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CHAPTER 2
Meeting, coalescence and consensus

time on random directed graphs

This chapter is based on the following paper:

Luca Avena, Federico Capannoli, Rajat S. Hazra, and Matteo Quattropani. Meeting,
coalescence and consensus time on random directed graphs. The Annals of Applied
Probability, 34(5):4940–4997, 2024

Abstract

We consider the so-called Directed Configuration Model (DCM), that is, a random directed
graph with prescribed in- and out-degrees. In this random geometry, we study the meeting time
of two random walks starting at stationarity, the coalescence time for a system of coalescent
random walks, and the consensus time of the classical voter model. Indeed, it is known
that the latter three quantities are related to each other under certain mean field conditions
requiring fast enough mixing time and not too concentrated stationary distribution. Our main
result shows that, for a typical large graph from the DCM ensemble, the meeting time is
well-approximated by an exponential random variable for which we provide the first-order
asymptotics of its expectation, showing that the latter is linear in the size of the graph, and its
pre-constant depends on some explicit statistics of the degree sequence. As a byproduct, we
explore the effect of the degree sequence in changing the meeting, coalescence and consensus
time by discussing several classes of examples of interest also from an applied perspective. Our
approach follows the classical idea of converting meeting into hitting times of a proper collapsed
chain, which we control by the so-called First Visit Time Lemma. The main technical challenge
is related to the fact that in such a directed setting the stationary distribution is random, and it
depends on the whole realization of the graph. As a consequence, a good share of the proof
focuses on showing that certain functions of the stationary distribution concentrate around
their expectations, and on their characterization, via proper annealing arguments.
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§2.1 Introduction

The voter model represents a classical interacting particle system on graphs, which
has been used to mathematically model the formation of consensus across a given
discrete geometry. In the classical model, each vertex is initially assigned either one
of two opinions. Then, at exponential random times, a vertex randomly chooses one
of its neighbors to adopt its opinion. Usually, one is interested in understanding the
distribution of the so-called consensus time, i.e., the first time at which all the vertices
share the same opinion. Voter models were introduced in the seminal works [CS73]
and [HL75], and the analysis of the consensus times on finite graphs was first conducted
in [DW83] and [Cox89]. In particular, in [Cox89] the author provides the exact first-
order approximation of the consensus time on the torus of Z𝑑 in the limit as the size
of the graph tends to infinity. The list of examples in which such precise asymptotics
can be provided is not very long. In [CFR10], the authors compute the exact constant
in the case of a random regular graph. Clearly, in the latter case, the law of the voter
dynamics depends on the specific realization of the graph. Nevertheless, it is possible
to show that the expected consensus time (properly rescaled) converges in probability
to a constant as the size of the graph goes to infinity. In the same spirit, in [HLYZ22]
the authors show that for a configuration model with good expansion properties, the
limiting constant can be interpreted in terms of an annealed observable of the random
walk on the local weak limit of the random graph under consideration. However,
such a constant remains implicit in their work. [FO23] studied the asymptotics of
the consensus time on inhomogeneous random graph models, such as the Chung-Lu
model and the Norros-Reitu model. In their work, the analysis provides the order of
magnitude for the consensus time but not the precise preconstant. More generally,
in [Dur07], the author presents several heuristic arguments showing that in many
classical random graph models, the order of magnitude of the expected coalescence
time is the same as that of the meeting time of two independent random walks (see also
[Ald13]). The rationale underlying these ideas has been made rigorous by Oliveira in
[Oli13]. Indeed, the author determines a set of mean field conditions on the underlying
graph under which the first-order properties of the consensus time can be reduced to
those of the meeting time of two independent stationary random walks. Under such
conditions, the consensus time can be shown to converge to an explicit random variable
in the Wasserstein-1 sense when the size of the graph grows to infinity. Similarly, in
[CCC16], the authors show that a set of similar conditions is sufficient to show that
the density of one of the two opinions converges to a Wright-Fisher diffusion in the
Skorohod topology.

A good way to grasp the heuristic arguments behind the “mean field picture” is
to think in terms of a system of coalescent random walks, which is the stochastic
dual process of the voter model. Dual systems are commonly used to study various
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interacting particle systems, and for more information, we refer the reader to the
classical books [Lig85, Lig99]. As a consequence of such duality, it is possible to
study the behavior of the consensus time by analyzing the coalescence time, which is
the first time at which all walks coalesce into one. The precise connection between
the voter model and coalescent random walks will be covered in detail in Section 2.2.
The idea behind the study of the coalescence time on general geometries goes back to
Kingman’s coalescence [Kin82] on finite partitions of 𝑛 elements and translates into
the complete graph as a pure death process that jumps from 𝑘 particles to 𝑘 − 1, with
𝑘 ∈ 2, . . . , 𝑛, in an exponential time of rate

(𝑘
2
)
. This dynamics reflects the complete

absence of geometry of the complete graph.
In [Oli13] Oliveira shows that there is a large class of geometries characterized

by some minimal conditions that resemble their mean field nature. In this case, one
can observe a very similar behavior to that of the complete graph. As a consequence,
starting with 2 ≤ 𝑘 ≤ 𝑛 particles, if the random walk on the graph mixes fast and the
stationary distribution is roughly uniform, then it is reasonable to expect that the first
coalescence event is approximately exponentially distributed with mean E[𝜏meet]/

(𝑘
2
)
,

where 𝜏meet is the meeting time of two independent stationary random walks. By
iterating this sort of argument, Oliveira is able to conclude that the coalescence time
converges to an infinite sum of exponential random variables with the aforementioned
expectations.

§2.1.1 Our contribution
The picture depicted in [Oli13] provides a clear recipe to compute the first-order
asymptotic of the consensus time on large graphs: check that the mean field conditions
are satisfied and then compute the first-order asymptotic of the meeting time of two
independent walks. In this chapter, we follow such a path in the special case in which
the underlying sequence of graphs are random and directed, sampled from the so-
called Directed Configuration Model (DCM). The DCM is a natural generalization
of the classical configuration model, in which the out- and in-degree of every vertex
are prescribed as parameters of the model, and the graph is constructed through a
uniform matching between the out- and in-stubs. Initially introduced in [CF04], in
the last few years, a number of works have shed some light on the geometry of
these random directed graphs and on the behavior of the random walk on them, see
[BCS18, CP20, CP21, CQ20, CQ21a, CQ21b, CCPQ23]. It is crucial to realize that,
unlike the classical undirected configuration model, the stationary distribution of the
random walk on these graphs is a delicate random object, depending on the global
realization of the graph, not only on its local features.

By invoking the above-mentioned results, we will show that the mean field condi-
tions are satisfied by a typical realization of the directed graph. Doing so, we reduce
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the analysis of the consensus time to that of the meeting time of two stationary random
walks on the graph. A key technical tool for this purpose is the so-called First Visit
Time Lemma (see [CFR10, CF08, MQS21]). The latter is a powerful instrument,
particularly suited to show that, under certain assumptions very similar in spirit to
those in [Oli13], the hitting time of a target vertex by a stationary random walk is
(asymptotically) exponentially distributed. Moreover, the First Visit Time Lemma
provides a computationally tractable expression for its expectation. In our setting, as
we are interested in the meeting time, the underlying graph is the product of a directed
graph from the DCM with itself, and the target is actually a set, i.e., the diagonal of
the product graph. Following the approach of [CFR10, MQS21], in Section 2.5, we
explain how to deal with the First Visit Time Lemma in such a setting.

On the technical side, the major effort of this work lies in computing the exact
asymptotic preconstant of the meeting time. To carry out the approach mentioned
in the paragraph above, beyond the classical tree approximation of sparse random
graphs and the techniques introduced in the aforementioned papers, it is required
the analysis of a new process, that we call random walks with reset. The process
can be described as follows: two walks evolves independently up to their meeting,
and when sitting on the same vertex they are “reset” somewhere else on the graph.
However, such a reset distribution depends on the stationary distribution of the random
walk, specifically on its square, 𝜋2. As mentioned earlier, the stationary distribution
is a complex random object that depends on the entire realization of the graph. In
particular, resetting the walks according to 𝜋2 imposes some a priori limitations on
the use of annealing arguments. Roughly speaking, it is impossible to generate the
random walks with reset together with the realization of the graph by letting the walks
create the matching along their exploration. Indeed, when the two walks meet for the
first time, in order to perform the reset, they need to know the entire realization of the
graph. To overcome this difficulty, we study the random walks with reset in the case
where the reset distribution, 𝜇, is prescribed and does not depend on the graph. By
doing so, we show that the quantities we are interested in only depend on a few features
of the distribution 𝜇. A posteriori, we demonstrate that such features concentrate for
the distribution 𝜋2 and, by means of some continuity argument, we can translate the
case of a prescribed 𝜇 to the case 𝜇 = 𝜋2. A more detailed discussion on this and the
other technical novelties is postponed to Sections 2.5, 2.6, and 2.7.

On the applied side, our study of the voter model on random graphs from the
DCM ensemble is mostly motivated by the literature in network science and complex
systems. In the last 20 years, physicists and computer scientists have produced an
incredible amount of research about multi-agent systems on complex networks. A
natural first question in such research programs is related to the effect of first-order
conditions (i.e., the degrees of the network) on the speed at which information, such
as news, infectious diseases, and opinions, travels along the network. These reasons
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have made the study of the configuration models very popular in that community,
and rigorous mathematical results have nowadays confirmed many of the physicists’
predictions regarding these models. In this scenario, directed graph models are still
less understood compared to their undirected counterparts. As mentioned above, the
technical complications introduced as a byproduct of the edge orientations might be
among the causes of this lack of results up until very recent times. On the other hand, it
is clear that directed graphs constitute the natural model for those real-world networks
in which directionality plays a prominent role, such as the World Wide Web or social
networks like Twitter or Instagram.

Our main results show an explicit characterization of the expected consensus time
as a function of a few simple statistics of the degree distributions. In other words,
with our results at hand, it is possible to carry out a complete and rigorous analysis
of the effect of the first-order properties on the speed of information diffusion in large
directed networks, using the DCM as a natural benchmark. In Section 2.3.1, we invest
some time in discussing the results of this analysis with several relevant examples.
Finally, in Section 2.3.1, we provide the reader with an easily readable take-home
message.

§2.1.2 Outline of the chapter
Before delving into the core of this chapter, we conclude this section with an outline of
the chapter, presenting the entire structure and how the flow of arguments is articulated
throughout the rest of the work.

(a) Section 2.2 is devoted to the presentation of the models of interest, the required
notation, and the aforementioned mean field conditions. In particular, in Section
2.2.1, we introduce the random walk on a directed graph. Section 2.2.2 contains
a formal description of the voter model, while the duality with coalescent random
walks is introduced in Section 2.2.3. In Section 2.2.4, we formally introduce
the mean field conditions, recalling the results in [Oli13]. Finally, in Section
2.2.5, we rigorously define the Directed Configuration Model and recall its main
properties.

(b) In Section 2.3, we state our main technical contribution in Theorem 2.3.1 and
its consequence on the consensus time in the subsequent Corollary 2.3.2. In
Section 2.3.1, we utilize these results to analyze the consensus time as a function
of the degree sequences.

(c) Section 2.4 describes the geometry of the DCM and the properties of the random
walk on such random graphs, presenting the results from the literature that will
be useful in the rest of the analysis.

(d) In Section 2.5, we provide a complete account of the proof strategy. In particular,
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after recalling the First Visit Time Lemma, we argue that the main result in
Theorem 2.3.1 boils down to three main claims: Propositions 2.5.5, 2.5.6, and
2.5.7. These propositions will be proved later in Sections 2.6, 2.7, and 2.8. A
detailed discussion on the organization of the latter three sections is postponed
to Section 2.5.2.

(e) Finally, Section 2.9 concludes the chapter with some open problems and possible
future directions of research.

§2.2 Models and background

Before introducing formally the models of interest, we describe the general geometric
setup that will considered in the whole chapter, introducing our notations for directed
graphs and random walks on them.

We will be interested in finite directed multigraphs (from now on simply graphs)
with 𝑛 ∈ N labeled vertices, 𝐺 ( [𝑛], 𝐸), where [𝑛] = {1, . . . , 𝑛} and 𝐸 is a multiset
with elements in [𝑛]2. We associate to 𝐺 its adjacency matrix

𝐴(𝑥, 𝑦) := |{𝑒 ∈ 𝐸 | 𝑒 = (𝑥, 𝑦)}| = # edges from 𝑥 to 𝑦 , (2.1)

where, in this notation, we often refer to 𝑥 as the source and to 𝑦 as the destination of
the edge 𝑒 = (𝑥, 𝑦). For each 𝑥 ∈ [𝑛], we let

𝑑+𝑥 =
∑︁
𝑦∈[𝑛]

𝐴(𝑥, 𝑦) , 𝑑−𝑥 =
∑︁
𝑦∈[𝑛]

𝐴(𝑦, 𝑥) ,

denote the out- and the in-degree of 𝑥, respectively. Notice that we allow multiple
edges with the same source and destination, as well as self-loops, i.e., edges in which
the source and the destination coincide.

§2.2.1 Random walks on directed graphs
We let (𝑋𝑡 )𝑡≥0 denote the continuous-time random walk on 𝐺, which is the Markov
process with state space [𝑛] and infinitesimal generator given by

𝐿rw 𝑓 (𝑥) =
∑︁
𝑦∈[𝑛]

𝐴(𝑥, 𝑦)
𝑑+𝑥

[ 𝑓 (𝑦) − 𝑓 (𝑥)] , 𝑓 : [𝑛] → R . (2.2)

Let P([𝑛]) denote the set of probability distributions on [𝑛]. Fixed an initial distri-
bution 𝜇 ∈ P([𝑛]) for the random walk, we let P𝜇 and E𝜇 denote the law and the
expectation on the space of trajectories of (𝑋𝑡 )𝑡≥0 with 𝑋0 ∼ 𝜇. Moreover, when 𝜇 is
concentrated on a single vertex 𝑥 ∈ [𝑛], we simply write P𝑥 (respectively, E𝑥).
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In the following, we will assume 𝐺 to be ergodic, that is, 𝐺 admits a strongly
connected component such that every vertex that is not in the component has at least
a (directed) path leading to it. The latter requirement immediately implies that the
random walk on 𝐺 admits a unique stationary distribution, which we denote by 𝜋,
such that

lim
𝑡→∞

P𝜇 (𝑋𝑡 = 𝑥) = 𝜋(𝑥) , ∀𝑥 ∈ [𝑛] , 𝜇 ∈ P([𝑛]) . (2.3)

Notice that, if 𝐺 is ergodic but not strongly connected, then we have supp(𝜋) ⊊ [𝑛].
With the aim of quantifying the speed of the convergence in (2.3), we define the

worst-case total-variation distance at time 𝑡 as

𝑑TV(𝑡) := max
𝑥∈[𝑛]

∥P𝑥 (𝑋𝑡 = ·) − 𝜋∥TV =
1
2

max
𝑥∈[𝑛]

∑︁
𝑦∈[𝑛]

|P𝑥 (𝑋𝑡 = 𝑦) − 𝜋(𝑦) | , (2.4)

and we consider the mixing time

𝑡mix := inf
{
𝑡 ≥ 0 : 𝑑TV(𝑡) ≤

1
2𝑒

}
. (2.5)

In this work we will be particularly interested in considering a system of two
independent random walks, that is, the continuous time Markov process (𝑋𝑡 , 𝑌𝑡 )𝑡≥0 on
[𝑛]2 associated to the generator

𝐿⊗2
rw = 𝐿rw ⊗ Id + Id ⊗ 𝐿rw .

We will consider the stopping time

𝜏meet := inf{𝑡 ≥ 0 | 𝑋𝑡 = 𝑌𝑡 } , (2.6)

called meeting time, representing the first time in which the two independent walks
meet. Clearly, the law of 𝜏meet strongly depends on the initial distribution of the two
walks.

Now that we set up the geometric framework and all the required preliminary
notations, we are in shape to introduce the two models of interested for this work: the
voter model, in Section 2.2.2, and the coalescent random walks, in Section 2.2.3.

§2.2.2 Voter model & consensus time
Let 𝐺 ( [𝑛], 𝐸) be an ergodic graph and call the voter model on 𝐺 the continuous-time
Markov process (𝜂𝑡 )𝑡≥0 with state space {0, 1}[𝑛] , and infinitesimal generator given
by

𝐿voter 𝑓 (𝜂) =
∑︁
𝑥∈[𝑛]

∑︁
𝑦∈[𝑛]

𝐴(𝑥, 𝑦)
𝑑+𝑥

[ 𝑓 (𝜂𝑥→𝑦) − 𝑓 (𝜂)] , 𝑓 : {0, 1}[𝑛] → R , (2.7)
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where

𝜂𝑥→𝑦 (𝑧) :=

{
𝜂(𝑦), if 𝑧 = 𝑥 ,
𝜂(𝑧), otherwise .

In words, the variable 𝜂𝑡 (𝑥) represents the state of node 𝑥 at time 𝑡, being either
0 or 1, to be interpreted as the binary opinion of the individual 𝑥 at time 𝑡. The
Markov evolution encoded in (2.7) can be phrased as follows. Each vertex 𝑥 ∈ [𝑛] has
an exponential clock of rate 1, when such a clock rings, vertex 𝑥 chooses one of its
out-edges at random and adopts the opinion of the vertex at the other extreme of the
edge. See also Figure 2.1 to help visualization.

𝑥 𝑦

𝑧 𝑤

𝑥 𝑦

𝑧 𝑤

𝑥 𝑦

𝑧 𝑤

𝑥 𝑦

𝑧 𝑤

𝑥 𝑦

𝑧 𝑤

Figure 2.1: From left to right, up-to-down, the pictures describe a possible evolution of the
voter model with generator as in (2.7) on a directed graph with 𝑛 = 4 vertices and initial
opinions as in the first picture. In particular, at each step, the vertices with green boundary
are the ones whose exponential clock rings first, while the corresponding green edges are the
randomly selected ones among the out-neighbour on the green vertex.

Under the ergodicity assumption, the voter model is a Markov chain with only
two absorbing states, i.e., the monochromatic configurations 0̄ and 1̄ consisting of all
0’s and 1’s, respectively. As a consequence, regardless of the initial configuration of
opinions, almost surely the system reaches in finite time one of these absorbing state.
This naturally leads to the question of understanding the distribution of the consensus
time, defined as

𝜏cons := inf
{
𝑡 ≥ 0 : 𝜂𝑡 ∈ {1̄, 0̄}

}
, (2.8)

as a function of the underlying geometry.

§2.2.3 Coalescent random walks
As we will now argue, it is convenient to construct the trajectories of the process
(𝜂𝑡 )𝑡≥0 by using a collection of independent Poisson processes indexed by the directed
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(b)

Figure 2.2: Picture (a) is the graphical representation of the voter model on the graph shown
in Figure 2.1; while picture (b) represents its dual time reversal consisting of a system of
coalescing random walks (CRWs). The two side arrows in the pictures represent the direction
of time: in the voter model it runs upwards, while in the CRWs systems it runs downwards. In
the voter model, picture (a), when the exponential clock associated to the edge 𝑥 → 𝑦 rings,
we attach an arrow from 𝑥 to 𝑦. We let opinions spread vertically until they reach the tail of a
arrow. In that case the opinion changes according to the one sitting on the head of the arrow.
In order to trace back in time the evolution of the opinions, at the initial time (corresponding
to the final time for the voter model) we put independent random walks on each vertex and let
them evolve back in time, following the same black arrows, from the tail to the head, with the
added coalescing feature. As we can observe in (b), the two walks starting in 𝑥 and 𝑧 have
coalesced into one particle that ended up in vertex 𝑥. This means that in the voter model the
vertices 𝑥 and 𝑧 share the same opinion at the final time, as it can be checked in (a), and such
opinion comes from the original opinion of 𝑥.

edges, 𝑥 → 𝑦, with corresponding intensities 1/𝑑+𝑥 . When the clock associated to an
edge rings, say 𝑥 → 𝑦, the vertex at the origin of the edge, 𝑥, adopts the opinion of the
vertex at the destination of the edge, 𝑦.

As we will now recall, this Poissonian construction allows to couple the dynamics
of the voter model with that of a dual process, known as coalescent random walks. The
latter is a continuous time stochastic process on [𝑛]𝑛 which can be described as follows:
the process starts with a random walk sitting on each vertex of the graph. Marginally,
each random walk evolves according to the generator (2.2), with the only difference
that, when two (or more) walks sit on the same vertex, then they stick together and
continue their trajectory as a single walk. Clearly, under the ergodicity assumption,
in finite time all the walks will coalesce on a single walk, which will then continue
its trajectory according to the generator in (2.2). To simplify the reading, let (𝑋 𝑥𝑡 )𝑡≥0
denote the trajectory of the walk starting at 𝑥 ∈ [𝑛], and define the coalescence time
as the first time at which all the walks are on the same site, i.e.,

𝜏coal := inf{𝑡 ≥ 0 : 𝑋 𝑥𝑡 = 𝑋
𝑦
𝑡 ,∀𝑥, 𝑦 ∈ [𝑛]} . (2.9)

Now observe that the graphical representation used for the construction of the voter
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model dynamics can be used also to sample the trajectory of the coalescent random
walks: reversing the direction of time, when the clock associated to the edge 𝑥 → 𝑦

rings, then the walk(s) sitting at 𝑥 (if any), move to 𝑦. In other words, the voter
model, the random walk and the system of coalescing random walks can be sampled
using the same graphical construction as a source of randomness. Moreover, the same
conclusion still holds true for a system of two independent random walks, as soon as
we restrict to 𝑡 ≥ 0 smaller than the stopping time 𝜏meet in (2.6). Therefore, there is no
ambiguity in denoting all their laws and expectations with the same symbols, P and
E, respectively.

The beauty of the mentioned graphical construction can be realized by observing
that it can be used to describe the ancestral history of the opinions on our graph.
Indeed, for any collection 𝑥1, . . . , 𝑥𝑘 ∈ [𝑛] of distinct vertices and a prescribed time 𝑡,
it is not hard to realize that

(𝜂𝑡 (𝑥1), . . . , 𝜂𝑡 (𝑥𝑘))
𝑑
= (𝜂0

(
𝑋
𝑥1
𝑡 ), . . . , 𝜂0(𝑋 𝑥𝑘𝑡 )

)
, (2.10)

as exemplified in Figure 2.2. It is common to refer to the distributional relation in (2.10)
by saying that the two models, voter and coalescent random walks, are dual of each
other.

An immediate consequence of (2.10) is that the coalescence time in (2.9) is related
to the consensus time in (2.8) by the stochastic domination

𝜏cons ⪯ 𝜏coal ,

which holds regardless of the initial configuration 𝜂0.
Having introduced the models, their properties, and all the required notations, we

are now ready to discuss in some detail part of the literature about them. In particular,
we will focus on presenting some condition on the underlying sequence of graphs
which ensure that the asymptotic behaviour of the two processes is determined by
some easier graph feature, i.e., the meeting time of two independent random walks
started at stationarity.

§2.2.4 Mean field conditions for coalescence and consensus
As mentioned in the Introduction, the very first example in which a detailed analysis
of the behaviour of the voter and the coalescence dynamics can be carried out is that
of a complete graph, which is particularly simple due to the absence of geometry. In
such a case, the distribution of 𝜏coal can be computed explicitly, see [AF02, Ch. 14]
and [Oli13], obtaining

𝜏coal
(𝑛 − 1)/2

𝑑
=

𝑛∑︁
𝑖=2

𝑍𝑖 , (2.11)
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where the 𝑍𝑖’s are independent random variables with law

𝑍𝑖
𝑑
= Exp

((
𝑖

2

))
, 𝑖 ≥ 2 . (2.12)

In particular, by taking the expectation one can conclude that E[𝜏coal] = 𝑛 − 1. To
interpret the denominator in (2.11), notice that, recalling the definition of 𝜏meet in (2.6),

E𝜋⊗𝜋 [𝜏meet] ∼
1
2
(𝑛 − 1) ,

where the notation 𝜋 ⊗ 𝜋 stands for the fact that we assume the two walks to start
independently with law 𝜋, where in this case 𝜋 is uniform over [𝑛]. In other words,
the distributional identity in (2.11) can be rephrased by saying that 𝜏coal converges in
distribution to the sum of exponential random variables when scaled accordingly to
E𝜋⊗𝜋 [𝜏meet].

A natural question is whether this picture is true in more general setups. In fact, one
would expect that, if the random walk on the graph mixes quickly and the stationary
distribution is not too concentrated, then the coalescence time behaves as in (2.11) after
a proper rescaling. Indeed, the above scenario can be made rigorous in the case of 𝑑-
dimensional tori (with 𝑑 ≥ 3), [Cox89], and for most regular graphs, [CFR10]. In this
spirit, in [Oli13] Oliveira determines a set of mean field conditions on the underlying
graph sequence ensuring the convergence in distribution of the rescaled coalescence
time to the sum of random variables in (2.11). In such a general framework, the scaling
factor will be given by E𝜋⊗𝜋 [𝜏meet].

Before stating Oliveira’s results we point out that, to ease the reading, we spe-
cialize the statements to the setting of random walks on directed graphs introduced
above, so that they look simpler (and less general) than in the original paper [Oli13].
We also remark that here and throughout the whole chapter, when considering dis-
tances between probability measures, we will adopt the standard abuse of notation of
identifying random variables with their law.

Theorem 2.2.1 (Theorem 1.2 in [Oli13]). Consider a sequence of ergodic graphs,
𝐺 = 𝐺𝑛 ( [𝑛], 𝐸), and let 𝜋 = 𝜋𝑛 be the stationary distribution of the random walk on
𝐺. Let 𝜋max := max𝑥∈[𝑛] 𝜋(𝑥) and assume that

lim
𝑛→∞

𝑡mix 𝜋max log5(𝑛) = 0 . (2.13)

Then

lim
𝑛→∞

𝑑𝑊

(
𝜏coal

E𝜋⊗𝜋 [𝜏meet]
,
∑︁
𝑘≥2

𝑍𝑘

)
= 0 , (2.14)

where 𝑑𝑊 denotes the 𝐿1 Wasserstein distance, and the 𝑍𝑘’s are independent random
variables with law as in (2.12). In particular,

lim
𝑛→∞

E[𝜏coal]
E𝜋⊗𝜋 [𝜏meet]

= 2 . (2.15)
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In words, the latter theorem tells us that as soon as we are able to verify (2.13),
then the behavior of the coalescence time is the same as in the complete graph, and
only the scaling factor, E𝜋⊗𝜋 [𝜏meet], needs to be determined. A similar picture holds
for the voter dynamics. Let 𝑢 ∈ (0, 1) and consider again 𝐺 to be the complete graph.

Indeed, it turns out that the asymptotic law of the consensus time can be expressed
similarly to that of 𝜏coal, as pointed out by Oliveira in the following result.

Theorem 2.2.2 (Theorem 1.3 in [Oli13]). Under the same assumption of Theorem
2.2.1, the consensus time of the voter model started with a product of i.i.d. Bernoulli
opinions of parameter 𝑢 ∈ (0, 1) satisfies

lim
𝑛→∞

𝑑𝑊

(
𝜏cons

E𝜋⊗𝜋 [𝜏meet]
,
∑︁
𝑘>𝐾

𝑍𝑘

)
= 0 , (2.16)

where

𝐾
𝑑
= 𝑈𝐴+ (1−𝑈)𝐵 , 𝑈

𝑑
= Bern(𝑢) , 𝐴

𝑑
= Geom(1−𝑢) , 𝐵

𝑑
= Geom(𝑢) ,

(2.17)
and the 𝑍𝑘’s are independent random variables with law as in (2.12). In particular,

lim
𝑛→∞

E𝑢 [𝜏cons]
E𝜋⊗𝜋 [𝜏meet]

= −2 [(1 − 𝑢) log(1 − 𝑢) + 𝑢 log(𝑢)] . (2.18)

Notice that the function of 𝑢 on the right-hand side of (2.18) is symmetric around
1
2 in the interval [0, 1] and it is maximal for 𝑢 = 1

2 where it attains the value 2 log(2) ≈
1.38. Thanks to Theorems 2.2.1 and 2.2.2, one can conclude that an asymptotic
analysis of the consensus time and of the coalescence time of can be derived, under
the mean field conditions, by a precise asymptotic of the expected meeting time along
the graph sequence.

