertices with discordant opinion do not meet within time 𝑡. In other words, for any
𝑒 = (𝑥, 𝑦) ∈ 𝐸 and 𝑡 ≥ 0 it holds that

P𝑢 (𝑒 = (𝑥, 𝑦) ∈ 𝐷𝑡 ) = 2𝑢(𝑢 − 1)P(𝜏 (𝑥,𝑦)meet > 𝑡) ,

where 𝜏 (𝑥,𝑦)meet was defined in (3.13). We will prove the result for the discrete-time,
asynchronous embedded chain and after that, by a Poissonization argument, pass to
the continuous-time version. Recall that, as shown in Section 3.3.3, we denote by 𝑃, 𝐸
the law of the discrete-time walks on 𝐺. Plugging in the latter into (3.37) leads to

𝐸𝑢 [D𝑡𝑛] =
2𝑢(1 − 𝑢)

𝑚

∑︁
𝑥,𝑦∈[𝑛]

𝑃(𝜏 (𝑥,𝑦)meet > 𝑡) 1(𝑥,𝑦) ∈𝐸 .

We need to analyse 𝐸𝑢 [D𝑡𝑛] as a random variable with respect to the graph 𝐺, that is,
w.r.t. P. Therefore, we begin by studying

E[𝐸𝑢 [D𝑡𝑛]] =
2𝑢(1 − 𝑢)

𝑚

∑︁
𝑥,𝑦∈[𝑛]

E[𝑃(𝜏 (𝑥,𝑦)meet > 𝑡) 1(𝑥,𝑦) ∈𝐸]

=
2𝑢(1 − 𝑢)

𝑚

∑︁
𝑥,𝑦∈[𝑛]

E[1(𝑥,𝑦) ∈𝐸E[𝑃(𝜏 (𝑥,𝑦)meet > 𝑡) | (𝑥, 𝑦)]] ,
(3.38)

so that we can analyse the following quantity

Pan | (𝑥,𝑦) (𝜏 (𝑥,𝑦)meet > 𝑡) = E[𝑃(𝜏 (𝑥,𝑦)meet > 𝑡) | (𝑥, 𝑦)] .

Here Pan | (𝑥,𝑦) denotes the usual annealed law, with the difference that the initial
environment is not the empty matching of the heads and tails, but the partial realization
of the environment given by the directed edge (𝑥, 𝑦). We call Pan | (𝑥,𝑦) the conditioned
annealed law, as described in Section 3.3.3.

Moreover, the probability that two fixed vertices 𝑥, 𝑦 ∈ [𝑛] are connected via an
edge 𝑥 → 𝑦 is proportional to their in- and out-degrees, i.e.

P(𝑥 → 𝑦) =
𝑑+𝑥 𝑑

−
𝑦

𝑚 − 𝑜(𝑚) , as 𝑛→ ∞ . (3.39)

Therefore, we can combine (3.38) together with Lemma 3.4.6 and Corollary 3.4.5 in
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order to get

E[𝐸𝑢 [D𝑡𝑛]] =

=
2𝑢(1 − 𝑢)

𝑚

∑︁
𝑥∈[𝑛]
𝑦≠𝑥

𝑑+𝑥 𝑑
−
𝑦

𝑚 − 𝑜(𝑚)

(
1 − Pan | (𝑥,𝑦) (𝜏 (𝑥,𝑦)meet ≤ 𝑡, 𝜏 (𝑥,𝑦)dev > 𝜏

(𝑥,𝑦)
meet ) + 𝑜(1)

)

=
2𝑢(1 − 𝑢)

𝑚

∑︁
𝑥∈[𝑛]
𝑦≠𝑥

𝑑+𝑥 𝑑
−
𝑦

𝑚 − 𝑜(𝑚)

(
1 − Pan | (𝑥,𝑦) (𝜏 (𝑥,𝑦)meet ≤ 𝑡, 𝜏 (𝑥,𝑦)dev > 𝜏

(𝑥,𝑦)
meet )

)
+ 𝑜(1)

(★)
=

2𝑢(1 − 𝑢)
𝑚

∑︁
𝑥,𝑦∈[𝑛]

𝑑+𝑥 𝑑
−
𝑦

𝑚 − 𝑜(𝑚)

