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CHAPTER 1

1. Introduction

§1.1 Opinion dynamics as interacting particles

The 1970s saw the birth of what would later be classified by Aldous [Ald13]] as
part of “the most broad-ranging currently active field of applied probability”: in-
teracting particle systems (IPSs). Such a persuasive description is justified by the
interdisciplinary nature of the field, encompassing Mathematics, Physics, Computer
Science, Biology, Social Sciences, and Epidemiology. In the mathematical com-
munity, foundational contributions to interacting particle systems were made by F.
Spitzer [Spi69], who introduced models of infinite particle systems to explore how
simple local interaction rules can generate intricate global large-scale stochastic be-
havior, and by R.L. Dobrushin [Dob71]], who analyzed the existence and ergodicity
of Markov processes with locally interacting components. After several years of in-
tense developments, T. Liggett published a groundbreaking book in 1985 [Lig85] that
became a cornerstone in the field. Liggett’s work laid the foundation for a flourish-
ing probabilistic theory, unifying diverse statistical mechanics phenomena under a
single framework. His comprehensive approach synthesized rigorous results by using
Markov process theory applied to phenomena such as magnetization, infection spread,
and opinion dynamics. Additional references and modern introductions to the topic
include [Dur88| [Lig99,|AF02,ISwa2?2]. Models formally known as the stochastic Ising
model, the contact process, and the voter model share a common feature: they can
be represented as systems of locally interacting Markov chains labeled by a countable
alphabet of types. The building block used to analyze such processes is the continuous-
time random walk on graphs G = (V, E), having state space given by the vertex set V
of the graph and infinitesimal generator given by

(Le)(N) = D qle,y) [f@ = fWM], f:VoR, (1.1)
x,yeVvV
where
q(x,y) = Ak, ) if dy>0, q(x,y)=0 if d,=0, (1.2)

X

are the jump rates of the walk, A(x,y) denotes the adjacency matrix of the graph
counting the number of edges {x, y} € E, and d, is the degree of vertex x, i.e., the
number of edges {y, z} € E such that either y or z equals x. The rates ¢ in (I.2)) can
be generalized to any infinitesimal generator representing a random walk. Informally,
IPSs are multiple copies of the same process whose simple local interaction rules
can lead to surprisingly rich and nontrivial dynamics. Initially, the central research
question concerning interacting particle systems evolving over time was their long-
term behavior; specifically, the existence and characterization of invariant measures
(which are non-trivial in the infinite volume setting), and, whenever possible, the
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determination of the domain of attraction of each such measure. The study of IPSs first
focused on the lattice Z4, due to its regularity, translation invariance, and Euclidean
geometric structure (through its embedding in RY). Within such a geometry, all
aforementioned models exhibit phase transitions. In the stochastic Ising model and the
contact process, phase transitions occur at a non-trivial critical value, depending on
the dimension d, of the parameter that controls the intensity of magnetic interaction
and infection transfer, respectively. Below this threshold, fixation takes place, that
is, the global state of the particles remains the same although their local state may
keep on changing, otherwise there is a positive probability that different states coexist
indefinitely.

Interestingly, this dichotomy persists even in the opinion dynamics scenario, i.e.
for the voter model, despite the lack of an intrinsic parameter that can be tuned.
Here the phase transition is governed by the dimension d of the lattice: for d < 2
fixation occurs, while for d > 3 coexistence emerges. Moreover, Holley and Liggett
[HL75]] proved the presence of a continuous family of invariant measures in the
supercritical regime, with an index depending on the initialization of the opinions
(state), while in the subcritical regime (d < 2) every invariant measure reduces to a
convex combination of Dirac measures at fixation states. These phenomena are closely
related to the recurrence and transience properties of the simple random walk on Z¢
(see also [CG90L ICGS95! ICGS9E]). In this thesis we focus on the study of the voter
model on certain classes of finite graphs. In the following section we give a precise
description of the model and some of its variants, and give a glimpse of some useful
tools that we will exploit throughout the thesis.

§1.1.1 Voter model on fixed graphs

The voter model is a well-known example of opinion dynamics, introduced independ-
ently in the mathematical literature by Clifford and Sudbury [CS73]], and by Holley and
Liggett [HL75]. Like any IPS, it is defined by local update rules, which are specified
by rates that depend on properties of the underlying graph, such as vertex degrees. In
order to define the voter model in terms of its rates, we first require a suitable state
space, and to this end we need a set of opinions, denoted by W. Let us assume W to
be an alphabet, that is, a finite set with different elements. In this introduction, we
restrict ourselves to the case |W| = 2 and, without loss of generality, let W = {0, 1}.
These binary values, sometimes referred to as “blue” and “red,” can be thought of as
two competing political parties running in an election, hence the term “voter model”.
The question whether such a model can be adopted to give a statistical description of
poll predictions has been discussed in the literature; see [FGSR*14] and references
therein. Consider a locally finite graph G = (V, E), meaning that the graph itself
can be infinite but each vertex has finite degree, and initialize the opinions according
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to any distribution on Q = {0, 1}V, the state space of the process. The evolution
proceeds as follows: each vertex is equipped with an independent exponential clock of
rate one. When its clock rings, it selects a neighbor uniformly at random and adopts
that neighbor’s opinion.

Formally, we define the voter model on G as the continuous-time Markov process
(n¢)r>0 with state space Q and infinitesimal generator L, given by

(L5 =Y, D @y [fa ™) = fm], {01}V >R, (13)

xeV yeV

where ¢(-, -) is given by (I.2) and

77)c—>y(z) _ {77()’), if z =-x.,
n(x), otherwise .
For any x € V and ¢t € R*, 15,(x) denotes the state of the vertex x at time ¢, taking
values in the binary set {0, 1}, and interpreted as the opinion held by the individual x at
time ¢, while 5, = {n;(x) | x € V} is a configuration of opinions throughout the graph
at time ¢. In other words, the process describes the evolution of opinion dynamics,
starting from an initial configuration n9 = {no(x) | x € V}.