§2.2.5 Directed configuration model (DCM)
In this section we formally introduce the random graph model that we will consider
throughout all the chapter and state some of its typical properties. The Directed
Configuration Model (DCM) is a natural generalization to the directed setting of the
classical configuration model introduced by Bollobas [Bol80] in the early ’80s . See
also [Hof17] for a modern introduction to the topic. For each 𝑛 ∈ N fix two finite
sequences d+ = d+

𝑛 = (𝑑+𝑥 )𝑥∈[𝑛] ∈ N𝑛 and d− = d−
𝑛 = (𝑑−𝑥 )𝑥∈[𝑛] ∈ N𝑛0 such that

𝑚 = 𝑚𝑛 :=
∑︁
𝑥∈[𝑛]

𝑑+𝑥 =
∑︁
𝑥∈[𝑛]

𝑑−𝑥 ,

and let 𝑑±min = min𝑥∈[𝑛] 𝑑±𝑥 and 𝑑±max = max𝑥∈[𝑛] 𝑑±𝑥 . We will work under the following
assumptions on the degree sequences (d+, d−):
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Assumption 2.A (Degree assumptions). There exists some constant 𝐶 ≥ 2 such that
for all 𝑛 ∈ N

(a): 𝑑+min ≥ 2 ,
(b): 𝑑+max ≤ 𝐶 ,
(c): 𝑑−max ≤ 𝐶 .

(2.19)

■

Remark 2.2.3. As we will discuss more extensively in Section 2.5.1, it is worth to
notice that most of the proofs in this chapter work under weaker assumptions. We
decided to state our results under the above degree assumptions so to rely on previous
results, [CP20], on the minimum value of the stationary distribution 𝜋. However,
we believe that the result in [CP20] could be extended to much weaker assumptions.
Nevertheless, an extension of the result in [CP20] is out of the scope of this work.

Notice that assumptions (b) and (c) imply that our graphs are sparse, in the sense
that 𝑚 ≍ 𝑛, and that there are no restrictions on the minimal in-degree, therefore
vertices with in-degree 0 are allowed. Assign to each vertex 𝑥 ∈ [𝑛], 𝑑−𝑥 labeled heads
and 𝑑+𝑥 labeled tails, denoting respectively the in- and out-stubs of 𝑥. Call 𝐸−

𝑥 and
𝐸+
𝑥 the sets of labeled heads and tails of 𝑥, respectively. Further, let 𝐸± = ∪𝑥∈[𝑛]𝐸±

𝑥 .
Let 𝜔 = 𝜔𝑛 be a uniformly random bijection 𝜔 : 𝐸+ → 𝐸−, viewed as a matching
between tails and heads. The latter bijection can be projected to produce a directed
graph 𝐺 = 𝐺𝑛 ( [𝑛], 𝐸), obtained by adding a directed edge 𝑥 → 𝑦 for every 𝑓 ∈ 𝐸−

𝑦

and 𝑒 ∈ 𝐸+
𝑥 such that 𝜔(𝑒) = 𝑓 . In what follows we let P (resp. E) denote the

probability law (resp. the expectation) of the sequence of random bijections (𝜔𝑛)𝑛∈N,
and we will say that a sequence of graphs is sampled from DCM(d+, d−) to mean that
for every 𝑛 the graph 𝐺 = 𝐺𝑛 is sampled according to the procedure above. We will
be interested in studying the asymptotic regime in which 𝑛→ ∞, and we will say that
𝐺 has a certain property with high probability (w.h.p.), if the probability that 𝐺𝑛 has
such a property goes to 1 as 𝑛 goes to infinity.

Being 𝐺 random, so it is the law of the random walk on it. In particular, the
stationary distribution 𝜋 is a non-trivial random variable, and the same holds for
E𝜋⊗𝜋 [𝜏meet]. Nevertheless, as we will formalize in Section 2.4.2, it is known that
under Assumption 2.B (see [CP21, CCPQ23, BCS19]), w.h.p.,

• 𝐺 is ergodic and |supp(𝜋) | ≍ 𝑛, hence there exists a unique stationary distribu-
tion, 𝜋, of random walk on 𝐺,

• the invariant distribution 𝜋 is not too concentrated, i.e., 𝜋max =
log𝑂 (1) (𝑛)

𝑛
,

• the random walk on 𝐺 mixes fast, i.e., 𝑡mix = Θ(log(𝑛)).
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Hence, the mean field conditions in (2.13) are satisfied w.h.p.. To the aim of controlling
the expected meeting time, it is worth to introduce the following quantities which will
play a key role in our analysis. It is first convenient to define the probability distribution

𝜇in(𝑥) = 𝜇in,𝑛 (𝑥) :=
𝑑−𝑥
𝑚
, 𝑥 ∈ [𝑛] , (2.20)

that is, the law of a vertex sampled with probability proportional to its in-degree. We
will further consider the following functions of the degree sequences

𝛿 = 𝛿𝑛 :=
𝑚

𝑛
, 𝛽 = 𝛽𝑛 :=

1
𝑚

∑︁
𝑥∈[𝑛]

(𝑑−𝑥 )2 ,

𝜌 = 𝜌𝑛 :=
∑︁
𝑥∈[𝑛]

𝜇in(𝑥)
1
𝑑+𝑥

, 𝛾 = 𝛾𝑛 :=
∑︁
𝑥∈[𝑛]

𝜇in(𝑥)
𝑑−𝑥
𝑑+𝑥

,

(2.21)

Notice that under Assumption 2.A we have that all the four quantities are of order
Θ(1) and, moreover, satisfy the bounds

𝜌 ≤ 1
2
, 𝛾 ≥ 1 , 𝛽 ≥ 2𝛾 , 𝛿 ≥ 2 . (2.22)

For the sake of intuition, let us provide an interpretation for the quantities in (2.21).
In particular, it is immediate to interpret the first two parameters in a graph theoretical
way: 𝛿 is simply the mean degree (equivalently, in- or out-) of the graph, while 𝛽 is
the ratio between the second and the first moment of the in-degree distribution. On
the other hand, it will be convenient to interpret 𝜌 and 𝛾 simply as expectations with
respect to 𝜇in.

As we will show in the next section, the typical asymptotic behavior of the ex-
pected meeting time on a graph 𝐺 sampled with the above procedure depends on the
parameters of the model, d = (d+, d−), only through the quantities in (2.21).

§2.3 Main results

We are now ready to state our main results. Throughout this section Pwill represent the
law of the sequence of graphs sampled, for all 𝑛 ∈ N, according to DCM(d+

𝑛 , d−
𝑛 ), for

some prescribed (sequence of) degree sequences (d+
𝑛 , d−

𝑛 )𝑛≥1 satisfying Assumption
2.A. Provided that it exists and is unique, let 𝜋 denote the unique stationary distribution
of the random walk on 𝐺. To avoid degeneracy, in what follows we assume that, in
case 𝜋 is not well defined, then the same symbol 𝜋 denotes uniform distribution on
[𝑛].

In order to state the main result we need to introduce the following quantities which
depend on the degree sequences through the functions defined in (2.21):

𝔭 = 𝔭𝑛 (d+, d−) :=
1
𝛿

(
𝛾 − 𝜌
1 − 𝜌 + 𝛽 − 1

)
≥ 1 , (2.23)
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𝔮 = 𝔮𝑛 (d+, d−) :=
𝛾 − 𝜌

𝛾 − 𝜌 + (𝛽 − 1) (1 − 𝜌) =

(
1 + (𝛽 − 1) 1 − 𝜌

𝛾 − 𝜌

)−1
≤ 1 , (2.24)

and

𝔯 = 𝔯𝑛 (d+, d−) :=
𝜌

𝜌 − 𝔮

(
1 −

√︁
1 − 𝜌

) ≥ 1 . (2.25)

To enhance clarity, we will now offer a heuristic interpretation of the variables 𝔭,
𝔮, and 𝔯, deferring a more comprehensive explanation of their significance to Section
2.5.

As we will show in Section 2.7, the first two quantities can be interpreted as expect-
ations in the probability space P of functions depending on the stationary distribution
of the random walk on 𝐺. In particular, when 𝑛→ ∞,

𝔭 ≈ E
[
𝑛

∑︁
𝑥∈[𝑛]

𝜋(𝑥)2
]
, 𝔮 ≈ E

[
𝑛

𝔭

∑︁
𝑥∈[𝑛]

𝜋2(𝑥) 1
𝑑+𝑥

]
. (2.26)

In words, 𝔭 is the (rescaled) expected sum of the entries of 𝜋2, while 𝔮 is the expectation
of the average inverse-out degree of a vertex sampled with probability proportional
to 𝜋2. As we will show below, the random variables within the parenthesis in (2.26)
concentration around their expectation, that are asymptotically equal to 𝔭 and 𝔮,
respectively. As for the quantity 𝔯, we will see in Section 2.7 that it can be seen as the
inverse of the probability that two random walks on an certain infinite Galton-Watson
tree never meet, assuming that one walk starts at the root, and the other one at one of
its children.

The next theorem, which is the main technical contribution of the chapter, shows the
weak convergence in probability of the meeting time to an exponential random variable.
As a consequence, the random variable E𝜋⊗𝜋 [𝜏meet]/𝑛 converges in probability to a
constant, depending only on the degree sequences, which we explicitly characterize.

Theorem 2.3.1 (Meeting times on the DCM). Let (d+, d−) satisfy Assumption 2.A
and 𝐺 be sampled from DCM(d+, d−). Then, letting 𝜏𝜋⊗𝜋meet denote the first meeting
time of two independent stationary random walks, it holds

𝑑𝑊

(
𝜏𝜋⊗𝜋meet

1
2 𝜗 × 𝑛

,Exp(1)
)

P−→ 0 , (2.27)

with
𝜗 = 𝜗𝑛 (d+, d−) :=

𝔯

𝔭
, (2.28)

where 𝔭 and 𝔯 are defined as in (2.23), and (2.25), respectively.
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Before discussing in details the above result, we first state its immediate con-
sequences for the voter model and coalescent random walks, based on the discussion
of the mean field conditions provided in Subsection 2.2.4.

Corollary 2.3.2 (Coalescence and consensus time on the DCM). Let (d+, d−) satisfy
Assumption 2.A and 𝐺 be sampled from DCM(d+, d−). Then,

(i) Recalling the definition of 𝜏coal in (2.9),

𝑑𝑊

(
𝜏coal

1
2 𝜗 × 𝑛

,
∑︁
𝑘≥2

𝑍𝑘

)
P−→ 0 . (2.29)

where the 𝑍𝑘’s are independent random variables with law as in (2.12).

(ii) Consider the voter model on 𝐺 with 𝜂0 =
⊗

𝑥∈[𝑛] Bern(𝑢) and 𝑢 ∈ (0, 1).
Using the definitions in Theorem 2.2.2,

𝑑𝑊

(
𝜏cons

1
2 𝜗 × 𝑛

,
∑︁
𝑘≥𝐾

𝑍𝑘

)
P−→ 0 , (2.30)

where 𝐾 is independent from the collection (𝑍𝑘)𝑘≥2 and is defined as in (2.17).

Remark 2.3.3. It is worth to remark that the result in Theorem 2.2.2 can be extend to
an arbitrary number of opinions, as soon as the initial distribution can be expressed a
product of i.i.d. random variables. As a consequence, the convergence in Corollary
2.3.2(ii) extend as well. Although, we prefer to present our results on the simpler case
of the two-opinion model, in order to not deviate focus from the general structure and
the novelties of our results.

Remark 2.3.4. It is known that, beyond the distribution of the coalescence and the
consensus time, the precise knowledge of the expected meeting time can be used
to determine the scaling limit of certain real valued processes. In particular, in
[CCC16] the authors show that rescaling time by E𝜋⊗𝜋 [𝜏meet], the weighted average
of vertices having opinion 1 converges to the celebrated Wright-Fisher diffusion (see,
e.g., [Lig85]) in the Skorohod topology. Moreover, in [Che13, Che18, Che23, CC18],
similar results are obtained for some modification of the voter model related to the
theory of evolutionary games.

§2.3.1 Discussion and examples
In Theorem 2.3.1 and Corollary 2.3.2 we provide a complete characterization of the
distribution of meeting, coalescence and consensus time on a typical random graph as
a function of a single quantity, 𝜗.
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Let us now discuss the property of the function 𝜗 in (2.28), and its dependence on
the degree sequences. Being 𝜗 a function of only four parameters (those in (2.21)), it
is possible to understand how changes in the degree sequences affect 𝜗, and thus the
distribution of our stopping times. For the sake of comparison, we can for instance fix
𝛿, namely, the total number of edges, and see how do the other parameters in (2.21)
influence the function 𝜗. In particular, we are interested in answering the following
kind of questions, which are of evident interests for applied network science:

• If the out-degrees (resp. in-degrees) are constant, increasing the variability of
the in-degrees (resp. out-degrees) implies a speed-up or a slow-down in the
consensus time? Which is of the range 𝜗 in these cases?

• What is the effect of positive/negative correlation between in- and out-degrees
of the vertices on the consensus time? E.g., is consensus reached faster on an
Eulerian digraph, or in one in which 𝑑−𝑥 /𝑑+𝑥 is typically far from 1?

• In the Eulerian setup, does the variability of the degrees speed-up the consensus
time?

• If some features of the degree sequences are constrained and one is free to
choose the exact degree sequence under such constraints, which are the guiding
principles to minimize/maximize the consensus time?

In the rest of this section we will answer such questions and provide some simplified
formulas for 𝜗 in some special cases.

The regular case.

The easiest model is the one in which every vertex as in- and out-degree equal to some
constant 𝑑 ≥ 2. First notice that in the 𝑑-regular case the following simplifications of
the parameters in (2.21) hold

𝜌 =
1
𝑑
, 𝛿 = 𝑑, 𝛾 = 1, 𝛽 = 𝑑 ,

so that
𝔭 = 1 and 𝔮 =

1
𝑑
. (2.31)

Hence, it is immediate to deduce the following result.

Corollary 2.3.5. Fix 𝑑 ≥ 2 and let 𝜗(𝑑) denote the quantity in (2.28) when 𝑑+𝑥 =

𝑑−𝑥 = 𝑑 for all 𝑥 ∈ [𝑛]. Then

𝜗(𝑑) =
√︂

𝑑

𝑑 − 1
∈

(
1 ,

√
2
]
. (2.32)
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Figure 2.3: We fix 𝑛 = 1000 and consider a sample of 𝐺𝑛 with degree distributions of the type
(d+, d−) where 𝑑−𝑥 = 𝑎 and 𝑑+𝑥 = 𝑏 for all 𝑥 ≤ 500 and 𝑑−𝑥 = 𝑐 and 𝑑+𝑥 = 𝑑 for all 𝑥 ≥ 500. To
simplify the reading, we write [𝑎,𝑏]-[𝑐,𝑑] to refer to such models. For the sake of comparison,
for all the models, we let 𝑎 + 𝑐 = 𝑏 + 𝑑 = 6, i.e., in all the cases there are 3𝑛 edges in total,
hence 𝛿 = 3. More precisely:
Model 1: [3,3]-[3,3], i.e., the regular case.
Model 2: [3,4]-[3,2], i.e., the out-regular case.
Model 3: [4,3]-[2,3], i.e., the in-regular case.
Model 4: [2,2]-[4,4], i.e., the Eulerian case.
Model 5: [2,4]-[4,2], i.e., the “alternate” model discussed in Subsection 2.3.1 .
The table reports the value of the quantities 𝛽, 𝜌 and 𝛾 in (2.21), as well as the values of
𝔭, 𝔮 and 𝜗 (as defined in (2.23), (2.24) and (2.28), respectively) associated to the 5 degree
sequences. As mentioned in Section 2.3, the quantities 𝔮 and 𝔭 admit an interpretation in
terms of expectation of the random variables (with respect to the generation of the graph)
appearing in (2.26). Therefore, we report here also the average of such random variables with
respect to 100 random generations of the graph. In these cases, the ± error stands for the
empirical standard deviation. To simplify the comparison, we express both the theoretical and
the empirical value of 𝔭 and 𝔮 to the first 4 digits.
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Remark 2.3.6. Notice that, in the 𝑑-regular undirected configuration model, one has
(see, e.g., [Che21, ABH+24])

E𝜋⊗𝜋 [𝜏meet]
1
2
𝑑−1
𝑑−2 × 𝑛

P−→ 1 , 𝑑 ≥ 3 . (2.33)

Hence, it is possible to compare the expected meeting time for the undirected 𝑑-regular
case with that of the directed one. As an effect of the directionality, the random walks
result to meet faster. Indeed,√︂

𝑑

𝑑 − 1
<
𝑑 − 1
𝑑 − 2

, 𝑑 ≥ 3 . (2.34)

One may argue that the above comparison is improper, since the total number of
neighbors of a vertex in a random 𝑑-regular directed graph is actually 2𝑑 (𝑑 in-
neighbors and 𝑑-out-neighbors). Nevertheless, it is also true that√︂

𝑑

𝑑 − 1
<

2𝑑 − 1
2𝑑 − 2

, 𝑑 ≥ 2 . (2.35)

Therefore, the speed-up experienced in the directed setting takes place whatever term
of comparison we choose.

The out-regular case

Another model that is natural to investigate is the one in which all the vertices share
the same out-degree, 𝑑. In this case the following holds.

Corollary 2.3.7. Let 𝑑 ≥ 2 and (d+, d−) satisfying Assumption 2.A and such that, for
all 𝑛 ∈ N, 𝑑+𝑥 = 𝑑 for all 𝑥. Call 𝜗(𝑑, d−) the quantity in (2.28) in this case. Then

𝜗(𝑑, d−) =
√︁
𝑑 (𝑑 − 1)
𝛽 − 1

∈
(
0 ,

√︂
𝑑

𝑑 − 1

]
. (2.36)

Proof. In the out-regular case we have

𝛿 =
1
𝜌
= 𝑑 , 𝛽 = 𝑑𝛾 . (2.37)

After some algebraic manipulation we get

𝔭 =
𝛽 − 1
𝑑 − 1

, 𝔮 =
1
𝑑
, 𝔯 =

√︂
𝑑

𝑑 − 1
, (2.38)

from which the result follows. □

It is worth noting that, as soon as 𝑑 ≥ 3 it is possible to choose d− so to have 𝛽
arbitrarily large. This implies that, for a typical random out-regular directed graph,
the larger is the variance in the in-degree distribution, the smaller is the value of the
expected meeting time. In other words, among the out-regular random digraphs, the
regular is the one in which the meeting time is the largest.

41



2. Meeting coalescence and consensus

C
ha

pt
er

2

The in-regular case

We now show that, for a typical in-regular random directed graph the situation looks
much more similar to the regular case than to the out-regular one.

Corollary 2.3.8. Let (d+, d−) satisfying Assumption 2.A and such that, for all 𝑛 ∈ N,
𝑑−𝑥 = 𝑑 for all 𝑥. Call 𝜗(d+, 𝑑) the quantity in (2.28) in this case. Then, fixed 𝑑 ≥ 3,
it holds

𝜗(d+, 𝑑) =
𝑑
√︁

1 − 𝜌
𝑑 − 1

∈
(

1
√

2
𝑑

𝑑 − 1
,

√︂
𝑑

𝑑 − 1

]
, (2.39)

while
𝜗(d+, 2) =

√
2 . (2.40)

Proof. Since 𝜌 ≥ 1
𝑑

by Jensen inequality, we have

𝜗(d+, 𝑑) ≤
√︂

𝑑

𝑑 − 1
.

On the other hand, for 𝑑 ≥ 3,

𝜗(d+, 𝑑) > 1
√

2
𝑑

𝑑 − 1

since 𝜌 ≤ 1
2 . Moreover, such a lower bound is sharp. To see this, fix 𝐶 = 𝑑+max and

consider the degree sequence in which the first (1 − 𝜀)𝑛 vertices have 𝑑+ = 2, and the
last 𝜀𝑛 vertices have degree 𝐶. Then, 𝜀 is fixed by the equation

2(1 − 𝜀) + 𝜀𝐶 = 𝑑

from which it follows that
𝜀 =

𝑑 − 2
𝐶 − 2

. (2.41)

Then
𝜌 = (1 − 𝜀) 1

2
+ 𝜀

𝐶
=
𝐶2 − 𝑑𝐶 + 2(𝑑 − 2)

2𝐶2 − 4𝐶
. (2.42)

In conclusion, for any 𝑑 ≥ 3 and 𝜂 > 0 one can get 𝐶 large enough so to have
𝜌 > 1

2 − 𝜂. □

Roughly speaking, the previous result shows that, for a fixed value of the average
degree, the meeting time on a typical out-regular graphs (regardless of the choice of
the in-degrees) is smaller than in a regular graph with the same number of edges,
regardless of the out-degrees. Nevertheless, contrarily to the out-regular case, the
enhancement obtained by taking the out-degrees non-regular is bounded and the value
of the constant 𝜗 cannot go below the threshold 1/

√
2.
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The Eulerian case

Random Eulerian graphs are a particularly relevant subclass of the DCM, correspond-
ing to the case in which the in-degree and the out-degree of each vertex coincide.
Indeed, it is the only class of directed graphs with the following property: as soon as
the graph is strongly connected, 𝜋 is proportional to the degree of the vertices, exactly
as in an undirected graph. For this reason, it is the model that it is easier to compare
to the classical undirected Configuration Model. In this setting, it is worth to realize
that the quantity 𝛽/𝛿 represents the ratio between the second moment and the squared
first moment of the degree sequence, and it is therefore a signature of variability of the
degrees. As the next corollary shows, the value of 𝜗 in this case depends essentially
just on such a ratio, and higher variability implies a faster meeting time.

Corollary 2.3.9. Let (d+, d−) be such that, for all 𝑛 ∈ N, 𝑑+𝑥 = 𝑑−𝑥 for all 𝑥. Call
𝜗(d) the quantity in (2.28) in this case. Then

𝜗(d) =
(
𝛽

𝛿
− 1 +

√︂
1 − 1

𝛿

)−1

∈
(
0,

√︂
𝛿

𝛿 − 1

]
. (2.43)

Proof. In this case we have

𝜌 =
1
𝛿
, 𝛾 = 1 , (2.44)

from which we get

𝔭 =
𝛽

𝛿
, 𝔮 =

1
𝛽
, 𝔯 =

𝛽/𝛿
𝛽/𝛿 − 1 +

√︁
1 − 1/𝛿

, (2.45)

thus the validity of (2.43). □

It is worth to remark that, also in this case, the random regular graph is the one
with the slowest meeting time among all the random Eulerian graphs with the same
number of edges.

The “alternate” case

A first toy model to check for the effect of correlations between in- and out-degrees
is what we call alternate model, that is, the vertices are divided in two even groups:
in one group the degrees are 𝑑+ = 𝑎 and 𝑑− = 𝑏, and the vice versa for the other
group. Indeed, in this model it is natural to see that the farther 𝑎/𝑏 is from 1, the more
anti-correlated are the degrees.

Corollary 2.3.10. Let 𝑏 ≥ 𝑎 ≥ 2 and (d+, d−) be such that for all 𝑛 ∈ 2N 𝑑+𝑥 = 𝑎 and
𝑑−𝑥 = 𝑏 for all 𝑥 ∈ [𝑛/2], while 𝑑+𝑥 = 𝑏 and 𝑑−𝑥 = 𝑎 for 𝑥 ∈ [𝑛] \ [𝑛/2]. Let 𝑑 = 𝑎+𝑏

2
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Figure 2.4: The pictures refer to the statistics of 𝜏coal and 𝜏meet for 105 runs of the dynamics
on the same (quenched) realization of the graph, with 𝑛 = 1000, for the “alternate” model
described in Subsection 2.3.1, with 𝑎 = 2 and 𝑏 = 4.
Top left: in blue, the discretized empirical density of 2𝜏coal

𝑛𝜗
. In orange, the numerical approx-

imation of the PDF of the infinite sum in (2.29).
Top right: in blue, the discretized empirical density of 2𝜏meet

𝑛𝜗
where the initial distribution is

𝜋 ⊗ 𝜋. In orange, the PDF of an exponential distribution of mean 1.
Bottom left: in blue, the discretized empirical density of 2𝜏cons

𝑛𝜗
with initial density 𝑢 = 1/2. In

orange, the numerical approximation of the PDF infinite sum in (2.30).
Bottom right: same as in the bottom left picture, but with 𝑢 = 1/10.

and call 𝜗(𝑑, 𝑎) the quantity in (2.28) in this case. Then, for all 𝑛 ∈ 2N and any fixed
𝑑 ≥ 2 the function

𝜗(𝑑, ·) : {2, . . . , 𝑑} →
(
0 ,

√︂
𝑑

𝑑 − 1

]
is monotone increasing.

Proof. Rewrite

𝛿 = 𝑑 , 𝛽 =
1
𝑑

𝑎2 + 𝑏2

2
, 𝜌 =

1
𝑑

𝑎2 + 𝑏2

2𝑎𝑏
, 𝛾 =

1
𝑑

𝑎3 + 𝑏3

2𝑎𝑏
, (2.46)

with 𝑏 = 2𝑑 − 𝑎. It is immediate ti check that, fixed 𝑑, 𝛽, 𝜌 and 𝛾 are decreasing in
{2, . . . , 𝑑}. Similarly,

𝔭 =
1
𝑑

𝛾 − 𝜌
1 − 𝜌 + 𝛽 − 1

𝑑
, (2.47)
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is decreasing. On the other hand, it is possible to check that (𝛽−1) (1−𝜌)
𝛾−𝜌 is increasing

in 𝑎, writing

𝔮 =

(
1 + (𝛽 − 1) (1 − 𝜌)

𝛾 − 𝜌

)−1
, (2.48)

we deduce that 𝔮 is monotone decreasing in 𝑎. Similarly, writing

𝔯 =

(
1 −

𝔮(1 −
√︁

1 − 𝜌)
𝜌

)−1

, (2.49)

by taking derivatives one can conclude that 𝔯 is monotone decreasing in 𝑎, hence the
desired result follows from (2.47), (2.49) and the definition of 𝜗 in (2.28). □

Some further considerations about network design

Configuration models are particularly well studied in network science, due to the fact
that they are maximum likelihood ensembles under the degree constraints. To see
this in practice, suppose that a network designer is asked to design a large network
in which the expected consensus time is in a certain target window. If the designer
has control only on the degree sequence but no prior on the way in which the network
will eventually be constructed, then the (Bayesian) designer will try to optimize the
degrees so that a typical DCM with those degrees has an expected consensus time
as close a possible to the given target. The reader should be convinced at this point
that our results provide to the designer the opportunity to solve such a task. Going
beyond the sub-models investigated above, we conclude this section with a take-home
message concerning the effect of degree variability and degree correlations in affecting
our stopping times.