[
1 − 2−1 1

𝑑+𝑥
1𝑡>0

−
∑︁

1≤𝑠≤⌊ 𝑡−1
2 ⌋

2−2𝑠−1𝐶𝑠
1
𝑑+𝑥

1
𝑑+𝑦
𝜌𝑠−1 1𝑡>2

]
+ 𝑜(1)

∼ 2𝑢(1 − 𝑢)
[
1 − 1

𝑚2

∑︁
𝑥,𝑦∈[𝑛]

𝑑−𝑦

2
1𝑡>0 −

1
𝑚2

∑︁
𝑥,𝑦∈[𝑛]

𝑑−𝑦

𝑑+𝑦

∑︁
1≤𝑠≤⌊ 𝑡−1

2 ⌋

2−2𝑠−1𝐶𝑠𝜌
𝑠−1 1𝑡>2

]

= 2𝑢(1 − 𝑢)
[
1 − 1

2 𝛿

(
1𝑡>0 +

⌊ 𝑡−1
2 ⌋∑︁
𝑠=1

2−2𝑠 𝐶𝑠 𝜌
𝑠 1𝑡>2

)]
,

(3.40)

where we used that 𝑚 =
∑
𝑥∈[𝑛] 𝑑

+
𝑥 =

∑
𝑥∈[𝑛] 𝑑

−
𝑥 , and we denoted by 𝛿 = 𝛿𝑛 = 𝑚

𝑛

the average in- and out-degree. The additive error 𝑜(1) in the first line can be pulled
out of the sum since the remaining factor term is of order Θ(1). As shown in (3.28),
the additive 𝑜(1) error term in the (★) equality comes from the failing probability
of the coupling between the local exploration of the graph and the G-W tree T (𝑥,𝑦)

and it has an order of magnitude of the type log𝛼 (𝑛)
𝑛

, for some 𝛼 > 1, thus the extra
𝑡𝑛 = 𝑜(log3(𝑛)) factor coming from the sum in the second equality will not affect it.
Finally, in the (★) equality of (3.40) we used the following fact

2𝑢(1 − 𝑢)
𝑚

∑︁
𝑥∈[𝑛]

𝑑+𝑥 𝑑
−
𝑥

𝑚 − 𝑜(𝑚)

(
1 − Pan | (𝑥,𝑦) (𝜏 (𝑥,𝑦)meet ≤ 𝑡, 𝜏 (𝑥,𝑦)dev > 𝜏

(𝑥,𝑦)
meet ) + 𝑜(1)

)
≤
𝑐 𝑑+max 𝑑

−
max

𝑛
→ 0 ,

for some 𝑐 > 0.
We retrieve the desired expression 2𝑢(1 − 𝑢)𝜑(𝑡) after passing to the continuous-
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time setting. In fact

E[E𝑢 [D𝑡𝑛]] =
2𝑢(1 − 𝑢)

𝑚

∑︁
𝑥,𝑦∈[𝑛]

E[P(𝜏 (𝑥,𝑦)meet > 𝑡) 1(𝑥,𝑦) ∈𝐸]

=
2𝑢(1 − 𝑢)

𝑚

∑︁
𝑘≥0

𝑒−2𝑡 (2𝑡)𝑘
𝑘!

( ∑︁
𝑥,𝑦∈[𝑛]

E
[
𝑃

(
𝜏
(𝑥,𝑦)
meet > ⌊ 𝑘 − 1

2
⌋
)
1(𝑥,𝑦) ∈𝐸

] )
(3.40)∼ 2𝑢(1 − 𝑢)𝜑(𝑡) .

(3.41)

We conclude by noticing that (3.36) is a direct consequence of a manipulation in
order to get the generating function of the Catalan numbers. Indeed

∞∑︁
𝑠=1

2−2𝑠 𝐶𝑠 𝜌
𝑠 =

∞∑︁
𝑠=0

𝐶𝑠

(
𝜌

4

)𝑠
− 1 = 𝐺 (𝜌/4) − 1 =

1 −
√︁

1 − 𝜌
𝜌/2

− 1 ,

where

𝐺 (𝑥) = 1 −
√

1 − 4𝑥
2 𝑥

, 𝑥 ∈ (0, 1),

is the generating function of the Catalan numbers, (see, e.g., [GKP94, Ch. 5.4] or
[FL03, Eq. 24]). Moreover, in the expression (3.7), the elements with 𝑘 → ∞ become
dominant as 𝑡 → ∞. This concludes the proof. □