Notice that everything we have outlined can be generalized to any number of
opinions |W| < |V|. Furthermore, the voter model considered here is the simplest
model of opinion dynamics. Over the last few decades, many variants have been
studied, and we now provide a brief overview. One of the most natural generalizations
concerns the way opinions spread. In our version, the randomly selected vertex adopts
the opinion of a random neighbor. This is also known as the pull voter model. Classical
alternatives include the push voter model (or invasion process) [Durl0Q]], in which the
selected vertex imposes its opinion on a random neighbor, and the oblivious voter
model, in which edges connecting vertices with differing opinions are sampled at
random to drive the dynamics [CDFR18a]. Another important aspect is the nature
of time evolution. In discrete time, the model can be either synchronous, where all
vertices update their opinions simultaneously at each step, or asynchronous, where only
one randomly selected vertex updates at a time. These differences can significantly
affect the macroscopic behavior of the system. For a comprehensive introduction
to these and related topics, we refer the reader to the PhD thesis of Nicolds Rivera
[Riv18]]. Further variants change the update rules more drastically and are of interest
to the Mathematics, Computer Science, and Physics communities. The noisy voter
model introduces spontaneous opinion changes (noise), modeling external influences
and random fluctuations [GM93]]. The g-voter model (or more generally, the threshold
voter model) selects g neighbors (with replacement), and the vertex updates its opinion
only if all g neighbors agree [DS93| ICMnPS09||. A related variant is the k-majority
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voter model, in which a vertex changes its opinion only if a majority of £ sampled
neighbors agree on the same opinion [dO92]. The final class of variants we discuss
involves the introduction of a bias toward one or more opinions [HD19]. In this context,
we mention the recent work on the majority voter model with a single bias [CMQR23]],
as well as our generalization analyzed in Chapter[d] where we study the behavior of the
voting process under competing biases. Additional relevant contributions in applied
contexts include [HP99, YPOS10, BCPS11].

We mainly study the classical voter model introduced above. Although we have
implicitly assumed the graph G to be undirected, it is also possible to consider its
directed counterpart. In the directed setting, each vertex x € V has both an in-degree
d, representing the number of vertices with directed edges entering x, and an out-
degree d7, representing the number of vertices with directed edges exiting x. The
definition of the generator in can be adapted by replacing d, with d} in the
expression for g(x,y). The definition of the random walk generator in (I.I) can be
modified in the same way. For simplicity and introductory purposes, we will restrict
our attention to the undirected version of the graph for the remainder of this section.

Consensus

Let us assume G to be connected, that is, given any pair of distinct vertices x,y € V
there is a finite path (sequence of adjacent vertices) connecting them. Under this
assumption, both the random walk and the voter model processes are irreducible
Markov processes on G. Consider the voter model (17;);>0 on a finite (|V| < co)
connected graph G with state space Q = {0, 1}V. Then the process has two absorbing
states, corresponding to the two monochromatic configurations, in which everyone
share the same opinion, denoted by 1 and 0. In contrast to the infinite-volume
setting of Z¢, the voter model on a finite graph almost surely reaches an absorbing
configuration in finite time. In other words, independent of the initial configuration
the probability of having coexistence of opinions is zero. This setting naturally leads
to the question of determining the time at which the system reaches the absorbing
states, called consensus time, formally defined as

Teons = inf{t > 0:n; € {1,0}}. (1.4)

Note that this definition can be adapted to the case where G is disconnected. In this
setting, Tcons 1S defined as the first time at which all connected components reach a
local consensus, which may differ across components. Moreover, the order of the
consensus time will be determined by the time to local consensus within the largest
connected component, possibly up to a constant factor depending on the graph in
case this component is not unique. The analysis of (1.4) on finite connected graphs
is, in full generality, far from complete. One reason is its strong dependence on the
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underlying graph topology. A common approach to mitigate this complexity is to
consider a graph sequence {G, },cn, indexed by its size n = |V|, rather than analyzing
a single fixed graph. In this context, an interesting interplay emerges between the voter
dynamics and the volume n, leading to a central focus on the asymptotic behavior of
the consensus time as n — oo. Understanding the asymptotic properties of 7¢ons ON
certain graph sequences will be one of the main objectives of this thesis.

In both recent and earlier literature, numerous works have aimed to establish sharp
bounds on the expected consensus time E[7¢ons], either in full generality (independent
of the graph geometry) or for specific classes of graphs. Most approaches are based
on the assumption that the graph is undirected, which ensures the reversibility of the
associated random walk and enables the application of a variety of well-established
techniques. Of particular importance is the result from [CEORI13al], where a spec-
tral method is employed. More precisely, the authors show that under connectivity
assumption,

1 4 n

E[7eons] = O (m (10g* () + ;)) , (1.5)
where 4, denotes the second largest eigenvalue of the transition matrix of the random
walk on the graph, and v is the ratio between the second moment of the degree
sequence and the square of its first moment. This result gives crucial insight into a
way to measure the speed of consensus. Namely, given a sharp estimate of the spectral
gap 1 — Ay, we could tune v by adjusting the variability of the degree sequence:
increasing the variability decreases v, thus speeding up consensus, and vice versa.
In complete generality, Hassin and Peleg [HP99|] proved that the dynamics reaches
consensus on a state g with probability proportional to the volume of vertices initially
in state 79, in O(n> log n) rounds, regardless of the graph structure. This upper bound
was recently improved to O(n°) by [KMS19], and was shown to be tight.