On the one hand, it is clear from the special cases investigated above that the
variability in the in-degree sequence plays a crucial role in determining the value of
𝜗. On the other hand, with the general result of Theorem 2.3.1 at hand, we propose as
a measure of correlation between in- and out-degrees the quantity

𝛼 :=
𝛾 − 𝜌
1 − 𝜌 ≥ 1 . (2.50)

To see that the latter can be thought of as a measure of correlation it is helpful to note
that it equals one in the Eulerian case and diverges when 1

𝑛

∑
𝑥
𝑑−𝑥
𝑑+𝑥

diverges. It is worth
to introduce the increasing function

𝜖 : [0, 1/2] → [0.5, 0.59) , 𝑥 ↦→ 1 −
√

1 − 𝑥
𝑥

, (2.51)

Indeed, with this notation we get

𝔭 =
𝛼 + 𝛽 − 1

𝛿
, 𝔮 =

(
1 + 𝛽 − 1

𝛼

)−1
, 𝔯 =

(
1 + 𝜖 (𝜌) 𝔮

)−1
, (2.52)
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which result in
𝜗 =

𝛿(
1 − 𝜖 (𝜌))𝛼 + 𝛽 − 1

. (2.53)

The advantage of (2.53) is that it immediately shows the effect of 𝛼 and 𝛽 on the
function 𝜗. Indeed, fixed the average degree 𝛿, and realizing that the effect of the 𝜖-
term is somehow negligible due to its small range, we see that 𝜗 is essentially inverse
proportional to 𝛼 and 𝛽. In other words, the larger the variability of the in-degree
distribution, and the more anti-correlated are the out- and in-degree distributions, the
faster is the voter model in reaching consensus. It is worth to point out that in [SAR08]
the authors predict, by means of some non-rigorous computation, that in the case of
an undirected random graph from the configuration model one should have 𝜗 ≈ 𝛿/𝛽.
Notice that in the undirected setting (by Eulerianity) one has 𝛼 = 1 and therefore the
formula in (2.53) coincides with the prediction in [SAR08] up to the quantity 𝜖 (𝜌) at
the denominator. Notice also that their prediction actually fails to capture the exact
constant in the case of regular undirected graphs, in which 𝜗 is given by (2.33) while
𝛿/𝛽 = 1 in that case.

§2.4 Geometry of the DCM

In this section we provide the prerequisite knowledge on the typical feature of a graph
sampled from the DCM and of the random walk on it. In particular in Section 2.4.1
we discuss the classical Breadth First (BF) construction of the graph and its coupling
with the construction of a Galton-Watson tree. In Section 2.4.2 we introduce the
discrete-time random walk on a typical realization of 𝐺, and recall some recent result
about its mixing time and the shape of its stationary distribution.

§2.4.1 Locally tree like vertices
Recall from Section 2.2 the sequential construction used for generating the environment
𝜔 with 𝑛 vertices and degree sequences d = d𝑛 = (d−, d+). In the following section
we propose a well-known coupling describing the locally-tree-like structure of the
(sparse) directed configuration model.
For any fixed 𝑣 ∈ [𝑛] and any ℎ = ℎ𝑛 > 0, define B+

𝑣 (ℎ), the ℎ-out-neighborhood
of vertex 𝑣, to be the set of paths starting from 𝑣 of length at most ℎ; where a path
is a sequence of directed edges (𝑒1 𝑓1, . . . , 𝑒ℓ 𝑓ℓ), ℓ ≤ ℎ, such that 𝑣 𝑓𝑖 = 𝑣𝑒𝑖+1 for all
𝑖 = 1, . . . , ℓ − 1, and 𝑣 𝑓 (resp. 𝑣𝑒) is the vertex incident to the head 𝑓 ∈ 𝐸− (resp. tail
𝑒 ∈ 𝐸+). In order to generate B+

𝑥 (ℎ) we use the breadth-first procedure (BF) starting
from 𝑣 as priority rule, iterating the following steps:

(a) pick the first available unmatched tail 𝑒 ∈ 𝐸+ according to BF starting from 𝑣;

(b) pick uniformly at random an unmatched head 𝑓 ∈ 𝐸−;
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(c) draw the resulting directed edge 𝑒 𝑓 . Continue until the graph distance from an
unmatched tail in Item (a) to 𝑣 exceeds ℎ.

We want to compare the exploration process of a neighborhood of𝐺 with an exploration
process of a marked Galton-Watson tree. To this aim, for any fixed 𝑣 ∈ [𝑛], let us
define a marked (out-directed) random tree T +

𝑣 rooted at 𝑣 as follows: the root is
assigned mark 𝑣, and all other vertices an independent mark 𝑥 ∈ [𝑛] with probability
𝑑−𝑥
𝑚

. Each vertex with mark 𝑥 ∈ [𝑛] has 𝑑+𝑥 children. Note that T +
𝑣 is obtained by

gluing together 𝑑+𝑣 independent Galton-Watson trees with offspring distribution

𝜆biased
𝑛 (𝑘) = 𝜆biased(𝑘) :=

∑︁
𝑥∈[𝑛]

𝑑−𝑥
𝑚
1(𝑑+𝑥 = 𝑘) , 𝑘 ∈ N . (2.54)

Let T +
𝑣 (ℎ) be a subtree of T +

𝑣 given by its truncation up to generation ℎ. We give a
classical description of the coupling between B+

𝑣 (ℎ) and T +
𝑣 (ℎ) that can also be found

e.g. in [CCPQ23, Sec. 2.2].
Consider the steps (a)-(c) for B+

𝑣 (ℎ), and change Item (b) into
(2’) Pick uniformly at random a head 𝑓 ∈ 𝐸− among all possible ones, rejecting the

proposal if it was already matched, and resampling the head.
The subtree T +

𝑣 (ℎ) can be generated by iterating essentially the same steps with some
minor differences. In item (2’) we never reject the proposal. The head chosen in item
(2’) belongs to 𝐸−

𝑥 for some 𝑥 ∈ [𝑛]. In item (3) we add a new leaf and provide the
mark 𝑥 to it. Note that this implies that the new leaf will have 𝑑+𝑥 many children.

Lemma 2.4.1. Assume the degree sequence satisfy Assumption 2.A. Let 𝑣 ∈ [𝑛] and
let P̂ be the law of the coupling between B+

𝑣 (ℎ) and T +
𝑣 (ℎ) for any ℎ > 0. It holds that

P̂
(
B+
𝑣 (ℏ) ≠ T +

𝑣 (ℏ)
)
= 𝑜(1) ,

where
ℏ = ℏ𝑛 :=

log(𝑛)
5 log(𝑑+max)

. (2.55)

Proof. The coupling fails only in one of the following two cases: either the sampled
head 𝑓 ∈ 𝐸− coincides with one of the heads already used in a previous sample (the
“rejection” condition of B+

𝑣 (ℎ)), or 𝑓 is not sampled yet, but it is incident to a vertex
already present in the tree. Let 𝜏 be the first time such that an uniform random choice
among all heads gives 𝑓 ∈ 𝐸−

𝑥 , for some mark 𝑥 which is already present in the tree.
By construction, the out-neighborhood and the tree coincide up to time 𝜏, and it holds

P̂(𝜏 = 𝑡) ≤
𝑡 𝑑−max
𝑚 − 𝑡 , 𝑡 ≥ 0 .

Therefore

P̂(𝜏 ≤ 𝑡) ≤
𝑡2 𝑑−max
𝑚 − 𝑡 .
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Note that, a.s., 𝑡 = (𝑑+max)ℏ+1 steps are sufficient to explore the whole B+
𝑣 (ℏ). It follows

that

P̂
(
B+
𝑣 (ℏ) ≠ T +

𝑣 (ℎ)
)
≤ P̂(𝜏 ≤ (𝑑+max)ℎ+1) ≤

(𝑑+max)2ℏ+2 𝑑−max
𝑚 − (𝑑+max)ℏ+1 = 𝑜

( (𝑑+max)2ℏ
√
𝑛

)
,

(2.56)
and the conclusion follows by the definition of ℏ. □

In what follows, we will to refer to the following corollary of Lemma 2.4.1.

Corollary 2.4.2 (LTL vertices). Assume the degree sequence satisfies Assumption
2.A. Let

𝑉★ = 𝑉★,𝑛 := {𝑣 ∈ [𝑛] | B+
𝑣 (ℏ) is a tree}, (2.57)

where ℏ is defined as in (2.55), then
|𝑉★|
𝑛

P−→ 1 . (2.58)

§2.4.2 (Discrete-time) Random walk on the DCM
For a given realization of the environment,𝜔, we will consider the discrete time simple
random walk (𝑋𝑡 )𝑡≥0 described by the transition matrix

𝑃(𝑥, 𝑦) =
|{𝑒 ∈ 𝐸+

𝑥 | 𝜔(𝑒) ∈ 𝐸−
𝑦 }|

𝑑+𝑥
. (2.59)

Recall here that given a tail 𝑒 ∈ 𝐸+, 𝜔(𝑒) ∈ 𝐸− represents the head at which the tail
𝑒 have been matched in the uniform matching generated by the environment 𝜔. The
latter describes a Markov chain on the vertex set, in which the walker chooses one
of the out-going edges of the vertex it is currently visiting and moves to the vertex
attached to the matched head.

Despite 𝜋 being random, it is possible to show a very precise result for the mixing
time of the random walk on the DCM under Assumption 2.A. In particular, in [BCS18]
the authors show that the mixing time is logarithmic and the total-variation distance
decays abruptly to zero at a precise spot on the time line, an instance of the so-called
cutoff at the entropic time (see also [BCS19, CCPQ23]). More precisely, their result
reads as follows.

Theorem 2.4.3 (Mixing time). Assume the degree sequence satisfy Assumption 2.A,
and let

𝐻 = 𝐻𝑛 :=
∑︁
𝑥∈[𝑛]

𝑑−𝑥
𝑚

log(𝑑+𝑥 ) and 𝑡ent = 𝑡ent,𝑛 :=
log(𝑛)
𝐻

.

For all 𝜀 ≠ 1, it holds that

max
𝑥∈[𝑛]

|∥𝑃⌊𝜀𝑡ent ⌋ (𝑥, ·) − 𝜋∥TV − 1𝜀<1 |
P−→ 0 . (2.60)
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Beyond the mixing time result, we will need to establish a control over the maximal
and minimal values of 𝜋 within its support as part of our proof. In [CQ20, CP20,
CCPQ23] the authors deal exactly with this problem under different assumptions on
the degree sequence. We collect their results in the following theorem.

Theorem 2.4.4 (Extremal values of 𝜋). Assume the degree sequence satisfy Assump-
tion 2.A. Then there exists some 𝜀 > 0 and 𝐶 > 1 such that

max𝑥∈[𝑛] 𝜋(𝑥)
𝑛−1+𝜀

P−→ 0 ,
𝑛−𝐶

min𝑥∈supp(𝜋 ) 𝜋(𝑥)
P−→ 0 . (2.61)

§2.5 Strategy of proof

As mentioned in the Introduction, the core contribution of this work lies in showing
that the expected meeting time of two independent random walks evolving on a typical
random directed graph is well concentrated around a deterministic quantity (which
we provide explicitly) depending only on the parameters of the model, that is, on the
degree sequences. To this aim, we follow the strategy depicted by [CFR10], which
consists in using the so-called First Visit Time Lemma (FVTL). Essentially, the FVTL
states that, given a mixing chain and a target state 𝜕, as soon as the chain mixes
sufficiently fast compared to the stationary mass of 𝜕, 𝜋(𝜕), then the hitting time of
the target is well approximated (uniformly in time) by a geometric random variable
whose parameter depends only on 𝜋(𝜕) and on the “local geometry” around 𝜕. The
FVTL has been introduced by Cooper and Frieze in a series of works (see, among
others, [CF04, CF05, CF07, CF08]) in which the authors characterize the first order
of the cover time of random walks in various random graphs. Recently, a simplified
probabilistic proof has been provided by [MQS21]. For convenience, we refer here
to the version in [QS23, Appendix A], in which the authors adopt the same notation.
Nevertheless, the general idea that hitting times are essentially exponential under some
fast mixing condition has a long history, tracing back to the work of Aldous and Brown,
see, e.g., [AB92, Bro99, Ald89, FL14].

Theorem 2.5.1 (First Visit Time Lemma). For every 𝑁 ∈ N consider a discrete time
ergodic Markov chain (𝑋𝑡 )𝑡∈N on [𝑁] with transition matrix 𝑄 = 𝑄𝑁 and stationary
distribution 𝜋 = 𝜋𝑁 . Consider further a target state 𝜕 ∈ [𝑁]. Call

𝑡mix = 𝑡mix,𝑁 := inf
{
𝑡 ≥ 0 | max

𝑥∈[𝑁 ]
∥𝑄𝑡 (𝑥, ·) − 𝜋∥TV ≤ 1

2𝑒

}
, (2.62)

and

𝔗 = 𝔗𝑁 := 𝑡mix × log

((
min

𝑥∈supp(𝜋 )
𝜋(𝑥)

)−1
)
, (2.63)
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and assume that
lim
𝑁→∞

𝜋(𝜕) 𝔗 = 0 . (2.64)

Fix any 𝑇 = 𝑇𝑁 such that

𝑇 ≥ 2 𝔗 , lim sup
𝑁→∞

𝜋(𝜕) 𝑇 = 0 , (2.65)

and call

𝑅𝑇 (𝜕) =
𝑇∑︁
𝑡=0

𝑄𝑡 (𝜕, 𝜕) . (2.66)

Then, there exists a sequence 𝜆 = 𝜆𝑁 such that

lim
𝑁→∞

𝜆

𝜋(𝜕)/𝑅𝑇 (𝜕)
= 1 , (2.67)

and
lim
𝑁→∞

sup
𝑡≥0

����P𝜋 (𝜏𝜕 > 𝑡)(1 − 𝜆)𝑡 − 1
���� = 0 . (2.68)

In particular,

lim
𝑁→∞

E𝜋 [𝜏𝜕]
𝑅𝑇 (𝜕)/𝜋(𝜕)

= 1 . (2.69)

Remark 2.5.2 (Continuous vs discrete time). Despite the fact that our main results
in Section 2.3 are written for continuous-time processes, the First Visit Time Lemma
above is written for a general discrete time chain. Let us clarify now that there is no
difference between the two, due to the fact that the exit rates are normalized to 1, that
is

𝐿rw = 𝑃 − Id . (2.70)

Therefore, by a Poissonization argument, it follows immediately that neither 𝜋 nor
the order of 𝑡mix depend on the fact that time is discrete or continuous. Similarly, the
convergence in (2.68) can be rephrased in continuous time as

lim
𝑁→∞

sup
𝑡≥0

����P𝜋 (𝜏𝜕 > 𝑡)𝑒−𝜆𝑡
− 1

���� = 0 . (2.71)

We aim to compute the first order asymptotic of the meeting time of independent
random walks on a graph 𝐺. To do so, the idea is to apply the FVTL to the product
chain on [𝑛] × [𝑛] associated to the transition matrix

𝑃⊗2 =
1
2
(𝑃 ⊗ 𝐼 + 𝐼 ⊗ 𝑃) . (2.72)

Notice that the latter corresponds to the evolution of two independent asynchronous
random walks on 𝐺 where at each step a walk is selected u.a.r. to perform a single
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random walk step. Clearly, the stationary distribution of 𝑃⊗2 is given by 𝜋 ⊗ 𝜋. It
follows that, in our setting, the role of the target in the FVTL is played by the diagonal
set

Δ := {(𝑥, 𝑦) ∈ [𝑛] × [𝑛] | 𝑥 = 𝑦}. (2.73)

Nonetheless, being the FVTL suited for a single target, an extra step is needed when
the target is a non-trivial set. As one can imagine, this extra step lies in considering a
chain in which the target set is merged into a single state. In other words, we consider
the state space

𝑉̃ := ( [𝑛]2 \ Δ) ∪ {𝜕}, (2.74)

where the state 𝜕 represents the merged set Δ. Then, we are interested in constructing
a process 𝑃̃ on 𝑉̃ having the following properties:

(a) The transitions from 𝑉̃ \ {𝜕} to 𝑉̃ \ {𝜕} should coincide with those from [𝑛]2 \Δ
to [𝑛]2 \ Δ for the product chain 𝑃⊗2.

(b) The transitions from any x ∈ 𝑉̃ \ {𝜕} to 𝜕 should coincide with the cumulative
transitions from x ∈ [𝑛]2 \ Δ to Δ for the product chain 𝑃⊗2.

(c) The stationary distribution of the new chain, say 𝜋̃, satisfies〈
𝜋2〉 :=

∑︁
𝑣∈[𝑛]

𝜋(𝑣)2 = 𝜋̃(𝜕), 𝜋(𝑥)𝜋(𝑦) = 𝜋̃((𝑥, 𝑦)), 𝑥, 𝑦 ∈ [𝑛] s.t. 𝑥 ≠ 𝑦.

(2.75)

Indeed, if the conditions (1), (2) and (3) are satisfied, then we have the identity

Ẽ 𝜋̃ [𝜏𝜕] = E⊗2
𝜋⊗𝜋 [𝜏meet], (2.76)

thus it is enough to check that the assumption of the FVTL apply to the chain 𝑃̃ to
conclude that the meeting time occurs at a geometric time of rate given by (2.67). As
pointed out in [MQS21], it is immediate to check that all the three conditions can be
satisfied by defining 𝑃̃ as follows: call

𝜇̃(𝑣) :=
𝜋(𝑣)2〈
𝜋2

〉 , 𝑣 ∈ [𝑛] (2.77)

and for every x, y ∈ 𝑉̃ define

𝑃̃(x, y) =



1
2𝑃(𝑥1, 𝑦1) x = (𝑥1, 𝑧), y = (𝑦1, 𝑧), 𝑧 ≠ 𝑥1, 𝑦1,
1
2𝑃(𝑥2, 𝑦2) x = (𝑧, 𝑥2), y = (𝑧, 𝑦2), 𝑧 ≠ 𝑥2, 𝑦2,
1
2 (𝑃(𝑥1, 𝑥2) + 𝑃(𝑥2, 𝑥1)) x = (𝑥1, 𝑥2), y = 𝜕 , 𝑥1 ≠ 𝑥2,
1
2 ( 𝜇̃(𝑦1)𝑃(𝑦1, 𝑦2) + 𝜇̃(𝑦2)𝑃(𝑦2, 𝑦1)) x = 𝜕, y = (𝑦1, 𝑦2), 𝑦1 ≠ 𝑦2,∑
𝑧∈[𝑛] 𝜇̃(𝑧)𝑃(𝑧, 𝑧) x = 𝜕, y = 𝜕.

(2.78)
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In other words, 𝑃̃ can be thought as the product chain 𝑃⊗2 with the addition of a reset
step at Δ: when the random walks on 𝐺 meet, they are instantaneously “reset” to
another vertex (possibly the same) sampled according to the probability distribution
𝜇̃.

As it will become clear later, one of the challenges in the application of the First
Visit Time Lemma lies in the explicit computation of the truncated Green function
𝑅𝑇 (𝜕). The main idea, that will be fully developed in Section 2.6, is based on the
intuition that the graph of the Markov chain 𝑄̃, seen from 𝜕, looks like a infinite
transient (and directed) graph. Based on this intuition, we will couple the quantity
𝑅𝑇 (𝜕) with the Green function of the random walk on this infinite graph rooted at 𝜕.
By transience, the latter can be computed as the escape probability of the random walk,
i.e., the probability that the walk never returns to the root. More precisely, let us call T𝜇̃
an out-directed Galton-Watson tree in which the root has 𝑘 children with probability∑
𝑥∈𝑉 𝜇̃(𝑥)1𝑑+𝑥=𝑘 , while every other vertex has offspring distribution 𝜆biased. In view

of the construction of the process 𝑃̃, the escape probability described above will be
shown to coincide with the (annealed) probability that two walks starting at the root
of T𝜇̃ never meet anymore after time 𝑡 = 0.

As the reader can imagine, such an approach can be worked out similarly also
in the undirected setup, as already heuristically explained, e.g., in [AF02, Dur07].
Nevertheless, the explicit computation of the escape probability requires a detailed
combinatorial analysis of the possible trajectories on the random limiting graph, which
is much easier in our directed setting where backtracking is not allowed.

Remark 2.5.3. If we desire that only conditions (1) and (2) are satisfied by 𝑃̃, then the
reset distribution 𝜇̃ can be replaced by any probability distribution 𝜇 on [𝑛]. In what
follows we will need to adopt such a general perspective. In fact, one should keep
in mind that we are interested in random directed graphs. Therefore, the distribution
𝜇̃ in (2.77), which depends on 𝜋, is a random probability distribution depending on
the realization of the graph 𝐺. This adds a further level of complication, which
distinguishes the directed setting from the classical undirected configuration model.
For this reason, as will be explained in Section 2.5.2, we will start by analyzing chains
with a fixed distribution 𝜇 (which does not depend on the graph), and subsequently
prove the result for 𝜇̃ as in (2.77) by means of some concentration arguments.

Remark 2.5.4 (Continuous vs discrete time – continued). It is worth to stress that
the discrete time processes in (2.72) and (2.78) are, in expectation, twice as slow
as their continuous time counterparts. That is to say, the expected meeting time of
two independent discrete-time random walks evolving accordingly to 𝑃⊗2 is twice the
expected meeting time of the same two particles evolving independently according
to 𝐿rw. It will be technically convenient in what follows to study the discrete-time
processes introduced in this section, and then recall that the value of the constant 𝜆
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in Theorem 2.5.1 has to be doubled to recover the same result in the continuous time
setting. Notice indeed that, a posteriori, 𝜆 ∼ (𝜗 𝑛)−1, from which, in the continuous
time setting of Theorem 2.3.1, we get the factor 1/2 in the denominator of (2.27).

In light of Theorem 2.5.1 and (2.76), the proof of Theorem 2.3.1 relies on three
main propositions, ensuring that conditions of Theorem 2.5.1 are satisfied w.h.p. by
the (random) chain 𝑃̃ in (2.78):

Proposition 2.5.5 (Mass at the diagonal). Assume the degree sequences satisfy As-
sumption 2.A. Let 𝔭 as in (2.23). Then it holds that

𝑛
〈
𝜋2〉
𝔭

P−→ 1. (2.79)

Proposition 2.5.6 (Returns to the diagonal). Assume the degree sequences satisfy
Assumption 2.A. Let 𝔮 and 𝔯 be as in (2.24) and (2.25) respectively. Then, with
𝑇 := ⌊log5(𝑛)⌋, it holds

𝑅𝑇 (𝜕)
𝔯

P−→ 1 . (2.80)

Proposition 2.5.7 (Mixing time for the collapsed chain). Assume the degree se-
quences satisfy Assumption 2.A. Then, the mixing time of the chain 𝑃̃ defined in (2.78),
i.e.,

𝑡mix := inf
{
𝑡 ≥ 0 | max

x∈𝑉̃
∥𝑃̃𝑡 (x, ·) − 𝜋̃∥TV ≤ 1

2𝑒

}
, (2.81)

satisfies
𝑡mix

log(𝑛)3
P−→ 0. (2.82)

At this point, our main results follow at once.

Proof of Theorem 2.3.1 and Corollary 2.3.2. To see the validity of Theorem 2.3.1 it
is enough to realize that, by Propositions 2.5.5, 2.5.6, 2.5.7 and Theorem 2.4.4, the
convergences in (2.67), (2.68) and (2.69) hold in probability for the process P̃. Hence,
by the identity in (2.76), they hold in probability for the product chain P⊗2. The
passage to continuous time follows immediately by Remarks 2.5.2 and 2.5.4. Then,
the convergence in probability of the Wasserstein-1 distance in (2.27) follows by the
continuous time version of (2.68) by working under the appropriate high-probability
events.

As for Corollary 2.3.2, notice that the condition in (2.13) is satisfied w.h.p. thanks
to Theorems 2.4.3 and 2.4.4. At this point, the convergences in probability in (2.29)
and (2.30) follow by Theorems 2.2.1 and 2.2.2. □
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§2.5.1 Heavy-tailed in-degrees
We presented our main the result under the strong constraint of uniform boundedness
of out- and in-degrees. Nevertheless, it is natural to conjecture that the result still
holds true in a more general setup. In particular, in [CCPQ23] the authors show that
Theorem 2.4.3 holds under the following weaker assumption

Assumption 2.B (Relaxed degree assumptions). Assume the same constraints (a)
and (b) as in Assumption 2.A, with (c) replaced by: there exists some 𝜖 > 0 such that
for all 𝑛 ∈ N

(c’):
∑︁
𝑥∈[𝑛]

(𝑑−𝑥 )2+𝜖 ≤ 𝐶 𝑛 . (2.83)

■

Notice that under Assumption 2.B the quantities in (2.21) are still Θ(1), even
though one can have any 𝑑−max ≍ 𝑛1/2−𝑜 (1) . Notice indeed that the latter condition still
ensures that the quantities in (2.21) are all of order 1. In fact, our technical results
are proved under such weaker assumptions. The only technical lemma in which we
need to impose a stronger assumption is Lemma 2.7.5, where we essentially show the
concentration of the quantities in (2.26). Therein, our techniques require the following
bound

(d): 𝑑−max ≤ 𝐶 𝑛 1
3 −𝜖 . (2.84)

In particular, our proof of Proposition 2.5.7, works in the more general framework
of Assumption 2.B, whereas Proposition 2.5.5 and 2.5.6 require in addition (2.84).

Nevertheless, to formally extend the result in Theorem 2.3.1 to any degree se-
quences satisfying Assumption 2.B and (2.84), it is further required a control on the
minimum of 𝜋. In fact, the second result in Theorem 2.4.4 has been proved in [CP20]
only in the bounded degree setting. Nevertheless, it is natural to expect that the effect
of large in-degrees cannot impact the fact that 𝜋min = 𝑛−𝑂 (1) . Investigating the extent
to which the heuristic argument above can be made precise is not the focus of this
work.

§2.5.2 Organization of the proof
Due to the point raised in Remark 2.5.3, we start by analyzing independent random
walks undergoing the reset according to any fixed distribution 𝜇. In particular, in
Section 2.6 we show that the annealed version of such random walks can be success-
fully coupled with certain random rooted forests. In Section 2.6.2 we exploit such a
computational tool to control the quantity 𝑅𝑇 (𝜕) in Theorem 2.5.1, again in the case
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in which the graph 𝐺 is random but the auxiliary chain 𝑃̃ has a deterministic reset
distribution 𝜇 in place of 𝜇̃. In doing so, we show that the dependence of 𝑅𝑇 (𝜕)
on 𝜇 is weak, meaning that it depends only on the expectation with respect to 𝜇 of
certain bounded functions of the out-degrees. Subsequently, in Section 2.7, we show
that the expectation of such bounded functions with respect to the random distribution
𝜇̃ concentrates around a function of the degree sequence, see Proposition 2.7.3. In
particular, as a consequence of such a general result, we extend the result obtained for
deterministic reset distributions in Section 2.6.2 to the case of 𝜇̃-resets, thus deducing
the validity of Propositions 2.5.5 and 2.5.6. Finally, Section 2.8 is devoted to the proof
of Proposition 2.5.7.

§2.6 Random walks with 𝜇-reset

Throughout this section, we fix a probability distribution 𝜇 = 𝜇𝑛 on [𝑛] and consider,
for a fixed realization of the environment 𝜔, the discrete time Markov chain 𝑃̃ = 𝑃̃𝜔𝜇
on 𝑉̃ , defined as in (2.78) with 𝜇 in place of 𝜇̃. It is not hard to see that for each choice
of 𝜇 the chain 𝑃̃𝜇 will have a unique stationary distribution 𝜋̃𝜇. For a prescribed
distribution 𝜇, recall that the transition probabilities from 𝜕 are as follows:

𝑃̃𝜇 (𝜕,x) =
{

1
2 (𝜇(𝑥)𝑃(𝑥, 𝑦) + 𝜇(𝑦)𝑃(𝑦, 𝑥)) x = (𝑥, 𝑦) ,∑
𝑧∈[𝑛] 𝜇(𝑧)𝑃(𝑧, 𝑧) x = 𝜕 ,

x ∈ 𝑉̃ .