Proposition 3.4.8 (Concentration under short time scales). Under the same as-
sumptions of Proposition 3.4.7 it holds that����E𝑢 [D𝑡𝑛] − 2𝑢(1 − 𝑢) 𝜑(𝑡𝑛)

���� P−→ 0 . (3.42)

Proof. We have to show

E
[
E𝑢 [D𝑡𝑛]2] = (1 + 𝑜(1)) E

[
E𝑢 [D𝑡𝑛]

]2
, (3.43)

so that the desired result then follows by Proposition 3.4.7 and Chebyshev’s inequality.
We start by rewriting

E
[
E𝑢 [D𝑡𝑛]2] = 1

𝑚2

∑︁
𝑒∈𝐸

∑︁
𝑒′∈𝐸

E
[
P𝑢 (𝑒 ∈ 𝐷𝑡𝑛)P𝑢 (𝑒′ ∈ 𝐷𝑡𝑛)

]
=

1
𝑚2

∑︁
𝑥,𝑦∈[𝑛]

∑︁
𝑥′ ,𝑦′∈[𝑛]

E
[
P𝑢 ((𝑥, 𝑦) ∈ 𝐷𝑡𝑛)P𝑢 ((𝑥′, 𝑦′) ∈ 𝐷𝑡𝑛) 1(𝑥,𝑦) ∈𝐸1(𝑥′ ,𝑦′ ) ∈𝐸

]
=

(2𝑢(1 − 𝑢))2

𝑚2

∑︁
𝑥,𝑦∈[𝑛]

∑︁
𝑥′ ,𝑦′∈[𝑛]

E
[
P(𝜏 (𝑥,𝑦)meet > 𝑡𝑛)P(𝜏 (𝑥

′ ,𝑦′ )
meet > 𝑡𝑛) 1(𝑥,𝑦) ∈𝐸1(𝑥′ ,𝑦′ ) ∈𝐸

]
,

(3.44)
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where in the last equality we used the duality between voter model and coalescing
random walks, as stated in the proof of Proposition 3.4.7. Among all vertices 𝑥, 𝑦, 𝑥′, 𝑦′

there are six different cases:

1) 𝑥′ ≠ 𝑥, 𝑦 and 𝑦′ ≠ 𝑥, 𝑦 4) 𝑥′ ≠ 𝑥, 𝑦 and 𝑦′ = 𝑥
2) 𝑥′ = 𝑥 and 𝑦′ ≠ 𝑥, 𝑦 5) 𝑥′ ≠ 𝑥, 𝑦 and 𝑦′ = 𝑦
3) 𝑥′ = 𝑦 and 𝑦′ ≠ 𝑥, 𝑦 6) 𝑥′ = 𝑥 and 𝑦′ = 𝑦

We claim that the only one giving a positive contribution to (3.44) is 1), while all the
other cases are vanishing terms. In fact, if we consider case 2), it holds that

(2𝑢(1 − 𝑢))2

𝑚2

∑︁
𝑥,𝑦∈[𝑛]

∑︁
𝑦′∈[𝑛]\{𝑥,𝑦}

E
[
P(𝜏 (𝑥,𝑦)meet > 𝑡𝑛)P(𝜏 (𝑥,𝑦

′ )
meet > 𝑡𝑛) 1(𝑥,𝑦) ∈𝐸1(𝑥,𝑦′ ) ∈𝐸

]
≤ 1
𝑚2

∑︁
𝑥,𝑦,𝑦′∈[𝑛]

𝑑+𝑥 𝑑
−
𝑦

𝑚

𝑑+𝑥 𝑑
−
𝑦′

𝑚
=

1
𝑚

∑︁
𝑥∈[𝑛]

(𝑑+𝑥 )2

𝑚
≤ 𝐶

𝑚
−→ 0 ,

for some 𝐶 > 0 according to Assumption 3.A. We can use an analogous argument to
show that the contribution of cases 3)- 6) are vanishing. Therefore, we have to study
(3.44) with the quadruple of vertices of type 1), i.e.