The first graph in which for the consensus time an exact asymptotic has been
proved is the complete graph K, i.e., the graph in which each vertex is connected to
all the other vertices. This was possible because the complete absence of geometry in
the graph structure is a major simplifying feature. The voter model on K, coincides
with the so-called Moran model [Mor58]], modeling the evolution of allele frequencies
in a finite, constant-size population, capturing the effects of genetic drift, selection,
and mutation. Using certain techniques that will be discussed in the next section, it is
possible to reduce the problem to the analysis of simple random walks. This led to an
explicit expression for the distribution of 7.,s. In particular,

E[7cons] ~ 1, (1.6)

as n — oo. This example already provides insight into how long it takes to reach
consensus on the complete graph K, despite its optimal connectivity properties.
There are only two other cases for sequences of finite, undirected graphs in which the
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exact asymptotic of E[7ons] was understood: the d-dimensional tori by Cox [Cox89]
and the random d-regular graph by Cooper and Frieze [CEO4)]. In Cox’s work, the
author showed that for d > 3 the expected consensus scales, up to an implicit pre-
factor, linearly in the size n of the graph, while for d = 1 and d = 2 the scaling is n* and
n log(n), respectively. Similarly to the infinite lattice case, this dichotomy is closely
related to the recurrence and transience properties of the random walk. Regarding
the result by Cooper and Frieze, we first need to clarify the convergence claim, as
two very dependent sources of randomness are active: one arising from the random
geometry of the graph, the other from the stochastic process defined on it. We discuss
this interplay in more detail in Section[I.2] For now, we note that the appropriate way
to present their result is in the high-probability sense with respect to the randomness
of the environment. That is, for any & > 0,

-1
dl d

d-2

where P is the law of the random graph. Notice that both the d-dimensional tori
and the random d-regular graph are symmetric, undirected and translation invariant
geometries. In Chapter 2] we will prove what, to the best of our knowledge, is the first
result for 7,5 for a wide class of inhomogeneous directed random graphs with fixed
degree sequence. In the following section we discuss some of the most useful tools in
the study of interacting particle systems, while describing how they can be exploited
in the voter model context.

E [Tcons] -

n

>a) — 0, 1.7)

n—oo

Graphical representation and duality

The expression of L,,, in indicates that the only possible transitions in an
infinitesimal time step are of the form n*™Y, meaning that only one opinion can
change at a time. Consequently, the voter model belongs to the family of spin systems,
a subclass of IPSs for which many general results have been proven; see [Lig85|
Chapter 3] for further details. In particular, the voter model also falls into the class
of attractive spin systems, that is, a site that takes a given value (0 or 1) is more
likely to flip to the opposite value if it generally disagrees with its environment than
if it generally agrees with it. Thus, the dynamics encourages agreement among
neighboring sites. This property is essential because attractive spin systems are
monotone, a feature that significantly facilitates their long-term analysis. A variety of
tools have been developed for such IPSs, among which the most crucial and robust
ones are graphical representation and duality. Indeed, rephrasing Liggett [L1g99, Part
II], the main motivation for the introduction of voter models was their status as a class
of spin systems for which the duality technique can be applied most completely and
effectively. As we will argue below, many natural questions in this context reduce
to problems involving systems of random walks, thereby revealing a deep connection
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with one of the most active areas in probability theory over the past decades. What
follows is inspired by the recent overview of interacting particle systems on random
graphs in [CdH24| Chapter 3].

Duality. There are two ways to define a duality relation between two Markov
processes X = (X;);»0 and Y = (¥;);»0, with state spaces X and Y, respectively:
analytically or graphically. The graphical approach involves reversing time in the
graphical representation of the process and using the evolution of the reversed process
(which is often easier to analyze) to infer properties of the original process. The
analytical approach requires identifying a bounded measurable function H: X XY —
R such that

E*[H(X;,y)] = E'[H(x,Y))], (1.8)

for any (x,y) € X x Y and ¢+ > 0. When this condition holds, we say that X and Y
are dual to each other with respect to the duality function H. We first briefly describe
the analytic duality and then the graphical duality, showing that they lead to the same
result for the voter model.

Let (A;);>0 denote the dual Markov process with respect to the voter model
(n¢)s>0, with state space Q = W1, where [W| = 2 are the number of opinions and
[n] ={1,...,n}, n € N, is the vertex set V of the graph. Since we are considering a
spin-flip system, the state space of the dual (A;);>¢ is taken to be

2 ={A: Ais afinite subset of [n]},

which is finite for every n € N. Therefore, the dual process (A;);»o is actually a
Markov chain on E, and can be interpreted as the time evolution of a collection of
independent continuous-time random walks on [n] that coalesce whenever two of
them occupy the same site, the so-called coalescing random walk system. It follows
that |A;| can only decrease as ¢ increases.

The duality function H that captures this behavior is

H(n,A) = 1(;(x)=1 vxea}» ne Aek.

The main reason for this choice is that we are interested in consensus states, i.e.,
configurations 7 such that (x) = n(y) for all x, y € [n]. Using this duality function
together with the generator and the coefficients in (I.3), the transition rates of (A;);>0
for transitions A — B, where A, B € E, are given by

oAB = > alxy.