Moreover, we will use the symbols P̃𝜇
𝜕
= P̃𝜔,𝜇

𝜕
and Ẽ𝜇

𝜕
= Ẽ𝜔,𝜇

𝜕
to denote the law and

the expectation of the trajectories of the Markov chain ( 𝑋̃𝑡 )𝑡≥0 on 𝑉̃ , with 𝑋̃0 = 𝜕

and transition matrix 𝑃̃ = 𝑃̃𝜔𝜇 , on the quenched realization 𝐺 = 𝐺𝜔 of the graph.
Finally, we remind the reader that the symbols P and E are concerned uniquely with
the probability space of the generation of the environment 𝜔.

§2.6.1 Annealed random walks with 𝜇-reset
In what follows we will be interested in computing expectations, with respect to P, to
the transition probabilities of the chain 𝑃̃. A very useful way to compute this quantities
(see Remark 2.6.3 below for references) is to rewrite such expectations as probabilities
of a non-Markovian process that we will call annealed walks. In other words, the
annealed walks process is the one in which the environment𝜔 is realized together with
the random walks evolving on it. More precisely, for every 𝐴 ⊆ 𝑉̃ and 𝑡 ≥ 0 one can
write

E
[
P̃𝜇
𝜕

(
𝑋̃𝑡 ∈ 𝐴

) ]
= P̃an,𝜇

𝜕

(
𝑊̃𝑡 ∈ 𝐴

)
, (2.85)

where the law P̃an,𝜇
𝜕

is the law of the random variable (𝜔𝑡 , 𝑊̃𝑡 )𝑡≥0, where𝜔𝑡 is a partial
matching of 𝐸+ and 𝐸− with at most 𝑡 matchings, and 𝑊̃𝑡 ∈ 𝑉̃ is the location of the
annealed walk at time 𝑡.
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The equality in (2.85) is a consequence of the exchangeability property of the
DCM that translates into a sort of spatial Markov property. It resembles the fact
that we can compute the left-hand side of (2.85) using a local exploration process.
More explicitly, samples according to P̃an,𝜇

𝜕
can be obtained as result of the following

randomized algorithm:
(a) set 𝑊̃0 = 𝜕;

(b) for all 𝑠 ∈ {0, . . . , 𝑡}, if 𝑊̃𝑠 = 𝜕, sample a vertex 𝑥 according to 𝜇. Select one
of the tails of 𝑥, 𝑒 ∈ 𝐸+

𝑥 uniformly at random:

(2a) if 𝑒 is already matched to some 𝑓 ∈ 𝐸−, call 𝑣 𝑓 the vertex incident to the
head 𝑓 . If 𝑣 𝑓 ≠ 𝑥, set either 𝑊̃𝑠+1 = (𝑥, 𝑣 𝑓 ) or 𝑊̃𝑠+1 = (𝑣 𝑓 , 𝑥) w.p. 1/2.
Whereas, if 𝑣 𝑓 = 𝑥, set 𝑊̃𝑠+1 = 𝜕.

(2b) if 𝑒 is unmatched, choose u.a.r. some 𝑓 ∈ 𝐸− which is still unmatched,
set 𝜔(𝑒) = 𝑓 . Call 𝑣 𝑓 the vertex incident to the head 𝑓 . If 𝑣 𝑓 ≠ 𝑥 set
either 𝑊̃𝑠+1 = (𝑥, 𝑣 𝑓 ) or 𝑊̃𝑠+1 = (𝑣 𝑓 , 𝑥) w.p. 1/2. Whereas, if 𝑣 𝑓 = 𝑥, set
𝑊̃𝑠+1 = 𝜕.

(c) if instead 𝑊̃𝑠 = (𝑥, 𝑦) with 𝑥 ≠ 𝑦, select the coordinate to move with uniform
probability. For the sake of illustration, let us as assume that this the first
coordinate. Select u.a.r. one of the tails of vertex 𝑥 (which is associated with
the selected coordinate) and call it 𝑒 ∈ 𝐸+

𝑥 :

(3a) if 𝑒 was already matched at a previous step to some head 𝑓 ∈ 𝐸−, let
𝑣 𝑓 ∈ [𝑛] denote the vertex incident to the head 𝑓 . Then, if 𝑣 𝑓 ≠ 𝑦 let
𝑊̃𝑠+1 = (𝑣 𝑓 , 𝑦), otherwise let 𝑊̃𝑠+1 = 𝜕;

(3b) if 𝑒 is still unmatched, select uniformly at random a head, 𝑓 ∈ 𝐸−, among
the unmatched ones, match it to 𝑒, and let 𝑣 𝑓 ∈ [𝑛] the associated vertex.
As in the previous case, if 𝑣 𝑓 ≠ 𝑦 let 𝑊̃𝑠+1 = (𝑣 𝑓 , 𝑦), otherwise let
𝑊̃𝑠+1 = 𝜕.

Remark 2.6.1 (Multiple annealed random walks). In what follows, it will be con-
venient to use the annealed philosophy to compute higher moments of the transition
probabilities associated to the law P̃𝜇

𝜕
. Indeed, for all 𝜅 ∈ N, 𝐴1, . . . , 𝐴𝜅 ⊂ 𝑉̃ and

𝑡1, . . . , 𝑡𝜅 ≥ 0 one can write

E

[
𝜅∏
𝑖=1

P̃𝜇
𝜕

(
𝑋̃𝑡𝑖 ∈ 𝐴𝑖

) ]
= P̃𝜅-an,𝜇

𝜕

(
𝑊̃

(𝑖)
𝑡𝑖

∈ 𝐴𝑖 , ∀𝑖 ≤ 𝜅
)
, (2.86)

where the random variables (𝑊̃ (𝑖)
𝑠 )𝑖≤𝜅 , 𝑠≤𝑡𝑖 can be sampled by means of the same

construction described above, constructing the 𝜅 walks sequentially, with the 𝑖-th one
evolving in the partial environment constructed by the first 𝑖 − 1.
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Remark 2.6.2 (Annealed random walks without reset). As should be clear to the
reader, an annealing formula is available also for the simple random walk, with law P,
and for the independent random walks with law P⊗2. Moreover, an annealing formula
can be written also when conditioning on a partial realization of the underlying graph.

In general, called𝜎 a partial matching of 𝐸− and 𝐸+ and fixed an initial distribution
𝜈 ∈ P([𝑛]2) depending only on 𝜎, any 𝜅 ∈ N, a collection of times 𝑡1, . . . , 𝑡𝜅 ≥
0 and some events E1(𝑋 (1) , 𝑋 (2) , 𝑡1), . . . , E𝜅 (𝑋 (1) , 𝑋 (2) , 𝑡𝜅 ) depending only on the
trajectory of (𝑋 (1) , 𝑋 (2) ) up to time 𝑡𝑖 , respectively, one can write

E

[
𝜅∏
𝑖=1

P⊗2
𝜈

(
E𝑖 (𝑋 (1) , 𝑋 (2) , 𝑡𝑖)

)
| 𝜎

]
= P⊗2, 𝜅-an |𝜎

𝜈

(
∩𝑖≤𝜅 E𝑖 (𝑊 (𝑖,1) ,𝑊 (𝑖,2) , 𝑡𝑖)

)
,

(2.87)
where P⊗2 ,𝜅-an |𝜎

𝜈 is the joint law of (𝜔𝑠)𝑠≤𝜅𝑇 and (𝑊 (𝑖,1)
𝑠 ,𝑊

(𝑖,2)
𝑠 )𝑖≤𝜅 , 𝑠≤𝑡𝑖 can be

sampled by constructing the 𝜅 couples of walks sequentially, with the first couple
starting at 𝜈 with 𝜔0 = 𝜎 and, in general, the 𝑖-th couple starting independently at
𝜈 and evolving in the partial environment given by 𝜎 and the additional matchings
constructed by the first 𝑖 − 1 couples. Differently from the construction of annealed
walks with 𝜇-reset, when a couple of annealed walks meet, they do not experience any
reset but rather the construction continues as for any other point in [𝑛]2.

Remark 2.6.3 (Annealed simple random walks). The construction of the annealed
random walk with 𝜇-reset presented in this section—as well as its variant without
reset introduced in Remark 2.6.2—is a natural variation of the original annealed
simple random walk, which is a classical tool for the analysis of random walks on
sparse random graphs. In particular, in the context of random directed graphs, it has
been used extensively in [BCS18, BCS19, CQ20, CQ21a, CQ21b, CCPQ23].

In the annealed simple random walk construction, there is a single annealed walk𝑊
that replaces either 𝑊̃ or (𝑊 (1) ,𝑊 (2) ). Nevertheless, we postpone a detailed definition
of the algorithm to the proof of Lemma 2.7.4. In order to introduce the notation that
will be used later, call 𝜎 a partial matching of 𝐸− and 𝐸+ and fix an initial distribution
𝜇 ∈ P([𝑛]) depending only on 𝜎, any 𝜅 ∈ N, a collection of times 𝑡1, . . . , 𝑡𝜅 ≥ 0 and
some events E1(𝑋, 𝑡1), . . . , E𝜅 (𝑋, 𝑡𝑘) depending only on the trajectory of 𝑋 up to time
𝑡𝑖 , respectively. We write

E

[
𝜅∏
𝑖=1

P𝜇 (E𝑖 (𝑋, 𝑡𝑖)) | 𝜎
]
= P𝜅-an |𝜎

𝜈

(
∩𝑖≤𝜅 E𝑖 (𝑊 (𝑖) , 𝑡𝑖)

)
, (2.88)

where the P𝜅-an |𝜎
𝜈 is the joint law of (𝜔𝑠)𝑠≤𝜅𝑇 and (𝑊 (𝑖)

𝑠 )𝑖≤𝜅 , 𝑠≤𝑡𝑖 can be sampled by
constructing the 𝜅 walks sequentially, with the first one starting at 𝜇 with 𝜔0 = 𝜎

and, in general, the 𝑖-th walk independently starting at 𝜈 and evolving in the partial
environment given by 𝜎 and the additional matchings constructed by the first 𝑖 − 1
walks.
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In the same spirit of Section 2.4.1 we now define the generation process of a
random forest which will be coupled with the construction of the annealed walk just
described. More precisely, our aim is to show that, under some weak assumption on
the distribution 𝜇, the part of graph explored by 𝑊̃ within time 𝑡 = 𝑡𝑛, for 𝑡 not too
large, can be coupled at a polynomially small TV-cost to a random rooted forest F , i.e.
a collection of independent, rooted, multi-type Galton-Watson trees, the construction
of which we now describe.

The forest we construct is made by a random number of (out)-trees. Every vertex
in each tree has a mark 𝑣 ∈ [𝑛]. Moreover, each vertex in each tree has at most
two children and in particular at most one vertex in the whole forest has exactly two
children. The construction of the forest goes as follows:

(a) At time 𝑠 = 0:

• select the mark of the root according to 𝜇, say 𝑟 ∈ [𝑛], put a red flag on
the root, set 𝑅̃0 = 𝑟 and sample red0 ∈ {1, 2} u.a.r.;

• sample 𝑒 ∈ 𝐸+
𝑟 and 𝑓 ∈ 𝐸− u.a.r.; create a new edge of the forest from the

root to a new vertex with mark 𝑣 𝑓 , and give a label (𝑒, 𝑓 ) to such a new
edge; put a blue flag on the new vertex of the forest and set 𝐵̃0 = 𝑣 𝑓 .

(b) Given the construction up to time 𝑠 ≥ 0, construct (F𝑠+1, 𝑅̃𝑠+1, 𝐵̃𝑠+1, red𝑠+1) as
follows:

(a) If the red flag and the blue flag are on the same vertex, end the construction
of the current tree and construct another tree of the forest starting as in
Item (a).

(b) If the red flag and the blue flag are in different spots in the tree, select one
of the two colors with uniform probability:

• If blue is selected, and 𝑣 is the type of the vertex with the blue flag
attached, sample 𝑒 ∈ 𝐸+

𝑣 and 𝑓 ∈ 𝐸− u.a.r., create a new edge of the
forest from the vertex with the blue flag to a new vertex with mark
𝑣 𝑓 , and give label (𝑒, 𝑓 ) to such a new edge. Move the blue flag
to the new vertex of the forest, and set 𝑅̃𝑠+1 = 𝑅̃𝑠, 𝐵̃𝑠+1 = 𝑣 𝑓 and
red𝑠+1 = red𝑠.

• If red is selected, and 𝑣 is the mark of vertex with the red flag on top
proceed as follows:

– If 𝑣 has a (unique) child: sample 𝑒 ∈ 𝐸+
𝑣 u.a.r.

(I) if the edge connecting 𝑣 to its child has label (𝑒, 𝑓 ) for some
𝑓 ∈ 𝐸−, move the red flag to the 𝑣 𝑓 and set 𝑅̃𝑠+1 = 𝑣 𝑓 ,
𝐵̃𝑠+1 = 𝐵̃𝑠 and red𝑠+1 = red𝑠.
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(II) otherwise, sample 𝑓 ∈ 𝐸− u.a.r., create a new edge of the forest
from the vertex with the red flag to a new vertex with mark 𝑣 𝑓 .
Label the new edges as (𝑒, 𝑓 ), and move the red flag to such a
new vertex. Set 𝑅̃𝑠+1 = 𝑣 𝑓 , 𝐵̃𝑠+1 = 𝐵̃𝑠 and red𝑠+1 = red𝑠.

– If 𝑣 has no children, sample 𝑒 ∈ 𝐸+
𝑣 and 𝑓 ∈ 𝐸− u.a.r., create a

new edge of the forest from the vertex with the red flag to a new
vertex with mark 𝑣 𝑓 , and give a label (𝑒, 𝑓 ) to such a new edge.
Move the red flag to the newly created vertex. Set 𝑅̃𝑠+1 = 𝑣 𝑓 ,
𝐵̃𝑠+1 = 𝐵̃𝑠 and red𝑠+1 = red𝑠.

Let us try to explain in plain English how the construction of the forest is performed:
there are two particles sitting on the same spot 𝑟 with mark distributed according to
𝜇. As a result of a fair coin toss, one of the particles is given color red and the other
color blue. The blue particle is the first to move, and creates a directed edge (of the
forest) having the root as origin and as destination some vertex with mark 𝑣, sampled
according to 𝜇in. At each subsequent step, a fair coin is tossed to decide which of
the two colors has to move. The blue particle always creates a new directed edge as
in the first step. On the other hand, the red particle, which sits on some vertex with
mark 𝑣𝑟 , can either follow the unique out-going edge already present at the vertex it
is currently visiting (if any) w.p. 1/𝑑+𝑣𝑟 ; or it can create a new edge from the vertex it
is currently visiting to some new vertex in the forest which will have a mark sampled
accordingly to 𝜇in. Notice that, in the latter scenario, the red and blue particles will
never meet again. If the two particles meet (that is, the red particles reaches the blue
one), then the process restarts as follows: the two particles will be placed on a new
vertex that will be the root of a new tree in the forest; the mark of such vertex will be
chosen accordingly to 𝜇 and the colors of the two particles are reinitialized. Notice
also that the auxiliary alea needed to define (red𝑡 )𝑡≥0, plays essentially no role in the
construction, but it will be useful in a while to define the coupling. Indeed, as one can
imagine at this point, the quantity red𝑡 will determine which of the two coordinates of
𝑊̃ is “escaping” and which is “chasing” at time 𝑡. Clearly such a construction leads to a
collection (F𝑡 , 𝑅̃𝑡 , 𝐵̃𝑡 , red𝑡 )𝑡≥0, where 𝑅̃𝑡 (resp. 𝐵̃𝑡 ) is the mark at the vertex in which
lies the red (resp. blue) particle at time 𝑡, and F𝑡 is the rooted forest realized up to step
𝑡, which we identify with the collection of its labeled edges (with multiplicities). The
next result shows that it is possible to couple the two constructions at a small TV-cost,
as soon as 𝑡 is sufficiently small and 𝜇 is not too concentrated.

Proposition 2.6.4. Assume that, for some 𝜀 > 0

max
𝑥∈[𝑛]

𝜇(𝑥) ≤ 𝑛−𝜀 . (2.89)

Call (L̃𝑠)𝑠≤𝑡 the law of the annealed walks construction of (𝜔𝑠, 𝑊̃𝑠)𝑠≤𝑡 and (L̃F
𝑠 )𝑠≤𝑡

the law of the process (F𝑠,𝑊 (𝑅̃𝑠, 𝐵̃𝑠, red𝑠), red𝑠)𝑠≤𝑡 where (F𝑠, 𝑅̃𝑠, 𝐵̃𝑠, red𝑠)𝑠≤𝑡 are
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Figure 2.5: An example of a realization of the forest. As shown in picture (0), 𝑅̃0 = 𝑟 is the
mark, chosen according to 𝜇, of the first root and 𝐵̃0 = 𝑥. The forest at time 𝑠 = 1 is presented
in picture (1), while 𝑅̃1 = 𝑅̃0 = 𝑟, 𝐵̃1 = 𝑦. Similarly, the forest at time 2 is presented in
picture (2), where 𝑅̃2 = 𝐵̃0 = 𝑥 and 𝐵̃2 = 𝐵̃1 = 𝑦. Given (F2, 𝑅̃2, 𝐵̃2), there are three possible
scenarios that can happen: if the blue flag is selected, then it will be moved to a vertex having
a random mark, say 𝑤, so that 𝐵̃3 = 𝑤 and 𝑅̃3 = 𝑅̃2 = 𝑥, as in picture (3𝑎); whereas, if the red
flag is selected there are two possible scenarios: in the first one, described in picture (3𝑏), the
random selected tail from 𝐸+

𝑥 coincides with the one connecting the vertex with mark 𝑥 to its
unique child, thus the two flags will be in the same vertex and a new root needs to be sampled
at the forthcoming step. It follows that 𝑅̃3 = 𝐵̃3 = 𝐵̃2 = 𝑦. Instead, picture (3𝑐) describes the
situation in which the chosen tail does not coincide with the unique edge leaving 𝑥, therefore
we need to select another random mark, say 𝑧, create a new labeled edge, and move the red
flag to 𝑧. Hence the vertex with mark 𝑥 will have two children and the two flags will never meet
again. It follows that 𝑅̃3 = 𝑧, and 𝐵̃3 = 𝐵̃2 = 𝑦.
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sampled via the forest construction and𝑊 : [𝑛]2 × {1, 2} → 𝑉̃ is defined as

𝑊 (𝑅, 𝐵, red) :=


(𝑅, 𝐵) if red = 1 and 𝑅 ≠ 𝐵 ,

(𝐵, 𝑅) if red = 2 and 𝑅 ≠ 𝐵 ,

𝜕 if 𝑅 = 𝐵 .

(2.90)

Then
max
𝑡≤𝑛𝜀/3

∥L̃𝑡 − LF
𝑡 ∥TV = 𝑜(𝑛−𝜀/3) . (2.91)

Proof. In the same vein of Section 2.4.1, consider the coupling between the two
constructions in which in Step (3b) the sample of an head 𝑓 is made u.a.r. among
all heads, and rejecting the sample if 𝑓 is already matched. In case of a rejection,
we say that the coupling has failed, and the two constructions will then continue
independently. Similarly, if the vertex 𝑥 sampled in Step (2) of the construction has
already a matched head or a matched tail, declare the coupling as failed and continue
the two constructions independently. Let P̂ denote the law of such coupling. We now
show that, if 𝑡 is not too large, the probability that the coupling fails goes to zero as
𝑛 → ∞ at the speed in (2.91), which immediately implies the desired result. For a
fixed 𝑠 ≤ 𝑡, consider the following events:

𝐴𝑠 =

{
𝑠 is the first time in which at step (2b) or (3b) is sampled some 𝑓 ∈𝐸−

that was already sampled in step (2b) or (3b) at some time < 𝑠

}
,

𝐵𝑠 =

{
𝑠 is the first time in which a vertex 𝑥∈[𝑛] which has
already a matched tail or head is sampled in step (2)

}
,

and define, similarly to the proof of Lemma 2.4.1, the hitting time 𝜏 to be the the first
time such that the coupling fails. Note that the only ways in which the coupling can
fail at a fixed time 𝑠 ≤ 𝑡 are the ones stated in the events 𝐴𝑠 and 𝐵𝑠. Therefore, by the
union bound we get

P̂(𝜏 ≤ 𝑡) ≤ P̂

(⋃
𝑠≤𝑡

(𝐴𝑠 ∪ 𝐵𝑠)
)
≤

∑︁
𝑠≤𝑡

P̂
(
𝐴𝑠 ∪ 𝐵𝑠

)
≤ 𝑡 max

𝑠≤𝑡
P̂(𝐴𝑠) + 𝑡 max

𝑠≤𝑡
P̂(𝐵𝑠),

(2.92)

The first term on the right-hand side of the latter inequality can be bounded as in
(2.56), so that

𝑡 max
𝑠≤𝑡

P̂(𝐴𝑠) ≤ 𝑡2
𝑑−max
𝑚 − 𝑡 . (2.93)

As for the second term in (2.92), we have that

𝑡 max
𝑠≤𝑡

P̂(𝐵𝑠) ≤ 𝑡 max
𝑠≤𝑡

∑︁
𝑥∈[𝑛]

𝜇(𝑥)1𝑥∈Γ𝑠 ≤ 𝑡2 max
𝑥∈[𝑛]

𝜇(𝑥) , (2.94)
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where Γ𝑠 denotes the number of vertices explored by time 𝑠, thus |Γ𝑠 | ≤ 𝑠. Plugging
the bounds in (2.93) and (2.94) into (2.92) we get

P̂(𝜏 ≤ 𝑡) ≤ 𝑡2
𝑑−max
𝑚 − 𝑡 + 𝑡2 max

𝑥∈[𝑛]
𝜇(𝑥) . (2.95)

Under our assumptions on 𝑡 and 𝜇 the right-hand side of (2.95) vanishes as 𝑛 → ∞,
and the desired result follows. □

Remark 2.6.5 (Coupling of multiple annealed random walks). Recall the multiple
annealed walk (𝑊̃ (1)

𝑡 , . . . , 𝑊̃
(𝜅 )
𝑡 )𝑡≤𝑇 introduced in Remark 2.6.1 and assume that 𝜅 ≥ 2

is bounded. The reader should be convinced at this point that the law of such iterated
construction can be coupled with the iterated construction of 𝜅 i.i.d. forests (of
polylogarithmic size) at a polynomially small TV-cost.

§2.6.2 Return to the diagonal for random walks with 𝜇-reset
Throughout this section, we set

𝑇 = 𝑇𝑛 := ⌊log(𝑛)6⌋ . (2.96)

For a fixed probability distribution 𝜇 = 𝜇𝑛 on [𝑛] we aim at understanding the
asymptotic behavior of the random variable with respect to the generation of 𝜔 given
by

𝑅𝜇 = 𝑅
𝜔,𝜇

𝑇
(𝜕) :=

𝑇∑︁
𝑡=0

𝑃̃𝜇 (𝜕, 𝜕) . (2.97)

Start by noting that its expectation can be expressed in terms of the annealed walks
defined as in (2.85)

E[𝑅𝜇] =
𝑇∑︁
𝑡=0

E[𝑃̃𝜇 (𝜕, 𝜕)] =
𝑇∑︁
𝑡=0

Pan,𝜇 (𝑊̃𝑡 = 𝜕) . (2.98)

In what follows, it will turn out to be useful to introduce the following stopping times
with respect to the annealed process

𝜏
(1)
𝜕

:= inf{𝑡 > 0 : 𝑊̃𝑡 = 𝜕} ,

𝜏
( 𝑗 )
𝜕

:= inf{𝑡 > 𝜏 ( 𝑗−1)
𝜕

: 𝑊̃𝑡 = 𝜕} , 𝑗 ≥ 1 .
(2.99)

Notice that, under the success of the coupling in Proposition 2.6.4 the stopping times
𝜏
( 𝑗 )
𝜕

can be interpreted at the successive times at which the red and the blue particles
are on the same vertex. Exploiting the coupling with the random forest introduced in
Proposition 2.6.4, we will start by showing the following quantitative estimate.
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Lemma 2.6.6. For every 𝑛 fix a degree sequence satisfying Assumption 2.A. Fix 𝜀 > 0
and for each 𝑞 ∈ (0, 1/2] consider the compact set

M(𝑞) = M𝑛 (𝑞𝑛, 𝜀) :=
𝜇 ∈ P([𝑛]) |

∑︁
𝑥∈[𝑛]

𝜇(𝑥) 1
𝑑+𝑥

= 𝑞 , max
𝑥∈[𝑛]

𝜇(𝑥) ≤ 𝑛−𝜀
 .

(2.100)
Then,

sup
𝜇∈M(𝑞)

sup
𝑡≤ 𝑇2

P̃an,𝜇
𝜕

(𝜏 (1)
𝜕

= 2𝑡 + 1) = 𝑜(𝑛−𝜀/3) , (2.101)

and

sup
𝜇∈M(𝑞)

sup
𝑡≤ 𝑇2

���P̃an,𝜇
𝜕

(𝜏 (1)
𝜕

= 2𝑡) − 2−2𝑡+1𝐶𝑡−1 𝜌
𝑡−1 𝑞

��� = 𝑜(𝑛−𝜀/3) , (2.102)

where
𝐶𝑠 :=

1
𝑠 + 1

(
2𝑠
𝑠

)
, 𝑠 ∈ N , (2.103)

is the s-th Catalan number and 𝜌 and𝑇 are defined as in (2.21) and (2.96), respectively.

Proof. Thanks to Proposition 2.6.4 it is enough to consider the same probabilities
under the event that the coupling succeeds. For this reason we restrict the focus on the
construction of the random forest, and let P̂ denote its law. Accordingly, the stopping
time 𝜏 (1)

𝜕
will be interpreted as explained below (2.99). Fix 𝑡 ≤ 𝑇/2. Recall that on

the forest process, the two particles are always on the same tree and their distance at
time 𝑡, which we will refer to as 𝑑 (𝑡), starts at 𝑑 (0) = 0 and can only reduce by one
unity (if the red particle is in the same ray as the blue particle and does a step in its
direction), increase by a unity (if the red particle is in the same ray as the blue particle
and the latter does a step forward), or become infinity and keep this value for the rest
of the time (if the red particle is in the same ray as the blue particle and creates a
new branch). Therefore, the two particles can meet only at even times, so that (2.101)
follows immediately.

Recalling that 𝑑 (0) = 0, we now need to compute the probability of the event

E𝑡 = {𝑑 (𝑠) > 0 ,∀𝑠 ∈ {1, . . . , 2𝑡 − 1}} ∩ {𝑑 (2𝑡) = 0} , 𝑡 ≤ 𝑇

2
. (2.104)

Notice that, each simple event in E𝑡 corresponds to an evolution in which the red
particle follows the blue one up to reaching it at distance 𝑡 from the root. Therefore,
each simple events in E𝑡 can be associated uniquely to a couple (𝔇𝑡 , 𝐸𝑡 ) where

• 𝔇𝑡 is a Dyck path with 𝑡−1 upstrokes and 𝑡−1 downstrokes having±1 increments,
representing the evolution of 𝑑 (𝑠) for 𝑠 ≤ 𝑡;
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• 𝐸𝑡 = (𝑥0, . . . , 𝑥𝑡−1) ∈ [𝑛]𝑡 is the sequence of marks of all the vertices along
the path of length 𝑡 from the root to the vertex at which the particles meet (not
included).