(2𝑢(1 − 𝑢))2

𝑚2

∑︁
𝑥,𝑦∈[𝑛]

∑︁
𝑥′ ,𝑦′≠𝑥,𝑦

E
[
P(𝜏 (𝑥,𝑦)meet > 𝑡𝑛)P(𝜏 (𝑥

′ ,𝑦′ )
meet > 𝑡𝑛) 1(𝑥,𝑦) ∈𝐸1(𝑥′ ,𝑦′ ) ∈𝐸

]
.

(3.45)
In what follows we will pass to the discrete-time embedded chain, then moving back
to the original continuous-time one by a Poissonization argument as shown in (3.41).
Conditionally on (𝑥, 𝑦) and (𝑥′, 𝑦′), we are left to study

P2−an |𝜒 (𝜏 (𝑥,𝑦)meet ≤ 𝑡𝑛, 𝜏 (𝑥
′ ,𝑦′ )

meet ≤ 𝑡𝑛) , (3.46)

where 𝜒 is the information containing both (𝑥, 𝑦) and (𝑥′, 𝑦′), while P2−an |𝜒 repres-
ents the annealed law of two couples of independent random walks over the partial
environment given by the empty matching of the edges conditioned on 𝜒.

Similarly to the proof of Proposition 3.4.7, we can (3.45), and thus (3.46), as
follows

P2−an |𝜒 (𝜏 (𝑥,𝑦)meet ≤ 𝑡𝑛, 𝜏 (𝑥,𝑦)dev > 𝜏
(𝑥,𝑦)
meet , 𝜏

(𝑥′ ,𝑦′ )
meet ≤ 𝑡𝑛 , 𝜏 (𝑥

′ ,𝑦′ )
dev > 𝜏

(𝑥′ ,𝑦′ )
meet ) , (3.47)

up to a vanishing additive error term. As in the proof of Proposition 3.4.7, we can
immediately rule out the even times so that we are interested in

P2−an |𝜒 (𝜏 (𝑥,𝑦)meet = 2𝑠1 + 1 , 𝜏 (𝑥,𝑦)dev > 𝜏
(𝑥,𝑦)
meet , 𝜏

(𝑥′ ,𝑦′ )
meet = 2𝑠2 + 1 , 𝜏 (𝑥

′ ,𝑦′ )
dev > 𝜏

(𝑥′ ,𝑦′ )
meet ) ,

(3.48)
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for any 0 ≤ 𝑠1 ≤ 𝑠2 ≤ 𝑡𝑛/2. For 𝑖 ∈ {1, 2}, call (𝑋 (𝑖)
𝑠 , 𝑌

(𝑖)
𝑠 )𝑠≤𝑡 the path up to

time 𝑡 = 𝑡𝑛 of the two couples of annealed walks such that (𝑋 (1)
0 , 𝑌

(1)
0 ) = (𝑥, 𝑦) and

(𝑋 (2)
0 , 𝑌

(2)
0 ) = (𝑥′, 𝑦′), 𝑥, 𝑦 ≠ 𝑥′, 𝑦′. The final two steps that are needed in order to

conclude the proof are the following: first show that the path of the first two walks
w.h.p. never intersects with vertices 𝑥′, 𝑦′; then that the whole path of the second pair
of walks (𝑋 (2)

𝑠 , 𝑌
(2)
𝑠 )𝑠≤𝑡 has w.h.p. empty intersection with (𝑋 (1)

𝑠 , 𝑌
(1)
𝑠 )𝑠≤𝑡 .

Define
G𝑠 =

⋃
𝑟≤𝑠

𝑌
(1)
𝑟 , and A 𝑧,𝑤

𝑠 =
{
𝑧 ∈ G𝑠 ∪ 𝑤 ∈ G𝑠

}
, (3.49)

for any 𝑧, 𝑤 ∈ [𝑛] and 𝑠 ≥ 0. First notice that, for all 𝑠1 ≤ 𝑡/2, the following holds

P2−an |𝜒 (A 𝑥′ ,𝑦′
𝑠1 ) ≤

(
𝑑−
𝑥′ + 𝑑−𝑦′

𝑚 − 𝑜(𝑚)