X€EA ye[n]:
(A\{x}U{y}=B

This has the following interpretation: each x € A is removed from A at rate 1 and
replaced by y with probability g (x, y). Moreover, if an attempt is made to place a point
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at a site already occupied, then the two points coalesce. In this system of coalescing
random walks, each walk independently waits an exponential time with rate 1, then
moves according to ¢g(x,y), and coalesces upon landing on an occupied site. The
semigroup of each random walk is given by

n
Pxy)=e’ Y gy, xyelnli20.
neNy n:

All the previous statements can be generalised to a setting with |W| = k opinions
with k € {2,...,n} in the following way. The dual state space is taken to be 2(X) =
Zk=1, the product of k — 1 copies of Z. Consequently, the dual process is of the
form At(k) = (Ay,...,Ar-1);. We refer to Lopez and Sanz [LSOQ] for an analytical
description of duality for interacting particle systems. Here, the interpretation is
slightly different from the case k = 2. In the latter, A € =2 represents the set of sites at
which there are particles, while A%) = (4;, ..., Ax_1) € B represents the positions
A; of the particles that trace back to opinion i (this will become clear in the graphical
representation), possibly with A; = 0 for some i € {1,...,k — 1}. The dual function
H: Qx 2% — R now reads

H(n, A®) = L{(x)=i VxeA; Vie{l,...k-1}}>
and the duality relation becomes
P'(n,(x) =iVxeA; Vie{l,....,k—1})
=P (n(x) =i Vx, € (A), Vie {1,....k—1})
for every initial configuration 7 € © and every initial state A(K) e k).
Let us consider the case in which k = n, and take AK) such that A; = {i} for all
sites, i.e., we place a continuous-time random walk at every site. Fix n = 19 € Q to

be the configuration in which each site has its personal opinion, say vertex i € [n] has
opinion i, for which |[n]| = |W|. If one considers the configuration 7j, defined as

17: () = n10((Ai)s), i€[n], >0,
where (A,); = [n] \ Ui<n-1(Ai)r,

then the duality relation says that 7j, has the same distribution as the state r, of the
voter model at time ¢ with initial configuration 79. Recall the definition of consensus
time 7eons With two opinions in (I.4), and define the coalescence time as

Teoal,n = inf{z > 0: all n particles have coalesced into one}.

In particular, it follows that the consensus time has the same law as the coalescence
time, specifically,
E[7cons] = E[7coal,n]-

[ ¥A1dVH))
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Moreover, if we consider the same model with 2 < k < n opinions and any given
initial configuration n¢ then the distribution of 7¢ons x Will be stochastically dominated
by the distribution of 7coar,, because {Tconsk > 1} 2 {Tcons.n > t}, 50 P (Teons x <
t) < P(Tcons,n < t) for all # > 0. Here with 7.ns x We indicate the consensus time of
the voter model with k opinions, with the convention that T¢ops2 = Tcons. Thus, for
any o € [k]1"],

Teons,k = Tcoal,n » 2<k<n, (1.9)

where < denotes the stochastic dominance of two random variables. In particular
E [Tcons,k] < E[Tcoal,n] , 2<k<n.

Moreover, it can be proved (see e.g. Fernley and Ortgiese [FO23]) that, in the case
where k£ = 2 and the initial distribution g, is given by the product measure of parameter
u € (0, 1) Bernoulli random variables,

214(1 - M) E[Tcoal,n] < EHu [Tcons] < E[Tcoal,n], ue (09 1)-

Graphical representation. We conclude this section by giving the duality prin-
ciple in terms of the graphical representation. Start with the same setting as above: the
voter model with state space Q = W™ |W| = k, defined by its generator and its rates.
Consider the graph {(j,7): j € [n],t = 0} and independent rate-1 Poisson processes
(Ni(t))t>0,1 € [n]. The dynamics is the following: if 7 is an event of the clock N; for
some i € [n], then draw an arrow from (z, j) to (#,i), where j € [n] is chosen with
probability p(i, j). These transition probabilities coincide with the ones given above.
In other words, an event represented by an arrow j — i means that at time 7 the voter
at site i decides to adopt the opinion of the voter at site j.

Given any initial configuration r79 € €2, we let the opinions flow upwards, starting
attime ¢t = 0, and any time they encounter the base of an arrow they follow its direction,
changing to the opinion that is at the tip of the arrow. In the case of two-opinions (0
and 1), this construction can be seen as a percolation process where a fluid is placed
att = 0 in the 1-sites of n7p and flows up the structure: the arrows are the pipes and the
tips are the dams (see Durrett [Dur88])).

Let us next fix a time horizon fy > 0 and position a walk in (i, f) for all sites
i € [n]. We let these walks evolve independently as follows: they move downwards
through the graph {(j,t0 —t): j € [n],t € [0,%9]}, and any time they encounter the
tip of an arrow they follow it in the opposite direction. Furthermore, if one of them
moves to a site already occupied by another walk, then the two walks coalesce into a
single (independent) one. Alternatively, the process can be described as follows: each
of the walks waits an exponential time of parameter 1 and, given the current position
x € [n], moves to y € [n] with probability ¢g(x,y). Likewise, for the coalescing
condition we have that any time when at least two walks meet at the same site they

10
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coalesce into a single one. Denote by At(")’t" = (Aio, ..., A), the resulting system of
n coalescing random walks (CRWSs) evolving as above, where, for each i € [n], (Ai),’O
is the position of the walk starting in (i, f) at time ¢, in particular, A(()")’to = [n].

Given this construction, it follows that the opinion held by vertex i at time #y can
be derived by tracing back in time the path of the walks up to time ¢ = 0. Thus,

(1) = no((AD)g) Vi€ [n], Vig>0.

With the latter we derived the same result obtained by using the duality relation. All
the other results regarding the equivalence in distribution between the coalescing time
and the consensus time with k = n opinions, i.e., no = [n], follow directly.

In modern probability theory, analytic duality stands out as one of the most
powerful and versatile tools, playing a pivotal role in cutting-edge research. Nu-
merous studies have significantly advanced this theory. Among them, notable con-
tributions have been provided by G. Carinci, F. den Hollander, C. Franceschini,
C. Giarding, S. Nandan, E. Pulvirenti, F. Redig, F. Sau, T. Sasamoto, and J. Swart
[RS18,[dHN22| [CGRS16, BAHM*24, [FG19].