Notice that two simple events in E𝑡 associated to the same sequence of marks but to
different Dyck paths are equiprobable. Therefore, it is enough to take a representative
Dyck path 𝔇𝑡 and write

P̂(𝜏 (1)
𝜕

= 2𝑡) = 𝐶𝑡−1
∑︁

𝐸𝑡 ∈[𝑛]𝑡
P̂(𝔇𝑡 , 𝐸𝑡 ) = 2−2𝑡+1𝐶𝑡−1

∑︁
𝐸𝑡 ∈[𝑛]𝑡

P̂(𝐸𝑡 | 𝔇𝑡 ) , (2.105)

where we exploited the fact that all Dyck paths are equiprobable, since they only
depend on the color of the moving particle at each step, and the fact that the number
of Dyck paths of length 2𝑠 is 𝐶𝑠, as in (2.103). A natural choice for the representative
Dyck path consists in choosing D𝑡 to by the Dyck path in which the walks move
alternately, with the exception of the first two steps, in which the blue particle moves,
and the last two step, in which the red particle moves twice. In such a way the distance
between them oscillates between 1 and 2 until 𝜏 (1)

𝜕
. Recall the definition of 𝜆biased in

(2.54) and consider the collection of independent random variables 𝐷0, 𝐷1, . . . , 𝐷𝑡−1
where 𝐷𝑖 ∼ 𝜆biased for 𝑖 ≥ 1 while 𝐷0 is distributed as

𝜆𝜇 (𝑑) :=
∑︁
𝑥∈[𝑛]

𝜇(𝑥)1(𝑑+𝑥 = 𝑑) , 𝑑 ∈ N . (2.106)

the out degree of a vertex sample according to 𝜇. Then∑︁
𝐸𝑡 ∈[𝑛]𝑡

P̂ (𝐸𝑡 | 𝔇𝑡 ) =
∑︁
𝑑0≥2

· · ·
∑︁
𝑑𝑡−1≥2

𝑡−1∏
𝑗=0

1
𝑑 𝑗

P̂(𝐷0 = 𝑑0, 𝐷1 = 𝑑1, . . . , 𝐷𝑡 = 𝑑𝑡−1)

=
∑︁

𝑑0,𝑑1,...,𝑑𝑡−1≥2

𝑡−1∏
𝑗=0

1
𝑑 𝑗

P̂(𝐷 𝑗 = 𝑑 𝑗)

=

(∑︁
𝑑≥2

1
𝑑
𝜆𝜇 (𝑑)

) (∑︁
𝑑≥2

1
𝑑
𝜆biased(𝑑)

) 𝑡−1

.

(2.107)

More explicitly,∑︁
𝑑≥2

1
𝑑
𝜆biased(𝑑) =

∑︁
𝑑≥2

1
𝑑

∑︁
𝑥∈[𝑛]

𝑑−𝑥
𝑚
1𝑑+𝑥=𝑑 =

1
𝑚

∑︁
𝑥

𝑑−𝑥
𝑑+𝑥

= 𝜌 , (2.108)

and for all 𝜇 ∈ M(𝑞)∑︁
𝑑≥2

1
𝑑
𝜆𝜇 (𝑑) =

∑︁
𝑑≥2

1
𝑑

∑︁
𝑥∈[𝑛]

𝜇(𝑥)1𝑑+𝑥=𝑑 =
∑︁
𝑥∈[𝑛]

𝜇(𝑥) 1
𝑑+𝑥

= 𝑞 . (2.109)

64



§2.6. Random walks with 𝜇-reset

C
hapter

2

Thus the desired result follows by plugging (2.107), (2.109) and (2.108) into
(2.105). □

Lemma 2.6.7. In the same setting of Lemma 2.6.6,

sup
𝜇∈M(𝑞)

sup
𝑡≤𝑇/2

P̃an,𝜇
𝜕

(𝑊̃2𝑡+1 = 𝜕) = 𝑜(𝑛−𝜀/2) , (2.110)

and

sup
𝜇∈M(𝑞)

sup
𝑡≤𝑇/2

�����P̃an,𝜇
𝜕

(𝑊̃2𝑡 = 𝜕) −
𝑡∑︁
𝑘=1

2−2𝑡+𝑘𝑞𝑘𝜌𝑡−𝑘𝐵(𝑡, 𝑘)
����� = 𝑜(𝑛−𝜀/2) , (2.111)

where

𝐵(𝑡, 𝑘) :=
𝑘

2𝑡 − 𝑘

(
2𝑡 − 𝑘
𝑡

)
, 1 ≤ 𝑘 ≤ 𝑡 . (2.112)

Proof. As for Lemma 2.6.6, we notice that thanks to Proposition 2.6.4 it is enough
to work under the event that the coupling succeeds. Hence, we let here P̂ denote the
law of the forest construction and interpret the stopping time 𝜏 ( 𝑗 )

𝜕
as explained below

(2.99). Moreover, we will write for simplicity {𝑊̃2𝑠 = 𝜕} to mean that at time 𝑠 the
blue and the red particles in the construction of the forest sit on the same vertex.

Again, we can immediately rule out the odd time cases, meaning that (2.110)
follows immediately. Fix 𝑡 ≤ 𝑇/2 and define 𝛼𝑡 as the number of times in which the
red and the blue particle meet within time 2𝑡. More precisely

𝛼𝑡 = max{𝑘 ≥ 0 | 𝜏 (𝑘 )
𝜕

≤ 2𝑡} =
𝑡∑︁
𝑠=1
1(𝑊̃2𝑠 = 𝜕) . (2.113)

Since 1 ≤ 𝛼𝑡 ≤ 𝑡, we have that

P̂(𝑊̃2𝑡 = 𝜕) =
𝑡∑︁
𝑘=1

P̂(𝑊̃2𝑡 = 𝜕, 𝛼𝑡 = 𝑘) =
𝑡∑︁
𝑘=1

P̂(𝜏 (𝑘 )
𝜕

= 2𝑡, 𝛼𝑡 = 𝑘) . (2.114)

If 𝑘 = 1 the latter expression boils down to (2.102) in Lemma 2.6.6. Consider 𝑘 ≥ 2.
The first hitting time of 𝜕 has support on the interval {2, 4, . . . , 2(𝑡− 𝑘+1)}. Similarly,
the 𝑗-th one, 𝜏 ( 𝑗 )

𝜕
, belongs to {𝜏 ( 𝑗−1)

𝜕
+ 2, . . . , 2(𝑡 − 𝑘 + 𝑗 + 1)}. Therefore, defining
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𝑠0 = 0, 𝑠𝑘 = 𝑡, and 𝜏 (0)
𝜕

= 0, it holds

P̂(𝜏 (𝑘 )
𝜕

= 2𝑡, 𝛼𝑡 = 𝑘)

=

𝑡−𝑘+1∑︁
𝑠1=1

𝑡−𝑘+2∑︁
𝑠2=𝑠1+1

· · ·
𝑡−1∑︁

𝑠𝑘−1=𝑠𝑘−2+1

𝑘∏
𝑗=1

P̂(𝜏 ( 𝑗 )
𝜕

= 2𝑠 𝑗 , 𝛼𝑡 = 𝑘 | 𝜏 ( 𝑗−1)
𝜕

= 2𝑠 𝑗−1)

=

𝑡−𝑘+1∑︁
𝑠1=1

𝑡−𝑘+2∑︁
𝑠2=𝑠1+1

· · ·
𝑡−1∑︁

𝑠𝑘−1=𝑠𝑘−2+1

𝑘∏
𝑗=1

P̂(𝜏 ( 𝑗 )
𝜕

− 𝜏 ( 𝑗−1)
𝜕

= 2(𝑠 𝑗 − 𝑠 𝑗−1), 𝛼𝑡 = 𝑘)

=

𝑡−𝑘+1∑︁
𝑠1=1

𝑡−𝑘+2∑︁
𝑠2=𝑠1+1

· · ·
𝑡−1∑︁

𝑠𝑘−1=𝑠𝑘−2+1

𝑘∏
𝑗=1

P̂(𝜏 (1)
𝜕

= 2(𝑠 𝑗 − 𝑠 𝑗−1))

=

𝑡−𝑘+1∑︁
𝑠1=1

𝑡−𝑘+2∑︁
𝑠2=𝑠1+1

· · ·
𝑡−1∑︁

𝑠𝑘−1=𝑠𝑘−2+1

𝑘∏
𝑗=1

2−2(𝑠 𝑗−𝑠 𝑗−1 )+1𝐶𝑠 𝑗−𝑠 𝑗−1−1 𝑞 𝜌
𝑠 𝑗−𝑠 𝑗−1−1

= 2−2𝑡+𝑘 𝑞𝑘𝜌𝑡−𝑘𝐵(𝑡, 𝑘) ,

(2.115)

where the third equality comes from the renewal structure of the annealed process at
each visit to 𝜕 under the success of the coupling; the fourth equality holds thanks to
Lemma 2.6.6; and the last equality follows from

𝑡−𝑘+1∑︁
𝑠1=1

𝑡−𝑘+2∑︁
𝑠2=𝑠1+1

· · ·
𝑡−1∑︁

𝑠𝑘−1=𝑠𝑘−2+1

𝑘∏
𝑗=1
𝐶𝑠 𝑗−𝑠 𝑗−1−1

=

𝑡−𝑘∑︁
𝑙1=0

𝑡−𝑘−𝑙1∑︁
𝑙2=0

· · ·
𝑡−𝑘−∑𝑘−2

𝑗=1 𝑙 𝑗∑︁
𝑙𝑘−1=0

𝑡−𝑘−∑𝑘−1
𝑗=1 𝑙 𝑗∑︁

𝑙𝑘=𝑡−𝑘−
∑𝑘−1
𝑗=1 𝑙 𝑗

𝑘∏
𝑗=1
𝐶𝑙 𝑗

=
∑︁

𝑙1+···+𝑙𝑘=𝑡−𝑘
𝑙1,...,𝑙𝑘≥0

𝑘∏
𝑗=1
𝐶𝑙 𝑗 =

𝑘

2𝑡 − 𝑘

(
2𝑡 − 𝑘
𝑡

)
,

where the last equality comes from the Catalan 𝑘-fold self-convolution identity, see
e.g. [FL03, Eq. (19)], and equals the so-called “ballot numbers”, 𝐵(𝑡, 𝑘), defined in
(2.112). The desired result now follows by plugging (2.115) into (2.114). □

Thanks to (2.97), as a corollary of Lemma 2.6.7, we deduce the following result.

Corollary 2.6.8. In the same setting of Lemma 2.6.6, defined Φ : [0, 1/2]2 → R as

Φ(𝜌, 𝑞) :=
∞∑︁
𝑡=1

𝑡∑︁
𝑘=1

2−2𝑡+𝑘 𝑞𝑘 𝜌𝑡−𝑘 𝐵(𝑡, 𝑘) , (2.116)

it holds
lim
𝑛→∞

sup
𝜇∈M(𝑞)

|E[𝑅𝜇] − (1 +Φ(𝜌, 𝑞)) | = 0 , (2.117)
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where 𝜌 = 𝜌𝑛 and Φ are defined as in (2.112), (2.21) and (2.116), respectively.

Proof. The only thing that is worth to notice is that Φ is bounded since 𝑞, 𝜌 ≤ 1/2. □

At this point, it is enough to use Corollary 2.6.8 and some concentration result for
the random variable 𝑅𝜇 to conclude the validity of the following proposition, which
is the main result of this section.

Proposition 2.6.9. In the same setting of Lemma 2.6.6,

sup
𝜇∈M(𝑞)

���𝑅𝜇 − (1 +Φ(𝜌, 𝑞))
��� P−→ 0 , (2.118)

where 𝜌 = 𝜌𝑛 and Φ are defined as in (2.21) and (2.116), respectively.

Proof. We only need to study the second moment of 𝑅𝜇. We can rewrite

E
[
(𝑅𝜇)2

]
=

∑︁
𝑠,𝑡≤𝑇

E
[
P̃𝜕( 𝑋̃2𝑡 = 𝜕)P̃𝜕( 𝑋̃2𝑠 = 𝜕)

]
=

∑︁
𝑠,𝑡≤𝑇

P̃2-an,𝜇
(
𝑊̃

(1)
2𝑡 = 𝜕, 𝑊̃

(2)
2𝑠 = 𝜕

)
,

where the law P̃2-an,𝜇 is defined as in Remark 2.6.1. As pointed out in Remark 2.6.5,
we can couple at a polynomially small TV-cost the construction of the two annealed
walks with that of two i.i.d. forests. Therefore,∑︁

𝑠,𝑡≤𝑇
P̃2-an,𝜇

(
𝑊̃

(1)
2𝑡 = 𝜕, 𝑊̃

(2)
2𝑠 = 𝜕

)
≤ 𝑜(𝑇2𝑛−

𝜀
3 ) +

∑︁
𝑠,𝑡≤𝑇

2−(2𝑡+2𝑠)
𝑡∑︁

𝑘1=1

𝑠∑︁
𝑘2=1

𝑞𝑘1+𝑘2 𝜌𝑡+𝑠−𝑘1−𝑘2 𝐵(𝑡, 𝑘1) 𝐵(𝑠, 𝑘2)

= (1 + 𝑜(1)) E[𝑅𝜇]2 .

It follows that
E

[
(𝑅𝜇)2

]
∼ E [𝑅𝜇]2

,

thus Var(R𝜇) = o(1). Therefore, by Chebyshev inequality, we can conclude that for
any 𝛿 > 0

P ( |𝑅𝜇 − E[𝑅𝜇] | > 𝛿) ≤ Var(R𝜇)
𝛿2 = 𝑜(1) ,

Hence, |𝑅𝜇 − E[𝑅𝜇] | P−→ 0 and the desired conclusion follows by Corollary 2.6.8. □

To conclude the section, we show that the function Φ admits a closed form expres-
sion.
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Lemma 2.6.10. For all 𝜌, 𝑞 ∈ (0, 1/2], recalling the definition of Φ in (2.116), it
holds

1 +Φ(𝜌, 𝑞) = 𝜌

𝜌 − 𝑞
(
1 −

√︁
1 − 𝜌

) . (2.119)

Proof. Start by rewriting
∞∑︁
𝑡=1

𝑡∑︁
𝑘=1

2−2𝑡+𝑘 𝑘

2𝑡 − 𝑘

(
2𝑡 − 𝑘
𝑡

)
𝑞𝑘 𝜌𝑡−𝑘 =

∞∑︁
𝑘=1

2𝑘
(
𝑞

𝜌

) 𝑘 𝑡∑︁
𝑡=𝑘

2−2𝑡 𝑘

2𝑡 − 𝑘

(
2𝑡 − 𝑘
𝑡

)
𝜌𝑡

=

∞∑︁
𝑘=1

2𝑘
(
𝑞

𝜌

) 𝑘 𝑡∑︁
𝑡=𝑘

( 𝜌
4

) 𝑡 𝑘

2𝑡 − 𝑘

(
2𝑡 − 𝑘
𝑡 − 𝑘

)
=

∞∑︁
𝑘=1

2−𝑘𝑞𝑘
∞∑︁
ℓ=0

( 𝜌
4

)ℓ 𝑘

2ℓ + 𝑘

(
2ℓ + 𝑘
ℓ

)
.

(2.120)

For any 𝑥 ∈ (0, 1), call

𝐺 (𝑥) :=
1 −

√
1 − 4𝑥

2 𝑥
(2.121)

the generating function of the Catalan numbers. Notice that the inner series in the
last row of (2.120) corresponds to the generating function of the generalized binomial,
evaluated at 𝜌/4. Indeed, for any fixed 𝑘 ∈ N, it holds (see, e.g., [GKP94, Ch. 5.4] or
[FL03, Eq. 24])

𝐺 (𝑥)𝑘 =
∞∑︁
ℓ=0

𝑘

2ℓ + 𝑘

(
2ℓ + 𝑘
ℓ

)
𝑥ℓ . (2.122)

In our setting this fact reads

∞∑︁
ℓ=0

( 𝜌
4

)ℓ 𝑘

2ℓ + 𝑘

(
2ℓ + 𝑘
ℓ

)
= 𝐺𝑘 (𝜌/4) =

(
1 −

√︁
1 − 𝜌

) 𝑘
2−𝑘𝜌𝑘

.

Therefore we can conclude plugging the latter equality in (2.120), as

1 +
∞∑︁
𝑘=1

2−𝑘𝑞𝑘
∞∑︁
ℓ=0

( 𝜌
4

)ℓ 𝑘

2ℓ + 𝑘

(
2ℓ + 𝑘
ℓ

)
=

∞∑︁
𝑘=0

(
𝑞

𝜌

(
1 −

√︁
1 − 𝜌

)) 𝑘
=

1

1 − 𝑞

𝜌

(
1 −

√︁
1 − 𝜌

) =
𝜌

𝜌 − 𝑞
(
1 −

√︁
1 − 𝜌

) ,
where in the second equality we used that, since 𝑞 < 1

2 ,

𝑞

𝜌

(
1 −

√︁
1 − 𝜌

)
≤

1 −
√︁

1 − 𝜌
2𝜌

=
1

2(1 +
√︁

1 − 𝜌)
<

1
2
. (2.123)

□
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§2.7 Return to the diagonal for random walks with 𝜇̃-reset

From Proposition 2.6.9, we see that when considering the random walk with 𝜇-reset
the only feature of the law 𝜇 that determines the value of 𝑅𝜇 is the expectation of
the inverse out-degree of a vertex sampled according to 𝜇. In this section, we show
how to adapt this result to the case in which the distribution 𝜇 is replaced by the
random distribution 𝜇̃ defined in (2.77). The argument can be ideally divided into two
parts: first, we show that the expectation of the inverse out-degree of a vertex sampled
according to 𝜇̃ converges in probability to the value 𝔮 in (2.24); second, we use a
continuity argument to conclude that 𝑅 𝜇̃ converges in probability to 𝔯 = 1 +Φ(𝜌, 𝔮),
where Φ is defined as in (2.116). This concludes the proof of Proposition 2.5.6.

Concerning the first part of the above mentioned argument, we prove a more
general result, showing that actually the expectation of any bounded function of the
degrees of a vertex sampled according to 𝜇̃ converges in probability to an explicit
function of the degree sequences. This fact is formalized in Proposition 2.7.3. Before
proceeding with the statement, it is convenient to provide the following definition.

Definition 2.7.1. For every 𝑛 ∈ N let (d+, d−) be a degree sequence satisfying As-
sumption 2.A. Consider the function 𝑔 = 𝑔𝑛 : N0 × N≥2 → R defined as follows: for
all 𝑑− ≥ 0 and 𝑑+ ≥ 2

𝑔(𝑑−, 𝑑+) =
𝑑− |𝑉𝑑− ,𝑑+ |

𝑚2

(
𝑑− + 𝛾 − 𝜌

1 − 𝜌 − 1
)
, (2.124)

where 𝜌 = 𝜌𝑛 and 𝛾 = 𝛾𝑛 are defined in (2.21), and 𝑉𝑑− ,𝑑+ denotes the set of vertices
having in- and out-degree equal to 𝑑− and 𝑑+, respectively. ■

Remark 2.7.2. Notice that, thanks to Assumption 2.A

𝑛
∑︁
𝑑−≥0

∑︁
𝑑+≥2

𝑔(𝑑−, 𝑑+) = 𝔭 = Θ(1) , (2.125)

where 𝔭 has been defined in (2.23). Moreover, if the graph is Eulerian, then 𝛾 = 1,
and the function is non zero only on the diagonal, where

𝑔𝑛 (𝑑, 𝑑) =
𝑑2 |𝑉𝑑 |
𝑚2 . (2.126)

If in particular the graph is regular of degree 𝑑, the latter is the indicator function at
𝑑, divided by 𝑛.

Proposition 2.7.3. For every 𝑛 ∈ N let (d+, d−) be a degree sequence satisfying
Assumption 2.A. Then, for every bounded function 𝑓 : N0 × N≥2 → R it holds that������𝑛 ∑︁

𝑥∈[𝑛]
𝜋2(𝑥) 𝑓 (𝑑−𝑥 , 𝑑+𝑥 ) − 𝑛

∑︁
𝑑−≥0

∑︁
𝑑+≥2

𝑔(𝑑−, 𝑑+) 𝑓 (𝑑−, 𝑑+)

������ P−→ 0 , (2.127)
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where 𝑔 = 𝑔𝑛 is as in Definition 2.7.1.

The proof of Proposition 2.7.3 is postponed to Section 2.7. We now show how to
derive from it the proof of Proposition 2.5.6.

Proof of Propositions 2.5.5 and 2.5.6. By Proposition 2.7.3, choosing 𝑓 (𝑑−, 𝑑+) ≡ 1
(cf. (2.125)) we have ������𝑛 ∑︁

𝑥∈[𝑛]
𝜋2(𝑥) − 𝔭

������ P−→ 0 . (2.128)

Similarly, choosing 𝑓 (𝑑−, 𝑑+) = 1𝑑+≥2/𝑑+,������𝑛 ∑︁
𝑥∈[𝑛]

𝜋2(𝑥) 1
𝑑+𝑥

− 𝑛
∑︁
𝑑−≥1

∑︁
𝑑+≥2

𝑔(𝑑−, 𝑑+) 1
𝑑+

������ P−→ 0 . (2.129)

In conclusion, by Definition 2.7.1 and (2.24) we have������ 1〈
𝜋2

〉 ∑︁
𝑥∈[𝑛]

𝜋2(𝑥) 1
𝑑+𝑥

− 𝔮

������ P−→ 0 . (2.130)

Recall the definition of the sets (M(𝑞))𝑞≥0 in (2.100). Similarly, for any 𝜀 > 0, define
the set

M𝜀 (𝑞) :=
𝜇 ∈ P([𝑛]) |

∑︁
𝑥∈[𝑛]

𝜇(𝑥) 1
𝑑+𝑥

∈ [𝑞 − 𝜀, 𝑞 + 𝜀]
 . (2.131)

By (2.130), for any 𝜀 > 0, if

G𝜀 = {𝜇̃ ∈ M𝜀 (𝔮)} ,

then we have P(G𝜀) = 1 − 𝑜(1). As a consequence,

P
(���𝑅 𝜇̃ − (1 +Φ(𝜌, 𝔮))

��� > 𝜀) = P
(���𝑅 𝜇̃ − (1 +Φ(𝜌, 𝔮))

��� > 𝜀 , G𝜀) + 𝑜(1)
≤ sup
𝜇∈M𝜀 (𝔮)

P
(���𝑅𝜇 − (1 +Φ(𝜌, 𝔮))

��� > 𝜀) + 𝑜(1) ,
hence, the desired result follows by the continuity of the function Φ in its second
variable, which can be checked immediately thanks to representation in Lemma 2.10.1.

□
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Proof of Proposition 2.7.3
We begin this section by explaining the strategy of proof and all the required technical
ingredients. We take inspiration from [CQ21a, Lemma 4.1] and [QS23, Lemma
4], where the authors where interested only in determining a first order bound on the
quantity

〈
𝜋2〉 for the random walk on the DCM and on the related random Deterministic

Finite Automata (DFA) model, respectively.
The first ingredient in the proof is an approximation of 𝜋 with the 𝑇 (defined as in

(2.96)) step evolution1 of the simple random walk started at the uniform distribution,

𝜇𝑇 (𝑥) = 𝜇𝑛,𝑇 (𝑥) :=
1
𝑛

∑︁
𝑦∈[𝑛]

𝑃𝑇 (𝑦, 𝑥) 𝑥 ∈ [𝑛] . (2.132)

Indeed, as a corollary of Theorem 2.4.3, we have (see also [CCPQ23, Corollary 3.7])
that the event

H = H𝑛 :=
 max
𝑥∈[𝑛]

������𝜋(𝑥) − 1
𝑛

∑︁
𝑦∈[𝑛]

𝑃𝑇 (𝑦, 𝑥)

������ ≤ 𝑒− log(𝑛)3/2
 , (2.133)

satisfies
P(H) = 1 − 𝑜(1) . (2.134)

For each 𝑑− ≥ 0 and 𝑑+ ≥ 2 and any bounded function 𝑓 : N0×N≥2 → R we consider
the random variables

𝑍𝑑− ,𝑑+ =
∑︁

𝑥∈𝑉𝑑− ,𝑑+
𝜋(𝑥)2 𝑓 (𝑑−, 𝑑+) . (2.135)

Notice that the quantity of interest in (2.127) can be rewritten as∑︁
𝑥∈[𝑛]

𝜋(𝑥)2 𝑓 (𝑑−𝑥 , 𝑑+𝑥 ) =
∑︁
𝑑−≥0

∑︁
𝑑+≥2

𝑍𝑑− ,𝑑+ . (2.136)

We also consider the collection of random variables

𝑌𝑥 :=
1
𝑛2

∑︁
𝑦,𝑧∈[𝑛]

𝑃𝑇 (𝑦, 𝑥)𝑃𝑇 (𝑧, 𝑥) 𝑓 (𝑑−𝑥 , 𝑑+𝑥 ) , 𝑥 ∈ [𝑛] . (2.137)

By definition of the event H in (2.133), for all 𝑛 sufficiently large,

1(H)

������ ∑︁𝑑−≥0

∑︁
𝑑+≥2

𝑍𝑑− ,𝑑+ −
∑︁
𝑥∈[𝑛]

𝑌𝑥

������ ≤ 𝑒− log(𝑛)4/3
, P − a.s. . (2.138)

1In [CQ21a, QS23], 𝑇 is chosen log3 (𝑛), which is enough to guarantee that the ℓ∞ distance between 𝜋
and𝜆 is 𝑜(𝑛−𝑐) for every 𝑐 > 0. Since the bounds we are going to show are not affected by polylogarithmic
factors, we prefer to use the same 𝑇 as in (2.96), in order to avoid the introduction of further notation.
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Hence, the proof of (2.127) comes as a consequence of the following convergence

𝐹 = 𝐹𝑛 :=

������𝑛 ∑︁
𝑥∈[𝑛]

𝑌𝑥 − 𝑛
∑︁
𝑑−≥0

∑︁
𝑑+≥2

𝑔(𝑑−, 𝑑+) 𝑓 (𝑑−, 𝑑+)

������ P−→ 0 . (2.139)

Indeed, calling

𝐹 = 𝐹𝑛 :=

������𝑛 ∑︁
𝑥∈[𝑛]

𝜋2(𝑥) 𝑓 (𝑑−𝑥 , 𝑑+𝑥 ) − 𝑛
∑︁
𝑑−≥0

∑︁
𝑑+≥2

𝑔(𝑑−, 𝑑+) 𝑓 (𝑑−, 𝑑+)

������ , (2.140)

thanks to (2.134) and (2.138), we have for all 𝜀 > 0

P(𝐹 > 𝜀) ≤ P(𝐹 > 𝜀 ,H) +P(H 𝑐) ≤ P
(
𝐹 > 𝜀/2 ,H

)
+ 𝑜(1) ≤ P

(
𝐹 > 𝜀/2

)
+ 𝑜(1) .
(2.141)

Therefore, the rest of the proof is devoted to establishing the convergence in (2.139). To
this aim, we will use the second moment method for the random variable 𝑛

∑
𝑥∈[𝑛] 𝑌𝑥 ,

showing that

E
[
𝑛

∑︁
𝑥∈[𝑛]

𝑌𝑥

]
= (1 + 𝑜(1)) 𝑛

∑︁
𝑑−≥1

∑︁
𝑑+≥2

𝑔𝑛 (𝑑−, 𝑑+) 𝑓 (𝑑−, 𝑑+) , (2.142)

and

E
[ (
𝑛

∑︁
𝑥∈[𝑛]

𝑌𝑥
)2

]
= (1 + 𝑜(1)) E

[
𝑛

∑︁
𝑥∈[𝑛]

𝑌𝑥

]2
, (2.143)

from which (2.139) follows immediately by Chebyshev inequality. Let us start by
computing the expectation

E
[ ∑︁
𝑥∈[𝑛]

𝑌𝑥

]
=

1
𝑛2

∑︁
𝑦,𝑧∈[𝑛]

E
[
𝑃𝑇 (𝑦, 𝑥)𝑃𝑇 (𝑧, 𝑥)

]
𝑓 (𝑑−𝑥 , 𝑑+𝑥 ) =

∑︁
𝑥∈[𝑛]

E
[
𝜇𝑇 (𝑥)2] 𝑓 (𝑑−𝑥 , 𝑑+𝑥 ) ,

(2.144)

where we recall to the reader the definition of 𝜇𝑇 is in (2.132). Note that, due to the
symmetry of the model, if 𝑥, 𝑥′ ∈ 𝑉𝑑− ,𝑑+ for some 𝑑− ≥ 0 and 𝑑+ ≥ 2, then

E
[
𝜇𝑇 (𝑥)

]
= E

[
𝜇𝑇 (𝑥′)

]
. (2.145)

Therefore, (2.144) can be rewritten as

E
[ ∑︁
𝑥∈[𝑛]

𝑌𝑥

]
=

∑︁
𝑑−≥1

∑︁
𝑑+≥2

|𝑉𝑑− ,𝑑+ | 𝑓 (𝑑−, 𝑑+) E
[
𝜇𝑇

(
𝑥(𝑑−, 𝑑+)

)2
]
, (2.146)
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where 𝑥(𝑑−, 𝑑+) denotes an arbitrary representative of the vertices with degrees
(𝑑−, 𝑑+). Notice that we can neglect the case 𝑑− = 0, since for every 𝑥 such that
𝑑−𝑥 = 0 it holds 𝜇𝑇 (𝑥) = 0, P − a.s.