)𝑠1
≤

(
𝐶
𝑑−max
𝑚

)𝑠1
= 𝑜(1) , (3.50)

for some 𝐶 > 0, as 𝑡𝑛 = 𝑜(log3(𝑛)) and 𝑑−max = 𝑜(𝑛) by Assumption 3.A. Then

P2−an |𝜒 (𝜏 (𝑥,𝑦)meet = 2𝑠1 + 1 , 𝜏 (𝑥,𝑦)dev > 𝜏
(𝑥,𝑦)
meet , 𝜏

(𝑥′ ,𝑦′ )
meet = 2𝑠2 + 1 , 𝜏 (𝑥

′ ,𝑦′ )
dev > 𝜏

(𝑥′ ,𝑦′ )
meet )

= P2−an |𝜒 (𝜏 (𝑥,𝑦)meet = 2𝑠1 + 1 , 𝜏 (𝑥,𝑦)dev > 𝜏
(𝑥,𝑦)
meet , 𝜏

(𝑥′ ,𝑦′ )
meet = 2𝑠2 + 1 , 𝜏 (𝑥

′ ,𝑦′ )
dev > 𝜏

(𝑥′ ,𝑦′ )
meet , (A 𝑥′ ,𝑦′

𝑠1 )𝑐)
+ 𝑜(1) .

Let ( 𝑋̄𝑠, 𝑌𝑠)𝑠≤𝑡 be two independent random walks on 𝐺, with ( 𝑋̄0, 𝑌0) = (𝑋 (2)
0 , 𝑌

(2)
0 )

and such that for all 𝑠 ≤ 𝑡/2
𝑋̄𝑠 ∉ G𝑠1 . (3.51)

We conclude the proof by a coupling argument between (𝑋 (2)
𝑠 , 𝑌

(2)
𝑠 )𝑠≤𝑡 and ( 𝑋̄𝑠, 𝑌𝑠)𝑠≤𝑡 ,

conditionally on (𝑋 (1)
𝑠 , 𝑌

(1)
𝑠 )𝑠≤𝑡 . We let the two processes evolve independently until

𝑋
(2)
𝑠 ∈ G𝑠1 for some 𝑠 ≤ 𝑡, then we reject the move and resample 𝑋 (2)

𝑠 . We say that the
coupling fails at time 𝑟 if it is the first time such that a move is rejected. Fix 𝑠2 ≤ 𝑡/2.
For any 𝑠 ≤ 𝑠2, let F𝑠 be the event in the coupled probability space P̂2−an |𝜒 such that
the above coupling fails at step 𝑠, and let F = ∪𝑠≤𝑠2F𝑠. Then, conditionally on G𝑠1 ,
we have

P̂2−an |𝜒 (F𝑠) ≤
𝑑−max 𝑠1

𝑚
(3.52)

for any 𝑠 ≤ 𝑠2, since this corresponds to the probability of selecting a head of any of
the vertices in G𝑠1 . Thus by the union bound we get

P̂2−an |𝜒 (F ) ≤
𝑑−max 𝑠1 𝑠2

𝑚
≤
𝑑−max log6(𝑛)

𝑚
= 𝑜(1) . (3.53)

Note that in order to prove (3.43) it suffices to showE
[
E𝑢 [D𝑡𝑛]2] ≤ (1+𝑜(1)) E

[
E𝑢 [D𝑡𝑛]

]2,
as the reversed inequality is trivially satisfied. Moreover, notice that we can prove the
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latter w.l.o.g. in the usual discrete-time setting. To this aim, we can upper bound the
discrete-time version of (3.45) as follows

(2𝑢(1 − 𝑢))2

𝑚2

∑︁
𝑥,𝑦∈[𝑛]

∑︁
𝑥′ ,𝑦′≠𝑥,𝑦

𝑑+𝑥 𝑑
−
𝑦

𝑚

𝑑+
𝑥′ 𝑑

−
𝑦′

𝑚

[
1 − 𝑜(1)

−
∑︁
𝑠1,𝑠2≤𝑡

P2−an |𝜒 (𝜏 (𝑥,𝑦)meet = 2𝑠1 + 1 ,

𝜏
(𝑥,𝑦)
dev > 𝜏

(𝑥,𝑦)
meet , 𝜏

(𝑥′ ,𝑦′ )
meet = 2𝑠2 + 1 , 𝜏 (𝑥

′ ,𝑦′ )
dev > 𝜏

(𝑥′ ,𝑦′ )
meet , (A 𝑥′ ,𝑦′

𝑠1 )𝑐, F 𝑐)
]