§1.2 Random graphs models

Initially, the only finite graph sequences that were analytically tractable and extend-
able were the complete graph K, and the d-dimensional tori. The latter preserves
the Euclidean geometry, when embedded in R¢, of the lattice Z¢ within a finite-
volume context, maintaining translation invariance. In contrast, the complete graph
K, represents the opposite extreme, where geometric structure is entirely absent. Both
applied and theoretical sciences have required new finite models capable of describing
the complexity involved in the evolution of opinion dynamics and related models on
more realistic approximations of real-world networks. This need was met with the
emergence of random graph theory.

Formally, a random graph is a graph-valued random variable, where the random-
ness may arise from different sources: either by fixing the vertices and randomizing
the edges, randomizing both the edges and the vertices, or fixing both the vertices and
their degrees, with the randomness lying in how the edges are formed under these con-
straints. Similarly to what was described in Section[I.T] it will also be necessary in this
framework to consider (random) graph sequences {G,}, in order to study asymptotic
properties A,,, indexed by the size n, as n grows to infinity. In particular, we say that
a property A, holds with high probability it P(A,) — 1 as n — oo, where P = P, is
the law of G,. In this view, over the past couple of decades, several topologies have
been introduced that allow for a detailed study of the asymptotic behavior of graph se-
quences {G, },. The most commonly used are local weak convergence [BSO1}[AS04]

11
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and graphons [LS06]. The latter is used to study the asymptotic properties of dense
random graphs, that is, graph sequences in which the number of edges is of the same
order as the number of vertices, and consists of a symmetric, measurable function from
the unit interval [0, 1] to itself equipped with a specific metric. In contrast, local weak
convergence is suitable for sparse random graphs, where the number of edges is of the
same order as the volume, and provides information about the structure of the graph
based on a local exploration process driven by its composition. In this section, we
will describe some classes of sparse random graph models, focusing on the so-called
configuration model. We refer to [BolO1, [FK15, [Hof17, [Hof24] for comprehensive
references on random graph theory.

Independent edges random graphs

The earliest random graph models are referred to as Erdos-Rényi random graphs. There
are two distinct models commonly known by this name. The first is the Gilbert-Erdos-
Rényi random graph [Gil59], denoted by G (n, p). This random graph model can be
sampled as follows: initially take an empty graph (no edges) with n € N vertices, and
for each unordered pair of vertices x, y € [n], add an edge with probability p € [0, 1],
possibly depending on the size n of the graph. With probability 1 — p, no edge is
added. This procedure is equivalent to performing bond percolation on the complete
graph K,,. The second model is the Erdos-Rényi random graph [ERS5Y], denoted by
G(n, M), where a graph is chosen uniformly at random from the set of all graphs
with n vertices and M edges. The key difference between G (n, p) and G(n, M) is
that in G(n, p) edges are included independently with fixed probability p, whereas
G(n, M) has a fixed total number of edges. In the latter, edges are not independent;
for example, if one edge is present, only M — 1 edges remain to be assigned among the
remaining vertex pairs. Despite this difference, the two models are closely related. In
fact, conditioning G (n, p) on having exactly M edges yields the uniform distribution
over graphs with M edges, which is precisely G(n, M). Conversely, G(n, M) can
be viewed as G(n, p) conditioned on a fixed edge count M. Thus, many properties
of one model can be translated to the other via conditioning or averaging arguments.
Indeed, G (n, p) and G (n, M) are asymptotically equivalent for a wide range of graph
properties when M and p are appropriately matched. If M = (g‘) p+O(ny\p(l-p)),
i.e., if M is close to its mean under G (n, p), then any property P that holds with high
probability in G (n, M) also holds with essentially the same probability in G (n, p) as
n — oo (see e.g. [FK15]).

Due to this equivalence, it is often sufficient to study just one of the two models.
Let us focus on G(n, p). More precisely, consider the sparse regime of the model,
where the (expected) number of edges is of the same order as the number of vertices.

12
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In other words, we assume that
A

p=-
n

where 4 > 0 does not depend on n. From a probabilistic perspective, the model
basically reduces to a study of binomial random variables and, despite its simplicity,
interesting phase transitions phenomena emerge. More precisely, it has been proved
that A = 1 is the critical value for a drastic change in the order of the largest connected
component (LCC). Indeed, if 4 < 1, then with high probability the size of the LCC
scales as log(n); if 2 = 1 then the LCC scales as n?/3: while if 1 > 1, then the LCC
is unique and is a giant component, i.e. its size scales as n, while all other connected
components have size O(log(n)) with high probability. Moreover, if p > C @ for
some C > 1, then the resulting graph will be connected with high probability. Many
more refined results regarding the fine structure of this random graph ensemble is
known; we refer to [Hof17, Chapters 3 & 4] for details.

Although Erdos-Rényi random graphs marked the beginning of a conceptual re-
volution, they exhibited a clear limitation in terms of homogeneity: they were not
realistic models of real-world complex networks. Building on this observation, new
models with diverse features were introduced. One of the key models in this direc-
tion is the inhomogeneous Erdos-Rényi model, also known as the generalized random
graph, introduced in [BJRO7|]. Here, the construction is similar to G (n, p), but instead
of having the same p for each pair of vertices x, y € [n], the connection probabilities
may differ depending on the selected vertices. More precisely, we consider a weight
sequence {Wy } xe[n], possibly depending on n, which can either be fixed or be sampled
according to independent and identically distributed random variables, and we define