We will show the validity of the following lemma, from which (2.142) follows
immediately due to (2.146) and the definition of 𝑔 in (2.124).

Lemma 2.7.4. Fixed 𝑑− ≥ 1, 𝑑+ ≥ 2 and 𝑥 ∈ 𝑉𝑑− ,𝑑+ it holds

E
[
𝜇𝑇 (𝑥)2] = (1 + 𝑜(1)) 𝑑

−

𝑚2

(
𝑑− + 𝛾 − 𝜌

1 − 𝜌 − 1
)
. (2.147)

Proof. We use again an annealing argument, this time for the simple random walk.
We start by defining the annealed walks. Notice that

E
[
𝜇𝑇 (𝑥)2] = P2-an

unif (𝑊
(1)
𝑡 = 𝑊

(2)
𝑡 = 𝑥) , 𝑥 ∈ [𝑛] , (2.148)

where P2-an
unif is the law of a two random walk, (𝑊 (1)

𝑡 ,𝑊
(2)
𝑡 )𝑡≤𝑇 running one after the

other, both starting (independently) at a uniform vertex, and creating the environment
along with their trajectory, as explained in Remark 2.6.3. More precisely, samples
according to P2-an

unif can be obtained as follows:

(1) sample𝑊 (1)
0 u.a.r. in [𝑛];

(2) for all 𝑠 ∈ {1, . . . , 𝑇}, choose 𝑒 ∈ 𝐸+
𝑊𝑠−1

u.a.r. :

(2a) if 𝑒 is already matched to some 𝑓 ∈ 𝐸−, call 𝑣 𝑓 the vertex incident to the
head 𝑓 , and set𝑊 (1)

𝑠 = 𝑣 𝑓 ;

(2b) if 𝑒 is unmatched, choose u.a.r. some 𝑓 ∈ 𝐸− which is still unmatched,
set 𝜔(𝑒) = 𝑓 , call 𝑣 𝑓 the vertex incident to 𝑓 and set𝑊 (1)

𝑠 = 𝑣 𝑓 ;

(3) once (𝑊 (1)
𝑡 )𝑡≤𝑇 has been sampled, sample (𝑊 (2) )𝑡≤𝑇 in the same way, starting

from the partial environment constructed by trajectory of𝑊 (1) .

Similar to what was done in Section 2.6.1, we now aim at coupling steps (1) and (2)
of the previous randomized algorithm with an i.i.d. process.

Let (𝑈𝑡 )𝑡≤𝑇 be an independent sequence of random variables in [𝑛] such that𝑈0 is
uniformly distributed on [𝑛], and for all 𝑡 ≥ 1,𝑈𝑡

𝑑
= 𝜇in, with 𝜇in as in (2.20). Such an

i.i.d. process can be coupled with the annealed walk (𝑊 (1)
𝑡 )𝑡≤𝑇 in a joint probability

space Q that can be described as follows:
(a) let𝑊 (1)

0 = 𝑈0;

(b) for 𝑡 ≥ 1, sample𝑈𝑡 ∼ 𝜇in:
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(ii a) if 𝑈𝑡 ≠ 𝑈 𝑗 for all 𝑗 < 𝑡, sample 𝑒 ∈ 𝐸+
𝑊

(1)
𝑡−1

u.a.r. and match it with a uniform

random head 𝑓 ∈ 𝐸−
𝑈𝑡

and declare𝑊 (1)
𝑡 = 𝑈𝑡 ;

(ii b) if𝑈𝑡 = 𝑈𝑠 for some 𝑠 < 𝑡, select a uniform random head 𝑓 ∈ 𝐸−
𝑈𝑡

:

– if 𝑓 is already matched, declare the coupling as failed, and continue the
two constructions independently;

– if 𝑓 is still unmatched, sample a uniformly random tail 𝑒 ∈ 𝐸+
𝑊

(1)
𝑡−1

, match it

with 𝑓 and set𝑊 (1)
𝑡 = 𝑊

(1)
𝑠 = 𝑈𝑡 = 𝑈𝑠, declare the coupling as failed and

continue the two constructions independently.

After the realization of the coupled process just described, the trajectory of the second
annealed walk, (𝑊 (2)

𝑡 )𝑡≤𝑇 will be sampled according to the usual procedure, condi-
tioned on (𝑊 (1)

𝑡 )𝑡≤𝑇 . We will use the same symbol Q the refer to such an enlarged
probability space, sufficiently rich to include the coupled generation of (𝑈𝑡 )𝑡≤𝑇 and
(𝑊 (1)

𝑡 )𝑡≤𝑇 and that of (𝑊 (2)
𝑡 )𝑡≤𝑇 . Call

D := {𝑊 (1)
𝑇

= 𝑥} , (2.149)

and F the event in which the coupling fails. We start by showing that

Q(D) = (1 + 𝑜(1)) 𝑑
−

𝑚
. (2.150)

and

Q(F | D) = 𝑂
(
𝑇3 𝑑−max

𝑛

)
. (2.151)

Call E𝑥 the event in which the vertex 𝑥 is visited by the first annealed trajectory
more than once, i.e.,

E𝑥 := {∃𝑠, 𝑡 ≤ 𝑇 s.t.𝑊 (1)
𝑠 = 𝑊

(1)
𝑡 = 𝑥 , 𝑠 ≠ 𝑡} . (2.152)

There are two possible ways in which the latter event can happen: either 𝑊 (1)
0 = 𝑥,

and at time 𝑡 < 𝑇 vertex 𝑥 is visited again; this happens with probability at most

1
𝑛

𝑑−

𝑚 − 𝑇 𝑇 .

On the other had, if the initial position of 𝑊 (1) is different from 𝑥, in order to realize
E𝑥 , 𝑥 must be visited once by matching one of its heads and, subsequently, the walk
has to visit again one of the vertices already visited. The probability of this event can
be bounded by

𝑑−

𝑚 − 𝑇
𝑑−max − 1
𝑚 − 𝑇 𝑇2 .
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Combining the two bounds we get, for all 𝑛 large enough,

Pan
unif (E𝑥) = 𝑂 (𝑝1) , where 𝑝1 :=

𝑇2 𝑑− 𝑑−max
𝑛2 . (2.153)

Therefore
P2-an

unif (D) = P2-an
unif (D ∩ E𝑐𝑥) +𝑂 (𝑝1) . (2.154)

Consider also the event Ē𝑥 in which there exists some other vertex that is visited more
than once, i.e.,

Ē𝑥 := ∪𝑦∈[𝑛]\𝑥 E𝑦 .

Hence,

P2-an
unif (D) = P2-an

unif (D ∩ E𝑐𝑥 ∩ Ē𝑐𝑥) + P2-an
unif (D ∩ E𝑐𝑥 ∩ Ē𝑥) +𝑂 (𝑝1) . (2.155)

We can further bound

P2-an
unif (D ∩ E𝑐𝑥 ∩ Ē𝑥) = 𝑂 (𝑝2) , where 𝑝2 :=

𝑇3 𝑑− 𝑑−max
𝑛2 . (2.156)

Indeed, the probability that 𝑦 ≠ 𝑥 is visited at least twice by the annealed walk can be
bounded analogously to (2.153). Moreover, under this event it has to visit 𝑥 at time 𝑇
for the first time. Hence by a union bound

P2-an
unif (D ∩ E𝑐𝑥 ∩ Ē𝑥) ≤

∑︁
𝑦∈[𝑛]

𝑇
𝑑−𝑦

𝑚 − 𝑇 × 𝑇2 𝑑−max
𝑚 − 𝑇 × 𝑑−

𝑚 − 𝑇 , (2.157)

from which (2.156) follows.
It follows that

P2-an
unif (D) = P2-an

unif (D , E𝑐𝑥 ∩ Ē𝑐𝑥) +𝑂 (𝑝1 + 𝑝2) . (2.158)

Finally, notice that

P2-an
unif (D ∩ E𝑐𝑥 ∩ Ē𝑐𝑥) ≤

𝑑−

𝑚 − 𝑇 = (1 + 𝑜(1)) 𝑑
−

𝑚
, (2.159)

and

P2-an
unif (D ∩ E𝑐𝑥 ∩ Ē𝑐𝑥) ≥

(
1 −

𝑇𝑑−max
𝑚 − 𝑇

)𝑇
𝑑−

𝑚 − 𝑇 = (1 + 𝑜(1)) 𝑑
−

𝑚
. (2.160)

From (2.159) and (2.160) it follows that

P2-an
unif (D ∩ E𝑐𝑥 ∩ E𝑐) = (1 + 𝑜(1)) 𝑑

−

𝑚
. (2.161)
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Then (2.150) follows by plugging (2.161) into (2.158) and noting that 𝑝1, 𝑝2 = 𝑜(𝑛−1).
At this point, to prove (2.151) it suffices to note that

Q(F | D) = Q(D ∩ (E𝑥 ∪ Ē𝑥))
Q(D) = 𝑂

( 𝑛
𝑑−

(𝑝1 + 𝑝2)
)
= 𝑂

(
𝑇3 𝑑−max

𝑛

)
, (2.162)

where we used (2.150) to estimate the denominator and for the numerator we bounded

Q(D ∩ (E𝑥 ∪ Ē𝑥)) ≤ Q(E𝑥) + Q(D ∩ Ē𝑥 ∩ E𝑐𝑥) , (2.163)

and then used (2.153) and (2.156).
We go back to estimating the right hand side of (2.148) using the coupling. Call

G the event in which the second walk enters the trajectory of the first one, follows it,
and at a certain time exits it, i.e.

G :=
⋃

0≤𝑠<𝑠′<𝑠′′≤𝑇

(
A𝑠 ∩ B𝑠′ ∩ C𝑠′′

)
,

where

A𝑠 = {𝑊 (2)
𝑠 ∈ {𝑊 (1)

𝑡 }𝑡≤𝑇 } , B𝑠′ = {𝑊 (2)
𝑠′ ∉ {𝑊 (1)

𝑡 }𝑡≤𝑇 } , C𝑠′′ = {𝑊 (2)
𝑠′′ ∈ {𝑊 (1)

𝑡 }𝑡≤𝑇 } .

For any 𝜎 ∈ D we have that

Q(G | 𝜎) ≤
∑︁

0≤𝑠<𝑠′<𝑠′′≤𝑇
Q(A𝑠 | 𝜎) Q(B𝑠′ | A𝑠 , 𝜎) Q(C𝑠′′ | B𝑠′ , A𝑠 , 𝜎) ,

where the single probabilities can be bounded as follows

Q(A𝑠 | 𝜎) ≤
𝑇

𝑛
+ 𝑇2 𝑑−max

𝑚 − 2𝑇
,

Q(B𝑠′ | A𝑠, 𝜎) ≤ 1 ,

Q(C𝑠′′ | B𝑠′ ∩ A𝑠, 𝜎) ≤ 𝑇2 𝑑−max
𝑚 − 2𝑇

.

Hence, taking the supremum over 𝜎 ∈ D,

sup
𝜎∈D

Q(G | 𝜎) = 𝑂
(
𝑇5 (𝑑−max)2

𝑛2

)
. (2.164)

To ease the reading, for 𝑡 ∈ [0, 𝑇] and 𝜎 ∈ D let us consider the function 𝜎 ↦→
𝑞𝑡 (𝜎) ∈ [0, 1] such that

𝑞𝑡 (𝜎) := Q(G𝑐, 𝑊 (2)
𝑡−1 ≠ 𝑊

(1)
𝑡−1, 𝑊

(2)
𝑠 = 𝑊

(1)
𝑠 , 𝑠 ∈ [𝑡, 𝑇] | 𝜎) (2.165)

= Q(𝑊 (2)
𝑠′ ∉ {𝑊 (1)

𝑡 }𝑡≤𝑇 , 𝑠′ ∈ [0, 𝑡) and𝑊 (2)
𝑠 = 𝑊

(1)
𝑠 , 𝑠 ∈ [𝑡, 𝑇] | 𝜎) ,

(2.166)
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where, by convention, we consider {𝑊 (1)
−1 ≠ 𝑊

(2)
−1 } as the sure event. Further, define

the same probability conditioned to the event D as

𝑞𝑡 := Q(𝑊 (2)
𝑠′ ∉ {𝑊 (1)

𝑡 }𝑡≤𝑇 , 𝑠′ ∈ [0, 𝑡) and𝑊 (2)
𝑠 = 𝑋

(1)
𝑠 , 𝑠 ∈ [𝑡, 𝑇] | D) , (2.167)

so that
𝑞𝑡 =

∑︁
𝜎∈D

Q(𝜎 | D) 𝑞𝑡 (𝜎) = Ê[𝑞𝑡 (𝜎) | D] , (2.168)

where Ê is the expectation in the conditional probability space Q( · | D). As a
consequence of (2.164), for every 𝜎 ∈ D,

Q(𝑊 (2)
𝑇

= 𝑥 | 𝜎) =
𝑇∑︁
𝑡=0

𝑞𝑡 (𝜎) +𝑂
(
𝑇5 (𝑑−max)2

𝑛2

)
. (2.169)

Therefore, using Assumption 2.B we get

Q(𝑊 (1)
𝑇

= 𝑊
(2)
𝑇

= 𝑥) = Q(D)
(
Ê
[ 𝑇∑︁
𝑡=0

𝑞𝑡 (𝜎) | D
]
+ 𝑜(𝑛−1)

)
. (2.170)

Hence Lemma 2.7.4 follows at once by (2.150) and (2.170) as soon as we prove that

𝑇∑︁
𝑡=0

𝑞𝑡 = (1 + 𝑜(1)) 1
𝑚

(
𝑑− − 1 + 𝛾 − 𝜌

1 − 𝜌

)
. (2.171)

For every 𝑡 ≤ 𝑇 and any 𝜎 ∈ D, define

𝛿𝑡 (𝜎) := Q

(
𝑡−1⋂
𝑠=0

𝑊
(2)
𝑠′ ∉ {𝑊 (1)

𝑡 }𝑡≤𝑇 | 𝜎
)
≥

(
1 − 𝑇

𝑛

) (
1 −

3𝑇 𝑑−max
𝑚

)𝑇
= 1 − 𝑜(1) ,

where the inequality holds for all 𝑛 large enough. Notice also that, calling 𝑑±𝑠 = 𝑑±
𝑋

(1)
𝑠

for all 𝑠 ∈ {0, . . . , 𝑇}, one has

𝑞𝑡 (𝜎) =
{
𝛿𝑇 (𝜎) 𝑑

−−1
𝑚−2𝑇 = (1 + 𝑜(1)) 𝑑−−1

𝑚
if 𝑡 = 𝑇 ,

𝛿𝑡 (𝜎) 𝑑−𝑡 −1
𝑚−𝑇−𝑡

∏𝑇−1
𝑠=𝑡

1
𝑑+𝑠

= (1 + 𝑜(1)) 𝑑
−
𝑡 −1
𝑚

∏𝑇−1
𝑠=𝑡

1
𝑑+𝑠

if 𝑡 ∈ {0, . . . , 𝑇 − 1} ,

in particular

𝑞𝑇 = Ê[𝑞𝑇 (𝜎) | D] = (1 + 𝑜(1)) 𝑑
− − 1
𝑚

. (2.172)

For 𝑡 < 𝑇 , we split

Ê[𝑞𝑡 (𝜎) | D] = Ê[𝑞𝑡 (𝜎)1(F 𝑐) | D] + Ê[𝑞𝑡 (𝜎)1(F ) | D] . (2.173)
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To bound the above two terms on the rhs we use (2.151) and Assumption 2.A. The
first term is bounded as follows

Ê[𝑞𝑡 (𝜎)1(F ) | D] ≤
𝑑−max
𝑚

2−𝑇+𝑡 Q(F | D)

= 𝑂

(
𝑇3 (𝑑−max)2

𝑛2 2−𝑇+𝑡
)
= 𝑜

(
𝑛−1 × 2−𝑇+𝑡 ) . (2.174)

The second term can be written as follows

Ê[𝑞𝑡 (𝜎)1(F 𝑐) | D] = (1 + 𝑜(1)) Ê
[
𝑑−
𝑈𝑡

− 1
𝑚

𝑇−1∏
𝑠=𝑡

1
𝑑+
𝑈𝑠

1(F 𝑐) | D
]

= (1 + 𝑜(1))
{
Ê

[
𝑑−
𝑈𝑡

− 1
𝑚

𝑇−1∏
𝑠=𝑡

1
𝑑+
𝑈𝑠

| D
]
− Ê

[
𝑑−
𝑈𝑡

− 1
𝑚

𝑇−1∏
𝑠=𝑡

1
𝑑+
𝑈𝑠

1(F ) | D
]}

= (1 + 𝑜(1)) Ê
[
𝑑−
𝑈𝑡

− 1
𝑚

𝑇−1∏
𝑠=𝑡

1
𝑑+
𝑈𝑠

]
−𝑂

(
𝑑−max
𝑚

2−𝑇+𝑡 Q(F | D)
)

= (1 + 𝑜(1)) Ê
[
𝑑−
𝑈𝑡

− 1
𝑚

𝑇−1∏
𝑠=𝑡

1
𝑑+
𝑈𝑠

]
− 𝑜

(
𝑛−1 × 2−𝑇+𝑡

)
.

(2.175)

It is easy to check that, if𝑈 ∼ 𝜇in,

Ê
[

1
𝑑+
𝑈

]
= 𝜌 , Ê

[
𝑑−
𝑈
− 1
𝑑+
𝑈

]
=

1
𝑚

∑︁
𝑥∈[𝑛]

𝑑−𝑥 (𝑑−𝑥 − 1)
𝑑+𝑥

= 𝛾 − 𝜌 . (2.176)

Therefore, putting together (2.172), (2.173), (2.174), (2.175) and (2.176), we deduce

Ê

[
𝑇∑︁
𝑡=0

𝑞𝑡 (𝜎) | D
]
=(1 + 𝑜(1))

(
𝑑− − 1
𝑚

+ Ê

[
𝑇−1∑︁
𝑡=0

𝑑−
𝑈𝑡

− 1
𝑚

𝑇−1∏
𝑠=𝑡

1
𝑑+
𝑈𝑠

])
+ 𝑜(𝑛−1)

=(1 + 𝑜(1))
(
𝑑− − 1
𝑚

+ 𝛾 − 𝜌
𝑚

𝑇−1∑︁
𝑡=0

𝜌𝑡

)
∼ 1
𝑚

(
𝑑− − 1 + 𝛾 − 𝜌

1 − 𝜌

)
,

(2.177)

hence proving the validity of (2.171). □

To conclude the section, we are now left to show (2.143), which follows immedi-
ately by the following lemma.

Lemma 2.7.5. Recall the definition of (𝑌𝑥)𝑥∈[𝑛] in (2.137). It holds

lim
𝑛→∞

E
[ ( ∑

𝑥∈[𝑛] 𝑌𝑥
)2

]
E
[ ∑

𝑥∈[𝑛] 𝑌𝑥
]2 = 1 . (2.178)
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Proof. Start by noting that it suffices to show that

E
[ ( ∑︁
𝑥∈[𝑛]

𝑌𝑥
)2

]
≤ (1 + 𝑜(1)) E

[ ∑︁
𝑥∈[𝑛]

𝑌𝑥

]2
, (2.179)

since the other inequality is trivially true. Rewrite

E
[ ( ∑︁
𝑥∈[𝑛]

𝑌𝑥
)2

]
=

∑︁
𝑥∈[𝑛]

∑︁
𝑦∈[𝑛]

E[𝑌𝑥 𝑌𝑦] =
∑︁
𝑥∈[𝑛]

∑︁
𝑦∈[𝑛]

E[𝜇𝑇 (𝑥)2𝜇𝑇 (𝑦)2] 𝑓 (𝑑−𝑥 , 𝑑+𝑥 ) 𝑓 (𝑑−𝑦 , 𝑑+𝑦 ) ,

(2.180)
and consider the annealed process described in the proof of Lemma 2.7.4, but this
time, consider also the two additional annealed trajectories {𝑊 (3)

𝑡 }𝑡≤𝑇 and {𝑊 (4)
𝑡 }𝑡≤𝑇 ,

to be generated, sequentially, after the generation of {𝑊 (1)
𝑡 }𝑡≤𝑇 and {𝑊 (2)

𝑡 }𝑡≤𝑇 . We
have

E[𝑌𝑥𝑌𝑦] = P4-an
unif

(
𝑊

(1)
𝑇

= 𝑊
(2)
𝑇

= 𝑥 , 𝑊
(3)
𝑇

= 𝑊
(4)
𝑇

= 𝑦

)
𝑓 (𝑑−𝑥 , 𝑑+𝑥 ) 𝑓 (𝑑−𝑦 , 𝑑+𝑦 ) .

(2.181)
Let

N𝑥 :=
{
𝑊

(1)
𝑇

= 𝑊
(2)
𝑇

= 𝑥

}
, and I𝑦 :=

{
𝑊

(3)
𝑇

= 𝑊
(4)
𝑇

= 𝑦

}
. (2.182)

Start by considering the case 𝑥 ≠ 𝑦, and let J be the event where the trajectories
of (𝑊 (1)

𝑡 ,𝑊
(2)
𝑡 )𝑡≤𝑇 hit the set of trajectories of (𝑊 (3)

𝑡 ,𝑊
(4)
𝑡 )𝑡≤𝑇 , which we formally

write as follows:

J :=
{
∃𝑠, 𝑡 ≤ 𝑇 and ∃𝑖 ∈ {1, 2}, 𝑗 ∈ {3, 4} s.t. 𝑊 (𝑖)

𝑠 = 𝑊
( 𝑗 )
𝑡

}
. (2.183)

We claim that, uniformly in 𝑥 ≠ 𝑦

P4-an
unif (N𝑥 ∩ I𝑦 ∩ J) = 𝑜

(
P4-an

unif (N𝑥) P4-an
unif (I𝑦)

)
, (2.184)

and
P4-an

unif (N𝑥 ∩ I𝑦 ∩ J 𝑐) ≤ P4-an
unif (N𝑥) P4-an

unif (I𝑦) . (2.185)

Assuming the validity of (2.184) and (2.185), from (2.180) and (2.181) we deduce

E
[ ( ∑︁
𝑥∈[𝑛]

𝑌𝑥
)2

]
≤ (1 + 𝑜(1))

∑︁
𝑥∈[𝑛]

∑︁
𝑦∈[𝑛]
𝑦≠𝑥

P4-an
unif (N𝑥) P4-an

unif (I𝑦) 𝑓 (𝑑
−
𝑥 , 𝑑

+
𝑥 ) 𝑓 (𝑑−𝑦 , 𝑑+𝑦 )

+
∑︁
𝑥

P4-an
unif (N𝑥 ∩ I𝑥) 𝑓 (𝑑−𝑥 , 𝑑+𝑥 )2

≤ (1 + 𝑜(1))E
[ ∑︁
𝑥∈[𝑛]

𝑌𝑥

]2
+𝑂

(∑︁
𝑥

P4-an
unif (N𝑥 ∩ I𝑥)

)
.

(2.186)
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To bound the error term in (2.186), notice that for all 𝑥 ∈ [𝑛],

P4-an
unif (N𝑥 ∩I𝑥) ≤

𝑇 𝑑−𝑥
𝑚 − 𝑇 ×

𝑇2 𝑑−max
𝑚 − 2𝑇

×
2 𝑇2 𝑑−max
𝑚 − 3𝑇

×
3 𝑇2 𝑑−max
𝑚 − 4𝑇

= 𝑂

(
𝑇7 𝑑−𝑥 (𝑑−max)3

𝑛4

)
.

(2.187)
Thus the validity of (2.179) follows, since, thanks to the fact that 𝑓 is bounded above,

E
[ ( ∑︁
𝑥∈[𝑛]

𝑌𝑥
)2

]
≤ (1 + 𝑜(1))E

[ ∑︁
𝑥∈[𝑛]

𝑌𝑥

]2
+𝑂

(
𝑇7 (𝑑−max)3

𝑛3

)
≤ (1 + 𝑜(1))E

[ ∑︁
𝑥∈[𝑛]

𝑌𝑥

]2
,

(2.188)

where in the last step we used Assumption 2.A and E
[ ∑

𝑥∈[𝑛] 𝑌𝑥
]
= 𝑂 (𝑛−1).

We are left to show (2.184) and (2.185). To prove (2.184), call

Q𝑦 =
{
∃𝑠 ≤ 𝑇 and 𝑖 ∈ {1, 2} s.t. 𝑋 (𝑖)

𝑠 = 𝑦

}
, (2.189)

let 𝜎 be a realization of {𝑊 (1)
𝑡 }𝑡≤𝑇 and {𝑊 (2)

𝑡 }𝑡≤𝑇 satisfying N𝑥 , and rewrite

P4-an
unif (N𝑥 ∩I𝑦 ∩J) = P4-an

unif (N𝑥 ∩Q𝑦 ∩I𝑦 ∩J) +P4-an
unif (N𝑥 ∩Q𝑐𝑦 ∩I𝑦 ∩J) . (2.190)

The first term on the right-hand side of (2.190) can be bounded as follows

P4-an
unif (N𝑥 ∩ Q𝑦 ∩ I𝑦 ∩ J) ≤ P4-an

unif (N𝑥 ∩ Q𝑦) sup
𝜎∈N𝑥∩Q𝑦

P4-an
unif (I𝑦 | 𝜎) . (2.191)

Notice that the event on the first probability on the right-hand side of (2.191) can be
bounded by

P4-an
unif (N𝑥 ∩ Q𝑦) = 𝑂

(
𝑇4 𝑑−𝑥 𝑑

−
𝑦 𝑑

−
max

𝑛3

)
. (2.192)

Similarly, the conditional probability on the right-hand side of (2.191) can be bounded
uniformly in 𝜎 ∈ N𝑥 ∩ Q𝑦 by

sup
𝜎∈N𝑥∩Q𝑦

P4-an
unif (I𝑦 | 𝜎) = 𝑂

(
𝑇4 (𝑑−max)2

𝑚2

)
. (2.193)

Plugging (2.192) and (2.193) into (2.191) we deduce

P4-an
unif (N𝑥 ∩ Q𝑦 ∩ I𝑦 ∩ J) = 𝑂

(
𝑇8 𝑑−𝑥 𝑑

−
𝑦 (𝑑−max)3

𝑛5

)
= 𝑜

(
P4-an

unif (N𝑥) P4-an
unif (I𝑦)

)
,

(2.194)
where in the last estimate we used Assumption 2.A and Lemma 2.7.4.