=
(2𝑢(1 − 𝑢))2

𝑚2

∑︁
𝑥,𝑦∈[𝑛]

𝑑+𝑥 𝑑
−
𝑦

𝑚

[
1 − 2−1 1

𝑑+𝑥
−

∑︁
1≤𝑠1≤𝑡

2−2𝑠1−1𝐶𝑠1−1
1
𝑑+𝑥

1
𝑑+𝑦
𝜌𝑠1−1

]
×

∑︁
𝑥′ ,𝑦′≠𝑥,𝑦

𝑑+
𝑥′ 𝑑

−
𝑦′

𝑚

[
1 − 2−1 1

𝑑+
𝑥′

−
∑︁

1≤𝑠2≤𝑡
2−2𝑠2−1𝐶𝑠2−1

1
𝑑+
𝑥′

1
𝑑+
𝑦′
𝜌𝑠2−1

]
− 𝑜(1)

≤ (2𝑢(1 − 𝑢))2

𝑚2

∑︁
𝑥,𝑦∈[𝑛]

𝑑+𝑥 𝑑
−
𝑦

𝑚

[
1 − 2−1 1

𝑑+𝑥
−

∑︁
1≤𝑠1≤𝑡

2−2𝑠1−1𝐶𝑠1−1
1
𝑑+𝑥

1
𝑑+𝑦
𝜌𝑠1−1

]
×

∑︁
𝑥′ ,𝑦′∈[𝑛]

𝑑+
𝑥′ 𝑑

−
𝑦′

𝑚

[
1 − 2−1 1

𝑑+
𝑥′

−
∑︁

1≤𝑠2≤𝑡
2−2𝑠2−1𝐶𝑠2−1

1
𝑑+
𝑥′

1
𝑑+
𝑦′
𝜌𝑠2−1

]
− 𝑜(1)

≤ (1 + 𝑜(1)) E
[
𝐸𝑢 [D𝑡 ]

]2
,

(3.54)

where in the first inequality we used (3.50), (3.53) and Lemma 3.4.6. We conclude
the proof by noticing that for any 𝜀 > 0 it holds that

P
(��E𝑢 [D𝑡 ] − E

[
E𝑢 [D𝑡 ]

] �� > 𝜀) ≤ Var(E𝑢 [D𝑡 ])
𝜀2

(3.43)
= 𝑜(1) . (3.55)

□

§3.4.2 Long time scales
In this section we extend the result shown in Proposition 3.4.8 to time scales 𝑡 = 𝑡𝑛

that are of any order up to linear, i.e. such that lim𝑛→∞
𝑡𝑛
𝑛

= ℓ, for some ℓ >
0. The following is an adaptation of the results in [ABH+24] to our directed and
inhomogeneous framework. Recall the definitions of deviation time 𝜏dev in (3.21) and
𝜈dev in (3.22). We start by proving a preliminary result that will be the key step bridging
the convergence of short and long time scales. It shows that the tail distribution of the
first meeting time of two independent walks starting right after deviating, thus w.h.p.
far apart in the sense of Proposition 3.4.4, has an exponential decay decreasing linearly
in the size of the graph.
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Lemma 3.4.9. It holds that

max
(𝑢,𝑣) ∈supp𝜈dev

sup
𝑡≥0

��P(𝜏 (𝑢,𝑣)meet > 𝑡) − 𝑒−2 𝑡
𝑛
𝜗−1 �� P−→ 0 , (3.56)

where 𝜗 is as in (3.5).

Proof. The result follows from a modification of Lemma 3.8 in [ABH+24], replacing
𝜏far with 𝜏dev, where in their setting 𝜏far is the first time such that two walks are at
distance at least (log log(𝑛))2. For completeness we will sketch the proof in our
framework. Let (𝑢, 𝑣) ∈ supp𝜈dev, then Proposition 3.4.4 implies that ∀𝑡 ≤ log2(𝑛)

P(𝜏 (𝑢,𝑣)meet < 𝑡) P−→ 0, as 𝑛→ ∞ . (3.57)

In particular
min

(𝑢,𝑣) ∈supp𝜈dev
P(𝜏 (𝑢,𝑣)meet > 𝑡) ≥ 1 − 𝑜P(1) . (3.58)