Wy Wy

Px,y =
Y 2 Wt Wxwy

to be the independent connection probability between any pair of vertices x, y. Note
nAd

that, by taking w, = ;%5 we obtain py y = p = ’;l for any x, y € [n], thus recovering
the classical G(n, p) case. Consider the case in which {w},e[,] is a deterministic
sequence, and let D,, denote the degree of a uniformly selected vertex. Under certain
assumptions, particularly regarding the convergence in distribution of D, to some
limiting random variable D, along with convergence of its first and second moments,
many structural properties of this ensemble can be established. In particular, the
explicit limiting distribution of the degree sequence is known, and is given by a
mixed Poisson distribution with the mixing distribution having the law of D. Several
other inhomogeneous edge-independent models have been proposed based on a weight
sequence and different specifications for the connection probabilities p, ,. Among the
most studied are the Chung—Lu [CLO2b, ICL02al] and Norros—Reittu [NRO6]] random

graphs. Under suitable assumptions on the weight sequence, it can be shown that
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all these models are asymptotically equivalent (see [Hofl7, Chapter 6]). Recent
developments in the study of stochastic processes in these geometries include [ST20,
BP25, BLPS18, |[AGSS24]]. Furthermore, there has been an increasing interest in
the study of spectral properties of inhomogeneous random graphs [BL10, I(CHdHS21!
CHMS25]]. We refer to [HHM?23b, I HHM?23a] for a detailed analysis of the local weak
convergence of inhomogeneous random graphs.

Another direction in the generalization of Erdds-Rényi random graphs involves
embedding the vertices in a metric space and adjusting the connection probabilities
Dx,y by introducing a parametrized function that modulates the likelihood of connect-
ing two vertices based on their distance. Typically, this results in taking the inverse of
the distance between x and y, raised to some power y > 0. These models are known
as geometric random graphs (see [Pen03), IDDC23]] for more details). Finally, there
is another random graph ensemble that does not fall into the class of models with
independent edges but is nevertheless worth mentioning: the preferential attachment
random graph. This model, introduced by Barabdsi and Albert [BA99], describes the
growth of networks in which new vertices prefer to connect to existing vertices with
higher degrees. This mechanism leads to the emergence of scale-free networks, char-
acterized by a power-law degree distribution, where a few vertices (hubs) accumulate
many connections, while the majority of vertices have only a few.

§1.2.1 Configuration models

In complex network theory, one of the key elements in determining the flow of in-
formation diffusion along a network is the inhomogeneity of the degree sequence.
There was a need to study opinion dynamics on empirical networks where the degree
sequence of the vertices was known, but the way the connections were distributed
along the network was too complicated to analyze case-by-case. The configuration
model was the right tool to address this problem. It was first introduced by Bollobds
in 1980 [Bol80] to study the enumeration of regular graphs, and was later extended
to general degree sequences by Molloy and Reed in 1995 [MR935]], who analyzed the
emergence of a giant component and established critical thresholds for connectivity.

The configuration model is sampled as follows. For any n € N, let [n] :=
{1,...,n}beasetof nlabeled vertices. Defined,, = (di, ..., d,) tobe adeterministic
degree sequence satisfying the following constraint

M, = Z d,=2¢,, (1.10)

xe[n]

for some ¢,, € N. The randomness of the model comes from the mechanism in which
the edges are formed, and is the result of the following uniform pairing procedure
involving stubs, i.e., half-edges. Assign to each vertex x € [n], d, labeled stubs. At
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Figure 1.1: On the left the initial empty graph with all vertices having stubs according to their
degree. On the right a possible realization of a configuration model with the prescribed degree
sequence. The graph is created using software available at https://www.networkpages.nl,

each step, select a stub e that was not matched in a previous step (the order of the
selection of e is irrelevant), and a uniform at random stub f among the unmatched
ones. Then match them and add the edge e f € E between the vertex incident to e and
the vertex incident to f to the edge set E. Continue until there are no more unmatched
stubs. See Figure [I.T|for a possible realization following such a procedure. Note that
the matching is possible by the assumption that the sum of the stubs M,, is
even. This random procedure gives rise to a so-called configuration, and it uniquely
determines the corresponding random graph G = G,, = ([n], E). We say that a graph
G, is sampled from the Configuration Model CM(d,,) with a given degree sequence
d,,, if it is sampled according to the procedure above. Notice that the pairing procedure
is well-defined and can be extended to degree sequences sampled according to i.i.d.
random variables.

There are two main differences between the generation of CM(d,,) and any of
the graphs mentioned in the previous subsection: in the configuration model, the
connection probabilities are not independent, and the resulting graph is not necessarily
simple, meaning that there may be self-loops (edges from a vertex to itself) and
multiple edges (more than one edge connecting the same pair of vertices). Under
certain conditions on the degree sequence d,, the explicit distribution of the number
of self-loops and multiple edges is known. Interestingly, under the same assumptions,
the general properties of CM(d,,) and those of the same ensemble with self-loops and
multiple edges erased are asymptotically equivalent. Another important property is
that CM(d,,) is not uniformly distributed among all multigraphs (i.e., not necessarily
simple graphs) with degree sequence d,. This is due to the fact that the half-edges
attached to the same vertex are indistinguishable. Nevertheless, if we condition the
graph on being simple, then the resulting law of CM(d,;) becomes uniform over all
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simple graphs with degree sequence d,,. See [Hof17, Chapter 7] for further details.