As for the second term on the right-hand side of (2.190), we can start by splitting

P4-an
unif (N𝑥 ∩ Q𝑐𝑦 ∩ I𝑦 ∩ J) ≤ P4-an

unif (N𝑥) sup
𝜎∈N𝑥∩Q𝑐𝑦

P4-an
unif (I𝑦 ∩ J | 𝜎) . (2.195)
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Then, to bound the latter conditional probability we argue as follow: either 𝑊 (3) hits
the trajectory of𝑊 (1) ∪𝑊 (2) and 𝑦, and𝑊 (4) hits𝑊 (1) ∪𝑊 (2) ∪𝑊 (3) ; or𝑊 (3) hits 𝑦
but not𝑊 (1) ∪𝑊 (2) and 𝑦, and then𝑊 (4) hits𝑊 (1) ∪𝑊 (2) and𝑊 (3) . In conclusion,

sup
𝜎∈N𝑥∩Q𝑐𝑦

P4-an
unif (I𝑦 ∩ J | 𝜎) = 𝑂

(
𝑇4 𝑑−𝑦 (𝑑−max)2

𝑛3

)
. (2.196)

Plugging (2.196) into (2.195) and using Lemma 2.7.4 we conclude

P4-an
unif (N𝑥 ∩ Q𝑐𝑦 ∩ I𝑦 ∩ J) = 𝑂

(
𝑇4 𝑑−𝑥 𝑑

−
𝑦 (𝑑−max)2

𝑛5

)
= 𝑜

(
P4-an

unif (N𝑥) P4-an
unif (I𝑦)

)
.

(2.197)
Thus, (2.184) follows from (2.190), (2.194) and (2.197).

To show (2.185), it is enough to realize that, for each 𝜎 ∈ N𝑥 , called (I𝑦∩J 𝑐) (𝜎)
the set of trajectories for 𝑊 (3) and 𝑊 (4) that do not intersect 𝜎 and satisfy 𝑊 (3)

𝑇
=

𝑊
(4)
𝑇

= 𝑦, one has

P4-an
unif (N𝑥 ∩ I𝑥 ∩ J 𝑐) =

∑︁
𝜎∈N𝑥

P4-an
unif (𝜎)

∑︁
𝜂∈ (I𝑦∩J𝑐 ) (𝜎)

P4-an
unif (𝜂 | 𝜎)

=
∑︁
𝜎∈N𝑥

P4-an
unif (𝜎)

∑︁
𝜂∈ (I𝑦∩J𝑐 ) (𝜎)

P4-an
unif (𝜂)

≤
∑︁
𝜎∈N𝑥

P4-an
unif (𝜎)

∑︁
𝜂∈I𝑦

P4-an
unif (𝜂) = P4-an

unif (N𝑥) P4-an
unif (I𝑦) ,

(2.198)

where in the second equality in (2.198) we removed the conditioning on 𝜎 since, under
J 𝑐, the evolution of 𝑊 (3) and 𝑊 (4) is not affected by the exact set of vertices that
outline the trajectories of𝑊 (1) and𝑊 (2) . This concludes the proof. □

§2.8 Mixing time of random walks with 𝜇̃-reset

In this section we prove that the mixing time of the auxiliary chain P̃𝜇̃ on 𝑉̃ has
polylogarithmic order with respect to the size 𝑛 of the original network 𝐺. The proof
technique adapts the one used in [QS23, Section 4.2], where the authors investigate
the mixing time of two independent walks moving synchronously on DFA. Recall
that 𝑃̃ = 𝑃̃ 𝜇̃ refers to the transition matrix of ( 𝑋̃)𝑡≥0, the two walks process on 𝐺
with 𝜇̃-reset, as defined in (2.77), and 𝜋̃ to its unique stationary distribution on 𝑉̃ .
Throughout the whole section we set

𝑆 = 𝑆𝑛 := ⌈log3(𝑛)⌉ . (2.199)
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Proposition 2.8.1. Assume that the degree sequence satisfies Assumption 2.B. Then,

max
x∈𝑉̃

∥𝑃̃𝑆 (x, ·) − 𝜋̃(·)∥TV
P−→ 0 , (2.200)

where 𝑆 is defined as in (2.199).

Recall the definition of the random rooted tree T +
𝑥 , 𝑥 ∈ [𝑛], defined in Section

2.4.1, of ℏ in (2.55) and of the set of locally-tree-like vertices 𝑉★ in (2.57). By using
the same approach as in Proposition 2.7.3, we start by showing the following property
of the distribution 𝜇̃.

Proposition 2.8.2. Assume that the degree sequence satisfies Assumption 2.A, and let
𝑉★ as in (2.57). It holds

𝜇̃(𝑉★) =
∑
𝑥∈𝑉★ 𝜋

2(𝑥)〈
𝜋2

〉 P−→ 1 .

Proof. It is enough to show the following

𝑛

������ ∑︁
𝑥∈[𝑛]

𝜋2(𝑥) −
∑︁
𝑥∈[𝑛]

1{𝑥∈𝑉★}𝜋
2(𝑥)

������ P−→ 0, (2.201)

as

𝜇̃(𝑉★) = 1 −
𝑛
∑
𝑥∈[𝑛]

[
𝜋2(𝑥) − 1{𝑥∈𝑉★}𝜋

2(𝑥)
]

𝑛
∑
𝑥∈[𝑛] 𝜋2(𝑥)

,

and 𝑛
∑
𝑥∈[𝑛] 𝜋

2(𝑥) = ΘP(1), as proved in Proposition 2.5.5. Fix 𝑥 ∈ [𝑛], and consider
the approximation 𝜇𝑇 of 𝜋(𝑥) introduced in (2.132). Recall the definition of the event
H in (2.133) and that, by (2.134), H holds with high probability. Fixed 𝛿 > 0, we get

P

(
𝑛

∑︁
𝑥∉𝑉★

𝜋2(𝑥) > 𝛿
)
= P ©­«𝑛

������ ∑︁
𝑥∈[𝑛]

𝜋2(𝑥) −
∑︁
𝑥∈[𝑛]

1{𝑥∈𝑉★}𝜋
2(𝑥)

������ > 𝛿 , Hª®¬ + 𝑜(1) .
Consider the events

A =

{
𝑛

∑︁
𝑥∈[𝑛]

|𝜋2(𝑥) − 𝜇2
𝑆 (𝑥) | >

𝛿

3

}
, B =

{
𝑛

∑︁
𝑥∈[𝑛]

1𝑥∈𝑉★ |𝜋2(𝑥) − 𝜇2
𝑆 (𝑥) | >

𝛿

3

}
,

C =

{
𝑛

∑︁
𝑥∈[𝑛]

[
𝜇2
𝑆 (𝑥) − 1𝑥∈𝑉★𝜇

2
𝑆 (𝑥)

]
>
𝛿

3

}
, K =

{
𝑛

∑︁
𝑥∈[𝑛]

[
𝜋2(𝑥) − 1{𝑥∈𝑉★}𝜋

2(𝑥)
]
> 𝛿

}
.

By the triangular inequality we have that

P(K , H) ≤ P (A , H) + P (B , H) + P (C , H) ≤ 2 P (A , H) + P (C , H) .
(2.202)
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The first term on the right hand side of (2.202) can be easily bounded by Markov
inequality, indeed

P (A ,H) ≤ 3 𝑛
𝛿

∑︁
𝑥∈[𝑛]

E [1H |𝜋(𝑥) − 𝜇𝑆 (𝑥) | |𝜋(𝑥) + 𝜇𝑆 (𝑥) |] ≤
6
𝛿
𝑛2 𝑒− log(𝑛)3/2

= 𝑜(1) .

Therefore we are left to prove that, for any 𝛿 > 0,

P (C) = 𝑜(1) . (2.203)

In order to show (2.203), suppose that

E[1{𝑥∈𝑉★}𝜇
2
𝑆 (𝑥)] = (1 − 𝑜(1))E[𝜇2

𝑆 (𝑥)] (2.204)

for any 𝑥 ∈ [𝑛]. Then, summing over 𝑥 and using Lemma 2.7.4, we deduce that
E[𝜇2

𝑆
( [𝑛] \𝑉★)] = 𝑜(𝑛−1), so that (2.203) follows by Markov inequality.

Therefore, we are left to prove (2.204). To this aim, note that it is enough to show
the lower bound, as the upper bound is trivially satisfied.
Let 𝛾𝑥 := B+

𝑥 (ℏ) denote any realization of the complete out-neighbourhood of 𝑥 up to
distance ℏ, defined in (2.55), and notice that, under P, the event {𝑥 ∈ 𝑉★} is measurable
with respect to 𝛾𝑥 . Thus

E
[
1{𝑥∈𝑉★}𝜇

2
𝑆 (𝑥)

]
= E

[
1{𝑥∈𝑉★}E[𝜇2

𝑆 (𝑥) | 𝛾𝑥]
]
. (2.205)

In order to study E[𝜇2
𝑆
(𝑥) | 𝛾𝑥], we need to employ another annealing argument as in

proof of Lemma 2.7.4, but this time the two annealed walks evolve in an environment
that starts as 𝛾𝑥 .

Let P2-an |𝛾𝑥
unif denote the law of such a process, as introduced in Remark 2.6.3. In

particular,
E[𝜇2

𝑆 (𝑥) | 𝛾𝑥] = P2-an |𝛾𝑥
unif (𝑊 (1)

𝑆
= 𝑊

(2)
𝑆

= 𝑥) .

We aim to show that

P2-an |𝛾𝑥
unif (𝑊 (1)

𝑆
= 𝑊

(2)
𝑆

= 𝑥) ≥ P2-an
unif (𝑊

(1)
𝑆

= 𝑊
(2)
𝑆

= 𝑥) (1 − 𝑜(1)) , (2.206)

where the annealing law on the right-hand side corresponds to the one in which the
initial environment is given by the empty matching of the edges, i.e., that of the process
described in the proof of Lemma 2.7.4. If (2.206) holds, then (2.205) reads

E
[
1{𝑥∈𝑉★}E[𝜇2

𝑆 (𝑥) | 𝛾𝑥]
]
≥ P(𝑥 ∈ 𝑉★)E[𝜇2

𝑆 (𝑥)] (1 − 𝑜(1)) = (1 − 𝑜(1))E[𝜇2
𝑆 (𝑥)] ,

since P(𝑥 ∈ 𝑉★) = 1− 𝑜(1), as shown in Lemma 2.4.1. To prove (2.206) we construct
a coupling of the two annealed processes as follows:
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(a) Let (𝑊̄ (1)
𝑡 , 𝑊̄

(2)
𝑡 )𝑡≤𝑆 denote the annealed walks having as initial environment

𝛾𝑥 . On the other hand, let (𝑊 (1)
𝑡 ,𝑊

(2)
𝑡 )𝑡≤𝑆 denote the annealed random walks

having as initial environment the empty matching of the edges. Henceforth, set
𝜔̄0 = 𝛾𝑥 and 𝜔0 = ∅.

(b) For the first walk, at time 𝑡 = 0, sample 𝑊 (1)
0 = 𝑊̄

(1)
0 according to the uniform

distribution on [𝑛]. If 𝑊 (1)
0 ∈ 𝛾𝑥 declare the coupling as failed and let the two

processes evolve independently.

(c) For the first walk and 𝑡 ∈ (0, 𝑆), construct 𝑊 (1)
𝑡 as for the annealed walk in the

proof of Lemma 2.7.4, i.e., sample a tail 𝑒 ∈ 𝐸+
𝑊

(1)
𝑡−1

u.a.r.:

(c-1) If 𝜔𝑡−1(𝑒) = 𝑓 ∈ 𝐸− set 𝑊 (1)
𝑡 = 𝑊̄

(1)
𝑡 = 𝑣 𝑓 , where 𝑣 𝑓 is the vertex

incident to 𝑓 ;

(c-2) otherwise, select a head 𝑓 u.a.r. among those that are not matched in𝜔𝑡−1:

– set 𝜔𝑡 (𝑒) = 𝑓 and𝑊 (1)
𝑡 = 𝑣 𝑓 ;

– if 𝜔−1
𝑡−1( 𝑓 ) = ∅ but 𝜔̄−1

𝑡−1( 𝑓 ) = 𝑒′ ∈ 𝐸+ or if 𝑣 𝑓 ∈ 𝛾𝑥 , declare the
coupling as failed and let the processes evolve independently;

– otherwise let 𝑊̄𝑡 = 𝑊𝑡 and 𝜔̄𝑡 (𝑒) = 𝑓 .

(d) Follow the same procedure for the walks𝑊 (2) and 𝑊̄ (2) .
Call P̂ the joint probability space just described, and note that the marginals of the
coupled process corresponds to the laws P2-an |𝛾𝑥

unif and P2-an
unif , respectively. Let F be the

event that the coupling fails. It holds that

P̂ ©­«
𝑆⋂
𝑡=0

⋂
𝑖∈{1,2}

{𝑊 (𝑖)
𝑡 = 𝑊̄

(𝑖)
𝑡 } | F 𝑐ª®¬ = 1.

Notice also that, at each step, in order for the coupling to fail, it must be the case
that the sample at step (c-2) is a head of a vertex in 𝛾𝑥 . Hence, for each step of the
construction, the failure probability of the coupling can be bounded uniformly by

max
𝑥∈[𝑛]

max
𝛾𝑥

max
𝑡∈[0,𝑆 ]

max
𝑖=1,2

P̂(Coupling fails at step 𝑡 of the 𝑖-th walk) ≤

≤
(𝑑+max)ℏ
𝑛

+
𝑑−max (𝑑+max)ℏ

𝑚 − 2𝑆 − (𝑑+max)ℏ
,

(2.207)

hence, by a union bound,

P̂(F ) ≤ 2𝑆
( (𝑑+max)ℏ

𝑛
+

𝑑−max (𝑑+max)ℏ

𝑚 − 2𝑆 − (𝑑+max)ℏ

)
= 𝑜(1) ,
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as 𝑆 = log3(𝑛), 𝑑−max = 𝑜(𝑛1/2−𝜀), for some 𝜀 > 0 and (𝑑+max)ℏ = 𝑂 (𝑛1/5). As a
consequence

P2-an |𝛾𝑥
unif (𝑋𝑆 = 𝑌𝑆 = 𝑥) ≥ P̂(𝑊 (1)

𝑆
= 𝑊

(2)
𝑆

= 𝑥 , F 𝑐) = (1 − 𝑜(1))P2-an
unif (𝑋𝑆 = 𝑌𝑆 = 𝑥) ,

from which (2.204), and in turn (2.203), follow. □

Proof of Proposition 2.8.1
The general idea behind the proof is based on a comparison between the chain with
𝜇̃-reset, P̃𝜇̃, and the product chain, P⊗2. Assuming that the two processes start at
some (𝑥, 𝑦) with 𝑦 ≠ 𝑥, they can be perfectly coupled up to the first meeting of the two
walks, corresponding to the first hitting time of 𝜕 for the process with reset. Recall that
the two stationary distributions, 𝜋̃ and 𝜋⊗2, coincide for every couple (𝑥, 𝑦) ∉ Δ and
𝜋⊗2(Δ) = 𝜋̃(𝜕) = 𝑜P(1). Therefore, if the meeting happens after the mixing horizon
𝑇 , we can rely on Theorem 2.4.3 and the fact that the mixing time of the product chain
is at most a constant multiple of the one of a single walk. At that point, we are left
to prove that the collapsed chain 𝑃̃, started at 𝜕 makes logarithmic number of steps,
within time 𝑇 , without visiting 𝜕 has probability 1 − 𝑜P(1).

We now start to make the above mentioned heuristic rigorous. Let us start by
defining the surjective map 𝜑 : 𝑉2 → 𝑉̃ by

𝜑(x) =
{
(𝑥1, 𝑥2) x = (𝑥1, 𝑥2) with 𝑥1, 𝑥2 ∈ [𝑛] , 𝑥1 ≠ 𝑥2 ,

𝜕 x = (𝑥, 𝑥) with 𝑥 ∈ [𝑛] .
(2.208)

Moreover, recall that in our notation P̃𝜇̃x describes the quenched law of 𝑋̃ , with
𝑋̃0 = x ∈ 𝑉̃ and 𝜇̃-reset, while P⊗2

(𝑥,𝑦) the quenched law of two independent walks
with (𝑥, 𝑦) ∈ [𝑛]2 as initial position. By the triangular inequality and observing that
∥𝜋̃(·) − 𝜋⊗2(𝜑−1(·))∥TV = 0 almost surely, it holds that

max
x∈𝑉̃

∥𝑃̃𝑆 (x, ·) − 𝜋̃(·)∥TV ≤ max
(𝑥,𝑦) ∈ [𝑛]2

∥
(
𝑃⊗2

)𝑆
((𝑥, 𝑦), ·) − 𝜋⊗2(·)∥TV

+ max
(𝑥,𝑦) ∈ [𝑛]2

sup
𝐴⊂𝑉̃

���P̃𝜇̃
𝜑 ( (𝑥,𝑦) )

(
𝑋̃𝑆 ∈ 𝐴

)
− P⊗2

(𝑥,𝑦)

(
𝑋⊗2
𝑆

∈ 𝜑−1(𝐴)
)��� . (2.209)

The first term on the right-hand side vanishes in probability thanks to Theorem 2.4.3
and the fact that 𝑆 ≫ log(𝑛), while the second term can be rewritten as

max
(𝑥,𝑦) ∈ [𝑛]2

sup
𝐴⊂𝑉̃

���P̃𝜇̃
𝜑 ( (𝑥,𝑦) )

(
𝑋̃𝑆 ∈ 𝐴, 𝜏𝜕 < 𝑆

)
− P⊗2

(𝑥,𝑦)

(
𝑋⊗2
𝑆

∈ 𝜑−1(𝐴), 𝜏meet < 𝑆
)��� ,

(2.210)
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since the product chain and the collapsed chain can be perfectly coupled until the first
hitting time of the diagonal. In particular

P̃𝜇̃
𝜑 ( (𝑥,𝑦) ) (𝜏𝜕 = 𝑡) = P⊗2

(𝑥,𝑦) (𝜏meet = 𝑡) , ∀(𝑥, 𝑦) ∈ [𝑛]2 , 𝑥 ≠ 𝑦 , 𝑡 ∈ N . (2.211)

By the strong Markov property and (2.211) we get, uniformly in (𝑥, 𝑦) ∈ 𝑉2 and
𝐴 ⊂ 𝑉̃ ,���P̃𝜇̃

𝜑 ( (𝑥,𝑦) )
(
𝑋̃𝑆 ∈ 𝐴, 𝜏𝜕 < 𝑆

)
− P⊗2

(𝑥,𝑦)

(
𝑋⊗2
𝑆

∈ 𝜑−1(𝐴), 𝜏meet < 𝑆
)���

=

���� 𝑆∑︁
𝑡=0

P̃𝜇̃
𝜑 ( (𝑥,𝑦) ) (𝜏𝜕 = 𝑡) P̃𝜇̃

(
𝑋̃𝑆−𝑡 ∈ 𝐴

)
−

𝑆∑︁
𝑡=0

∑︁
𝑧∈[𝑛]

P⊗2
(𝑥,𝑦)

(
𝜏meet = 𝑡, 𝑋

⊗2
𝑡 = (𝑧, 𝑧)

)
P⊗2
(𝑧,𝑧)

(
𝑋⊗2
𝑆−𝑡 ∈ 𝜑

−1(𝐴)
) ����

=

���� 𝑆∑︁
𝑡=0

∑︁
𝑧∈[𝑛]

P⊗2
(𝑥,𝑦)

(
𝜏meet = 𝑡, 𝑋

⊗2
𝑡 = (𝑧, 𝑧)

)
×

[
P̃𝜇̃

(
𝑋̃𝑆−𝑡 ∈ 𝐴

)
− P⊗2

(𝑧,𝑧)

(
𝑋⊗2
𝑆−𝑡 ∈ 𝜑

−1(𝐴)
)] ���� .

(2.212)

Let us fix a constant 𝛼 ∈ (0, 1) and partition the above sum over 𝑡 into two parts
centered at 𝛼𝑆. By the triangle inequality and (2.210) we get

max
(𝑥,𝑦) ∈ [𝑛]2

sup
𝐴⊂𝑉̃

���P̃𝜇̃
𝜑 ( (𝑥,𝑦) )

(
𝑋̃𝑆 ∈ 𝐴, 𝜏𝜕 < 𝑆

)
− P⊗2

(𝑥,𝑦)

(
𝑋⊗2
𝑆

∈ 𝜑−1(𝐴), 𝜏meet < 𝑆
)���

≤ max
(𝑥,𝑦) ∈ [𝑛]2

sup
𝐴⊂𝑉̃

���� 𝛼𝑆∑︁
𝑡=0

∑︁
𝑧∈[𝑛]

P⊗2
(𝑥,𝑦)

(
𝜏meet = 𝑡, 𝑋

⊗2
𝑡 = (𝑧, 𝑧)

)
×

× sup
𝑡≤𝛼𝑆

max
𝑧∈[𝑛]

[
P̃𝜇̃
𝜕

(
𝑋̃𝑆−𝑡 ∈ 𝐴

)
− P⊗2

(𝑧,𝑧)

(
𝑋⊗2
𝑆−𝑡 ∈ 𝜑

−1(𝐴)
)]

+

+
𝑆∑︁

𝑡=𝛼𝑆

∑︁
𝑧∈[𝑛]

P⊗2
(𝑥,𝑦)

(
𝜏meet = 𝑡, 𝑋

⊗2
𝑡 = (𝑧, 𝑧)

) ����
≤ max

(𝑥,𝑦) ∈ [𝑛]2
sup
𝐴⊂𝑉̃

���� sup
𝑡≤𝛼𝑆

max
𝑧∈[𝑛]

[
P̃𝜇̃
𝜕

(
𝑋̃𝑆−𝑡 ∈ 𝐴

)
− P⊗2

(𝑧,𝑧)

(
𝑋⊗2
𝑆−𝑡 ∈ 𝜑

−1(𝐴)
)]

+
𝑆∑︁

𝑡=𝛼𝑆

∑︁
𝑧∈[𝑛]

P⊗2
(𝑥,𝑦)

(
𝜏meet = 𝑡, 𝑋

⊗2
𝑡 = (𝑧, 𝑧)

) ���� ,
(2.213)

where we used the rough bounds���P̃𝜇̃
𝜕

(
𝑋̃𝑆−𝑡 ∈ 𝐴

)
− P⊗2

(𝑧,𝑧)

(
𝑋⊗2
𝑆−𝑡 ∈ 𝜑

−1(𝐴)
)��� ≤ 1 , 𝑡 ∈ [𝛼𝑆, 𝑆] , 𝑧 ∈ [𝑛] ,
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and
𝛼𝑆∑︁
𝑡=0

∑︁
𝑧∈[𝑛]

P⊗2
(𝑥,𝑦)

(
𝜏meet = 𝑡, 𝑋

⊗2
𝑡 = (𝑧, 𝑧)

)
≤ 1 .

Putting together (2.209), (2.212) and (2.213), using the triangular inequality and the
fact ,that for any 𝐴 ⊂ 𝑉̃ it holds that 𝜋̃(𝐴) = 𝜋⊗2(𝜑−1(𝐴)), we get

max
x∈𝑉̃

∥𝑃̃𝑆 (x, ·) − 𝜋̃(·)∥TV ≤ sup
𝑡≤𝛼𝑆

∥𝑃̃𝑆−𝑡 (𝜕, ·) − 𝜋̃∥TV

+ sup
𝑡≤𝛼𝑆

max
𝑧∈[𝑛]

∥
(
𝑃⊗2

)𝑆−𝑡
((𝑧, 𝑧), ·) − 𝜋⊗2∥TV

+ max
(𝑥,𝑦) ∈𝑉2

𝑆∑︁
𝑡=𝛼𝑆

P⊗2
(𝑥,𝑦) (𝜏meet = 𝑡) .

(2.214)

The second term on the right-hand side of (2.214) goes to zero in probability, thanks
to Theorem 2.4.3 and the fact that the total-variation distance is non-increasing in 𝑡.
As for the third term in (2.214), we have that

max
(𝑥,𝑦) ∈𝑉2

𝑆∑︁
𝑡=𝛼𝑆

P⊗2
(𝑥,𝑦) (𝜏meet = 𝑡) ≤

≤ 𝑆 sup
𝑡>𝛼𝑆

max
(𝑥,𝑦) ∈𝑉2

[
P⊗2
(𝑥,𝑦)

(
𝑋⊗2
𝑡 ∈ 𝜑−1(𝜕)

)
− 𝜋̃(𝜕)

]
+ 𝑆 𝜋̃(𝜕)

≤ 𝑆 sup
𝑡>𝛼𝑆

max
(𝑥,𝑦) ∈𝑉2

∥
(
𝑃⊗2

) 𝑡
((𝑥, 𝑦), ·) − 𝜋⊗2∥TV + 𝑆 𝜋̃(𝜕) = 𝑜P(1) ,

where the last asymptotic estimate follows from

𝑆 𝜋̃(𝜕) = log3(𝑛)
∑︁
𝑥∈[𝑛]

𝜋2(𝑥) ≤ 𝑛 log3(𝑛)
[

max
𝑦∈[𝑛]

𝜋(𝑦)
]2
,

and Theorem 2.4.4, while

𝑆 sup
𝑡>𝛼𝑆

max
(𝑥,𝑦) ∈𝑉2

∥
(
𝑃⊗2

) 𝑡
((𝑥, 𝑦), ·) − 𝜋⊗2∥TV ≤

≤ 𝑆 max
(𝑥,𝑦) ∈𝑉2

∥
(
𝑃⊗2

)𝛼𝑆
((𝑥, 𝑦), ·) − 𝜋⊗2∥TV = 𝑜P(1) ,

thanks to Theorem 2.4.3 and monotonicity of the total-variation distance. In conclu-
sion, for any constant 𝛼 ∈ (0, 1)

max
x∈𝑉̃

∥𝑃̃𝑇 (x, ·) − 𝜋̃(·)∥TV ≤ sup
𝑡≤𝛼𝑆

∥𝑃̃𝑆−𝑡 (𝜕, ·) − 𝜋̃∥TV + 𝑜P(1) . (2.215)
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Choosing, e.g, 𝛼 = 1
2 , to conclude the proof of Proposition 2.8.1 we are left to show

that
∥𝑃̃ 𝑆2 (𝜕, ·) − 𝜋̃∥TV

P−→ 0 . (2.216)

The proof of the latter convergence is provided in next subsection.

Proof of (2.216)

Recall the definition of ℏ and 𝑉★ in (2.55) and (2.57), respectively. Consider the
process ( 𝑋̃𝑡 )𝑡≥0 with law P̃𝜇̃ and, if 𝑋̃𝑡 ≠ 𝜕, call 𝑋𝑡 and 𝑌𝑡 the projections of the two
coordinates of 𝑋̃𝑡 . Define

𝜏dev := inf{𝑡 > 0 : 𝑋̃𝑡 ≠ 𝜕 ,B+
𝑋𝑡
(ℏ) ∩ B+

𝑌𝑡
(ℏ) = ∅ and 𝑋𝑡 , 𝑌𝑡 ∈ 𝑉★} , (2.217)

to be the first time such that the walks are visiting vertices the ℏ out-neighborhood of
which are not intersecting trees. Moreover, let 𝜈dev ∈ P(𝑉̃ \ 𝜕) be the distribution of
the process 𝑋̃ started at 𝜕, at the occurrence of the stopping time 𝜏dev. Namely,

𝜈dev(x) := P̃𝜇̃
𝜕

(
𝑋̃𝜏dev = x

)
, x ∈ 𝑉̃ \ 𝜕. (2.218)

The proof is articulated into three main lemmas, Lemma 2.8.3, Lemma 2.8.4 and
Lemma 2.8.5. First, in Lemma 2.8.3 we show that for a typical realization of the
graph, the process 𝑋̃ started at 𝜕 is such that the probability that both 𝜏+

𝜕
and 𝜏dev are

“large” is arbitrarily small. Then, in Lemma 2.8.4, we use that result as a bootstrap
to show that the probability that 𝜏dev itself is “large” is arbitrarily small. Finally, in
Lemma 2.8.5 (and in Corollary 2.8.6) we show that starting at 𝜈dev the probability to
hit 𝜕 before time 𝑆 is arbitrarily small for a typical realization of graph. To conclude
the proof it suffices to collect the pieces: if both P̃𝜇̃

𝜕
(𝜏dev < 𝑆/4) and P̃𝜇̃𝜈dev (𝜏𝜕 > 𝑆) are

1 − 𝑜P(1), then with the same probability the processes P̃𝜇̃ and P⊗2 can be perfectly
coupled within time 𝑆/2 for a consecutive interval of time having size 𝑆/4. At this
point, the desired result is a consequence of Theorem 2.4.3. We now present the main
three lemmas and the respective proofs, and in the last part of this section we spell-out
in detail the above-mentioned concluding argument.