Let 𝑡⊗2
mix be the mixing time and 𝜋⊗2 := 𝜋 ⊗ 𝜋 the stationary distribution of the

product chain (𝑋,𝑌 ) given by two independent random walks on 𝐺. It holds that
𝑡⊗2
mix < log2(𝑛) with high probability, see [BCS18], [BCS19]. Thus it is sufficient to

prove the result for 𝑡 > 𝑡⊗2
mix. Under such assumption, it holds that,

P(𝜏 (𝑢,𝑣)meet > 𝑡) =
∑︁

𝑥,𝑦∈[𝑛]
𝑥≠𝑦

P(𝜏 (𝑢,𝑣)meet > 𝑡, 𝑋𝑡⊗2
mix

= 𝑥,𝑌𝑡⊗2
mix

= 𝑦, 𝜏
(𝑢,𝑣)
meet > 𝑡⊗2

mix)

=
∑︁

𝑥,𝑦∈[𝑛]
𝑥≠𝑦

P(𝜏 (𝑢,𝑣)meet > 𝑡⊗2
mix, 𝑋𝑡⊗2

mix
= 𝑥,𝑌𝑡⊗2

mix
= 𝑦)P(𝜏 (𝑢,𝑣)meet > 𝑡 − 𝑡⊗2

mix)

≥
∑︁

𝑥,𝑦∈[𝑛]
𝑥≠𝑦

P(𝑋𝑡⊗2
mix

= 𝑥,𝑌𝑡⊗2
mix

= 𝑦)P(𝜏 (𝑢,𝑣)meet > 𝑡 − 𝑡⊗2
mix) − P(𝜏 (𝑢,𝑣)meet ≤ 𝑡⊗2

mix)

≥
∑︁

𝑥,𝑦∈[𝑛]
𝑥≠𝑦

𝜋⊗2(𝑥, 𝑦)P(𝜏 (𝑢,𝑣)meet > 𝑡 − 𝑡⊗2
mix) − 𝑜P(1) ,

(3.59)

where the last inequality is a consequence of (3.58) and the fact that the law of (𝑋,𝑌 )
can be approximated by its stationary measure up to a vanishing error. We conclude by
replacing the desired exponential term in (3.59) thanks to Theorem 3.3.2. The upper
bound follows by a similar argument. □

Proposition 3.4.10. Suppose that the degree sequence satisfies Assumption 3.A. Fix
𝑢 ∈ (0, 1) and let 𝜂0 = Bern(𝑢)⊗𝑉 . Then, for any non-negative sequence 𝑡𝑛 such that
lim𝑛→∞ 𝑡𝑛 = ∞ and lim𝑛→∞

𝑡𝑛
𝑛
= ℓ ≥ 0, it holds that����E𝑢 [D𝑡𝑛] − 2𝑢(1 − 𝑢) 𝜑(∞) 𝑒−2ℓ 𝜗−1

���� P−→ 0 , (3.60)
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where 𝜑(·) is as in (3.7) and 𝜗 as in (3.5).

Proof. Let ℎ★ = ℎ★,𝑛 be a diverging sequence such that ℎ★ = 𝑜(log3(𝑛)). It is enough
to prove the result for 𝑡 = 𝑡𝑛 > ℎ★, as for the complementary case it immediately
follows by Proposition 3.4.8. Fix 𝑥, 𝑦 ∈ [𝑛], and let

𝜎 = 𝜎 (𝑥,𝑦) := 𝜏 (𝑥,𝑦)meet ∧ 𝜏 (𝑥,𝑦)dev . (3.61)

Recall
E𝑢 [D𝑡𝑛] =

2𝑢(1 − 𝑢)
𝑚

∑︁
𝑥,𝑦∈[𝑛]

P(𝜏 (𝑥,𝑦)meet > 𝑡) 1(𝑥,𝑦) ∈𝐸 , (3.62)

and, as a consequence of Lemma 3.4.1 and Corollary 3.4.3, that

P(𝜏 (𝑥,𝑦)dev > ℎ★)
P−→ 0 . (3.63)

Therefore

P(𝜏meet > 𝑡) = P(𝜏meet > 𝑡, 𝜎 = 𝜏
(𝑥,𝑦)
dev , 𝜏

(𝑥,𝑦)
dev ≤ ℎ★) + 𝑜P(1) . (3.64)