Directed model

The directed configuration model, whose structural properties were first studied by
Cooper and Frieze [CFO4], is a natural generalization to the directed setting of the
classical version of the model defined in the previous section. The sampling procedure
for this random graph ensemble is similar to the undirected counterpart and can be
described as follows. In the same setting as above, let d* = d;; = (d)xe[n] € Njj and
d” =d;, = (d})xe[n) € Njj be two finite deterministic sequences such that

Z dt = Z ds . (1.11)

x€[n] xe[n]

For any vertex x € [n], let df (resp. d}) be its out-degree (resp. in degree), that is,
the number of vertices that are connected to x via a directed edge that is exiting (resp.
entering) x. We perform a pairing procedure of the same type as for the undirected
model, but this time we need to match in-stubs, called heads, with out-stabs, rails. At
each step, select a tail e that was not matched in a previous step, and a uniform at
random head f among the unmatched ones, match them, and add the directed edge
ef between the vertex incident to e and the vertex incident to f to the edge set E.
Continue until there are no more unmatched heads and tails. As before, note that
the constraint in (I.I1)) ensures that such a uniform matching ends without any stub
left unmatched. We say that a graph G is sampled from the directed configuration
model DCM = DCM(d;;, d;,) with a given bi-degree sequence d;, d;, if it is sampled
according to the procedure above.

There are many differences between the configuration model (CM) and its directed
counterpart (DCM), and more generally between directed and undirected (random)
graphs. Notice first that the law of the random walk on any random graph is a random
measure. In the case of the CM, the stationary distribution & for the random walk is,
despite the graph being random, deterministic and explicit, given by

n>™n

_dx
szz,

and the random walk is reversible with respect to m. In contrast, in the DCM, the
stationary distribution 7 is a non-trivial and, in most cases, non-reversible random
measure. This immediately implies that many of the techniques used to study these
processes in the undirected case cannot be applied in the directed setting. Nevertheless,
in the last decade, new tools have emerged that allow for a detailed study of this topic.
Within this domain, the works of C. Bordenave, X. S. Cai, P. Caputo, G. Perarnau,
M. Quattropani, and J. Salez stand out as particularly significant [CP21} [CCPQ23|

m(x) =
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BCS19,[BCS18./CP20]. Under various assumptions on the degree sequence (d};,d;)
of the DCM, they proved several results concerning the uniqueness of n, its extremal
values Tmax, Tmin, its bulk structure, and the mixing time tyix, with high probability. In
particular, in [BCS18]] the authors show that the mixing time is logarithmic in n and
that the total variation distance drops abruptly to zero at a sharp time, an instance of
the so-called cutoff at the entropic time (see also [BCS19, CCPQ23|).

In this thesis, we will primarily study the voter model evolving on the DCM,
focusing on the sparse version of the model, that is, working under assumptions on the
degree sequence such that m, = ®(n). Under these assumptions, it can be shown that
the local weak limit is an explicit Galton—Watson tree. One consequence of this result
is that a local exploration process, such as the breadth-first search from a randomly
selected node up to a certain depth, will with high probability not encounter any cycles.
This property is crucial since, due to the duality relation between the voter model and
a system of coalescing random walks (see Section[I.T)) and the groundbreaking results
of Oliveira [Ol112,|0l113]], it is possible to reduce the study of the consensus time T¢ons
to the analysis of the meeting time of two random walks.

Voter model on random graphs

Inrecent years, there has been increasing interest in the study of the voter model, mainly
through the analysis of consensus time, on various underlying random geometries. In
[EOQ23], the authors provide explicit estimates, up to polylogarithmic corrections, of the
expected consensus time for a wide range of independent-edges, subcritical (low edge-
density regime) random graphs, while [Fer24]] explores supercritical random graphs.
A detailed analysis of sparse d-regular random graphs is presented in [ABH*24],
where the authors build on the works [CFOS), ICER10]], investigating the evolution of
discordant edges over different time scales. There are also numerous results concerning
observables of random walks on such geometries, which implicitly yield results for the
voter model via duality. In this direction, we highlight the work by Oliveira [Ol112]
Ol113]], which extends the so-called mean-field behavior known for the complete graph
K, to general classes of (random) graphs, as well as the work by Chen, Choi, and Cox
[CCC16] and Chen [ChelS8]], which offers key insights into martingale properties
of voter density processes, leading to convergence to the Wright—Fisher diffusion.
Furthermore, Hermon et al. [HLYZ22| analyze the decay of the particle density in
the coalescing random walks model during the so-called “Big Bang” regime, that
is, an early phase of the process when many particles are present and interactions
are frequent. A spectral approach was employed in [BK24]] to compute the expected
meeting time from stationarity for two random walks on certain classes of independent-
edges random graphs. We also mention that dynamic random graph models, in
which the voter evolution affects the evolution of the underlying graph, have recently
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received attention. Various rewiring rules coupled with voter dynamics were proposed
in [DGL*12]], with predictions based on numerical simulations. Recent works such
as [BS17, [AdHR25, BBdHM?24, IBK25] have rigorously studied these models in the
setting of dense random graphs, while [ABH25]] considers the sparse regime. Lastly,
we cite the updated version of Durrett’s book in progress [Dur23], the survey article
by Capannoli and den Hollander [CdH24]|, and the references mentioned therein, for
an overview of recent achievements on this topic. In the following section, we provide
a brief description of how our contributions relate to the current literature and outline
possible future directions for this exciting field of research.

§1.3 Overview

In this section we present a brief overview of the content of the four chapters in this
thesis.

I. In Chapter 2] we consider Markovian dynamics on a typical realization of the
directed configuration model. In this random geometry, we study the consensus
time of the voter model on a typical realization of the graph, as well as the
meeting time of two random walks starting from stationarity. It is known that
these two quantities are related when the underlying sequence of graphs satisfies
certain mean-field conditions. Previous results in this direction were restricted
to settings with prominent symmetry properties in the environment, such as the
complete graph, discrete d-dimensional tori (d > 2), and random regular graphs.
To the best of our knowledge, our work is the first to address this problem in a
general random directed geometry.