Lemma 2.8.3. Let ℎ★ = ℎ★,𝑛 be any sequence such that ℎ★ → ∞ and ℎ★ = 𝑜(log(𝑛)),
and call

𝜏+𝜕 := inf{𝑡 ≥ 1 | 𝑋̃𝑡 = 𝜕} . (2.219)

Then,
P̃𝜇̃
𝜕
(𝜏dev ∧ 𝜏+𝜕 > ℎ★)

P−→ 0. (2.220)

Proof. Let 𝑉★ ⊂ [𝑛] as in (2.57) and ℏ as in (2.55). Recall that, thanks to Proposition
2.8.2, 𝜇̃(𝑉★) = 1− 𝑜P(1). Hence, fixed any 𝜀1, 𝜀2, 𝜀3 > 0 we can bound for all 𝑛 large
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enough

P
(
P̃𝜇̃
𝜕
(𝜏dev ∧ 𝜏+𝜕 > ℎ★) ≤ 𝜀1

)
≥ P( 𝜇̃(𝑉★) > 1 − 𝜀2) − P

(
P̃𝜇̃
𝜕
(𝜏dev ∧ 𝜏+𝜕 > ℎ★) > 𝜀1 , 𝜇̃(𝑉★) > 1 − 𝜀2

)
≥ 1 − 𝜀3 − P

(
P̃𝜇̃
𝜕
(𝜏dev ∧ 𝜏+𝜕 > ℎ★) > 𝜀1 , 𝜇̃(𝑉★) > 1 − 𝜀2

)
.

(2.221)

Consider the (random) subset of states

𝑀 :=
{
x = (𝑥1, 𝑥2) ∈ 𝑉̃ \ {𝜕} | 𝑥1 ∈ 𝑉★ , 𝑥1 → 𝑥2 or 𝑥2 ∈ 𝑉★ , 𝑥2 → 𝑥1

}
, (2.222)

and notice that for every x = (𝑥1, 𝑥2) it always possible to identify a chasing and a
escaping walk. In that case, we write 𝑥𝑐 and 𝑥𝑒 to avoid confusion on the roles of 𝑥1 and
𝑥2. As already pointed out in (2.211), starting the process 𝑋̃ at any x = (𝑥1, 𝑥2) ∈ 𝑀 ,
the first hitting time of 𝜕 equals the first meeting time of two independent walks started
at (𝑥1, 𝑥2) ∈ [𝑛]2 \ Δ. We now show that, starting at any x ∈ 𝑀 , the probability of
the event {𝜏dev > ℎ★} ∩ {𝜏meet > ℎ★} is 𝑜P(1). Without loss of generality, assume that
x = (𝑥𝑐, 𝑥𝑒). Under the event {𝜏meet > 𝑠}, the only way to realize {𝜏dev > 𝑠} is to
have the chasing walk (the one starting at 𝑥𝑐) following the steps of the escaping one
(the one starting at 𝑥𝑒) without reaching it. Hence, calling 𝐴𝑥𝑐 (𝑠) the random number
of jumps made by the walk starting at 𝑥𝑐 before 𝑠 > 0, for all 𝑠 ∈ [0, ℏ), 𝑥𝑐 ∈ 𝑉★,
𝑥𝑒 ∈ [𝑛] such that 𝑥𝑐 → 𝑥𝑒 we have

P⊗2
(𝑥𝑐 ,𝑥𝑒 ) (𝜏dev ∧ 𝜏meet > 𝑠) ≤ (𝑑+min)

−𝑠/3 + P⊗2
(𝑥𝑐 ,𝑥𝑒 )

(
𝐴𝑥𝑐 (𝑠) ≤ 1

3 𝑠
)
. (2.223)

In particular, taking 𝑠 ∈ (ℎ★, ℏ) in the last display and using the fact that

P⊗2
(𝑥𝑐 ,𝑥𝑒 )

(
𝐴𝑥𝑐 (𝑠) ≤ 1

3 𝑠
)
= P

(
Bin

(
𝑠, 1

2
)
≤ 1

3 𝑠

)
= 𝑜(1) ,

we conclude that, for every 𝜀1 > 0 and all 𝑛 large enough

P
(
max
x∈𝑀

P⊗2
x (𝜏dev ∧ 𝜏meet > 𝑠) ≤ 𝜀1

)
= 1 , (2.224)

where we used that 𝑑+min ≥ 2. Exploiting (2.224), we finally obtain, for all sufficiently
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large 𝑛,

P
(
P̃𝜇̃
𝜕
(𝜏dev ∧ 𝜏+𝜕 > ℎ★) > 𝜀1 , 𝜇̃(𝑉★) > 1 − 𝜀2

)
≤ P

©­­­­«
∑︁

(𝑥1,𝑥2 ) ∈ [𝑛]2:
x=(𝑥1,𝑥2 ) ∈𝑀

𝜇̃(𝑥𝑐)
𝑑+𝑥𝑐

P⊗2
(𝑥𝑐 ,𝑥𝑒 ) (𝜏dev ∧ 𝜏meet > ℎ★ − 1) > 𝜀1 , 𝜇̃(𝑉★) > 1 − 𝜀2

ª®®®®¬
+ 𝜀2

≤ P
(

max
(𝑥𝑐 ,𝑥𝑒 ) s.t. 𝑥𝑐∈𝑉★,𝑥𝑐→𝑥𝑒

P⊗2
(𝑥𝑐 ,𝑥𝑒 ) (𝜏dev ∧ 𝜏meet > ℎ★ − 1) > 𝜀1

)
+ 𝜀2 = 𝜀2 ,

(2.225)

and the desired result follows from (2.221) and (2.225), by letting 𝜀1, 𝜀2 and 𝜀3 going
to zero. □

Lemma 2.8.4. Let ℎ★ = ℎ★,𝑛 be any sequence such that ℎ★ → ∞ and ℎ★ = 𝑜(log(𝑛)).
Then

P̃𝜇̃
𝜕
(𝜏dev > ℎ★)

P−→ 0 . (2.226)

Proof. Recall the definition of the set 𝑀 in (2.222). For any positive 𝑟, define

R𝑟 =
⋃
x∈𝑀

𝑟−1⋂
ℓ=0

{𝑋̃
𝜏
(ℓ)
𝜕

+1 = x} ,

where we define

𝜏
( 𝑗 )
𝜕

:= inf{𝑡 > 𝜏 ( 𝑗−1)
𝜕

| 𝑋̃𝑡 ∈ 𝜕} , 𝑗 ∈ N .

In words, R𝑟 reads as follows: the first 𝑟 times in which the process visits 𝜕 (including
time zero), it exits 𝜕 by reaching (in a single step) some x = (𝑥1, 𝑥2) ∈ 𝑀 . Recall
that if x = (𝑥1, 𝑥2) ∈ 𝑀 it is always possible to distinguish a chasing and an escaping
starting point between 𝑥1 and 𝑥2, which we refer to as 𝑥𝑐 and 𝑥𝑒. Notice that, P − a.s.,

P̃𝜇̃
𝜕
(R𝑟 ) = 𝜇̃(𝑉★)𝑟 . (2.227)

Therefore,

P̃𝜇̃
𝜕
(𝜏dev > ℎ★) ≤ (1 − 𝜇̃(𝑉★)𝑟 ) + P̃𝜇̃

𝜕
(𝜏dev > ℎ★ , R𝑟 ) . (2.228)

Notice that under R𝑟 the probability that 𝜕 is visited more than ℓ times before 𝜏dev is
exponentially small in ℓ. Indeed, for any ℓ < 𝑟,

P̃𝜇̃
𝜕

(
𝜏
(ℓ )
𝜕

< 𝜏dev, R𝑟
)
= P̃𝜇̃

𝜕

(
𝜏
(1)
𝜕

< 𝜏dev, R2

)ℓ
≤ P̃𝜇̃

𝜕
(𝜏dev > 2, R2)ℓ

≤
(
1
2

(
1
𝑑+min

+ 1
))ℓ

≤
(
3
4

)ℓ
,

(2.229)
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as, under R𝑟 , the event 𝜏dev > 2 starting at 𝜕 requires that: at the step right after the exit
from 𝜕, either the chasing walk reaches the escaping one, or the escaping one moves
forward in the tree. Moreover, by definition of the process 𝑋̃ , P̃𝜇̃

𝜕
( 𝑋̃1 = 𝜕, R2) = 0,

since in order to see a transition 𝜕 → 𝜕 in the 𝜇̃-reset case one has to sample a vertex
having a self-loop, hence not a member of 𝑉★.

Therefore, for every ℓ < 𝑟,

P̃𝜇̃
𝜕
(𝜏dev > ℎ★, R𝑟 ) ≤ P̃𝜇̃

𝜕

(
𝜏
(ℓ )
𝜕

> 𝜏dev > ℎ★, R𝑟
)
+

(
3
4

)ℓ
. (2.230)

Notice that, under the event {𝜏 (ℓ )
𝜕

> 𝜏dev > ℎ★, R𝑟 } it must exist some 𝑗 ≤ ℓ such that
the 𝑗-th excursion from 𝜕 to 𝜕 lasted at least ℎ★/ℓ steps and 𝜏dev did not realize in such
an interval of time. Hence, thanks to Lemma 2.8.3, if ℓ = 𝑜(ℎ★),

P̃𝜇̃
𝜕

(
𝜏
(ℓ )
𝜕

> 𝜏dev > ℎ★, R𝑟
)
≤ P̃𝜇̃

𝜕

(
𝜏dev ∧ 𝜏+𝜕 ≥ ℎ★

ℓ

)
= 𝑜P(1) . (2.231)

Plugging (2.230) and (2.230) into (2.228), choosing, e.g., ℓ =
√
ℎ★, we finally obtain

P̃𝜇̃
𝜕
(𝜏dev > ℎ★) ≤

(
3
4

)√ℎ★
+ 𝑜P(1) , (2.232)

from which the desired result follows. □

Lemma 2.8.5. Consider the (random) set

𝐷 := {(𝑥, 𝑦) ∈ 𝑉2
★ | B+

𝑥 (ℏ) ∩ B+
𝑦 (ℏ) = ∅} .

For all 𝑛 large enough it holds

max
(𝑥,𝑦)

P
(
1(𝑥,𝑦) ∈𝐷P⊗2

(𝑥,𝑦) (𝜏meet < 𝑆) > 𝜀
)
≤ 𝑛−3 , (2.233)

where 𝑆 is defined in (2.199).

Corollary 2.8.6. It holds

max
x∈supp(𝜈dev )

P̃𝜇̃x(𝜏𝜕 < 𝑆)
P−→ 0 , (2.234)

where 𝜈dev ∈ P(𝑉̃ \ {𝜕}) is defined in (2.218).

Proof of Corollary 2.8.6. The result follows by coupling P̃ and P⊗2 up to 𝜏𝜕, using
Lemma 2.8.5, a union bound on (𝑥, 𝑦) ∈ 𝐷, and the fact that the support of 𝜈dev is
contained in 𝐷 by definition. □
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Proof of Lemma 2.8.5. Fix some constant 𝜅 ∈ N. By the generalized Markov inequal-
ity we have

max
(𝑥,𝑦)

P(1(𝑥,𝑦) ∈𝐷P⊗2
(𝑥,𝑦) (𝜏meet < 𝑆) > 𝜀) ≤

max(𝑥,𝑦) E[1(𝑥,𝑦) ∈𝐷P⊗2
(𝑥,𝑦) (𝜏meet < 𝑆)𝜅 ]

𝜀𝜅
.

(2.235)
Call 𝜎 = 𝜎𝑥,𝑦 a realization of the complete out-neighborhood of 𝑥 and 𝑦 up to length
ℏ, Notice that the event (𝑥, 𝑦) ∈ 𝐷 is 𝜎-measurable. With a slight abuse of notation
we say that 𝜎 ∈ 𝐷 if (𝑥, 𝑦) ∈ 𝐷 under 𝜎. Then, it is enough to show that there exists
some constant 𝜅 ∈ N such that

max
(𝑥,𝑦)

max
𝜎∈𝐷

E[P⊗2
(𝑥,𝑦) (𝜏meet < 𝑆)𝜅 | 𝜎] ≤ 𝑛−3 , (2.236)

for all 𝑛 large enough. To this aim, we use another (multiple) annealing argument.
In particular, let the law P⊗2, 𝜅-an |𝜎

(𝑥,𝑦) refer to the non-Markovian process introduced in
Remark 2.6.2 with initial environment 𝜎. In such a probability space we consider the
events

E𝑖 = {∃𝑡 ≤ 𝑆 s.t. 𝑊 (𝑖,1)
𝑡 = 𝑊

(𝑖,2)
𝑡 } , 𝑖 ≤ 𝜅 , (2.237)

and we notice that

max
(𝑥,𝑦)

max
𝜎∈𝐷

E[P⊗2
(𝑥,𝑦) (𝜏meet < 𝑆)𝜅 | 𝜎] = max

(𝑥,𝑦)
max
𝜎∈𝐷

P⊗2, 𝜅-an |𝜎
(𝑥,𝑦) (∩𝑖≤𝜅E𝑖) . (2.238)

We now show that there exists some 𝛿 > 0 such that

max
𝑗≤𝜅

max
(𝑥,𝑦)

max
𝜎∈𝐷

P⊗2, 𝜅-an |𝜎
(𝑥,𝑦) (E 𝑗 | ∩𝑖< 𝑗E𝑖) ≤ 𝑛−𝛿 , (2.239)

for all 𝑛 large enough. Then, from (2.238) and (2.239) follows that

max
(𝑥,𝑦)

max
𝜎∈𝐷

E[P⊗2
(𝑥,𝑦) (𝜏meet < 𝑆)𝜅 | 𝜎] = max

(𝑥,𝑦)
max
𝜎∈𝐷

𝜅∏
𝑗=1

P⊗2, 𝜅-an |𝜎
(𝑥,𝑦) (E 𝑗 | ∩𝑖< 𝑗E𝑖) ≤ 𝑛−𝜅 𝛿 .

(2.240)
and the desired result follows by taking 𝜅 large enough, e.g., such that 𝜅 𝛿 > 3.

We are left with proving (2.239). Fix any (𝑥, 𝑦) ∈ [𝑛]2 \ Δ, and fix any 𝜎 = 𝜎𝑥,𝑦

such that 𝜎 ∈ 𝐷. Then, when 𝑖 = 1 and 𝑡 = 0 we have a subgraph of 𝐺 consisting of
two out-going trees of length ℏ, rooted at 𝑥 and 𝑦, that do not intersect. We let the first
couple of walks evolve for time 𝑆 and bound from above the probability of the event
E1. Notice that, by the fact that 𝜎 ∈ 𝐷 we have

𝑊
(𝑖,1)
𝑠 ≠ 𝑊

(𝑖,2)
𝑠 ∀𝑠 < ℏ, 𝑖 ≤ 𝜅 P⊗2, 𝜅-an |𝜎

(𝑥,𝑦) − a.s. . (2.241)

In order for the event E1 to occur, one of the two walks has to exit its 𝜎-tree and hit
one of the vertices that are already discovered, that is, that have at least a head or a
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tailed matched. Since there are at most 𝑆 steps available and, uniformly on the past,
the chance that such a hitting takes place at a fixed time 𝑡 ≤ 𝑆 is bounded by

𝑤1 :=
𝑑−max [2(𝑑+max)2ℏ + 2𝑆]
𝑚 − 2(𝑑+max)ℏ − 2𝑆

, (2.242)

as at any time 𝑡, for each of the two walks, there are at most 2(𝑑+max)2ℏ + 2𝑆 vertices
that have been explored already. We conclude that

P⊗2, 𝜅-an |𝜎
(𝑥,𝑦) (E1) ≤ 𝑆 𝑤1 . (2.243)

Now condition on an arbitrary realization of the paths of the first 𝑖 − 1 couples of
walks in which ∩ 𝑗<𝑖E 𝑗 is realized. Notice that, for 𝑧 = 𝑥, 𝑦, within the leafs of B+

𝑧 (ℏ)
there are at most (2𝑆)𝑖−1 ≤ (2 log(𝑛))3𝑖 having at least a matched tail. Hence, the
probability that the walk that starts at 𝑧 exits B+

𝑧 (ℏ) at a leaf that has already been
discovered can be bounded (uniformly in (𝑥, 𝑦) on 𝜎, and on the behavior of the
previous couples of walks) for all 𝑛 large enough, by

𝑤̄ := (𝑑+min)
−ℏ(2 log(𝑛))3𝜅 ≤ 1

2
𝑛−2/5 , (2.244)

thanks to the definition of ℏ in (2.55) and the fact that 𝑑+min ≥ 2. Indeed, being B+
𝑧 (ℏ) a

tree, the probability that the 𝑖-th walk ends up in specific leaf is given by the probability
to follow the unique path from 𝑧 to that leaf.

If the walk that start at 𝑧 exists B+
𝑧 (ℏ) from a leaf that has no matched tails, then

the argument before (2.242) applies, and this time the probability of a meeting time
before 𝑆 can be bounded by

𝑤𝑖 :=
𝑑−max [2(𝑑+max)2ℏ + 2𝑖𝑆]
𝑚 − 2(𝑑+max)ℏ − 2𝑖𝑆

≤ 𝑛−2/5 , 𝑖 ≤ 𝜅 , (2.245)

for all 𝑛 large enough. In conclusion, for all 𝑛 large enough,

max
𝑗≤𝜅

max
(𝑥,𝑦)

max
𝜎∈𝐷

P⊗2, 𝜅-an |𝜎
(𝑥,𝑦) (E 𝑗 | ∩𝑖< 𝑗E𝑖) ≤ 𝑤̄ + 𝑆 𝑤𝜅 ≤ 2𝑛−2/5 , (2.246)

and (2.239) readily follows. □

We are now in shape to prove (2.216), and in turn conclude the proof of Proposition
2.8.1.

Conclusion of the Proof of (2.216). Recall that the function 𝜑 in (2.208) and notice
that 𝜑 is injective on supp(𝜈dev), hence there is no ambiguity in identifying 𝜈dev with
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its lifting in [𝑛]2. We can rewrite the first term on the right-hand side of (2.214) as
follows

∥𝑃̃ 𝑆2 (𝜕, ·) − 𝜋̃∥TV =

= sup
𝐴⊂𝑉̃

����P̃𝜇̃𝜕 (
𝑋̃𝑆/2 ∈ 𝐴, 𝜏dev >

𝑆

4

)
+ P̃𝜇̃

𝜕

(
𝑋̃𝑆/2 ∈ 𝐴, 𝜏dev ≤ 𝑆

4

)
− 𝜋̃(𝐴)

����
≤ P̃𝜇̃

𝜕

(
𝜏dev >

𝑆

4

)
+ sup
ℓ≤ 𝑆4

sup
𝐴⊂𝑉̃

���P̃𝜇̃𝜈dev

(
𝑋̃ 𝑆

2 −ℓ
∈ 𝐴

)
− 𝜋̃(𝐴)

���
= P̃𝜇̃

𝜕

(
𝜏dev >

𝑆

4

)
+




𝜈dev𝑃̃
𝑆
4 − 𝜋̃





TV

≤ P̃𝜇̃
𝜕

(
𝜏dev >

√︁
log(𝑛)

)
+





𝜈dev

(
𝑃⊗2

) 𝑆
4 − 𝜋⊗2






TV

+




𝜈dev

(
𝑃⊗2

) 𝑆
4 − 𝜈dev𝑃̃

𝑆
4






TV

,

where the last step follows by the triangular inequality.
The first two terms on the right-hand side of the last display are both 𝑜P(1), thanks

to Lemma 2.8.4 and Theorem 2.4.3, respectively. Moreover, the last TV-distance
appearing on the right-hand side can be bounded by a coupling argument: using the
same source of randomness to generate the initial position according to 𝜈dev, and
the two processes 𝑃⊗2 and 𝑃̃ up to time 𝜏meet (and then letting the chain evolving
independently), and call Q such a (random) coupled probability law. In particular,
consider the random variable Q(𝜏fail ≤ 𝑠), that correspond to the (random) probability
that the coupling fails before 𝑠, and therefore, by the definition of the TV-distance in
terms of optimal coupling, it follows that for every 𝑠 ≥ 0,

Q(𝜏fail ≤ 𝑠) ≥



𝜈dev

(
𝑃⊗2

)𝑠
− 𝜈dev𝑃̃

𝑠





TV
, P − a.s..

Thanks to Corollary 2.8.6 we have,

Q(𝜏fail ≤ 𝑆/4) ≤ Q(𝜏fail ≤ 𝑆) ≤ max
x∈supp(𝜈dev )

P̃𝜇̃x(𝜏𝜕 ≤ 𝑆) = 𝑜P(1) , (2.247)

from which (2.216) follows. □

§2.9 Conclusions and open problems

With this work we provide the first-order asymptotic of the expected meeting, con-
sensus and coalescence time on a typical sparse random digraphs from the DCM
ensemble. This result adds to the list of examples, presented in the Introduction, for
which such a precise result can be obtained. Moreover, to the best of our knowledge,
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it is the only degree-inhomogeneous class of graphs in which such results has been
obtained so far. We conclude the chapter with a short list of open problems and with
an outlook on possible future research.

As pointed out in Section 2.5.1, in this chapter we did not aim at understanding the
most general conditions on the degree sequence up to which our technique could be
stretched. Nevertheless, it is natural to ask this question. More importantly, it looks
clear from our results that a change in the scaling of the consensus time should be
attained as soon as the in-degree sequence does not admit a bounded second moment.
Unfortunately, the understanding of the random walk on the DCM with such extreme
heavy-tailed degrees is still completely open, and some new ideas are needed to carry
out this investigation.

The question of determining the preconstant for the consensus time of the undir-
ected configuration model remains open. The representation proposed in [HLYZ22,
Lemma 6.12] looks promising, but an explicit characterization is still missing. In
this respect, as mentioned in Section 2.3.1, non-rigorous results in [SAR08] seems to
suggest a phenomenology similar to that in the Eulerian case. In fact, in view of the
mean field conditions and the First Visit Time Lemma, it is not hard to realize that the
value of 𝜗 in Eulerian case should provide a lower bound for its undirected counter-
part. Indeed, being the stationary distribution unaltered, the only thing to check is that
the quantity 𝑅𝑇 (𝜕) in Proposition 2.5.6 should be larger in the latter case, due to the
backtracking feature of the random walk on sparse undirected graphs.

§2.10 Appendix

In this Appendix we give an alternative proof of the convergence of E[𝑅𝜇].
Before to present our result on the behavior of E[𝑅𝜇] it is convenient to recall the

following classical identity.

Lemma 2.10.1. For all 𝜌 ∈ (0, 1/2]∑︁
𝑡≥1

2−2𝑡+1𝐶𝑡−1 𝜌
𝑡−1 =

1 −
√︁

1 − 𝜌
𝜌

. (2.248)

Proof. For all 𝜌 ∈ (0, 1/2], it holds that∑︁
𝑡≥1

2−2𝑡+1𝐶𝑡−1 𝜌
𝑡−1 =

1
2

∑︁
𝑡≥0

𝐶𝑡

(
𝜌

4

) 𝑡
= 𝐺 (𝜌/4) =

1 −
√︁

1 − 𝜌
𝜌

,

where

𝐺 (𝑥) = 1 −
√

1 − 4𝑥
2 𝑥

, 𝑥 ∈ (0, 1),

95



2. Meeting coalescence and consensus

C
ha

pt
er

2

is the generating function of the Catalan numbers, (see, e.g., [GKP94, Ch. 5.4] or
[FL03, Eq. 24]). □

At this point we have essentially all the technical ingredients needed to compute
E[𝑅𝜇].

Lemma 2.10.2. In the same setting of Lemma 2.6.6, defined Φ : [0, 1/2]2 → R as

Φ(𝜌, 𝑞) :=
𝜌

𝜌 − 𝑞
(
1 −

√︁
1 − 𝜌

) − 1 , (2.249)

it holds
lim
𝑛→∞

sup
𝜇∈M(𝑞)

|E[𝑅𝜇] − (1 +Φ(𝜌, 𝑞)) | = 0 , (2.250)

where 𝜌 = 𝜌𝑛 is defined as in (2.21).

Proof. Call 𝑅̂𝜇 (𝑠, 𝑡) the expected number of “reset” of the forest process, i.e., of the
number of meetings of the red and the blue flag, in the interval [𝑠, 𝑡). We claim that it
is enough to show that

lim
𝑛→∞

𝑅̂𝜇 (0, 𝑇 + 1) = 1 +Φ(𝜌, 𝑞) . (2.251)

Indeed, thanks to Proposition 2.6.4,

E[𝑅𝜇] = 𝑅̂𝜇 (0, 𝑇 + 1) +𝑂 (𝑇𝑛−𝜀/3) ∼ 𝑅̂𝜇 (0, 𝑇 + 1) , (2.252)

where we also used that E[𝑅𝜇] ≤ 𝑇 , 𝑇 = 𝑜(𝑛𝜀/3) and 𝑅̂𝜇 (0, 𝑇 + 1) ≥ 1. Recalling
that 𝜏 (𝑖)

𝜕
denotes the time of the 𝑖-th reset, we notice that process satisfies the renewal

property
P̂(𝜏 (𝑖+1)

𝜕
= ∞ | F𝑖) = 1 −

∑︁
𝑡≥1

P̂(𝜏 (1)
𝜕

= 2𝑡) , ∀𝑖 ≥ 1 , (2.253)

where F𝑖 is the sigma-field generated by the history of the forest process up to time
𝜏
(𝑖)
𝜕

. Therefore,

𝑅̂𝜇 (0,∞) = 1
1 − ∑

𝑡≥1 P̂(𝜏
(1)
𝜕

= 2𝑡)
= 1 +Φ(𝜌, 𝑞) , (2.254)

where the last equality follows from Lemmas 2.6.6 and 2.10.1. We claim that, there
exists some universal constant 𝐶 > 0 such that for all 𝑡, 𝑠 ≥ 1

𝑅̂𝜇 (𝑡, 𝑡 + 𝑠) ≤ 𝑠
(
2−𝑡/3 + P̂

(
Bin(𝑡, 1/2) < 𝑡

3
) )

≤ 𝑠
(
2−𝑡/3 + 𝑒−𝐶𝑡2

)
. (2.255)

The second inequality in (2.255) is a trivial consequence of the Chernoff bound. To
see the validity of the first inequality, observe that the number of resets in (𝑡, 𝑡 + 𝑠) is
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at most 𝑠 almost surely and, in order to be different from zero, it must be the case that
the chasing walk never deviates from the escaping walk up to time 𝑡. At each step the
chasing walk is selected with probability 1/2 and, given that it did not deviate yet, it
deviates with probability at least 1/2, regardless of 𝜇. Hence, or the chasing walk is
selected less than 𝑡/3 times or, otherwise, the chance that it never deviates up to time
𝑡 is at most 2−𝑡/3; thus (2.255) follows. Therefore, for 𝑛 sufficiently large,

𝑅̂𝜇 (𝑇,∞) =
∑︁
𝑘≥1

𝑅̂(𝑘𝑇, (𝑘 + 1)𝑇) ≤
∑︁
𝑘≥1

𝑇2−𝑘𝑇/4 = 𝑂
(
𝑇2−𝑇/4) = 𝑜(1) , (2.256)

and (2.251) follows from (2.254) and (2.256). □
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