It follows that

P(𝜏 (𝑥,𝑦)meet > 𝑡, 𝜎 = 𝜏
(𝑥,𝑦)
dev , 𝜏

(𝑥,𝑦)
dev ≤ ℎ★)

=
∑︁

(𝑢,𝑣) ∈supp(𝜈dev )

∑︁
𝑠≤ℎ★

P(𝜏 (𝑥,𝑦)meet > 𝑡 | 𝜎 = 𝜏
(𝑥,𝑦)
dev , 𝜏

(𝑥,𝑦)
dev = 𝑠, (𝑋𝜎 , 𝑌𝜎) = (𝑢, 𝑣))

× P(𝜎 = 𝜏
(𝑥,𝑦)
dev , 𝜏

(𝑥,𝑦)
dev = 𝑠, (𝑋𝜎 , 𝑌𝜎) = (𝑢, 𝑣))

=
∑︁

(𝑢,𝑣) ∈supp(𝜈dev )

∑︁
𝑠≤ℎ★

P(𝜏 (𝑢,𝑣)meet > 𝑡 − 𝑠)P(𝜎 = 𝜏
(𝑥,𝑦)
dev , 𝜏

(𝑥,𝑦)
dev = 𝑠, (𝑋𝜎 , 𝑌𝜎) = (𝑢, 𝑣))

= 𝑒−2 𝑡
𝑛
𝜗−1 ∑︁

(𝑢,𝑣) ∈supp(𝜈dev )

∑︁
𝑠≤ℎ★

P(𝜎 = 𝜏
(𝑥,𝑦)
dev , 𝜏

(𝑥,𝑦)
dev = 𝑠, (𝑋𝜎 , 𝑌𝜎) = (𝑢, 𝑣))𝑒−2 𝑠

𝑛
𝜗−1

= 𝑒−2ℓ𝜗−1
P(𝜎 = 𝜏

(𝑥,𝑦)
dev , 𝜏

(𝑥,𝑦)
dev ≤ ℎ★) + 𝑜P(1)

(3.65)

as in the last equality we applied Lemma 3.4.9. Finally

P(𝜎 = 𝜏
(𝑥,𝑦)
dev , 𝜏

(𝑥,𝑦)
dev ≤ ℎ★) = P(𝜏 (𝑥,𝑦)dev < 𝜏

(𝑥,𝑦)
meet , 𝜏

(𝑥,𝑦)
dev ≤ ℎ★)

= P(𝜏 (𝑥,𝑦)dev ≤ ℎ★) − P(𝜏 (𝑥,𝑦)dev ≥ 𝜏 (𝑥,𝑦)meet , 𝜏
(𝑥,𝑦)
dev ≤ ℎ★)

(3.63)
= 1 − 𝑜P(1) − P(𝜏 (𝑥,𝑦)dev ≥ 𝜏 (𝑥,𝑦)meet , 𝜏

(𝑥,𝑦)
dev ≤ ℎ★, 𝜏 (𝑥,𝑦)meet ≤ ℎ★)

= 1 − 𝑜P(1) − P(𝜏 (𝑥,𝑦)dev ≥ 𝜏 (𝑥,𝑦)meet , 𝜏
(𝑥,𝑦)
meet ≤ ℎ★)

(3.66)
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If we now plug (3.65) and (3.66) into (3.62) we deduce that

E𝑢 [D𝑡𝑛] = 2𝑢(1 − 𝑢) 𝑒−2 𝑡
𝑛
𝜗−1 1

𝑚

∑︁
𝑥,𝑦∈[𝑛]

[
1

− 𝑜P(1) − P(𝜏 (𝑥,𝑦)dev ≥ 𝜏 (𝑥,𝑦)meet , 𝜏
(𝑥,𝑦)
meet ≤ ℎ★)

]
1(𝑥,𝑦) ∈𝐸

= 2𝑢(1 − 𝑢) 𝜑(ℎ★) 𝑒−2ℓ𝜗−1 + 𝑜P(1) ,

(3.67)

where we exploited Proposition 3.4.8 and the proof of Proposition 3.4.7. We conclude
by approximating 𝜑(ℎ★) with 𝜑(∞). □

Proof of Theorem 3.2.1. The result follows by Proposition 3.4.8 for time scales 𝑡𝑛 =

𝑜(log3(𝑛)) while Proposition 3.4.10 extends it to all the remaining ones.
□
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