We provide a complete characterization of the distribution of the meeting and
consensus times on a typical random graph as a function of a single quantity
9. More precisely, we show that for a typical large graph drawn from the
DCM ensemble, the distribution of the meeting time is well approximated by
an exponential random variable. Furthermore, we provide the precise first-
order approximation of its expectation, showing that it is linear in the size of
the graph. The explicit constant ¥ depends on simple statistics of the degree
sequence. As a consequence, we can analyze the effect of the degree sequence
on the expected meeting time and, through explicit examples, examine how
its regularity or variability plays a role in the diffusion of opinions. Finally,
we perform a quantitative analysis of ¢}, addressing how degree variability
and correlations between in- and out-degrees influence the consensus time, and
identifying conditions that minimize or maximize it under structural constraints.

II. After gaining such an explicit result in Chapter [2] we proceed to extend it to
a deeper level of analysis for the voter model dynamics. In Chapter [3| we
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III.

investigate the evolution of the voter model on sparse directed random graphs
generated via the DCM, focusing on the density of discordant edges, i.e., edges
connecting vertices with opposite opinions. This type of analysis was performed
earlier in the undirected regular random graph setting.

Exploiting duality and developing new coupling techniques, we derive precise
asymptotics for the expected density of discordant edges across different time
scales, capturing not only the consensus time but also the transient behavior of
the dynamics. More precisely, we prove the existence of an initial time scale
in which the process behaves as if it were evolving on a Galton-Watson tree,
for which the initial density of discordances quickly drops to a given state. For
time scales strictly in between this initial drop and the consensus time, a quasi-
stationary behavior emerges and the density of discordant edges stabilizes around
an explicit limiting value for a long time. Finally, on the consensus time scale,
the process exhibits a sharp descent from the previous plateau, approaching zero
at a rate that coincides with the functional ¢ found in the previous chapter for
the expected consensus time.

In Chapter[d] we analyze a nonlinear opinion dynamics model on sparse random
directed graphs, designed to capture the interplay between an external disruptive
bias favoring the adoption of a novel (blue) opinion and individual stubbornness
reinforcing adherence to the initial (red) opinion. Our model introduces two
competing parameters: a bias probability p, modeling external influences, and
a stubbornness parameter s, representing intrinsic resistance to opinion change.
We first analyze the model on random d-out-regular directed graphs, initially
configured with all agents supporting the red opinion.

Utilizing a mean-field approximation, in which network topology plays no ex-
plicit role and the underlying graph is independently resampled at each step, we
identify a phase transition phenomenon occurring with high probability. For
fixed out-degree d > 2 and stubbornness s > 1, we establish the existence of a
critical threshold p.(d, s) of the disruptive bias that separates two distinct dy-
namical behaviors. Above this threshold (p > p.(d, s)), the dynamics quickly
reaches consensus on the blue opinion. Below the threshold (p < p.(d, s)),
the system rapidly settles into a metastable state characterized by a stable non-
consensus proportion g4 (p, d, s) < 1 of agents adopting the blue opinion. This
metastable regime persists on a time scale that is exponential in the network size.
We prove these results for both synchronous dynamics, where all agents update
simultaneously, and asynchronous dynamics, where only one randomly selected
agent updates at each time step. Furthermore, we perform numerical simula-
tions on sparse homogeneous and inhomogeneous random graphs, to confirm
that the qualitative and quantitative predictions from our mean-field setting can
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be extended to more generic frameworks.

IV. In Chapter [5] we investigate several questions related to the voter model on
both directed and undirected random graph models, particularly focusing on
heavy-tailed degree distributions. While various predictions for the consensus
time order exist in the physics literature for undirected random graphs with
uncorrelated degrees, we conduct a systematic numerical study and propose
multiple conjectures based on mathematical reasoning.

Our analysis in Chapter [5|explores how the network topology, especially hetero-
geneity in vertices degrees, affects the consensus time. The main contribution
is an extension of the analysis of consensus times to directed random graphs
with arbitrary given degree sequences. This work generalizes the analytical
results derived in Chapter [2] initially established for bounded deterministic de-
grees, to a broad range of directed random graph ensembles. Specifically, we
test conjectures numerically for degrees following a Pareto distribution with
exponent @ > 0, and we derive precise first-order asymptotics for the expec-
ted consensus time across all values of @ > 0. Additionally, we evaluate the
validity of mean-field approximations within these graph ensembles. Numerical
simulations demonstrate that mean-field approximations accurately describe the
distribution of 7., provided the underlying directed ensemble has finite mean
degrees (@ > 1). Conversely, in scenarios with infinite mean degrees (o < 1),
significant deviations occur between the empirical distribution of consensus
times and the theoretical predictions. Lastly, we analyze a similar crossover
regarding the convergence of a specific weighted density process to a Wright—
Fisher diffusion. When the underlying graph has finite mean in- and out-degrees,
we observe convergence for both directed and undirected configuration models.
In the directed model, we explicitly identify the diffusion constant as a function
of the in- and out-degree distributions.

Future directions

As outlined throughout this thesis, over the past few years we have developed a
significantly deeper understanding of how consensus is reached in various opinion
dynamics models evolving on sparse directed and undirected random geometries.
Our contributions span both theoretical advancements and applied insights into the
behavior of such processes.

The field remains rich with opportunities for further exploration. First and fore-
most, the heuristic phenomena presented in Chapter [5| await rigorous mathematical
validation. In addition, numerous extensions of the voter model on random graphs in-
troduce new layers of complexity and open up various new research directions. These
include, for instance, the study of dynamic random graphs and feedback-driven dynam-
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ics (for recent works in this direction see, e.g. [ST20,PSS20,dSOV24, |/ AvdHdHN?25,
ABH™'25/SV25]] and [AdHR25, BBAHM?24], respectively) both in directed and undir-
ected sparse and dense settings. Beyond that, variants of the voter model itself, such
as the version incorporating competing biases discussed in Chapter 4] present further
challenges and opportunities for advancing our understanding of opinion dynamics in
complex networks.
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